
ar
X

iv
:q

-a
lg

/9
70

90
40

v1
  2

9 
Se

p 
19

97

DEFORMATION QUANTIZATION OF POISSON MANIFOLDS, I

Maxim Kontsevich

0. Introduction

In this paper it is proven that any finite-dimensional Poisson manifold can be canonically quantized (in
the sense of deformation quantization). Informally, it means that the set of equivalence classes of associative
algebras close to algebras of functions on manifolds is in one-to-one correspondence with the set of equivalence
classes of Poisson manifolds modulo diffeomorphisms. This is a corollary of a more general statement, which
I proposed around 1993-1994 (“Formality conjecture”) (see [Ko2], [V]).

For a long time the Formality conjecture resisted all approaches. The solution presented here uses in a
essential way ideas of string theory. Our formulas can be viewed as a perturbation series for a topological
two-dimensional quantum field theory coupled with gravity.

0.1. Content of the paper

Section 1: an elementary introduction to the deformation quantization, and precise formulation of the
main statement concerning Poisson manifolds.

Section 2: an explicit formula for the deformation quantization written in coordinates.

Section 3: an introduction to the deformation theory in general, in terms of differential graded Lie
algebras. The material of this section is basically standard.

Section 4: a geometric reformulation of the theory introduced in the previous section, in terms of odd
vector fields on formal supermanifolds. In particular, we introduce convenient notions of an L∞-morphism
and of a quasi-isomorphism, which gives us a tool to identify deformation theories related with two differential
graded Lie algebras. Also in this section we state our main result, which is an existence of a quasi-isomorphism
between the Hochschild complex of the algebra of polynomials, and the graded Lie algebra of polyvector
fields.

Section 5: tools for the explicit construction of the quasi-isomorphism mentioned above. We define com-
pactified configuration spaces related with the Lobachevsky plane, a class of admissible graphs, differential
polynomials on polyvector fields related with graphs, and integrals over configuration spaces. Technically
the same constructions were used in generalizations of the perturbative Chern-Simons theory several years
ago (see [Ko1]). Compactifications of the configuration spaces are close relatives of Fulton-MacPherson
compactifications of configuration spaces in algebraic geometry (see [FM]).

Section 6: it is proven that the machinery introduced in the previous section gives a quasi-isomorphism
and establishes the Formality conjecture for affine spaces. The proof is essentially an application of the
Stokes formula, and a general result of vanishing of certain integral associated with a collection of rational
functions on a complex algebraic variety.

Section 7: results of section 6 are extended to the case of general manifolds. In order to do this we
recall ideas of formal geometry of I. Gelfand and D. Kazhdan, and the language of superconnections. In
order to pass from the affine space to general manifolds we have to find a non-linear cocycle of the Lie
algebra of formal vector fields. It turns out that such a cocycle can be almost directly constructed from our
explicit formulas. In the course of the proof we calculate several integrals and check their vanishing. Also,
we introduce a general notion of direct image for certain bundles of supermanifolds.

Section 8: we describe an additional structure present in the deformation theory of associative algebras,
the cup-product on the tangent bundle to the super moduli space. The isomorphism constructed in sections
6, 7 is compatible with this structure. As a corollary, we finally justify the orbit method in the representation
theory. One of new results is the validity of Duflo-Kirillov formulas for Lie algebras in general rigid tensor
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categories, in particular for Lie superalgebras. Another application is an equality between two cup-products
in the context of algebraic geometry.

0.2. Plans

I am going to write a complement to the present paper. It will contain
1) the comparison with various known constructions of star-products, the most notorious one are by De

Wilde-Lecomte and by Fedosov for the case of symplectic manifolds (see [DL], [F]), and by Etingof-Kazhdan
for Poisson-Lie groups (see [EK]),

2) a reformulation of the Formality conjecture as an existence of a natural construction of a triangulated
category starting from an odd symplectic supermanifold,

3) discussion of the arithmetic nature of coefficients in our formulas, and of the possibility to extend
main results for algebraic varieties over arbitrary field of characteristic zero,

4) an application to the Mirror Symmetry, which was the original motivation for the Formality conjecture
(see [Ko4]),

5) a Lagrangian for a quantum field theory (from [AKSZ]) which seems to give our formulas after the
perturbation expansion.

Also, I am going to touch other topics (a version of formality for cyclic homology, quantization of
quadratic brackets, etc).

0.3. Acknowledgements

I am grateful to Y. Soibelman for many remarks.

1. Deformation quantization

1.1. Star-products

Let A = Γ(X,OX) be the algebra over R of smooth functions on a finite-dimensional C∞-manifold X .
The star-product on A (see [BFFLS]) is an associative R[[h̄]]-linear product on A[[h̄]] given by the following
formula for f, g ∈ A ⊂ A[[h̄]]:

(f, g) 7→ f ⋆ g = fg + h̄B1(f, g) + h̄2B2(f, g) + . . . ∈ A[[h̄]] ,

where h̄ is the formal variable, and Bi are bidifferential operators (i.e. bilinear maps A×A−→A which are
differential operators with respect to each argument of globally bounded order). The product of arbitrary
elements of A[[h̄]] is defined by the condition of linearity over R[[h̄]] and h̄-adic continuity:


∑

n≥0

fn h̄
n


 ⋆


∑

n≥0

gn h̄
n


 :=

∑

k,l≥0

fkgl h̄
k+l +

∑

k,l≥0, m≥1

Bm(fk, gl) h̄
k+l+m .

There is a natural gauge group acting on star-products. This group consists of automorphisms of A[[h̄]]
considered as an R[[h̄]]-module (i.e. linear transformations A−→A parametrized by h̄), of the following form:

f 7→ f + h̄D1(f) + h̄2D2(f) + . . . , for f ∈ A ⊂ A[[h̄]] ,

∑

n≥0

fn h̄
n 7→

∑

n≥0

fn h̄
n +

∑

n≥0,m≥1

Dm(fn) h̄n+m, for general element f(h̄) =
∑

n≥0

fn h̄
n ∈ A[[h̄]] ,

where Di : A−→A are differential operators. If D(h̄) = 1 +
∑

m≥1Dm h̄m is such an automorphism, it acts
on the set of star-products as

⋆ 7→ ⋆′, f(h̄) ⋆′ g(h̄) := D(h̄)
(
D(h̄)−1(f(h̄)) ⋆ D(h̄)−1(g(h̄)

)
, f(h̄), g(h̄) ∈ A[[h̄]] .

2



We are interested in star-products up to gauge equivalence.

1.2. First approximation: Poisson structures

It follows from the associativity of ⋆ that the bilinear map B1 : A×A−→A satisfies the equation

fB1(g, h)−B1(fg, h) +B1(f, gh)−B1(f, g)h = 0,

i.e. the linear map B̃1 : A ⊗ A−→A associated with B1 as B̃1(f ⊗ g) := B1(f, g), is a 2-cocycle in the
cohomological Hochschild complex of algebra A (the definition of this complex is given in 3.4.2).

Let us decompose B1 into the sum of the symmetric part and of the anti-symmetric part:

B1 = B+
1 +B−1 , B+

1 (f, g) = B+
1 (g, f), B−1 (f, g) = −B−1 (g, f) .

Gauge transformations

B1 7→ B′1, B′1(f, g) = B1(f, g)− fD1(g) +D1(fg)−D1(f)g

where D1 is an arbitrary differential operator, affect only the symmetric part of B1, i.e. B−1 = (B′1)
−. One

can show that the symmetric part B+
1 can be killed by a gauge transformation (and it is a coboundary in

the Hochschild complex).
Also one can show that the skew-symmetric part B−1 is a derivation with respect to both functions f

and g. Thus, B−1 comes from a bi-vector field α on X :

B−1 (f, g) = 〈α, df ⊗ dg〉, α ∈ Γ(X,∧2TX) ⊂ Γ(X,TX ⊗ TX) .

Analogous fact in algebraic geometry is that the second Hochschild cohomology group of the algebra of
functions on a smooth affine algebraic variety (in characteristic zero) is naturally isomorphic to the space of
bi-vector fields (see 4.6.1.1).

The second term O(h̄2) in the associativity equation f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h implies that α gives a
Poisson structure on X ,

∀f, g, h {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

where {f, g} :=
f ⋆ g − g ⋆ f

h̄ |h̄=0
= 2B−1 (f, g) = 2〈α, df ⊗ dg〉 .

In other words, [α, α] = 0 ∈ Γ(X,∧3TX), where the bracket is the Schouten-Nijenhuis bracket on polyvector
fields (see 4.6.1 for the definition of this bracket).

Thus, gauge equivalence classes of star-products modulo O(h̄2) are classified by Poisson structures on
X . A priori it is not clear whether there exists a star-product with the first term equal to a given Poisson
structure, and whether there exists a preferred choice of an equivalence class of star-products. We show in
this paper that there is a canonical construction of an equivalence class of star-products for any Poisson
manifold.

1.3. Description of quantizations

Theorem. The set of gauge equivalence classes of star products on a smooth manifold X can be naturally
identified with the set of equivalence classes of Poisson structures depending formally on h̄:

α = α(h̄) = α1h̄+ α2h̄
2 + . . . ∈ Γ(X,∧2TX)[[h̄]], [α, α] = 0 ∈ Γ(X,∧3TX)[[h̄]]

modulo the action of the group of formal paths in the diffeomorphism group of X , starting at the identity
diffeomorphism.

Any given Poisson structure α(0) gives a path α(h̄) := α(0) · h̄ and by the Theorem from above, a
canonical gauge equivalence class of star products.
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1.4. Examples

1.4.1. Moyal product

The simplest example of a deformation quantization is the Moyal product for the Poisson structure on
Rd with constant coefficients:

α =
∑

i,j

αij∂i ∧ ∂j , α
ij = −αji ∈ R

where ∂i = ∂/∂xi is the partial derivative in the direction of coordinate xi, i = 1, . . . , d. The formula for
the Moyal product is

f ⋆ g = fg + h̄
∑

i,j

αij ∂i(f) ∂j(g) +
h̄2

2

∑

i,j,k,l

αijαkl ∂i∂k(f) ∂j∂l(g) + . . . =

=

∞∑

n=0

h̄n

n!

∑

i1,...,in; j1,...jn

n∏

k=1

αikjk

(
n∏

k=1

∂ik

)
(f)×

(
n∏

k=1

∂jk

)
(g) .

Here and later symbol × denotes the usual product.

1.4.2. Deformation quantization up to the second order

Let α =
∑

i,j α
ij∂i ∧ ∂j be a Poisson bracket with variable coefficients in an open domain of Rd (i.e.

αij is not a constant, but a function of coordinates), then the following formula gives an associative product
modulo O(h̄3):

f ⋆ g = fg + h̄
∑

i,j

αij ∂i(f) ∂j(g) +
h̄2

2

∑

i,j,k,l

αijαkl ∂i∂k(f) ∂j∂l(g)+

+
h̄2

3


∑

i,j,k,l

αij ∂j(α
kl) (∂i∂k(f) ∂l(g)− ∂k(f) ∂i∂l(g))


+O(h̄3)

The associativity up to the second order means that for any 3 functions f, g, h one has

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) +O(h̄3) .

1.5. Remarks

In general, one should consider bidifferential operators Bi with complex coefficients, as we expect to
associate by quantization self-adjoint operators in a Hilbert space to real-valued classical observables. In
this paper we deal with purely formal algebraic properties of the deformation quantization and work mainly
over the field R of real numbers.

Also, it is not clear whether the “deformation quantization” is natural for quantum mechanics. This
question we will discuss in the next paper. A topological open string theory seems to be more relevant.

2. Explicit universal formula

Here we propose a formula for the star-product for arbitrary Poisson structure α in an open domain
of the standard coordinate space Rd. Terms of our formula modulo O(h̄3) are the same as in the previous
section, plus a gauge-trivial term of order O(h̄2), symmetric in f and g. Terms of the formula are certain
universal polydifferential operators applied to coefficients of the bi-vector field α and to functions f, g. All
indices corresponding to coordinates in the formula appear once as lower indices and once as upper indices,
i.e. the formula is invariant under affine transformations of Rd.

In order to describe terms proportional to h̄n for any integer n ≥ 0, we introduce a special class Gn of
oriented labeled graphs.
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Definition. An (oriented) graph Γ is a pair (VΓ, EΓ) of two finite sets such that EΓ is a subset of VΓ × VΓ.

Elements of VΓ are vertices of Γ, elements of EΓ are edges of Γ. If e = (v1, v2) ∈ EΓ ⊆ VΓ × VΓ is an
edge then we say that e starts at v1 and ends at v2.

In the usual definition of graphs one admits infinite graphs, and also graphs with multiple edges. Here
we will not meet such structures and use a simplified terminology.

We say that a labeled graph Γ belongs to Gn if
1) Γ has n+ 2 vertices and 2n edges,
2) the set vertices VΓ is {1, . . . , n} ⊔ {L,R}, where L,R are just two symbols (capital roman letters,

mean Left and Right),
3) edges of Γ are labeled by symbols e11, e

2
1, e

1
2, e

2
2, . . . , e

1
n, e

2
n ,

4) for every k ∈ {1, . . . , n} edges labeled by e1k and e2k start at the vertex k,
5) for any v ∈ VΓ the ordered pair (v, v) is not an edge of Γ.
The set Gn is finite, it has

(
n(n+ 1)

)n
elements for n ≥ 1 and 1 element for n = 0.

To each labeled graph Γ ∈ Gn we associate a bidifferential operator

BΓ,α : A×A−→A, A = C∞(V), V is an open domain in Rd

which depends on bi-vector field α ∈ Γ(V ,∧2TV), not necessarily a Poisson one. We show one example, from
which the general rule should be clear. Here n = 3 and the list of edges is

(
e11, e

2
1, e

1
2, e

2
2, e

1
3, e

2
3

)
=
(
(1, L), (1, R), (2, R), (2, 3), (3, L), (3, R)

)
.

. .

.

2

3

L R

1

 1

2

3
5

.
.

6i

i
i

i

i

4i

In the picture of Γ we put independent indices 1 ≤ i1, . . . , i6 ≤ d on edges, instead of labels e∗∗. The
operator BΓ,α corresponding to this graph is

(f, g) 7→
∑

i1,...,i6

αi1i2αi3i4∂i4(α
i5i6)∂i1∂i5 (f)∂i2∂i3∂i6(g) .

The general formula for the operator BΓ,α is

BΓ,α(f, g) :=
∑

I:EΓ−→{1,...,d}




n∏

k=1


 ∏

e∈EΓ, e=(∗,k)

∂I(e)


αI(e1

k)I(e2
k)


×

×


 ∏

e∈EΓ, e=(∗,L)

∂I(e)


 f ×


 ∏

e∈EΓ, e=(∗,R)

∂I(e)


 g .
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In the next step we associate a weight WΓ ∈ R with each graph Γ ∈ Gn. In order to define it we need
an elementary construction from hyperbolic geometry.

Let p, q, p 6= q be two points on the standard upper half-plane H = {z ∈ C| Im(z) > 0} endowed
with the Lobachevsky metric. We denote by φh(p, q) ∈ R/2πZ the angle at p formed by two lines, l(p, q)
and l(p,∞) passing through p and q, and through p and the point ∞ on the absolute. The direction of the
measurement of the angle is counterclockwise from l(p,∞) to l(p, q). In the notation φh(p, q) letter h is for
harmonic.

φ
pq

8

. .

An easy planimetry shows that one can express angle φh(p, q) in terms of complex numbers:

φh(p, q) = Arg((q − p)/(q − p)) =
1

2i
Log

(
(q − p)(q − p)
(q − p)(q − p)

)
.

