MAT313 Fall 2017 Practice Midterm II

The actual midterm will consist of 5-6 problems.

It will be based on subsections 127-234 from sections 6-11. This is a preliminary version. I might add few more problems to make sure that all important concepts and methods are covered.

Problem 1.

Let **P** be a set of lines through 0 in \mathbb{R}^2 . The group $SL(2,\mathbb{R})$ acts on X by linear transformations. Let H be the stabilizer of a line defined by the equation y = 0.

- (1) Describe the set of matrices H.
- (2) Describe the orbits of H in X. How many orbits are there?
- (3) Identify X with the set of cosets of $SL(2, \mathbb{R})$.

Solution.

- (1) Denote the set of lines by $\mathbf{P} = \{L_{m,n}\}$, where $L_{m,n}$ is equal to $\{(x,y)|mx+ny=0\}$. Note that $L_{km,kn} = L_{m,n}$ if $k \neq 0$. Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, ad - bc = 1 be an element of $\mathrm{SL}(2,\mathbb{R})$. Then $gL_{m,n} = \{(x,y)|m(ax+by) + n(cx+dy) = 0\} = L_{ma+nc,mb+nd}$. By definition the line $\{(x,y)|y=0\}$ is equal to $L_{0,1}$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} L_{0,1} = L_{c,d}$. The line $L_{c,d}$ coincides with $L_{0,1}$ if c = 0. Then the stabilizer $Stab(L_{0,1})$ coincides with $H = \{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\} \subset \mathrm{SL}(2,\mathbb{R})$.
- (2) We already know one trivial *H*-orbit $\mathcal{O} = \{L_{0,1}\}$. The complement $\mathbf{P} \setminus \{L_{0,1}\}$ is equal to $\{L_{m,n} | m \neq 0\} = \{L_{1,n/m} | m \neq 0\} = \{L_{1,t}\}$. The line $L_{1,0}$ is an element of $\mathbf{P} \setminus \{L_{0,1}\}$. Its *H* orbit is equal to $\{gL_{1,0} | g \in H\} = \{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} L_{1,0}\} = \{L_{a,b} | a \neq 0\} =$ $\{L_{1,b/a} | a \neq 0\} = \mathbf{P} \setminus \{L_{0,1}\}.$

We conclude that H consists of two H-orbits $\{L_{0,1}\}$ and $\mathbf{P} \setminus \{L_{0,1}\}$.

(3) The action of $SL(2, \mathbb{R})$ on **P** is transitive. This is because $gL_{0,1} = L_{a,b}$ with $(a, b) \neq (0, 0)$. For any pair (a, b), defined up to a multiplicative constant there is g such that $gL_{0,1} = L_{a,b}$. This is because for any such a pair (a, b) the equation ad - bc = 1 always has a solution.

Problem 2.

- (1) Describe all elements of order eight in \mathbb{Q}/\mathbb{Z} .
- (2) Find all elements of infinite order in \mathbb{Q}/\mathbb{Z} .
- (3) Identify \mathbb{Q}/\mathbb{Z} with a subgroup of \mathbb{C}^*

Solution.

- (1) a is an element of order 8 in Q/Z iff a representative ã ∈ Q such that ã ∈ a = ã + Z satisfies 8ã ∈ Z. Then ã = s/8 + k, 0 ≤ s < 8, k ∈ Z. Element s₁/8 + k₁ and s₂/8 + k₃ define the same element in Q/Z id s₁ = s₂. We conclude that there are precisely eight elements of order 8 in Q/Z.
- (2) Any rational number a = p/q satisfies $qa \in \mathbb{Z}$. Thus \mathbb{Q}/\mathbb{Z} contains no elements of infinite order.
- (3) Define a homomorphism ψ : Q → C* by the formula ψ(a) = exp(2πia). The image coincides with group of roots of unity. The kernel is the set of integers. By the first isomorphism theorem Q/Z is isomorphic to the group of unity, i.e. the set of solution of the equations z^k = 1, k ∈ Z in the complex numbers.

Problem 3. Let G be the group of quaternions, i.e., $G = \{1, -1, i, j, k, (-1)i, (-1)j, (-1)k\}$. The elements 1, -1 are central and satisfy $-1^2 = 1$. In addition $i^2 = j^2 = k^2 = -1$, (-1)ji = ij = k, (-1)ki = ik = (-1)j, (-1)jk = kj = (-1)i.

Find orders of all elements in G/Z(G), Is G/Z(G) isomorphic to $\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2$. Why?

