
EXTRA MATERIAL ON TENSOR, SYMMETRIC AND

EXTERIOR ALGEBRAS

1. Introduction

These are supplementary notes to the material in the homework assigne-
ments and in §11.5 of Dummit and Foote textbook. Here R is a commutative
ring with 1, M , N , etc. are R-modules, ⊗ = ⊗R is the tensor product over
R, and V is vector space over a field F .

2. Tensor algebra

2.1. Tensor algebra of a module. The tensor algebra T (M) of an R-
module M is an R-module

T (M) =
∞⊕
k=0

T k(M),

where T 0(M) = R, T 1(M) = M and T k(M) = M⊗
k
. Let ı0 : R → T (M)

and ık : M⊗
k → T (M) be the natural inclusion maps. Then T (M) has

an R-algebra structure with the unit 1 = ı0(1) and with the multiplication
defined by

(m1 ⊗ · · · ⊗mk) · (mk+1 ⊗ · · · ⊗mk+l)
def
= m1 ⊗ · · · ⊗mk+l ∈ T k+l(M),

and extended to all T k(M) × T l(M) using distributive laws. The tensor
algebra T (M) is a graded algebra, T k(M) · T l(M) ⊆ T k+l(M). When M
is a free R-module of rank n, the tensor algebra T (M) corresponds to the
algebra of polynomials with coefficients in R in n non-commuting variables.
Namely, every choice of free generators x1, . . . , xn of M gives an isomorphism
T (M) ∼= R〈x1, . . . , xn〉 — a free R-algebra generated by x1, . . . , xn.

The tensor algebra T (M) is a bialgebra (actually a Hopf algebra, see HW
3) with the coproduct

∆ : T (M)→ T (M)⊗ T (M)

and the counit

ε : T (M)→ R,

the R-algebra homomorphisms, defined by

∆(1) = 1⊗ 1, ∆(m) = m⊗ 1 + 1⊗m, m ∈M,

and ε(m) = 0 for all m ∈M , ε(1) = 1. Here multiplication on T (M)⊗T (M)
is defined by (a⊗ b) · (c⊗ d) = (a⊗ c)⊗ (c⊗ d), where ⊗ in parentheses is

1



2 MULTILINEAR ALGEBRA

the multiplication on T (M). On T k(M) the coproduct is given by

∆(m1 ⊗ · · · ⊗mk) = ∆(m1) · · · · · ∆(mk)

=
k∑
i=0

∑
σ∈Sh(i,k−i)

(
mσ(1) ⊗ · · · ⊗mσ(i)

)
⊗
(
mσ(i+1) ⊗ · · · ⊗mσ(k)

)
,

where Sh(i, k − i) consists of (i, k − i) shuffles — permutations σ ∈ Sk
satisfying σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(k), and for i = 0 and
i = k the corresponding terms are, respectively, 1 ⊗ (m1 ⊗ · · · ⊗ mk) and
(m1 ⊗ · · · ⊗mk)⊗ 1.

Hilbert-Poincaré series of T (M), in case when M is a finitely generated
R-module, is the following formal power series

H(t)
def
=

∞∑
k=0

rankRT
k(M)tk ∈ R[[t]].

If M is a free module of rank n,

H(t) =

∞∑
k=0

nktk =
1

1− nt
.

2.2. Tensor algebra of a vector space. Let V be a vector space over F
and V ∗ be its dual space. There is a natural (canonical) isomorphism of
graded vector spaces

T (V ∗) ∼= T (V )∗,

defined by

(v∗1 ⊗ · · · ⊗ v∗k)(u1 ⊗ · · · ⊗ ul)
def
= δklv

∗
1(u1) · · · v∗k(uk),

where u1 ⊗ · · · ⊗ ul ∈ T l(V ) and v∗1 ⊗ · · · ⊗ v∗k ∈ T k(V ∗). The elements

of T k(V ) are called contravariant k-tensors, and elements of T k(V ∗) —
covariant k-tensors.