Function φh(p, q) can be defined by continuity also in the case p, q ∈ H ⊔R, p 6= q.
Denote by Hn the space of configurations of n numbered pairwise distinct points on H:

Hn = {(p1, . . . , pn)|pk ∈ H, pk 6= pl for k 6= l} .

Hn ⊂ Cn is a non-compact smooth 2n-dimensional manifold. We introduce orientation on Hn using the
natural complex structure on it.

If Γ ∈ Gn is a graph as above, and (p1, . . . , pn) ∈ Hn is a configuration of points, then we draw a copy
of Γ on the plane R2 ≃ C by assigning point pk ∈ H to the vertex k, 1 ≤ k ≤ n, point 0 ∈ R ⊂ C to the
vertex L, and point 1 ∈ R ⊂ C to the vertex R. Each edge should be drawn as a line interval in hyperbolic
geometry. Every edge e of the graph Γ defines an ordered pair (p, q) of points on H ⊔ R, thus an angle
φh

e := φh(p, q). If points pi move around, we get a function φh
e on Hn with values in R/2πZ.

We define the weight of Γ as

wΓ :=
1

n!(2π)2n

∫

Hn

n∧

i=1

(dφh
e1

k
∧ dφh

e2
k
) .

Lemma. The integral in the definition of wΓ is absolutely convergent.

This lemma is a particular case of a more general statement proven in section 6.

Theorem. Let α be a Poisson bi-vector field in a domain of Rd. The formula

f ⋆ g :=
∞∑

n=0

h̄n
∑

Γ∈Gn

wΓBΓ,α(f, g)

6



defines an associative product. If we change coordinates, we obtain a gauge equivalent star-product.

The proof of this theorem is elementary, it uses only the Stokes formula. Again, this theorem is a
corollary of a more general statement proven in section 6.

3. Deformation theory via differential graded Lie algebras

3.1. Tensor categories Super and Graded

Here we make a comment about the terminology. This comment looks a bit pedantic, but it could help
in the struggle with signs in formulas.

The main idea of algebraic geometry is to replace spaces by commutative associative rings (at least
locally). One can further generalize this considering commutative associative algebras in general tensor
categories (see [De]). In this way one can imitate many constructions from algebra and differential geometry.

The fundamental example is supermathematics, i.e. mathematics in the tensor category Superk of super
vector spaces over a field k of characteristic zero (see Chapter 3 in [M]). The category Superk is the category
of Z/2Z-graded vector spaces over k (representations of the group Z/2Z) endowed with the standard tensor
product, with the standard associativity functor, and with a modified commutativity functor (the Koszul
rule of signs). We denote by Π the usual functor Superk−→Superk changing the parity. It is given on
objects by the formula ΠV = V ⊗k0|1. In the sequel we will consider the standard tensor category V ectk of
vector spaces over k as the subcategory of Superk consisting of pure even spaces.

The basic tensor category which appears everywhere in topology and homological algebra is a full
subcategory of the tensor category of Z-graded super vector spaces. Objects of this category are infinite
sums E = ⊕n∈ZE(n) such that E(n) is pure even for even n, and pure odd for odd n. We will slightly abuse the
language calling this category also the category of graded vector spaces, and denote it simply by Gradedk.
We denote by En the usual k-vector space underlying the graded component E(n). The super vector space
obtained if we forget about Z-grading on E ∈ Objects(Gradedk) is

⊕
n∈Z Πn(En).

Analogously, we will speak about graded manifolds. They are defined as supermanifolds endowed with
Z-grading on the sheaf of functions obeying the same conditions on the parity as above.

The shift functor [1] : Gradedk−→Gradedk (acting from the right) is defined as the tensor product with
graded space k[1] where k[1]−1 ≃ k, k[1]6=−1 = 0. Its powers are denoted by [n], n ∈ Z. Thus, for graded
space E we have

E =
⊕

n∈Z

En[−n] .

Almost all results in the present paper formulated for graded manifolds, graded Lie algebras etc., hold
also for supermanifolds, super Lie algebras etc.

3.2. Maurer-Cartan equation in differential graded Lie algebras

This part is essentially standard (see [GM], [HS1], [SS], ...).
Let g be a differential graded Lie algebra over field k of characteristic zero. Below we recall the list of

structures and axioms:

g =
⊕

k∈Z

gk[−k], [ , ] : gk ⊗ gl−→gk+l, d : gk−→gk+1,

d(d(γ)) = 0, d[γ1, γ2] = [dγ1, γ2] + (−1)γ1 [γ1, dγ2], [γ2, γ1] = −(−1)γ1·γ2 [γ1, γ2],

[γ1, [γ2, γ3]] + (−1)γ3·(γ1+γ2)[γ3, [γ1, γ2]] + (−1)γ1·(γ2+γ3)[γ2, [γ3, γ1]] = 0 .

In formulas above symbols γi ∈ Z mean the degrees of homogeneous elements γi, i.e. γi ∈ gγi .
In other words, g is a Lie algebra in the tensor category of complexes of vector spaces over k. If we

forget about the differential and the grading on g, we obtain a Lie superalgebra.

7



We associate with g a functor Defg on the category of finite-dimensional commutative associative
algebras over k, with values in the category of sets. First of all, let us assume that g is a nilpotent Lie
superalgebra. We define set MC(g) (the set of solutions of the Maurer-Cartan equation modulo the gauge
equivalence) by the formula

MC(g) :=

{
γ ∈ g1| dγ +

1

2
[γ, γ] = 0

}/
Γ0

where Γ0 is the nilpotent group associated with the nilpotent Lie algebra g0. The group Γ acts by affine
transformations of the vector space g1. The action of Γ0 is defined by the exponentiation of the infinitesimal
action of its Lie algebra:

α ∈ g0 7→ (γ̇ = dα+ [α, γ]) .

Now we are ready to introduce functor Defg. Technically, it is convenient to define this functor on the
category of finite-dimensional nilpotent commutative associative algebras without unit. Let m be such an
algebra, mdim(m)+1 = 0. The functor is given (on objects) by the formula

Defg(m) =MC(g ⊗m) .

In the conventional approach m is the maximal ideal in a finite-dimensional Artin algebra with unit

m′ := m⊕ k · 1 .

In general, one can think about commutative associative algebras without unit as about objects dual to spaces
with base points. Algebra corresponding to a space with base point is the algebra of functions vanishing at
the base point.

One can extend the definition of the deformation functor to algebras with linear topology which are
projective limits of nilpotent finite-dimensional algebras. For example, in the deformation quantization we
use the following algebra over R:

m := h̄R[[h̄]] = lim
←

(
h̄R[h̄]/h̄kR[h̄]

)
as k→∞ .

3.3. Remark

Several authors, following a suggestion of P. Deligne, stressed that the set Defg(m) should be considered
as the set of equivalence classes of a natural groupoid. Almost always in deformation theory, differential
graded Lie algebras are supported in non-negative degrees, g<0 = 0. Our principal example in the present
paper, the shifted Hochschild complex (see the next subsection), has a non-trivial component in degree −1,
when it is considered as a graded Lie algebra. The set Defg(m) in such a case has a natural structure of
the set of equivalence classes of a 2-groupoid. In general, if one considers differential graded Lie algebras
with components in negative degrees, one meets immediately polycategories and nilpotent homotopy types.
Still, it is only a half of the story because one can not say anything about g≥3 using this language. Maybe,
the better way is to extend the definition of the deformation functor to the category of differential graded
nilpotent commutative associative algebras, see the last remark in 4.5.2.

3.4. Examples

There are many standard examples of differential graded Lie algebras and related moduli problems.

3.4.1. Tangent complex

Let X be a complex manifold. Define g over C as

g =
⊕

k∈Z

gk[−k]; gk = Γ(X,Ω0,k
X ⊗ T 1,0

X ) for k ≥ 0, g<0 = 0

8



with the differential equal to ∂, and the Lie bracket coming from the cup-product on ∂-forms and the usual
Lie bracket on holomorphic vector fields.

The deformation functor related with g is the usual deformation functor for complex structures on X .
The set Defg(m) can be naturally identified with the set of equivalence classes of analytic spaces X̃ endowed

with a flat map p : X̃−→Spec(m′), and an identification i : X̃ ×Spec(m′) Spec(C) ≃ X of the special fiber of
p with X .

3.4.2. Hochschild complex

Let A be an associative algebra over field k of characteristic zero. The graded space of Hochschild
cochains of A with coefficients in A considered as a bimodule over itself is

C•(A,A) :=
⊕

k≥0

Ck(A,A)[−k], Ck(A,A) := HomV ectk(A⊗k, A) .

We define graded vector space g over k by formula g := C•(A,A)[1]. Thus, we have

g =
⊕

k∈Z

gk[−k]; gk := Hom(A⊗(k+1), A) for k ≥ −1, g<(−1) = 0 .

The differential in g is shifted by 1 the usual differential in the Hochschild complex, and the Lie bracket
is the Gerstenhaber bracket. The explicit formulas for the differential and for the bracket are:

(dΦ)(a0 ⊗ . . .⊗ ak+1) = a0 · Φ(a1 ⊗ . . .⊗ ak+1)−
k∑

i=0

(−1)iΦ(a0 ⊗ . . .⊗ (ai · ai+1)⊗ . . .⊗ ak+1)+

+(−1)kΦ(a0 ⊗ . . .⊗ ak) · ak+1, Φ ∈ gk,

and

[Φ1,Φ2] = Φ1 ◦ Φ2 − (−1)k1k2Φ2 ◦ Φ1, Φi ∈ gki ,

where the (non-associative) product ◦ is defined as

(Φ1 ◦ Φ2)(a0 ⊗ . . .⊗ ak1+k2
) =

=

k1∑

i=0

(−1)ik2Φ1(a0 ⊗ . . .⊗ ai−1 ⊗ (Φ2(ai ⊗ . . .⊗ ai+k2
))⊗ ai+k2+1 ⊗ . . .⊗ ak1+k2

) .

We would like to give here also an abstract definition of the differential and of the bracket on g. Let F
denote the free coassociative graded coalgebra with counit cogenerated by the graded vector space A[1]:

F =
⊕

n≥1

⊗n(A[1]) .

Graded Lie algebra g is the Lie algebra of coderivations of F in the tensor category Gradedk. The
associative product on A gives an element mA ∈ g1, mA : A⊗A−→A satisfying the equation [mA,mA] = 0.
The differential d in g is defined as ad(mA).

Again, the deformation functor related to g is equivalent to the usual deformation functor for algebraic
structures. Associative products on A correspond to solutions of the Maurer- Cartan equation in g. The set
Defg(m) is naturally identified with the set of equivalence classes of pairs (Ã, i) where Ã is an associative

algebra over m′ = m ⊕ k · 1 such that Ã is free as an m′-module, and i an isomorphism of k-algebras
Ã⊗m′ k ≃ A.
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The cohomology of the Hochschild complex are

HHk(A,A) = ExtkA−mod−A(A,A),

the Ext-groups in the abelian category of bimodules over A. The Hochschild complex without shift by 1 also
has a meaning in deformation theory, it is responsible for deformations of A as a bimodule.

4. Homotopy Lie algebras and quasi-isomorphisms

In this section we introduce a language convenient for the homotopy theory of differential graded Lie
algebras and for the deformation theory. The ground field k for linear algebra in our discussion is an arbitrary
field of characteristic zero, unless specified.

4.1. Formal manifolds

Let V be a vector space. We denote by C(V ) the cofree cocommutative coassociative coalgebra without
counit cogenerated by V :

C(V ) =
⊕

n≥1

(
⊗nV

)Σn ⊂
⊕

n≥1

(
⊗nV

)
.

Intuitively, we think about C(V ) as about an object corresponding to a formal manifold, possibly
infinite-dimensional, with base point:

(Vformal, base point ) :=
(

Formal neighborhood of zero in V, 0
)
.

The reason for this is that if V is finite-dimensional then C(V )∗ (the dual space to C(V )) is the algebra of
formal power series on V vanishing at the origin.

Definition. A formal pointed manifold M is an object corresponding to a coalgebra C which is isomorphic
to C(V ) for some vector space V .

The specific isomorphism between C and C(V ) is not considered as a part of data. Nevertheless, the
vector space V can be reconstructed from M as the space of primitive elements in coalgebra C. Speaking
geometrically, V is the tangent space to M at the base point. A choice of an isomorphism between C and
C(V ) can be considered as a choice of an affine structure on M .

If V1 and V2 are two vector spaces then a map f between corresponding formal pointed manifolds is
defined as a homomorphism of coalgebras (the pushforward on distributions supported at zero)

f∗ : C(V1)−→C(V2) .

By the universal property of cofree coalgebras any such homomorphism is uniquely specified by a linear map

C(V1)−→V2

which is the composition of f∗ with the canonical projection C(V2)−→V2. Homogeneous components of this
map,

f (n) :
(
⊗n(V1)

)Σn−→V2, n ≥ 1

can be considered as Taylor coefficients of f . More precisely, Taylor coefficients are defined as maps

∂nf : Symn(V1)−→V2, ∂nf(v1 · . . . · vn) :=
∂n

∂t1 . . . ∂tn |t1=...=tn=0

(f(t1v1 + . . .+ tnvn)) .

Linear map f (n) coincides with ∂nf after the identification of the subspace
(
⊗nV1

)Σn ⊂ ⊗nV1 with the
quotient space

Symn(V1) := ⊗nV1/{ standard relations } .
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As in the usual calculus, there is the inverse mapping theorem: non-linear map f is invertible iff its first
Taylor coefficient f (1) : V1−→V2 is invertible.

Analogous definitions and statements can be made in other tensor categories, including Superk and
Gradedk.

The reader can ask why we speak about base points for formal manifolds, as such manifolds have only
one geometric point. The reason is that later we will consider formal graded manifolds depending on formal
parameters. In such a situation the choice of the base point is an essential part of the structure.

4.2. Pre-L∞-morphisms

Let g1 and g2 be two graded vector spaces.

Definition. A pre-L∞-morphism F from g1 to g2 is a map of formal pointed graded manifolds

F :
(
(g1[1])formal, 0

)
−→

(
(g2[1])formal, 0

)
.

Map F is defined by its Taylor coefficients which are linear maps ∂nF of graded vector spaces:

∂1F : g1−→g2

∂2F : ∧2(g1)−→g2[−1]

∂3F : ∧3(g1)−→g2[−2]

. . .

Here we use the natural isomorphism Symn(g1[1]) ≃
(
∧n(g1)

)
[n]. In plain terms, we have a collection

of linear maps between ordinary vector spaces

F(k1,...,kn) : gk1

1 ⊗ . . .⊗ gkn

1 −→g
k1+...+kn+(1−n)
2

with the symmetry property

F(k1,...,kn)(γ1 ⊗ . . .⊗ γn) = −(−1)kiki+1F(k1,...,ki+1,ki,...,kn)(γ1 ⊗ . . .⊗ γi+1 ⊗ γi ⊗ . . .⊗ γn) .

One can write (slightly abusing notations)

∂nF(γ1 ∧ . . . ∧ γn) = F(k1,...,kn)(γ1 ⊗ . . .⊗ γn)

for γi ∈ gki

1 , i = 1, . . . , n.

In the sequel we will denote ∂nF simply by Fn.

4.3. L∞-algebras and L∞-morphisms

Suppose that we have an odd vector field Q of degree +1 on formal graded manifold (g[1]formal, 0) such
that the Taylor series for coefficients of Q has terms of degree 1 and 2 only. The first Taylor coefficient Q1

gives a linear map g−→g of degree +1 (or, better, a map g−→g[1]). The second coefficient Q2 : ∧2g−→g
gives a skew-symmetric bilinear operation of degree 0 on g.

