MAT203 Spring 2010

Practice Final

The actual Final exam will consist of twelve problems that cover sections

11.1-14.5 (inclusive)

Problem 1 Find a unit vectors that perpendicular to the graph of functions

- 1. $\sin(x^2)$ at point with *x*-coordinate $\sqrt{\frac{\pi}{3}}$
- 2. $\ln(1 + \cos(x))$ at point with *x*-coordinate $\frac{\pi}{6}$

Present two solutions. One should use the fact that a vector orthogonal to vector (a, b) has coordinates (-b, a). The other solution should use gradients.

Problem 2 Give an example of three distinct points collinear to P = (1, 2, 3) and Q = (3, 2, 1).

Problem 3 Find orthogonal projection of vector v = (1, -1) on a line *l* that contains vector (1, 2). Also find the normal to *l* component of *v*.

Problem 4 Find the area of a parallelogram *ABCD*. The point *A*, *B*, *C* have coordinates (1, 1, 1), (1, -2, 3), (2, -1, -1).

Problem 5 Determine the $cos(\theta)$, where θ is the angle enclosed by two intersecting surfaces $x^2 - y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 3$ at a point (1, 1, 1).

Problem 6 Determine the distance between point (1, 0, 1) and a tangent plane to the surface

$$xyz = 1$$

at a point (1, 1, 1).

Problem 7 Determine the distance between point (1, 0, 1) and a tangent line to a curve given by parametric equation

$$x(t) = \sin(t)$$
$$y(t) = \cos(2t)$$
$$z(t) = \sin(3t)$$

at a point $t = \pi$.

Problem 8 Determine the type of the quadratic surface and draw the traces at z = 1, y = 0.

1. $x^{2} + 2y^{2} - z^{2} = 3$ 2. $x^{2} - 2y^{2} - z + 2x = 3$ 3. $x^{2} - 2y^{2} + z^{2} = -3$ **Problem 9** Write equation of the surface xyz = 1 in

1. spherical

2. cylindrical

coordinates

Problem 10 Find

- 1. the init tangent vector
- 2. the principal unit normal vector

for the function $r(t) = t\mathbf{i} + t^2\mathbf{j} + \frac{t^2}{2}\mathbf{k}$ at t = 1

Problem 11 Find magnitudes of

- 1. tangential $a_{\mathbf{T}}$
- 2. notmal $a_{\mathbf{N}}$

components of acceleration of the function $r(t) = e^t \mathbf{i} + 2t \mathbf{j} + e^{-t} \mathbf{k}$ at t = 1

Problem 12 Find the curvature of the curve $r(t) = e^t \mathbf{i} + 2t \mathbf{j} + e^{-t} \mathbf{k}$ as a function of t

Problem 13 Identify limits that exist and evaluate them

1. $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ 2. $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ 3. $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$ Problem 14 Identify all removable singularities of the functions

$$f(x,y) = \begin{cases} \frac{x+y}{\sqrt{x^2+y^2}} & (x,y) \neq (0,0) \\ 1 & (x,y) = (0,0) \end{cases}$$

2.

1.

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x + y} & x + y \neq 0\\ x^2 & x = -y \end{cases}$$

Problem 15 Find the gradients of functions

1.

$$f(x, y) = \sin(\ln(x + y)\cos(xy))$$

2.

$$g(x, y) = \frac{\sqrt{x + y + z}}{1 + x^2 + y^2 + z^2}$$

Problem 16 A function z = g(x, y) satisfies equation F(x, y, g(x, y)) = 0, where

$$F(x, y, z) = x^{2} + zy + y^{2} + zx^{2} + z^{3}$$

find partial derivatives g_x , g_y as functions of x, y, z.

Problem 17 1. Find formula for a normal vector to level curves of the function $f(x, y) = x^2 + 3x + y - y^3$.

- 2. Find critical (extreme) points of this function, determine their type.
- 3. Find directional derivative of f along the vector (1, -2).

Problem 18 Find the absolute maximum of the function

$$f(x, y) = x^2 - 3xy + y^2$$

in the region $x^2 + y^2 \le 1$

Problem 19 Sketch the region of integration *R* and switch the order of integration in the following integrals

1. $\int_{0}^{4} \int_{0}^{y^{2}} f(x, y) dx dy$ 2. $\int_{1}^{4} \int_{-\ln(x)}^{\ln(x)} f(x, y) dy dx$ 3. $\int_{2}^{3} \int_{2-y}^{\frac{1}{y}} f(x, y) dx dy$ Problem 20 1. Evaluate

$$\int_{R} \int e^{-x-y} dx dy$$

where R is the region in the first quadrant in which $x + y \le 1$

2. Evaluate

$$\int_0^8 \int_{x^{\frac{1}{3}}}^2 \frac{dydx}{1+y^4}$$

(Hint:change the order of integration first.)

Problem 21 Find the mass and center of mass of the triangle with the vertices (0, 0), (1, 0) and (1, 2) whose density is given by $\rho(x, y) = x^2$.

Problem 22 The integral

$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} dy dx$$

is given in orthogonal coordinates. Change it to polar coordinates.

Problem 23 Use polar coordinates to set up the integral for the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$.

Problem 24 Find the area of the part of hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.