MAT 535: HOMEWORK 10

Due THU April 21

Problems marked by asterisk $\left({ }^{*}\right)$ are optional and will not be graded. Problems marked by (\star) are for extra credit.

1. Determine the Galois group of $x^{5}-2$ over \mathbb{Q} and all the subfields of the splitting field of this polynomial.
2. Let F be a field, $n>0$ an integer relatively prime with the characteristic of F, and assume that F contains a primitive n-th root of unity. Prove that if K / F is a Galois extension with the Galois group being cyclic of order n, then there is $\alpha \in K$ such that $K=F(\alpha)$ and α is a root of a polynomial $x^{n}-a$ for some $a \in F$.
(Hint: Apply Hilbert's Theorem 90 to ζ_{n}^{-1}).
3. D\&F, Exercise 26 on p. 584.
4. Consider a polynomial $f(x)=x^{p}-x-a \in \mathbb{F}_{p}[x]$, where $a \neq 0$.
(a) Prove that $\alpha \mapsto \alpha+1$ is an automorphism and using it show explicitly that the Galois group of $f(x)$ is cyclic of order p.
(b) Let K / \mathbb{F}_{p} be a Galois extension with the Galois group being cyclic of order p, then $K=\mathbb{F}_{p}(\alpha)$, where α is a root of $f(x)$ for some $a \in \mathbb{F}_{p}$.
(Hint: For part (b) use Problem 3).
5. D\&F, Exercise 11^{*} on p. 589, exercises $2^{*}, 5^{*}$ and 9 on pp. 595-596 and exercise 8 on p. 603.
6. Determine all the subfields and corresponding minimal polynomials for $\mathbb{Q}\left[\zeta_{7}\right]$.

Extra Credit

\star 7. Let p be a prime number and let n be relatively prime to p. Prove that if n-th cyclotomic polynomial $\Phi_{n}(x)$ has a root in \mathbb{F}_{p}, then n divides $p-1$.
(Hint: Let $\Phi_{n}(\alpha)=0$ in \mathbb{F}_{p} and let m be the order of an element α is the group \mathbb{F}_{p}^{*}. Prove that $m=n$.)
\star 8. Prove that there are infinitely many primes $p \equiv 1 \bmod n$.
(Hint: Suppose that there are finitely many such primes p_{1}, \ldots, p_{k}. Put $m=n p_{1} \cdots p_{k}$, consider $\Phi_{m}[x]$ and let an integer $a>0$ be such that $\Phi_{m}[a m] \geq 2$. Consider the prime divisor p of $\Phi_{m}[a m]$ and use Problem 7).