It is easy to see that if [Q,Q] = 0 then g is a differential graded Lie algebra, with differential Q1 and
the bracket Q2, and vice versa.

In paper [AKSZ] supermanifolds endowed with an odd vector field Q such that [Q,Q] = 0, are called
Q-manifolds. By analogy, we can speak about formal graded pointed Q-manifolds.
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Definition. An L∞-algebra is a pair (g, Q) where g is a graded vector space and Q is a differential of degree
+1 on the graded coalgebra C(g).

Other names for L∞-algebras are “(strong) homotopy Lie algebras” and “Sugawara algebras” (see e.g.
[HS2]).

Usually we will denote L∞-algebra (g, Q) simply by g.
The structure of an L∞-algebra on a graded vector space g is given by the infinite sequence of Taylor

coefficients Qi of the odd vector field Q (coderivation of C(g)):

Q1 : g−→g[1]

Q2 : ∧2(g)−→g

Q3 : ∧3(g)−→g[−1]

. . .

The condition Q2 = 0 can be translated into an infinite sequence of quadratic constraints on polylinear
maps Qi. First of these constraints means that Q1 is the differential of the graded space g. Thus, (g, Q1)
is a complex of vector spaces over k. The second constraint means that Q2 is a skew-symmetric bilinear
operation on g, for which Q1 satisfies the Leibniz rule. The third constraint means that Q2 satisfies the
Jacobi identity up to homotopy given by Q3, etc. As we have seen, a differential graded Lie algebra is the
same as an L∞-algebra with Q3 = Q4 = . . . = 0.

Nevertheless, we recommend to return to the geometric point of view and think in terms of formal
graded Q-manifolds. This naturally leads to the following

Definition. An L∞-morphism between two L∞-algebras g1 and g2 is a pre-L∞-morphism F such that
the associated morphism F∗ : C(g1[1])−→C(g2[1]) of graded cocommutative coalgebras, is compatible with
codifferentials.

In geometric terms, an L∞-morphism corresponds to a Q-equivariant map between two formal graded
manifolds with base points.

For the case of differential graded Lie algebras a pre-L∞-morphism F is an L∞-morphism iff it satisfies
the following equation for any n = 1, 2 . . . and homogeneous elements γi ∈ g1:

dFn(γ1 ∧ γ2 ∧ . . . ∧ γn)−
n∑

i=1

±Fn(γ1 ∧ . . . ∧ dγi ∧ . . . ∧ γn) =

=
1

2

∑

k,l≥1, k+l=n

1

k!l!

∑

σ∈Σn

±[Fk(γσ1
∧ . . . ∧ γσk

),Fl(γσk+1
∧ . . . ∧ γσn

)] +
∑

i<j

±Fn−1([γi, γj] ∧ γ1 ∧ . . . ∧ γn) .

Here are first two equations in the explicit form:

dF1(γ1) = F1(dγ1) ,

dF2(γ1 ∧ γ2)−F2(dγ1 ∧ γ2)− (−1)γ1F2(γ1 ∧ dγ2) = F1([γ1, γ2])− [F1(γ1),F1(γ2)] .

We see that F1 is a morphism of complexes. The same is true for the case of general L∞-algebras. The
graded space g for an L∞-algebra (g, Q) can be considered as the tensor product of k[−1] with the tangent
space to the corresponding formal graded manifold at the base point. The differential Q1 on g comes from
the action of Q on the manifold.

Let us assume that g1 and g2 are differential graded Lie algebras, and F is an L∞-morphism from g1

to g2. Any solution γ ∈ g1 ⊗m of the Maurer-Cartan equation where m is a nilpotent non-unital algebra,
produces a solution of the Maurer-Cartan equation in g2 ⊗m:

dγ +
1

2
[γ, γ] = 0 =⇒ dγ̃ +

1

2
[γ̃, γ̃] = 0 where γ̃ =

∞∑

n=1

1

n!
Fn(γ ∧ . . . ∧ γ) ∈ g1

2 ⊗m .
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The same formula is applicable to solutions of the Maurer-Cartan equation depending formally on
parameter h̄:

γ(h̄) = γ1h̄+ γ2h̄
2 + . . . ∈ g1

1[[h̄]], dγ(h̄) +
1

2
[γ(h̄), γ(h̄)] = 0 =⇒ dγ̃(h̄) +

1

2
[γ̃(h̄), γ̃(h̄)] = 0 .

The reason why it works is that the Maurer-Cartan equation in any differential graded Lie algebra g
is the equation for the subscheme of zeroes of Q in formal manifold g[1]formal. L∞-morphisms map zeroes
of Q to zeroes of Q because they commute with Q. We will see in 4.5.2 that L∞-morphisms induce natural
transformations of deformation functors.

4.4. Quasi-isomorphisms

L∞-morphisms generalize usual morphisms of differential graded Lie algebras. In particular, the first

Taylor coefficient of an L∞-morphism from g1 to g2 is a morphism of complexes (g1, Q
(g1)
1 )−→(g2, Q

(g2)
1 )

where Q
(gi)
1 are the first Taylor coefficients of vector fields Q(gi) (which we denoted before simply by Q).

Definition. A quasi-isomorphism is an L∞-morphism F such that the first component F1 induces isomor-

phism between cohomology groups of complexes (g1, Q
(g1)
1 ) and (g2, Q

(g2)
1 ).

The essence of the homotopy/deformation theory is contained in the following

Theorem. Let g1,g2 be two L∞-algebras and F be an L∞-morphism from g1 to g2. Assume that F is
a quasi-isomorphism. Then there exists an L∞-morphism from g2 to g1 inducing the inverse isomorphism

between cohomology of complexes (gi, Q
(gi)
1 ) i = 1, 2. Also, for the case of differential graded algebras,

L∞-morphism F induces an isomorphism between deformation functors associated with gi.

The first part of this theorem shows that if g1 is quasi-isomorphic to g2 then g2 is quasi-isomorphic to
g1, i.e. we get an equivalence relation.

The isomorphism between deformation functors at the second part of the theorem is given by last
formulas from 4.3.

This theorem is essentially standard (see related results in [GM], [HS1], [SS]). Our approach consists in
the translation of all relevant notions to the geometric language of formal graded pointed Q-manifolds.

4.5. A sketch of the proof

4.5.1. Homotopy classification of L∞-algebras

Any complex of vector spaces can be decomposed into the direct sum of a complex with trivial differential
and a contractible complex. There is an analogous decomposition in the non-linear case.

Definition. An L∞-algebra (g, Q) is called minimal if the first Taylor coefficient Q1 of the coderivation Q
vanishes.

The property of being formal is invariant under L∞-isomorphisms. Thus, one can speak about minimal
formal graded pointed Q-manifolds.

Definition. An L∞-algebra (g, Q) is called linear contractible if higher Taylor coefficients Q≥2 vanish and
the differential Q1 has trivial cohomology.

The property of being linear contractible is not L∞-invariant. One can call formal graded pointed
Q-manifold contractible iff the corresponding differential graded coalgebra is L∞-isomorphic to a linear
contractible one.

Lemma. Any L∞-algebra (g, Q) is L∞-isomorphic to the direct sum of a minimal and of a linear contractible
L∞-algebras.

This lemma says that there exists an affine structure on a formal graded pointed manifold in which
the odd vector field Q has the form of a direct sum of a minimal and a linear contractible one. This affine
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structure can be constructed by induction in the degree of the Taylor expansion. The base of the induction
is the decomposition of the complex (g, Q1) into the direct sum of a complex with vanishing differential and
a complex with trivial cohomology. We leave details of the proof of the lemma to the reader. Q.E.D.

As a side remark, we mention analogy between this lemma and a theorem from singularity theory (see,
for example, the beginning of 11.1 in [AGV]): for every germ f of analytic function at critical point one
can find local coordinates (x1, . . . , xk, y1, . . . , yl) such that f = constant + Q2(x) + Q≥3(y) where Q2 is a
nondegenerate quadratic form in x and Q≥3(y) is a germ of a function in y such that its Taylor expansion
at y = 0 starts at terms of degree at least 3.

Let g be an L∞-algebra and gmin be a minimal L∞-algebra as in the previous lemma. Then there are
two L∞-morphisms (projection and inclusion)

(g[1]formal, 0)−→(gmin[1]formal, 0), (gmin[1]formal, 0)−→(g[1]formal, 0)

which are both quasi-isomorphisms. From this follows that if

(g1[1]formal, 0)−→(g2[1]formal, 0)

is a quasi-isomorphism then there exists a quasi-isomorphism

(gmin
1 [1]formal, 0)−→(gmin

2 [1]formal, 0) .

Any quasi-isomorphism between minimal L∞-algebras is invertible, because it induces an isomorphism of
spaces of cogenerators (the inverse mapping theorem from 4.1). Thus, we proved the first part of the
theorem. Also, we see that the set equivalence classes of L∞-algebras up to quasi-isomorphisms can be
naturally identified with the set of equivalence classes of minimal L∞-algebras up to L∞-isomorphisms.

4.5.2. Deformation functors at fixed points of Q

The deformation functor can be defined in terms of a formal graded Q-manifold M with base point
(denoted by 0). The set of solutions of the Maurer-Cartan equation with coefficients in a finite-dimensional
nilpotent non-unital algebra m is defined as the set of m-points of the formal scheme of zeroes of Q:

Maps
((
Spec(m⊕ k · 1), base point

)
,
(
Zeroes(Q), 0

))
⊂Maps

((
Spec(m⊕ k · 1), base point

)
,
(
M, 0

))
.

In terms of the coalgebra C corresponding to M this set is equal to the set of homomorphisms of
coalgebras m∗−→C with the image annihilated by Q. Another way to say is to introduce a global (i.e. not
formal) pointed Q-manifold of maps from

(
Spec(m⊕k ·1), base point

)
to (M, 0) and consider zeroes of the

global vector field Q on it.
Two solutions p0 and p1 of the Maurer-Cartan equation are called gauge equivalent iff there exists

(parametrized by Spec(m ⊕ k · 1)) polynomial family of odd vector fields ξ(t) on M (of degree −1 with
respect to Z-grading) and a polynomial solution of the equation

dp(t)

dt
= [Q, ξ(t)]|p(t), p(0) = p0, p(1) = p1,

where p(t) is a polynomial family of m-points of formal graded manifold M with base point.
In terms of L∞-algebras, the set of polynomial paths {p(t)} is naturally identified with g1 ⊗m ⊗ k[t].

Vector fields ξ(t) depending polynomially on t are not necessarily vanishing at the base point 0. The set of
these vector fields is

HomGradedk (C(g[1])⊕ (k · 1)∗,g)⊗ (m⊕ k · 1) .

One can check that the gauge equivalence defined above is an equivalence relation. Alternatively, one
can define the equivalence relation as the transitive closure of the relation from above. For formal graded
pointed manifold M we define set DefM (m) as the set of gauge equivalence classes of solutions of the
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Maurer-Cartan equation. The correspondence m 7→ DefM (m) extends naturally to a functor denoted also
by DefM . Analogously, for L∞-algebra g we denote by Defg the corresponding deformation functor.

One can easily prove the following properties:
1) for a differential graded Lie algebra g the deformation functor defined as above for (g[1]formal, 0), is

naturally equivalent to the deformation functor defined in 3.2,
2) any L∞-morphism gives a natural transformation of functors,
3) the functor Defg1⊕g2

corresponding to the direct sum of two L∞-algebras, is naturally equivalent to
the product of functors Defg1

×Defg2
,

4) the deformation functor for a linear contractible L∞-algebra g is trivial, Defg(m) is a one-element
set for every m.

Properties 2)-4) are just trivial, and 1) is easy. It follows from properties 1)-4) that if an L∞-morphism
of differential graded Lie algebras is a quasi-isomorphism, then it induces an isomorphism of deformation
functors. The theorem is proven. Q.E.D.

We would like to notice here that in the definition of the deformation functor one can consider just
a formal pointed super Q-manifold (M, 0) (i.e. not a graded one), and m could be a finite-dimensional
nilpotent differential super commutative associative non-unital algebra.

4.6. Formality

4.6.1. Two differential graded Lie algebras

Let X be a smooth manifold. We associate with it two differential graded Lie algebras over R. The first
differential graded Lie algebra Dpoly(X) is a subalgebra of the shifted Hochschild complex of the algebra A of
functions on X (see 3.4.2). The space Dn

poly(X), n ≥ −1 consists of local Hochschild cochains A⊗(n+1)−→A
given by polydifferential operators. In local coordinates (xi) any element of Dn

poly can be written as

f0 ⊗ . . .⊗ fn 7→
∑

(I0,...,In)

CI0,...,In(x) · ∂I0(f0) . . . ∂In
(fn)

where the sum is finite, Ik denote multi-indices, ∂Ik
denote corresponding partial derivatives, and fk and

CI0,...,In are functions in (xi).
The second differential graded Lie algebra, Tpoly(X) is the graded Lie algebra of polyvector fields on X :

T n
poly(X) = Γ(X,∧n+1TX), n ≥ −1

endowed with the standard Schouten-Nijenhuis bracket and with the differential d := 0. We remind here the
formula for this bracket:

for k, l ≥ 0 [ξ0 ∧ . . . ∧ ξk, η0 ∧ . . . ∧ ηl] =

=
k∑

i=0

l∑

j=0

(−1)i+j+k[ξi, ηj ]∧ξ0 ∧ . . .∧ξi−1 ∧ξi+1 ∧ . . .∧ξk ∧η0 ∧ . . .∧ηj−1 ∧ηj+1 ∧ . . .∧ηl, ξi, ηj ∈ Γ(X,TX) ,

for k ≥ 0 [ξ0 ∧ . . . ∧ ξk, h] =

=

k∑

i=0

(−1)iξi(h) ·
(
ξ0 ∧ . . . ∧ ξi−1 ∧ ξi+1 ∧ . . . ∧ ξk

)
h ∈ Γ(X,OX), ξi ∈ Γ(X,TX) .

In local coordinates (x1, . . . , xd), if one replaces ∂/∂xi by odd variables ψi and writes polyvector fields
as functions in (x1, . . . , xd|ψ1, . . . , ψd), the bracket is

[γ1, γ2] = γ1 • γ2 − (−1)k1k2γ • γ1

where introduce the following notation:

γ1 • γ2 :=

d∑

i=1

∂γ1

∂ψi

∂γ2

∂xi
, γi ∈ T ki(Rd) .
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We have an evident map U (0)
1 : Tpoly(X)−→Dpoly(X):

U (0)
1 : (ξ0 ∧ . . . ∧ ξn) 7→


f0 ⊗ . . .⊗ fn 7→

1

(n+ 1)!

∑

σ∈Σn+1

sgn(σ)

n∏

i=0

ξσi
(fi)


 , for n ≥ 0,

h 7→
(
1 7→ h

)
, h ∈ Γ(X,OX) .

4.6.1.1. It is a quasi-isomorphism

Theorem. U (0)
1 is a quasi-isomorphism of complexes.

This is a version of Kostant-Hochschild-Rosenberg theorem which says that for a smooth affine algebraic
variety Y over field k of characteristic zero, the Hochschild cohomology of algebra O(Y ) coincides with the
space ⊕k≥0Γ(X,∧kTY )[−k] of algebraic polyvector fields on Y . Analogous statement for C∞ manifolds
seems to be well known, although we were not able to find it in the literature. In any case, we show here a
proof.

Proof: First of all, one can immediately check that the image of U (0)
1 is annihilated by the differential

in Dpoly(X), i.e. that U (0)
1 is a morphism of complexes.

