
MAT127 Fall 2023

Practice Midterm I

Time and location of the test:

Tue Oct 3 8:30-9:50 pm, Frey 100

Exam will cover sections 8.1-8.6 inclusive.

The actual test will contain 5 problems (some multipart)

Problem 1. Compute limits

(1) limn→∞ n ln 1
n

(2) limn→∞
n2√
n5

(3) limn→∞
1

1+(−2)n

(4) limn→∞
(2n)!
(3n)!

(5) limn→∞ sin(π + 1
n)

(6) limn→∞ sin(bπ + 1
nc), where x→ bxc is the integral part of x.

(7) limn→∞ an where a1 = π, an+1 = π−1(an + π2), n ≥ 1

Solution. (1) To find the limit

lim
n→∞

n ln
1

n
= − lim

n→∞
n ln(n) = − lim

x→∞
x ln(x)

x ≤ x ln(x) so ∞ = limx→∞ x ≤ limx→∞ x ln(x) and limn→∞ n ln 1
n = −∞

(2) To find the limit limn→∞
n2√
n5, we can use the properties of limits and exponentials.

First, we rewrite the expression as:

lim
n→∞

e
ln

(
n2√

n5

)

Next, we simplify by moving the exponent 1
n2 inside the logarithm:

lim
n→∞

e
1
n2 ln(n5)

1



2

Now, we have an indeterminate form 1
∞ · ∞. To evaluate this, we use L’Hpital’s

Rule:

lim
n→∞

e
1
n2 ln(n5) = lim

x→∞
e

1
x2

ln(x5) = e5 limx→∞
ln(x)

x2 = e5 limx→∞
1/x
2x = e0 = 1

So, limn→∞
n2√
n5 is equal to 1.

(3) We compute limn→∞
1

1+(−2)n n even an odd and see that the limits agree: Even

case:

0 ≤ limn→∞
1

1+(−2)2n = limn→∞
1

1+4n ≤ limn→∞
1
4n = 0

Odd case: limn→∞
1

1+(−2)2n+1 = limn→∞
1

1−2·4n = − limn→∞
1

2·4n−1 We know

limn→∞ 2 · 4n − 1 =∞⇒ limn→∞
1

2·4n−1 = 0. Both limits agree and equal to zero.

(4) To find the limit limn→∞
(2n)!
(3n)! , we can use the concept of factorials and properties

of limits.

First, we can express the factorials as products of integers:

(2n)!

(3n)!
=

(2n)(2n− 1)(2n− 2) . . . (2)(1)

(3n)(3n− 1)(3n− 2) . . . (2)(1)

Now, we simplify the expression by canceling out common factors in the numer-

ator and denominator:

(2n)!

(3n)!
=

1

3n
· 1

3n− 1
· 1

3n− 2n− 1
≤ 1

3n

By squeeze theorem since 0 ≤ (2n)!
(3n)! ≤

1
3n , 0 ≤ limn→∞

(2n)!
(3n)! ≤ limn→∞

1
3n = 0. So

limn→∞
(2n)!
(3n)! = 0.

(5) sin() is a continuous function. limn→∞ π+ 1
n = π. So limn→∞ sin(π+ 1

n) = sin(π) =

0.

(6) bxc has discontinuity only at integers. Thus limn→∞bπ + 1
nc = bπc. By continuity

of sin(x) limn→∞ sin(bπ + 1
nc) = sin(bπc)

(7) Denote L = limn→∞ an. Equation an+1 = π−1(an + π2) implies that

L = lim
n→∞

an+1 = lim
n→∞

(π−1(an + π2)) =

π−1 lim
n→∞

((an + π2)) = π−1( lim
n→∞

an) + π = π−1L+ π
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We conclude that L = π
1−π−1 if we assume that the limit L exists. The sequence an

is bounded: evidently a1 = π ≤ π
1−π−1 = π(1+π−1+π−2+· · · ). If an ≤ π(1+π−1+

π−2 + · · · )⇒ an+1 = π−1(an+π2) = π−1an+π ≤ π−1π(1+π−1 +π−2 + · · · )+π =

π(1 + π−1 + π−2 + · · · ) = L. The sequence an is increasing: a1 = π ≤ π−1a1 + π =

1 + π, an ≤ an+1 ⇒ π−1an + π ≤ π−1an+1 + π ⇒ an+1 ≤ an+2. Thus the sequence

is increasing and bounded. From this we conclude that lim an = L

�

Problem 2.

(1) Represent −4.555555 . . . as a rational

(2) sn =
∑n

k=0 ak = 2+|n|
3+|n| . Find ak and

∑∞
k=0 ak

(3) Compute if exists
∑∞

n=0
2n−3n
7n ,

∑∞
n=0

7n−2n
3n ,

∑∞
n=0

3n−7n
2n

(4) Compute if exists
∑∞

n=0
1

7(−1)nn ,

(5) Of the following series listed below, select ALL which are geometric series.

