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easily for the differential operators (that is local operators) which will be met
in the sequel:

i) the exterior derivative (1.119),

i) the covariant derivative associated with a Riemannian metric (2.58)

iif) the Laplace operator on functions, and on differential forms (4.7; 4.29).

1.F.6 A characterization for tensors

The following test will be used frequently in the sequel (see for example 3.2
and 5.1).

1.114 Proposition. Let P be o R-linear map between two spaces of tensors
L(TPM) and I'(T7M). The following are equivalent:

a) P is C°(M)-linear,

b) for s,s”in I'(TPM), and m in M with sm, = sb,, then (Ps)n, = (Ps")m.
Proof. It is clear that b) implies a).

Now if a) is satisfied, P is a local operator (use a test function as we did
in lemma 1.111). Assume then that s,, = s/,. Use a local trivialization of
TPM and lemma 1.111 to built an open subset U of M containing m, smooth
functions ( fz')(,-=1,..., N) (where N is the dimension of the fiber), and sections
(Ui)(i=1,~-,n) of TPU such that (s — )iy = 3 f;04. Hence

P~y = P (Y f0i) = 3 £iP(oy),

therefore P(s — §')p = Y. fi(m)P(0:)m = 0.

Simpleminded example. Let P : I'(T} M) — C°°(M) be a C°(M)-linear
map. For any vector field X and any m € M, the previous proposition ensures
that the real P(X),, depends only on X,, in TmM. It is clear that the map
Xm — P(X)r, is a linear form on T}, M. Hence we got a section (with a
priori no regularity) of the bundle 7*M. One can use local trivializations of
Tg M and prove that this section is smooth. Conversely, it is clear that if &
is a smooth section of 7*M, the map X — £(X) from (T3¢ M) to C®M is
C*°(M)-linear.

This is a general phenomenon. One can use the isomorphisms E* @ F =
Hom(E, F) and (EQ F)* = E*® F* (for finite dimensional vector spaces), and
the proposition 1.114, to prove that it is equivalent to give a C°°(M)-linear map
from I'(TPM) to I'(TT M), or a section of the bundle F((Té’M)*@)(T;M)),
that is a (q+r,p+s)-tensor. Do not be satisfied with these abstract consider-
ations, but apply them to the curvature tensor (3.3).

Counter-example. The bracket, seen as a bilinear map from I'(TM) x
I'(TM) to I'(TM), is not a tensor. For X, YinI'(TM)and f,gin C=(M),
we have indeed

(fX,9Y] = f(X.9)Y - g(Y.£)X + fg[X,Y].
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Another example. A g-covariant tensor can be seen as a g-linear form on the
C°°(M) module I'(TM)®9. This point of view will be very useful in the fol-
lowing: we shall principally meet the bundle S 2M of bilinear symmetric forms,
(which is clearly a subbundle of TIM), the bundles A*M of antisymmetric
k-forms (k = 1,---,n = dimM ), and the corresponding spaces of sections,
that is the bilinear symmetric forms, and the exterior forms on M.
1.115 Exercise. Let S € L(T2M), and X,X1,..Xq be (q+1) vector fields.
Show that

(LXS)(XI’ Tt vXq) =X.5(Xq,-- ’Xq)

q
=D 08Xy, X, (X X, Kiar, X).

i=1

1.G Differential forms

The most important tensors are differential forms. The main reason for their
importance is the fact that, under mild compactness assumptions, it is pos-

sible to define the integration of a form of degree k on a (sub)manifold of
dimension k. ’

1.G.1 Definitions

1.116 Definition. A differential form of degree k on a manifold M is a smooth
section of the bundle A*M. We will set I'(A* M )= kM.

1.117 Algebraic recall:

For a vector space E, there exists on ®FE an antisymmetrization.operator,
defined on the decomposed elements by:

Ant(z; ® - @) = Z Sign(s)zs1) ® - - - ® Zg(k)-
SESk

This formula is more suggestive for k-forms: for f € ®*E* we have

(Antf)(xla T ,l‘k) = Z Sign(s)f(xs(1)> Tty xs(k))-

seM

We denote by /\k E* the vector space of antisymmetric k-forms on E.

The exterior product of f € A*E* and g € A'E* is the (k+1) antisymmetric
form defined by
1

fAg= i Ant(f ® g).