Complex Dpoly(X) is filtered by the total degree of polydifferential operators. Complex Tpoly(X) en-

dowed with zero differential also carries a very simple filtration (just by degrees), such that U (0)
1 is compatible

with filtrations. We claim that

Gr
(
U (0)

1

)
: Gr

(
Tpoly(X)

)
−→Gr

(
Dpoly(X)

)

is a quasi-isomorphism. In the graded complex Gr
(
Dpoly(X)

)
associated with the filtered complex Dpoly(X)

all components are sections of some natural vector bundles onX , and the differential is A-linear, A = C∞(X).

The same is true by trivial reasons for Tpoly(X). Thus, we have to check that the map Gr
(
U (0)

1

)
is a quasi-

isomorphism fiberwise.

Let x be a point of X and T be the tangent space at x. Principal symbols of polydifferential operators
at x lie in vector spaces

Sym(T )⊗ . . .⊗ Sym(T ) (n times, n ≥ 0)

where Sym(T ) is the free polynomial algebra generated by T . It better to identify Sym(T ) with the cofree
cocommutative coassociative coalgebra with counit cogenerated by T :

C := C(T )⊕ (k · 1)∗ .

Sym(T ) is naturally isomorphic to the algebra of differential operators on T with constant coefficients. If D
is such an operator then it defines a linear functional on the algebra of formal power series at 0 ∈ T :

f 7→
(
D(f)

)
(0) .

We denote by ∆ the coproduct in coalgebra C. It is easy to see that differential in the complex
Gr
(
Dpoly(X)

)
in the fiber at x is the following:

d : ⊗n+1C−→⊗n+2 C, d = 1∗ ⊗ id⊗n+1C −
n∑

i=0

(−1)i id⊗ . . .⊗∆i ⊗ . . .⊗ id+ (−1)nid⊗n+1C ⊗ 1∗

where ∆i is ∆ applied to the i-th argument.
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Lemma. Let C be the cofree cocommutative coassociative coalgebra with counit cogenerated by vector
space T . Then the natural homomorphism of complexes

(
∧n+1T, differential = 0

)
−→

(
⊗n+1C, differential as above

)

is a quasi-isomorphism.

What we consider is one of standard complexes in homological algebra. One of possible proofs is the
following:

Proof: first of all, we can safely assume that T is finite-dimensional. Let us decompose complex(
⊗n+1C

)
into the infinite direct sum of subcomplexes consisting of tensors of fixed total degrees (homogeneous

components with respect to the action of the Euler vector fields on T ). Our statement means in particular
that for only finitely many degrees these subcomplexes have non-trivial cohomology. Thus, the statement
of the lemma is true iff the analogous statement holds when infinite sums are replaced by infinite products
in the decomposition of

(
⊗n+1C

)
. Terms of the completed complex are spaces Hom(A⊗(n+1),k) where A

is the algebra of polynomial functions on T . It is easy to see that the completed complex calculates groups
Extn+1

A−mod(k,k) = ∧n+1T where 1-dimensional space k is considered as A-module (via values of polynomial
at 0 ∈ T ) and has a resolution

. . .−→A⊗A−→A−→0−→ . . .

by free A-modules. Q.E.D.

As a side remark, we notice that the statement of the lemma holds also if one replaces C by C(T )
(i.e. the free coalgebra without counit) and removes terms with 1∗ from the differential. In the language
of Hochschild cochains it means that the subcomplex of reduced cochains is quasi-isomorphic to the total
Hochschild complex.

The lemma implies that gr
(
U (0)

1

)
is an isomorphism fiberwise, and the theorem is proven. Q.E.D.

4.6.2. Main theorem

Unfortunately, the map U (0)
1 does not commute with Lie brackets, the Schouten-Nijenhuis bracket does

not go to the Gerstenhaber bracket. We claim that this defect can be cured:

Theorem. There exists an L∞-morphism U from Tpoly(X) to Dpoly(X) such that U1 = U (0)
1 .

In other words, this theorem says that Tpoly(X) and Dpoly(X) are quasi-isomorphic differential graded
Lie algebras. In analogous situation in rational homotopy theory (see [Su]), a differential graded commutative
algebra is called formal if it is quasi-isomorphic to its cohomology algebra endowed with zero differential.
This explains the name of subsection 4.6.

The quasi-isomorphism U in the theorem is not canonical. We will construct explicitly a family of
quasi-isomorphisms parametrized in certain sense by a contractible space. It means that our construction is
canonical up to (higher) homotopies.

Solutions of the Maurer-Cartan equation in Tpoly(X) are exactly Poisson structures on X :

α ∈ T 1
poly(X) = Γ(X,∧2TX), [α, α] = 0 .

Any such α defines also a solution formally depending on h̄,

γ(h̄) := α · h̄ ∈ T 1
poly(X)[[h̄]] , [γ(h̄), γ(h̄)] = 0 .

The gauge group action is the action of the diffeomorphism group by conjugation. Solutions of the Maurer-
Cartan equation in Dpoly(X) formally depending on h̄ are star-products. Thus, we obtain as a corollary that
any Poisson structure on X gives a canonical equivalence class of star-products, and the theorem from 1.3.

The rest of the paper is devoted to the proof of Theorem 4.6.2, and to the discussion of various appli-
cations, corollaries and extensions. In the next section (5) we will make some preparations for the universal
formula (section 6) for an L∞-morphim from Tpoly(X) to Dpoly(X) in the case of flat space X = Rd. In
section 7 we extend our construction to general manifolds.
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4.6.3. Non-uniqueness

There are other quasi-isomorphisms between Tpoly(X) and Dpoly(X) which differ essentially from the
quasi-isomorphism U , i.e. not even homotopic in a natural sense to U . By homotopy here we mean the
following. L∞-morphisms from one L∞-algebra to another can be identified with fixed points of Q on
infinite-dimensional supermanifold of maps. Mimicking constructions and definitions form 4.5.2 one can
define an equivalence relation (homotopy equivalence) on the set of L-morphisms.

Firstly, the multiplicative group R× acts by automorphisms of Tpoly(X), multiplying elements γ ∈
Tpoly(X)k by constk. Composing these automorphisms with U one get a family of quasi-isomorphisms.
Secondly, in [Ko2] we constructed an exotic infinitesimal L∞-automorphism of Tpoly(X) for the case X = Rd

which probably extends to general manifolds. In particular, this exotic automorphism produces a vector field
on the “set of Poisson structures”. The evolution with respect to time t is described by the following non-
linear partial differential equation:

dα

dt
:=

∑

i,j,k,l,m,k′,l′,m′

∂3αij

∂xk∂xl∂xm

∂αkk′

∂xl′
∂αll′

∂xm′

∂αmm′

∂xk′ (∂i ∧ ∂j)

where α =
∑

i,j α
ij(x)∂i ∧ ∂j is a bi-vector field on Rd.

A priori we can guarantee the existence of a solution of the evolution only for small times and real-
analytic initial data. One can show that 1) this evolution preserves the class of (real-analytic) Poisson
structures, 2) if two Poisson structures are conjugate by a real-analytic diffeomorphism then the same will
hold after the evolution. Thus, our evolution operator is essentially intrinsic and does not depend on the
choice of coordinates.

Combining it with the action of R× as above we see that the Lie algebra aff(1,R) of infinitesimal affine
transformations of the line R1 acts non-trivially on the space of homotopy classes of quasi-isomorphisms
between Tpoly(X) and Dpoly(X). Maybe, there are other exotic L∞-automorphisms, this possibility is not
ruled out yet. The reader could ask why our quasi-isomorphism U is better than others. Probably, the answer
is that only U (up to homotopy) preserves an additional structure present in the deformation quantization,
the cup-product on the tangent cohomology (see section 8).

5. Configuration spaces and their compactifications

5.1. Definitions

Let n,m be non-negative integers satisfying the inequality 2n + m ≥ 2. We denote by Confn,m the
product of the configuration space of the upper half-plane with the configuration space of the real line:

Confn,m = {(p1, . . . , pn; q1, . . . , qm)| pi ∈ H, qj ∈ R, pi1 6= pi2 for i1 6= i2, qj1 6= qj2 for j1 6= j2} .

Confn,m is a smooth manifold of dimension 2n +m. The group G(1) of holomorphic transformations
of CP 1 preserving the upper half-plane and the point ∞, acts on Confn,m. This group is a 2-dimensional
connected Lie group, isomorphic to the group of orientation-preserving affine transformations of the real line:

G(1) = {z 7→ az + b| a, b ∈ R, a > 0} .

It follows from the condition 2n+m ≥ 2 that the action of G(1) on Confn,m is free. The quotient space
Cn,m := Confn,m/G

(1) is a manifold of dimension 2n +m − 2. If P = (p1, . . . , pn; q1, . . . , qm) is a point of
Confn,m then we denote by [P ] the corresponding point of Cn,m.

Analogously, we introduce simpler spaces Confn and Cn for any n ≥ 2:

Confn := {(p1, . . . , pn)| pi ∈ C, pi 6= pj for i 6= j},

Cn = Confn/G
(2), dim(Cn) = 2n− 3,
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where G(2) is a 3-dimensional Lie group,

G(2) = {z 7→ az + b| a ∈ R, b ∈ C, a > 0} .

We will construct compactifications Cn,m of Cn,m ( and compactifications Cn of Cn) which are smooth
manifolds with corners.

We remind that a manifold with corners (of dimension d) is defined analogously to a usual manifold
with boundary, with the only difference that the manifold with corners looks locally as an open part of closed
simplicial cone (R≥0)

d. For example, the closed hypercube [0, 1]d is a manifold with corners. There is a
natural smooth stratification by faces of any manifold with corners.

First of all, we give one of possible formal definitions of the compactification Cn,m in the case n ≥ 1.
With any point [(p1, . . . , pn; q1, . . . , qm)] of Cn,m we associate a collection of 2n(n − 1) + nm angles with
values in R/2πZ:

(
Arg(pi − pj), Arg(pi − pj), Arg(pi − qj)

)
.

It is easy to see that we obtain an embedding of Cn,m into the torus (R/2πZ)2n(n−1)+nm. The space Cn,m

is defined as the compactification of the image of this embedding. Analogously, the compactification Cn is
obtained using angles Arg(pi − pj).

One can show that open strata of Cn,m are naturally isomorphic to products of manifolds of type Cn′,m′

and Cn′ . In the next subsection we will describe explicitly Cn,m as a manifold with corners.

There is a natural action of the permutation group Σn on Cn, and also of Σn × Σm on Cn,m. This
gives us a possibility to define spaces CA and CA,B for finite sets A,B such that #A ≥ 2 or 2#A+ #B ≥ 2
respectively. If A′ →֒A and B′ →֒B are inclusions of sets then there are natural fibrations (forgetting maps)
CA−→CA′ and CA,B−→CA′,B′ .

5.2. Looking through a magnifying glass

The definition of the compactification given in the previous subsection is not descriptive. We are going
to explain an intuitive idea underlying a direct construction of the compactification Cn,m as a manifold with
corners. For more formal treatment of compactifications of configuration spaces we refer the reader to [FM]
(for the case of smooth algebraic varieties).

Let us try to look through a magnifying glass, or better through a microscope with arbitrary magnifi-
cation, on different parts of the picture formed by points on H ∪R ⊂ C, and by the line R ⊂ C. Here we
use Euclidean geometry on C ≃ R2 instead of Lobachevsky geometry.

Before doing this let us first consider the case of a configuration on R2 ≃ C, i.e. without the horizontal
line R ⊂ C. We say that the configuration (p1, . . . , pn) is in standard position iff

1) the diameter of the set {p1, . . . , pn} is equal to 1, and,

2) the center of the minimal circle containing {p1, . . . , pn} is 0 ∈ C.

It is clear that any configuration of n pairwise distinct points in the case n ≥ 2 can be uniquely put
to standard position by an element of group G(2). The set of configurations in standard position gives a
continuous section scont of the natural projection map Confn−→Cn.

For a configuration in standard position there could be several domains where we will need magnification
in order to see details. These domains are those where at least two points of the configuration come too
close to each other.

After an appropriate magnification of any such domain we again get a stable configuration (i.e.the
number of points there is at least 2). Then we can put it again in standard position and repeat the
procedure.

In such a way we get an oriented tree T with one root, and leaves numbered from 1 to n. For example,
the configuration on the next figure
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For every vertex of tree T except leaves, we denote by Star(v) the set of edges starting at v. For
example, in the figure from above the set Star(root) has three elements, and sets Star(v) for other three
vertices all have two elements.

Points in Cn close to one which we consider, can be parametrized by the following data:
a) for each vertex v of T except leaves, a stable configuration cv in standard position of points labeled

by the set Star(v),
b) for each vertex v except leaves and the root of the tree, the scale sv > 0 with which we should put a

copy of cv instead of the corresponding point pv ∈ C on stable configuration cu where u ∈ VT is such that
(u, v) ∈ ET .

More precisely, we act on the configuration cv by the element (z 7→ svz + pv) of G(2).
Numbers sv are small but positive. The compactification Cn is achieved by formally permitting some

of scales sv to be equal to 0.
In this way we get a compact topological manifold with corners, with strata CT labeled by trees T (with

leaves numbered from 1 to n). Each stratum CT is canonically isomorphic to the product
∏

v CStar(v) over all
vertices v except leaves. In the description as above points of CT correspond to collections of configurations
with all scales sv equal to zero. Let us repeat: as a set Cn coincides with

⊔

trees T

∏

v∈VT \{leaves}

CStar(v) .

In order to introduce a smooth structure on Cn, we should choose a Σn-equivariant smooth section
ssmooth of the projection map Confn−→Cn instead of the section scont given by configurations in standard
position. Local coordinates on Cn near a given point lying in stratum CT are scales sv ∈ R≥0 close to zero
and local coordinates in manifolds CStar(v) for all v ∈ VT \ {leaves}. The resulting structure of a smooth

manifold with corners does not depend on the choice of section ssmooth.
The case of configurations of points on H ∪ R is not much harder. First of all, we say that a finite

non-empty set S of points on H ∪R is in standard position iff
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1) the projection of the convex hull of S to the horizontal line R ⊂ C ≃ R2 is either the one-point set
{0}, or it is an interval with the center at 0,

2) the maximum of the diameter of S and of the distance from S to R is equal to 1.

It is easy to see that for 2n+m ≥ 2 (the stable case) any configuration of n points on H and m points
on R can be put uniquely in standard position by an element of G(1). In order to get a smooth structure,
we repeat the same arguments as for the case of manifolds Cn.

Domains where we will need magnification in order to see details, are now of two types. The first case is
when at least two points of the configuration come too close to each other. We want to know whether what
we see is a single point or a collection of several points. The second possibility is when a point on H comes
too close to R. Here we want also to decide whether what we see is a point (or points) on H or on R.

If the domain which we want to magnify is close to R, then after magnification we get again a stable
configuration which we can put into the standard position. If the domain is insideH, then after magnification
we get a picture without the horizontal line in it, and we are back in the situation concerning Cn′ for n′ ≤ n.

It is instructional to draw low-dimensional spaces Cn,m. The simplest one, C1,0 = C1,0 is just a point.
The space C0,2 = C0,2 is a two-element set. The space C1,1 is an open interval, and its closure C1,1 is a
closed interval (the real line R ⊂ C is dashed on the picture):

. .
0 = q

1

~~. ..

The space C2,0 is diffeomorphic to H\{0 + 1 · i}. The reason is that by action of G(1) we can put point
p1 to the position i =

√
−1 ∈ H. The closure C2,0 can be drawn like this:

.

p 
1

=i

.
.

or like this:

The Eye

..

