MAT313 Fall 2017 Practice Midterm I

Problem 1. Explain which of the following subsets $R \subset X \times X$ define equivalence relation

- (1) $X = \mathbb{R}$ and $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | y = x^2\}.$
- (2) $X = \mathbb{Z}$ and $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x = 0 \text{ or } y = 0 \text{ or } x = y\}.$
- (3) $X = \mathbb{C}$ and $R = \{(x, y) \in \mathbb{C} \times \mathbb{C} | x^2 = y^2 \}.$

Solution. (1) R in 1 is not an equivalence relation because $(2,4) \in R$ but $(4,2) \notin R$.

- (2) R in 2 is not an equivalence relation because $(2,0) \in R$ and $(0,3) \in R$ doesn't imply $(2,3) \in R$
- (3) R in 3 is an equivalence relation because it is induced by the map $f(z) = z^2$ $f: \mathbb{C} \to \mathbb{C}$.

Problem 2. Find gcd(1025, 2300) and gcd(1257, 2301)

Solution. Use the obvious property gcd(a,b) = gcd(b,a) = gcd(a,b+ka). This way gcd(1025, 2300) = gcd(1025, 2300 - 2 * 1025) = gcd(1025, 250) = gcd(1025 - 4 * 250, 250) = gcd(25, 250) = 25.

Similarly gcd(1257, 2301) = 3.

Problem 3. Find all integral solutions (x, y) of the equation

- (1) 10x + 13y = 1.
- (2) 11x + 19y = 1
- Solution. (1) If (x_0, y_0) and (x_1, y_1) are two solutions then $(w, u) = (x_0 x_1, y_0 y_1)$ is a solution of 10w + 13u = 0. if (w, u) is a solution then (kw, ku) is also a solution. We see that all (w, u) must be proportional to (w_0, u_0) with $gcd(w_0, u_0) = 1$. We choose (-13, 10) for (w_0, u_0) . It remains to find a particular (x_0, y_0) . Note $10x_0 + 13y_0 = 1 \Rightarrow 10(x_0 + y_0) + 3y_0 = 1 \Rightarrow 1(x_0 + y_0) + 3(y_0 + 3(x_0 + y_0)) = 1$. Solve under assumption $x_0 + y_0 = 1$ $y_0 + 3(x_0 + y_0) = 0 \Rightarrow y_0 = -3$ and $x_0 = 4$.

Finally the full set of solutions is $\{4 - 13k, -3 + 10k | k \in \mathbb{Z}\}$

$$\begin{aligned} (2) \ 11x_0 + 19y_0 &= 1 \Rightarrow 11(x_0 + y_0) + 8y_0 = 1 \Rightarrow 3(x_0 + y_0) + 8(y_0 + (x_0 + y_0)) = 1 \Rightarrow \\ 3((x_0 + y_0) + 2(y_0 + (x_0 + y_0))) + 2(y_0 + (x_0 + y_0)) = 1 \Rightarrow 1((x_0 + y_0) + 2(y_0 + (x_0 + y_0))) + 2(y_0 + (x_0 + y_0) + 2(y_0 + (x_0 + y_0)))) = 1 \\ \text{Make assumptions } ((x_0 + y_0) + 2(y_0 + (x_0 + y_0))) = 1 \text{ and } (y_0 + (x_0 + y_0) + ((x_0 + y_0) + 2(y_0 + (x_0 + y_0)))) = 0 \Rightarrow y_0 + (x_0 + y_0) = -1 \Rightarrow x_0 + y_0 = 3 \Rightarrow y_0 = -4 \Rightarrow x_0 = 7 \\ \text{The set of solutions is } \{(-19k + 7, 11k - 4) | k \in \mathbb{Z}\} \end{aligned}$$

Problem 4. Give an example of a non commutative group that contains a subgroup of prime order.

Solution. $H = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \} \subset SL(2, \mathbb{Z}_p)$. Its contains a subgroup $K = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \}$ of order p. \Box **Problem 5.** Describe all the subgroups in \mathbb{Z}_{18} and their generators.

Solution. Fact: Subgroups of a cyclic group G are 1:1 with divisors of |G|. In our case $|G| = 18 = 2 \cdot 3^2$. This means that we have the following subgroups $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_6, \mathbb{Z}_9$.