Example. For f, g in E*,

(fA9)(@y) = f(2)g9(v) ~ f(y)d(x).
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We will admit that the exterior product is associative and anticommutative,

that is
fAg=(-L"gnAf, forfecA*E* andge A'E*

(see [Sp] t.1 for a proof). .

Recall finally that A(mE)E* ~ R and that A¥E* = 0 for k > dimE.

It can also be useful to consider forms with complex values, and the corre-
sponding bundles. The amateur of abstract nonsense can check easily that
that Lr(E,C) = E* ®g C and that, if Ec = E ®c R is the complexified of
the vector space E, then A¥E @g C is C-isomorphic to (A*E¢).

It is clear that all the previous definitions extend directly to the subbundle
AFM of antisymmetric tensors of T2 M.

As a consequence of the properties of the action of ¢* and Lx on tensors
(1.107 and 1.110), we have

p"(aNB)=9¢"aAd*B, and Lx(aAfB)=LxaAB+aALxf.

1.118 Exercises. a) Let w € £21(59?) be a differential 1-form on S? such that
for any ¢ € SO(3), ¢*w = w holds. Show that w = 0. State and prove an
analogous result for differential forms on S™.

b) Let p be the canonical projection from C**1\ {0} to P"C. Show that there
exists a 2-form w on P™C such that

prw = (idzk /\d"z’k> / (i | 2 |2> ,

k=0 k=0
where dz* = dz* + idy® and dz* = dz* — idy*-

Show that the form w is invariant under the action of U(n + 1) on P*C, and
that for k = 2,---,n the 2k-form w* is non zero and U(n + 1) invariant.
*We will see that the forms w* generate the cohomology of P*C (see 4.35).*
Eixterior forms are more interesting than tensors, for the following reasomn:
we shall define on 0™ Qk \f a “natural” differential operator (see 4.1) -
that is depending only on the differential structure of M. This operator gives
information on the topology of the manifold (cf. 1.125).

1.G.2 Exterior derivative

1.119 Theorem and definition. Let M be a smooth manifold. For anyp € N,
there exists a unique local operator d from Q2P M to 2P M, called the exterior
derivative and such that

i) for p=0, d: C®(M) — 2'M is the differential on functions,

ii) for f € C®(M), we have d(df) = 0,

iit) for a € 2°M and B € Q9M, we have

dlaAB) =daAB+ (~1)PaAdB.
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Short proof. (for more details, see [Sp)). Let us first treat the case where M
is an open subset U of R”. Then o € £2PU can be decomposed in a unique

way as:

o= Zail...ipdx“ A~ Adzte,

where the sum is understood on all the strictly inéreasing sequences iy < - - <
ip of [1,n], and the oy, ...;, being smooth. We must have

da = Zdail..,ip AT Ao Adae,

One checks directly that the operator just defined (which satisfies i) and ii)
by construction) also satisfies ili). To prove that d is a local operator, just

imitate the argument of 1.111, using iii) for the product of a test function and
a p-form.

To extend this result to manifolds, we will need the following:

1120 Lemma. Let ¢ : U - V be o diffeomorphism between two open subsets
of R™. Then ¢* od = d o ¢*, that is the diagram below commutes.

vy 2 o)

4| |
QP (V) _® 0P

Proof. It is the chain rule in the case P =0. Use 1.119 b) and the behaviour
of ¢* with respect to the exterior product (1.117), and proceed by induction
on p.m

End of the proof of the theorem. If M is equipped with an atlas (U, @4,
we can define dw; for the local expressions of a p-form w on M (begining of
the proof) and, from the lemma:

(50 67%)" (dwsto, winey) = dwig, i, )

This proves (see 1.108) that the dw; are local expressions for a (p+1)-form
on M, which is the form dw we are looking for: use 1.120 and check that dw
doesn’t depend on the atlas.w

1.121 Proposition. For any p-form w on M, the following holds:

1) d(dw) =0, that is dod = 0; ’

11) for a smooth map ¢ : M — N, d(¢*w) = ¢*(dw), that is @*od=dog*;
iii) for a vector field X on M, Lydw = d(Lxw), that is Ly od = d o Lx,
and Lyw = d(ixw) + ix(dw), that is Ly = doixy +ixod.

