EXTRA MATERIAL ON TENSOR, SYMMETRIC AND
EXTERIOR ALGEBRAS

1. INTRODUCTION

These are supplementary notes to the material in the homework assigne-
ments and in §11.5 of Dummit and Foote textbook. Here R is a commutative
ring with 1, M, N, etc. are R-modules, ® = ®p is the tensor product over
R, and V is vector space over a field F.

2. TENSOR ALGEBRA

2.1. Tensor algebra of a module. The tensor algebra T(M) of an R-
module M is an R-module

T(M) = éTk(M),
k=0

where TO(M) = R, T*(M) = M and T*(M) = M®". Let 1 : R — T(M)
and 4, 1 M®" — T(M) be the natural inclusion maps. Then T'(M) has

an R-algebra structure with the unit 1 = 49(1) and with the multiplication
defined by

def

and extended to all T#(M) x T'(M) using distributive laws. The tensor
algebra T(M) is a graded algebra, T*(M) - T'(M) C T (M). When M
is a free R-module of rank n, the tensor algebra T'(M) corresponds to the
algebra of polynomials with coefficients in R in n non-commuting variables.
Namely, every choice of free generators x1, ..., x, of M gives an isomorphism
T(M) = R(x1,...,x,) — a free R-algebra generated by x1,...,x,.

The tensor algebra T'(M) is a bialgebra (actually a Hopf algebra, see HW
3) with the coproduct

A:T(M)—-T(M)T(M)
and the counit
e:T(M)— R,
the R-algebra homomorphisms, defined by
A1)=1®1, Am)=me1l+1®m, meM,

and e(m) = 0 for all m € M, (1) = 1. Here multiplication on T'(M )T (M)
is defined by (a ®b) + (c®d) = (a® ¢) ® (c ® d), where ® in parentheses is
1
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the multiplication on T(M). On T*(M) the coproduct is given by

k
=D D (M) ® @ M) ® (Mo(irn) ® @ Moy

i=0 o€Sh(i,k—i)
where Sh(i,k — i) consists of (i,k — i) shuffles — permutations o € S
satisfying o(1) < --- < (i) and 0(: + 1) < --- < o(k), and for ¢ = 0 and
i = k the corresponding terms are, respectively, 1 ® (m; ® -+ ® my) and
(Mm@ @myg) ® 1.

Hilbert-Poincaré series of T(M), in case when M is a finitely generated

R-module, is the following formal power series

H(t) €S rankgT*H (M)t* € R[[t]].
k=0
If M is a free module of rank n,
- 1
H(t) = kik = :
®) k;z:on 1—nt

2.2. Tensor algebra of a vector space. Let V be a vector space over F
and V* be its dual space. There is a natural (canonical) isomorphism of
graded vector spaces

TV )=TV),
defined by

(vF @ @vp)(w ® - @) S Svf(ur) - v (up),
where u1 ® - ® w € TH(V) and vf ® -+ ® v} € TH(V*). The elements
of TH(V) are called contravariant k-tensors, and elements of T*(V*) —
covariant k-tensors.

In differential geometry and in physics one uses more general type of
tensors. Namely, the vector space of tensors of bi-degree (r,s), r,s > 0 is
defined as

VN ¥ve . eVveV'e oV,
T S
so that the general tensor algebra

oo r+s=k

V) =P @ T(V)

k=0 7,5>0
is a graded algebra with a multiplication defined by
d f * * * *
URVZE U @ QU V1@ R Uy, QU B Ul VI @+ @V,
where

U=U R QU QU] @ Qug, and v =1 @ -+ @ Uy, U] @+ -+ @ Vg, .

52
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As graded vectors spaces, T**(V*) =2 T**(V)*.
The contaction operator is a map c;; : T7*(V) — TT~171(V), where
1<i<r1<j<s, defined as follows

f ~ * ~ *
Cij(v)d:eU;(”i)vl®"‘®Ui®”'®"l)r®7)1®“'®U;®"‘®Usv

where v = v ® --- @ v, ® v] ® --- ® v and the check over an argument
means that it should be omitted. In particular, using the isomorphism
EndV 2 V*®V, we see that the map cq1 : TH(V*) — F is the trace map:
c11(A) =TrAfor A€ EndV.