In differential geometry and in physics one uses more general type of
tensors. Namely, the vector space of tensors of bi-degree (r, s), r, s ≥ 0 is
defined as

T r,s(V )
def
= V ⊗ · · · ⊗ V︸ ︷︷ ︸

r

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

,

so that the general tensor algebra

T •,•(V ) =

∞⊕
k=0

r+s=k⊕
r,s≥0

T r,s(V )

is a graded algebra with a multiplication defined by

u⊗ v def
= u1 ⊗ · · · ⊗ ur1 ⊗ v1 ⊗ · · · ⊗ vr2 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 ⊗ v

∗
1 ⊗ · · · ⊗ v∗s2 ,

where

u = u1 ⊗ · · · ⊗ ur1 ⊗ u∗1 ⊗ · · · ⊗ u∗s1 and v = v1 ⊗ · · · ⊗ vr2 ⊗ v∗1 ⊗ · · · ⊗ v∗s2 .
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As graded vectors spaces, T •,•(V ∗) ∼= T •,•(V )∗.
The contaction operator is a map cij : T r,s(V ) → T r−1,s−1(V ), where

1 ≤ i ≤ r, 1 ≤ j ≤ s, defined as follows

cij(v)
def
= v∗j (vi)v1 ⊗ · · · ⊗ v̌i ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v̌∗j ⊗ · · · ⊗ v∗s ,

where v = v1 ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v∗s and the check over an argument
means that it should be omitted. In particular, using the isomorphism
EndV ∼= V ∗ ⊗ V , we see that the map c11 : T 1,1(V ∗)→ F is the trace map:
c11(A) = TrA for A ∈ EndV .

3. Symmetric algebra

3.1. Symmetric algebra of a module. Let C(M) be a two-sided ideal in
T (M), generated by the elements m1 ⊗m2 −m2 ⊗m1 for all m1,m2 ∈M .
It is a graded ideal of T (M) so that the corresponding quotient algebra is
graded. By definition, it is a symmetric algebra of a module M ,

Sym•(M)
def
= T (M)/C(M) =

∞⊕
k=0

Symk(M).

The symmetric algebra Sym•(M) is commutative and we denote its mul-
tiplication by �. The symmetric algebra is a bialgebra (actually a Hopf
algebra), which follows from the fact that the ideal I = C(M) is also a
two-sided coideal in the bialgebra A = T (M), that is,

∆(I) ⊆ A⊗ I + I ⊗A.

This property of I easily follows from the fact for c = m1 ⊗m2 −m2 ⊗m1

we have

∆(c) = 1⊗ c+ c⊗ 1.

Indeed, it follows from the formula for ∆ that

∆(m1 ⊗m2) = ∆(m1) · ∆(m2)

= (1⊗m1 +m1 ⊗ 1) · (1⊗m2 +m2 ⊗ 1)

= 1⊗m1 ⊗m2 +m1 ⊗m2 +m2 ⊗m1 +m1 ⊗m2 ⊗ 1,

which gives the above formula for ∆(c).
If M = M ′ ⊕M ′′, a direct sum of two free modules, there is a canonical

isomorphism of commutative graded algebras

Sym•(M) ∼= Sym•(M ′)⊗ Sym•(M ′′) =
∞⊕
k=0

r+s=k⊕
r,s≥0

Symr(M ′)⊗ Syms(M ′′).

In particular, if M is a free module of rank n with free generators x1, . . . , xn,
then

Sym•(M) ∼= R[x1, . . . , xn].
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In this case it easy to see (e.g. by using ‘stars and bars’) that

rankR Symk(M) =

(
n+ k − 1

k

)
and by the binomial formula the Hilbert polynomial of Sym•(M) is

H(t) =
∞∑
k=0

(
n+ k − 1

k

)
tk =

1

(1− t)n
.

