MAT127 Fall 2023
Practice Midterm I
Time and location of the test:
Tue Oct 3 8:30-9:50 pm, Frey 100
Exam will cover sections 8.1-8.6 inclusive.
The actual test will contain 5 problems (some multipart)

Problem 1. Compute limits
(1) $\lim _{n \rightarrow \infty} n \ln \frac{1}{n}$
(2) $\lim _{n \rightarrow \infty} \sqrt[n^{2}]{n^{5}}$
(3) $\lim _{n \rightarrow \infty} \frac{1}{1+(-2)^{n}}$
(4) $\lim _{n \rightarrow \infty} \frac{(2 n)!}{(3 n)!}$
(5) $\lim _{n \rightarrow \infty} \sin \left(\pi+\frac{1}{n}\right)$
(6) $\lim _{n \rightarrow \infty} \sin \left(\left\lfloor\pi+\frac{1}{n}\right\rfloor\right)$, where $x \rightarrow\lfloor x\rfloor$ is the integral part of x.
(7) $\lim _{n \rightarrow \infty} a_{n}$ where $a_{1}=\pi, a_{n+1}=\pi^{-1}\left(a_{n}+\pi^{2}\right), n \geq 1$

Solution. (1) To find the limit

$$
\lim _{n \rightarrow \infty} n \ln \frac{1}{n}=-\lim _{n \rightarrow \infty} n \ln (n)=-\lim _{x \rightarrow \infty} x \ln (x)
$$

$x \leq x \ln (x)$ so $\infty=\lim _{x \rightarrow \infty} x \leq \lim _{x \rightarrow \infty} x \ln (x)$ and $\lim _{n \rightarrow \infty} n \ln \frac{1}{n}=-\infty$
(2) To find the limit $\lim _{n \rightarrow \infty} \sqrt[n^{2}]{n^{5}}$, we can use the properties of limits and exponentials.

First, we rewrite the expression as:

$$
\lim _{n \rightarrow \infty} e^{\ln \left(\sqrt[n_{2}^{2}]{n^{5}}\right)}
$$

Next, we simplify by moving the exponent $\frac{1}{n^{2}}$ inside the logarithm:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} e^{\frac{1}{n^{2}} \ln \left(n^{5}\right)} \\
1
\end{gathered}
$$

Now, we have an indeterminate form $\frac{1}{\infty} \cdot \infty$. To evaluate this, we use L'Hpital's Rule:

$$
\lim _{n \rightarrow \infty} e^{\frac{1}{n^{2}} \ln \left(n^{5}\right)}=\lim _{x \rightarrow \infty} e^{\frac{1}{x^{2}} \ln \left(x^{5}\right)}=e^{5 \lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{2}}}=e^{5 \lim _{x \rightarrow \infty} \frac{1 / x}{2 x}}=e^{0}=1
$$

So, $\lim _{n \rightarrow \infty} \sqrt[n^{2}]{n^{5}}$ is equal to 1 .
(3) We compute $\lim _{n \rightarrow \infty} \frac{1}{1+(-2)^{n}} n$ even an odd and see that the limits agree: Even case:
$0 \leq \lim _{n \rightarrow \infty} \frac{1}{1+(-2)^{2 n}}=\lim _{n \rightarrow \infty} \frac{1}{1+4^{n}} \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}}=0$
Odd case: $\lim _{n \rightarrow \infty} \frac{1}{1+(-2)^{2 n+1}}=\lim _{n \rightarrow \infty} \frac{1}{1-2 \cdot 4^{n}}=-\lim _{n \rightarrow \infty} \frac{1}{2 \cdot 4^{n}-1}$ We know $\lim _{n \rightarrow \infty} 2 \cdot 4^{n}-1=\infty \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{2 \cdot 4^{n}-1}=0$. Both limits agree and equal to zero.
(4) To find the limit $\lim _{n \rightarrow \infty} \frac{(2 n)!}{(3 n)!}$, we can use the concept of factorials and properties of limits.