3. SYMMETRIC ALGEBRA

3.1. Symmetric algebra of a module. Let C(M) be a two-sided ideal in
T(M), generated by the elements m; ® mg — mo ® my for all my, mg € M.
It is a graded ideal of T(M) so that the corresponding quotient algebra is
graded. By definition, it is a symmetric algebra of a module M,

Sym*(M) € T(M)/c(M) = D) Sym* (M).
k=0

The symmetric algebra Sym®(M) is commutative and we denote its mul-
tiplication by ®. The symmetric algebra is a bialgebra (actually a Hopf
algebra), which follows from the fact that the ideal I = C(M) is also a
two-sided coideal in the bialgebra A = T'(M), that is,

Al)CARIT+I1®A.

This property of I easily follows from the fact for ¢ = m; ® ma — mo ® my
we have

Alc)=1®c+c®1.
Indeed, it follows from the formula for A that
A(m1 & m2) = A(ml) . A(TTLQ>
=1@mi+m®1)- (1@my+my®1)
=1®@m @mo+m @ma+me@mi +m; @ma® 1,
which gives the above formula for A(c).

If M =M @ M", a direct sum of two free modules, there is a canonical
isomorphism of commutative graded algebras

oo r+s=k
Sym®*(M) = Sym®*(M') @ Sym®*(M") = @ @ Sym" (M") @ Sym®*(M").
k=0 r,s>0
In particular, if M is a free module of rank n with free generators x1, ..., Zy,

then
Sym®(M) = Rlz1,...,xy).
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In this case it easy to see (e.g. by using ‘stars and bars’) that

rank g Sym* (M) = <n +: - 1>

and by the binomial formula the Hilbert polynomial of Sym®(M) is

H(t):i(n+ll:—1>tk: (1_12&)“'

k=0

3.2. Symmetric algebra of a vector space. Let V' be a vector space over

~Y

F and V* be its dual space. There is a canonical isomorphism Sym®(V) =
Pol(V*), the polynomial algebra ov V*. Indeed, v € V can be considered as
a linear function on V* with values in F', and an element v; ® --- ® v, —
as a homogeneous polynomial function on V* of degree k. There is also a
natural isomorphism of graded vector spaces
Sym®(V*) = Sym*(V)*,
given by the identification of u}®- - -Ou} € Sym*(V*) with u(u}®---Ou}) €
Sym*(V)* defined by
puf @ Oup) (1 @ Qu) =0 Y U (V) - Uk (Vo(r))-
UESn

The above expression is called a permanent of the k x k matrix w!(v;).
Correspondingly, the inner product (, ) in V' determines an inner product
in Sym*®(V') by the formula

(U1 © - Quk,v1 O Ov) = Ik Z (ul,va(l)) oo (uk,va(k)) .
O'GSn

Denote by Sym*(V, F)) the vector space of symmetric k-multilinear maps
from V* to F and let

Sym*(V, F) € @ Sym* (v, F).
k=0
The map p defines the isomorphism Sym®(V*) = Sym®(V, F'), and the mul-

tiplication ® induces a multiplication ®5 on Sym®(V, F') such that the fol-
lowing diagram is commutative

Sym* (V*) x Sym!(V*) —=— Sym" (V")
uXul LU
Sym* (V, ) x Sym(V, F) == Sym**(V, F)
Explicitly the map ®s is given by the shuffle product:
(f ©@s 9) (1, vkpt)

= Z F (Vo(1)s - Vo) 9 (Vo(ks1)s - - > Vo(itr))
oeSh(k,l)
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for f € Sym*(V, F), g € Sym'(V, F).

3.3. Weyl algebra. For u € V define a ‘multiplication by u operator’ @ :
Sym*(V) — Sym®*(V) by
i o ouw) Euow o - ou,

so that @ : Sym”*(V) — Sym**t1(V) and deg@ = +1. For v* € V* define a
‘directional derivative operator’ 9, : Sym®(V') — Sym®(V') by

k

O (w1 @ O ) EY W) © - 08O - Oy,
i=1

so that 0« : Sym* (V) — Sym*~1(V) and deg 8, = —1.
For A, B € End Sym® (V') denote by [4, B] = AocB—BoA € End Sym*(V)
the commutator of operators A and B.

Lemma 1 (Heisenberg commutation relations). The operators 4 and Oy
satisfy the following commutation relations

[a17 aQ] = [8vfaav’2*] =0,
[Oy=, 0] = v*(u)1,
where I is the identity operator in Sym® (V).
Proof. Direct computation using definition of d,+ and ©. O

Remark 1. Let eq,...,e, beabasisof V and e], ..., e}, be the corresponding
dual basis of V*. Under the isomorphism Sym®(V) = Flxy,...,x,] (vari-
ables z; correspond to e;) the operators é; become the multiplication by x;

0
operators and J.+ become the differentiation operators Ere
k3 xi
Remark 2. For an inner product (, ) on V denote by ¢ : V. = V* the
induced isomorphism between V' and V*. Then d,) = 9*, the adjoint
operator to ¥ with respect to the inner product on Sym®(V') determined by

()

On the vector space W = V @ V* define a non-degenerate alternating
formw: W xW — F by

w(wy, we) def v] (u2) —v5(uy1), where wi =wuy+v], wy=ug+ vy € W.

