
Lecture 5.Feynman graphsDavid Kazhdan5.1Feynman graph expansion. The technique of Feynman graphs allows one to writedown an asymptotic series for functional integral of a QFT in a neighborhood of a freeQFT (see Witten's lecture 1). Nevertheless, the technique itself can be applied to a purely�nite dimensional integral. In this lecture we will discuss this application only.Let V be a �nite dimensional real vector space, let V 0 be its dual. We will view elementsof symmetric algebra Sym(V 0) as polynomial functions on V . We �x a nondegeneratepositive de�nite quadratic form b 2 Sym2(V 0). Let b�1 2 Sym2(V ) be the correspondingquadratic form on V 0.Let �0 = e�b�1=2dv be the Gaussian measure on V 0; we have F(�0) = e�b=2.Let P be a polynomial function on V 0. We want to study the \perturbed" measure� = e"P�0. This is a well-de�ned measure if " > 0, and P is negative.We are going to write down an asymptotic expansion for the Fourier transform F(�).More precisely, we will obtain a formal Taylor series e� 2 C [[V 0; "]] in the following way.LetD(P ) be the di�erential operator with constant coe�cients on V corresponding to P .More precisely, D is a homomorphism of the algebra of polynomial functions on V 0 to thealgebra of di�erential operators with constant coe�cients on V , such that D(x) = i@=@xfor x 2 V .We write: F(e"P�0) = e"D(P )(e�b=2) = 1Xn=0 1n!"nD(P )n(e�b=2) :This is obviously an element of C [[V 0; "]].This formal power series is connected with the original analytical problem via the notionof Borel summability. However in this lecture we will be interested in the formal expressiononly. 1



It is notationally convenient to perform \Wick rotation". So we consider the seriese�(v) = F(e"P�0)(iv) = 1Xn=0 1n!"n bPn(eb=2) :where bP = D(P (�ix)), so that bx = @=@x.The series e� is de�ned for arbitrary nondegenerate quadratic form b, and a polynomialfunction P over any �eld of characteristic 0. (The condition on b to be positive de�nite isof course irrelevant in this setting.)There exists a combinatorial way to \compute" e�. To describe it we �rst �x somenotations.By a graph we will mean the data consisting of: two sets �1 (edges) and �0 (vertices)and a map j: �1 ! �0 � �0. We also assume an involution � of �1 is �xed such thatj(
) = (x; y) , j(�(
)) = (y; x), and � has no �xed points. We will only consider graphswith no isolated vertices (i.e. pr1 � j is surjective). An edge of a graph is an element of�1=�. For a vertex 
0 2 �0 we de�ne its \star" as �(
0) = f
1 2 �1j pr2 �j(
1) = 
0g. Theset of external vertices is �ex = f
0 2 �0j#(�(
0)) = 1g, and the set of inner vertices is�in = �0��ex. We put: L(
0) = Sym#(�(
0))(V ); eL(�) = 

02�0 L(
0); L(�) = 

2�inL(
).Assume that for any 
0 2 �0 we are given an element s(
0) 2 L(
0). We then take `s =

02�0 s(
0) 2 eL(�). For any map ~s: �0 ! V we de�ne s~s(
0) = (~s(
0))#(�(
0)) 2 L(
0),and denote `~s = `s~s.Lemma 1. There exists a unique linear function e��b on eL(�) such that for any map~s: �0 ! V we have:e��b (`~s) = 1#Aut(�) Y
12�1=� b (~s(pr1 � j(
1)); ~s(pr2 � j(
1))) :Proof is clear.We can view e��b as a map ��b : L(�) ! Sym#�ex(V 0).Example. �n is a disjoint union of n copies of the graph: � � . (The nonorientededge on the picture corresponds to two elements of �1 permuted by �.) Then L(�) = C2



canonically, because �in is empty. We have:��nb (1) = bn2nn! :Note the equality 1Pn=0 ��nb (1) = eb=2 where �0 is the empty graph.Let P , e� be as above. We write P = Pn�2Pn=n! where Pn is homogeneous of degree n(thus we assume for convenience that P contains no constant or linear term).Theorem. We have an equality of formal series:e� = �X�2g "#�in��b (sP )�eb=2Here g is the set of isomorphism classes of graphs and sP (
0) = P#�(
0).Proof. [Another proof appears in x1.3 of Witten's lecture 1].The idea of the proof is as follows. We want to prove an equality between two expres-sions, which are power series in " and in Pn's. We will show that both the left hand sideand the right hand side satisfy the same system of linear di�erential equations in Pn's asvariables, and then we will check that the initial conditions coincide.So, let � be a graph and let � � �ex, be such that j�j = n. We denote by �� the \coneover �". This means that �� is a graph, such that ��0 = �0 [ f�g � � and ��1 = �1 � falledges of � with an end in �g[fall edges from � to vertices connected with �g. (We add alledges connecting � to a vertex in �, and then erase the vertices belonging to �.) Assumenow that n > 1. Then � is an internal vertex of ��.For any d 2 Sn(V ) and s 2 L(�) we de�ne sd� = d
 s 2 L(��).Lemma 2. For any d 2 Sn(V ), � 2 g and s 2 L(�) we haved̂n! (�b(�)(s)) = X���ex;j�j=n �b(��)(sd�)(Here d̂ is the di�erential operator with constant coe�cients on V correspondingto d.)Now we can prove the theorem. Let l(P ) denote the left hand side and let r(P ) be theright hand side of the equality. We want to write down a certain system of di�erential3



equations in Pn's as variables, which will be satis�ed by both sides. It is easy to see fromthe de�nitions that l(P ) satis�es the system of equations@l(P )@Pn (Q) = (" bQ=n!)l(P )whereQ is an arbitrary polynomial of degree n on V 0 and bQ is the corresponding di�erentialoperator on V ; in the left hand side Q is considered as a tangent vector to the space ofpolynomials of degree n.But now Lemma 2 tells us precisely that the right hand side of this expression is equalto @r(P )@Pn (Q).Therefore l(P ) and r(P ) satisfy the same system of di�erential equations. Let's nowcheck the initial conditions. By the de�nition, l P=0 = eb=2. On the other hand, one alsohas r P=0 = eb=2 by the above Example. Hence we have l(P ) = r(P ) for any P , so thetheorem is proved.Remark 1. The theorem and its proof along with all the statements below can be immedi-ately generalized in the following way. We can take P to be an element of C [V ][["]] ratherthan a polynomial, i.e. P =P1m=0 "mP(m) is a Taylor series in " with polynomial functionson V 0 as coe�cients.Remark 2. This way of writing an asymptotic expansion for a measure uses Fourier trans-form, and hence the linear structure of V heavily. For example when one applies theFeynman graph expansion to the gauge theory, V being the space of connections modulogauge transformation, then V has no natural linear structure. In this case one still canwrite an asymptotic expansion for functional integral, but an individual term assigned toa particular graph is not canonically de�ned.We denote Z =P�2g ��b (sP )"#�in .One of the di�culties in using this expansion is that there are \too many" terms; so wetry to reduce it somehow. We denote F = P�2gcon ��b (sP )"#�in, where gcon is the set ofconnected nonempty graphs.Note that F (and all series that will be introduced below) lie in a subring C [V 0][["]] �C [[V 0; "]]. 4



Claim 1. F = log Z.Proof. Decomposing a graph into union of its irreducible components one can identify thetwo combinatorial expressions:Z =X�2g ��b = X�1;::;�k2gcon;n1;::;nk 1n1!n2!::nk!��1b : : : ��kb = exp(F )where the summation is over all sets of distinct elements �i 2 gcon.We next want to study the \quasi-classical approximation" to our integral. So weintroduce another variable ~ and consider the expression:F~(v) = log F�e(b�1=2+"P )=~dv� (~v) :As an immediate corollary to the Theorem, we get:Lemma 3. F~ = ~�1P�2gcon ~h1(�)��b (sP )"#�in where h1(�) = dim(H1(�)) = #�1=� �#�0.Proof. Apply the same formal procedure to the quadratic form ~b = ~b and polynomial eP =~�1P , and note that for a connected graph � we have ��~b(sP=~) (~v) = ~h1(�)�1��b (sP )(v).5.2 Quasi-classical (low-loop) approximations. Recall that the \classical" approx-imation to Fourier transform is the Legendre transform. An appropriate version of thede�nition of Legendre transform is as follows.If f is a function on V 0, then we can view its di�erential df as a map df : V 0 ! V .If df is an isomorphism then the Legendre transform of f is de�ned byL(f)(v) = 
v; (df)�1(v)�� f �(df)�1(v)�i.e. L(f)(v) is the critical value of the function v � f where v is considered as a linearfunction on V 0.Let now G 2 C [[V; "]] be a formal power series. Then its di�erential dG (in the V 0-direction) is an element of Hom(V 0; V )
 C [[V; "]].5



Assume that G = g0+ g1+ "G1 where g0 is a nondegenerate quadratic form on V 0, andg1 contains no terms of degree less then 3 in V . Then dG is invertible, i.e. there existsH = (dG)�1 2 Hom(V; V 0) 
 C [[V; "]] with no constant term such that dG � H = id andH � dG = id. In this situation the Legendre transform L(G) 2 C [[V 0; "]] can be de�ned bythe same formula.To describe the next term of the asymptotics we de�ne for any function f on V 0 asabove a new function H(f) on V as follows. Let Hessf (p) = det� @2f@vi@vj �jp be the Hessianof f (we assume that a constant volume form on V is �xed so that the determinant of thequadratic form is taken with respect to that volume form).We put: H(f)(v) = Hess �(df)�1(v)�.ForG = g0+g1+"G1 2 C [[V 0; "]] as above we can de�neHess(G) andH(G) 2 C [[V 0; "]]by the same formula.Claim 2. a) Let F0 =P�2T ��b (sP )"#�in , where T is the set of (nonempty) trees. ThenF0 is the Legendre transform of b�12 � "P .b) Let F1 = P�2g1 ��b (sP )"#�in where g1 is the set of one-loop connected graphs (i.e.graphs with h0(�) = h1(�) = 1. Then F1 = log�H� b�12 �"P ��1�. (We assume thatthe background volume form is such that det( b�12 ) = 1. Then H( b�12 � "P ) 2 1 +"C [[V 0; "]]+V 0C [[V 0; "]], and log(H( b�12 �"P )) is a well-de�ned element of C [[V 0; "]]).Proof of the Claim. From Lemma 3 we see that F~(v) = F0(v)=~ + F1(v) + O(~). Thusthe claim follows from the stationary phase approximation applied to the integralF(f)(iv) = 1(2�)d=2 ZV 0 e(v;p)+("P�b�1=2)(p)dpOne can also directly show the equality of the two combinatorial expressions:F0�d(b�12 � "P )jp� = b�12 (p) � "Xn Pn(n � 1)! (p) + "Xn Pnn! (p)= hp; d�b�12 � "P�jpi � (b�1=2� "P )�d(b�12 � "P )�(5.1) 6



and(5.2) F1�d(b�12 � "P )jp� = � logHess� b�12 � "P�Here (5.1) is equivalent to F0 = L� b�12 � "P � and (2) is equivalent to F1 = log�H� b�12 �"P ��1�.Let us sketch the combinatorial proof of (5.1) and (5.2).Let us identify V and V 0 by means of b and use an equality "#�in��b (sP )�d�b�12 �"P � =P(�1)ci"#�iin��ib (sP ) where the graph �i is obtained from the graph � by adding ci verticesof arbitrary valencies, each one of which is connected with an external vertex of � in sucha way that any external vertex of � is connected with no more then one new vertex.Now it is not hard to check that in the expansion of F0 � �d� b�12 � "P �� all terms with"i for i� 2 cancel, and identify the sum of remaining terms with the RHS of (5.1).Likewise in the expansion of F1 � �d�b�12 � "P �� only the terms with one-particle irre-ducible one-loop graphs (\circles") do not cancel; the sum of these terms is identi�ed withP1n=1 "itr(dP )n=n = � log det(Id� dP ) which coincides with the RHS of (5.2).5.3 E�ective potential. Let us call a nonempty graph 1-particle irreducible (or just 1-irreducible) if it is connected and remains connected after removal of any internal edge.To any connected graph there corresponds a unique tree with a 1-particle irreduciblegraph assigned to each vertex together with an identi�cation of the set of edges comingto a vertex of a tree with the set of external vertices of the corresponding graph. Thus\computation" of F0 can be reduced to summation over trees and over 1-particle irreduciblegraphs separately. Denote F1�irr = P�2g1�irr "#�in��b (sP ) where g1�irr is the set of 1-particle irreducible graphs. (Notice that the graph � � is 1-particle irreducible by thede�nition).Claim 3. F1�irr = b � b�(L(F )) where b is viewed as a map from V to V 0 and L is theLegendre transform.Proof. By Remark 1 after the proof of the theorem we can apply claim 2 to P 0 ="�1(b�1)�(F1�irr � b=2) 2 C [V 0][["]]. 7



From the above combinatorial observation we see that F = FP = (F0)P 0 . Hence claim2 implies that F = L(b�1=2� "P 0) = L �(b�1)�(b � F1�irr)�. Since Legendre transform isinvolutive we get the claim.F1�irr is called the e�ective potential of the theory.
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