First, we can express the factorials as products of integers:

$$
\frac{(2 n)!}{(3 n)!}=\frac{(2 n)(2 n-1)(2 n-2) \ldots(2)(1)}{(3 n)(3 n-1)(3 n-2) \ldots(2)(1)}
$$

Now, we simplify the expression by canceling out common factors in the numerator and denominator:

$$
\frac{(2 n)!}{(3 n)!}=\frac{1}{3 n} \cdot \frac{1}{3 n-1} \cdot \frac{1}{3 n-2 n-1} \leq \frac{1}{3 n}
$$

By squeeze theorem since $0 \leq \frac{(2 n)!}{(3 n)!} \leq \frac{1}{3 n}, 0 \leq \lim _{n \rightarrow \infty} \frac{(2 n)!}{(3 n)!} \leq \lim _{n \rightarrow \infty} \frac{1}{3 n}=0$. So $\lim _{n \rightarrow \infty} \frac{(2 n)!}{(3 n)!}=0$.
(5) $\sin ()$ is a continuous function. $\lim _{n \rightarrow \infty} \pi+\frac{1}{n}=\pi$. So $\lim _{n \rightarrow \infty} \sin \left(\pi+\frac{1}{n}\right)=\sin (\pi)=$ 0.
(6) $\lfloor x\rfloor$ has discontinuity only at integers. Thus $\lim _{n \rightarrow \infty}\left\lfloor\pi+\frac{1}{n}\right\rfloor=\lfloor\pi\rfloor$. By continuity of $\sin (x) \lim _{n \rightarrow \infty} \sin \left(\left\lfloor\pi+\frac{1}{n}\right\rfloor\right)=\sin (\lfloor\pi\rfloor)$
(7) Denote $L=\lim _{n \rightarrow \infty} a_{n}$. Equation $a_{n+1}=\pi^{-1}\left(a_{n}+\pi^{2}\right)$ implies that

$$
\begin{gathered}
L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(\pi^{-1}\left(a_{n}+\pi^{2}\right)\right)= \\
\pi^{-1} \lim _{n \rightarrow \infty}\left(\left(a_{n}+\pi^{2}\right)\right)=\pi^{-1}\left(\lim _{n \rightarrow \infty} a_{n}\right)+\pi=\pi^{-1} L+\pi
\end{gathered}
$$

We conclude that $L=\frac{\pi}{1-\pi^{-1}}$ if we assume that the limit L exists. The sequence a_{n} is bounded: evidently $a_{1}=\pi \leq \frac{\pi}{1-\pi^{-1}}=\pi\left(1+\pi^{-1}+\pi^{-2}+\cdots\right)$. If $a_{n} \leq \pi\left(1+\pi^{-1}+\right.$ $\left.\pi^{-2}+\cdots\right) \Rightarrow a_{n+1}=\pi^{-1}\left(a_{n}+\pi^{2}\right)=\pi^{-1} a_{n}+\pi \leq \pi^{-1} \pi\left(1+\pi^{-1}+\pi^{-2}+\cdots\right)+\pi=$ $\pi\left(1+\pi^{-1}+\pi^{-2}+\cdots\right)=L$. The sequence a_{n} is increasing: $a_{1}=\pi \leq \pi^{-1} a_{1}+\pi=$ $1+\pi, a_{n} \leq a_{n+1} \Rightarrow \pi^{-1} a_{n}+\pi \leq \pi^{-1} a_{n+1}+\pi \Rightarrow a_{n+1} \leq a_{n+2}$. Thus the sequence is increasing and bounded. From this we conclude that $\lim a_{n}=L$

Problem 2.

(1) Represent $-4.555555 \ldots$ as a rational
(2) $s_{n}=\sum_{k=0}^{n} a_{k}=\frac{2+|n|}{3+|n|}$. Find a_{k} and $\sum_{k=0}^{\infty} a_{k}$
(3) Compute if exists $\sum_{n=0}^{\infty} \frac{2^{n}-3^{n}}{7^{n}}, \sum_{n=0}^{\infty} \frac{7^{n}-2^{n}}{3^{n}}, \sum_{n=0}^{\infty} \frac{3^{n}-7^{n}}{2^{n}}$
(4) Compute if exists $\sum_{n=0}^{\infty} \frac{1}{7(-1)^{n} n}$,
(5) Of the following series listed below, select ALL which are geometric series.
(a) $\sum_{n=1}^{\infty} \frac{\pi^{n-1}}{n}$
(b) $\sum_{n=1}^{\infty} 2^{n^{-1}}$
(c) $\sum_{n=0}^{\infty} \frac{5^{2 n+7}}{3^{10 n-4}}$
(d) $\sum_{n=0}^{\infty} n^{-\frac{1}{2}}$
(e) $\sum_{n=0}^{\infty} e^{-2 n+4}$