(a)
∑∞

n=1
πn−1

n

(b)
∑∞

n=1 2n
−1

(c)
∑∞

n=0
52n+7

310n−4

(d)
∑∞

n=0 n
− 1

2

(e)
∑∞

n=0 e
−2n+4

Solution. (1) −4.555555 · · · = −4−
∑∞

n=1
5

10k
= −4− 5

10
1

1−1/10 = −41/9.

(2) The absolute value sign is irrelevant since n > 0. ak is equal to sk − sk−1 =

2+k
3+k −

2+k−1
3+k−1 = 2+k

(3+k)(2+k) .
∑∞

k=0
2+k

(3+k)(2+k) = limn→∞
2+n
3+n = limn→∞

2/n+1
3/n+1 = 1.

(3)
∑∞

n=0
2n−3n
7n =

∑∞
n=0

2n

7n −
∑∞

n=0
3n

7n = 1
1−2/7 −

1
1−3/7 we use that 2/7, 3/7 < 1.∑∞

n=0
7n−2n
3n =

∑∞
n=0

7n

3n −
∑∞

n=0
2n

3n . The first series is divergent because r =

7/3 > 1. The second series is convergent r = 2/3. Overall the difference is diverg-

ing.

By the same reason
∑∞

n=0
7n−2n
3n is diverging.
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(4) We break
∑∞

n=0
1

7(−1)nn into a pair sums according n is even or odd:

∞∑
n=0

1

7(−1)nn
=
∞∑
n=0

1

7(−1)2n2n
+
∞∑
n=0

1

7(−1)2n+1(2n+1)

∞∑
n=0

1

72n
+
∞∑
n=0

72n+1

The first is converging geometric series with r = 1/72 < 1. The second is diverging

geometric series with r = 72 > 1. Overall the series is diverging.

(5) (c) and (e) are the only geometric series in the list with r = 52

310
and r = e−2

respectively.

�

Problem 3. (1)
∑∞

n=−∞
1

1+n2 = A. Estimate the error of approximation RN = A −∑N
n=−N

1
1+n2 for N = 10.

(2)
∑∞

n=0
n2+n

n4+3n2+1
. Determine whether the sum is convergent.

(3) Give an example of a divergent series
∑∞

n=0 bn an such that
∑∞

n=0 b
2
n is convergent.

Explain briefly why your series satisfies these two conditions.

(4) Consider the sum
∑∞

n=0
(−1)n
1+n2 . We use the sum of the first 10 terms to approximate

the sum of this series. Estimate the error involved in this approximation.

Solution. (1)

∞∑
n=−∞

1

1 + n2
= A⇒ RN = A−

N∑
n=−N

1

1 + n2
=

−N−1∑
n=−∞

1

1 + n2
+

∞∑
n=N+1

1

1 + n2
= 2

∞∑
n=N+1

1

1 + n2
≤

∫ ∞
N+1

dx

1 + x2
≤

∫ ∞
N+1

dx

x2
=

2

N + 1

.

(2) We want to compare the sequence an = n2+n
n4+3n2+1

with bn = 1/n2. Both sequences

are positive limn→∞ an/bn = limn→∞
(n2+n)n2

n4+3n2+1
= limn→∞

(1+1/n)
1+3/n2+1/n4 = 1. The

sum
∑∞

n=1 1/n2 is p = 2 series. It is convergent. So is
∑∞

n=1 an.
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(3) bn = 1/n leads to diverging harmonic series
∑∞

n=1 1/n. It is diverging because∑N
n=1 1/n ≥

∫ N
1

dx
x = ln(N) On the other hand b2n = 1/n2 leads to converging

p = 2 series
∑∞

n=1 1/n2.

(4) The sequence bn = 1
1+n2 is decreasing. We can use alternating series test to show

convergence
∑∞

n=0
(−1)n
1+n2 . By the same test the error of approximation RN ≤ bN+1.

We conclude that R10 ≤ 1
1+(101)2

�

Theorem 0.1. (Root Test) Let limn→∞ |an|1/n = L

(1) If L < 1 then
∑∞

k=1 ak is convergent

(2) If L > 1 then
∑∞

k=1 ak is divergent.

(3) If L = 1 then the Root Test is inconclusive.

Problem 4. Determine convergence:

(1)
∑∞

n=1
cos(ln(n))

n!

(2)
∑∞

n=1
xn

2

(2n)2n

Solution. (1)
∑∞

n=1 an =
∑∞

n=1
cos(ln(n))

n! . an satisfies |an| ≤ 1
n! = bn. By Ratio Test

|bn+1|
|bn| = 1/(n+1)!

1/n! = 1
n+1 ⇒ limn→∞

|bn+1|
|bn| = limn→∞ 1/(n + 1) = 0 ⇒

∑∞
n=1 1/n! is

convergent ⇒
∑∞

n=1
| cos(ln(n))|

n! is convergent ⇒
∑∞

n=1
cos(ln(n))

n! is convergent abso-

lutely ⇒
∑∞

n=1
cos(ln(n))

n! is convergent.

