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$1. INTRODUCTION 
THE PURPOSE of this note is to present a de Rham version of the localization theorems of 
equivariant cohomology, and to point out their relation to a recent result of Duistermaat 
and Heckman and also to a quite independent result of Witten. To a large extent all the 
material that we use has been around for some time, although equivariant cohomology is 
not perhaps familiar to analysts. Our contribution is therefore mainly an expository one 
linking together various points of view. 

The paper of Duistermaat and Heckman [ 1 l] which was our initial stimulus concerns the 
moment mapf:M+R’ for the action of a torus T’ on a compact symplectic manifold M. 
Their theorem asserts that the push-forward byfof the symplectic (or Liouville) measure 
on A4 is a piece-wise polynomial measure on R’. An equivalent version is that the Fourier 
transform of this measure (which is the integral over A4 of e-i(c,fi) is exactly given by 
stationary phase approximation. For example when I = 1 (so that T’is the circle S) and the 
fixed points of the action are isolated points P, we have the exact formula , 

where (u is the symplectic 2-form on M and the e(P) are certain integers attached to the 
infinitesimal action of S at P. This principle, that stationary-phase is exact when the 
“Hamiltonian”fcomes from a circle action, is such an attractive result that it seemed to us 
to deserve further study. 

Now in equivariant cohomology there are well-known “localization theorems” which 
enable many computations to be reduced to the fixed-point set of the group action. This 
leads in particular to a general integration formula (see 3.8), and (1.1) turns out to be just 
a special case of this. The corresponding notions in K-theory were already used by 
Atiyah-Segal[4] to relate index-theory computations to fixed-points, and (via the theory of 
characteristic classes) their formulae are then closely related to ones we will derive here. 

In Section 2 we recall the definition and basic properties of equivariant cohomology 
theory, and then in Section 3 we explain the localization theorems, which lead to the 
integration formula (3.8). This is still formulated in cohomological terms; but in Section 4 
we describe how, using a de Rham version, we end up with an integration formula for 
genuine differential forms. The symplectic case is fitted into this framework in Section 6, 
where we show that extending the symplectic form w to an equivariant closed form o # is 
equivalent to giving a moment map. The detailed deduction of the Duistermaat-Heckman 
result is then described in Section 7. 

Section 5 is devoted to examining the relation of Witten’s results to equivariant 
cohomology. As we shall see his work can be interpreted as giving a Hodge-theoretic proof 
of the localization theorem. 

The use of equivariant de Rham theory also sheds light on an old paper of Bott[7] 
concerning the zeroes of Killing vector-fields. This is explained in an appropriate context in 
Section 8. The connection between Bott’s paper and the Duistermaat-Heckman result was 
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also noted independently by Berline and Vergne[5] and quite recently also by 
Duistermaat-Heckman [ 121. 

There are a number of interesting cases of infinite-dimensional symplectic manifolds 
where the Duistermaat-Heckman principle appears to hold. These examples (some of which 
were pointed out to us by Witten) involve functional integrals of the type familiar in 
quantum field theory. None of the proofs of the integration formula apply directly in infinite 
dimensions because integration now involves some regularization procedure. It is therefore 
an extremely interesting and challenging problem to establish a suitable infinite-dimensional 
version of the Duistermaat-Heckman integration formula. 

$2. THE EQUIVARIANT THEORY REVIEWED 

The equivariant cohomology of a G-space M is defined as the ordinary cohomology of 
the space M, obtained from a fixed universal G-bundle EC, by the mixing construction 

MG=EG x,M. (2.1) 

In (2.1) G acts on the right of EC and on the left on M, and the notation means that we 
identify (pg, q) - (p, gq) for p E EC, q E M; g E G. Thus MG is the bundle with fibre M over 
the classifying space BG associated to the universal bundle EC +BG; and rt will denote the 
corresponding natural projection: 

(2.2) 
BG. 

We also have a natural map cr of MG onto the quotient space M/G, which fits into the 
mixing diagram of Cartan and Borel: 

E+ExM--,M 

1 1 1 E=EG (2.3) 

B+E x cM)+G. B= BG. 

In general cr is not a fibering. In fact it is easy to see that the fiber c - ‘(G m) over the orbit 
Cm is the quotient of E by the stabilizer G, of m, so that c -‘(Cm) is the classifying space 
of G,: 

o -‘(Cm) = EC/G, N- BG,. (2.4) 

Under reasonable assumptions on G and M, which are certainly satisfied if G is a compact 
Lie group acting smoothly on M, this map 0 induces a homotopy equivalence whenever G acts 

freely, so that Mc rr. M/G in that case. On the other hand M, is a “better” functorial 
construction and turns out to be the proper “homotopy theoretic quotient” of M by G. In 
any case, the equivariant cohomology, denoted by H,*(M), is defined by 

KWf) = H*(M,), (2.5) 

and constitutes a contravariant functor from G-spaces to modules over the base ring 

HZ = H;(pt) = H*(BG). (2.6) 
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This module structure is of course induced by the projection rr, while the map c defines 

a natural arrow 

o*:H*(M/G)-+H$(M) (2.7) 

which is an isomorphism if G acts freely. 
Note furthermore that in this notation (2.4) is expressed by 

H$(G/H) = H,: (2.8) 

for any closed subgroup H of G, and finally that there is a natural homomorphism 

l*:H,*(M)-+H*(M) (2.9) 

from equivariant theory to ordinary theory which corresponds to the inclusion 

of M as the fiber over the basepoint of BG. 
Remarks. (1) The functorial nature of the construction M H M, enables one to “extend” 

all the concepts of ordinary cohomology to the equivariant one in an essentially routine 
manner. 