Solution. Define a homomorphism $G \to \mathbb{Z}_2 + \mathbb{Z}_2$ by the formula $\psi(1) = \psi(-1) = (0,0), \psi(i) = \psi(-1i) = (1,0), \psi(j) = \psi(-1j) = (0,1), \psi(k) = \psi(-1k) = (1,1)$. The kernel of this homomorphism is $\{1,-1\}$. The homomorphism is surjective. So G/Z(G) is isomorphic to $\mathbb{Z}_2 + \mathbb{Z}_2$. The latter is not isomorphic to $\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2$, because the groups have different orders.

Problem 4. Give the definition of a factor group.

Solution. Let G be a group with a normal subgroup H. Define the group structure on the set of cosets $\{gH|g \in G\}$ by the formula $g_1H \times g_2H = g_1g_2H$. The set of cosets with this group structure is the factor(quotient) group G/H.

Problem 5. Fix a group G. Prove that $|x| = |gxg^{-1}| \forall x, g \in G$. Deduce that $|xy| = |yx| \forall x, y \in G$.

Solution. Use the identity $gx^ng^{-1} = gxg^{-1}gxg^{-1} \cdots gxg^{-1} = (gxg^{-1})^n$ to see that $1 = x^n \Leftrightarrow 1 = g1g^{-1} = gx^ng^{-1} = (gxg^{-1})^n$. The order |x| is the minimal n with this property. Identity $|x| = |gxg^{-1}|$ follows from this. The second assertion follows from $xy = x(yx)x^{-1}$.

Problem 6. Compute the order of $GL_2(\mathbb{Z}_p)$ where p is a prime number.

Solution. A matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Mat_2(\mathbb{Z}_p)$ is an element of $GL_2(\mathbb{Z}_p)$ if an only if the columns $v_1 = \begin{pmatrix} a \\ c \end{pmatrix}$ and $v_2 = \begin{pmatrix} b \\ d \end{pmatrix}$ are not proportional.

Let us count the number of pairs (v_1, v_2) , where v_1, v_2 are proportional. We have the following mutually exclusive possibilities:

- (1) $v_1 = v_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} =: 0$. The set of such has one element.
- (2) $v_1 = 0, v_2 \neq 0$. The set of such has $p^2 1$ elements
- (3) $v_1 \neq 0, v_2 = 0$. Again, the set of such has $p^2 1$ elements
- (4) $v_1 \neq 0, v_2 = cv_1, c \neq 0$. The set of such pairs has $(p-1)(p^2-1)$ elements. (p-1) stands for distinct values of c, (p^2-1) the number of nonzero v_1 .

The set of proportional v_1, v_2 contain $1 + 2(p^2 - 1) + (p - 1)(p^2 - 1)$ elements. The number of elements in $Mat_2(\mathbb{Z}_p)$ is p^4 . We conclude $|GL_2(\mathbb{Z}_p)| = p^4 - (1 + 2(p^2 - 1) + (p - 1)(p^2 - 1)) = (p - 1)^2 p(p + 1)$

Problem 7.

- (1) Prove that dihedral group D_{12} (the group of symmetries of the regular 12-gon) is not isomorphic to symmetric group S_4 .
- (2) Prove that dihedral group $\mathbb{Z} \neq \mathcal{Q}$.

4

- Solution. (1) Note first of all that the orders of both groups are equal to 24. The group D_{12} contain an element of order 12-rotation of angle $2\pi/12$. The maximal order of an element of S_4 is 4. This is a cycle of length 4. Isomorphism preserves orders of elements. From this we conclude that existence of an isomorphism is impossible.
 - (2) Let us assume that there is an isomorphism ψ : Z → Q and deduce a contradiction. We know that if m is a generator of Z, then m = ±1. In particular equation 2x = 1 has no solutions in Z. ψ(1) = a, then ψ⁻¹(a/2) is a solution of 2x = 1 in Z, which is a contradiction.

A group G action on the set X is faithful if the corresponding homomorphism $\rho: G \to S_X$ has a trivial kernel.

Problem 8. Prove that the group of rigid symmetries of a cube doesn't act faithfully on the set of opposite faces of the cube. Find the kernel.