3.2. Symmetric algebra of a vector space. Let V be a vector space over
F and V ∗ be its dual space. There is a canonical isomorphism Sym•(V ) ∼=
Pol(V ∗), the polynomial algebra ov V ∗. Indeed, v ∈ V can be considered as
a linear function on V ∗ with values in F , and an element v1 � · · · � vk —
as a homogeneous polynomial function on V ∗ of degree k. There is also a
natural isomorphism of graded vector spaces

Sym•(V ∗) ∼= Sym•(V )∗,

given by the identification of u∗1�· · ·�u∗k ∈ Symk(V ∗) with µ(u∗1�· · ·�u∗k) ∈
Symk(V )∗ defined by

µ(u∗1 � · · · � u∗k)(v1 � · · · � vl) = δkl
∑
σ∈Sn

u∗1(vσ(1)) · · ·u∗k(vσ(k)).

The above expression is called a permanent of the k × k matrix u∗i (vj).
Correspondingly, the inner product ( , ) in V determines an inner product
in Sym•(V ) by the formula

(u1 � · · · � uk, v1 � · · · � vl) = δkl
∑
σ∈Sn

(
u1, vσ(1)

)
· · ·
(
uk, vσ(k)

)
.

Denote by Symk(V, F ) the vector space of symmetric k-multilinear maps
from V k to F and let

Sym•(V, F )
def
=
∞⊕
k=0

Symk(V, F ).

The map µ defines the isomorphism Sym•(V ∗) ∼= Sym•(V, F ), and the mul-
tiplication � induces a multiplication �s on Sym•(V, F ) such that the fol-
lowing diagram is commutative

Symk(V ∗)× Syml(V ∗) Symk+l(V ∗)

Symk(V, F )× Syml(V, F ) Symk+l(V, F )

µ×µ

�

µ

�s

Explicitly the map �s is given by the shuffle product :

(f �s g)(v1, . . . , vk+l)

=
∑

σ∈Sh(k,l)

f
(
vσ(1), . . . , vσ(k)

)
g
(
vσ(k+1), . . . , vσ(k+l)

)
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for f ∈ Symk(V, F ), g ∈ Syml(V, F ).

3.3. Weyl algebra. For u ∈ V define a ‘multiplication by u operator’ û :
Sym•(V )→ Sym•(V ) by

û(u1 � · · · � uk)
def
= u� u1 � · · · � uk,

so that û : Symk(V ) → Symk+1(V ) and deg û = +1. For v∗ ∈ V ∗ define a
‘directional derivative operator’ ∂v∗ : Sym•(V )→ Sym•(V ) by

∂v∗(u1 � · · · � uk)
def
=

k∑
i=1

v∗(ui)u1 � · · · � ǔi � · · · � uk,

so that ∂v∗ : Symk(V )→ Symk−1(V ) and deg ∂v∗ = −1.
For A,B ∈ End Sym•(V ) denote by [A,B] = A◦B−B◦A ∈ End Sym•(V )

the commutator of operators A and B.

Lemma 1 (Heisenberg commutation relations). The operators û and ∂v∗
satisfy the following commutation relations

[û1, û2] = [∂v∗1 , ∂v∗2 ] = 0,

[∂v∗ , û] = v∗(u)I,

where I is the identity operator in Sym•(V ).

Proof. Direct computation using definition of ∂u∗ and v̂. �

Remark 1. Let e1, . . . , en be a basis of V and e∗1, . . . , e
∗
n be the corresponding

dual basis of V ∗. Under the isomorphism Sym•(V ) ∼= F [x1, . . . , xn] (vari-
ables xi correspond to ei) the operators êi become the multiplication by xi

operators and ∂e∗i become the differentiation operators
∂

∂xi
.

Remark 2. For an inner product ( , ) on V denote by ϕ : V
∼−→ V ∗ the

induced isomorphism between V and V ∗. Then ∂ϕ(v) = v̂∗, the adjoint
operator to v̂ with respect to the inner product on Sym•(V ) determined by
( , ).

On the vector space W = V ⊕ V ∗ define a non-degenerate alternating
form ω : W ×W → F by

ω(w1, w2)
def
= v∗1(u2)− v∗2(u1), where w1 = u1 + v∗1, w2 = u2 + v∗2 ∈W.

