MAT313 Fall 2013 Practice Midterm I

Problem 1.

Let **P** be a set of lines through 0 in \mathbb{R}^2 . The group $SL(2, \mathbb{R})$ acts on X by linear transformations. Let H be the stabilizer of a line defined by the equation y = 0.

- (1) Describe the set of matrices H.
- (2) Describe the orbits of H in X. How many orbits are there?
- (3) Identify X with the set of cosets of $SL(2, \mathbb{R})$.

Solution.

- (1) Denote the set of lines by $\mathbf{P} = \{L_{m,n}\}$, where $L_{m,n}$ is equal to $\{(x,y)|mx+ny=0\}$. Note that $L_{km,kn} = L_{m,n}$ if $k \neq 0$. Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, ad - bc = 1 be an element of $\mathrm{SL}(2,\mathbb{R})$. Then $gL_{m,n} = \{(x,y)|m(ax+by) + n(cx+dy) = 0\} = L_{ma+nc,mb+nd}$. By definition the line $\{(x,y)|y=0\}$ is equal to $L_{0,1}$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} L_{0,1} = L_{c,d}$. The line $L_{c,d}$ coincides with $L_{0,1}$ if c = 0. Then the stabilizer $Stab(L_{0,1})$ coincides with $H = \{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}\} \subset \mathrm{SL}(2,\mathbb{R})$.
- (2) We already know one trivial *H*-orbit $\mathcal{O} = \{L_{0,1}\}$. The complement $\mathbf{P} \setminus \{L_{0,1}\}$ is equal to $\{L_{m,n} | m \neq 0\} = \{L_{1,n/m} | m \neq 0\} = \{L_{1,t}\}$. The line $L_{1,0}$ is an element of $\mathbf{P} \setminus \{L_{0,1}\}$. Its *H* orbit is equal to $\{gL_{1,0} | g \in H\} = \{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} L_{1,0}\} = \{L_{a,b} | a \neq 0\} =$ $\{L_{1,b/a} | a \neq 0\} = \mathbf{P} \setminus \{L_{0,1}\}.$

We conclude that H consists of two H-orbits $\{L_{0,1}\}$ and $\mathbf{P} \setminus \{L_{0,1}\}$.

(3) The action of $SL(2, \mathbb{R})$ on **P** is transitive. This is because $gL_{0,1} = L_{a,b}$ with $(a, b) \neq (0, 0)$. For any pair (a, b), defined up to a multiplicative constant there is g such that $gL_{0,1} = L_{a,b}$. This is because for any such a pair (a, b) the equation ad - bc = 1 always has a solution.

Problem 2.

(1) Describe all elements of order eight in \mathbb{Q}/\mathbb{Z} .

- (2) Find all elements of infinite order in \mathbb{Q}/\mathbb{Z} .
- (3) Identify \mathbb{Q}/\mathbb{Z} with a subgroup of \mathbb{C}^*

Solution.

- (1) a is an element of order 8 in Q/Z iff a representative ã ∈ Q such that ã ∈ a = ã + Z satisfies 8ã ∈ Z. Then ã = s/8 + k, 0 ≤ s < 8, k ∈ Z. Element s₁/8 + k₁ and s₂/8 + k₃ define the same element in Q/Z id s₁ = s₂. We conclude that there are precisely eight elements of order 8 in Q/Z.
- (2) Any rational number a = p/q satisfies $qa \in \mathbb{Z}$. Thus \mathbb{Q}/\mathbb{Z} contains no elements of infinite order.
- (3) Define a homomorphism ψ : Q → C* by the formula ψ(a) = exp(2πia). The image coincides with group of roots of unity. The kernel is the set of integers. By the first isomorphism theorem Q/Z is isomorphic to the group of unity, i.e. the set of solution of the equations z^k = 1, k ∈ Z in the complex numbers.

Problem 3. Give an example of a non commutative group with a normal subgroup of index p-1, where p is prime

Solution. $H = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \} \subset SL(2, \mathbb{Z}_p)$. There is a homomorphism $\psi : H \to \mathbb{Z}_p^*$ defined by the formula $\psi(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}) = a$. Its kernel is equal to $K = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \}$. Since $|\mathbb{Z}_p^*| = p - 1$, the index of K is p - 1.

