(1) Let M be a fixed Riemannian manifold, and let X : R — M be a map from the
t-line R (endoowed with the metric (dt)?) to M.

Let
1 / dXT dX)

L==[dt - 1
5 | I T T (1)

(a) Describe the space W of critical points of L. (You should find that it is closely
related to the space of geodesics on M.)

(b) Show that given any choice of a point ¢ € R, W has a natural identification with
T*M. (Use the metric on M to identify TM and T*M.)

(¢) Compute the symplectic structure w on W. Show that for any choice of to, W
becomes identified (under the identification in (b)) with 7% M with its natural symplectic
structure.

(¢) The vector field d/dt on R induces a vector field v on W. The “Hamiltonian” is
a function H on W such that

dH = i,w. (2)

This is usually expressed by saying that “H generates time translations via Poisson
brackets.” Compute H.
(2) Consider R with even and odd coordinates ¢t and 6 and an odd distribution A
generated by the vector field
p=2 49 (3)
00 ot
Thus, D? = —9/0t.

As in the last exercise, let M be a fixed Riemannian manifold. Let X be a map from

R'! to M. Consider the Lagrangian

1 ox! ,
L= —/ gri——DX". (4)
Rl 8t

(a) Make sense of the definition of L by interpreting the integrand as a section of the
Berezinian of the tangent bundle of R

(b) Setting X! = af + 6!, write L explicitly as an ordinary integral, over the t-line
R'°, of a function of =’ and .

(¢) Describe the space Y of critical points of L. You should get a description of the

following kind. Describe the reduced space Y,.4 as an ordinary manifold, and the normal
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bundle to Y,.q in Y as IIV, where V is a vector bundle over Y,.4. What are the “initial
data” at a given point t = ¢35 in R needed to determine a critical point? (This is the
analog of problem 1(b) above.)
(d) Compute the symplectic structure on Y.
(e) The vector fields
% -I-G% and % (5)
induce vector fields on Y. Find the functions ) and H that generate these vector fields

by Poisson brackets. Explain why {Q,Q} = 2H.



Witten’s Problems, Set One — N°. 2 (solution written by P. Deligne & D. Freed)

Preface.

The space of maps from R'! to M is some kind of infinite dimensional supermanifold
F. We will not try to define it as a topological space provided with a sheaf of R-algebras.
We will only define it as a functor: for B a supermanifold, a map from B to F is by
definition a morphism R x B — M. It is also called a B-point of &, and it is viewed as
a family of points parametrized by B. In the exercise, the phrase “let X be a map from
RY! to M” is an abuse of language for “let X be a map from RY! to M, depending on
some parameter b € B, for some super space B”, 1.e. “let B be a supermanifold and let X
be a map from R' x B to M”.

This kind of interpretation of what a space of maps is does not apply only in the
superworld. If we were to consider (as in exercise 1) the space of maps from R to M,
one could try to put on it a structure of infinite dimensional manifold but, for the kind
of problem we are considering, this is extra baggage. What is important is to know, for
B a space “of parameters” (now an ordinary manifold), what is a family of maps R — M
parametrized by B.

“Working in components” means reinterpreting the functor B +— B-points of F as
follows.

A morphism X: RY! x B — M gives us

(a) a restriction 2: R x B — M. We view here R as the subvariety § = 0 of R,

(b) an odd section ¢ := % X‘RxB of the pullback by = of the tangent bundle T of M.

The construction X +— (x,1) is a bijection. Note that *T is an “even vector bundle”,
in the sense that it is of rank (*,0). This does not prevent it from having odd sections,for
instance the product of the pullback of a section of T" with an odd function on B.

This will usually be expressed with the abuse of language consisting in omitting B: a
basis B is tacitly assumed to always be there, and one will say that to give a morphism
X from RY! to M is the same thing as to give its restriction z to R and its derivative

Y = %X on R which is an odd section of x*T. Taken literally, this statement would be
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useless:  with no B tacitly assumed, the even vector bundle #*T would have no nonzero
odd section. When a B is present, one should beware that to give x: R x B — M 1is not
just giving a morphism from R x By.q to M.

The lagrangian density is a map from F := Hom(R!!, M) to the space of densities on

R This is to be interpreted in its functorial meaning. A family of densities on R1:!,
parametrized by B, is by definition a section on R!*! x B of the pullback of the line bundle
of densities on R''!. The lagrangian density attaches, functorially in B to any family of
maps from RY! to M parametrized by B, a family of densities on RY! parametrized by B.