Proof. i), ii) and the first part of iii) are clear. Let

Px =doix +ixod.
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One checks directly that
Px(a/\ﬂ) =PxaAfB+aAl Pxf,

Le. that Px is, as Lx, a derivation of the C°°(M)-algebra £2(M). Look care-
fully at the existence theorem for Lie derivative on tensors ( 1.110), and note
that a derivation is determined by its values on functions and 1-forms: hence
we only need to check that Lx = Py on functions and 1-forms {even only on 1-
forms which can be written as dz’ in local coordinates), which is immediate.

1.122 Corollary. For o € 2P(M) and (Xo,--+,X,) p+ 1 vector fields on M,
we have

P

da(X()’ T 7XP) = Z(_l)’LLX’L (Q(XQ, e 7Xi7 e aXp))
i=0
+ Z (—1)i+ja([Xi;Xj])X07"',Xia'"7Xj>"'7Xp)-

0<i<j<p

Proof. It is the definition of d for p = 0. Proceed by induction on p (use
1.115).u
Example. For a € 2'(M), we have

do(X,Y) = X.a(Y) - Y.a(X) — o([X, Y))-

Compare these formulas with those of 2.61, where d is computed in terms of
the covariant derivative associated with a Riemannian metric.

1.123 Exercise. Check that the right member of the equation in 1.122 is
C®°(M)-linear with respect to the Xj.

Remark. We can take the expression of d obtained at 1.122 as a definition for
the exterior derivative. This point of view is technically less simple, (convince
yourself by trying and prove that dod = 0 using Jacobi identities!), but is
coordinate-free: that is why it is useful in infinite dimension (see for example
(Bt]).

Another application of the second formula on 1.121 iii) is the proof of the the
following

1.124 Poincaré lemma. Let U be an open star-shaped subset of R", and
o be a p-form on U such that da = 0. Then there emists a (p — 1)-form
B e 2E=(U) such that dB = a.

Proof. See [Wa)] or [Sp] =

The analogous property is false on general manifolds. This leads to the defi-
nitions of important (smooth, *in fact topological®) of the manifold.

1.125 Definitions. Let M be a smooth manifold. The p* de Rham group of
M, denoted by HY (M), is the quotient

{a € P(M),do = 0} /AP (M)
The p-the Betti number b,(M) is the dimension of H Pr(M).
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* Remark. In Algebraic Toplogy, Betti numbers are defined for any coeffi-
cient field K: by(M, K) = dim H*(M, K). Both definitions coincide for real
numbers, in view of de Rham’s theorem (cf. [Wa] or [B-T]).*

It is clear that HY (M) = 0 when p > dimM, and that HY o (M) = RF if
M has k connected components. It can be proved (see [W]) that the vector
spaces Hpr(M) are indeed topological invariants, and that for M compact,
connected, orientable and n-dimensional, H3 (M) = R. Finally, HE (S™) =
0 for 0 < k < n (ibidem). We will come back to this sub ject in chapter IV, and
we will see how to compute de Rham cohomology by using analytic methods.

1.G.3 Volume forms

1.126 Definition. A volume form on an n-dimensional manifold is a never
zero exterior form of degree n.

The volume forms are interesting in view of the following theorem.

1.127 Theorem. Let M be a countable at infinity and connected manifold.
The following are equivalent:

i) there exists a volume form on M;

ii) the bundle AT*M is trivial;

iii) M is orientable.

Proof. i) and ii) are clearly equivalent: since A®T* M is a bundle of rank one,
there exists a non zero section of this bundle (that is a volume form on M) if
and only if it is trivial (1.35 a).

Let us show now that i) implies iii). Let w be a volume form on M and (U;, ¢;)
be an atlas for M. The local expression of w in a chart is:

qb{l*(wlyi) =adzt Adz? A - Adz™,

where the function a; € O (#:(Uy)) is never zero. One can assume that the a;
are positivg (compose ¢; with an orientation reversing symmetry if necessary).
From the very definition of exterior forms, we know that on ¢;(U; N U;):

(¢; 0 qﬁj“l)* (asdz* Adz? A+ A dz™) = a;dz' ANdz? Ao Ads™,

and hence the jacobian J (d)i ) (;5;1) = aj/a; is always positive.

