
(1) Let M be a �xed Riemannian manifold, and let X : R ! M be a map from thet-line R (endoowed with the metric (dt)2) to M .Let L = 12 Z dtgIJ dXIdt dXjdt : (1)(a) Describe the space W of critical points of L. (You should �nd that it is closelyrelated to the space of geodesics on M .)(b) Show that given any choice of a point t0 2 R, W has a natural identi�cation withT �M . (Use the metric on M to identify TM and T �M .)(c) Compute the symplectic structure ! on W . Show that for any choice of t0, Wbecomes identi�ed (under the identi�cation in (b)) with T �M with its natural symplecticstructure.(c) The vector �eld d=dt on R induces a vector �eld v on W . The \Hamiltonian" isa function H on W such that dH = iv!: (2)This is usually expressed by saying that \H generates time translations via Poissonbrackets." Compute H.(2) Consider R1;1 with even and odd coordinates t and � and an odd distribution Agenerated by the vector �eld D = @@� � � @@t : (3)Thus, D2 = �@=@t.As in the last exercise, let M be a �xed Riemannian manifold. Let X be a map fromR1;1 to M . Consider the LagrangianL = 12 ZR1;1 gIJ @XI@t DXj : (4)(a) Make sense of the de�nition of L by interpreting the integrand as a section of theBerezinian of the tangent bundle of R1;1.(b) Setting XI = xI + � I , write L explicitly as an ordinary integral, over the t-lineR1;0, of a function of xI and  I .(c) Describe the space Y of critical points of L. You should get a description of thefollowing kind. Describe the reduced space Yred as an ordinary manifold, and the normal1



bundle to Yred in Y as �V , where V is a vector bundle over Yred. What are the \initialdata" at a given point t = t0 in R1;1 needed to determine a critical point? (This is theanalog of problem 1(b) above.)(d) Compute the symplectic structure on Y .(e) The vector �elds @@� + � @@t and @@t (5)induce vector �elds on Y . Find the functions Q and H that generate these vector �eldsby Poisson brackets. Explain why fQ;Qg = 2H.
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Witten's Problems, Set One | No. 2 (solution written by P. Deligne & D. Freed)Preface.The space of maps from R1;1 to M is some kind of in�nite dimensional supermanifoldF. We will not try to de�ne it as a topological space provided with a sheaf of R-algebras.We will only de�ne it as a functor: for B a supermanifold, a map from B to F is byde�nition a morphism R1;1 �B !M . It is also called a B-point of F, and it is viewed asa family of points parametrized by B. In the exercise, the phrase \let X be a map fromR1;1 to M" is an abuse of language for \let X be a map from R1;1 to M , depending onsome parameter b 2 B, for some super space B", i.e. \let B be a supermanifold and let Xbe a map from R1;1 �B to M".This kind of interpretation of what a space of maps is does not apply only in thesuperworld. If we were to consider (as in exercise 1) the space of maps from R to M ,one could try to put on it a structure of in�nite dimensional manifold but, for the kindof problem we are considering, this is extra baggage. What is important is to know, forB a space \of parameters" (now an ordinary manifold), what is a family of maps R!Mparametrized by B.\Working in components" means reinterpreting the functor B 7! B-points of F asfollows.A morphism X: R1;1�B !M gives us(a) a restriction x: R�B !M . We view here R as the subvariety � = 0 of R1;1,(b) an odd section  := @@� X R�B of the pullback by x of the tangent bundle T of M .The construction X 7! (x;  ) is a bijection. Note that x�T is an \even vector bundle",in the sense that it is of rank (�; 0). This does not prevent it from having odd sections,forinstance the product of the pullback of a section of T with an odd function on B.This will usually be expressed with the abuse of language consisting in omitting B: abasis B is tacitly assumed to always be there, and one will say that to give a morphismX from R1;1 to M is the same thing as to give its restriction x to R and its derivative = @@�X on R which is an odd section of x�T . Taken literally, this statement would be1