The Weyl algebra W is defined as a quotient algebra of T (W ) by the
two-sided ideal J in T (W ), generated by w1 ⊗ w2 − w2 ⊗ w1 − ω(w1, w2)1
for all w1, w2 ∈W ,

W
def
= T (W )/J.

It follows from Lemma 1 that multiplication and differentiation operators
give a representation of the Weyl algebra W in Sym•(V ) — an algebra
homomorphism ρ : W → End Sym•(V ), such that ρ(w) = û + ∂v∗ for w =
u+v∗ ∈W . It is easy to see that ρ is injective and it follows from Remark 1
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that ρ(W ) is isomorphic to the algebra of differential operators in variables
x1, . . . , xn with polynomial coefficients.

Remark 3. The ideal J is not a graded ideal of T (W ) so that the Weyl
algebra W is not a graded algebra. However, it is a filtered algebra — there
is a filtration

F0W ⊂ F1W ⊂ · · · ⊂ FkW ⊂ Fk+1W ⊂ · · ·
on W given by the subspaces FkW = π(T 0(W ) ⊕ · · · ⊕ T k(W )), where
π : T (W )→ W is a canonical projection, satisfying

FkW · FlW ⊆ Fk+lW and W =
∞⋃
k=0

FkW .

Correspondingly, the associated graded algebra gr(A) of a filtered algebra A
is defined by

gr(A) =

∞⊕
k=0

FkA/Fk−1A, F−1A = 0,

and

gr(W ) ∼= Sym•(V ⊕ V ∗).
The Weyl algebra is a quantization of the symmetric algebra.

Remark 4. In general, the Weyl algebra W (V ) of the symplectic vector space
(V, ω), where ω : V × V → F is non-degenerate alternating form on V 1 is
defined by

W (V ) = T (V )/J,

where J is a two-sided ideal in T (V ), generated by v1⊗v2−v2⊗v1−ω(v1, v2)1
for all v1, v2 ∈ V . Let L ⊂ V be a Lagrangian subspace of V , the subspace of
the dimension 1

2 dimF V such that ω|L = 0. Then the Weyl algebra W (V )
admits a representation in Sym•(L). The Weyl algebra W (V ) is a filtered
algebra and

gr(W (V )) ∼= Sym•(V ).

4. Exterior algebra

4.1. Exterior algebra of a module. Let A(M) be a two-sided ideal in
T (M) generated by m1 ⊗m2 +m2 ⊗m1 for all m1,m2 ∈M . If 2 6= 0 in R,
the identity

2(m1 ⊗m2 +m2 ⊗m1) = (m1 +m2)⊗ (m1 +m2)−m1 ⊗m1 −m2 ⊗m2

shows that A(M) is generated by m⊗m for all m ∈M . It is a graded ideal
in T (M) and the exterior algebra of an R-module M is the corresponding
quotient algebra

Λ•(M)
def
= T (M)/A(M) = Λ0(M)⊕ Λ1(M)⊕ Λ2(M)⊕ · · · ,

1Note that V is necessarily even-dimensional.
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where Λ0(M) = R and Λ1(M) = M . The exterior is graded commutative
algebra with a product ∧, that is

α ∧ β = (−1)degα·deg ββ ∧ α,

where degα and deg β are degrees of the homogeneous elements α, β ∈
Λ•(M), deg Λk(M) = k.

If A and B are graded commutative R-algebras, their tensor product
carries a graded commutative algebra structure defined on homogeneous
elements by

(a⊗ b) · (c⊗ d) = (−1)deg b·deg c(ac⊗ bd).

We will denote this algebra by A⊗̂B.
If M is a free module of rank n, Λk(M) = 0 for k > n and

Λ•(M) =
n⊕
k=0

Λk(M).

However this is not true if M is not a free module. Thus for R = Z[x, y] the
module M = (x, y) has rank 1 but is not free and M ∧M 6= 0 (see example
on p. 449 in D&F).

