MAT 535: HOMEWORK 3 DUE THU Feb 18

Problems marked by asterisk (*) are optional.

- 1. Exercises 1,2 and 13 on pp. 454–455 in D&F.
- **2.** Let V be a finite-dimensional vector space over a field F. Define the F-linear map $\text{Tr}: \text{End}_F(V) \to F$, the trace map, by

 $\operatorname{End}_F V = V^* \otimes_F V \ni v^* \otimes w \mapsto v^*(w) \in F.$

Prove that for $A, B \in \operatorname{End}_F V$

$$\operatorname{Tr}(A \otimes B) = \operatorname{Tr} A \operatorname{Tr} B.$$

3. Let V be a finite-dimensional vector space over a field F and u_1, \ldots, u_p , $v_1, \ldots, v_p \in V$ be such that

$$u_1 \wedge \dots \wedge u_p = cv_1 \wedge \dots \wedge v_p \neq 0, \quad c \in F.$$

Prove that u_1, \ldots, u_p and v_1, \ldots, v_p generate the same subspace in V.

- *4. Let R be a commutative ring with 1 and let M be a free R-module¹.
 - (a) Let M be finitely generated. Prove the following R-algebra isomorphism

$$T(\operatorname{End}_R(M)) \cong \bigoplus_{k=0}^{\infty} \operatorname{End}_R(T^k(M)).$$

(b) Let $M = M' \oplus M''$ be the direct sum of free *R*-modules. Prove the following graded *R*-algebra isomorphism

$$\operatorname{Sym}(M) \cong \operatorname{Sym}(M') \otimes_R \operatorname{Sym}(M'').$$

5. Let V be a finite-dimensional vector space over a field F, $\dim_F V = n$ and let $p_A(t)$ be the characteristic polynomial of $A \in \operatorname{End}_F(V)$. Define $\alpha_k(A) = \operatorname{Tr}(\wedge^k A) \in F, \ k = 0, \dots, n$. Prove that

$$p_A(-t) = \sum_{k=0}^n \alpha_k(A) t^{n-k}.$$

- *6. Let V be a finite-dimensional vector space over a field F, $\dim_F V = n$ and let $A \in \operatorname{End}_F(V)$. Using that $\wedge^n A$ acts by multiplication by det A in $\wedge^n V$, prove the Laplace formula (expression for the determinant in terms of cofactors). Prove Laplace expansion by complementary minors.
- 7. Let A be skew-symmetric $2n \times 2n$ matrix and let

$$\omega(A) = \frac{1}{2} \sum_{i,j=1}^{2n} a_{ij} e_i \wedge e_j,$$

¹For part (a) it is sufficient to assume that M is finitely generated projective module.

where e_1, \ldots, e_{2n} is the standard basis of \mathbb{R}^{2n} . Prove that

$$\wedge^n \omega(A) = n! \operatorname{Pf}(A) e_1 \wedge \cdots \wedge e_{2n},$$

where Pf(A) is the *Pfaffian* defined in class. Deduce from here that (a) $Pf(B^tAB) = Pf(A) \det B$ for any $2n \times 2n$ matrix B.

- (b) $Pf(A)^2 = \det A$.
- *8. Let R be a commutative ring with 1. Recall that if A is an R-algebra with a multiplication $m: A \otimes_R A \to A$, where $m(a \otimes b) \stackrel{\text{def}}{=} a \cdot b$, then $A \otimes_R A$ is also an *R*-algebra with the multiplication $m \otimes m$. In other words, $(a \otimes b) \cdot (c \otimes d) \stackrel{\text{def}}{=} (m \otimes m)(a \otimes b \otimes c \otimes d) = ac \otimes bd$ (see Proposition 21 in $\S10.4$ of D&F).

A Hopf algebra over R is an R-algebra A with additional operations $\Delta : A \to A \otimes_R A$, called a *comultiplication* or *coproduct*, $\varepsilon : A \to R$, called a *counit* and $S : A \to A$, called an *antipode*, satisfying the following properties.

(i) $\Delta: A \to A \otimes_R A$ is an *R*-algebra homomorphism satisfying

— the *coassociativity*.

(ii) $\varepsilon: A \to R$ is a ring homomorphism satisfying

(iii) $S : A \to A$ is an R-algebra anti-homomorphism (S(ab) =S(b)S(a) for all $a, b \in A$) satisfying

where $i: R \to A$ is a natural inclusion map (maps $1 \in R$ to $1 \in A$). The same property should also hold for id $\otimes S$. Prove that the following algebras are the Hopf algebras.

- (a) Tensor algebra T(M) of an R-module M, where for $m \in M$ the coproduct, the antipode and counit are given by $\Delta(m) = m \otimes 1 + 1 \otimes m$, S(m) = -m, $\varepsilon(m) = 0$, $\varepsilon(1) = 1$. They are extended to T(M) as a homomorphism of R-algebras (for Δ), an R-algebra anti-isomorphism (for S), and a ring homomorphism (for ε).
- (b) The group ring R[G] of a group G (see §7.2 in D&F), where for $g \in G$ we have $\Delta(g) = g \otimes g$, $S(g) = g^{-1}$ and $\varepsilon(g) = 1$.
- (c) The *R*-algebra $\operatorname{Fun}_R(G)$ of all maps $f: G \to R$ such that f(g) = 0 for all but finitely many $g \in G$ with the pointwise product. Here $\Delta(f)(g_1, g_2) = f(g_1g_2), S(f)(g) = f(g^{-1})$ and $\varepsilon(f)(g) = f(e)$, where *e* is the identity in *G*.