Solution. (1) $-4.555555 \cdots=-4-\sum_{n=1}^{\infty} \frac{5}{10^{k}}=-4-\frac{5}{10} \frac{1}{1-1 / 10}=-41 / 9$.
(2) The absolute value sign is irrelevant since $n>0 . a_{k}$ is equal to $s_{k}-s_{k-1}=$ $\frac{2+k}{3+k}-\frac{2+k-1}{3+k-1}=\frac{2+k}{(3+k)(2+k)} . \sum_{k=0}^{\infty} \frac{2+k}{(3+k)(2+k)}=\lim _{n \rightarrow \infty} \frac{2+n}{3+n}=\lim _{n \rightarrow \infty} \frac{2 / n+1}{3 / n+1}=1$.
(3) $\sum_{n=0}^{\infty} \frac{2^{n}-3^{n}}{7^{n}}=\sum_{n=0}^{\infty} \frac{2^{n}}{7^{n}}-\sum_{n=0}^{\infty} \frac{3^{n}}{7^{n}}=\frac{1}{1-2 / 7}-\frac{1}{1-3 / 7}$ we use that $2 / 7,3 / 7<1$. $\sum_{n=0}^{\infty} \frac{7^{n}-2^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{7^{n}}{3^{n}}-\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}}$. The first series is divergent because $r=$ $7 / 3>1$. The second series is convergent $r=2 / 3$. Overall the difference is diverging.

By the same reason $\sum_{n=0}^{\infty} \frac{7^{n}-2^{n}}{3^{n}}$ is diverging.
(4) We break $\sum_{n=0}^{\infty} \frac{1}{7^{(-1)^{n} n}}$ into a pair sums according n is even or odd:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{7^{(-1)^{n} n}=} & \sum_{n=0}^{\infty} \frac{1}{7^{(-1)^{2 n} 2 n}}+\sum_{n=0}^{\infty} \frac{1}{7^{(-1)^{2 n+1}(2 n+1)}} \\
& \sum_{n=0}^{\infty} \frac{1}{7^{2 n}}+\sum_{n=0}^{\infty} 7^{2 n+1}
\end{aligned}
$$

The first is converging geometric series with $r=1 / 7^{2}<1$. The second is diverging geometric series with $r=7^{2}>1$. Overall the series is diverging.
(5) (c) and (e) are the only geometric series in the list with $r=\frac{5^{2}}{3^{1} 0}$ and $r=e^{-2}$ respectively.

Problem 3. (1) $\sum_{n=-\infty}^{\infty} \frac{1}{1+n^{2}}=A$. Estimate the error of approximation $R_{N}=A-$ $\sum_{n=-N}^{N} \frac{1}{1+n^{2}}$ for $N=10$.
(2) $\sum_{n=0}^{\infty} \frac{n^{2}+n}{n^{4}+3 n^{2}+1}$. Determine whether the sum is convergent.
(3) Give an example of a divergent series $\sum_{n=0}^{\infty} b_{n}$ an such that $\sum_{n=0}^{\infty} b_{n}^{2}$ is convergent. Explain briefly why your series satisfies these two conditions.
(4) Consider the sum $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+n^{2}}$. We use the sum of the first 10 terms to approximate the sum of this series. Estimate the error involved in this approximation.

Solution.

$$
\begin{gather*}
\sum_{n=-\infty}^{\infty} \frac{1}{1+n^{2}}=A \Rightarrow R_{N}=A-\sum_{n=-N}^{N} \frac{1}{1+n^{2}}= \tag{1}\\
\sum_{n=-\infty}^{-N-1} \frac{1}{1+n^{2}}+\sum_{n=N+1}^{\infty} \frac{1}{1+n^{2}}=2 \sum_{n=N+1}^{\infty} \frac{1}{1+n^{2}} \leq \int_{N+1}^{\infty} \frac{d x}{1+x^{2}} \leq \int_{N+1}^{\infty} \frac{d x}{x^{2}}=\frac{2}{N+1}
\end{gather*}
$$