The Weyl algebra # is defined as a quotient algebra of T'(W) by the
two-sided ideal J in T'(W), generated by w; ® wy — wy ® wy — w(wy, wy)l

for all wi,wqe € W,

v LT,

It follows from Lemma 1 that multiplication and differentiation operators
give a representation of the Weyl algebra # in Sym®(V) — an algebra
homomorphism p : # — End Sym®(V), such that p(w) = @ + 9+ for w =
u+v* € W. It is easy to see that p is injective and it follows from Remark 1
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that p(#) is isomorphic to the algebra of differential operators in variables
T1,...,Ty with polynomial coefficients.

Remark 3. The ideal J is not a graded ideal of T'(W) so that the Weyl
algebra # is not a graded algebra. However, it is a filtered algebra — there
is a filtration

FOWCFl“//C--~CFkWCFk+17/C-~-

on # given by the subspaces Fp# = n(T°(W) @ --- @ TF(W)), where
m: T(W)— # is a canonical projection, satisfying

FeW -FW CFop# and # =) FA.
k=0
Correspondingly, the associated graded algebra gr(A) of a filtered algebra A
is defined by

o0
gr(A) = @ FrA/Fr1A, F1A=0,
k=0
and
gr(#) = Sym*(V e V*).
The Weyl algebra is a quantization of the symmetric algebra.

Remark 4. In general, the Weyl algebra # (V) of the symplectic vector space
(V,w), where w : V x V — F is non-degenerate alternating form on V' is
defined by
W (V)=TV)/J,
where J is a two-sided ideal in T'(V'), generated by v1 ®ve—ve@v1—w(v1, v2)1
for all v1,v9 € V. Let L C V be a Lagrangian subspace of V| the subspace of
the dimension 3 dimp V' such that w|, = 0. Then the Weyl algebra #/ (V)
admits a representation in Sym®(L). The Weyl algebra # (V) is a filtered
algebra and
gr(#(V)) = Sym*(V).

4. EXTERIOR ALGEBRA

4.1. Exterior algebra of a module. Let A(M) be a two-sided ideal in
T(M) generated by mj ® mg + mg @ my for all my,me € M. If 2 # 0 in R,
the identity

2(m1 ® mg +ma @mq) = (M1 +ma) ® (M1 +ma) —m1 ®mp —ma @me

shows that A(M) is generated by m @ m for all m € M. It is a graded ideal
in T(M) and the exterior algebra of an R-module M is the corresponding
quotient algebra

A*(M) (M) JAM) = AO(M) & AL (M) & A2(M) & -+ -,

INote that V is necessarily even-dimensional.
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where A°(M) = R and A'(M) = M. The exterior is graded commutative
algebra with a product A, that is

Oz/\ﬁ ( )degadegﬁﬂ/\a

where dega and deg S are degrees of the homogeneous elements «, 3 €
A*(M), deg AK(M) = k.

If A and B are graded commutative R-algebras, their tensor product
carries a graded commutative algebra structure defined on homogeneous
elements by

(a®Db) - (c®d) = (—1)%ebdec(qe @ bd).

We will denote this algebra by A®B.

If M is a free module of rank n, A¥(M) = 0 for k > n and

n
A (M) = EP A* ().
k=0

However this is not true if M is not a free module. Thus for R = Z[x, y] the
module M = (z,y) has rank 1 but is not free and M A M # 0 (see example
on p. 449 in D&F).

If M =M @ M", a direct sum of two free modules, there is a canonical
isomorphism of graded commutative algebras

oo r+s=k
A.( ) A.(M/ ®A. M/l @ @ Ar ®AS(MII)
k=0 7,5>0
In particular, if M is a free module of rank n with free generators 61, ...,0,,

then
A*(M) = Grlzy,. .., x,)
— the Grassmann algebra with the generators 6; satisfying relations

0¢c9j—|—9j0i:0, ,7=1,...,n

4.2. Exterior algebra of a vector space. Let V be a vector space over
a field F of dimension n. It is easy to see that dimp A¥(V) = (}) and the
Hilbert series of the exterior algebra is