Problem 4. Give an example of a non commutative group that contains a subgroup of prime order.

Solution. The group K from Problem 3.

Problem 5. Let G be the group of quaternions, i.e., $G = \{1, -1, i, j, k, (-1)i, (-1)j, (-1)k\}$. The elements 1, -1 are central and satisfy $-1^2 = 1$. In addition $i^2 = j^2 = k^2 = -1$, (-1)ji = ij = k, (-1)ki = ik = (-1)j, (-1)jk = kj = (-1)i.

Find orders of all elements in G/Z(G), Is G/Z(G) isomorphic to $\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2$. Why?

Solution. Define a homomorphism $G \to \mathbb{Z}_2 + \mathbb{Z}_2$ by the formula $\psi(1) = \psi(-1) = (0,0), \psi(i) = \psi(-1i) = (1,0), \psi(j) = \psi(-1j) = (0,1), \psi(k) = \psi(-1k) = (1,1)$. The kernel of this homomorphism is $\{1, -1\}$. The homomorphism is surjective. So G/Z(G) is isomorphic to $\mathbb{Z}_2 + \mathbb{Z}_2$. The latter is not isomorphic to $\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_2$, because the groups have different orders.

Problem 6. Give the definition of a factor group.

Solution. Let G be a group with a normal subgroup H. Define the group structure on the set of cosets $gH|g \in G$ by the formula $g_1H \times g_2H = g_1g_2H$. The set of cosets with this group structure is the factor(quotient) group G/H.

Problem 7. Describe all the subgroups in \mathbb{Z}_{18} and their generators.

Solution. Fact: Subgroups of a cyclic group G are 1:1 with divisors of |G|. In our case $|G| = 18 = 2 \cdot 3^2$. This means that we have the following subgroups $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_6, \mathbb{Z}_9$.

Fact: If $a \in G$ is an element of order n, then a^k has order $\frac{n}{(n,k)}$.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
(18, k)	1	2	3	2	1	6	1	2	9	2	1	6	1	2	3	2	1
order = $\frac{18}{(18,k)}$	18	9	6	9	18	3	18	9	2	9	18	3	18	9	6	9	18

The generator of \mathbb{Z}_2 is 9. \mathbb{Z}_3 is generated by either element of the set $\{6, 12\}$. \mathbb{Z}_6 is generated by either element of the set $\{3, 15\}$. Likewise \mathbb{Z}_9 is generated by either of $\{2, 4, 8, 10, 14, 16\}$

Problem 8. Give your prove that $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_5$ but $\mathbb{Z}_8 \not\cong \mathbb{Z}_2 \oplus \mathbb{Z}_4$.

Solution. We have a map $\psi : \mathbb{Z}_2 \oplus \mathbb{Z}_5 \to \mathbb{Z}_{10}$, defined by the formula $\psi(x \oplus y) = 5x + 2y$. The map is correctly defined because $5, 2 \in \mathbb{Z}_{10}$ are elements of order 2, 5 respectively. 2, 5 are relatively prime $\Rightarrow -2 \times 2 + 1 \times 5 = 1 \Rightarrow x = 2(-2x) + 5x \Rightarrow$ the map ψ is onto. $|\mathbb{Z}_2 \oplus \mathbb{Z}_5| = |\mathbb{Z}_{10}| = 10 \Rightarrow \psi$ is a bijection.

If $2x \cong 0 \mod 8 \Rightarrow x \cong 0 \mod 4 \Rightarrow$ the only nontrivial element of order 2 is $4 \in \mathbb{Z}_8$. On the other hand $\{(1,0), (0,2), (1,2)\}$ are nontrivial element of order 2 in $\mathbb{Z}_2 \oplus \mathbb{Z}_4$. An isomorphism defines a bijection between sets of elements of the same order. $\Rightarrow \mathbb{Z}_8 \ncong \mathbb{Z}_2 \oplus \mathbb{Z}_4$

4