useless: with no B tacitly assumed, the even vector bundle x�T would have no nonzeroodd section. When a B is present, one should beware that to give x: R� B ! M is notjust giving a morphism from R�Bred to M .The lagrangian density is a map from F := Hom(R1;1;M) to the space of densities onR1;1. This is to be interpreted in its functorial meaning. A family of densities on R1;1,parametrized by B, is by de�nition a section on R1;1�B of the pullback of the line bundleof densities on R1;1. The lagrangian density attaches, functorially in B to any family ofmaps from R1;1 to M parametrized by B, a family of densities on R1;1 parametrized by B.\Families of densities" are also called \relative densities". An integrationmap is de�ned,which to a relative density on V �B overB with support proper over B, attaches a functionon B. If V is a supermanifold of dimension (p; q), the line bundle of relative densities is ofdimension (1; 0) or (0; 1), depending on the parity of q, and the integration map is even.The spaces of critical points of the lagrangian is a subspace of the space of all maps fromR1;1 to M . As such, it is �rst to be de�ned as a functor: one has to de�ne what it meansfor a map X: B ! Hom(R1;1;M), i.e. R1;1�B ! M , to be a map to the subspace S ofHom(R1;1;M). The following two de�nitions are equivalent, with the second being closerto what is done in computations.(i) For any supermanifold V , pointed by o 2 V , and any XV : B � V ! Hom(R1;1;M),such that (a) it extends X: X is XV restricted to B � 0, (b) outside a compact regionof R1;1, XV coincide with X (XV is a family of deformations of X, with compact support,parametrized by V ), the following holds. Consider L(XV ) � L(X), where L(X) is abuseof language for \pullback of L(X) by R1;1 � B � V ! R1;1� B. It is a relative densityon R1;1 � B � V with support proper over B � V . Integrate it, to get a function � R Lon B � V . One requires that the derivative of this function in the V -direction be zero onB � f0g � B � V .(ii) In the second de�nition, one requires that after any change of basis B0 ! B, (i) holdsfor V = (R; 0).This de�nes the space of stationary points as a functor. In the exercise at hand, andassuming M to be complete, this functor is representable: the space of stationary points2



\is" an ordinary supermanifold of dimension (2 dim M;dim M), as we will see.Solution. (a) The coordinates (t; �) on R1;1 de�ne a density [t; �], also written dt d��1.The lagrangian density considered is(2.1) L = � 12 dt d��1( _X;DX):The minus sign is to make (2.5) below reasonable.(b) If we choose local coordinates ~xi on M , a map X: R1;1!M can be writtenX = (xi(t) + � i(t));meaning X�~xi = xi(t) + � i(t) with xi(t) (resp.  i(t)) an even (resp. odd) function on R,pulled back to R1;1 by (t; �) 7! t. Independently of the local coordinates, x is a map from RtoM and  is an odd section of x�T , for T the tangent bundle ofM . The meaning of this,and in particular of \odd section of x�T", was explained in the preface. The philosophy isthat we tacitly work over a basis B, functorially in B. The map x is the restriction of Xto the subvariety R of R1;1 de�ned by � = 0, while  is the restriction of @�X to R. OnR, the vector �elds @� and D are equal, and it will often be more convenient to describe  as the restriction of DX to R. We will compute the density L on R1;1 in term of (x;  ).In local coordinates, L is �dt d��1 times(2.2) 12X�(gij)@t(X�(~xi))D(X�(~xj )):As �2 = 0, X�(gij) is given by a �nite Taylor seriesX�(gij) = gij(x(t) + � (t)) = gij + � k@kgijwith gij , @kgij and  k evaluated at x(t) and t. Expanding (2.2) gives12 (gij + � k@kgij)( _xi + � _ i)( j � � _xj )(2.3) = 12gij _xi j + 12�(gij _ i j + @kgij _xi k j � gij _xi _xj ):As  k j = � j k, we have@kgij k j = �@jgik k j . As gij = gji, we similarly have@igjk k j = 0, and @kgij k j = 12(@kgij � @jgik + @igjk) = g`j�ìk;3



where the � are the Christo�el symbols de�ning the Levi-Civita connection. In (2.3), thisallows us to rewritegij _ i + @kgij _xi k = gij _ i + g`j�ìk _xi k = gij(rt )i;giving for (2.2) 12gij _xi j + 12�(gij(rt )i j � gij _xi _xj )= 12 ( _x;  ) + 12�((rt ; ) � ( _x; _x)):(2.4)Here is a shortcut from (2.3) to (2.4). Write (2.2) in the form f(t) + �g(t). We have tocompute f(t0) and g(t0) for each t0. We now remember that we always work over a spaceB of parameters. The point t0 is in fact a section of R� B ! B. The local coordinates~xi used can be taken to vary with the parameters. This makes it possible to choose themso that at x(t0), i.e. along the section x(t0) of M � B ! B, the metric tensor gij hasvanishing �rst derivatives. The Christo�el symbols then vanish at x(t0), and (2.4) at t0results immediately from (2.3).Here is a coordinate free derivation of (2.4). We use that for any function F on R1;1, ifwe write F (t; �) = f1(t) + �f2(t), we havef1 = F restricted to Rf2 = DF restricted to R :We have  = DX restricted to R, so that for F = ( _X;DX), f1 is ( _x;  ), while f2 is therestriction to R of D( _X;DX) = (rD _X;DX) + ( _X;rDDX):The Levi-Civita connection is torsion free, and D and @t commute, while D2 = 12 [D;D] =�@t. It follows that rD _X = rtDXrDDX = 12 (rDDX +rDDX) = �@tX4



