
MAT 535: HOMEWORK 3
DUE THU Feb 18

Problems marked by asterisk (*) are optional.

1. Exercises 1,2 and 13 on pp. 454–455 in D&F.
2. Let V be a finite-dimensional vector space over a field F . Define the

F -linear map Tr : EndF (V )→ F , the trace map, by

EndFV = V ∗ ⊗F V 3 v∗ ⊗ w 7→ v∗(w) ∈ F.
Prove that for A,B ∈ EndFV

Tr(A⊗B) = TrATrB.

3. Let V be a finite-dimensional vector space over a field F and u1, . . . , up,
v1, . . . , vp ∈ V be such that

u1 ∧ · · · ∧ up = cv1 ∧ · · · ∧ vp 6= 0, c ∈ F.
Prove that u1, . . . , up and v1, . . . , vp generate the same subspace in
V .

*4. Let R be a commutative ring with 1 and let M be a free R-module1.
(a) Let M be finitely generated. Prove the following R-algebra

isomorphism

T (EndR(M)) ∼=
∞⊕
k=0

EndR(T k(M)).

(b) Let M = M ′ ⊕M ′′ be the direct sum of free R-modules. Prove
the following graded R-algebra isomorphism

Sym(M) ∼= Sym(M ′)⊗R Sym(M ′′).

5. Let V be a finite-dimensional vector space over a field F , dimF V = n
and let pA(t) be the characteristic polynomial of A ∈ EndF (V ).
Define αk(A) = Tr(∧kA) ∈ F , k = 0, . . . , n. Prove that

pA(−t) =
n∑

k=0

αk(A)tn−k.

*6. Let V be a finite-dimensional vector space over a field F , dimF V = n
and let A ∈ EndF (V ).Using that ∧nA acts by multiplication by detA
in ∧nV , prove the Laplace formula (expression for the determinant
in terms of cofactors). Prove Laplace expansion by complementary
minors.

7. Let A be skew-symmetric 2n× 2n matrix and let

ω(A) = 1
2

2n∑
i,j=1

aijei ∧ ej ,

1For part (a) it is sufficient to assume that M is finitely generated projective module.
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where e1, . . . , e2n is the standard basis of R2n. Prove that

∧nω(A) = n! Pf(A)e1 ∧ · · · ∧ e2n,

where Pf(A) is the Pfaffian defined in class. Deduce from here that
(a) Pf(BtAB) = Pf(A) detB for any 2n× 2n matrix B.
(b) Pf(A)2 = detA.

*8. Let R be a commutative ring with 1. Recall that if A is an R-algebra

with a multiplication m : A⊗RA→ A, where m(a⊗ b) def
= a · b, then

A⊗RA is also an R-algebra with the multiplication m⊗m. In other

words, (a ⊗ b) · (c ⊗ d)
def
= (m ⊗ m)(a ⊗ b ⊗ c ⊗ d) = ac ⊗ bd (see

Proposition 21 in §10.4 of D&F).
A Hopf algebra over R is an R-algebra A with additional oper-

ations ∆ : A → A ⊗R A, called a comultiplication or coproduct,
ε : A → R, called a counit and S : A → A, called an antipode,
satisfying the following properties.

(i) ∆ : A→ A⊗R A is an R-algebra homomorphism satisfying

A⊗A

A A⊗A⊗A

A⊗A

id⊗∆∆

∆ ∆⊗id

— the coassociativity.
(ii) ε : A→ R is a ring homomorphism satisfying

A⊗R

A A⊗A A

R⊗A

∼=

∆

id⊗ε

ε⊗id ∼=

(iii) S : A → A is an R-algebra anti-homomorphism (S(ab) =
S(b)S(a) for all a, b ∈ A) satisfying

A A⊗A A⊗A A

R

∆

ε

S⊗id m

i

where i : R → A is a natural inclusion map (maps 1 ∈ R to
1 ∈ A). The same property should also hold for id⊗S.

Prove that the following algebras are the Hopf algebras.
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(a) Tensor algebra T (M) of an R-module M , where for m ∈ M
the coproduct, the antipode and counit are given by ∆(m) =
m ⊗ 1 + 1 ⊗ m, S(m) = −m, ε(m) = 0, ε(1) = 1. They are
extended to T (M) as a homomorphism of R-algebras (for ∆), an
R-algebra anti-isomorphism (for S), and a ring homomorphism
(for ε).

(b) The group ring R[G] of a group G (see §7.2 in D&F), where for
g ∈ G we have ∆(g) = g ⊗ g, S(g) = g−1 and ε(g) = 1.

(c) The R-algebra FunR(G) of all maps f : G→ R such that f(g) =
0 for all but finitely many g ∈ G with the pointwise product.
Here ∆(f)(g1, g2) = f(g1g2), S(f)(g) = f(g−1) and ε(f)(g) =
f(e), where e is the identity in G.


