MAT 535: HOMEWORK 10 Due THU April 21

Problems marked by asterisk (*) are optional and will not be graded. Problems marked by (\star) are for extra credit.

- 1. Determine the Galois group of $x^5 2$ over \mathbb{Q} and all the subfields of the splitting field of this polynomial.
- 2. Let F be a field, n > 0 an integer relatively prime with the characteristic of F, and assume that F contains a primitive n-th root of unity. Prove that if K/F is a Galois extension with the Galois group being cyclic of order n, then there is $\alpha \in K$ such that $K = F(\alpha)$ and α is a root of a polynomial $x^n a$ for some $a \in F$.

(*Hint:* Apply Hilbert's Theorem 90 to ζ_n^{-1}).

- **3.** D&F, Exercise 26 on p. 584.
- **4.** Consider a polynomial $f(x) = x^p x a \in \mathbb{F}_p[x]$, where $a \neq 0$.
 - (a) Prove that $\alpha \mapsto \alpha + 1$ is an automorphism and using it show explicitly that the Galois group of f(x) is cyclic of order p.
 - (b) Let K/\mathbb{F}_p be a Galois extension with the Galois group being cyclic of order p, then $K = \mathbb{F}_p(\alpha)$, where α is a root of f(x) for some $a \in \mathbb{F}_p$.

(*Hint:* For part (b) use Problem 3).

- **5.** D&F, Exercise 11^{*} on p. 589, exercises 2^{*}, 5^{*} and 9 on pp. 595–596 and exercise 8 on p. 603.
- 6. Determine all the subfields and corresponding minimal polynomials for $\mathbb{Q}[\zeta_7]$.

Extra Credit

* 7. Let p be a prime number and let n be relatively prime to p. Prove that if n-th cyclotomic polynomial $\Phi_n(x)$ has a root in \mathbb{F}_p , then n divides p-1.

(*Hint:* Let $\Phi_n(\alpha) = 0$ in \mathbb{F}_p and let m be the order of an element α is the group \mathbb{F}_p^* . Prove that m = n.)

* 8. Prove that there are infinitely many primes $p \equiv 1 \mod n$.

(*Hint*: Suppose that there are finitely many such primes p_1, \ldots, p_k . Put $m = np_1 \cdots p_k$, consider $\Phi_m[x]$ and let an integer a > 0 be such that $\Phi_m[am] \ge 2$. Consider the prime divisor p of $\Phi_m[am]$ and use Problem 7).