
MAT 310 - Solutions to practice mid term 1

Problem 1 Let F = R2, U = {(x, 0) |x ∈ R},W = {(0, y) | y ∈ R}. Then (1, 1) =
(1, 0) + (0, 1) is not in U ∪W but it should have been if U ∪W was a subspace.

If U ∪W is a subspace of F and U 6⊂ W,W 6⊂ U , choose u ∈ U \W and w ∈ W \ U .
Then u + w ∈ U ∪W , since it is a subspace. If u + w ∈ U then w = (u + w) − u ∈ U ,
a contradiction. On the other hand, if u + w ∈ W then u = (u + w) − w ∈ W , again a
contradiction.

Problem 2 (i) Suppose a+ b(t− 1) + c(t− 1)2 + d(t− 1)3 = 0. Then

(a− b+ c− d) + (b− 2c− 3d)t+ (c+ 3d)t2 + dt3 = 0.

Since (1, t, t2, t3) is a basis of P3 we conclude that d = 0. Since c + 3d = 0 this forces
c = 0. Now b − 2c − 3d = 0 implies b = 0 and a − b + c − d = 0 implies a = 0. This
proves that (1, t− 1, (t− 1)2, (t− 1)3) is linearly independent. Since P3 has dimension 4 and
U = span(1, t− 1, (t− 1)2, (t− 1)3) is a subspace of dimension 4, we conclude that U = P3.

(ii) Yes. For example, take S = {(1, 0), (0, 1)} and T = {(1, 1), (1,−1)}. The vectors in
S span R2 and so does the vectors in T but S 6= T .

Problem 3 It is given that ψφ : V → V is an isomorphism, i.e., it is injective (and
surjective as well). If φ(v) = 0 then ψφ(v) = 0 whence v = 0. Therefore, φ is injective. On
the other hand, given v ∈ V , let v′ ∈ v be the unique element such that ψφ(v′) = v. This is
possible since ψφ is surjective. Then ψ(φ(v′)) = v and φ(v′) ∈ W , whence ψ is surjective.

Problem 4 Let ρ : V → V be such that ρρ = ρ. Let v ∈ range(ρ) and write v = ρ(v′) for
some v′ ∈ V . Then

ρ(v) = ρρ(v′) = ρ(v′) = v.

Thus, ρ is the identity on range(ρ).

Problem 5 It is enough to prove linear independence since then the span of the given
vectors would be of dimension 3 and consequently has to be R3. Suppose

a(1, 1, 0) + b(2, 0,−1) + c(−3, 1, 1) = (a+ 2b− 3c, a+ c,−b+ c) = (0, 0, 0).

This implies that b = c, a = −c and a + 2b − 3c = 0. The last equation can be written as
−c+ 2c− 3c = 0 whence c = 0 and a = b = 0.

Problem 6 Let φ : R2 → R2 be given by φ(x, y) = (0, x). Since φφ(x, y) = φ(0, x) =
(0, 0) it defines a nilpotent endomorphism of order 2. Similarly, ψ : R2 → R2 given by
ψ(x, y) = (y, 0) is also a nilpotent endomorphism of order 2. Now ψφ : R2 → R2 is given
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by ψφ(x, y) = ψ(0, x) = (x, 0). It is clear that (ψφ)2(x, y) = ψφ(x, 0) = (x, 0) = ψφ(x, y).
Therefore, ψφ is an idempotent.

Problem 7 Since x ∈ span{M, y} and x 6∈M we can write

x = a1v1 + · · ·+ akvk + by

where vi’s are a basis of M and b 6= 0. Then

y = (−a1/b)v1 + · · ·+ (−ak/b)vk + (1/b)x

and y ∈ span{M,x}. Clearly M ⊂ span{M,x}. Therefore, span{M, y} ⊂ span{M,x}.
On the other hand, x ∈ span{M, y} whence span{M,x} ⊂ span{M, y}. This proves that
span{M, y} = span{M,x}.

Problem 8 Since M ⊂ M + (L ∩N) this implies that L ∩M ⊂ L ∩ (M + (L ∩N)). On
the other hand

L ∩N = L ∩ (L ∩N) ⊂ L ∩ (M + (L ∩N)).

This means that L ∩M and L ∩N are both subspaces of L ∩ (M + (L ∩N)) and therefore
contains the sum as well, viz.,

(L ∩M) + (L ∩N) ⊂ L ∩ (M + (L ∩N)).

On the other hand if v ∈ L ∩ (M + (L ∩ N)) then v ∈ L and v ∈ M + (L ∩ N). Write
v = m+ l where m ∈M and l ∈ L∩N . Then m = v− l ∈ L whence m ∈ L∩M . Therefore,
v = m+ l ∈ (L ∩M) + (L ∩N).

