MAT 535: HOMEWORK 11

Due THU May 5
Problems marked by asterisk $\left(^{*}\right)$ are optional and will not be graded. Problems marked by (\star) are for extra credit.

1. Let R be a subring of the commutative ring S with 1 . Prove that the integral closure of R in S is integrally closed in S.
*2. Let $p>2$ be a prime and let ζ_{p} be a primitive p-th root of 1 . Prove that $1, \zeta_{p}, \ldots, \zeta_{p}^{p-1}$ is a basis of the ring \mathcal{O}_{K} of algebraic integers in the cyclotomic field $K=\mathbb{Q}\left(\zeta_{p}\right)$.
2. D\&F, Exercises 3, 6^{*}, 8, and 17 on pp. 852-853.
3. Exercises 2^{*}, 5,10 and 23 on pp. 876-879.

* 5. Let R be a subring of the polynomial ring $\mathbb{C}[x]$ which contains at least one non-constant element. Prove that the integral closure of R in $\mathbb{C}[x]$ is $\mathbb{C}[x]$.