The term “extend” is also very appropriate in this context since ordinary data on M 
should be thought of as being given on the fiber over the basepoint of BG, whereas 
equivariant data extend these to all of M,. For example if V is a vector-bundle over M, then 
any action of G on V(lifting the action of G on M) serves to define a vector-bundle V, over 
M,, which extends the original V to all of MG. The characteristic classes of such a bundle 
then naturally take values in H,*(M) and incorporate the lifting data. Of course truly 
geometric bundles come equipped with a natural lifting which we will then take for granted. 
An important case in point is the normal-bundle v, of a G-orbit through a point m EM. In 
view of (2.8) its characteristic classes lie in H 2 = H*(BG,,,), where G, is the stability group 
of m. In particular as we saw in $1 these class& can be non-trivial even if the orbit through 
m is just the point m itself, i.e. when m is a fixed point of the action. 

(2) Although the equivariant theory is largely analogous to the ordinary theory, its 
overtones are rather different, precisely because the equivariant theory of a “point” is so 
large. The correct way to understand this phenomenon is to observe that in the equivariant 
theory the “points” of M/G really correspond to orbits G/H of G on M, and hence are of 
various “sizes” according to the size of H. Thus the free orbits carry only zero-dimensional 
equivariant cohomology, while the point orbits stand at the other extreme and contribute 
HG*. 

For a compact connected group G, and working over the reals R, the base ring is simply 
a polynomial ring: 

Hz = Iw[u,, . . . , u,] (2. IO) 

with I generators of even degree. where I is the rank (the dimension of a maximal torus 
T c G). Furthermore for a torus T these generators are all of dimension 2, and if T is a 
maximal torus of G the natural arrow 

H,*(M):HT(M)” (2.11) 
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imbeds the 1.h.s. onto the elements of Hf(A4) which are invariant under the group of 
automorphisms of Twhich are induced by inner automorphisms of G. Thus the well-known 
principle that the study of compact Lie groups reduces to the behavior of the Weyl group 
W acting on a maximal torus of G also applies to the equivariant theory, and explains our 
later preoccupation with the torus case. 

We recall the salient points of the proof of (2.11). If one divides EG x M by T first, one 
obtains a fibering 

with fiber G/T. Now the fact that the Euler class of G/T is non-zero already implies that, 
over IR, H*(M,) imbeds into H*(Mr). Finally the identification of the image follows from 
the well-known fact that W acts on H*(G/T) as the regular representation. 

We turn next to the equivariant form of the “umkehrungs” homomorphism 

dim M - dim N = q 

associated to maps f :N+M of compact oriented manifolds. Recall that in ordinary co- 
homology this “push forward” has the following properties. 

It is functorial: 

cl-%)* =f*og*. (2.12) 

It is a homomorphism of H*(M)-modules: i.e. 

f*(vf*u) = (f*u>u. (2.13) 

If f is a jibering, f * corresponds to integration over the fiber. (2.14) 

When f: N c+ A4 is the inclusion of a submanifold then f* factors through the .Thom 
isomorphism: that is, in the diagram 

H*-‘(A4 - N):H*(M, A4 - N):H*(M) (2.15) 

H* -Y(N) 

we have 

f* = j*oaN, (2.17) 

with aN the Thorn isomorphism. 
Here of course H*(M, A4 - N) is, by excision, a purely N-local quantity, so that in 

the differentiable category this group can be identified with H*(v,~; vN - N), where v,\, is 
the normal bundle to N in M, and thence finally with the compactly supported cohomology 
of v,QJ: 

H*(M, M - N) N Hf(vJ. (2.18) 
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Recall finally that one calls @,,l E H,4(v,) the Thorn class of the normal bundle and that 

its restriction to N is precisely the Euler class of vN. 
Thus for the inclusion f: N C, M we have 

In accordance 
word-for-word to 
construction every 

f *f* 1 = Euler(v,). (2.19) 

with our first remark this push-forward is now seen to extend 
the equivariant situation. To verify this recall that by the graph 
map can be factored into an inclusion followed by a fibering (and in 

fact product) projection. Hence it is sufficient to check the properties (2.14) and (2.15) in 
the equivariant theory. Now when f is a fibering, the induced map f,:N,+M, is one also, 
and integration over the fiber is well defined in any fibering with an oriented compact 
manifold as fiber. Similarly the usual Thorn isomorphism, but now applied to bundles over 
M,, extends the classical one to the equivariant theory. 

It should also be clear from the foregoing that this equivariant push forward-denoted 
by f&preserves the H,*-module structure, and finally that the push forward rc$ of the 

map 

corresponds to integration over the fiber in the fibering M,+BG. 