and D( _X;DX), restricted to R, is (rt ; ) + ( _X;� _X):This agrees with (2.4).Let L0 be the density on R deduced from L by integrating along the �bres of theprojection from R1;1 to R given by (t; �) 7! t. From (2.4), we get(2.5) L0 = 12 ( _x; _x)dt � 12 (rt ; )dtThe space of critical points is the same for L and L0: it is the space of X = (x;  ) suchthat, for any deformation with compact support X(u) of X, one has R @uL = 0 (resp.R @uL0 = 0) at u = 0, and the density @uL0 on R is deduced by �-integration from thedensity @uL on R1;1.(c) The computation of the Euler-Lagrange equations is parallel to the computations inproblem 1. If X depends on an additional parameter u, and if � stands for @u or ru, onehas �( _X;DX) = (� _X;DX) + ( _X; �DX) = (rt�X;DX) + ( _X;rD�X)= @t(�X;DX) � (�X;rtDX) +D( _X; �X) � (rD _X; �X):As rtDX = rD _X, this gives(2.6) �L = �dt d��1 h�(�X;rtDX) + 12 (@t(�X;DX) +D( _X; �X))i :The vector �elds @t and D are divergence free: the corresponding Lie derivative killsdt d��1. It follows that dt d��1 multiplied by the second term in [ ] of (2.6) is an exactdi�erential (see (d) below) and the Euler-Lagrange equation is(2.7) rtDX = 0:In the computation leading to (2.6), we took the additional parameter u, and hence �X,to be even. Why this su�ces is explained in Deligne's appendix \Even rules" to Bernstein'slecture. Basically, an odd �X can be replaced by "�X, for " a new odd parameter.5



To express (2.7) in term of the components (x;  ) of X, one restricts rtDX andrDrtDX to R� R1;1 (� = 0). As R� R1;1 is stable by @t, the �rst gives(2.8) rt = 0:For the second, permuting rD and rt introduces a curvature term, while rDDX = �@tX:one obtains(2.9) R( ; _x) �rt _x = 0Another method to obtain the Euler-Lagrange equations (2.8) (2.9) is to start from thelagrangian L0 (2.5).Writing again � for @u or ru, we have�L0 = (� _x; _x)dt � 12((�rt ; ) + (rt ; � ))dtPermuting � and rt introduces a curvature term:�rt = R(�X; _x) +rt� :Integrating by part: (rt� ;  ) = @t(� ;  ) � (� ;rt )(� _x; _x) = (rt�x; _x) = @t(�x; _x) � (�x;rt _x)and observing that (� ;rt ) = �(rt ; � ), we obtain�L0 = � �(rt ; � ) + 12 (R(�x; _x) ; ) + (�x;rt _x)� dt+ d �(�x; _x) � 12(� ;  )�The Bianchi identity tells that if in (R(�x; _x) ; ) we cyclically permute �x,  and  ,taking parities into account, the sum is zero:(R(�x; _x) ; ) � (R( ; _x)�x;  ) + (R( ; _x) ; �x); hence(R(�x; _x) ; ) = �2(R( ; _x) ; �x):6