Forgetting maps (see the end of 5.1) extend naturally to smooth maps of compactified spaces.
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5.2.1. Boundary strata

We give here the list of all strata in CA,B of codimension 1:
S1) points pi ∈ H for i ∈ S ⊆ A where #S ≥ 2, move close to each other but far from R,
S2) points pi ∈ H for i ∈ S ⊆ A and points qj ∈ R for j ∈ S′ ⊆ B where 2#S+ #S′ ≥ 2, all move close

to each other and to R, with at least one point left outside S and S′, i.e. #S + #S′ ≤ #A+ #B − 1.
The stratum of type S1 is

∂SCA,B ≃ CS × C(A\S)⊔{pt},B

where {pt} is a one-element set, whose element represents the cluster (pi)i∈S of points in H. Analogously,
the stratum of type S2 is

∂S,S′CA,B ≃ CS,S′ × CA\S,(B\S′)⊔{pt} .

6. Universal formula

In this section we propose a formula for an L∞-morphism Tpoly(Rd)−→Dpoly(Rd) generalizing a formula
for the star-product in section 2. In order to write it we need to make some preparations.

6.1. Admissible graphs

Definition. Admissible graph Γ is an oriented graph with labels such that
1) the set of vertices VΓ is {1, . . . , n} ⊔ {1, . . . ,m} where n,m ∈ Z≥0, 2n + 2 − m ≥ 0; vertices from the
set {1, . . . , n} are called vertices of the first type, vertices from {1, . . . ,m} are called vertices of the second
type,
2) every edge (v1, v2) ∈ EΓ starts at a vertex of first type, v1 ∈ {1, . . . , n},
3) there are no loops, i.e. no edges of the type (v, v),
4) for every vertex k ∈ {1, . . . , n} of the first type, the set of edges

Star(k) := {(v1, v2) ∈ EΓ| v1 = k}

starting from s, is labeled by symbols (e1k, . . . , e
#Star(k)
k ).

Labeled oriented graphs considered in section 2 are exactly (after the identifications L = 1, R = 2)
admissible graphs such that m is equal to 2, and the number of edges starting at every vertex of first type
is also equal to 2.

6.2. Differential forms on configuration spaces

The space C2,0 (the Eye) is homotopy equivalent to the standard circle S1 ≃ R/2πZ. Moreover, one of
its boundary components, the space C2 = C2, is naturally S1. The other component of the boundary is the
union of two closed intervals (copies of C1,1) with identified end points.

Definition. An angle map is a smooth map φ : C2,0−→R/2πZ ≃ S1 such that the restriction of φ to
C2 ≃ S1 is the angle measured in the anti-clockwise direction from the vertical line, and φ maps the whole
upper interval C1,1 ≃ [0, 1] of the Eye, to a point in S1.

We will denote φ([(x, y)]) simply by φ(x, y) where x, y ∈ H ⊔R, x 6= y. It follows from the definition
that dφ(x, y) = 0 if x stays in R.

For example, the special map φh used in the formula in section 2, is an angle map. In the rest of the
paper (except of the comments 9.5 and 9.8) we can use any φ, not necessarily harmonic.

We are now prepared for the analytic part of the universal formula. Let Γ be an admissible graph with
n vertices of the first type, m vertices of the second type and with 2n+m− 2 edges. We define the weight
of graph Γ by the following formula:
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WΓ :=
n∏

k=1

1

(#Star(k))!

1

(2π)2n+m−2

∫

C
+

n,m

∧

e∈EG

dφe .

Let us explain what is written here. The domain of integration C
+

n,m is a connected component of Cn,m

which is the closure of configurations for which points qj , 1 ≤ j ≤ m on R are placed in the increasing order:

q1 < . . . < qm .

The orientation of Confn,m is the product of the standard orientation on the coordinate space Rm ⊃
{(q1, . . . , qm)| qj ∈ R}, with the product of standard orientations on the plane R2 (for points pi ∈ H ⊂ R2).
The group G(1) is even-dimensional and naturally oriented because it acts freely and transitively on complex
manifold H. Thus, the quotient space Cn,m = Confn,m/G

(1) carries again a natural orientation.
Every edge e of Γ defines a map from Cn,m to C2,0 or to C1,1 ⊂ C2,0 (the forgetting map). Here we

consider inclusion C1,1 in C2,0 as the lower interval of the Eye. The pullback of the function φ by the map
Cn,m−→C2,0 corresponding to edge e is denoted by φe.

Finally, the ordering in the wedge product of 1-forms dφe is fixed by enumeration of the set of sources
of edges and by the enumeration of the set of edges with a given source.

The integral giving WΓ is well-defined because it is an integral of a smooth differential form over a
compact manifold with corners.

6.3. Pre-L∞-morphisms associated with graphs

For any admissible graph Γ with n vertices of the first type, m vertices of the second type, and 2n +
m − 2 + l edges where l ∈ Z, we define a linear map UΓ : ⊗nTpoly(Rd)−→Dpoly(Rd)[1 + l − n]. This map
has only one non-zero graded component (UΓ)(k1,...,kn) where ki = #Star(i)− 1, i = 1, . . . , n. If l = 0 then
from UΓ after anti-symmetrization we obtain a pre-L∞-morphism.

Let γ1, . . . , γn be polyvector fields on Rd of degrees (k1 + 1), . . . , (kn + 1), and f1, . . . , fm be functions
on Rd. We are going to write a formula for function Φ on Rn:

Φ := (UΓ(γ1 ⊗ . . .⊗ γn)) (f1 ⊗ . . .⊗ fm) .

The formula for Φ is the sum over all configurations of indices running from 1 to d, labeled by EΓ:

Φ =
∑

I:EΓ−→{1,...,d}

ΦI ,

where ΦI is the product over all n + m vertices of Γ of certain partial derivatives of functions gj and of
coefficients of γi.

Namely, with each vertex i, 1 ≤ i ≤ n of the first type we associate function ψi on Rd which is a
coefficient of the polyvector field γi:

ψi = 〈γi, dx
I(e1

i ) ⊗ . . .⊗ dxI(e
ki+1

i
)〉 .

Here we use the identification of polyvector fields with skew-symmetric tensor fields as

ξ1 ∧ . . . ∧ ξk+1−→
∑

σ∈Σk+1

sgn(σ) ξσ1
⊗ . . .⊗ ξσk+1

∈ Γ(Rd, T⊗(k+1)) .

For each vertex j of second type the associated function ψj is defined as fj .

Now, at each vertex of graph Γ we put a function on Rd (i.e. ψi or ψj). Also, on edges of graph Γ

there are indices I(e) which label coordinates in Rd. In the next step we put into each vertex v instead of
function ψv its partial derivative 

 ∏

e∈EΓ, e=(∗,v)

∂I(e)


ψv,
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and then take the product over all vertices v of Γ. The result is by definition the summand ΦI .
Construction of the function Φ from the graph Γ, polyvector fields γi and functions fj , is invariant

under the action of the group of affine transformations of Rd because we contract upper and lower indices.

6.4. Main Theorem for X = Rd, and the proof

We define an L∞-morphism U : Tpoly(Rd)−→Dpoly(Rd) by the formula for its n-th derivative Un, n ≥ 1
considered as a skew-symmetric polylinear map (see 4.2) from ⊗nTpoly(Rd) to Dpoly(Rd)[1− n]:

Un =
∑

m≥0

∑

Γ∈Gn,m

WΓ × UΓ .

Here Gn,m denotes the set of all admissible graphs with n vertices of the first type, m vertices in the second
group and 2n+m− 2 edges, where n ≥ 1, m ≥ 0 (and automatically 2n+m− 2 ≥ 0).

Theorem. U is an L∞-morphism, and also a quasi-isomorphism.

Proof: first of all, we should check that Un is skew-symmetric, i.e. that U is a pre-L∞-morphism. For
this see subsection 6.5.

The condition that U is an L∞-morhism (see 4.3 and 3.4.2) can be written explicitly as

f1 · (Un(γ1 ∧ . . . ∧ γn)) (f2 ⊗ . . .⊗ fm)± (Un(γ1 ∧ . . . ∧ γn)) (f1 ⊗ . . .⊗ fm−1) · fm+

+

m−1∑

i=1

± (Un(γ1 ∧ . . . ∧ γn)) (f1 ⊗ . . .⊗ (fifi+1)⊗ . . .⊗ fm)+

+
∑

i6=j

± (Un−1([γi, γj ] ∧ γ1 ∧ . . . ∧ γn)) (f1 ⊗ . . .⊗ fm)+

+
1

2

∑

k,l≥1, k+l=n

1

k!l!

∑

σ∈Σn

±
[
Uk(γσ1

∧ . . . ∧ γσk
),Ul(γσk+1

∧ . . . ∧ γσn
)
]
(f1 ⊗ . . .⊗ fm) = 0 .

Here γi are polyvector fields, fi are functions, Un are homogeneous components of U (see 4.1). There is
a way to rewrite this formula. Namely, we define U0 as the map ⊗0(Tpoly(Rd))−→Dpoly(Rd)[1] which maps
the generator 1 of R ≃ ⊗0(Tpoly(Rd)) to the product mA ∈ D1

poly(Rd) in the algebra A := C∞(Rd). Here
mA : f1 ⊗ f2 7→ f1f2 is considered as a bidifferential operator.

The condition from above for U to be an L∞-morphism is equivalent to the following one:

∑

i6=j

± (Un−1((γi • γj) ∧ γ1 ∧ . . . ∧ γn)) (f1 ⊗ . . .⊗ fm)+

+
∑

k,l≥0, k+l=n

1

k!l!

∑

σ∈Σn

±
(
Uk(γσ1

∧ . . . ∧ γσk
) ◦ Ul(γσk+1

∧ . . . ∧ γσn
)
)
(f1 ⊗ . . .⊗ fm) = 0 .

Here we use definitions of brackets in Dpoly and Tpoly via operations ◦ (see 3.4.2) and • (see 4.6.1). We
denote the l.h.s. of the expression above as (F ).
U +U0 is not a pre-L∞-morphism because it maps 0 to a non-zero point mA. Still the equation (F ) = 0

makes sense and means that the map (U + U0) from formal Q-manifold Tpoly(Rd)[1]
)
formal

to the formal

neighborhood of point mA in super vector space Dpoly(Rd)[1] is Q-equivariant, where the odd vector field Q
on the target is purely quadratic and comes from the bracket on Dpoly(Rd), forgetting the differential.

Also, the term U0 comes from the unique graph Γ0 which was missing in the definition of U . Namely,
Γ0 has n = 0 vertices of the first type, m = 2 vertices of the second type, and no edges at all. It is easy to
see that WΓ0

= 1 and UΓ0
= U0.
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We consider the expression (F ) simultaneously for all possible dimensions d. It is clear that one can
write (F ) as a linear combination

∑

Γ

cΓ · UΓ

(
γ1 ⊗ . . .⊗ γn)

)
(f1 ⊗ . . .⊗ fm)

of expressions UΓ for admissible graphs Γ with n vertices of the first type, m vertices of the second type, and
2n+m− 3 edges where n ≥ 0, m ≥ 0, 2n+m− 3 ≥ 0. We assume that cΓ = ±cΓ′ if graph Γ′ is obtained
from Γ by a renumeration of vertices of first type and by a relabeling of edges in sets Star(v) (see 6.5 where
we discuss signs).

Coefficients cΓ of this linear combination are equal to certain sums with signs of weightsWΓ′ associated
with some other graphs Γ′, and of products of two such weights. In particular, numbers cΓ do not depend
on the dimension d in our problem. Perhaps it is better to use here the language of operads, but we will not
do it.

We want to check that cΓ vanishes for each Γ.

The idea is to identify cΓ with the integral over the boundary ∂Cn,m of the closed differential form
constructed from Γ as in 6.2. The Stokes formula gives the vanishing:

∫

∂Cn,m

∧

e∈EΓ

dφe =

∫

Cn,m

d

(
∧

e∈EΓ

dφe

)
= 0 .

We are going to calculate integrals of the form ∧e∈EΓ
dφe restricted to all possible boundary strata of

∂Cn,m, and prove that the total integral as above is equal to cΓ. At the subsection 5.2 we listed two groups
of boundary strata, denoted by S1 and S2 and labeled by sets or pairs of sets. Thus,

0 =

∫

∂Cn,m

∧

e∈EΓ

dφe =
∑

S

∫

∂SCn,m

∧

e∈EΓ

dφe +
∑

S,S′

∫

∂S,S′Cn,m

∧

e∈EΓ

dφe .

6.4.1. Case S1

Points pi ∈ H for i from subset S ⊂ {1, . . . , n} where #S ≥ 2, move close to each other. The integral
over the stratum ∂SCn,m is equal to the product of an integral over Cn1,m with an integral over Cn2

where
n2 := #S, n1 := n− n2 + 1. The integral vanishes by dimensional reasons unless the number of edges of Γ
connecting vertices from S is equal to 2n2 − 3.

There are several possibilities:

6.4.1.1. First subcase of S1: n2 = 2

In this subcase two vertices from S1 are connected exactly by one edge, which we denote by e. The
integral over C2 here gives number ±1 (after division by 2π coming from the of the formula for weights WΓ).
The total integral over the boundary stratum is equal to the integral of a new graph Γ1 obtained from Γ
by the contraction of edge e. It is easy to see (up to a sign) that this corresponds to the first line in our
expression (F ), the one where the operation • on polyvector fields appears.

25



. . .

. . .

.. e

6.4.1.2. Second subcase of S1: n2 ≥ 3

This is the most non-trivial case. The integral corresponding to the corresponding boundary stratum
vanishes because the integral of any product of 2n2 − 3 angle forms over Cn2

where n2 ≥ 3 vanishes, as is
proven later in 6.6.

. .
.

. . .

....

6.4.2. Case S2

Points pi for i ∈ S1 ⊂ {1, . . . , n} and points qj for j ∈ S2 ⊂ {1, . . . ,m} move close to each other and to
the horizontal line R. The condition is that 2n2+m2−2 ≥ 0 and n2+m2 ≤ n+m−1 where n2 := #S1, m2 :=
#S2. The corresponding stratum is isomorphic to Cn1,m1

× Cn2,m2
where n1 := n− n2, m1 = m−m2 + 1.

The integral of this stratum decomposes into the product of two integrals. It vanishes if the number of edges
of Γ connecting vertices from S1 ⊔ S2 is not equal to 2n2 +m2 − 2.

6.4.2.1. First subcase of S2: no bad edges

In this subcase we assume that there is no edge (i, j) in Γ such that i ∈ S1, j ∈ {1, . . . , n} \ S1.

The integral over the boundary stratum is equal to the product WΓ1
×WΓ2

where Γ2 is the restriction of
Γ to the subset S1 ⊔ S2 ⊂ {1, . . . , n} ⊔ {1, . . . ,m} = VΓ, and Γ1 is obtained by the contraction of all vertices
in this set to a new vertex of the second type. Our condition guarantees that Γ1 is an admissible graph.
This corresponds to the second line in (F ), where the product ◦ on polydifferential operators appears.
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6.4.2.2. Second subcase of S2: there is a bad edge

Now we assume that there is an edge (i, j) in Γ such that i ∈ S1, j ∈ {1, . . . , n} \ S1. In this case the
integral is zero because of the condition dφ(x, y) = 0 if x stays on the line R.

. . ..

. . .

.

. .  edge
bad

The reader can wonder about what happens if after the collapsing the graph will have multiple edges.
Such terms do not appear in (F ). Nevertheless, we ingore them because in this case the differential form
which we integrate vanishes as it contains the square of 1-form.

Thus, we see that we exhausted all possibilities and get contributions of all terms in the formula (F ).
We proved that cΓ = 0 for any Γ, and that U is an L∞-morphism.

