
MAT203 Spring 2010
Practice Final

The actual Final exam will consist of twelve problems that cover sections

11.1-14.5 (inclusive)
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Problem 1 Find a unit vectors that perpendicular to the graph of functions

1. sin(x2) at point with x-coordinate
√

π
3

2. ln(1 + cos(x)) at point with x-coordinate π
6

Present two solutions. One should use the fact that a vector orthogonal to vector (a, b)

has coordinates (−b, a). The other solution should use gradients.
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Problem 2 Give an example of three distinct points collinear to P = (1, 2, 3) and Q =

(3, 2, 1).

3



Problem 3 Find orthogonal projection of vector v = (1,−1) on a line l that contains

vector (1, 2). Also find the normal to l component of v.
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Problem 4 Find the area of a parallelogram ABCD. The point A, B,C have coordinates

(1, 1, 1), (1,−2, 3), (2,−1,−1).
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Problem 5 Determine the cos(θ), where θ is the angle enclosed by two intersecting

surfaces x2 − y2 + z2 = 1,x2 + y2 + z2 = 3 at a point (1, 1, 1).
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Problem 6 Determine the distance between point (1, 0, 1) and a tangent plane to the

surface

xyz = 1

at a point (1, 1, 1).
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Problem 7 Determine the distance between point (1, 0, 1) and a tangent line to a curve

given by parametric equation

x(t) = sin(t)

y(t) = cos(2t)

z(t) = sin(3t)

at a point t = π.
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Problem 8 Determine the type of the quadratic surface and draw the traces at z = 1,

y = 0 .

1. x2 + 2y2 − z2 = 3

2. x2 − 2y2 − z + 2x = 3

3. x2 − 2y2 + z2 = −3
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Problem 9 Write equation of the surface xyz = 1 in

1. spherical

2. cylindrical

coordinates
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Problem 10 Find

1. the init tangent vector

2. the principal unit normal vector

for the function r(t) = ti + t2j + t2

2 k at t = 1
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Problem 11 Find magnitudes of

1. tangential aT

2. notmal aN

components of acceleration of the function r(t) = eti + 2tj + e−tk at t = 1
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Problem 12 Find the curvature of the curve r(t) = eti + 2tj + e−tk as a function of t

13



Problem 13 Identify limits that exist and evaluate them

1.

lim
(x,y)→(0,0)

x + y
x − y

2.

lim
(x,y)→(0,0)

xy
x2 + y2

3.

lim
(x,y)→(0,0)

x2y2

x2 + y2
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Problem 14 Identify all removable singularities of the functions

1.

f (x, y) =


x+y
√

x2+y2
(x, y) , (0, 0)

1 (x, y) = (0, 0)

2.

f (x, y) =


x2−y2

x+y x + y , 0

x2 x = −y
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Problem 15 Find the gradients of functions

1.

f (x, y) = sin(ln(x + y) cos(xy))

2.

g(x, y) =
√

x + y + z
1 + x2 + y2 + z2
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Problem 16 A function z = g(x, y) satisfies equation F(x, y, g(x, y)) = 0, where

F(x, y, z) = x2 + zy + y2 + zx2 + z3

find partial derivatives gx, gy as functions of x, y, z.
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Problem 17 1. Find formula for a normal vector to level curves of the function

f (x, y) = x2 + 3x + y − y3.

2. Find critical (extreme) points of this function, determine their type.

3. Find directional derivative of f along the vector (1,−2).
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Problem 18 Find the absolute maximum of the function

f (x, y) = x2 − 3xy + y2

in the region x2 + y2 ≤ 1
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Problem 19 Sketch the region of integration R and switch the order of integration in

the following integrals

1. ∫ 4

0

∫ y2

0
f (x, y)dxdy

2. ∫ 4

1

∫ ln(x)

− ln(x)
f (x, y)dydx

3. ∫ 3

2

∫ 1
y

2−y
f (x, y)dxdy
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Problem 20 1. Evaluate ∫ ∫
R

e−x−ydxdy

where R is the region in the first quadrant in which x + y ≤ 1

2. Evaluate ∫ 8

0

∫ 2

x
1
3

dydx
1 + y4

(Hint:change the order of integration first.)
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Problem 21 Find the mass and center of mass of the triangle with the vertices (0, 0),

(1, 0) and (1, 2) whose density is given by ρ(x, y) = x2.
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Problem 22 The integral ∫ 2

0

∫ √
2x−x2

0

√
x2 + y2dydx

is given in orthogonal coordinates. Change it to polar coordinates.
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Problem 23 Use polar coordinates to set up the integral for the volume of the solid

inside the sphere x2 + y2 + z2 = 16 and outside the cylinder x2 + y2 = 4.
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Problem 24 Find the area of the part of hyperbolic paraboloid z = y2 − x2 that lies

between the cylinders x2 + y2 = 1 and x2 + y2 = 4.
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