Problem 9 (i) If (1, α) = λ(1, β) then λ = 1 and α = β. Therefore, (1, α) and (1, β) are
linearly independent if and only if α 6= β.

(ii) No. If there were then C2 would contain the span of these three vectors which is a 3
dimensional subspace while C2 is only 2 dimensional.

(iii) No matter what x ∈ C is, the vectors (1, 1, 1) and (1, x, x2) span a subspace of C3 of
dimension at most 2. When x = 1 the span is {(z, z, z) | z ∈ C}. When x 6= 1 the span is a
2 dimensional subspace. In either case, it does not span C3.

(iv) If these vectors are linearly independent then we’ll be done since we’re in C3. For any
choice of x ∈ C we can write (x, 1, 1 + x) = (x, 0, 1) + (0, 1, x) whence they are not linearly
independent and therefore not a basis.

Problem 10 (i) The first and the third transformations are linear. The second is not since
T (2x, 2y) = 4T (x, y).

(ii) The first and the third are linear transformations. For example, in the first case

T (a0 +a1x+ · · ·+akx
k) = a0 +a1x

2 + · · ·+akx
2k = T (a0)+a1T (x)+a2T (x2)+ · · ·+akT (xk)

which precisely means that T is linear. Similarly, in the third case

T (a0+a1x+· · ·+akx
k) = X2(a0+a1x+· · ·+akx

k) = T (a0)+a1T (x)+a2T (x2)+· · ·+akT (xk)

which implies linearity of T . In the second case, however, T (2p(x)) = 4(p(x))2 6= 2T (p(x))
whence T is not linear.
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Problem 11 (i) Let p(x) = a0 + a1x+ · · ·+ a6x
6 ∈ P6.

T (p(x)) :=

∫ x+9

−3

p(t)dt =
6∑

i=0

ai

∫ x+9

−3

tidt =
6∑

i=0

ai

i+ 1
((x+ 9)i+1 − (−3)i+1).

If T (p(x)) = 0 then a6, the coefficient of x7, is zero. Therefore,

T (p(x)) =
5∑

i=0

ai

i+ 1
((x+ 9)i+1 − (−3)i+1) = 0.

Again, the coefficient of x6 is a5 and it has to be zero. Doing this recursively leads one to
T (p(x) = a0((x + 9) − (−3)) = a0(x + 12) = 0 whence a0 = 0. Therefore, if p(x) ∈ null(T )
then p(x) = 0. So null(T ) = {0}.

(ii) Let p(x) = a0 + a1x+ · · ·+ a5x
5 ∈ P5 such that

0 = D(p(x)) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + 5a5x
4.

Then a1 = a2 = a3 = a3 = a4 = a5 = 0. Therefore, null(D) = R, the space of constant
polynomials.

(iii) If T (x, y) = 0 then 2x + 3y = 0 and 7x = 5y. Combining both these we get
−2x/3 = 7x/5 which means x = 0 and y = 7x/5 = 0. Therefore, null(T ) = {0}.

(iv) We know that (1, x, x2, x3, x4, x5) is a basis for P5. It follows from the definition of T
that T (xi) = x4i 6= 0, i.e., T is injective on the basis elements and therefore injective on P5.
Consequently, null(T ) = {0},

(v) If T (x, y) = (x, 0) = (0, 0) then x = 0. Therefore, null(T ) = {(0, y) | y ∈ R}.
(vi) If T (x, y) = x+ 2y = 0 then y = −x/2. Therefore, null(T ) = {(2x,−x) |x ∈ R}.

Problem 12 (i) We compute ST ans TS and then compare them. On the one hand

ST (p(x)) = S(x2p(x)) = x4p(x2)

while on the other hand
TS(p(x)) = T (p(x2)) = x2p(x2).

Therefore S and T don’t commute.
(ii) As before, on the one hand

ST (a+ bx+ cx2 + dx3) = S(a+ cx2) = a+ c(x+ 2)2 = (a+ 4c) + 2cx+ cx2

while on the other hand

TS(a+ bx+ cx2 + dx3) = T (a+ 2b+ 4c+ 8d+ (b+ 2c+ 12d)x+ (c+ 6d)x2 + dx3)

= a+ 2b+ 4c+ 8d+ (c+ 6d)x2.

Therefore, S and T don’t commute.

Problem 13 (i) No. Any invertible linear transformation must be surjective, viz., the
image must have full dimension. In this case, the image of T : R2 → R2 is {(x, x) |x ∈ R} is
1 dimensional.

(ii) Yes. The inverse of T is T itself. For example, TT (x, y) = T (y, x) = (x, y) whence
TT = Id.

(iii) No. Any invertible linear transformation must be injective, viz., it must have no null
space. As we saw in 11 (ii), D on P5 has a 1 dimensional space as its null space and hence
not invertible.

3






	MAT310PracticeMT1sol
	Note1