53. THE LOCALIZATION THEOREM 

The main thing which distinguishes equivariant from ordinary cohomology is that it 
has a much larger coefficient ring, namely the polynomial ring HZ. The extra structure 
which this gives is in turn related to the orbit-structure of the G-action. In this section we 
shall review the main results in this direction. These results go back to the early work of 
P. A. Smith and more especially to A. Bore1 who pioneered the use of the spaces M, in 
the theory of transformation groups. A more formal approach, utilizing concepts from 
algebra, was systematically explored in Quillen[lS] while the corresponding ideas in 
equivariant K-theory were used in connection with the index theorem by Atiyah and 

Segal[4]. 
Before embarking on the general case it may be helpful to compare the simple case 

when G is the circle group S with that of ordinary integral cohomology. Since the integers 
Z and the polynomial ring in one variable R[u] are both principal ideal domains the basic 
structure of Z-modules and R [u]-modules is very similar. In both cases a fintely generated 
module is the direct sum of afree module and a torsion module. As a crude approximation 
we may ignore the torsion module and concentrate on the free part which is determined 
by its rank, i.e. the number of free generators. This is frequently done in integral 
cohomology and is equivalent to working with rational cohomology. In the equivariant 
case one can go further and iden@ the rank with the ordinary rank (sum of Betti numbers) 
of the$.xedpoint ser F. This is the content of the “localization theorem” which we are going 
to explain. 

Instead of ignoring all Z-torsion we can instead ignore only torsion involving a given 
set of primes, say those dividing some fixed integer f. In the same way for R[u]-modules 
we can ignore torsion arising from a given polynomial f (u). This will give more precise 
results. 

The “primes” in R[u] are the irreducible polynomials, and it is therefore a little more 
convenient to replace R by the complex field C. The “primes” in C[u] now just correspond 
to complex “points”. From now on therefore we work over C, so that H,*(M) will denote 
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equivariant cohomology with complex coefficients. This involves no loss of information 
and it simplifies the presentation. It even leads to stronger conclusions. 

When G = T’ is a torus of dimension I, then H,* is the polynomial ring C[u,, . , u,], 

and this is no longer a principal ideal domain. As a consequence modules over this ring 
no longer have such a simple structure. However, one can still define the torsion 
sub-module and the rank. This can be done by passing to the field of fractions C(u,, . . . , uJ. 

If we want more precise information we must use some of the notions of commutative 
algebra (see for example Atiyah-Macdonald[3]). The most important of these is that of 
the support of a (finitely generated) module. For a module H over C[u,, . . . , u,] its support 
is the subset of C’ defined by: 

Supp H = 7 Vr over all f c C[u,, . , u,] with fH = 0, (3.1) 

where V, is the hypersurface f(u) = 0. Thus a free module has the whole space C’ as 
support, while the support of a torsion module indicates which “primes” occur in the 
torsion. 

A related notion is that of “localization”. For example if f E C[u,, , u,] is any 
non-zero polynomial, localizing to the open set U, = C’ - Qmeans that we allow ourselves 
to divide by powers off. More formally we form the ring C[u,, . . , u,b consisting of all 
rational functions with denominator a power off, and consider the corresponding module 

H,= H&I, ,,..., u,jCb,,. . . 3 4, (3.2) 

for any module H over C[u,, . . . , u,]. This process kills torsion supported in V,, i.e. 

Supp H c V/a H/=0. 

Used systematically, the notion of localization associates to any C[u,, . , u,]-module 
H a sheaf 2 on C’, and the support of H is just the support of this sheaf. Those familiar 
with sheaf theory should think in these terms, but since our use of these ideas is quite 
elementary we shall not insist on the sheaf-theory and will stick to modules. 

For a graded module H over C[u,, . . , u,], where deg u, = 2, we have a natural action 
of C* given by: 

1(h) = ,424h for h E H4. 

This is compatible with the process of localization provided we make C* also act on C’ 
in the obvious way: n(u) = ;L*u. This means that the sheaf X is also acted on by C*. In 
particular this means that Supp H is a cone, i.e. it is C*-invariant. Note that, for 1 = 1, 
this implies that the torsion sub-module of H is supported at 0, so that H becomes free when 
we localize to C - 0. 

Since the variables ui have degree 2 the graded module H is the direct sum of two 
sub-modules: 

H = He”‘” @ Hodd. 

These can be localized separately and, in particular, we can define their ranks. Note 
however that the integer graduation essentially gets lost on localization. 

So far we have discussed the case when G is a torus. For a general compact connected 
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Lie group we know that 

where T is a maximal torus and W is the Weyl group. The support of an H,*-module can 
then be defined naturally as a W-invariant subset of C’. However we shall not really be 
concerned with this more genera! case. 

Returning to a torus T with 

HZ = C[u,, . . . ) u,] 

we recall that the variables ui should be viewed naturally as coordinates on the Lie algebra 
t, or its complexification rc. Thus the support of a module over this cohomology ring is 
naturally a subset of I’. 

After these preliminaries we now examine what information on the structure of the 
equivariant cohomology ring can be deduced from various assumptions on the action. As 
a first step we have the following 

LEMMA (3.3). If there is a T-map X + T/K, where K is a closed subgroup of T, then 

Supp H;(X) c kc. 