= Zn:dirnp AFV)tE = (1 4+1)™

Denoting by Hgym(t) and H(t) respectively the Hilbert series for symmetric
and exterior algebras of V', we get (see Sect. 3.1)
Hsym(t)HA(—t) = 1.
This is an example of a Koszul duality. Namely, let Z = (R) be a two-sided
ideal in T'(V') generated by the subspace R of T?(V) and let

AYTv)I
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be the corresponding graded algebra, the so-called Koszul quadratic algebra.
Let R’ be the orthogonal subspace to R in T%(V*),

R ={¢€T*(V*):¢*(r)=0 forall reR}.
The Koszul dual of A is a quadratic algebra A' defined by

AL TV,

where 7' = (R’) is a two-sided ideal in T'(V*) generated by R’. The Koszul
duality reads
Ha(t)H 5 (—t) = 1.

In our case R is the subspace of T2(V) spanned by u ® v — v ® u and
R’ is the subspace of T?(V*) spanned by v* ® v*. Thus A = Sym*®(V) and
A" = A*(V*). Indeed, every | € T?(V*) ~ T%(V)* can be uniquely written
as the sum of symmetric and antisymmetric functionals [ = [ 4 [_, where

lt(u@v)=Il1(veu) and [_(u®v)=—-l_(v®@u), u,veV.

Then I|, = 0 if and only if I = 0 and R’ = {l € T*(V*) : | = I4}. Since

every symmetric bilinear form can be diagonalized there are v; € V* and
¢; € F such that
Iy = Zciv;-k ® ;.
i

There is a natural isomorphism of graded vector spaces
INUSEIN o)

given by the identification of uj A - Auj € AF(V*) with p(uf A--- Auf) €
A¥(V)*, defined by

p(uf A Aup)(or A Av) =0 3 (=Dl (v,01)) -+ i (Vo)

O'GSTL
a determinant of the k x k matrix u} (v;). Correspondingly, the inner product
(, ) in V determines an inner product in A*(V) by the formula
(wr A= Aug,vi A -+ Ay) = O det(ug, v5).

Denote by Alt*(V, F) the vector space of symmetric k-multilinear maps
from V* to F and let

Al (V, F) £ @ Al (V, F).
k=0
The map p defines the isomorphism A®(V*) = Alt*(V, F'), and the multipli-
cation A induces a multiplication As on Alt®*(V, F) such that the following
diagram is commutative

Ak(v*) % AZ(V*) #} AkJrl(V*)

x| ¥

ALV, F) x AltY(V, F) —22s AIFH(V, F)
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Explicitly the map A, is given by the shuffle product:
(f /\S g)(vla e 7/Uk‘+l)
= > (“DTf (0o1) Vo) 9 (Vater)s - - Vo)

o€Sh(k,l)
for f € Alt*(V, F), g € AltY(V, F).

4.3. Clifford algebra. For u € V define a ‘multiplication by u operator’
a:A*(V) = A*(V) by
W(ug A+ Auyg) d:efu/\ul/\--'/\uk7

so that @ : A¥(V) — AF1(V) and degét = +1. For v* € V* define a
‘directional derivative operator’ 9, : A*(V) — A*(V) by

k
Op=(ug A -+« A ug) dof Z(—l)i_lv*(ui)ul Acos AN A A ug,
i=1
so that Oy« : AF(V) — AF=1(V) and deg 0, = —1.
For A, B € End A*(V) denote by [A,B]y = Ao B+ Bo A e EndA*(V)
the anti-commutator of operators A and B.

Lemma 2 (Fermi-Dirac anti-commutation relations). The operators u and
Oy+ satisfy the following anti-commutation relations

[’&1,’&2]+ — [6Ufaav§]+ = 07
[Ov+, 44 = v (u)],
where I is the identity operator in A*(V).

Proof. Direct computation. Formulas [t1, 2]+ = 0 and [Oy+, 4]+ = v*(u)]
are proved exactly as analogous formulas in Lemma 1. To prove that
[Ov;, Ous ]+ = 0 observe that

k
avf(avg(ul/\ /\Uk; Z u] ul/\ AT A Ay
k
- Z (= 1)l G )”1 (u;)vs (uj)u’ ja
i,j=1
17

where 0(i—j) = 1 fori > j, (i—j) = 0 for i < j and u¥ is uy A+ - - Auy with
i-th and j-th factors omitted. Since (—1)°¢=7) = —(—=1)0=9 the formula
folows. O

Remark 5. Let eq,...,e, beabasisof V and e], ..., e}, be the corresponding
dual basis of V*. Under the isomorphism Sym®(V) = Gr[f,...,0,] (vari-
ables 0; correspond to e;) the operators é; become the multiplication by 6;
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. _ a9 .
operators and 86; become the ‘differentiation operators’ 20 in Grassmann
i

variables.