“Families of densities” are also called “relative densities”. An integration map is defined,
which to a relative density on V' x B over B with support proper over B, attaches a function
on B. If V is a supermanifold of dimension (p, ¢), the line bundle of relative densities is of
dimension (1,0) or (0,1), depending on the parity of ¢, and the integration map is even.
The spaces of critical points of the lagrangian is a subspace of the space of all maps from
RY! to M. As such, it is first to be defined as a functor: one has to define what it means

for a map X: B — Hom(R"! M), i.e. RY! x B — M, to be a map to the subspace S of

Hom(R!! M). The following two definitions are equivalent, with the second being closer

to what is done in computations.

(i) For any supermanifold V, pointed by o € V, and any Xv: B x V — Hom(RY! M),

such that (a) it extends X: X is Xy restricted to B x 0, (b) outside a compact region
of R1!, Xy coincide with X (Xy is a family of deformations of X, with compact support,
parametrized by V'), the following holds. Consider L(Xy ) — L(X), where L(X) is abuse
of language for “pullback of L(X) by R!! x B x V — RY! x B. Tt is a relative density
on R x B x V with support proper over B x V. Integrate it, to get a function A [ L
on B x V. One requires that the derivative of this function in the V-direction be zero on

Bx{0}CBxV.

(ii) In the second definition, one requires that after any change of basis B' — B, (i) holds
for V = (R,0).

This defines the space of stationary points as a functor. In the exercise at hand, and

assuming M to be complete, this functor is representable: the space of stationary points



“is” an ordinary supermanifold of dimension (2dim M, dim M), as we will see.

Solution. (a) The coordinates (¢,6) on R'! define a density [t,6], also written dtdf~".

The lagrangian density considered is
(2.1) L=-L1dtddo™'(X,DX).

The minus sign is to make (2.5) below reasonable.

(b) If we choose local coordinates #* on M, a map X: R¥! — M can be written

X = (a'(t) + 00" (1)),

meaning X*7¢ = x'(t) + 6:*(t) with 2'(t) (resp. ¥'(t)) an even (resp. odd) function on R,
pulled back to RY! by (¢,6) — t. Independently of the local coordinates, x is a map from R
to M and % is an odd section of *T, for T the tangent bundle of M. The meaning of this,
and in particular of “odd section of x*7T"”, was explained in the preface. The philosophy is
that we tacitly work over a basis B, functorially in B. The map « is the restriction of X
to the subvariety R of R!'! defined by 6 = 0, while v is the restriction of 93X to R. On
R, the vector fields dp and D are equal, and it will often be more convenient to describe
as the restriction of DX to R. We will compute the density £ on RY! in term of (z,4)).

In local coordinates, £ is —dt df~! times
(2:2) 53X (9i)0( X (&) D(X™(&)).
As 67 =0, X*(gi;) is given by a finite Taylor series
X*(gi5) = gij(x(t) + 00(1)) = gij + 00" Orgi;
with g;;, Orgij and ¥* evaluated at z(¢) and t. Expanding (2.2) gives
(2.3)  3(gij + 00" egis) (3 + ) (W7 — 0i7)
= 30" + 20(gi 0" + Orgiji v — gigitil).

As PRl = —pIp* | we havedyg; ¥/ = —0;gi0 7. As gij = gji, we similarly have
azg]k¢k¢] =0, and

Ohgijb" ! = 3(Okgij — Djgir + 0igjx) = ge;Tix.
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where the I' are the Christoffel symbols defining the Levi-Civita connection. In (2.3), this

allows us to rewrite
giﬂ/}i + Opgiji' )t = giﬂ/}i + 90, T 0" = g0 (Vi)'
giving for (2.2)

(2.4) Tgiji'h! + 2009 (V) b — gijitdl)

Here is a shortcut from (2.3) to (2.4). Write (2.2) in the form f(t) + 6g(t). We have to
compute f(tg) and g(tg) for each to. We now remember that we always work over a space
B of parameters. The point #y is in fact a section of R x B — B. The local coordinates
Z; used can be taken to vary with the parameters. This makes it possible to choose them
so that at x(tg), i.e. along the section z(ty) of M x B — B, the metric tensor g¢;; has
vanishing first derivatives. The Christoffel symbols then vanish at x(tg), and (2.4) at g
results immediately from (2.3).

