MAT313 Fall 2017
Practice Midterm 11

The actual midterm will consist of 5-6 problems.

It will be based on subsections 127-234 from sections 6-11. This is a

preliminary version. I might add few more problems to make sure that all

important concepts and methods are covered.

Problem 1.

Let P be a set of lines through 0 in R2. The group SL(2,R) acts on X by linear transfor-

mations. Let H be the stabilizer of a line defined by the equation y = 0.

(1)
(2)
3)

Describe the set of matrices H.
Describe the orbits of H in X. How many orbits are there?

Identify X with the set of cosets of SL(2,R).

Solution.

(1)

Denote the set of lines by P = { L, ,,}, where L,, ,, is equal to {(z,y)|mz+ny = 0}.
Note that Ly kn = L if K # 0. Let g = (CC” b), ad — bc = 1 be an element of
SL(2,R). Then gLy, = {(z,y)|/m(ax + by) + n(cx + dy) = 0} = Lipatne,mbtnd-
By definition the line {(z,y)|y = 0} is equal to Lo;. Then (2%) Lo1 = Lcq. The
line L 4 coincides with Lg; if ¢ = 0. Then the stabilizer Stab(Lg 1) coincides with
1= {(§4)) C SLE.R).

We already know one trivial H-orbit O = {Lg1}. The complement P\{Lg} is
equal to {Lm.n|m # 0} = {Ly /m|m # 0} = {L1.:}. The line Ly is an element of
P\{Lo1}. Its H orbit is equal to {gL1olg € H} = {(&5) L1,0} = {Lapla # 0} =
{L1,p/ala # 0} = P\{Loa}.

We conclude that H consists of two H-orbits {Lg 1} and P\{Lg}.

The action of SL(2,R) on P is transitive. This is because gLo1 = L with (a, ) #
(0,0). For any pair (a,b), defined up to a multiplicative constant there is g such
that gLo1 = Lgyp. This is because for any such a pair (a,b) the equation ad—bc =1

always has a solution.



Problem 2.

(1) Describe all elements of order eight in Q/Z.
(2) Find all elements of infinite order in Q/Z.
(3) Identify Q/Z with a subgroup of C*

Solution.

(1) a is an element of order 8 in Q/Z iff a representative @ € Q such thata € a = a+7
satisfies 8¢ € Z. Then a = s/8 + k,0 < s < 8,k € Z. Element s;/8 + k1 and
S2/8 + k3 define the same element in Q/Z id s; = s3. We conclude that there are
precisely eight elements of order 8 in Q/Z.

(2) Any rational number a = p/q satisfies ga € Z. Thus Q/Z contains no elements of
infinite order.

(3) Define a homomorphism 1 : Q — C* by the formula ¢ (a) = exp(2mia). The image
coincides with group of roots of unity. The kernel is the set of integers. By the
first isomorphism theorem Q/Z is isomorphic to the group of unity, i.e. the set of

solution of the equations zF = 1,k € Z in the complex numbers.

O

Problem 3. Let G be the group of quaternions, i.e., G = {1, —1,4, j, k, (=1)i, (—1)J, (—=1)k}.
The elements 1, —1 are central and satisfy —12 = 1. In addition i = j? = k? = —1,
(—1)ji = ij = k, (—1)ki = ik = (—1)j, (—=1)jk = kj = (—1)i.

Find orders of all elements in G/Z(G), Is G/Z(G) isomorphic to Zg + Zg + Za. Why?

Solution. Define a homomorphism G — Za+Zso by the formula ¢(1) = ¢(—1) = (0,0),v (i) =
P(—=1i) = (1,0),v(j) = ¥(—1j5) = (0,1),¢(k) = ¥(—1k) = (1,1). The kernel of this ho-
momorphism is {1, —1}. The homomorphism is surjective. So G/Z(G) is isomorphic to
Zo + Zs. The latter is not isomorphic to Zo + Zo + Zo, because the groups have different

orders. 0



Problem 4. Give the definition of a factor group.

Solution. Let G be a group with a normal subgroup H. Define the group structure on the
set of cosets {gH|g € G} by the formula g1 H X goH = g1g2H. The set of cosets with this
group structure is the factor(quotient) group G/H. O

Problem 5. Fix a group G. Prove that |z| = |grg~!|Vx,g € G. Deduce that |zy| =
lyz|Vx,y € G.

1 1

= gzg~'grgt -
= gz"g~! = (gzg~1)™. The order || is the minimal n with this property.

Solution. Use the identity gz"g~ ~gzg~! = (grg™!)" to see that 1 =

" s 1=glg™!

Identity |z| = |gzg~!| follows from this. The second assertion follows from zy = z(yz)z .

O
Problem 6. Compute the order of GLy(Z,) where p is a prime number.