6.4.3. We finish the proof of the theorem from 6.4

In order to check that U it is a quasi-isomorphism, we should show that its component U1 coincides

with U (0)
1 introduced in 4.6.1. It follows from definitions that every admissible graph with n = 1 vertex of

first type and m ≥ 0 vertices of the second type, and with m edges, is the following tree:

.

.

q q q

p

. . .

3

1

q m1 2

. . .
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The integral corresponding to this graph is (2π)m/m!. The map ŨΓ from polyvector fields to polydif-
ferential operators is the one which appears in 4.6.1:

ξ1 ∧ . . . ∧ ξm−→
1

m!

∑

σ∈Σm

sgn(σ) · ξσ1
⊗ . . .⊗ ξσm

, ξi ∈ Γ(Rd, T ) .

The theorem is proven. Q.E.D.

6.4.4. Comparison with the formula from section 2

The weight wΓ defined in section 2 differ from WΓ defined in 6.2 by factor 2n/n!. On the other hand,
the bidifferential operator BΓ,α(f, g) is 2−n times UΓ(α ∧ . . . ∧α)(f ⊗ g). The inverse factorial 1/n! appears
in the Taylor series (see the end of 4.3). Thus, we obtain the formula from section 2.

6.5. Grading, orientations, factorials, signs

Homogeneous components of U are maps of graded spaces

Symn((
⊕

k≥0

Γ(Rd,∧kT )[−k])[2])−→(Hom(A[1]⊗m, A[1]))[1]

where Hom denotes the internal Hom in the tensor category Gradedk. We denote the expression from above
by (E). First of all, in the expression (E) each polyvector field γi ∈ Γ(Rd,∧kiT ) appears with the shift
2 − ki. In our formula for U the same γi gives ki edges of the graph, and thus ki 1-forms which we have
to integrate. Also, it gives 2 dimensions for the integration domain Cn,m. Secondly, every function fj ∈ A
appears with shift 1 in (E) and gives 1 dimension to the integration domain. We are left with two shifts by
1 in (E) which are accounted for 2 dimensions of the group G(1). From this it is clear that our formula for
U is compatible with Z-grading.

Moreover, it is also clear that things responsible for various signs in our formulas:
1) the orientation of Cn,m,
2) the order in which we multiply 1-forms dφe,
3) Z-gradings of vector spaces in (E),
are naturally decomposed into pairs. This implies that the enumeration of the set of vertices of Γ, and also
the enumeration of edges in sets Star(v) for vertices v of the first type are not really used. Thus, we see
that Un is skew-symmetric.

Inverse factorials 1/(#Star(v)!) kill the summation over enumerations of sets Star(v). The inverse
factorial 1/n! is the final formula does not appear because we consider higher derivatives which are already
multiplied by n!.

The last thing to check is that in our derivation of the fact that U is an L∞-morphism using Stokes
formula we did not loose anywhere a sign. This is really hard to explain. How, for example, can one compare
the standard orientation on C with shifts by 2 in (E)? As a hint to the reader we would like to mention
that it is very convenient to “put” the resulting expression

Φ := (UΓ(γ1 ⊗ . . .⊗ γn)) (f1 ⊗ . . .⊗ fm)

to the point ∞ on the absolute. Also, we can not guarantee that we did not make errors when we write
formulas in lines.

6.6. Vanishing of integrals

In this subsection we consider the space Cn of G(2)-equivalence classes of configurations of points on
the Euclidean plane. Every two indices i, j, i 6= j, 1 ≤ i, j ≤ n give a forgetting map Cn−→C2 ≃ S1. We
denote by dφi,j the closed 1-form on Cn which is the pullback of the standard 1-form d(angle) on the circle.
We use the same notation for the pullback of this form to Confn.
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Lemma. Let n ≥ 3 be an integer. The integral over Cn of the product of any 2n − 3 = dim(Cn) closed
1-forms dφiα,jα

, α = 1, . . . , 2n− 3, is equal to zero.

Proof: First of all, we identify Cn with the subset C′n of Confn consisting of configurations such that
the point pi1 is 0 ∈ C and pj1 is on the unit circle S1 ⊂ C. Also, we rewrite the form which we integrate as

2n−3∧

α=1

dφiα,jα
= dφi1,j1 ∧

2n−3∧

α=2

d(φiα,jα
− φi1,j1) .

Let us map the space C′n onto the space C′′n ⊂ Confn consisting of configurations with pi1 = 0 and
pj1 = 1, applying rotations with the center at 0. Differential forms d(φiα ,jα

− φi1,j1) on C′n are pullbacks of
differential forms dφiα ,jα

on C′′n . The integral of a product of 2n−3 closed 1-forms dφiα,jα
, α = 1, . . . , 2n−3

over C′n is equal to ±2π times the integral of the product 2n− 4 closed 1-forms dφiα ,jα
, α = 2, . . . , 2n− 3

over C′′n .
The space C′′n is a complex manifold. We are calculating the absolutely converging integral of the type

∫

C′′
n

∏

α

dArg(Zα)

where Zα are holomorphic invertible functions on C′′n (differences between complex coordinates of points of
the configuration). We claim that it is zero, because of the general result proven in 6.6.1. Q.E.D.

6.6.1. A trick using logarithms

Theorem. Let X be a complex algebraic variety of dimension N ≥ 1, and Z1, . . . , Z2N be rational functions
on X , not equal identically to zero. Let U be any Zariski open subset of X such that functions Zα are defined
and non-vanishing on U , and U consists of smooth points. Then the integral

∫

U(C)

∧2N
α=1d(Arg Zα)

is absolutely convergent, and equal to zero.

This result seems to be new, although the main trick used in the proof is well-known. A. Goncharov
told me that he also came to the same result in his study of mixed Tate motives.

Proof: First of all, we claim that the differential form ∧2N
α=1dArg(Zα) on U(C) coincides with the form

∧2N
α=1dLog |Zα| (this is the trick).

We can replace dArg(Zα) by the difference of a holomorphic an anti-holomorphic form

1

2i

(
d(Log Zα)− d(Log Zα)

)
.

Thus, the form which we integrate over U(C) is a sum of products of holomorphic and of anti-holomorphic
forms. The summand corresponding to a product of a non-equal number of holomorphic and of anti-
holomorphic forms, vanishes identically because U(C) is a complex manifold. The conclusion is that the
number of anti-holomorphic factors in non-vanishing summands is the same for all of them, it coincides
with the complex dimension N of U(C). The same products of holomorphic and of anti-holomorphic forms
survive in the product

2N∧

α=1

dLog |Zα| =
2N∧

α=1

1

2

(
d(Log Zα) + d(Log Zα)

)
.

Let us choose a compactification U of U such that U \ U is a divisor with normal crossings. If φ is a
smooth differential form on U(C) such that coefficients of φ are locally integrable on U(C), then we denote
by I(φ) corresponding differential form on U(C) with coefficients in the space of generalized functions.
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Lemma. Let ω be a form on U(C) which is a linear combination of products of functions Log |Zα| and of
1-forms dLog |Zα| where Zα ∈ O×(U) are regular invertible functions on U . Then coefficients of ω and of
dω are locally L1 functions on U(C). Moreover, I(dω) = d(I(ω)). Also, the integral

∫
U(C)

ω is absolutely

convergent and equal to the integral
∫

U(C)

I(ω).

The lemma is an elementary exercise in generalized functions, after passing to local coordinates on
U(C). We leave details of the proof to the reader. Also, the statement of the lemma remains true without
the condition that U \ U is a divisor with normal crossings. Q.E.D.

The vanishing of the integral in the theorem is clear now by the Stokes formula:

∫

U(C)

2N∧

α=1

dArg (Zα) =

∫

U(C)

2N∧

α=1

dLog |Zα| =
∫

U(C)

I
(
d

(
Log |Z1|

2N∧

α=2

dLog |Zα|
))

=

=

∫

U(C)

d

(
I
(
Log |Z1|

2N∧

α=2

dLog |Zα|
))

= 0 . Q .E .D .

6.6.2. Remark

The vanishing of the integral in the lemma from 6.6 has higher-dimensional analogue which is crucial
in the perturbative Chern-Simons theory in the dimension 3, and its generalizations to dimensions ≥ 4 (see
[Ko1]). However, the vanishing of integrals in dimensions ≥ 3 follows from a much simpler fact which is the
existence of a geometric involution making the integral equal to minus itself. In the present paper we will
use many times such kind of arguments involving involutions.

7. Formality conjecture for general manifolds

In this section we establish the formality conjecture for general manifolds, not only for open domains in
Rd. It turns out that that essentially all work is already done. The only new analytic result is vanishing of
certain integrals over configuration spaces, analogous to the lemma from 6.6.

One can treat Rd
formal, the formal completion of vector space Rd at zero, in many respects as usual

manifold. In particular, we can define differential graded Lie algebras Dpoly(Rd
formal) and Tpoly(Rd

formal).

The Lie algebra Wd := V ect(Rd
formal) is the standard Lie algebra of formal vector fields. We consider Wd as

a differential graded Lie algebra (with the trivial grading and the differential equal to 0). There are natural
homomorphisms of differential graded Lie algebras:

mT : Wd−→Tpoly(Rd
formal), mD : Wd−→Dpoly(Rd

formal) ,

because vector fields can be considered as polyvector fields and as differential operators.
We will use the following properties of the quasi-isomorphism U from 6.4:
P1) U can be defined for Rd

formal as well,
P2) for any ξ ∈ Wd we have the equality

U1(mT (ξ)) = mD(U1(ξ)) ,

P3) U is GL(d,R)-equivariant,
P4) for any k ≥ 2, ξ1, . . . , ξk ∈Wd we have the equality

Uk(mT (ξ1)⊗ . . .⊗mT (ξk)) = 0

,
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P5) for any k ≥ 2, ξ ∈ gl(d,R) ⊂Wd, and for any η2, . . . , ηk ∈ Tpoly(Rd
formal) we have

Uk(mT (ξ) ⊗ η2 ⊗ . . .⊗ ηk) = 0 .

We will construct quasi-isomorphisms from Tpoly(X) to Dpoly(X) for arbitrary d-dimensional manifold
X using only properties P1-P4 of the map U . Properties P1,P2 and P3 are evident, and the properties P4,P5
will be established later (subsections 7.3.1.1 and 7.3.3.1).

It will be convenient to use in this section the geometric language of formal graded manifolds, instead of
the algebraic language of L∞-algebras. Let us fix the dimension d ∈ N. We introduce three formal graded
Q-manifolds without base points:

T ,D,W .

These formal graded Q-manifolds are obtained in the usual way from differential graded Lie algebras
Tpoly(Rd

formal), Dpoly(Rd
formal) and Wd forgetting base points.

In next two subsections (7.1 and 7.2) we present two general geometric constructions, which will used
in 7.3 for the proof of formality of Dpoly(X).

7.1. Formal geometry (in the sense of I. Gelfand and D. Kazhdan)

Let X be a smooth manifold of dimension d. We associate with X two infinite-dimensional manifolds,
Xcoor and Xaff . The manifold Xcoor consists of pairs (x, f) where x is a point of X and f is an infinite
germ of a coordinate system on X at x,

f : (Rd
formal, 0) →֒ (X,x) .

We consider Xcoor as a projective limit of finite-dimensional manifolds (spaces of finite germs of coordinate
systems). There is an action on Xcoor of the (pro-Lie) group Gd of formal diffeomorphisms of Rd preserving
base point 0. The natural projection map Xcoor−→X is a principal Gd-bundle.

The manifold Xaff is defined as the quotient space Xcoor/GL(d,R). It can be thought as the space
of formal affine structures at points of X . The main reason to introduce Xaff is that fibers of the natural
projection map Xaff−→X are contractible.

The Lie algebra of the group Gd is a subalgebra of codimension d in Wd. It consists of formal vector
fields vanishing at zero. Thus, Lie(Gd) acts on Xcoor. It is easy to see that in fact the whole Lie algebra
Wd acts on Xcoor and is isomorphic to the tangent space to Xcoor at each point. Formally, the infinite-
dimensional manifold Xcoor looks as a principal homogeneous space of the non-existent group with the Lie
algebra Wd.

The main idea of formal geometry (se [GK]) is to replace d-dimensional manifolds by “principal homo-
geneous spaces” of Wd. Differential-geometric constructions on Xcoor can be obtained from Lie-algebraic
constructions for Wd. For a while we will work only with Xcoor, and then at the end return to Xaff . In
terms of Lie algebras it corresponds to the difference between absolute and relative cohomology.

7.2. Flat connections and Q-equivariant maps

Let M be a C∞-manifold (or a complex analytic manifold, or an algebraic manifold, or a projective
limit of manifolds,...). Denote by ΠTM the supermanifold which is the total space of the tangent bundle of
M endowed with the reversed parity. Functions on the ΠTM are differential forms on M . The de Rham
differential dM on forms can be considered as an odd vector field on ΠTM with the square equal to 0. Thus,
ΠTM is a Q-manifold. It seems that the accurate notation for ΠTM considered as a graded manifold should
be T [1]M (the total space of the graded vector bundle TM [1] considered as a graded manifold).

Let N−→M be a bundle over a manifold M whose fibers are manifolds, or vector spaces, etc., endowed
with a flat connection ∇. Denote by E the pullback of this bundle to B := ΠTM . The connection ∇ gives a
lift of the vector field QB := dM on B to the vector field QE on E. This can be done for arbitrary connection,
and only for flat connection the identity [QE , QE] = 0 holds.
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A generalization of a (non-linear) bundle with a flat connection is a Q-equivariant bundle whose total
space and the base are Q-manifolds. In the case of graded vector bundles over T [1]M this notion was
introduced Quillen under the name of a superconnection (see [Q]). A generalization of the notion of a
covariantly flat morphism from one bundle to another is the notion of a Q-equivariant map.

Definition. A flat family over Q-manifold B is a pair (p : E−→B, σ) where p : E−→B is a Q-equivariant
bundle whose fibers are formal manifolds, and a σ : B−→E is a Q-equivariant section of this bundle.

In the case B = {point} a flat family over B is the same a formal Q-manifold with base point. It is
clear that flat families over a given Q-manifold form a category.

We apologize for the terminology. More precise name for “flat families” would be “flat families of pointed
formal manifolds”, but it is too long.

One can define analogously flat graded families over graded Q-manifolds.

We refer the reader to a discussion of further examples of Q-manifolds in [Ko3].

7.3. Flat families in deformation quantization

Let us return to our concrete situation. We construct in this section two flat families over ΠTX (where
X is a d-dimensional manifold), and a morphism between them. This will be done in several steps.

7.3.1. Flat families over W

The first bundle over W is trivial as a Q-equivariant bundle,

T ×W−→W

but with a non-trivial section σT . This section is not the zero section, but the graph of the Q-equivariant
mapW−→T coming from the homomorphism of differential graded Lie algebrasmT : Wd−→Tpoly(Rd

formal).
Analogously, the second bundle is the trivial Q-equivariant bundle

D ×W−→W

with the section σD coming from the homomorphism mD : Wd−→Dpoly(Rd
formal).

Formulas from 6.4 give a Q-equivariant map U : T −→D.

Lemma. The morphism (U × idW) : T ×W−→D ×W is a morphism of flat families over W .

Proof: We have to check that (U × idW) maps one section to another, i.e. that

(U × idW) ◦ σT = σD ∈Maps(W ,D ×W) .

We compare Taylor coefficients. The linear part U1 of U maps a vector field (considered as a polyvector
field) to itself, considered as a differential operator (property P2). Components Uk(ξ1, . . . , ξk) for k ≥ 2, ξi ∈
T 0(Rd) = Γ(Rd, T ) vanish, which is the property P4. Q.E.D.