Proof. The T-maps X+ T/K+point give ring homomorphisms 

H~(X)cH;(T/K) +H;. But 

H;F(T/K) z H; -1 H& 

where K, is the identity component of K (note that K = & x finite group and we are using 
complex coefficients so that finite groups can be ignored). Thus Hf(X) is effectively a 
module over HE, which becomes a module over HF by restriction from T to the sub-torus 
K,. The lemma now follows from the naturality of supports. 

Remarks. (1) If Y is the inverse image of a point in the map X 4 T/K then Y is a K-space 
and X = T x KY the extension to a T-space. Thus 

H:(X) z H;(Y) 

and our Lemma says that supports are compatible with “extension”. 
(2) The Lemma is only of interest when K # T, so that kc is a proper subspace of t’. 

In particular H;(X) is then a torsion module. 
(3) The Lemma applies in particular when X is any orbit of a T-action with isotropy 

group K, and more generally when X is a tubular neighborhood of an orbit in a T-manifold 
M (such tubes being constructed as usual by use of a T-invariant metric on M). 

(4) Applying the Mayer-Vietoris sequence and observing that, for any exact sequence 
of modules over C[u,, . . , u,]: 

Supp E c Supp DU Supp F, 

Remark 3 leads by a simple induction to the following key result: 

PROPOSITION (3.4). Let T act smoothly on the compact manifold M with F as set of 
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Supp H;(A4 -F) c U k’ 
K 

ir,here K runs over all isotropy groups. In particular HF(h4 - F) is a torsion module ore! 
HF. 

The same result holds for any T-invariant subspace Y of M - F and hence, by exact 
sequences, for the equivariant relative cohomology of any pair in M - F. Apply this to 
the pair (M - U, 8(M - U)) where U is an open tubular neighbourhood of F in M and 
we deduce the main localization theorem: 

THEOREM (3.5). The kernel and cokernel of 

i*:HF(M)+Hf(F) 

have support in U kc, where K runs over theJinite set of all isotropy groups # T. In particular 

both modules hive the same rank. 
Since H;(F) E H*(F) @ HT is a free module the last part of the theorem implies 

COROLLARY (3.6). rank H;(M) = dim H*(F) and the same holds for the individual odd 
and even parts. 

The theorem also implies that H;(M) becomes a free module once we localize to an 
open set U, c tc where f is any polynomial which vanishes on ail k’. 

These results take a specially simple form when T = S is a circle. Then k‘ = 0. so that 
Ker i* and Coker i* have support at 0 EC and H,*(M) becomes free on C - 0. 
Equivalently the torsion subgroup of H$(M) is annihilated by a power of u. As we saw 
earlier this follows directly from the fact that H is a graded module. In the general torus 
case however the grading simply tells us that the support of the torsion sub-module of 
Hf(M) is a proper cone, while Theorem (3.5) is more precise. 

If we use Proposition (3.4) in the exact sequence of the pair (M, A4 - F) we can 
similarly deduce that for the push-forward 

i.+:HS(F)+HF(M) 

both Ker i.+ and Coker i, are torsion modules (and more precisely are annihilated by some 
power of any polynomial f vanishing on all k’). Combining this with Theorem (3.5) it 
follows that the composition i*i * is an isomorphism modulo torsion. This can be seen 

more directly and explicitly as follows. 
As explained in $2 i* is a module homomorphism (over H:(M)) and i*i* is therefore 

multiplication by the equivariant Euler class of the normal bundle vF 

i*i*l = E(vF). 

It follows that E(v,) must be invertible in the localized module 

H;(F), = VI;), 0 H*(F), 

where ,f’ is a suitable polynomial. To see how this comes about let F = (P) be the 
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decomposition of F into its connected components, and we may consider separately each 

E(vp). Since terms of positive degree in H*(P) are nilpotent an element in H*(P) is 
invertible provided its component in Ho(P) is nonzero. Hence E(vP) will be invertible in 
some localization HF(P),provided its component in H1: 0 Ho(P) is a non-zero polynomial 
(which can then be taken asf). But this component is determined by restricting to any 
point p of P. The action of T on the fibre vP has no fixed vectors (because the only fixed 
directions are tangential to P), so that vP decomposes as a direct sum of non-trivial 
2-dimensional representations of T. These can be oriented (compatibly with chosen 
orientations of M and P) and so viewed as complex characters a,: T-+17(1). If 
a, = exp(2&,) so that 

a, = C ajkuk 

is a linear form on the Lie algebra, the equivariant Euler class of vP is just given by 

W$ = I-I a,. 
J 

(3.7) 

If we denote this polynomial by fp it follows that i*i,, becomes invertible after localizing 

with respect to 

fF = l-JfP. 

Working over such a localized ring (or over the full field of rational functions) we 

therefore see that 

is inverse to i$:HF(F)+Hf(M). Thus for any #J EH~(M) we have (after localizing) 

Applying the push-forward to a point 

to both sides, and using the functoriality of push-forwards we deduce the 

Integration formula: (3.8) 

Remarks. (1) Using the de Rham model of H:(M) to be explained in $4, (3.8) will in 
fact lead to explicit formulae, replacing integration over M by integration over the 
components P of the stationary set of the action. In the context of symplectic geometry 
we shall see in $7 how it leads to the Duistermaat-Heckman formula. 