Solution. A matrix (2%) € Mata(Z,) is an element of GLy(Zy) if an only if the columns
vy = (%) and vg = (Cbl) are not proportional.

Let us count the number of pairs (v, vs2), where v1,ve are proportional. We have the
following mutually exclusive possibilities:

1) v1 =wvg = () =: 0. The set of such has one element.

stands for distinct values of ¢, (p?> — 1) the number of nonzero ;.

The set of proportional vy, v contain 1+2(p? —1)+(p—1)(p? —1) elements. The number of
elements in Maty(Z,) is p*. We conclude |GLs(Z,)| = p*—(1+2(p* 1)+ (p—1)(p*—1)) =

(p—1)*p(p+1)
0

Problem 7.



(1) Prove that dihedral group Djs (the group of symmetries of the regular 12-gon) is
not isomorphic to symmetric group Sjy.

(2) Prove that dihedral group Z # Q.

Solution. (1) Note first of all that the orders of both groups are equal to 24. The group
D15 contain an element of order 12-rotation of angle 27 /12. The maximal order of
an element of Sy is 4. This is a cycle of length 4. Isomorphism preserves orders of
elements. From this we conclude that existence of an isomorphism is impossible.

(2) Let us assume that there is an isomorphism ¢ : Z — Q and deduce a contradiction.
We know that if m is a generator of Z, then m = +1. In particular equation 2z = 1
has no solutions in Z. (1) = a, then ¥~1(a/2) is a solution of 2z = 1 in Z, which
is a contradiction.

0

A group G action on the set X is faithful if the corresponding homomorphism p : G — Sx

has a trivial kernel.

Problem 8. Prove that the group of rigid symmetries of a cube doesn’t act faithfully on

the set of opposite faces of the cube. Find the kernel.

Solution. In class we proved that rigid symmetries of a cube is isomorphic to Sy.Let us
identify vertices of the cube with points {(£1,41,41) € R3}. It should be clear then that
rotations on angle 7 about axises x,y, z fix any pair of opposite faces. The number of
elements in the set {1, ma, m3}of pairs of opposite faces is 3. Thus the action defines a
homomorphism p : Sy — S3. Rotation on angle 7/2 about one of the axis z,y, z fixes m;
and interchanges m; and my,j, k # i. This way we see that permutations (1,2), (1,3) and
(2,3) are in the image of u. We know (1,2), (1,3) and (2,3) generate S3. We conclude
[Sal _

that p is onto and |Kerp| = 155] = 4. Tree rotations on angle 7 mentioned above and the

trivial symmetry is the list of all the elements in the kernel.
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Problem 9. Give an example of a noncommutative group G and a normal subgroup

N C G such that G/N is abelian of order > 3.

Solution. G = {(gaél)} C SL(2,Zjp) contains a normal subgroup N = {(}%)}. N is
a kernel of homomorphism ¢ : G — Z;(Z, = Zy\{0}). By definition ¢((8 aél ) = a.
Since Z,; is a commutative group, ¢ defines an isomorphism ¢ : G/N — Z) and G/N is

commutative. OJ

Problem 10. Let G be a finite group, let H be a subgroup and N < G. Prove that if
ged(|H|, |G : N|) =1, then H C N.

Solution. Let m : G — G/N be the canonical homomorphism. We restrict it on H C G

and observe that by Lagrange theorem % € Z and % € Z. We conclude |7(H)| |
ged(|H|,|G : N|) and |7(H)| = 1. Thus H C Kerm = N O

Problem 11. Prove that if H has a finite index n in G then there is N < G such that
|G : N| <nl

Solution. Consider the left action of G on X = G/H is in Cayley theorem. The action
defines a homomorphism p : G — Sx = S,,. By construction |G : Ker p| = |p(G)| < |S,| =
n!. We choose N to be Ker p. O

Problem 12. Let A = Zgy X Zys X Z12 X Z3e. Find the number of elements of order 2

and the number of subgroups of index 2 in A.

Solution. First we use the theorem about the direct product decomposition of cyclic groups

Z or . on 27 ay X --- X Z an. From this we conclude that
Dy Pn Py Pn

Lo ysxs X Lsyge X Lypys X Lo = L X (23 x Lg) x L3
All elements of order two belong to Z3 C Z3. We conclude that the number of elements of
order two is |Z3\{1}| =23 -1 ="7.
Let N C A be a subgroup of index 2. It coincides with the kernel of some homomorphism

¢ : A — Zy. As the order of (Z2 x Z3) x Z2 is not divisible by 2 this subgroup contains



6

in Ker ¢. Fix generators e; € 1 x ---Zy--- x 1 C Z3. The homomorphism ¢ is completely
i
determined by its values a; = ¢(e;),a; € Zy on generators. The number of sequences

{(a1,az,a3)} (excluding (0,0,0)) is 23 —1 = 7. O