(2) We want to compare the sequence $a_{n}=\frac{n^{2}+n}{n^{4}+3 n^{2}+1}$ with $b_{n}=1 / n^{2}$. Both sequences are positive $\lim _{n \rightarrow \infty} a_{n} / b_{n}=\lim _{n \rightarrow \infty} \frac{\left(n^{2}+n\right) n^{2}}{n^{4}+3 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{(1+1 / n)}{1+3 / n^{2}+1 / n^{4}}=1$. The sum $\sum_{n=1}^{\infty} 1 / n^{2}$ is $p=2$ series. It is convergent. So is $\sum_{n=1}^{\infty} a_{n}$.
(3) $b_{n}=1 / n$ leads to diverging harmonic series $\sum_{n=1}^{\infty} 1 / n$. It is diverging because $\sum_{n=1}^{N} 1 / n \geq \int_{1}^{N} \frac{d x}{x}=\ln (N)$ On the other hand $b_{n}^{2}=1 / n^{2}$ leads to converging $p=2$ series $\sum_{n=1}^{\infty} 1 / n^{2}$.
(4) The sequence $b_{n}=\frac{1}{1+n^{2}}$ is decreasing. We can use alternating series test to show convergence $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+n^{2}}$. By the same test the error of approximation $R_{N} \leq b_{N+1}$. We conclude that $R_{10} \leq \frac{1}{1+(101)^{2}}$

Theorem 0.1. (Root Test) Let $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L$
(1) If $L<1$ then $\sum_{k=1}^{\infty} a_{k}$ is convergent
(2) If $L>1$ then $\sum_{k=1}^{\infty} a_{k}$ is divergent.
(3) If $L=1$ then the Root Test is inconclusive.

Problem 4. Determine convergence:
(1) $\sum_{n=1}^{\infty} \frac{\cos (\ln (n))}{n!}$
(2) $\sum_{n=1}^{\infty} \frac{x^{n^{2}}}{(2 n)^{2 n}}$

Solution. (1) $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{\cos (\ln (n))}{n!}$. a_{n} satisfies $\left|a_{n}\right| \leq \frac{1}{n!}=b_{n}$. By Ratio Test $\frac{\left|b_{n+1}\right|}{\left|b_{n}\right|}=\frac{1 /(n+1)!}{1 / n!}=\frac{1}{n+1} \Rightarrow \lim _{n \rightarrow \infty} \frac{\left|b_{n+1}\right|}{\left|b_{n}\right|}=\lim _{n \rightarrow \infty} 1 /(n+1)=0 \Rightarrow \sum_{n=1}^{\infty} 1 / n!$ is convergent $\Rightarrow \sum_{n=1}^{\infty} \frac{|\cos (\ln (n))|}{n!}$ is convergent $\Rightarrow \sum_{n=1}^{\infty} \frac{\cos (\ln (n))}{n!}$ is convergent absolutely $\Rightarrow \sum_{n=1}^{\infty} \frac{\cos (\ln (n))}{n!}$ is convergent.
(2) $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{x^{n^{2}}}{(2 n)^{2 n}},\left|a_{n}\right|^{1 / n}=\frac{|x|^{2} / n}{(2 n)^{2 n / n}}=\frac{|x|^{n}}{(2 n)^{2}}$ Fix x, set $n=y$. We ca use l'Hpital's Rule two times to compute the limit

$$
\begin{gathered}
\frac{1}{4} \lim _{y \rightarrow \infty} \frac{|x|^{y}}{y^{2}}=\frac{1}{4} \lim _{y \rightarrow \infty} \frac{\ln (x)|x|^{y}}{2 y}= \\
\frac{1}{4} \lim _{y \rightarrow \infty} \frac{\ln (x)^{2}|x|^{y}}{2}
\end{gathered}
$$

The limit is infinite if $|x|>1$ and zero if $|x| \leq 1$. Thus the interval of convergence of the series is $|x| \leq 1$.