(2) The corresponding formula also holds in equivariant K-theory and is the basis of 
the applications to the equivariant index theorem (Atiyah_Segal[4]). The Chern character 
gives a natural transformation K + H* which explains the similarity between the formulae 
we are deriving here and those that occur in connection with the index theorem. 
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54. THE EQUIVARIANT DE RHAM THEORY 

A de Rham model for the equivariant theory goes back to the foundational work on 
characteristic classes of Cartan, Chern, Chevalley and Weil of the late forties and early 
fifties and we will here briefly review their constructions starting with Weil’s de Rham 
model for the universal fibering EG -+BG. 

Let then g denote the Lie algebra of G, and write W(g) for the tensor-product: 

W(g) = 1\g* 0 sg* (4.1) 

of the exterior algebra and the symmetric algebra on the dual g* of g. This “Weil algebra” 
is next graded by assigning dimension 1 to an element 8 E g* in the exterior algebra, and 
degree 2 to the corresponding element-usually denoted by u-in the symmetric algebra. 
Thus if the {P> form a basis for g*, then the Weil algebra is freely generated as 
commutative graded algebra, i.e. &‘oq = (- l)pqoqwP, by the generators 9” and u, of degree 
1 and 2 respectively: 

W(g) = iwp; 241. (4.2) 

Geometrically the 8” are of course to be interpreted as left invariant forms on the group 
G and, so understood, their exterior derivatives can be expanded in terms of (exterior) 
products of the 8” 

where the constants c”8,--skew in b, y-are the structure constants of g relative to the base 
8”. 

In terms of these, W(g) is now endowed with a differential operator D, which on our 
generators is defined by: 

~8” + k C c;yeBey + u, = 0, 

(4.4) 
Du, - 1 c$i&P = 0, 

and then extended to all of W(g) as an antiderivation. 
The Jacobi identity satisfied by the c&, which is equivalent in our context to the 

assertion that d*O” = 0, is now seen to imply that D2 = 0 in W(g). For instance when G 
reduces to a torus T, so that the c;., vanish, (4.3) reduces to 

D8” + u, = 0; Du, = 0 

so that the D-cohomology of W(g)--written H,( W(g)}-simply reduces to iw in dimension 
0. Now, as W(g) is to be a de Rham model for the contractible space EG, this it as it should 
be, and the first theorem of the subject is that quite generally: 

HX{ W(g)) = R (4.5) 

In a geometric context for a smooth principal bundle P with structure group G and 
base space M, the elements X of g appear naturally as vertical vector-fields, corresponding 
to the infinitesimal right translations of P in the direction of X. Hence X E g acts naturally 
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on the de Rham complex C!*(P) of differential forms on P, both by the inner product i(X) 
and by the Lie-derivative II!(X). Furthermore these operations are linked by the funda- 
mental “infinitesimal homotopy” identity: 

!i!(X) = i(X)d + di(X), (4.6) 

where d is the exterior derivative in L?*(P). 
Finally recall that under the projection P +M, R*(M) becomes identified with the basic 

elements of R*(P), that is, the elements cp characterized by 

i(X)cp = 0 e(X)cp = 0 all X E g. (4.7) 

In the Weil algebra W(g) these operations of X E g are defined by: 

i(e,)ea = ~5,~; i(e. = 0 

(4.8) 
f?(e,) = i(e,)D + Di(e,) 

where {e,} is a base for g dual to our 8”, and the basic subcomplex Bg of W(g)-again 

defined by (4.7)--is then easily seen to reduce to the ring of polynomials on g, invariant 
under the coadjoint action.of g on g*: 

Bg = Inv S(g*). (4.9) 
9 

Now for a compact connected Lie group G, this ring of invariants is itself a polynomial 
ring in 1 = rank G generators, and serves as a de Rham model for H*(BG). That is, one 
has a natural isomorphism: 

B&*(BG). (4.10) 

For instance when G reduces to a torus T of rank f, Bg clearly reduces to iI+,, . . . , u!], 

the polynomial ring in the ui, in accordance with our earlier description of H*(BT). 
Remarks. In general Bg is not an adequate model for BG even if G is connected. For 

instance if G = R, BG has trivial cohomology, but Bg = [w[u], does not. On the other 
hand, if G = X(2) then H*(BG) is a polynomial ring on a generator of degree 2 while 
Bg is a polynomial ring on a generator of degree 4. For a more precise analysis of the 
relation of H*(BG) and Bg see for instance (Bott[9]). 

The proof of the isomorphism (4.10) for compact groups, is based on three facts. First 
of all, that BG can be approximated up to any dimension by a geometric fibering (e.g. the 
fibering of S2” + ’ over CP” approximates the universal fibering EG + BG, for G the circle, 
up to dimensions 2n). Secondly, that the connection-curvature construction serves to 
define a natural homotopy class of G-maps from W(g) to O*(P) for any geometric 
principal fiber-bundle P. Finally, that for a compact connected group G, the inclusion of 
the left invariant differential forms 

Ag* c, R*G (4.11) 

into the de Rham complex of G induces an isomorphism in cohomology. 
This fact, in conjunction with the acyclicity of W(g), then translates into the 

isomorphism Bg 2 H*(BG). 
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In view of the preceding it should now be clear how to construct an infinitesimal de 
Rham model-noted R,*(M)-for M, = M x EC. 