Fact: If $a \in G$ is an element of order n, then a^k has order $\frac{n}{(n,k)}$.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
(18,k)	1	2	3	2	1	6	1	2	9	2	1	6	1	2	3	2	1	
order = $\frac{18}{(18,k)}$																		

The generator of \mathbb{Z}_2 is 9. \mathbb{Z}_3 is generated by either element of the set $\{6, 12\}$. \mathbb{Z}_6 is generated by either element of the set $\{3, 15\}$. Likewise \mathbb{Z}_9 is generated by either of $\{2, 4, 8, 10, 14, 16\}$

Generators of \mathbb{Z}_{18} are $\{1, 5, 7, 11, 13, 17\}$.

Problem 6. Give your proof that $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_5$ but $\mathbb{Z}_8 \not\cong \mathbb{Z}_2 \oplus \mathbb{Z}_4$.

Solution. We have a map $\psi : \mathbb{Z}_2 \oplus \mathbb{Z}_5 \to \mathbb{Z}_{10}$, defined by the formula $\psi(x \oplus y) = 5x + 2y$. The map is correctly defined because $5, 2 \in \mathbb{Z}_{10}$ are elements of order 2, 5 respectively. 2, 5 are relatively prime $\Rightarrow -2 \times 2 + 1 \times 5 = 1 \Rightarrow x = 2(-2x) + 5x \Rightarrow$ the map ψ is onto. $|\mathbb{Z}_2 \oplus \mathbb{Z}_5| = |\mathbb{Z}_{10}| = 10 \Rightarrow \psi$ is a bijection.

If $2x \cong 0 \mod 8 \Rightarrow x \cong 0 \mod 4 \Rightarrow$ the only nontrivial element of order 2 is $4 \in \mathbb{Z}_8$. On the other hand $\{(1,0), (0,2), (1,2)\}$ are nontrivial element of order 2 in $\mathbb{Z}_2 \oplus \mathbb{Z}_4$. An isomorphism defines a bijection between sets of elements of the same order. $\Rightarrow \mathbb{Z}_8 \ncong$ $\mathbb{Z}_2 \oplus \mathbb{Z}_4$

Problem 7. Give an example of

a nontrivial subgroup of a multiplicative group $\mathbb{R}^{\times} = \{x \in \mathbb{R} | x \neq 0\}$

- (1) of finite order
- (2) of infinite order

Can \mathbb{R}^{\times} contain an element of order 7?

Solution. $\mathbb{Z}_2 \cong \{1, -1\} \subset \mathbb{R}^{\times}$ $\mathbb{Z} \cong \{\pi^k | k \in \mathbb{Z}\} \subset \mathbb{R}^{\times}$

If x has order 7 then $x^7 = 1$. If x < 0, then $\exp(a) = -x > 0$ has order 14. This is impossible since $\exp(14a) = 1 \Rightarrow 14a = 0 \Rightarrow a = 0$. For x > 0 the proof is similar.

Problem 8. Prove that $U(2^n)$ $(n \ge 3)$ is not cyclic.

Solution. There is an onto map $U(2^n) \to U(2^{n-1}) \ x \mod 2^n \to x \mod 2^{n-1}$. Indeed if $gcd(x, 2^{n-1}) = 1 \Rightarrow x = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, primes $p_i > 2$. Thus $gcd(x, 2^n) = 1$. It suffice to show that $U(2^3) = U(8)$ is not cyclic. It contains elements $\{1, 3, 5, 7\}$, which satisfy $a^2 = 1 \mod 8$. This equality (2a = 0) doesn't hold in \mathbb{Z}_4 .

Problem 9. Decompose $\sigma : (1, 2, 3, 4, 5, 6) \rightarrow (2, 1, 4, 6, 5, 3)$ into product of

- (1) disjoint cycles
- (2) cycles of order two

What is the order of σ ? What is the parity of σ ?

Solution. $\sigma = (1,2)(3,4,6) = (1,2)(4,5)(4,6)(5,6)$. The order is lcm(2,3) = 6. The parity is $4 \mod 2 = 0$.

Problem 10. Find a subgroup G in symmetric (permutation) group S_n such that

- (1) n = 4 and G is abelian noncyclic group
- (2) n = 8 and G is dihedral group.

Solution. (1) Choose $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and apply Cayley's Theorem.

(2) Choose G to be a group of symmetries of a square and apply Cayley's Theorem.