MAT125A Fall 2014 Practice Midterm I

The actual exam will consist of six problems.

Problem 1

Suppose f(x) is a linear function such that f(-1) = -1, f(3) = 6. Then f(1) =? **a)** 3/4, **b)** 3/2, **c)** 5/2, **d)** -3/4, **e)** 2, **f)** none of these.

Problem 2

Express the following function as an explicit formula: take a number, take a cube of it, add one to the result, multiply the result by 3, take the logarithm base 3

a) $\log_3(3x^3+1)$, **b)** $3\log_3(x^3+1)$, **c)** $1 + \log_3(x^3+1)$, **d)** $\log_3(x^3+3)$, **e)** $\ln(x+1)$, **f)** none of these.

Problem 3

The function $x^2 + 1$ is a composition of the form f(g(x)) where

a) $f(x) = x^2$ and g(x) = 1, b) $f(x) = x^2$ and g(x) = x + 1, c) f(x) = x + 1 and $g(x) = x^2$, d) f(x) = x and $g(x) = x^2$, e) $f(x) = (x + 1)^2$ and g(x) = -2x, f) none of these.

Problem 4

Which of the following functions is not defined for all real numbers

a) $f(x) = \cos(x^2)$, b) $f(x) = \ln(x^2 + 1)$, c) $f(x) = e^{\cos(x)}$, d) $f(x) = \ln(\sin(x))$, e) $f(x) = \sqrt{1 + \sin(x)}$, f) none of these.

Problem 5

Sketch

- 1. $y = -\frac{1}{4}x + 2$
- 2. $y = -x^2 + 2x + 1$.
- 3. $y = |1 + \frac{1}{x}|$

Solution of part two Use $-x^2 + 2x + 1 = -x^2 + 2x - 1 + 2 = -(x-1)^2 + 2$. Start with graph of standard parabola $y = x^2$ and apply reflection $x^2 \to -x^2$ and two shifts $-x^2 \to -(x-1)^2$ and $-(x-1)^2 \to -(x-1)^2 + 2$.

Problem 6

Find each of the following limits (or say that it doesn't exist)

- 1. $\lim_{x \to -1} \frac{x^2 6x 7}{x 7}$
- 2. $\lim_{x \to 7} \frac{x^2 6x 7}{x 7}$
- 3. $\lim_{x \to 0} \frac{|x|^3}{x^3}$
- 4. $\lim_{x\to 0} \frac{\sqrt{x+a}-\sqrt{a}}{x}$, a > 0 is an arbitrary real number.
- 5. $\lim_{s \to 0} s^2 \cos(s + 1/s)$.

Problem 7

Answer the following questions based on the graph of the function f below. Assume that the domain of the function is the set $-7 \le x < -5$ and $-5 < x \le 7$.

- 1. What f(-3)
- 2. Does $\lim_{x\to -3^-} f(x)$ exist? If it does, what is its value?
- 3. Does $\lim_{x\to -3^+} f(x)$ exist? If it does, what is its value?
- 4. Does $\lim_{x\to -3} f(x)$ exist? If it does, what is its value?
- 5. At what points f is continuous from the right but not from the left?
- 6. At what points f is discontinuous?

Problem 8

Consider the function

$$f(t) = \begin{cases} \frac{t}{t-1} & t \ge 0, t \ne 1 \\ t+1 & t < 0 \end{cases}$$

- 1. At which points is this function continuous?
- 2. Find the left and right limits, if they exist, at t = 0.

Problem 9 Explain, without using a graphing calculator, why the equation $x^5 = 3x - 1$ must have a solution with 0 < x < 1.

Problem 10 A package of spinach in New York City has 100 *E Coli* bacteria, and the number of bacteria in the spinach triples every hour.

- 1. Give a formula E(t) for the number of bacteria in the spinach after t hours.
- 2. How many bacteria are present after 4 hours?