Namely, one defines Q,*(M) by: 
G 

R,*(M) = basic complex of {Q*(M) @ W(g)}. (4.12) 

With this understood the arguments sketched above are seen to extend essentially 
work-for-word to the following, also classical. 

THEOREM 4.13. If G is a compact connected group acting smoothly on the manifold M, 
there is a natural isomorphism: 

H{R$(M)) 3: H,*(M). 

It is instructive to analyze Q,*(M) in greater detail when G reduces to a circle S. In that 
case W(g) N rW[0, u] so that every q E R*(M) 0 W(g) has a unique decomposition into a 
finite sum: 

cp = 1 akuk + c b,u% 
k / 

k, f = 0, 1 . . . and ak, b,E R*(M). 

(4.14) 

Hence if X denotes the generator of g 21 [w, dual to 0, that is i(X)0 = 1, a basic cp must 
satisfy the requirements 

i(X)q = 1 {i(X)ak}uk + x(6, + i(X)b,B)u’ = 0 
k I 

and 

i?(X)cp = 1 { e(x)akjuk + 1 (L!(X)b,fu’ = 0. 
k 1 

On the other hand in view of the independence of the uk and ukB over R*(M) these 
conditions are quite equivalent to: 

i?(x)ak = 0; bk = - i(X)ak (4.15) 

and can now be recast in the following more palatable form. 
Let Q; denote the kernel of Q(X) in R*(M). These are then the forms on M invariant 

under our circle action. Next let Ql;l[u] be the polynomial ring generated by a generator of 
degree 2 over Q;, and define a ring homomorphism 

by the formulae: 

i(a) = a - i( 
(4.16) 

J.(u) = 2.4 
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The condition (4.15) then clearly implies that A induces a ring isomorphism 

cl&] e R,*(M). (4.17) 

Thus Q,Y[u] inherits a differential operator d, from the natural one in R,*(M), 
characterized by the condition 

id, = DA. (4.18) 

Now 

Dia = D(u - i(X 

= da - i(X) + i(X)au using (4.6) and (4.15) 

= i, (da + i(X)uu > 

whence we see that 

ds = da + i(X)uu. (4.19) 

Further, as u is closed in R:(M), it follows that 

d,u = 0, (4.20) 

and these two conditions now uniquely determine the differential operator d, on 

Q&l = qvo. 
Remarks. A first consequence of (4.19) is of course that an invariant closed form 

a E R*(M), i.e. a form a in Rx(M), need not determine an equiuuriuntly closed form. Indeed 
it does so if and only if in addition i(X)u = 0, i.e. if it is basic relative to the action of X. 
On the other hand even if i( # 0 it may be possible to “extend” a to an equivariant 
form by adding to a some polynomial p in the ideal generated by u in CIl,[u] so that 
a’ = a + P is drclosed. 

In short the natural map R]t[u]+R*(M) obtained by setting u = 0 plays the role of the 
restriction of forms from MG to a fiber M. Similarly, if M is compact and oriented, the 

integration over the fiber x* in M, is represented in Clz[u] by ordinary integration over 
M. Thus 

7c *(ukUk) = (s > ilk Uk. 
M 

(4.21) 

Secondly, note that this very tractable model for R,*(M) when G is a circle extends 
without difficulty to the torus case: G = T. Indeed all that has to be done to describe 
R,*(M) when T has rank 1, is to choose a basis X1, . . . , X, in its Lie algebra, and then adjoin 
to the T-invariant forms of R*(M)--still denoted by fi$ - I indeterminates u,, . . . , u,, of 
degree 2, and to set 

dx = da + 1 i(Xk) 
k 

(4.22) 

For the nonabelian case it is of course not possible to identify R,*(M) quite so simply, 
and it is usually expedient to describe this case in terms of the Weyl group invariant terms 
in RF(M) where T is a maximal torus of G. 
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55. RELATION WITH WITTEN’S COMPLEX 

In the second part of (Witten[l7]), Witten considers a Killing field (which we call X) on 
a compact Riemann manifold M, and introduces the operators 

d, = d + si(X), (5.1) 

where s is a real parameter, acting on the total de Rham complex Q*(M). He then studies 
the associated “Hamiltonian” 

H, = d,d,* + d,*d, (5.2) 

and proves that for s # 0 the dimension of its null-space (which we shall denote by IV,) is 
the sum of the Betti numbers of the set of zeroes of the Killing field X. 

It is our purpose in this section to explain carefully how this result of Witten is related to 
the results we have described in the preceding sections. We shall also make a few comments 
comparing the methods of proof. 

Witten first observes that W, is contained in the space Q; of forms annihilated by the Lie 
derivative of 2(X). Now since d,Z = se(X) it follows that d,Z = 0 on of and hence, by 
standard Hodge theory arguments, W, can be identified with the de Rham groups 

H(Q, d,) = Ker d,/Im d,. 

This shows, as usual, that W, is essentially independent of the metric (so long as X preserves 
it), so that it is a diffeomorphism invariant of the action. Finally, an easy resealing argument 
shows that W, E W, for s, t both non-zero. 

