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• A Hausdorff topological space X is a complex or holomorphic manifold if it has an
holomorphic atlas, that is X =

⋃
Uα such that open Uα are such that exist local

homeomorphisms ψα : R2n ∼= Cn ⊃ Vα → Uα that have holomorphic compositions
ψ−1α ◦ ψβ : Vβ → Vα defined on the intersection Uα ∩ Uα.
• A holomorphic map f : X → Y between two complex manifolds X,Y is a C∞-map,

which in local charts is defined by holomorphic functions φ−1β ◦ f ◦ ψα. {ψα, Uα} is

an atlas on X, {φα,Wα} is an atlas on Y .
• If X and Y are holomorphic manifolds then X × Y is a holomorphic manifold.
• A holomorphic Lie group is a Lie group, which is equipped with a holomorphic

atlas such that multiplication map µ : G×G→ G is holomorphic in this atlas. In
addition the inverse map is also holomorphic.

• A C∞ maps ρ : X → X is an antiholomorphic involution on a complex manifold
X if ρ2 = id and in local charts ρ is defined by anti-holomorphic functions.
• An antiholomorphic involution on a complex Lie group is a homomorphism ρ : G→
G, such that ρ is an antiholomorphic involution of the underlying manifold.

1.

(1) Give an example of a antiholomorphic involution on the Lie group C× whose fixed
points is
(a) S1

(b) R×
(c) ∅

(2) Give an example of a antiholomorphic involution on the complex manifold C×
whose set of fixed points is empty.

(3) Give examples of antiholomorphic involutions on C× × · · · × C×︸ ︷︷ ︸
n

, whose fixed points

are manifolds of dimension 0 or n

2. Let X be a complex n-dimensional manifold, equipped with an antiholomorphic invo-
lution ρ. Suppose is fixed point set Xρ = Y of ρ is a n-dimensional submanifold of the C∞

2n-dimensional manifold underlying complex manifold X. Show that for any y ∈ Y com-
plexification Ty(Y )⊗C is canonically isomorphic to Ty(X). By definition an isomorphism
is canonical if it commutes with maps induced by complex homeomorphisms that preserve
y and commute with ρ.

3.
1
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(1) Prove that SL(2,C) = {
(
a b
c d

)
|a, b, c, d ∈ C, ad − bc = 1} is a complex analytic

manifold.
(2) Show that the map ρ : SL(2,C) → SL(2,C), ρ(A) = (A

t
)−1 is an antiholomorphic

involution on SL(2,C), whose fixed point set is SU(2)
(3) Show that G∗ = {

(
a 0
0 a−1

)
} ⊂ SL(2,C) is invariant under ρ and the set of fixed

points (G∗)ρ as a group is isomorphic to S1

(4) The group SL(2,C) acts on Te(SL(2,C)); the group SU(2) acts on Te(SU(2)). In
addition SU(2) being a subgroup of SL(2,C) acts on Te(SL(2,C)). Show that there
is an isomorphism of SU(2)-representations Te(SU(2))⊗ C ∼= Te(SL(2,C)).

(5) Determine the structure of the restriction of Te(SL(2,C)) from SL(2,C) to G∗.
(6) Determine the structure of the restriction of Te(SU(2)) from SU(2) to S1.

4. Generalize results of Problem 3 from SL(2,C) to SL(n,C). In particular find an analogue
of ρ, of the maximal torus T of SU(n) and the complex-analytic subgroup T ⊂ SL(n,C).
Your goal should be to establish decomposition of sln(C) under T and relate it to decom-
position of sun under T .

Definition 1. Define Sp(2n,C) as a subgroup of C-linear transformations of C2n that
preserve a skew-symmetric bilinear form

Ω[x, y] =
n∑
i=1

x2i−1y2i − y2i−1x2i

5.

(1) Show that the linear space sp(2n,C) = {A ∈ Mat2n(C)|Ω[Ax, y] + Ω[x,Ay] =
0∀x, y ∈ C2n} is closed under commutator and is a Lie algebra .

(2) Show that the exponential map exp : sp(2n,C) → Sp(2,C) defines a chart around
e ∈ Sp(2,C).

(3) Define a bilinear operation {f, g} on C[x1 . . . , x2n] by the formula:

{f, g} =

n∑
i=1

∂f

∂x2i−1

∂g

∂x2i
− ∂g

∂x2i−1

∂f

∂x2i

Show that {f, g} defines a Lie algebra structure on C[x1 . . . , x2n]. This bracket is
called a Poisson bracket.

(4) Show that Sp(2n,C) acts on C[x1 . . . , x2n] by automorphism of the Poisson bracket.
(5) Show that representation of Sp(2n,C) in polynomials of degree two is isomorphic

to adjoint representation.
(6) Let V be a complex vector space. Show that V + V ∗ has a canonical symplectic

form.
(7) Identify C2n with some Cn + (Cn)∗. Define an embedding GL(n,C) → Sp(2n,C).

Decompose sp2n(C) into GL(n,C)-invariant components.
(8) Decompose sp2n into irreducible representation of the subgroup of diagonal matrices

T ⊂ GL(n,C).