Here is a coordinate free derivation of (2.4). We use that for any function F on R, if

we write F(t,0) = fi(t)+ 0f2(t), we have

f1 = F restricted to R

f2 = DF restricted to R .

We have 1p = DX restricted to R, so that for F' = (X,DX), f1is (&,%), while f5 is the

restriction to R of

D(X,DX) = (VpX,DX) + (X,VpDX).

The Levi-Civita connection is torsion free, and D and d; commute, while D? = %[D, D] =

—0;. It follows that

VpX = V,DX

VpDX = %(VDDX +VpDX) = -0, X
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and D(X, DX), restricted to R, is
(Vt¢7 ¢) + (X7 _X)

This agrees with (2.4).
Let L' be the density on R deduced from L by integrating along the fibres of the

projection from R1! to R given by (¢,6) — t. From (2.4), we get
(25) £ = L)t — L (e, )

The space of critical points is the same for £ and L': it is the space of X = (x,4) such
that, for any deformation with compact support X(u) of X, one has [ 9,L = 0 (resp.
Jo.L" = 0) at u = 0, and the density 9,L' on R is deduced by 6-integration from the
density 9,L on R,

(¢) The computation of the Euler-Lagrange equations is parallel to the computations in

problem 1. If X depends on an additional parameter u, and if ¢ stands for 9, or V,, one

has

8(X,DX) = (6X,DX) + (X,6DX) = (V46X,DX) + (X, VpsX)

= 9,(6X,DX) — (6X,V;DX) + D(X,6X) — (VpX,5X).
As V,DX = VpX, this gives
(2.6) $L = —dtdd™" | —(6X,V;DX) + 1(8,(6X,DX) + D(X,6X))| .

The vector fields 0; and D are divergence free: the corresponding Lie derivative kills
dtdo~'. Tt follows that dt d6~! multiplied by the second term in [ | of (2.6) is an exact

differential (see (d) below) and the Euler-Lagrange equation is
(2.7) V,DX = 0.

In the computation leading to (2.6), we took the additional parameter u, and hence 6 X,
to be even. Why this suffices is explained in Deligne’s appendix “Even rules” to Bernstein’s

lecture. Basically, an odd 60X can be replaced by €6 X, for ¢ a new odd parameter.
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To express (2.7) in term of the components (x,v) of X, one restricts V;DX and
VpViDX to R C RY! (6 =0). As R € RY! is stable by d;, the first gives

For the second, permuting Vp and V; introduces a curvature term, while Vp DX = —0; X:

one obtains
(2.9) RO, ) — Vi = 0

Another method to obtain the Euler-Lagrange equations (2.8) (2.9) is to start from the
lagrangian L' (2.5).
Writing again ¢ for d, or V,, we have

8L = (8, @)dt — F((8Vah, ¥0) + (Vaed, 690))dt
Permuting ¢ and V; introduces a curvature term:
oVip = R(6X, @) + Vioih.

Integrating by part:

(Vt&/a @/)) = &s(&b, @/)) - (5@/& Vt¢)
(6i,2) = (Vibx, &) = 8y(6z, &) — (6, Vi)

and observing that (6, Viyo) = —(Vib, 61 ), we obtain
8L" = — [(Vi), 69) + (R(6x, & )b, ) + (82, Ve )] dt + d (6, &) — 3(6¢,4))

The Bianchi identity tells that if in (R(éx, 3 ), ) we cyclically permute éx, ¢ and @,

taking parities into account, the sum is zero:

(R((Sl‘, l’)@/), ¢) - (R(¢7 J})(Sl', ¢) + (R(¢7 l’)@/), 61;)? hence
(R(82, & 0b 1) = —2(R(, )i, 62).
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We obtain

(2.10) L' = — [(Vitb, 800) + (Ved — R(, @ )b, 6)]dt
+d((8z,3) = 5(60,9)) ,

giving again (2.8) and (2.9) as Euler-Lagrange equations.

The space Y of critical points of £ or L' is hence the space of solutions (x,v) of (2.8),
(2.9). The reduced space Yieq is obtained by imposing ¢» = 0: It is the space found in
problem 1, the space of solutions x(t) of Vi@ = 0.