Remark 6. For an inner product ( , ) on V denote by ¢ : V. =5 V* the
induced isomorphism between V' and V*. Then d,) = 9%, the adjoint
operator to ¢ with respect to the inner product on A®*(V') determined by

()

On the vector space W = V & V* define a symmetric non-degenerate
bilinear form ¢: W x W — F by

c(wy, ws) def v] (u2) +v5(uy1), where wy =g+ v}, wy=ug+ vy € W.

The Clifford algebra € is defined as a quotient algebra of T'(W) by a
two-sided ideal I in T'(W), generated by wi ® wg 4+ wg ® w1 — ¢(wy, we)1 for
all wi,we € W,

¢ ¥ Tow)/1.

It follows from Lemma 2 that multiplication and differentiation operators
give a representation of the Clifford algebra @ in A®(V) — an algebra homo-
morphism p : € — End A®*(V), such that p(w) = 4+0, for w = u+v* € W.
It is easy to see that p is injective and it follows from Remark 5 that p(%)
is isomorphic to the algebra of differential operators in Grassmann variables
01,...,0, with polynomial coefficients.

Remark 7. The ideal I is not a graded ideal of T'(W) so that the Clifford
algebra ¢ is not a graded algebra. However, it is a filtered algebra with the
filtration

W6 C-- - CF6 CF1¢C---CFE%

on € given by the subspaces Fy¢ = n(TO(W) @ --- @ TH(W)), where 7 :
T(W) — % is a canonical projection, satisfying

n
F%-F% C Fy? and ¢ = | J K%,
k=0
Correspondingly, the associated graded algebra of € is A*(V @ V*),
B () = AV & V7).
and the Clifford algebra is a Fermi-Dirac quantization of the exterior alge-
bra.

Remark 8. In general, the Clifford algebra & (V') of the vector space V' with
a non-degenerate symmetric form ¢: V x V' — F' is defined by

CV)=TWV)/I,

where I is a two-sided ideal in T'(V'), generated by v @ vy +ve @y —c(vy, v2)1
for all v1,vy € V. The Clifford algebra € (V) is a filtered algebra and

gr(¢(V)) = A*(V).
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4.4. Determinants. For A € EndV define A"A € A"V by

AN A(vr A=~ ANwvp) = Aoy A -+ - A Aoy,
Since A"V is one-dimensional there is a canonical identification

1:End A"V = F

(a matrix of an operator on a one-dimensional vector space does not depend
on the choice of a basis). We define det A = 1(A™A), so that for every basis
€1,...,en of V,

Aeg A+ N Ae, = det A(er A -+ Aey),

and one gets the standard formula for the determinant of a matrix. From
here it is immediate that

det(AB) = det Adet B

and all other properties of determinants like row expansion, Laplace theo-
rem, etc., easily follow. In particular,

AkA(eil VANRRIVAN eik) = Aeil VANEIVA Aeik
= ) detAl (e A Aey),

1< <-<jgr<n
where the k x k matrix Agll::_'g : is obtained by choosing the columns numbered
by i1,...4; and the rows ji,...,ji from the matrix A.

4.5. Hodge star product. Let V' be a vector space over R with Euclidean
inner product ( , ). The orientation is determined by a choice of an or-

/

thonormal basis e1,...,e,. Another orthonormal basis €], ..., €], is said to

be positively oriented if it is related to e1,...,e, by an orthogonal ma-
trix with determinant 1. The basis e1,...,e, determines an isomorphism
¥, : A"V =5 R by

xp(cep N+ Nep) =c,
which does not depend on the choice of positively oriented orthonormal basis.
The Hodge star operator % : AV — A"V is defined by the requirement
that

(a, B) = #n(a A xf3)

for all o, B € A¥V. Indeed, *,, defines the isomorphism
¢ AVTRY S (AFY)*
by ¥(v)(a) = #,(a AN7y), @ € AkV,'y € A" kV . Therefore
w8 = (o p)(B),

where the isomorphism ¢ : A¥V =5 (AFV)* is given by the Euclidean inner
product (see Remark 2). The Hodge star operator satisfies

*p_k O ¥ = (—1)k(”_k)1

on A*V, and the same formula holds on A" *V.
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In a similar fashion the Hodge star operator can be defined for vector
spaces over C with Hermitian inner product.
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