M AT 544 Fall 2009
Homework 2

Problem 1 Prove the inequalities
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the numbers; > —1 have equal sign. Also prove
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(Hint use the identity £:2)™1 = (1+ _L)™1)
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Problem 2

Compute the limits
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Problem 3

Prove the identities
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Problem 4

e Show that the sequence
1
xn=(1+ﬁ)“, n>1

is strictly increasing and is bounded above
e Show that the sequence
1 n+1
is strictly decreasing and is bounded below.

e Deduce from this that the sequences have a common limit
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(Hint define fraction§‘;n—+1, y— and use the inequality frolm 1)

Problem 5

Knowing that lin«(1 + )" = e prove that

iMpowl+l+z+2+-+2=e



Problem 6

Prove that
"ﬂnaooxn + "ﬂnﬁooyn < “ﬂnaoo(xn + yn) < “ﬂnaooxn + Wn‘)wyn

lim, X+ iMpsoYn < TMps (X0 + Yn) < TMpseXn + iMpsoYn
Give examples with strict inequalities
Problem 7 Prove that ifx, >0n> 1 and
— — 1
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Then the sequence is converging.

Problem 8

For sequences,, n > 1 find inf X,, SUPXq liMn_eXq lim,,__ Xn.

X =1-1/n

(=) 1+ (-1
= 2
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Problem 9

e Letlimy_. X, = 0andy,, n > 1isan arbitrary sequence. Isittrue thatlisa, Xy, =
0?

o Letlimy,o Xpyn = Oisit true that lim . X, = 0 or limp_0 Yn = 0?