If M = M ′ ⊕M ′′, a direct sum of two free modules, there is a canonical
isomorphism of graded commutative algebras

Λ•(M) ∼= Λ•(M ′)⊗̂Λ•(M ′′) =
∞⊕
k=0

r+s=k⊕
r,s≥0

Λr(M ′)⊗ Λs(M ′′).

In particular, if M is a free module of rank n with free generators θ1, . . . , θn,
then

Λ•(M) ∼= Gr[x1, . . . , xn]

— the Grassmann algebra with the generators θi satisfying relations

θiθj + θjθi = 0, i, j = 1, . . . , n.

4.2. Exterior algebra of a vector space. Let V be a vector space over
a field F of dimension n. It is easy to see that dimF Λk(V ) =

(
n
k

)
and the

Hilbert series of the exterior algebra is

H(t) =
n∑
k=0

dimF Λk(V )tk = (1 + t)n.

Denoting by HSym(t) and HΛ(t) respectively the Hilbert series for symmetric
and exterior algebras of V , we get (see Sect. 3.1)

HSym(t)HΛ(−t) = 1.

This is an example of a Koszul duality. Namely, let I = (R) be a two-sided
ideal in T (V ) generated by the subspace R of T 2(V ) and let

A
def
= T (V )/I
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be the corresponding graded algebra, the so-called Koszul quadratic algebra.
Let R′ be the orthogonal subspace to R in T 2(V ∗),

R′ = {q∗ ∈ T 2(V ∗) : q∗(r) = 0 for all r ∈ R}.
The Koszul dual of A is a quadratic algebra A! defined by

A! def
= T (V ∗)/I ′,

where I ′ = (R′) is a two-sided ideal in T (V ∗) generated by R′. The Koszul
duality reads

HA(t)HA!(−t) = 1.

In our case R is the subspace of T 2(V ) spanned by u ⊗ v − v ⊗ u and
R′ is the subspace of T 2(V ∗) spanned by v∗ ⊗ v∗. Thus A = Sym•(V ) and
A! = Λ•(V ∗). Indeed, every l ∈ T 2(V ∗) ' T 2(V )∗ can be uniquely written
as the sum of symmetric and antisymmetric functionals l = l+ + l−, where

l+(u⊗ v) = l+(v ⊗ u) and l−(u⊗ v) = −l−(v ⊗ u), u, v ∈ V.
Then l|R = 0 if and only if l− = 0 and R′ = {l ∈ T 2(V ∗) : l = l+}. Since
every symmetric bilinear form can be diagonalized there are v∗i ∈ V ∗ and
ci ∈ F such that

l+ =
∑
i

civ
∗
i ⊗ v∗i .

There is a natural isomorphism of graded vector spaces

Λ•(V ∗) ∼= Λ•(V )∗

given by the identification of u∗1 ∧ · · · ∧ u∗k ∈ Λk(V ∗) with µ(u∗1 ∧ · · · ∧ u∗k) ∈
Λk(V )∗, defined by

µ(u∗1 ∧ · · · ∧ u∗k)(v1 ∧ · · · ∧ vl) = δkl
∑
σ∈Sn

(−1)ε(σ)u∗1(vσ(1)) · · ·u∗k(vσ(k)),

a determinant of the k×k matrix u∗i (vj). Correspondingly, the inner product
( , ) in V determines an inner product in Λ•(V ) by the formula

(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vl) = δkl det(ui, vj).

Denote by Altk(V, F ) the vector space of symmetric k-multilinear maps
from V k to F and let

Alt•(V, F )
def
=

∞⊕
k=0

Altk(V, F ).

The map µ defines the isomorphism Λ•(V ∗) ∼= Alt•(V, F ), and the multipli-
cation ∧ induces a multiplication ∧s on Alt•(V, F ) such that the following
diagram is commutative

Λk(V ∗)× Λl(V ∗) Λk+l(V ∗)

Alt(V, F )×Altl(V, F ) Altk+l(V, F )

µ×µ

∧

µ

∧s
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Explicitly the map ∧s is given by the shuffle product :

(f ∧s g)(v1, . . . , vk+l)

=
∑

σ∈Sh(k,l)

(−1)ε(σ)f
(
vσ(1), . . . , vσ(k)

)
g
(
vσ(k+1), . . . , vσ(k+l)

)
for f ∈ Altk(V, F ), g ∈ Altl(V, F ).