(2)
∑∞

n=1 an =
∑∞

n=1
xn

2

(2n)2n
, |an|1/n = |x|n2/n

(2n)2n/n = |x|n
(2n)2

Fix x, set n = y. We ca use

l’Hpital’s Rule two times to compute the limit

1

4
lim
y→∞

|x|y

y2
=

1

4
lim
y→∞

ln(x)|x|y

2y
=

1

4
lim
y→∞

ln(x)2|x|y

2

The limit is infinite if |x| > 1 and zero if |x| ≤ 1. Thus the interval of convergence

of the series is |x| ≤ 1.

�
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Definition: Series
∑∞

k=1 ak are conditionally convergent if it is convergent but

∞∑
k=1

|ak| =∞.

Problem 5. Determine whether the following series are absolutely convergent, condition-

ally convergent, or divergent:

(1)
∑∞

n=1
(n+2)!
n!5n

(2)
∑∞

n=1(−1)n n
1+n2

Solution. (1)
∑∞

n=1 an =
∑∞

n=1
(n+2)!
n!5n ,

an =
(n)!(n+ 1)(n+ 2)

n!5n
=

(n+ 1)(n+ 2)

5n

|an+1|
|an|

=
(n+ 1 + 1)(n+ 1 + 2)5−(n+1)

(n+ 1)(n+ 2)5−n
=

1

5

(n+ 2)(n+ 3)

(n+ 1)(n+ 2)
=

1

5

n+ 3

n+ 1

Since lim |an+1|
|an| = lim 1

5
n+3
n+1 = 1/5 < 1 by Ratio Test the series is absolutely and

unconditionally convergent.

(2)
∑∞

n=1 an =
∑∞

n=1(−1)n n
1+n2 f(n) = an where f(x) = x

1+x2
. f ′(x) = 1−x2

(x2+1)2
is nega-

tive for x > 1⇒ f(x) is decreasing for x ≥ 1. By Alternating Series test
∑∞

n=1 an is

convergent. However, the sum
∑∞

n=1 |an| =
∑∞

n=1
n

1+n2 is diverging. To see this we

compare it with harmonic series bn = 1/n. limn→∞ an/bn = limn→∞
n2

1+n2 = 1 By

the limit comparison test
∑∞

n=1 |an| is diverging because harmonic series
∑∞

n=1 bn.

Thus
∑∞

n=1 an is converging only conditionally.

�

Problem 6. Find the radius R and interval of convergence for the power series

(1)
∑∞

n=0
n(x−2)3n

(n+1)(n+2)

(2)
∑∞

n=0
n!xn

(n+3)!(n+6)!

Solution. (1)
∑∞

n=0 an =
∑∞

n=0
n(x−2)3n

(n+1)(n+2)

|an+1|/|an| =
(n+ 1)|x− 2|3(n+1)(n+ 1)(n+ 2)

(n+ 1 + 1)(n+ 1 + 2)(n)|x− 2|3n
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|x− 2|3 (n+ 1)2(n+ 2)

(n+ 2)(n+ 3)n

lim |an+1|/|an| = |x − 2|3 The series is convergent if |x − 2| < 1. In other words if

x satisfies 1 < x < 3⇒ the series is convergent.

If x = 3 the series become
∑∞

n=0
n(3−2)3n

(n+1)(n+2) =
∑∞

n=0
n

(n+1)(n+2) We can use

bn = 1/n to show that lim an/bn = 1. Since the harmonic series
∑

1/n is diverging

⇒
∑∞

n=0
n

(n+1)(n+2) is diverging.

If x = 1 the series become
∑∞

n=0
n(1−2)3n

(n+1)(n+2) =
∑∞

n=0
(−1)nn

(n+1)(n+2) . f(x) = x
(x+1)(x+2)

is decreasing for x > 21/2 (f ′(x) = 2−x2
(x+1)2(x+2)2

). We see that an = n
(n+1)(n+2) =

f(n) is a decreasing sequence with lim an = 0. By the Alternating Series test∑∞
n=0

(−1)nn
(n+1)(n+2) is convergent. The interval of convergence for our series is 1 ≤

x < 3.

(2)
∑∞

n=0
n!xn

(n+3)!(n+6)! .The solution to this problem closely mirrors the the previous

problem.

�

Recall that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!

sin(x) = x− x3

3!
+
x5

5!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

cos(x) = 1− x2

2!
+
x4

4!
+ · · · =

∞∑
n=0

(−1)n
x2n

(2n)!

− ln(1− x) = x+
x2

2
+
x3

3
+ · · · =

∞∑
n=1

xn

n

Problem 7. Find a power series representation (at 0) of the function

(1)
∫ x
0

sin(t)
t dt

(2) log 1+x
1−x

(3) 1+x
1−x3

and compute its radius of convergence.


