MAT 211 - Review Problems, Fall 2018

(1) Let A be the matrix $A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 3 & 1 & -1 & -2 \\ -7 & 1 & 3 & 4 \end{pmatrix}$

- (a) Find basis for the row space, and nullspace of A.
- (b) Find the dimensions of the row space, nullspace and column space of A.

(c) Determine whether \vec{v} is in the nullspace of A, where $\vec{v} = \begin{vmatrix} 7 \\ -25 \\ 10 \end{vmatrix}$

- (2) Find all the possible values of rank(A) as a varies. $\begin{pmatrix} 1 & a & 0 & 1 \\ 3 & 1 & -a & 2 \\ 3 & 1 & -1 & 2a \end{pmatrix}$
- (3) Find the matrix of a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 , such that

$$T\left(\begin{bmatrix}3\\-3\end{bmatrix}\right) = \begin{bmatrix}10\\3\end{bmatrix}$$
 and $T\left(\begin{bmatrix}3\\-3\end{bmatrix}\right) = \begin{bmatrix}10\\3\end{bmatrix}$

(4) Determine whether T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 , such that

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}3x-y\\2x+y+1\end{bmatrix}$$

- (5) Find the matrices of the following linear transformations from \mathbb{R}^2 to \mathbb{R}^2 .
 - (a) Counterclockwise rotation through 90° followed by the reflection on the line y = 2x.
 - (b) Counterclockwise rotation through 37° followed by counterclockwise rotation through 53° .
- (6) For the following matrices, find the eigenvalues and eigenspaces of A, and determine whether A is diagonalizable or not, If A is not diagonalizable, explain why not. If A is diagonalizable, find and invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$
 - (a) A is the matrix of a reflection in the y-axis in \mathbb{R}^2 .
 - (b) If A is a 2 × 2 matrix, with eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$, and the corresponding eigenvectors $\vec{v_1} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ find $A^8.u$, where $\vec{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

(c)
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 4 & 0 & 1 & 4 \end{pmatrix}$$

(7) If A is a square matrix and $A^4 = A$ what are the possible values of the eigenvalues of A?

(8) If
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 4 & 0 & 1 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 3 & 0 & 2 \\ 0 & 1 & 5 & 2 \\ 4 & 0 & 1 & 4 \end{pmatrix}$, and $C = \begin{pmatrix} 10 & 10 & 0 & 10 \\ 2 & 3 & 0 & 2 \\ 0 & 10 & 50 & 20 \\ 4 & 0 & 1 & 4 \end{pmatrix}$

- (a) Compute $\det(A^8B^3A^7)$.
- (b) Compute det(C)
- (9) Find all the (real) values of k that make the matrix A invertible, $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & k & 0 & 2 \\ 0 & 1 & k & 2 \\ 4 & 0 & 1 & 4 \end{pmatrix}$
- (10) Find all possible 3×3 diagonal matrices with eigenvalues 1 (with geometric multiplicity 2) and -7.

(11) Compute
$$A^k$$
 where $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & -2 & 2 \\ 0 & 1 & 1 \end{pmatrix}$

(12) Find the values of k that make A diagonalizable, where $A = \begin{pmatrix} 0 & 3 & 0 \\ 3 & k & 0 \\ 0 & 0 & 4 \end{pmatrix}$

- (13) Mark each of the following statements true or false. If they are false, give a counterexample.
 - (a) If A, B, X are square matrices, $A \cdot X = B$ and B is invertible then $X = BA^{-1}$.
 - (b) For all square matrices A, $det(A) = -det(A^{-1})$
 - (c) if A is an $n \times n$ matrix with n distinct eigenvalues then A is diagonalizable.
 - (d) Two vectors corresponding to different eigenvalues are linearly dependent.
 - (e) Every matrix is diagonalizable.
 - (f) If two matrices are row equivalent they they have the same nullspace.
 - (g) If two matrices A and B are row equivalent then dim(row(A)) = dim(col(B)),