7.3.1.1. Proof of the property P4

Graphs appearing in the calculation of Uk(ξ1, . . . , ξk) have k edges, k vertices of the first type, and m
vertices of the second type, where

2k +m− 2 = k .

Thus, there are no such graphs for k ≥ 3 as m is non-negative. The only intersting case is k = 2,m = 0.
The graph is looking as
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p

1

2.
.

By our construction, U2 restricted to vector fields is equal to the non-trivial quadratic map

ξ 7−→
d∑

i,j=1

∂i(ξ
j)∂j(ξ

i) ∈ Γ(Rd,O), ξ =
∑

i

ξi∂i ∈ Γ(Rd, T )

with the weight ∫

C2,0

dφ(12)dφ(21) =

∫

H\{z0}

dφ(z, z0) ∧ dφ(z0, z)

where z0 is an arbitrary point of H.

Lemma. For arbitrary angle map the integral
∫

H\{z0}

dφ(z, z0) ∧ dφ(z0, z) is equal to zero.

Proof: We have a map C2,0−→S1 × S1, [(x, y)] 7→ (φ(x, y), φ(y, x)). We calculate the integral of the
pullback of the standard volume element on two-dimensional torus. It is easy to see that the integral does not
depend on the choice of map φ : C2,0−→S1. The reason is that the image of the boundary of the integration
domain ∂C2,0 in S1 × S1 cancels with the reflected copy of itself under the involution (φ1, φ2) 7→ (φ2, φ1) of
the torus S1×S1. Let us assume that φ = φh and z0 = 0+1 · i. The integral vanishes because the involution
z 7→ −z reverses the orientation of H and preserves the form dφ(z, z0) ∧ dφ(z0, z). Q.E.D.

7.3.2. Flat families over ΠT (Xcoor)

If X is a d-dimensional manifold, then there is a natural map of Q-manifolds (the Maurer-Cartan form)

ΠT (Xcoor)−→W .

It follows from following general reasons. If G is a Lie group, then it acts freely by left translations on itself,
and also on ΠTG. The quotient Q-manifold ΠTG/G is equal to Πg where g = Lie(G). Thus, we have a
Q-equivariant map

ΠTG−→Πg .

Analogous construction works for any principal homogeneous space over G. We apply it to Xcoor considered
as a principal homogeneous space for a non-existent group with the Lie algebra Wd.

The pullbacks of flat families of formal manifolds overW constructed in 7.3.1, are two flat families over
ΠT (Xcoor). As Q-equivariant bundles these families are trivial bundles

T × ΠT (Xcoor)−→ΠT (Xcoor), D ×ΠT (Xcoor)−→ΠT (Xcoor) .

Pullbacks of sections σT and σD gives sections in the bundles above. These sections we denote again by σT
and σD . The pullback of the morphism U × idW is also a morphism of flat families.

7.3.3. Flat families over ΠT (Xaff)
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Recall that Xaff is the quotient space of Xcoor by the action of GL(d,R). Thus, from functorial prop-
erties of operation ΠT (= Maps(R0|1, ·)) follows that ΠT (Xaff) is the quotient of Q-manifold ΠT (Xcoor)
by the action of Q-group ΠT (GL(d,R)). We will construct an action of ΠT (GL(d,R)) on flat families
T × ΠT (Xcoor) and D × ΠT (Xcoor) over ΠT (Xcoor). We claim that the morphism between these families
is invariant under the action of ΠT (GL(d,R)). Flat families over ΠT (Xaff) will be defined as quotient
families. The morphism between them will be the quotient morphism.

The action of ΠT (GL(d,R)) on T and on W is defined as follows. First of all, if G is a Lie group with
the Lie algebra g, then ΠTG acts Q-equivariantly on Q-manifold Πg, via the identification Πg = ΠTG/G.
Analogously, if g is a subalgebra of a larger Lie algebra g1, and an action of G on g1 is given in a way
compatible with the inclusion g→֒g1, then ΠTG acts on Πg1. We apply this construction to the case
G = GL(n,R) and g1 = Tpoly(Rd

formal) or g1 = Dpoly(Rd
formal).

One can check easily that sections σT and σD over ΠT (Xcoor) are ΠT (GL(d,R))-equivariant. Thus, we
get two flat families over ΠT (Xaff).

The last thing we have to check is that the morphism U × idΠT (Xcoor) of flat families

T ×ΠT (Xcoor)−→D ×ΠT (Xcoor)

is ΠT (GL(d,R))-equivariant. After the translation of the problem to the language of Lie algebras, we see
that we should check that U is GL(d,R)-invariant (property P3, that is clear by our construction), and that
if we substitute an element of gl(d,R) ⊂Wd in U≥2, we get zero (property P5, see 7.3.3.1).

Conclusion. We constructed two flat families over ΠT (Xaff) and a morphism between them. Fibers of
these families are isomorphic to T and to D.

7.3.3.1. Property P5

This is again reduces to the calculation of an integral. Let v be a vertex of Γ to which we put element
of gl(d,R). There is exactly one edge starting at v because we put a vector field here. If there are no edges
ending at v, then the integral is zero because the domain of integration is foliated by lines along which all
forms vanish. These lines are level sets of the function φ(z, w) where w ∈ H ⊔R is fixed and z is the point
on H corresponding to v.

. .
.z

. . .

.w

.

If there are at least 2 edges ending at v, then the corresponding polydifferential operator is equal to
zero, because second derivatives of coefficients of a linear vector field vanish.

The only relevant case is when there is only one edge starting at v, and only one edge ending there. If
these two edges connect our vertex with the same vertex of Γ, then the vanishing follows from the lemma in
the section 7.3.2.1. If our vertex is connected with two different vertices,
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z

z 2

. z1 

z .
z.

.z2

1 

or

then we apply the following two lemmas:

Lemma. Let z1 6= z2 ∈ H be two distinct points on H. Then the integral

∫

z∈H\{z1,z2}

dφ(z1, z) ∧ dφ(z, z2)

vanishes.

Lemma. Let z1 ∈ H, z2 ∈ R be two points on H ⊔R. Then the integral

∫

z∈H\{z1,z2}

dφ(z1, z) ∧ dφ(z, z2)

vanishes.

Proof: One can prove analogously to the lemma in 7.3.1.1 that the integral does not depend on the
choice of an angle map, and also on points z1, z2. In the case of φ = φh and both points z1, z2 are pure
imaginary, the vanishing follows from the anti-symmetry of the integral under the involution z 7→ −z.
Q.E.D.

7.3.4. Flat families over X

Let us choose a section saff of the bundle Xaff−→X . Such section always exists because fibers of this
bundle are contractible. For example, any torsion-free connection ∇ on the tangent bundle to X gives a
section X−→Xaff . Namely, the exponential map for ∇ gives an identification of a neighborhood of each
point x ∈ X with a neighborhood of zero in the vector space TxX , i.e. an affine structure on X near x, and
a point of Xaff over x ∈ X .

The section saff defines a map of formal graded Q-manifolds ΠTX−→ΠT (Xaff). After taking the
pullback we get two flat families Tsaff and Dsaff over ΠTX and an morphism msaff from one to another.

We claim that these two flat families admit definitions independent of saff . Only the morphism msaff

depends on saff .
Namely, let us consider infinite-dimensional bundles of differential graded Lie algebras jets∞Tpoly and

jets∞Dpoly over X whose fibers at x ∈ X are spaces of infinite jets of polyvector fields or polydifferential
operators at x respectively. These two bundles carry natural flat connections (in the usual sense, not as in
7.2) as any bundle of infinite jets. Thus, we have two flat families (in generalized sense) over ΠTX .

Lemma. Flat families Tsaff and Dsaff are canonically isomorphic to flat families described just above.

Proof: it follows from definitions that pullbacks of bundles jets∞Tpoly and jets∞Dpoly from X to
Xcoor are canonically trivialized. The Maurer-Cartan 1-forms on Xcoor with values in graded Lie algebras
Tpoly(Rd

formal) or Dpoly(Rd
formal) come from pullbacks of flat connections on bundles of infinite jets. Thus,

we identified our flat families over ΠT (Xcoor) with pullbacks. The same is true for Xaff . Q.E.D.
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7.3.5. Passing to global sections

If in general (p : E−→B, σ) is a flat family, then one can make a new formal pointed Q-manifold:

(Γ(E−→B)formal, σ) .

This is an infinite-dimensional formal super manifold, the formal completion of the space of sections of
the bundle E−→B at the point σ. The structure of Q-manifold on Γ(E−→B) is evident because the Lie
supergroup R0|1 acts on E−→B.

Lemma. Formally completed spaces of global sections of flat families Tsaff and Dsaff a naturally quasi-
isomorphic to Tpoly(X) and Dpoly(X) respectively.

Proof: It is well-known that if E−→X is a vector bundle then de Rham cohomology of X with
coefficients in formally flat infinite-dimensional bundle jets∞E are concentrated in degree 0 and canonically
isomorphic to the vector space Γ(X,E). Moreover, the natural homomorphism of complexes

(
Γ(X,E)[0], differential = 0

)
−→

(
Ω∗(X, jets∞(E)), de Rham differential

)

is quasi-isomorphism.
Using this fact, the lemma from the previous subsection, and appropriate filtrations (for spectral se-

quences) one sees that that the natural Q-equivariant map from the formal Q-manifold (Tpoly(X)formal[1], 0)
to (Γ(Tsaff−→T [1]X)formal, σT ) (and analogous map for Dpoly) is a quasi-isomorphism. Q.E.D.

It follows from the lemma above and the result of 4.6.1.1 that we have a chain of quasi-isomorphisms

Tpoly(X)[1]formal−→Γ(Tsaff−→T [1]X)formal−→Γ(Dsaff−→T [1]X)formal ←− Tpoly(X)[1]formal .

Thus, differential graded Lie algebras Tpoly(X) and Dpoly(X) are quasi-isomorphic. The theorem from
4.6.2. is proven. Q.E.D.

The space of sections of the bundle Xaff−→X is contractible. From this fact one can conclude that
the quasi-isomorphism constructed above is well-defined homotopically.

8. Cup-products

8.1. Cup-products on tangent cohomology

Differential graded Lie algebras Tpoly, Dpoly and (more generally) shifted by [1] Hochschild complexes of
arbitrary associative algebras, all carry an additional structure. We do not know at the moment a definition,
it should be something close to so called homotopy Gerstenhaber algebras (see [GV], [GJ]), although definitely
not precisely this. At least, a visible part of this structure is a commutative associative product of degree
+2 on cohomology of the tangent space to any solution of the Maurer-Cartan equation. Namely, if g is
one of differential graded Lie algebras listed above and γ ∈ (g ⊗m)1 satisfies dγ + 1

2 [γ, γ] = 0 where m
is a finite-dimensional nilpotent non-unital differential graded commutative associative algebra, the tangent
space Tγ is defined as complex γ⊗m[1] endowed with the differential d+[γ, ·]. Cohomology space Hγ of this
differential is a graded module over graded algebra H(m) (the cohomology space of m as a complex). If γ1

and γ2 are two gauge equivalent solutions, then Hγ1
and Hγ2

are (non-canonically) equivalent m-modules.
We define now cup-products for all three differential graded Lie algebras listed at the beginning of this

section. For Tpoly(X) the cup-product is defined as the usual cup-product of polyvector fields (see 4.6.1).
One can check directly that this cup-product is compatible with the differential d + [γ, ·], and is a graded
commutative associative product. For the Hochschild complex of an associative algebra A the cup-product
on Hγ is defined in a more tricky way. It is defined on the complex by the formula

(t1 ∪ t2)(a0 ⊗ . . .⊗ an) :=

∑

0≤k1≤k2≤k3≤k4≤n

±γn−(k2−k1+k4−k3)(a0 ⊗ . . .⊗ t1(ak1
⊗ . . .)⊗ ak2

⊗ . . .⊗ t2(ak3
⊗ . . .)⊗ ak4

⊗ . . .)
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where γl ∈ (k[0] · 1⊕m)1−l ⊗Hom(A⊗(l+1), A) is homogeneous component of (γ + 1⊗mA).
It is not a trivial check that the cup-product on the Hochschild complex is compatible with differentials,

and also is commutative, associative and gauge-equivariant on the level of cohomology. Formally, we will
not use this fact. The proof is a direct calculation with Hochschild cochains. Even if one replaces formulas
by appropriate pictures the calculation is still quite long, about 4-5 pages of tiny drawings. Alternatively,
there is a simple abstract explanation using the interpretation of the deformation theory related with the
shifted Hochschild complex as a deformation theory of triangulated categories (or, better, A∞-categories,
see [Ko4]). We will discuss it in more details in the sequel to the present paper.

We define the cup-product for Dpoly(X) by the restriction of formulas for the cup-product in C•(A,A).

8.2. Compatibility of U with cup-products

Theorem. The quasi-isomorphism U constructed in section 6 maps the cup-product for Tpoly(X) to the
cup-product for Dpoly(X).

Sketch of the proof: we translate the statement of the theorem to the language of graphs and integrals.
The tangent map is given by integrals where one of vertices of the first type is marked. This is the vertex
where we put a representative t for the tangent element [t] ∈ Hγ . We put copies of γ (which is a polyvector
field with values in m) into all other vertices of the first type. The rule which we just described follows
directly from the Leibniz formula applied to the Taylor series for U .

Now we are interested in the behavior of the tangent map with respect to a bilinear operation on the
tangent space. It means that we have now two marked vertices of the first type.

8.2.1. Pictures for the cup-product in polyvector fields

We claim that the cup-product for the case Tpoly(X) corresponds to pictures where two points (say,
p1, p2) where we put representatives of elements of Hγ which we want to multiply, are infinitely close points
on H. Precisely, it means that we integrate over preimages Pα of some point α in R/2πZ ≃ C2 ⊂ C2,0 with
respect to the forgetting map

Cn,m−→C2,0 .

It is easy to see that Pα has codimension 2 in Cn,m and contains no strata CT of codimension 2. It implies
that as a singular chain Pα is equal to the sum of closures of non-compact hypersurfaces

Pα ∩ ∂S(Cn,m), Pα ∩ ∂S1,S2
(Cn,m)

in boundary strata of Cn,m. It is easy to see that intersections Pα∩∂S1,S2
(Cn,m) are empty, and intersection

Pα ∩ ∂S(Cn,m) is non-empty iff S ⊇ {1, 2}. The picture is something like

. .
.

. . .

....

p1    
2

p

Points p1 and p2 should not be connected by an edge because otherwise the integral vanishes, there is no
directions over which we can integrate form dφ(p1, p2). Also, if #S ≥ 3 then the integral vanishes by lemma
from 6.6. The only non-trivial case which is left is when S = {1, 2} and points p1, p2 are not connected:
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.

. . .

. . .

.p
p

2

1 

This figure exactly corresponds to the cup-product in Tpoly(X).

8.2.2. Pictures for the cup-product in the Hochschild complex

The cup-product for Dpoly(X) is given by pictures where these two points are separated and infinitely
close to R. Again, the precise definition is that we integrate of the preimage P0,1 of point [(0, 1)] ∈ C0,2 ⊂
C2,0. Analysis analogous to the one from the previous subsection shows that P0,1 does not intersect any
boundary stratum of Cn,m. Thus, as a chain of codimension 2 this preimage P0,1 coincides with the union
of closures of strata CT of codimension 2 such that CT ⊆ P0,1. It is easy to see that any such stratum give
pictures like the one below where there is no arrow going from circled regions outside (as in the picture in
6.4.2.2),

.. ..
..