Our first task is to explain how these Witten groups W, are related to our equivariant 
cohomology groups. For simplicity we first assume that X generates a circle group S. Our 
equivariant cohomology H:(M) is then a module over a polynomial ring C[u] (if we use 
complex coefficients) and we saw in $4 that 

fWM) = H(Wul, 4) 

where d, is defined as in (5.1) but with u instead of s. Thus the only difference between 
Witten’s groups and ours is that he considers s as a real non-zero parameter while we 
consider u as an indeterminate. But, in appropriate circumstances, which as we shall see are 
satisfied here, one may interchange evaluation with formation of homology: more precisely 
we have the following easy algebraic lemma: 

LEMMA (5.3). Let (C*, d) be a cochain complex offree C[u]-modules and let s be a complex 
number not in the support of the torsion sub-module of H(C*, d). Then 

H(C:, d,) r H(C*, d)/(u - s)H(C*, d) 

where on the left we have put u = s before taking cohomology and on the right we have put u = s 
after taking cohomology. 

Proof. The assumption on s means that multiplication by (u - s) on H = H(C*, d) is 
injective. Introduce now the usual exact sequences 
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of cocycles Z and coboundaries B. If for any of these modules A we put A, = A /(u - s)A 
then, since B, Z and C are all free modules, we trivially get the exact sequence 

The hypothesis on H, is just what is needed to give the exactness of 

O-+B,+Z,-+H,+O, 

as one easily verifies (and as will be proved more generally below). These two together yield 
the lemma. 

Remark. This Lemma is the precise counterpart of the familiar fact that, if the usual 
integral cohomology H is free, then the modp cohomology is just H modp. In general the 
universal coefficient theorem gives a relation involving the torsion subgroup. In the same 
way our Lemma can be extended to deal with the torsion at s = 0 of H,*(M). This leads to 
the formula 

dim H*(M) = dim H*(F) + 2 dim J (5.4) 

where J is the kernel of multiplication by (U - s) on H,*(M). 
Now as we saw in 53 the fact that H,*(M) is a graded module already implies that its 

torsion is supported only at 0. Hence for any s # 0 we have by Lemma (5.3) a natural 
isomorphism: 

W, E H,*(M)/(u - s)H,*(Mj. (5.5) 

Moreover H,*(M) being free on C - 0 shows that the vector space on the right has constant 

dimension independent of s (for s # 0), and this is also the rank of H,*(M) as C[u]-module. 
This is consistent with Witten’s observation that dim W, is constant for s # 0. 

Remarks. (1) In geometric or sheaf-theory terms we can say that W, is the fibre of the 
vector bundle on C - 0 associated to the locally free sheaf H,*(M). 

(2) Witten’s group can equally be defined for complex values of s, so there is no need 
to restrict to real values in what we have said. 

The situation is very similar for the general case of a torus action except that u now 
stands for (u,, . . . , u,) E C’. Equivariant cohomology is computed from n:(M) using the 
operator d, given in (4.22), namely 

d, = d + c uki(Xk). 
k 

Now the X, are a basis for the Lie algebra of T so that we can write 

and hence Witten’s differential is 

d, = d + S c &i(Xk). 

Thus d< is obtained from dx by putting uk = sck, or just u = sX if we regard both u and X as 
in t’. 
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From the localization theorem of $3 we know that H;(M) is free over t’ - U k’. where 
K 

K runs over the isotropy groups # T. In particular X $ k otherwise it would not generate T. 
Hence 

X E t’- U k’ 
K 

and H?(M) is free at all points sX with s # 0. To identify the Witten groups, as in (5.5), 
but with S now replaced by T we therefore need the appropriate generalization of Lemma 

(5.3). This is 

LEMMA (5.6). Let (C*, d) be a cochain complex offree C[u,, . , u,]-modules and assume 
that, for some pol_~nomialf, H(C*, d), is a free module over the localized ring C[u,. . u&. 

Then, if s E C’ with f(s) # 0, 

H(C:, d,) z H(C*, d) mod m, 

where m, is the ideal generated by (u, - s,, . . . , u, - s,). 

Proof: We shall require some homological algebra for our proof this time so we assume 
familiarity with the Tor functors. As a first step, since localization is an exact functor, we 
can replace the polynomial ring C[u,, . . . , UJ by A = C[u,, . . , u,]~. Our assumption is then 
that H = H(C*, d)/ is a free A-module. As before we now consider the exact sequences 
of A -modules 

We now tensor these with A/m,. Since H9 is free the second sequence gives an exact 

sequence 

O+ B,‘-+Z,q-+ H,“-+O 

where as before we write H, for H a._., A/m, etc. Also we get isomorphisms 

Tor,A (By, A /m,) z Tar,* (29, A/m,) for j 2 1. 

From the first sequence on the other hand, since C9 is free, we get isomorphisms 

Torf+ r(B9 + ‘, A/m,) s Tor,*(Zq, A /m,) for j 2 I. 

Combining these and iterating we see that 

TorjA(B9, A/m,) z Torf+JBqCn, A/m,) for j 2 1 
n 2 I. 