The normal bundle of Yieq in YV is found by linearizing (2.8), (2.9) around ¢ = 0: it is
the odd vector bundle whose (even) sections are the odd sections ¢ of +*T obeying V; = 0.

The Cauchy data for (2.8) (2.9) are the data at some #o of x(tg), @(to) and ¥(tp). In
term of X: X, X and DX at (tg,0). If M is complete, Y maps isomorphically to the
space of Cauchy data. This gives a description of ¥ as the vector bundle T' x IIT over M
(viewed as a space). In particular, we get a description of Y as an odd vector bundle over
Yieqa. Warning: this structure, and even the corresponding map Y — Y;eq, depend on the

choice of .

(d) The 2-form w on the space Y of critical points can be computed using L or L'. We
first use L'. The general recipe is to fix tg, to extract from (2.10) the 1-form

(2.11) ay, = (67, 8) — 3(6¢,4)  (at to)

on Y and to take w = day,.

Let us identify Y with the space of Cauchy data at t¢ = 0: a point of ¥ becomes
a triple (x,d,) with @ a point of M, & an (even) tangent vector at @ and ¢ an (odd)
tangent vector at M. If we identify the tangent bundle with the cotangent bundle using
the riemannian metric, ¥ becomes the pull back to T*M of the odd tangent bundle of
M. The term (éx,4) in (2.11) becomes the pull back to Y of the canonical 1-form pdg on
T*M, and contributes to w the pull back of the symplectic form dp dg of T* M.

The second term in (2.11) makes sense whenever on a manifold X (here T*M) one

considers an odd vector bundle IIT, for T an orthogonal vector bundle with connection
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(here the pull back of the tangent bundle of M). It is the 1-form whose pull back by any
section ¢ (an odd section of T') is —%(V;/},;/}). Its exterior derivative is the 2-form wr

whose pull back by any v is given in local coordinates by

Y (wr)iy = —50((Vi, ) + 50;(Vith, )
= —3(ViVjv,¥) — (V. Vi)
+ (Vi) + (Vi Vi)
= — L (R, ¥) + (Viy, Vo)

for R the curvature 2-form (with values in endomorphisms of T'), i.e.

where the first term combines inner product (in T') and exterior product of differential

forms. Final result:

(2.12) w = wrear + 5V, ) — LR, ).

To compute in terms of L, one should start with the second term in (2.6) being
d |Liy(=dtd6(6X,DX)) + Lip(dtdd~" (X, 6X))| .

In|[ ], we have a 1-form A on the space of X, with values in integral codimension 1-forms
on RY!. The general recipe is to fix a space-like hypersurface I', for instance ¢ = g, to
integrate A on I' to get a 1-form ar on Y, and to take w = dar.

The restriction of ix(...) to I' depends only on the component of X normal to I". If T

is t = ty, we have
i(dt al@_l)‘F =dfo~' and ip(dt al@_l)‘F = —0i,(dt d9_1)‘r,

giving
A =—45d67(6X,DX) - 36d67" (X, 6X).
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The integral of d9=! f on T is simply 9y f, or Df, evaluated at (#q,0):

/FA = —1D(X,DX) + 1(X,6X) at (to,0)

= —1(VpéX,DX) — L(6X,VpDX) + L(X,6X) at (t,0)
We have VpéX = 6y and VpDX = —i, at (ty,0), so that (not surprisingly)

(2.13) ar is given by (2.11).

(e) The space R"! is a group for the group law
(t,0)«(t',0)=(t+t' +66,6+6).

Let us compute the bracket in the Lie algebra Lie(R''!), identified with the tangent space to
RY1 at (0,0). To 9y at (0,0) correspond over the odd dual numbers R[] the “infinitesimal”
element (0,¢), whose left translate by (¢,6) is (t +6c,0 +¢) = (t — 6,6 + <), corresponding
to the left invariant vector field 9y — 09, = D. Similarly, J; at (0,0) is the value at (0,0)
of the left invariant vector field 3;. On RY!, D? = —3;. It follows that

(2.14) in Lie(R"), 05 = —0;.

On RY!, the vector fields D, 9; and the density dtdf#~! are invariant by the group of
left translations. Being built from them, so is X — L(X).