We obtain �L0 =� [(rt ; � ) + (rt _x �R( ; _x) ; �x)]dt(2.10) + d �(�x; _x)� 12 (� ;  )� ;giving again (2.8) and (2.9) as Euler-Lagrange equations.The space Y of critical points of L or L0 is hence the space of solutions (x;  ) of (2.8),(2.9). The reduced space Yred is obtained by imposing  = 0: It is the space found inproblem 1, the space of solutions x(t) of rt _x = 0.The normal bundle of Yred in Y is found by linearizing (2.8), (2.9) around  = 0: it isthe odd vector bundle whose (even) sections are the odd sections  of x�T obeying rt = 0.The Cauchy data for (2.8) (2.9) are the data at some t0 of x(t0), _x(t0) and  (t0). Interm of X: X, _X and DX at (t0; 0). If M is complete, Y maps isomorphically to thespace of Cauchy data. This gives a description of Y as the vector bundle T ��T over M(viewed as a space). In particular, we get a description of Y as an odd vector bundle overYred. Warning: this structure, and even the corresponding map Y ! Yred, depend on thechoice of t0.(d) The 2-form ! on the space Y of critical points can be computed using L or L0. We�rst use L0. The general recipe is to �x t0, to extract from (2.10) the 1-form(2.11) �t0 = (�x; _x) � 12 (� ;  ) (at t0)on Y and to take ! = d�t0.Let us identify Y with the space of Cauchy data at t0 = 0: a point of Y becomesa triple (x; _x;  ) with x a point of M , _x an (even) tangent vector at x and  an (odd)tangent vector at M . If we identify the tangent bundle with the cotangent bundle usingthe riemannian metric, Y becomes the pull back to T �M of the odd tangent bundle ofM . The term (�x; _x) in (2.11) becomes the pull back to Y of the canonical 1-form pdq onT �M , and contributes to ! the pull back of the symplectic form dp dq of T �M .The second term in (2.11) makes sense whenever on a manifold X (here T �M) oneconsiders an odd vector bundle �T , for T an orthogonal vector bundle with connection7



(here the pull back of the tangent bundle of M). It is the 1-form whose pull back by anysection  (an odd section of T ) is � 12 (r ; ). Its exterior derivative is the 2-form !Twhose pull back by any  is given in local coordinates by �(!T )i;j = � 12@i(rj ; ) + 12@j(ri ; )= � 12 (rirj ; ) � 12(rj ;ri )+ 12(rjri ; ) + 12(ri ;rj )= � 12 (Rij ; ) + (ri ;rj )for R the curvature 2-form (with values in endomorphisms of T ), i.e. �!T = 12 (r ;r )� 12 (R ; )where the �rst term combines inner product (in T ) and exterior product of di�erentialforms. Final result:(2.12) ! = !T�M + 12 (r ; ) � 12(R ; ):To compute in terms of L, one should start with the second term in (2.6) beingd h12 it(�dt d��1(�X;DX)) + 12 iD(dt d��1( _X; �X))i :In [ ], we have a 1-form A on the space of X, with values in integral codimension 1-formson R1;1. The general recipe is to �x a space-like hypersurface �, for instance t = t0, tointegrate A on � to get a 1-form �� on Y , and to take ! = d��.The restriction of iX( : : : ) to � depends only on the component of X normal to �. If �is t = t0, we haveit(dt d��1) � = d��1 and iD(dt d��1) � = ��it(dt d��1) �;giving A � = �12d��1(�X;DX) � 12�d��1( _X; �X):8



The integral of d��1f on � is simply @�f , or Df , evaluated at (t0; 0):Z�A = � 12D(�X;DX) + 12 ( _X; �X) at (t0; 0)= � 12 (rD�X;DX) � 12 (�X;rDDX) + 12 ( _X; �X) at (t0; 0)We have rD�X = � and rDDX = � _x, at (t0; 0), so that (not surprisingly)(2.13) �� is given by (2.11):(e) The space R1;1 is a group for the group law(t; �) � (t0; �0) = (t + t0 + ��0 ; � + �0):Let us compute the bracket in the Lie algebra Lie(R1;1), identi�ed with the tangent space toR1;1 at (0; 0). To @� at (0; 0) correspond over the odd dual numbersR["] the \in�nitesimal"element (0; "), whose left translate by (t; �) is (t+ �"; �+ ") = (t� "�; �+ "), correspondingto the left invariant vector �eld @� � �@t = D. Similarly, @t at (0; 0) is the value at (0; 0)of the left invariant vector �eld @t. On R1;1, D2 = �@t. It follows that(2.14) in Lie(R1;1); @2� = �@t:On R1;1, the vector �elds D, @t and the density dt d��1 are invariant by the group ofleft translations. Being built from them, so is X 7! L(X).For a while, let us consider more generally maps X: V ! M and a lagrangian densityL(X) on V , with X 7! L(X) invariant by a group G acting on V . We also suppose givena G-stable cohomology class of \space like" hypersurfaces �, and assume that the corre-sponding 2-form ! on the space Y of extremals is non degenerate. To each � correspondsa 1-form �� on Y , with ! = d�� and(2.15) �� � �� = dZ �� L:By transport of structures, the group G acts on Hom(V;M), respects Y and !, andg�(��) = �g�. For � 2 Lie(G), we will write [� ] for the vector �eld@�X(gv) at X(v)9



