
MAT313 Fall 2017

Practice Midterm II

The actual midterm will consist of 5-6 problems.

It will be based on subsections 127-234 from sections 6-11. This is a

preliminary version. I might add few more problems to make sure that all

important concepts and methods are covered.

Problem 1.

Let P be a set of lines through 0 in R2. The group SL(2,R) acts on X by linear transfor-

mations. Let H be the stabilizer of a line defined by the equation y = 0.

(1) Describe the set of matrices H.

(2) Describe the orbits of H in X. How many orbits are there?

(3) Identify X with the set of cosets of SL(2,R).

Solution.

(1) Denote the set of lines by P = {Lm,n}, where Lm,n is equal to {(x, y)|mx+ny = 0}.

Note that Lkm,kn = Lm,n if k 6= 0. Let g =
(
a b
c d

)
, ad − bc = 1 be an element of

SL(2,R). Then gLm,n = {(x, y)|m(ax + by) + n(cx + dy) = 0} = Lma+nc,mb+nd.

By definition the line {(x, y)|y = 0} is equal to L0,1. Then
(
a b
c d

)
L0,1 = Lc,d. The

line Lc,d coincides with L0,1 if c = 0. Then the stabilizer Stab(L0,1) coincides with

H = {
(
a b
0 d

)
} ⊂ SL(2,R).

(2) We already know one trivial H-orbit O = {L0,1}. The complement P\{L0,1} is

equal to {Lm.n|m 6= 0} = {L1.n/m|m 6= 0} = {L1.t}. The line L1,0 is an element of

P\{L0,1}. Its H orbit is equal to {gL1,0|g ∈ H} = {
(
a b
0 d

)
L1,0} = {La,b|a 6= 0} =

{L1,b/a|a 6= 0} = P\{L0,1}.

We conclude that H consists of two H-orbits {L0,1} and P\{L0,1}.

(3) The action of SL(2,R) on P is transitive. This is because gL0,1 = La,b with (a, b) 6=

(0, 0). For any pair (a, b), defined up to a multiplicative constant there is g such

that gL0,1 = La,b. This is because for any such a pair (a, b) the equation ad−bc = 1

always has a solution.
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Problem 2.

(1) Describe all elements of order eight in Q/Z.

(2) Find all elements of infinite order in Q/Z.

(3) Identify Q/Z with a subgroup of C∗

Solution.

(1) a is an element of order 8 in Q/Z iff a representative ã ∈ Q such that ã ∈ a = ã+Z

satisfies 8ã ∈ Z. Then ã = s/8 + k, 0 ≤ s < 8, k ∈ Z. Element s1/8 + k1 and

s2/8 + k3 define the same element in Q/Z id s1 = s2. We conclude that there are

precisely eight elements of order 8 in Q/Z.

(2) Any rational number a = p/q satisfies qa ∈ Z. Thus Q/Z contains no elements of

infinite order.

(3) Define a homomorphism ψ : Q→ C∗ by the formula ψ(a) = exp(2πia). The image

coincides with group of roots of unity. The kernel is the set of integers. By the

first isomorphism theorem Q/Z is isomorphic to the group of unity, i.e. the set of

solution of the equations zk = 1, k ∈ Z in the complex numbers.

�

Problem 3. LetG be the group of quaternions, i.e., G = {1,−1, i, j, k, (−1)i, (−1)j, (−1)k}.

The elements 1,−1 are central and satisfy −12 = 1. In addition i2 = j2 = k2 = −1,

(−1)ji = ij = k, (−1)ki = ik = (−1)j, (−1)jk = kj = (−1)i.

Find orders of all elements in G/Z(G), Is G/Z(G) isomorphic to Z2 + Z2 + Z2. Why?

Solution. Define a homomorphismG→ Z2+Z2 by the formula ψ(1) = ψ(−1) = (0, 0), ψ(i) =

ψ(−1i) = (1, 0), ψ(j) = ψ(−1j) = (0, 1), ψ(k) = ψ(−1k) = (1, 1). The kernel of this ho-

momorphism is {1,−1}. The homomorphism is surjective. So G/Z(G) is isomorphic to

Z2 + Z2. The latter is not isomorphic to Z2 + Z2 + Z2, because the groups have different

orders. �
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Problem 4. Give the definition of a factor group.

Solution. Let G be a group with a normal subgroup H. Define the group structure on the

set of cosets {gH|g ∈ G} by the formula g1H × g2H = g1g2H. The set of cosets with this

group structure is the factor(quotient) group G/H. �

Problem 5. Fix a group G. Prove that |x| = |gxg−1|∀x, g ∈ G. Deduce that |xy| =

|yx|∀x, y ∈ G.

Solution. Use the identity gxng−1 = gxg−1gxg−1 · · · gxg−1 = (gxg−1)n to see that 1 =

xn ⇔ 1 = g1g−1 = gxng−1 = (gxg−1)n. The order |x| is the minimal n with this property.

Identity |x| = |gxg−1| follows from this. The second assertion follows from xy = x(yx)x−1.

�

Problem 6. Compute the order of GL2(Zp) where p is a prime number.

Solution. A matrix
(
a b
c d

)
∈ Mat2(Zp) is an element of GL2(Zp) if an only if the columns

v1 = ( ac ) and v2 =
(
b
d

)
are not proportional.