Definition: Series $\sum_{k=1}^{\infty} a_{k}$ are conditionally convergent if it is convergent but

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty .
$$

Problem 5. Determine whether the following series are absolutely convergent, conditionally convergent, or divergent:
(1) $\sum_{n=1}^{\infty} \frac{(n+2)!}{n!5^{n}}$
(2) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{1+n^{2}}$

Solution. (1) $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{(n+2)!}{n!5^{n}}$,

$$
\begin{gathered}
a_{n}=\frac{(n)!(n+1)(n+2)}{n!5^{n}}=\frac{(n+1)(n+2)}{5^{n}} \\
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(n+1+1)(n+1+2) 5^{-(n+1)}}{(n+1)(n+2) 5^{-n}}=\frac{1}{5} \frac{(n+2)(n+3)}{(n+1)(n+2)}=\frac{1}{5} \frac{n+3}{n+1}
\end{gathered}
$$

Since $\lim \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim \frac{1}{5} \frac{n+3}{n+1}=1 / 5<1$ by Ratio Test the series is absolutely and unconditionally convergent.
(2) $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{1+n^{2}} f(n)=a_{n}$ where $f(x)=\frac{x}{1+x^{2}} . f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$ is negative for $x>1 \Rightarrow f(x)$ is decreasing for $x \geq 1$. By Alternating Series test $\sum_{n=1}^{\infty} a_{n}$ is convergent. However, the sum $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{n}{1+n^{2}}$ is diverging. To see this we compare it with harmonic series $b_{n}=1 / n . \lim _{n \rightarrow \infty} a_{n} / b_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{1+n^{2}}=1$ By the limit comparison test $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is diverging because harmonic series $\sum_{n=1}^{\infty} b_{n}$. Thus $\sum_{n=1}^{\infty} a_{n}$ is converging only conditionally.

Problem 6. Find the radius R and interval of convergence for the power series
(1) $\sum_{n=0}^{\infty} \frac{n(x-2)^{3 n}}{(n+1)(n+2)}$
(2) $\sum_{n=0}^{\infty} \frac{n!x^{n}}{(n+3)!(n+6)!}$

Solution. (1) $\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} \frac{n(x-2)^{3 n}}{(n+1)(n+2)}$

$$
\left|a_{n+1}\right| /\left|a_{n}\right|=\frac{(n+1)|x-2|^{3(n+1)}(n+1)(n+2)}{(n+1+1)(n+1+2)(n)|x-2|^{3 n}}
$$

$$
|x-2|^{3} \frac{(n+1)^{2}(n+2)}{(n+2)(n+3) n}
$$

$\lim \left|a_{n+1}\right| /\left|a_{n}\right|=|x-2|^{3}$ The series is convergent if $|x-2|<1$. In other words if x satisfies $1<x<3 \Rightarrow$ the series is convergent.

If $x=3$ the series become $\sum_{n=0}^{\infty} \frac{n(3-2)^{3 n}}{(n+1)(n+2)}=\sum_{n=0}^{\infty} \frac{n}{(n+1)(n+2)}$ We can use $b_{n}=1 / n$ to show that $\lim a_{n} / b_{n}=1$. Since the harmonic series $\sum 1 / n$ is diverging $\Rightarrow \sum_{n=0}^{\infty} \frac{n}{(n+1)(n+2)}$ is diverging.

If $x=1$ the series become $\sum_{n=0}^{\infty} \frac{n(1-2)^{3 n}}{(n+1)(n+2)}=\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{(n+1)(n+2)} . f(x)=\frac{x}{(x+1)(x+2)}$ is decreasing for $x>2^{1 / 2}\left(f^{\prime}(x)=\frac{2-x^{2}}{(x+1)^{2}(x+2)^{2}}\right)$. We see that $a_{n}=\frac{n}{(n+1)(n+2)}=$ $f(n)$ is a decreasing sequence with $\lim a_{n}=0$. By the Alternating Series test $\sum_{n=0}^{\infty} \frac{(-1)^{n} n}{(n+1)(n+2)}$ is convergent. The interval of convergence for our series is $1 \leq$ $x<3$.
(2) $\sum_{n=0}^{\infty} \frac{n!x^{n}}{(n+3)!(n+6)!}$. The solution to this problem closely mirrors the the previous problem.

Recall that

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
-\ln (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots=\sum_{n=1}^{\infty} \frac{x^{n}}{n}
\end{gathered}
$$

Problem 7. Find a power series representation (at 0) of the function
(1) $\int_{0}^{x} \frac{\sin (t)}{t} d t$
(2) $\log \frac{1+x}{1-x}$
(3) $\frac{1+x}{1-x^{3}}$
and compute its radius of convergence.