Solution. In class we proved that rigid symmetries of a cube is isomorphic to S_4 .Let us identify vertices of the cube with points $\{(\pm 1, \pm 1, \pm 1) \in \mathbb{R}^3\}$. It should be clear then that rotations on angle π about axises x, y, z fix any pair of opposite faces. The number of elements in the set $\{\pi_1, \pi_2, \pi_3\}$ of pairs of opposite faces is 3. Thus the action defines a homomorphism $\mu : S_4 \to S_3$. Rotation on angle $\pi/2$ about one of the axis x, y, z fixes π_i and interchanges π_j and $\pi_k, j, k \neq i$. This way we see that permutations (1, 2), (1, 3) and (2, 3) are in the image of μ . We know (1, 2), (1, 3) and (2, 3) generate S_3 . We conclude that μ is onto and $|\text{Ker}\mu| = \frac{|S_4|}{|S_3|} = 4$. Tree rotations on angle π mentioned above and the trivial symmetry is the list of all the elements in the kernel.

Problem 9. Give an example of a noncommutative group G and a normal subgroup $N \subset G$ such that G/N is abelian of order ≥ 3 .

Solution. $G = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \} \subset SL(2, \mathbb{Z}_p)$ contains a normal subgroup $N = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \}$. N is a kernel of homomorphism $\psi : G \to \mathbb{Z}_p^{\times}(\mathbb{Z}_p^{\times} := \mathbb{Z}_p \setminus \{0\})$. By definition $\psi(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}) = a$. Since \mathbb{Z}_p^{\times} is a commutative group, ψ defines an isomorphism $\psi : G/N \to \mathbb{Z}_p^{\times}$ and G/N is commutative.

Problem 10. Let G be a finite group, let H be a subgroup and $N \leq G$. Prove that if gcd(|H|, |G:N|) = 1, then $H \subset N$.

Solution. Let $\pi : G \to G/N$ be the canonical homomorphism. We restrict it on $H \subset G$ and observe that by Lagrange theorem $\frac{|G:N|}{|\pi(H)|} \in \mathbb{Z}$ and $\frac{|H|}{|\pi(H)|} \in \mathbb{Z}$. We conclude $|\pi(H)| \mid$ gcd(|H|, |G:N|) and $|\pi(H)| = 1$. Thus $H \subset \text{Ker } \pi = N$

Problem 11. Prove that if *H* has a finite index *n* in *G* then there is $N \leq G$ such that $|G:N| \leq n!$

Solution. Consider the left action of G on X = G/H is in Cayley theorem. The action defines a homomorphism $\rho : G \to S_X \cong S_n$. By construction $|G : \text{Ker } \rho| = |\rho(G)| \le |S_n| = n!$. We choose N to be Ker ρ .

Problem 12. Let $A = \mathbb{Z}_{60} \times \mathbb{Z}_{45} \times \mathbb{Z}_{12} \times \mathbb{Z}_{36}$. Find the number of elements of order 2 and the number of subgroups of index 2 in A.

Solution. First we use the theorem about the direct product decomposition of cyclic groups $\mathbb{Z}_{p_1^{\alpha_1}\cdots p_n^{\alpha_n}} \cong \mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_n^{\alpha_n}}$. From this we conclude that

$$\mathbb{Z}_{2^2 \times 3 \times 5} \times \mathbb{Z}_{5 \times 3^2} \times \mathbb{Z}_{2^2 \times 3} \times \mathbb{Z}_{2^2 \times 3^2} \cong \mathbb{Z}_4^3 \times (\mathbb{Z}_3^2 \times \mathbb{Z}_9^2) \times \mathbb{Z}_5^2$$

All elements of order two belong to $\mathbb{Z}_2^3 \subset \mathbb{Z}_4^3$. We conclude that the number of elements of order two is $|\mathbb{Z}_2^3 \setminus \{1\}| = 2^3 - 1 = 7$.

Let $N \subset A$ be a subgroup of index 2. It coincides with the kernel of some homomorphism $\phi : A \to \mathbb{Z}_2$. As the order of $(\mathbb{Z}_3^2 \times \mathbb{Z}_9^2) \times \mathbb{Z}_5^2$ is not divisible by 2 this subgroup contains

in Ker ϕ . Fix generators $e_i \in 1 \times \cdots \otimes \mathbb{Z}_4 \cdots \times 1 \subset \mathbb{Z}_4^3$. The homomorphism ϕ is completely determined by its values $a_i = \phi(e_i), a_i \in \mathbb{Z}_2$ on generators. The number of sequences $\{(a_1, a_2, a_3)\}$ (excluding (0, 0, 0)) is $2^3 - 1 = 7$.