on Hom(V;M). The derivation is taken in g, at g = e. The action of G on Hom(V;M) isg: X 7! X(g�1v); it induces � 7! �[� ] from Lie(G) to vector �elds on Hom(V;M). For afunction on Hom(V;M), one has@� (gF ) = @� (F (g�1X)) = [� ]F ; and(2.16) � 7�! [� ] is compatible with brackets:(2.17)For � 2 Lie(G), we now compute a generating function T (� ) for the symplectic vector�eld [� ] on E: �dT (� ) = i[� ]!. One has ! = d��, hencei[� ]! = L[� ]�� � di[� ]��:The Lie derivative is L[� ]�� = @�g�� = @��g�with @� being a derivative in g at g = e. By (2.15), this equals @�d R g�� L, and we take(2.18) T (� ) = i[� ]�� � @� Z g�� L:It is independent of the choice of �:�i[� ]�� � @� Z g�� L���i[� ]�� � @� Z g�� L�= i[� ]dZ �� L� @� Z g�g� L = [� ]Z �� L� @� Z g�g� L;and [� ]Z �� L(X) = @� Z �� L(X(gv)) = @� Z g�g� L(X):It follows from (2.17) that, up to a constant,(2.19) T ([�1; �2]) = fT (�1); T (�2)g = [�1]T (�2):In fact, (2.19) holds exactly: as T is independent of �, we have by transport of structures(2.20) gT (�2) = T (ad g(�2)):10



By (2.16) and the linearity of T (� ) in � , (2.19) follows from (2.20) by applying the derivative@� in g.We now take V = R1;1, with the supergroup G = R1;1 acting by left translations. Thein�nitesimal left translation (right invariant vector �eld) @� (gv) in R1;1 isD+ = @� + �@t for � = (@� at (0; 0));@t for � = (@t at (0; 0))and the vector �eld [� ] on Hom(R1;1; V ) is, respectively, D+X at X and @tX at X. Thegenerating functions are given by (2.18): respectivelyQ = i[@� ]�� � @� Z (0;�)�� L and(2.21) H = i[@t]�� � @t Z (t;0)
� L;with the derivation evaluated at � (resp. t) = 0. Take for � the hypersurface t = 0. Itstransform by (0; �) is the hypersurface t � �� = 0. Let Y be the function on R equal to 1for x < 0 and to 0 for x > 0. We haveY (t� ��) = Y (t) + ���(t)and it follows that at � = 0,@� Z (0;�)�� L = @� Z (Y (t� ��) � Y (t))L= Z ��(t)L:Similarly, @t Z (t;0)�� L = Z �(t)L:If L = dt d��1L, as �d��1 = �d��1�, we get@� Z (0;�)�� L = �L(0; 0)(2.22) @t Z (t;0)�� L = (@�L)(0; 0) = DL(0; 0):11



We now apply this to our L (2.1). Let us identify the space of extremals Y to the spaceof Cauchy data (x; _x;  ) at (0; 0). The 1-form � = �� is given by (2.11): for a variationof (x; _x;  ), it is (�x; _x) � 12 (� ;  ), with � a covariant derivative. The vector �eld [� ] isgiven by @� (in g) [Cauchy data for X(g(t; �)]= rt[X(t; �); �tX(t; �);DX(t; �)] at (0; 0)for X the extremal with the given Cauchy data. This gives�x � _x � [@�]  rD _X (0;0) = 0 rDDX (0;0) = � _x[@t] _x rt _X (0;0) rtDX (0;0) = 0and i[� ]� isfor [@�]: ( ; _x)� 12 (� _x;  )for [@t]: ( _x; _x).From (2.21) and (2.22), we getQ = ( ; _x) � 12 (� _x;  ) � 12 ( _x;  ) = ( ; _x)H = ( _x; _x)�D ��12 ( _X;DX)� (0;0) = 12 ( _x; _x)as rD _X = rtDX = 0 and rDDX = � _x.By (2.14), (2.17) and (2.19), one hasfQ;Qg = [D+]Q = �H:Veri�cation: [D+]( ; _x) = (� _x; _x).
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