2) The ODE is \(y' = -ky^2 \). Solving, we get:
\[y(t) = Ae^{-kt} \]
\[y(0) = y_0 \Rightarrow A = y_0 \Rightarrow y(t) = y_0 e^{-kt} \]

But \(y' = y_0 e^{-kt} \). We integrate, and get:
\[x(t) = \frac{y_0}{k} e^{-kt} + B \]
\[x(0) = x_0 \Rightarrow \frac{y_0}{k} + B = x_0 \Rightarrow B = x_0 - \frac{y_0}{k} \]
\[\Rightarrow \left(x(t) = x_0 \frac{y_0}{k} \left(1 - e^{-kt} \right) \right) \]

Q.E.D.

4) Given \(y' = -k y^2 \)
\[\frac{dy}{dt} = -k \]
Integrating, we get:
\[\Rightarrow y(t) = \frac{1}{kt + C} \]
\[y(0) = y_0 \Rightarrow C = \frac{1}{y_0} \]
\[\Rightarrow y(t) = \frac{1}{kt + \frac{1}{y_0}} \]
Thus, \(z = \frac{x}{k + \alpha}. \)

We integrate, and get:

\[
\begin{align*}
 x(t) &= \frac{x_0}{k + \alpha} - \frac{1}{\alpha} \ln |k + \alpha t + 1| + C \\
 x(0) &= x_0 \\
 \Rightarrow x(t) &= x_0 + \frac{x_0}{k + \alpha} - \frac{1}{\alpha} \ln |k + \alpha t + 1|
\end{align*}
\]

In problem 2, resistance is \(\frac{dx}{dt} = -kv \).

In problem 4, resistance is \(\frac{dx}{dt} = -kv^3 \).

Thus, if \(|v(t)| < 1 \), then \(|v| < |v| \), as there will be less resistance in the case of problem 6, if the object is moving slowly.

\(\lim_{t \to \infty} v(t) = 0 \) in both cases.

so if it is very large, then \(|v(t)| < 1 \), and we see that the object travels an infinite distance in problem 6, but only a finite distance in problem 2. QED.
2.3 problems (continued)

11) ODE: \(y' = y - y^2 \)

- \(0 \leq t \leq 20 \):
 - \(0.5 \) years, many \(y = 0 \)
 - \(y(0) = \frac{1}{2} e^{-\frac{t}{2}} - \frac{1}{2} \)
 - \(y \geq 32.2 \) ft/s, \(p = 0.15 \)
 - \(y(20) = 203.28 \) ft/s

- \(t \geq 5 \) gives:
 - \(y(t) = 10000 + \frac{1}{2} t - \frac{1}{2} (1 - e^{-\frac{t}{2}}) \)
 - \(v = -\frac{1}{2} \Rightarrow \frac{v}{p} \approx 714.7 \) ft/s

- \(y(20) = 214.7 \times 20 + \frac{1}{0.15} \cdot 214.7 (1 - e^{-0.15 \times 20}) \)

\[\Rightarrow y(20) = 2066.1 \text{ ft/s} \]
Let $I = 1.70$, $p = 1.5$ (different from before).

$v = 7066.1$ ft/s,

$v_0 = 263.38$ ft/s,

$v_r = 71.5$ ft/s.

Using eq. 9, we want to find t at $y(t)$-wise.

$0 = 7066.1 - 21.5 t + \frac{1}{1.5} \left(-206 + 21.5/1.5 \cdot e^{-1.5t} \right)$

Solving using command `fsolve` in Maple:

$t \approx 323.9$.

$\Rightarrow t = 323 + 20 = 343.0 \approx 5\text{min.} 43.0$.

2.5 problems (continued)
22) \(p = 1.085 \) (in fps units, with \(g = 32 \text{ ft/s}^2 \))

Terminal speed

\[
\frac{v_t}{f} = \frac{1.085}{0.005} = 217.8 \text{ ft/s}
\]

\[v(t) = \frac{1.085}{\sqrt{0.005}} \tanh(0.005t)\]

\[v(0) = 10000 \cdot \frac{1}{0.005} \ln | \cosh(0.005t) | \approx 0\]

Thus, using Maple’s `fsolve` command:

\[t \approx 4.855 \approx 8 \text{ min 50 sec} \]