. . .

. p p
1 2. . . . .

and we get exactly the cup-product in the tangent cohomology of the Hochschild complex as was described
above.

8.2.3. Homotopy between two pictures

Choosing a path form one (limiting) configuration of two points on H to another configuration,
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. .
p p
1 2

0 1

we see that two products coinside on the level of cohomology. Q.E.D.

8.3. First application: Duflo-Kirillov isomorphism

8.3.1. Quanization of the Kirillov-Poisson bracket

Let g be a finite-dimensional Lie algebra over R. The dual space to g endowed with the Kirillov-Poisson
bracket is naturally a Poisson manifold (see [Ki]). We remind here the formula for this bracket: if p ∈ g∗ is
a point and f, g are two functions on g then the value {f, g}|p is defined as 〈p, [df|p, dg|p]〉 where differentials
of functions f, g at p are considered as elements of g ≃ (g∗)∗. One can consider g∗ as an algebraic Poisson
manifold because coefficients of the Kirillov-Poisson bracket are linear functions on g∗.

Theorem. The canonical quantization of the Poisson manifold g∗ is isomorphic to the family of algebras
Uh̄(g) defined as universal enveloping algebras of g endowed with the bracket h̄[ , ].

Proof: in 6.4 we constructed a canonical star-product on the algebra of functions on a affine space for
a given Poisson structure. Thus, we have canonical star-product on C∞(g∗). We claim that the product of
any two polynomials on g∗ is a polynomial in h̄ with coefficients which are polynomials on g∗. The reason
is that the star-product is constructed using contraction of indices. Let us denote by β ∈ g∗ ⊗ g∗ ⊗ g the
tensor giving the Lie bracket on g. All natural operations Symk(g) ⊗ Syml(g)−→Symm(g) which can be
defined by contractions of indices with several copies of β, exist only for m ≤ k + l, and for every given m
there are only finitely many ways to contract indices. Thus, it makes sense to put h̄ equal to 1 and obtain a
product on Sym(g) = ⊕k≥0Sym

k(g). We denote this product also by ⋆.
It is easy to see that for γ1, γ2 ∈ g the following identity holds:

γ1 ⋆ γ2 − γ2 ⋆ γ1 = [γ1, γ2] .

Moreover, the top component of ⋆-product which maps Symk(g)⊗Syml(g) to Symk+l(g), coincides with the
product on Sym(g). From this two facts one concludes that there exists a unique isomorphism of algebras

Ialg : (Ug, ·)−→(Sym(g), ⋆)

such that Ialg(γ) = γ for γ ∈ g, where · denotes the universal enveloping algebra of g with the standard
product.

One can easily recover variable h̄ in this description and get the statement of the theorem. Q.E.D.

Corollary. The center of the universal enveloping algebra is canonically isomorphic as an algebra to the
algebra

(
Sym(g)

)g
of g-invariant polynomials on g∗.

Proof: The center of Ug is 0-th cohomology for the (local) Hochschild complex of Ug endowed with
the standard cup-product. The algebra

(
Sym(g)

)g
is the 0-th cohomology of the algebra of polyvector fields

on g∗ endowed with the differential [α, ·] where α is the Kirillov-Poisson bracket. From the theorem 8.2 we
conclude that applying the tangent map to U we get an isomorphism of algebras.
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8.3.2. Three isomorphisms

In the proof of theorem 8.3.1 we introduced an isomorphism Ialg of algebras.

We denote by IPBW the isomorphism of vector spaces

Sym(g)−→Ug

(subscript from the Poincaré-Birkhoff-Witt theorem, see 8.3.5.1), which is defined as

γ1γ2 . . . γn−→
1

n!

∑

σ∈Σn

γσ1
· γσ2

· . . . · γσn
.

Analogously to arguments from above, one can see that the tangent map from polyvector fields on g∗

to the Hochschild complex of the quantized algebra can be defined for h̄ = 1 and for polynomial coefficients.
We denote by IT its component which maps polynomial 0-vector fields on g∗ (i.e. elements of Sym(g))
to 0-cochains of the Hochschild complex of the algebra (Sym(g), ⋆). Thus, IT is an isomorphism of vector
spaces

IT : Sym(g)−→Sym(g)

and the restriction of IT to the algebra of ad(g)∗-invariant polynomials on g∗ is an isomorphism of algebras

Sym(g)g−→Center((Sym(g), ⋆)) .

Combining all facts from above we get a sequence of isomorphisms of vector spaces:

Sym(g)
IT−−−→Sym(g)

Ialg←−−−Ug IP BW←−−−Sym(g) .

These isomorphisms are ad(g)-invariant. Thus, one get isomorphisms

(Sym(g))g
IT |...−−−→ Center(Sym(g), ⋆)

Ialg |...←−−− Center(Ug)
IP BW |...←−−− (Sym(g))g ,

where the subscript | . . . denotes the restriction to subspaces of ad(g)-invariants . Moreover, first two arrows
are isomorphism of algebras. Thus, we proved the following

Theorem. The restriction of the map

(
Ialg

)−1 ◦ IT : Sym(g)−→Ug

to (Sym(g))g is an isomorphism of algebras (Sym(g))g−→Center (Ug).

Q.E.D.

8.3.3. Automorphisms of Sym(g)

Let us calculate automorphisms IT and Ialg ◦ IPBW of the vector space Sym(g). We claim that both
these automorphisms are translation invariant operators on the space Sym(g) of polynomials on g∗.

The algebra of translation invariant operators on the space of polynomials on a vector space V is
canonically isomorphic to the algebra of formal power series generated by V . Generators of this algebra acts
as derivations along constant vector fields in V . Thus, any such operator can be seen as a formal power
series at zero on the dual vector space V ∗. We apply this formalism to the case V = g∗.
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Theorem. Operators IT and Ialg ◦ IPBW respectively are translation invariant operators associated with
formal power series S1(γ) and S2(γ) at zero in g of the form

S1(γ) = exp


∑

k≥1

c
(1)
2k Trace (ad(γ)2k)


 , S2(γ) = exp


∑

k≥1

c
(2)
2k Trace (ad(γ)2k)




where c
(1)
2 , c

(1)
4 , . . . and c

(2)
2 , c

(2)
4 , . . . are two infinite sequences of real numbers indexed by even natural

numbers.

Proof: we will study separately two cases.

8.3.3.1. Isomorphism IT

The isomorphism IT is given by the sum over terms corresponding to admissible graphs Γ with no
vertices of the second type, one special vertex v of the first type such that no edge start at v, and such that
at any other vertex start two edges and ends no more than one edge. Vertex v is the marked vertex where
we put an element of Sym(g) considered as an element of tangent cohomology. At other vertices we put the
Poisson-Kirillov bi-vector field on g∗, i.e. the tensor of commutator operation in g. As the result we get
0-differential operator, i.e. an element of algebra Sym(g).

It is easy to see that any such graph is isomorphic to a union of copies of “wheels” Whn, n ≥ 2:

.
.1

2
. . .

v

n

..
.

.
.

with identified central vertex v. The following picture shows a typical graph:

.v

...

.
.

.

..

In the integration we may assume that the point corresponding to v is fixed, say that it is i · 1 + 0 ∈ H,
because groupG(1) acts simply transitively onH. First of all, the operator Sym(g)−→Sym(g) corresponding
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to the individual wheel Whn is the differential operator on g∗ with constant coefficients, and it corresponds
to the polynomial γ 7→ Trace (ad(γ)n) on g. The operator corresponding to the joint of several wheels is the
product of operators associated with individual wheels. Also, the integral corresponding to the joint is the
product of integrals. Thus, with the help of symmetry factors, we get that the total operator is equal to the
exponent of the sum of operators associated with wheels Whn, n ≥ 2 with weights equal to corresponding
integrals. By the symmetry argument used several times before (z 7→ −z), we see that integrals corresponding
to wheels with odd n vanish. We proved the first statement of our theorem. Q.E.D.

8.3.3.2. Isomorphism Ialg ◦ IPBW

The second case, for the operator Ialg ◦ IPBW , is a bit more tricky. Let us write a formula for this map:

Ialg ◦ IPBW : γn 7→ γ ⋆ γ ⋆ γ . . . ⋆ γ (n copies of γ) .

This formula defines the map unambiguously because elements γn, γ ∈ g, n ≥ 0 generate Sym(g) as a
vector space.

In order to multiply several (say, m, where m ≥ 2) elements of the quantized algebra we should put
these elements at m fixed points in increasing order on R and take the sum over all possible graphs with
m vertices of the second type of corresponding expressions with appropriate weights. The result does not
depend on the position of fixed points on R because the star-product is associative. Moreover, if we calculate
a power of a given element with respect to the ⋆-product, we can put all these points in arbitrary order.
It follows that we can take an average over configurations of m points on R where each point is random,
distributed independently from other points, with certain probability density on R. We choose a probability
distribution on R with a smooth symmetric (under transformation x 7→ −x) density ρ(x). We assume also
that ρ(x)dx is the restriction to R ≃ C1,1 of a smooth 1-form on C1,1 ≃ {−∞}⊔R⊔{+∞}. With probability
1 our m points will be pairwise distinct. One can check easily that the interchanging of order of integration
(i.e. for the taking mean value from the probability theory side, and for the integration of differential forms
over configuration spaces) is valid operation in our case.

The conclusion is that the m-th power of an element of quantized algebra can be calculated as a sum
over all graphs with m vertices of the second type, with weights equal to integrals over configuration spaces
where we integrate products of forms dφ and 1-forms ρ(xi)dxi where xi are points moving along R.

The basic element of pictures in our case are “wheels without axles”:

. .

.

..
.

. .

2

. . . .

n

1

and the Λ-graph (which gives 0 by symmetry reasons):
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. .

.

The typical total picture is something like (with m = 10):

. . . . . . .

.

. . .

.

.

.

. . .

.

Again, it is clear from all this that the operator Ialg ◦ IPBW is a differential operator with constant
coefficients on Sym(g), equal to the exponent of the sum of operators corresponding to individual wheels.
These operators are again proportional to operators associated with power series on g

γ−→Trace (ad(γ)n) .

By the same symmetry reasons as above we see that integrals corresponding to odd n vanish. The second
part of the theorem is proven. Q.E.D.

8.3.4. Comparison with the Duflo-Kirillov isomorphism

For the case of semi-simple g there is so called Harish-Chandra isomorphism between algebras
(
Sym(g)

)g
and Center(Ug). A. Kirillov realized that there is a way to rewrite the Harish-Chandra isomorphism in a
form which has sense for arbitrary finite-dimensional Lie algebra, i.e. without using the Cartan and Borel
subalgebras, the Weyl group etc. Later M. Duflo (see [D]) proved that the map proposed by Kirillov is an
isomorphism for all finite-dimensional Lie algebras.

The explicit formula for the Duflo-Kirillov isomorphism is the following:

IDK :
(
Sym(g)

)g ≃ Center(U(g)), IDK = IPBW |(Sym(g))g ◦ Istrange|(Sym(g))g ,

where Istrange is an invertible translation invariant operator on Sym(g) associated with the following formal
power series on g at zero, reminiscent of the square root of the Todd class:

γ 7→ exp


∑

k≥1

B2k

4k(2k)!
Trace (ad(γ)2k)
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where B2, B4, . . . are Bernoulli numbers. Formally, one can write the r.h.s. as det(q(ad(γ))) where

q(x) :=

√
ex/2 − e−x/2

x
.

The fact that the Duflo-Kirillov isomorphism is an isomorphism of algebras is highly non-trivial. All
proofs known before (see [Du],[Gi]) used certain facts about finite-dimensional Lie algebras which follow only
from the classification theory. In particular, the fact that the analogous isomorphism for Lie superalgebras
is compatible with products, was not known.

We claim that our isomorphism coincides with the Duflo-Kirillov isomorphism. Let us just sketch the
argument. In fact, we claim that

I−1
alg ◦ IT = IPBW ◦ Istrange .

If it is not true then we get a non-zero series Err ∈ t2R[[t2]] such that the translation invariant operator
on Sym(g) associated with γ 7→ Idet(exp(adγ))) gives an automorphism of algebra (Sym(g))g. Let 2k > 0 be
the degree of first non-vanishing term in the expansion of Err. Then it is easy to see that the operator on
Sym(g) associated with the polynomial γ 7→ Trace(ad(γ)2k is a derivation when restricted to (Sym(g))g.
One can show that it is not true using Lie algebras g = gl(n) for large n. Thus, we get a contradiction and
proved that Err = 0. Q.E.D.

As a remark we would like to mention that if one replaces series q(x) above just by

(
x

1− e−x

)− 1
2

then one still get an isomorphism of algebras. The reason is that the one-parameter group of automorphisms
of Sym(g) associated with series

γ−→exp(const · Trace(ad(γ)))

preserves the structure of Poisson algebra on g∗. This one-parameter group also acts by automorphisms of
Ug. It is analogous to the Tomita-Takesaki flow of weights for von Neumann factors.

8.3.5. Results in rigid tensor categories

Many proofs from this paper can be transported to a more general context of rigid Q-linear tensor
categories (i.e. abelian symmetric monoidal categories with the duality functor imitating the behavior of
finite-dimensional vector spaces). We will be very brief here.

First of all, one can formulate and prove the Poincaré-Birkhoff-Witt theorem in a great generality, in
Q-linear additive symmetric monoidal categories with infinite sums and kernels of projectors. For example,
it holds in the category of A-modules where A is arbitrary commutative associative algebra over Q. Thus,
we can speak about universal enveloping algebras and the isomorphism IPBW .

One can define Duflo-Kirillov morphism for a Lie algebra in a k-linear rigid tensor category where k is a
field of characteristic zero, because Bernoulli numbers are rational. Our result from 8.3.4 saying that it is a
morphism of algebras, holds in this generality as well. It does not hold for infinite-dimensional Lie algebras
because we use traces of products of operators in the adjoint representation.

In [KV] a conjecture was made in the attempt to prove that that Duflo-Kirillov formulas give a morphism
of algebras. It seems that using our result one can prove this conjecture. Also, there is another related
conjecture concerning two products in the algebra of chord diagrams (see [BGRT]) which seems to follow
from our results too.

8.4. Second application: algebras of Ext-s.

Let X be complex manifold, or a smooth algebraic variety of field k of characteristic zero. We associate
with it two graded vector spaces. The first space HT •(X) is the direct sum

⊕
k,lH

k(X,∧lTX)[−k − l].
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The second space HH•(X) is the space
⊕

k Ext
k
Coh(X×X)(Odiag,Odiag)[−k] of Ext-groups in the category

of coherent sheaves on X ×X from the sheaf of functions on the diagonal to itself. The space HH•(X) can
be thought as the Hochschild cohomology of the space X . The reason is that the Hochschild cohomology of
any algebra A can be also defined as Ext•A−mod−A(A,A) in the category of bimodules.

Both spaces, HH•(X) and HT •(X) carry natural products. For HH•(X) it is the Yoneda composition,
and for HT •(X) it is the cup-product of cohomology and of polyvector fields.

Claim. Graded algebras HH•(X) and HT •(X) are canonically isomorphic. The isomorphism between
them is functorial with respect to étale maps.

This statement is again a corollary of the theorem from 8.2. We will give the proof of it, and explain
an application to the Mirror Symmetry (see [Ko4]) in the next paper.
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Birkhäuser 1985.

[BGRT] , D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. Thurston, Wheels, wheeling, and the Kontsevich
integral of the unknot, q-alg/9703025.

[BFFLS] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization.
I. Deformations of symplectic structures, Ann. Physics 111 (1978), no. 1, 61 - 110.

[De] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progress in Mathematics
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