MAT 310 - Solutions to practice mid term 1

Problem 1 Let F = R* U = {(z,0)|z € R}, W = {(0,y) |y € R}. Then (1,1) =
(1,0) + (0,1) is not in U U W but it should have been if U U W was a subspace.

If UUW is a subspace of F'and U ¢ W, W ¢ U, choose u € U\ W and w € W \ U.
Then v +w € U U W, since it is a subspace. If u +w € U then w = (u + w) —u € U,
a contradiction. On the other hand, if u +w € W then v = (u + w) —w € W, again a
contradiction.

Problem 2 (i) Suppose a + b(t — 1) +c(t —1)*> +d(t —1)*> = 0. Then
(a—b+c—d)+ (b—2c—3d)t+ (c+3d)t* +dt* = 0.

Since (1,t,t%,t%) is a basis of P; we conclude that d = 0. Since ¢ + 3d = 0 this forces
c=10. Now b —2c —3d = 0 implies b = 0 and a — b+ ¢ —d = 0 implies a = 0. This
proves that (1, —1,(t —1)% (¢t — 1)) is linearly independent. Since P3 has dimension 4 and
U =span(l,t —1,(t — 1)% (t — 1)?) is a subspace of dimension 4, we conclude that U = Ps.

(i) Yes. For example, take S = {(1,0),(0,1)} and 7" = {(1,1), (1, —1)}. The vectors in
S span R? and so does the vectors in 7 but S # T

Problem 3 It is given that ¢¥¢ : V — V is an isomorphism, i.e., it is injective (and
surjective as well). If ¢(v) = 0 then ¥¢(v) = 0 whence v = 0. Therefore, ¢ is injective. On
the other hand, given v € V| let v/ € v be the unique element such that ¥ ¢(v") = v. This is
possible since ¢ is surjective. Then 1)(p(v')) = v and ¢(v') € W, whence ¥ is surjective.

Problem 4 Let p:V — V be such that pp = p. Let v € range(p) and write v = p(v') for
some v' € V. Then

Thus, p is the identity on range(p).

Problem 5 It is enough to prove linear independence since then the span of the given
vectors would be of dimension 3 and consequently has to be R3. Suppose

a(1,1,0) + (2,0, =1) + ¢(=3,1,1) = (a +2b — 3¢,a + ¢, —b+ ¢) = (0,0,0).

This implies that b = ¢,a = —c and a + 2b — 3c = 0. The last equation can be written as
—c+2c—3c=0whence c=0and a=b=0.

Problem 6 Let ¢ : R? — R? be given by ¢(z,y) = (0,z). Since ¢d(x,y) = ¢(0,2) =

(0,0) it defines a nilpotent endomorphism of order 2. Similarly, ) : R? — R? given by
Y¥(x,y) = (y,0) is also a nilpotent endomorphism of order 2. Now 1¢ : R? — R? is given
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by Yo(z,y) = ¥(0,x) = (,0). It is clear that (¥¢)*(z,y) = ¥¢(z,0) = (,0) = ¥¢(z,y).
Therefore, 1¢ is an idempotent.

Problem 7 Since z € span{M,y} and x ¢ M we can write
T =ayv; + - + apvg + by
where v;’s are a basis of M and b # 0. Then
y = (—a1/b)or + -+ (—ar/bjvi + (1/b)x

and y € span{M,z}. Clearly M C span{M,z}. Therefore, span{M,y} C span{M, z}.
On the other hand, = € span{M,y} whence span{M,z} C span{M,y}. This proves that
span{M,y} = span{M, z}.

Problem 8 Since M C M + (L N N) this implies that LN M C LN (M + (LN N)). On
the other hand
LNN=LN(LNN)CLN(M+(LNN)).

This means that L N M and L N N are both subspaces of LN (M + (L N N)) and therefore
contains the sum as well, viz.,

(LNM)+(LNN)C LN(M+ (LNN)).

On the other hand if v € LN (M + (LN N)) then v € L and v € M + (LN N). Write
v=m+I[wherem € M andl € LNN. Then m =v—1 € L whence m € LN M. Therefore,
v=m+le(LNM)+ (LNN).

Problem 9 (i) If (1,«) = A(1,3) then A = 1 and a = 3. Therefore, (1,«) and (1, 3) are
linearly independent if and only if a # .

