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1 Differential manifolds

f) Let ¢ be the symmetric bilinear form defined on R+ by

K
A2.9) = | ~zoyo+ 3z

g=1

K

OLin) = {4 € Mo(R)Va,y € R™1, g(Az, 4y) = a(z,y)}
H* = {z e R"*1 /g, z)=-1 and zy> 0}
Oo(I,n)={4 e O(1,n)/A(H") = H"}

We want to show that Oo(1,n) acts transitively on H”. First we show that the
orthogonal symmetries (for ¢) with Tespect to an hyperplane of R7+1 belong
to O(1,n): if D is a non isotropic straight line, and if P is the orthogonal

hyperplane to D for g, any vector u € R®¥! cap he decomposed as the sum
of two vectors u1 € D and us € P. The map

3:u1+u2~—>u1——u2

belongs to O(1,n) since

a(s(ug + us), s(vy + v2)) = q(u1,v1) + g(us, vy)

= q(uy + us, v1 + v2).

Let now z,y € H™. To show that there exists an h
%L—‘Z, and orthogonal to y — z, it is sufficient to
which is the case since g(z,z) = q(y, y)=1.

The symmetry s with respect to P s

s € Op(1,n). Let

yperplane containing 0 and
prove that ¢(z 4y, z — y) =0,

ends z to y. We still have to prove that
H' ={z e R"1/g(q, z) = —1}.

H" has two connected components (zo>0or 2o < 0) and is preserved under
s. Since s was built to send Z to y for a pair of points of I ", s preserves also
H™ and hence s € Oo(1,n). One can prove similarly that SOy(1, n) (matrices
of Og(1,n) with positive determinant) acts transitively on H".

Now the isotropy group of €o is the set of matrices

(6 3)

with 4 € O(n). The action of Oo(1,n) on H™ is free and proper and hence

H™ = 0y(1,n)/0(n) (similarly we could prove that F™ — 500(1,1)/S0(n)).
This result shows that O(1,n)
serving H™ or

has four connected components (det = =+1, pre-
not): each of these components being isomorphic to SO(1,n),

we only have to shos
1.93 a) to the fibratic

since the basis H"
S0p(1,n) is also con:
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56. 2 Riemannian metrics

9
ou
0

25 = (—r(u) sin 8, 7(u) cos b, 0). (2.2)

Hence | £ —3— = /1"(u)? + 2'(u)?, | 2 |=r(u) and (£, -aa—) = 0 that is, since

we assumed that ¢ is parametrized by arclength,

g = (du)? + r(u)*(d6)?.

= (r'(u) cos B, (u) sin 6, 2’ (u)) (2.1)

If we want to get such manifolds as the sphere, we have to accept points on
the curve ¢ with r(u) = 0: to make sure that the revolution surface generated
by c is regular, we must demand that in these points, 2’ (u) = 0. For details
concerning conditions at the poles, see [B1]. In the case of the sphere, the
curve ¢ is given by c(u) = (sinu,cosu) and r(u) = sinu. Outside the poles,
the induced metric is given in local coordinate (u, §) by

g = du® + (sin® u)df?.

2.10 The hyperbolic space.
We introduce first the Minkowski space of dimension n + 1, that is R*! be
equipped with the quadratic form

(z,2) = —23 + 13 +
Let H™ be the submanifold of R*+! defined by
={z e R"" /(z,2) = 1,20 > 0}

(the second condition ensures that H™ is connected, see 1. 1). The quadratic
form
—daf + daf + ...+ dzl € ['(S*T*R™H)

induces on H™ a positive definite symmectric 2-tensor ¢. If indeed a € H n.
T5H™ can be identified with the orthogonal of a for the quadratic form (, )
and g, with the restriction of (,) to this subspace. Since (a,a) < 0, g, is
positive definite from the Sylvester theorem, or an easy computation. The
hyperbolic space of dimension n is just H™, equipped with this Riemannian
metric. Using 1.101 f), we see that Oo(1,n) acts isometrically on H™. There
exist other presentations for this space. They are conceptually easier, but
technically more complicated. They are treated in the following exercise.

2.11 Exercise: Poincaré models for (H", g).
Let f be the “pseudo-inversion” with pole s = (—1,0, - - -, 0) defined by

where {, ) is the quadratic form defined in 2.10. For X = (0, X1, .., X;,) in the
hyperplane o = 0, we note that




2.A Existence theorems and first examples
k(2

(2.1) (X, X)=>"X?=[X ],
(2.2)

i=1

(square of the Euclidean norm in R™).
at is. since a) Show that f is a diffeomorphism from H” onto the unit disk

) 2 dz?
—1y%

{zeR™|2|<1}, andthat (f71)7g= D e
ot points on b) What h if lace H™ by the unit sphere of the Euclid
‘ ted , at happens if we replace y the unit sphere of the Euclidean space
e gengriaﬂs R™1 and f by the usual inversion of modulus 2 from the South pole?
: F(ilreree the c) Let f1 be the inversion of R™ with pole ¢ = (~1,0,--+,0), given by
sp »
le the poles, 2z ~ )

Show that f; is a diffeomorphism from the unit disk onto the half space z7 > 0.
¥g1=(f"1)"g (see b)), show that
¢ is R**! be .

N " dz?
(fl) glzz $2 :

i=1 1

In that way, we have obtained two Riemannian manifolds which are isometric
to (H™,g), namely the Poincaré disk in a), and the Poincaré half-plane in c).

2.11 bis Definition Two Riemannian metrics go and g; on a manifold M are
. (pointwise) conformal if there is a nowhere vanishing smooth function f on
Che quadratic M such that g1 = fg.
Both Poincaré models are conformal to the Euclidean metric (on the unit ball
or the half-plane). For two conformal metrics, the angles are the same.

Let us now give other examples to show that isometric Riemannian metrics
may look quite different. .

. 2.12 Exercise. Let C C R3 be a catenoid: C is the revolution surface gen-
putation. ’I"he erated by rotation around the z-axis of the curve of equation z = cosh z. Let
is Riemanmian H C R® be an helicoid: H is generated by the straight lines which are parallel
on H". There to the 20y plane and meet both the z-axis and the helix # —s (cost,sint,t).
a) Show that H and C are submanifolds of R3, and give a “natural”
parametrization for both.

b) If g is the Euclidean metric dz? + dy® + dz? of R3, give the expressions of
g and g|g in the parametrizations defined in a), and show that C and H
are locally isometric. Are they globally isometric?

It is not possible to guess from the embeddings that C and H are locally the
same from the Riemannian point of view. For example, C does not contain
1, ., Xn) in the any straight line, even no segment: the local isometries between €' and & do
not come from isometries of the ambiant space.

deed a < Hn:
catic form (,),
CL> < 07 Ga 15

Ly easier, but
g exercise.
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