MAT 552. HOMEWORK 4 SPRING 2014 DUE TH FEB 20

- **1.** Suppose X is a topological space, R is equivalence relation. Show that
 - (1) if the quotient space X/R is Hausdorff, then R is closed in the product space $X \times X$.
 - (2) if the projection p of a space X onto the quotient space X/R is open, and R is closed in $X \times X$, then X/R is a Hausdorff space.
 - (3) Give an example of equivalence relation R on the set X such that $X \to X/R$ is not open.

Definition 1. (1) A continuous function $f : X \to Y$ is called proper if f maps closed sets to closed sets and $f^{-1}(K)$ is compact for all compact $K \subset Y$.

- (2) Let G be a topological group acting continuously on a topological space X. The action is called proper if the map $: G \times X \to X \times X$ given by $(g, x) \to (x, gx)$ is proper.
- 2. Show that
 - (1) If G acts by homeomorphisms, then the quotient map $p: X \to X/G$ is always open (contrary to general quotient maps). This is a generalization of Problem 2 HW3.
 - (2) X/G is Hausdorff if and only if the orbit equivalence relation is a closed subset of $X \times X$.
 - (3) If G acts properly on X then X/G is Hausdorff. In particular, each orbit Gx is closed. The stabilizer G_x of each point is compact and the map $G/G_x \to Gx$ is a homeomorphism.
 - (4) If H is a closed subgroup then G/H is Hausdorff.
 - (5) Let G be a topological group and N the component of the identity in G. Then G/N is Hausdorff.
- 3.
- (1) Let V be an inner product space with signature (1, -1, ..., -1). Show that if $(l_1, l_1) > 0, (l_2, l_2) > 0$ then $(l_1, l_2)^2 \ge (l_1, l_1)(l_2, l_2)$
- (2) Let \mathbb{C}^2 be a two-dimensional complex space with a basis $\{e, e'\}$. The space $\mathbb{C}^2 \otimes \mathbb{C}^2$ has a real structure $j, j^2 = 1$ defined by the formula $j(e \otimes e') = e' \otimes e, j(e \otimes e) = e \otimes e, j(e' \otimes e') = e' \otimes e'$. Identify the space of real points of $\mathbb{C}^2 \otimes \mathbb{C}^2$ with the space of Hermitian matrices M. Compute the signature of the bilinear form $\langle A, B \rangle$ associated with the homogeneous quadratic function det A on M. Verify that the group $G_{\mathbb{C}} = \{g \in \mathrm{GL}(2,\mathbb{C}) || \det g| = 1\}$ acts on the space M by the formula

 $gA = gA\bar{g}^t$. Compute the signature of $\langle A, B \rangle$. Identify the group $Aut(\langle ., . \rangle)$. Compute the image and the kernel of the homomorphism.

(3) Let \mathbb{C}^2 be a two-dimensional complex space with a basis $\{e, e'\}$. The space $\mathbb{C}^2 \otimes \mathbb{C}^2$ has a real structure $j, j^2 = 1$ defined by the formula $j(e \otimes e') = e \otimes e', j(e' \otimes e) = e' \otimes e, j(e \otimes e) = e \otimes e, j(e' \otimes e') = e' \otimes e'$. j defines a real structure on the symmetric part Sym² \mathbb{C}^2 of $\mathbb{C}^2 \otimes \mathbb{C}^2$. Let M be the space of real points in Sym² \mathbb{C}^2 . Compute the signature of the bilinear form $\langle A, B \rangle$ associated with the homogeneous quadratic function det A on M. Verify that the group $G_{\mathbb{R}} = \{g \in GL(2, \mathbb{R}) | \det g = \pm 1\}$ acts on the space M by the formula $gA = gAg^t$ and preserves $\langle A, B \rangle$. Identify the group $Aut(\langle ., . \rangle)$ compute the image of the homomorphism $G_{\mathbb{R}} \to Aut(\langle ., . \rangle)$.

(4) One dimensional quaternionic space \mathbb{H} is the same as two-dimensional complex space \mathbb{C}^2 with a structure map $j, j^2 = -1$. The space $\mathbb{C}^4 = \mathbb{C}^2 + \mathbb{C}^2$ carries the diagonal structure map j. Let $\Lambda^2 \mathbb{C}^4$ be the skew-symmetric part of $\mathbb{C}^4 \otimes \mathbb{C}^4$. $j \otimes j$ defines a real structure $(j^2 \otimes j^2 = \mathrm{id} \otimes \mathrm{id})$ on $\Lambda^2 \mathbb{C}^4$. The Pfaffian function Pf(A) can be used to define a bilinear form $\langle A, B \rangle$ on $\Lambda^2 \mathbb{C}^4$. Compute the signature of $\langle A, B \rangle$. Verify that the group $G_{\mathbb{H}} = \{g \in \mathrm{GL}(4, \mathbb{C}) | \det g = \pm 1, gj = jg\}$ acts on the space M by the formula $gA = gAg^t$ and preserves $\langle A, B \rangle$. Compute the image of the homomorphism $G_{\mathbb{H}} \to Aut(\langle ., . \rangle)$.