(ii) No. If there were then C* would contain the span of these three vectors which is a 3
dimensional subspace while C? is only 2 dimensional.

(iii) No matter what x € C is, the vectors (1,1,1) and (1, z,z?) span a subspace of C? of
dimension at most 2. When x = 1 the span is {(z,z,2) |z € C}. When x # 1 the span is a
2 dimensional subspace. In either case, it does not span C3.

(iv) If these vectors are linearly independent then we’ll be done since we're in C3. For any
choice of z € C we can write (z,1,1+ x) = (x,0,1) + (0,1, z) whence they are not linearly
independent and therefore not a basis.

Problem 10 (i) The first and the third transformations are linear. The second is not since
T(2x,2y) = AT (z,y).
(ii) The first and the third are linear transformations. For example, in the first case

T(ag+a1w+---+apr®) = ag+ a1z + - - -+ apx® = T(ag) + a. T () +asT(2?) +- -+ a, T (2*)
which precisely means that 7' is linear. Similarly, in the third case
T(ag+arx+---+apz®) = X (ap+arz+- - +apz®) = T(ag) +a, T (x) +aoT(2?)+ - - +ap T (%)

which implies linearity of 7. In the second case, however, T'(2p(z)) = 4(p(z))? # 2T (p(z))
whence T is not linear.



Problem 11 (i) Let p(z) = ag + a1z + - - - + agx® € Ps.
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z+9 z+9 6 @ ‘ A
T(p(x)) := /3 p(t)dt = Zai /3 tidt = Z - +Z N ((z 4+ 9)! — (=3)"*h).

If T(p(x)) = 0 then ag, the coefficient of 7, is zero. Therefore,

Again, the coefficient of 2% is a5 and it has to be zero. Doing this recursively leads one to
T(p(x) = ap((x +9) — (—3)) = ag(x + 12) = 0 whence ag = 0. Therefore, if p(z) € null(T")
then p(xz) = 0. So null(T") = {0}.

(ii) Let p(x) = ap + a1z + - - - + asz° € P5 such that

0 = D(p(x)) = ay + 2apz + 3azx® + 4dayz® + Sasz’.

Then a1 = ay = a3 = ag = a4 = a5 = 0. Therefore, null(D) = R, the space of constant
polynomials.

(iii) If T(z,y) = 0 then 2z + 3y = 0 and 7z = 5y. Combining both these we get
—2x/3 = Tx/5 which means # = 0 and y = 7z/5 = 0. Therefore, null(7) = {0}.

(iv) We know that (1,z, 2% 23, 2%, 2°) is a basis for Ps. It follows from the definition of T
that T'(z") = 2% # 0, i.e., T is injective on the basis elements and therefore injective on Ps.
Consequently, null(T") = {0},

(v) If T(z,y) = (2,0) = (0,0) then z = 0. Therefore, null(7") = {(0,y) |y € R}.

(vi) If T(x,y) = x + 2y = 0 then y = —x/2. Therefore, null(T') = {(2z, —x) | z € R}.

Problem 12 (i) We compute ST ans T'S and then compare them. On the one hand
ST(p(x)) = S(=*p(x)) = «'p(2?)

while on the other hand
TS(p(x)) = T(p(a?)) = 2”p(a?).

Therefore S and 7" don’t commute.

(ii) As before, on the one hand
ST(a+ br + cx® + dx*) = S(a+ ca?) = a + c(x + 2)* = (a + 4¢) + 2cx + ca®
while on the other hand

TS(a+br +cx® +dz*) = T(a+2b+4c+8d+ (b+2c+ 12d)x + (c + 6d)z* + dz?)
= a+2b+4c+8d+ (c+ 6d)z”.

Therefore, S and T" don’t commute.

Problem 13 (i) No. Any invertible linear transformation must be surjective, viz., the
image must have full dimension. In this case, the image of T': R? — R? is {(z,z) |z € R} is
1 dimensional.

(ii) Yes. The inverse of T is T itself. For example, TT(z,y) = T(y,x) = (x,y) whence
TT = 1d.

(iii) No. Any invertible linear transformation must be injective, viz., it must have no null
space. As we saw in 11 (ii), D on Ps has a 1 dimensional space as its null space and hence
not invertible.
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