Let us count the number of pairs (v1, v2), where v1, v2 are proportional. We have the

following mutually exclusive possibilities:

(1) v1 = v2 = ( 0
0 ) =: 0. The set of such has one element.

(2) v1 = 0, v2 6= 0. The set of such has p2 − 1 elements

(3) v1 6= 0, v2 = 0. Again, the set of such has p2 − 1 elements

(4) v1 6= 0, v2 = cv1, c 6= 0. The set of such pairs has (p− 1)(p2 − 1) elements. (p− 1)

stands for distinct values of c, (p2 − 1) the number of nonzero v1.

The set of proportional v1, v2 contain 1+2(p2−1)+(p−1)(p2−1) elements. The number of

elements in Mat2(Zp) is p4. We conclude |GL2(Zp)| = p4−(1+2(p2−1)+(p−1)(p2−1)) =

(p− 1)2p(p+ 1)

�

Problem 7.
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(1) Prove that dihedral group D12 (the group of symmetries of the regular 12-gon) is

not isomorphic to symmetric group S4.

(2) Prove that dihedral group Z 6= Q.

Solution. (1) Note first of all that the orders of both groups are equal to 24. The group

D12 contain an element of order 12-rotation of angle 2π/12. The maximal order of

an element of S4 is 4. This is a cycle of length 4. Isomorphism preserves orders of

elements. From this we conclude that existence of an isomorphism is impossible.

(2) Let us assume that there is an isomorphism ψ : Z→ Q and deduce a contradiction.

We know that if m is a generator of Z, then m = ±1. In particular equation 2x = 1

has no solutions in Z. ψ(1) = a, then ψ−1(a/2) is a solution of 2x = 1 in Z, which

is a contradiction.

�

A groupG action on the setX is faithful if the corresponding homomorphism ρ : G→ SX

has a trivial kernel.

Problem 8. Prove that the group of rigid symmetries of a cube doesn’t act faithfully on

the set of opposite faces of the cube. Find the kernel.

Solution. In class we proved that rigid symmetries of a cube is isomorphic to S4.Let us

identify vertices of the cube with points {(±1,±1,±1) ∈ R3}. It should be clear then that

rotations on angle π about axises x, y, z fix any pair of opposite faces. The number of

elements in the set {π1, π2, π3}of pairs of opposite faces is 3. Thus the action defines a

homomorphism µ : S4 → S3. Rotation on angle π/2 about one of the axis x, y, z fixes πi

and interchanges πj and πk,j, k 6= i. This way we see that permutations (1, 2), (1, 3) and

(2, 3) are in the image of µ. We know (1, 2), (1, 3) and (2, 3) generate S3. We conclude

that µ is onto and |Kerµ| = |S4|
|S3| = 4. Tree rotations on angle π mentioned above and the

trivial symmetry is the list of all the elements in the kernel.

�
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Problem 9. Give an example of a noncommutative group G and a normal subgroup

N ⊂ G such that G/N is abelian of order ≥ 3.

Solution. G = {
(
a b
0 a−1

)
} ⊂ SL(2,Zp) contains a normal subgroup N = {

(
1 b
0 1

)
}. N is

a kernel of homomorphism ψ : G → Z×p (Z×p := Zp\{0}). By definition ψ(
(
a b
0 a−1

)
) = a.

Since Z×p is a commutative group, ψ defines an isomorphism ψ : G/N → Z×p and G/N is

commutative. �

Problem 10. Let G be a finite group, let H be a subgroup and N E G. Prove that if

gcd(|H|, |G : N |) = 1, then H ⊂ N .

Solution. Let π : G → G/N be the canonical homomorphism. We restrict it on H ⊂ G

and observe that by Lagrange theorem |G:N |
|π(H)| ∈ Z and |H|

|π(H)| ∈ Z. We conclude |π(H)| |

gcd(|H|, |G : N |) and |π(H)| = 1. Thus H ⊂ Kerπ = N �

Problem 11. Prove that if H has a finite index n in G then there is N E G such that

|G : N | ≤ n!

Solution. Consider the left action of G on X = G/H is in Cayley theorem. The action

defines a homomorphism ρ : G→ SX ∼= Sn. By construction |G : Ker ρ| = |ρ(G)| ≤ |Sn| =

n!. We choose N to be Ker ρ. �

Problem 12. Let A = Z60 × Z45 × Z12 × Z36. Find the number of elements of order 2

and the number of subgroups of index 2 in A.

Solution. First we use the theorem about the direct product decomposition of cyclic groups

Zpα11 ···p
αn
n

∼= Zpα11
× · · · × Zpαnn . From this we conclude that

Z22×3×5 × Z5×32 × Z22×3 × Z22×32 ∼= Z3
4 × (Z2

3 × Z2
9)× Z2

5

All elements of order two belong to Z3
2 ⊂ Z3

4. We conclude that the number of elements of

order two is |Z3
2\{1}| = 23 − 1 = 7.

Let N ⊂ A be a subgroup of index 2. It coincides with the kernel of some homomorphism

φ : A → Z2. As the order of (Z2
3 × Z2

9) × Z2
5 is not divisible by 2 this subgroup contains
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in Kerφ. Fix generators ei ∈ 1× · · ·Z4
i
· · · × 1 ⊂ Z3

4. The homomorphism φ is completely

determined by its values ai = φ(ei), ai ∈ Z2 on generators. The number of sequences

{(a1, a2, a3)} (excluding (0, 0, 0)) is 23 − 1 = 7. �


