Lecture 5.

Feynman graphs

David Kazhdan

5.1Feynman graph expansion. The technique of Feynman graphs allows one to write
down an asymptotic series for functional integral of a QFT in a neighborhood of a free
QFT (see Witten'’s lecture 1). Nevertheless, the technique itself can be applied to a purely
finite dimensional integral. In this lecture we will discuss this application only.

Let V be a finite dimensional real vector space, let V' be its dual. We will view elements
of symmetric algebra Sym(V’) as polynomial functions on V. We fix a nondegenerate
positive definite quadratic form b € Sym?*(V'). Let b~! € Sym?(V') be the corresponding
quadratic form on V.

Let g = e '/2dv be the Gaussian measure on V'; we have T (o) = e~¥/2.

Let P be a polynomial function on V'. We want to study the “perturbed” measure
1 = e“F g, This is a well-defined measure if ¢ > 0, and P is negative.

We are going to write down an asymptotic expansion for the Fourier transform F ().

More precisely, we will obtain a formal Taylor series @ € C[[V',¢]] in the following way.

Let D(P) be the differential operator with constant coefficients on V' corresponding to P.
More precisely, D is a homomorphism of the algebra of polynomial functions on V' to the
algebra of differential operators with constant coeflicients on V, such that D(x) = i9/0x
for x € V.

We write:
gj(eaPMO) _ <€D(P) —b/2 Z L —b/2)
n=0

This is obviously an element of C[[V', ¢]].
This formal power series is connected with the original analytical problem via the notion
of Borel summability. However in this lecture we will be interested in the formal expression

only.



It is notationally convenient to perform “Wick rotation”. So we consider the series

oo

i(v) = F(ePpo)(iv) = Y " Pr(e?).
n=0
where P = D(P(—iz)), so that 7 = 8/dx.

The series i is defined for arbitrary nondegenerate quadratic form b, and a polynomial
function P over any field of characteristic 0. (The condition on b to be positive definite is
of course irrelevant in this setting.)

There exists a combinatorial way to “compute” . To describe it we first fix some
notations.

By a graph we will mean the data consisting of: two sets I'; (edges) and I'g (vertices)
and a map j: 'y — I'g x I'gp. We also assume an involution o of I'y is fixed such that
J(v) = (2,y) & j(o(v)) = (y,x), and o has no fixed points. We will only consider graphs
with no isolated vertices (i.e. prj o j is surjective). An edge of a graph is an element of
I'y/o. For a vertex vg € I'g we define its “star” as I'(vo0) = {1 € T'1| pr20j(v1) = v }. The
set of external vertices is I'ex = {70 € I'o|#(I'(70)) = 1}, and the set of inner vertices is
Tin = To—Tex. We put: L(5o) = Sym# (0D (V) I(T) = 5 Loy L) = _ & L(y).

Assume that for any vo € I'g we are given an element s(yo) € L(~9). We then take (; =

@ s(y0) € Z(T) For any map $: I'o — V we define s3(vo) = (§(’70))#(F(70)) € L(7o),

~Yo€l'o
and denote (3 = (..

in

Lemma 1. There exists a unique linear function Tp on Z(T) such that for any map

5: g — V we have:

H ) = zxe LI 0 (3(ra 0 5(m)), 5(pra 0 () -
v €l /o

Proof is clear.

We can view ﬁf as a map T,F: L(T) — Sym#rex(vl)-

Example. '), is a disjoint union of n copies of the graph: e——e . (The nonoriented

edge on the picture corresponds to two elements of I'y permuted by ¢.) Then L(I') = C
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canonically, because T'j, is empty. We have:

() = 2

27 n! °
—~ T
Note the equality > 7, "(1) = ¢*/? where Ty is the empty graph.
n=0

Let P, i be as above. We write P = Y P,/n! where P, is homogeneous of degree n

n>2
(thus we assume for convenience that P contains no constant or linear term).

Theorem. We have an equality of formal series:
1= (el (o )
Teg

Here g is the set of isomorphism classes of graphs and sp(v0) = Pgr(+y)-

Proof. [Another proof appears in §1.3 of Witten’s lecture 1].

The idea of the proof is as follows. We want to prove an equality between two expres-
sions, which are power series in ¢ and in P,’s. We will show that both the left hand side
and the right hand side satisfy the same system of linear differential equations in P,,’s as
variables, and then we will check that the initial conditions coincide.

So, let T’ be a graph and let A\ C I'ey, be such that |A\| = n. We denote by I'* the “cone
over \”. This means that I'* is a graph, such that I} =Ty U {*} — A and '} = T'; — {all
edges of I with an end in A} U{all edges from * to vertices connected with A\}. (We add all
edges connecting * to a vertex in A, and then erase the vertices belonging to A.) Assume

now that n > 1. Then * is an internal vertex of T'*.

For any d € S"(V) and s € L(I') we define si =dwse L(F)‘).

Lemma 2. For any d € S™(V), I' € g and s € L(T") we have

~

Came) = Y weh

n!
)\CFex7|)‘|:n
(Here d is the differential operator with constant coefficients on V  corresponding

to d.)

Now we can prove the theorem. Let [(P) denote the left hand side and let r(P) be the

right hand side of the equality. We want to write down a certain system of differential
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equations in P,’s as variables, which will be satisfied by both sides. It is easy to see from

the definitions that [(P) satisfies the system of equations

2@ = @imicr)

where () is an arbitrary polynomial of degree n on V' and @ is the corresponding differential
operator on V; in the left hand side () is considered as a tangent vector to the space of
polynomials of degree n.

But now Lemma 2 tells us precisely that the right hand side of this expression is equal
to B (Q):

Therefore [(P) and r(P) satisfy the same system of differential equations. Let’s now

check the initial conditions. By the definition, Z‘P—o = ¢%/2. On the other hand, one also
has T‘P_O = /2 by the above Example. Hence we have I[(P) = r(P) for any P, so the

theorem is proved.

Remark 1. The theorem and its proof along with all the statements below can be immedi-
ately generalized in the following way. We can take P to be an element of C[V|[¢] rather
than a polynomial, i.e. P =3 " _ £™ Py 1s a Taylor series in ¢ with polynomial functions

on V' as coefficients.

Remark 2. This way of writing an asymptotic expansion for a measure uses Fourier trans-
form, and hence the linear structure of V heavily. For example when one applies the
Feynman graph expansion to the gauge theory, V' being the space of connections modulo
gauge transformation, then V has no natural linear structure. In this case one still can
write an asymptotic expansion for functional integral, but an individual term assigned to

a particular graph is not canonically defined.

We denote Z = El“eg i (sp)e?lin,

One of the difficulties in using this expansion is that there are “too many” terms; so we
try to reduce it somehow. We denote F = ZFEgcon TbF(Sp)aS#Fin, where geon is the set of
connected nonempty graphs.

Note that F' (and all series that will be introduced below) lie in a subring C[V'][e] C
C[V',€].



Claim 1. F =log Z.

Proof. Decomposing a graph into union of its irreducible components one can identify the

two combinatorial expressions:

1
Z:ZTIF: Z 77’51...7{"“:@@(}—’)
nilnatl..ng!
FEE F17"7Fk€gcon§n17"7nk

where the summation is over all sets of distinct elements I'; € geon-

We next want to study the “quasi-classical approximation” to our integral. So we

introduce another variable i and consider the expression:
Frp(v)=log F <e<b_1/2+8p)/hdv> (hv) .

As an immediate corollary to the Theorem, we get:

Lemma 3. Fj =h~' Yo hF Ol (sp)e#Tin where h1(T) = dim(HY(T)) = #I'1 /0 —
4T,

Proof. Apply the same formal procedure to the quadratic form b = kb and polynomial P=
h~!P, and note that for a connected graph I' we have T,l;b(SP/h) (hv) = hhl(r)_lrlf(SP)(v).

5.2 Quasi-classical (low-loop) approximations. Recall that the “classical” approx-
imation to Fourier transform is the Legendre transform. An appropriate version of the
definition of Legendre transform is as follows.

If fis a function on V', then we can view its differential df as a map df: V' — V.

If df is an isomorphism then the Legendre transform of f is defined by

L(f)(v) = v, (df) " (v)) = £ ((df) "' (v))

ie. L(f)(v) is the critical value of the function v — f where v is considered as a linear
function on V.
Let now G € C[V,¢] be a formal power series. Then its differential dG (in the V'-

direction) is an element of Hom(V', V) @ C[V, ¢].
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Assume that G = go + g1 + ¢G1 where gg is a nondegenerate quadratic form on V', and
g1 contains no terms of degree less then 3 in V. Then dG is invertible, i.e. there exists
H = (dG)™' € Hom(V, V') @ C[V,¢] with no constant term such that dG o H = id and
H o0 dG =id. In this situation the Legendre transform L(G) € C[[V',¢]] can be defined by
the same formula.

To describe the next term of the asymptotics we define for any function f on V' as
above a new function H(f) on V as follows. Let Hess¢(p) = det(%) |, be the Hessian
of f (we assume that a constant volume form on V is fixed so that the determinant of the
quadratic form is taken with respect to that volume form).

We put: H(f)(v) = Hess ((df)~"(v)).

For G = go+¢1+cG1 € C[[V',¢]] as above we can define Hess(G) and H(G) € C[[V',¢]]

by the same formula.

Claim 2. a) Let Fo = Y pcp i (sp)e?lin where T is the set of (nonempty) trees. Then

Fy 1s the Legendre transform of % —eP.

b) Let Fy = 5 7 (sp)e™'in where gy is the set of one-loop connected graphs (i.e.
Tem

graphs with h°(T) = h1(T') = 1. Then Fy = 10g<H<% —5P>_1>. (We assume that
the background volume form is such that det(%) = 1. Then H(% —eP)el+
eC[V', e]+V'C[V',e], and log(H(% —eP)) is a well-defined element of C[V', ]).

Proof of the Claim. From Lemma 3 we see that Fp(v) = Fy(v)/h 4+ Fi(v) + O(h). Thus

the claim follows from the stationary phase approximation applied to the integral

. 1 v eP—p1
TF)iv) = oy /€< PP g,
V/

One can also directly show the equality of the two combinatorial expressions:
b1 b1 P, P,
Fold(—— —eP =—(p) — —
o (05 = PIb) = 50— 3 o <3 T
-1 -1

(5.1) - @,d(% - 5P> ) — (571 /2 — 5P)<d(b7 - 5P)>
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and
b1 b1
(5.2) P (d(7 - 5P)|p> — _log H633<7 - 5P>

Here (5.1) is equivalent to Fy = L(% — 5P> and (2) is equivalent to F} = 10g<H<% —
eP) _1).

Let us sketch the combinatorial proof of (5.1) and (5.2).

Let us identify V and V' by means of b and use an equality e#Tint] (sp)o d(% — 5P> =
E(—l)cie#rfnrgi (sp) where the graph T is obtained from the graph I' by adding ¢; vertices
of arbitrary valencies, each one of which is connected with an external vertex of I' in such
a way that any external vertex of I' is connected with no more then one new vertex.

Now it is not hard to check that in the expansion of Fy o (d(% — 5P>> all terms with
gt for i > 2 cancel, and identify the sum of remaining terms with the RHS of (5.1).

Likewise in the expansion of Fj o (d(% — 5P>> only the terms with one-particle irre-

ducible one-loop graphs (“circles”) do not cancel; the sum of these terms is identified with

S etr(dP)" /n = —log det(Id — dP) which coincides with the RHS of (5.2).

5.3 Effective potential. Let us call a nonempty graph 1-particle irreducible (or just I-
irreducible) if it is connected and remains connected after removal of any internal edge.
To any connected graph there corresponds a unique tree with a 1-particle irreducible
graph assigned to each vertex together with an identification of the set of edges coming
to a vertex of a tree with the set of external vertices of the corresponding graph. Thus
“computation” of Fy can be reduced to summation over trees and over 1-particle irreducible
graphs separately. Denote Fj_j, = ZFEgl_m 5#Fi“7'£(3p) where gi_i;; is the set of 1-
particle irreducible graphs. (Notice that the graph e——e is l-particle irreducible by the
definition).

Claim 3. Fi_j,, = b—b*(L(F)) where b is viewed as a map from V to V' and L is the

Legendre transform.

Proof. By Remark 1 after the proof of the theorem we can apply claim 2 to P’ =
e (™Y (Fizine — b/2) € C[V'][¢].



From the above combinatorial observation we see that ' = Fp = (Fy)pr. Hence claim
2 implies that F = L(b~!/2 —eP') = L ((b_l)*(b — Fl—irr))- Since Legendre transform is

involutive we get the claim.

F|_i;; 1s called the effective potential of the theory.