4.3. Clifford algebra. For u ∈ V define a ‘multiplication by u operator’
û : Λ•(V )→ Λ•(V ) by

û(u1 ∧ · · · ∧ uk)
def
= u ∧ u1 ∧ · · · ∧ uk,

so that û : Λk(V ) → Λk+1(V ) and deg û = +1. For v∗ ∈ V ∗ define a
‘directional derivative operator’ ∂v∗ : Λ•(V )→ Λ•(V ) by

∂v∗(u1 ∧ · · · ∧ uk)
def
=

k∑
i=1

(−1)i−1v∗(ui)u1 ∧ · · · ∧ ǔi ∧ · · · ∧ uk,

so that ∂v∗ : Λk(V )→ Λk−1(V ) and deg ∂v∗ = −1.
For A,B ∈ End Λ•(V ) denote by [A,B]+ = A ◦ B + B ◦ A ∈ End Λ•(V )

the anti-commutator of operators A and B.

Lemma 2 (Fermi-Dirac anti-commutation relations). The operators û and
∂v∗ satisfy the following anti-commutation relations

[û1, û2]+ = [∂v∗1 , ∂v∗2 ]+ = 0,

[∂v∗ , û]+ = v∗(u)I,

where I is the identity operator in Λ•(V ).

Proof. Direct computation. Formulas [û1, û2]+ = 0 and [∂v∗ , û]+ = v∗(u)I
are proved exactly as analogous formulas in Lemma 1. To prove that
[∂v∗1 , ∂v∗2 ]+ = 0 observe that

∂v∗1 (∂v∗2 (u1 ∧ · · · ∧ uk)) = ∂v∗1

 k∑
j=1

(−1)i−1v∗2(uj)u1 ∧ · · · ∧ ǔj ∧ · · · ∧ uk


=

k∑
i,j=1
i 6=j

(−1)i−1+j−1+θ(i−j)v∗1(ui)v
∗
2(uj)u

ij ,

where θ(i−j) = 1 for i > j, θ(i−j) = 0 for i < j and uij is u1∧· · ·∧uk with

i-th and j-th factors omitted. Since (−1)θ(i−j) = −(−1)θ(j−i), the formula
folows. �

Remark 5. Let e1, . . . , en be a basis of V and e∗1, . . . , e
∗
n be the corresponding

dual basis of V ∗. Under the isomorphism Sym•(V ) ∼= Gr[θ1, . . . , θn] (vari-
ables θi correspond to ei) the operators êi become the multiplication by θi



10 MULTILINEAR ALGEBRA

operators and ∂e∗i become the ‘differentiation operators’
∂

∂θi
in Grassmann

variables.

Remark 6. For an inner product ( , ) on V denote by ϕ : V
∼−→ V ∗ the

induced isomorphism between V and V ∗. Then ∂ϕ(v) = v̂∗, the adjoint
operator to v̂ with respect to the inner product on Λ•(V ) determined by
( , ).

On the vector space W = V ⊕ V ∗ define a symmetric non-degenerate
bilinear form c : W ×W → F by

c(w1, w2)
def
= v∗1(u2) + v∗2(u1), where w1 = u1 + v∗1, w2 = u2 + v∗2 ∈W.

The Clifford algebra C is defined as a quotient algebra of T (W ) by a
two-sided ideal I in T (W ), generated by w1⊗w2 +w2⊗w1− c(w1, w2)1 for
all w1, w2 ∈W ,

C
def
= T (W )/I.

It follows from Lemma 2 that multiplication and differentiation operators
give a representation of the Clifford algebra C in Λ•(V ) — an algebra homo-
morphism ρ : C → End Λ•(V ), such that ρ(w) = û+∂v∗ for w = u+v∗ ∈W .
It is easy to see that ρ is injective and it follows from Remark 5 that ρ(C )
is isomorphic to the algebra of differential operators in Grassmann variables
θ1, . . . , θn with polynomial coefficients.