That iii) implies i) is more technical, and uses partitions of unity (see 1.H).
Assume that M is orientable, and let (U;, ¢:) be an orientation atlas for M (the
jacobians of all the transition functions are positive). From the hypothesis of
the theorem, we can assume that the family (U;) is locally finite. Hence there
exists a subordinate partition of unity (p;). Let wo = dz? A dz? A --- A da™:
since supp(p;) C U;, the forms

w = p;((#7")*wo)

and w = )", w; (finite sum at each point) are defined on the whole M. We
must now check that w is a volume form: work on the domain of a chart Ug,
and note that
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—_ *
Prw = Zpi (erod7!) wo
i

(this sum is actually finite) is of the form (3_; ki)wo, where, from the hypoth-
esis, the u;(z) are nonnegative and one of them at least is strictly positive at
each point of Uy. = :

Exercise. Using the previous theorem, prove that P"R is orientable if and
only if n is odd.

1.G.4 Integration on an oriented manifold

1.128 One says that two orientation atlases on an orientable manifold M
are equivalent if their union is still an orientation atlas. An orientation for
an orientable manifold is an equivalence class of orientation atlases. If M is
connected, there are two distinct orientations.

It can be seen more easily using volume forms: from the proof of 1.127, a
volume form defines an orientation. If w and w’ are two volume forms, there
exists a never zero function f such that w = fuw', and w and W’ define the
same orientation if and only f is positive.

Let now o be an exterior form of degree n, with compact support in M , and
assume that M is oriented. We define the integral of o over M , denoted by
[ @ in the following way: let (U;, ¢;) be an atlas for M such that the cover U;

M
is locally finite. If supp(e) is included in U;, then
(671 a = fida' A--- Adam,

where f; € O ((bi(Ui)), and we set

/a=/fid$1/\~-/\dx”.
M R~

Using the change of variables formula, and the fact that the jacobians are
positive, we see that this integral does not depend on the chart (if supp(c) C
U, ;s NU. j).

In the general case, use a partition of unity (p;) subordinate to the covering
(U:), and decompose o into a finite sum (since @ has compact support) of
n-forms with support in some U;. The same use of the change of variables
formula shows that the result does not depend on the orientation atlas. It can
be checked that the result does not depend on the partition of unity either.
But if we change of orientation, the integral is changed into its opposite. For
more details, see [Wa], or the first volume of [Sp].

Now if w is a volume form giving the orientation chosen for M , We assoclate
to w a positive measure 4 on M by setting u(f) = [ fw. One checks easily

M
that, if f is continuous and nonnegative, then u(f) = 0 if and only if f = 0.
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1.G.5 Haar measure on a Lie group

1.129 Theorem. There exists on any Lie group G a non-trivial left-invariant
measure (that s, if f is continuous with compact support, and if g € G,
w(foLg) = p(f)). This measure is unique up to a scalar factor.

Proof. Let n = dimG. For-an n-exterior non zero form aon G =T.G, we
define an Lg-invariant form on G by, for 9 € Gand z; € T,G:

a(g)(z1, 22, Ty) = a(e)(Tng_wm, vy TgLg-1y),

where a(e) = a (compare to 2.90). Then, for f € C°%(G) with compact sup-

port, we have
/fa:/(foLg)L;a=/(foLg)a.
G

G G
The uniqueness, which will not be used in the sequel, is left to the reader. =

Remark. The previous theorem is true for any locally compact topological
group, but the proof is more difficult.

Misusing the term, we will say that the measure defined above is “the” Haar
measure on G. ,

1.130 Exercises. a) Explicit the Haar measure w (that is the corresponding
exterior form) in the case G = Gl(n,R).

b) Let K be a compact Lie subgroup of Gi(n, R) (actually, any closed subgroup
of a Lie group is a Lie subgroup, see [G]). Show that there exists a K-invariant
quadratic form ¢ on R™, and deduce there exists 9 € Gl(n,R) such that
g-K.g71 C O(n) *(this is the starting point for the proof that all the maximal
compact subgroups of a Lie group are conjugate)*.

c) Check the uniqueness we claimed in 1.129. Hint: let  be left-invariant and
v right-invariant, both non trivial. Set U(f) = v(f), where f(g) = flg™h.
Then 7 is left-invariant.

Pick a function f such that p(f) #0, and set

1 -
Ds(s) = = /G F(E1s)du(e)

Show that, for any ¢ € C%(@), V(@) = uw(Dys¢). Infer that Dy does not depend
on f. The take s = e and conclude.

Remark. We will introduce in 3.90 the notion of density on a manifold, and
will then be able to compute the integral of functions (in place of maximal
degree exterior forms) without any orientability assumption.

1.H Partitions of unity

Be given a smooth manifold A/ » we know what is a smooth “object” on the
manifold (for example a function, a vector field, an exterior form...): we just