For a while, let us consider more generally maps X: V — M and a lagrangian density
L(X)on V, with X — L(X) invariant by a group G acting on V. We also suppose given
a G-stable cohomology class of “space like” hypersurfaces I', and assume that the corre-
sponding 2-form w on the space Y of extremals is non degenerate. To each I' corresponds

a 1-form ar on Y, with w = dar and
A
(2.15) apn —ar = d/ L.
N

By transport of structures, the group G acts on Hom(V, M), respects Y and w, and

g«(ar) = ayr. For 7 € Lie(G), we will write [7] for the vector field

0-X(gv) at X(v)



on Hom(V, M). The derivation is taken in ¢, at ¢ = e. The action of G on Hom(V, M) is
g: X — X(¢g7'v); it induces 7 — —[r] from Lie(G) to vector fields on Hom(V, M). For a

function on Hom(V, M), one has

(2.16) 0:(gF) = 0.(F(¢7' X)) = [7]F, and

(2.17) T+ [7] is compatible with brackets.

For 7 € Lie(G), we now compute a generating function T'(7) for the symplectic vector

field [7] on E: —dT(7) = i[w. One has w = dar, hence
i[,.]w = L[T]Oq‘ — di[,.]oq‘.

The Lie derivative is

L[T]Oq‘ = a,-goq‘ = a,-OégF

with 0; being a derivative in ¢ at ¢ = e. By (2.15), this equals 9,d fl;qF L, and we take

gl
(2.18) T(r) = ipar — 8,./F L.

It is independent of the choice of T

gA gl
(i[T]OéA — 87/ L) — (i[T]OéF — 87/ L)
A r
A gA A gA
:@'[T]d/ L—@T/ L:[T]/ L—@T/ L,
T gl T gl
A

7 [ 20 =0, [ (xign) =0, / £(X).

T

and

It follows from (2.17) that, up to a constant,
(2.19) T([r1,m]) = {T(71),T(72)} = [1]|T(72).
In fact, (2.19) holds exactly: as T is independent of I', we have by transport of structures

(2.20) gT(r2) = T(ad g(72)).
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By (2.16) and the linearity of T(7) in 7, (2.19) follows from (2.20) by applying the derivative
O0r in g¢.
We now take V = RY1, with the supergroup G = RY! acting by left translations. The

infinitesimal left translation (right invariant vector field) d,(gv) in RY1 is

D+ = 89 —I— eat fOl" T = (89 at (07 0))7
o, for 7= (0 at (0,0))

and the vector field [7] on Hom(R!! V') is, respectively, D*X at X and 9;X at X. The

generating functions are given by (2.18): respectively

(O,n)F
(2.21) Q=1 [96] — 0y / and

(t,0)y

H = i[at]OzF — 8t/ L,
T

with the derivation evaluated at n (resp. t) = 0. Take for I' the hypersurface t = 0. Its
transform by (0,n) is the hypersurface t — nf = 0. Let Y be the function on R equal to 1

for x < 0 and to 0 for x > 0. We have
Y(t —nb) =Y (t) 4+ nbo(t)

and 1t follows that at n = 0,
(0,mI
8,,/ L=20, /(Y(t —n0)—Y(t)L
T

_ / 05(1)L.
) /F(t’O)FL — /5(t)L.

If L =dtdd 'L, as 6d0~! = —dO~ 10, we get

Similarly,

(2.22) 9, / e —L(0,0)
(4,07
) / £ = (85L)(0,0) = DL(0,0).
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We now apply this to our £ (2.1). Let us identify the space of extremals Y™ to the space
of Cauchy data (z,2,v) at (0,0). The 1-form o = ar is given by (2.11): for a variation
of (z,2,1), it is (6z,&) — $(8v,v), with 81 a covariant derivative. The vector field [7] is

given by

0-(in g) [Cauchy data for X(g(t, )]

= Vi[X(t,6),6.X(t,6),DX(t,6)] at (0,0)

for X the extremal with the given Cauchy data. This gives

S 8 81
) v VpX|,, =0 VpDX| =i

CIREE N ViDX| =0

and i[,jo is

for [89]: (77/)71')— %(—1}777/))
for [O¢]: (2,2).
From (2.21) and (2.22), we get

Q= (¢, @) — 5(=i, ) — 3(&,9) = (¢, 1)
H= (i) —D <—%(X,DX)> o = 3(E:0)

as VpX = V,DX =0 and VpDX = —i.
By (2.14), (2.17) and (2.19), one has

{Q,Q} =[D"]Q = —-H.

Verification: [DT¥](¢, @) = (—a, ).
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