MAT 535: HOMEWORK 2 DUE THU Feb 11

Problems marked by asterisk (*) are optional.

- *1. By an orthogonal transformation transform the quadratic form $x_1x_2 + x_2x_3 + \cdots + x_{n-1}x_n$ to the canonical form.
- **2.** Let $f(x_1, \ldots, x_n) = X^t A X$ be a positive-definite quadratic form with symmetric matrix $A = \{a_{ij}\}_{i,j=1}^n$, and let $D_f = \det A$ be the discriminant of f.
 - (a) Prove that the discriminant of the form

 $f(x_1, \ldots, x_n) + (b_1 x_1 + \cdots + b_n x_n)^2$

is greater than D_f .

(b) Put $\varphi(x_2, ..., x_n) = f(0, x_2, ..., x_n)$. Prove that

$$D_f \le a_{11} D_{\varphi}.$$

- *3. Let $f(x_1, \ldots, x_n) = X^t A X$ and $g(x_1, \ldots, x_n) = X^t B X$ be positivedefinite quadratic forms with the matrices $A = \{a_{ij}\}_{i,j=1}^n$ and $B = \{b_{ij}\}_{i,j=1}^n$. Prove that the quadratic form (f,g) with the matrix $C = \{a_{ij}b_{ij}\}_{i,j=1}^n$ (no summation) is also positive-definite.
 - 4. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ be skew-symmetric. Prove that its *Cayley trans*form $O = (I - A)(I + A)^{-1}$ is well-defined and is orthogonal.
 - 5. Consider the complex vector space $V = \operatorname{Mat}_{n \times n}(\mathbb{C})$ and let Tr be the matrix trace. Prove that $(A, B) = \operatorname{Tr} AB^*$ defines a Hermitian inner product in V.
- *6. Let A be a normal operator such that $A^2 = A$. Prove that A is self-adjoint.
- 7. Let V be a real vector space. A complex structure on V is a linear operator $J: V \to V$ such that $J^2 = -I$.
 - (a) Prove that a complex structure J on V turns V into a complex vector space V_J , where $iv \stackrel{\text{def}}{=} Jv$ for all $v \in V$.
 - (b) Let ω be a non-degenerate alternating form on V which is compatible with the complex structure J, that is,

 $\omega(Ju, Jv) = \omega(u, v) \quad \text{for all} \quad u, v \in V,$

and also suppose that $\omega(v, Jv) > 0$ for all non-zero $v \in V$. Prove that

$$\langle u, v \rangle \stackrel{\text{def}}{=} \omega(u, Jv) - i\omega(u, v)$$

determines a Hermitian inner product on V_J .

(c) Let $V^{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of V. Prove that the operator J extends to $V^{\mathbb{C}}$, has eigenvalues $\pm i$ and

$$V_J \cong V^{1,0}$$

where $V^{1,0} \subset V^{\mathbb{C}}$ is the eigenspace of J with eigenvalue i.