Remark 7. The ideal I is not a graded ideal of T (W ) so that the Clifford
algebra C is not a graded algebra. However, it is a filtered algebra with the
filtration

F0C ⊂ · · · ⊂ FkC ⊂ Fk+1C ⊂ · · · ⊂ FnC
on C given by the subspaces FkC = π(T 0(W ) ⊕ · · · ⊕ T k(W )), where π :
T (W )→ C is a canonical projection, satisfying

FkC · FlC ⊆ Fk+lC and C =

n⋃
k=0

FkC .

Correspondingly, the associated graded algebra of C is Λ•(V ⊕ V ∗),
gr(C ) ∼= Λ•(V ⊕ V ∗),

and the Clifford algebra is a Fermi-Dirac quantization of the exterior alge-
bra.

Remark 8. In general, the Clifford algebra C (V ) of the vector space V with
a non-degenerate symmetric form c : V × V → F is defined by

C (V ) = T (V )/I,

where I is a two-sided ideal in T (V ), generated by v1⊗v2+v2⊗v1−c(v1, v2)1
for all v1, v2 ∈ V . The Clifford algebra C (V ) is a filtered algebra and

gr(C (V )) ∼= Λ•(V ).



MULTILINEAR ALGEBRA 11

4.4. Determinants. For A ∈ EndV define ΛnA ∈ ΛnV by

ΛnA(v1 ∧ · · · ∧ vn) = Av1 ∧ · · · ∧Avn.
Since ΛnV is one-dimensional there is a canonical identification

ı : End ΛnV
∼−→ F

(a matrix of an operator on a one-dimensional vector space does not depend
on the choice of a basis). We define detA = ı(ΛnA), so that for every basis
e1, . . . , en of V ,

Ae1 ∧ · · · ∧Aen = detA(e1 ∧ · · · ∧ en),

and one gets the standard formula for the determinant of a matrix. From
here it is immediate that

det(AB) = detAdetB

and all other properties of determinants like row expansion, Laplace theo-
rem, etc., easily follow. In particular,

ΛkA(ei1 ∧ · · · ∧ eik) = Aei1 ∧ · · · ∧Aeik
=

∑
1≤j1<···<jk≤n

detAj1...jki1...ik
(ej1 ∧ · · · ∧ ejk),

where the k×k matrix Aj1...jki1...ik
is obtained by choosing the columns numbered

by i1, . . . ik and the rows j1, . . . , jk from the matrix A.

4.5. Hodge star product. Let V be a vector space over R with Euclidean
inner product ( , ). The orientation is determined by a choice of an or-
thonormal basis e1, . . . , en. Another orthonormal basis e′1, . . . , e

′
n is said to

be positively oriented if it is related to e1, . . . , en by an orthogonal ma-
trix with determinant 1. The basis e1, . . . , en determines an isomorphism
∗n : ΛnV

∼−→ R by
∗n(c e1 ∧ · · · ∧ en) = c,

which does not depend on the choice of positively oriented orthonormal basis.
The Hodge star operator ∗k : ΛkV → Λn−kV is defined by the requirement
that

(α, β) = ∗n(α ∧ ∗kβ)

for all α, β ∈ ΛkV . Indeed, ∗n defines the isomorphism

ψ : Λn−kV
∼−→ (ΛkV )∗

by ψ(γ)(α) = ∗n(α ∧ γ), α ∈ ΛkV, γ ∈ Λn−kV . Therefore

∗kβ = (ψ−1 ◦ ϕ)(β),

where the isomorphism ϕ : ΛkV
∼−→ (ΛkV )∗ is given by the Euclidean inner

product (see Remark 2). The Hodge star operator satisfies

∗n−k ◦ ∗k = (−1)k(n−k)I

on ΛkV , and the same formula holds on Λn−kV .
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In a similar fashion the Hodge star operator can be defined for vector
spaces over C with Hermitian inner product.
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