But the polynomial ring C[u,, . . , u,] and all its localizations have homological dimension 

1 so that all TorjA = 0 for j > 1 (Cartan-Eilenberg[lO]. Hence taking n = 1 we see that 

Tor,A(B4, A/m,) = 0 for all j 2 1. 
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From the first of our exact sequences this then implies the exactness of 

and the lemma follows as before. 
In view of (5.5) and its generalization to the general torus case, we see that Witten’s 

result that 

dim W, = dim H*(F) (5.7) 

is essentially equivalent to the Corollary of the Localization Theorem that 

rank H;(M) = dim H*(F). (5.8) 

Our proof of (5.8) depended on the standard properties of cohomology (exactness, 
excision) applied in the equivariant context. Witten’s method is totally different and quite 
novel in that he applies asymptotic expansions familiar in Quantum Mechanics to a 
cohomological problem. He works with the Hodge model of W,, i.e. the null-space of the 
operator H, in (5.2), and then considers the behaviour of Hr as s+%. This has the effect 
of concentrating the relevant analysis around F and leads to the equality (5.7). 

Note finally that Witten’s resealing argument corresponds to our use of the grading 
in H:(M). As we observed this implies that the corresponding sheaf on C’ is naturally 
acted on by C*, so that the localizations at u and su will be isomorphic for s # 0. 

86 RELATIONS WITH T-HE MOMENT MAP 

The moment map makes its appearance whenever a G-action on M preserves a 
symplectic form w on M. Thus o ER*(M) is a closed form on M, with the property that 
the synplectic volume v = on/n! is nowhere zero on M. This nondegeneracy of w at every 
point enables one to associate to every l-form 8 a corresponding vector field 8, and dually 
to every vector field X a l-form X, by the assignment: 

8 = i(f X = i(X)w, (6.1) 

and in terms of this correspondence the Poisson bracket of two functions f and g on M 
is given by: 

This operation is now seen to induce a Lie algebra structure f!,M on the C”-functions 
on M. Furthermore if Vect,(M) denotes the Lie algebra of vector fields on A4 which 
preserve U, then the assignment 

f+df 

is also seen to define a natural extension of Lie algebras: 

O-+R-+&M+Vect,M+O. (6.3) 

In this framework consider now a symplectic action of a Lie algebra g on (M, w), that 
is. a Lie-homomorphism 

p :g+Vect,(M). (6.4) 
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Any lifting c of ,U to a Lie-homomorphism 

b:g-+&M (6.5) 

is called a “comoment” of p or a Poisson action on (M, w), and the corresponding moment 
map is then defined by duality in the following manner. 

Given fi and a point p E M, the evaluation of /I(X) at p is a linear functional @,,:g+R. 
Hence as p ranges over M the @‘p may be thought of as a map: 

O,:M-+g*. (6.6) 

This is the moment map associated to fi, and it spreads M out over g* equivariantly, 
in the sense that all the vector fields p(X) are projectable relative to @ and project onto 
the natural “coadjoint” action of g on g*. 

Quite recently Weinstein pointed out that this construction and some of its applications 
were already known to Sophus Lie. In any case many remarkable properties of the moment 
mapping have been discovered in recent years by the modern school of symplectic 
geometers. 

To obtain a more concrete understanding of the moment map, return to the example 
of a circle S acting on M and let X be an infinitesimal generator of the action. To lift this 
action to a Poisson action one has to assign to X a C”-function fY on M, such that 

df, = X, or equivalently such that d! = X = i(X)w. (6.7) 

Thus the obstruction to finding such anfx is simply the cohomology class of i(X)o 
in H’(M). 

If this class vanishes, fx exists and is then unique up to a constant, i.e. an element of 
Ho(M). Now in our equivariant context the function fx has another interpretation. 
Consider w E R2(M). By assumption o is invariant under S, i.e. annihilated by 2(X), and 
hence lies in nx2[u]. It is now a natural question whether so interpreted o can be extended 
to an equiuariantly closed form. For dimensional reasons the only way to “extend” o in 
!2,[u] is to add a multiple of u to w. Thus all the extensions take the form 

o#=w-fu (6.8) 

where f is some Cm-function on M. Computing via (4.19) we find that 

dfl x = (i(X)0 - dfiu (6.9) 

so that (6.8) is an equivariantly closed extension ifand only iff = fx defines u Poisson lifting 
of the action. 

This phenomenon is quite general, as we will now demonstrate. 
Suppose then that Xwfx is a Poisson lifting of the G-action under consideration. In 

terms of a base {X3) for g, we write X,wfm for this assignment. Also let i, stand for i(X,) 
and for the rest use the notation of Section 4 with {O’> E g* a dual base to (X21 and 
{Us} E S’(g*) its “twin” in the symmetric part of W(g). With all this understood consider 

now the element w # E Q*(M)@ W(g) given by 

’ w# =w -Dcf,e? 

Then we assert that o * is a basic and D-closed extension of w to Clz( M). 
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Proof In our notation the Poisson conditions amount to: 

i,w = dfz and A’, j; = frX,. X,l = c ch*_f$ 

or equivalently-as X, fp = i, cl&to: 

i,o = df= and i&w = 1 CL,&. 

Now expanding w # we obtain 

w # = o + c df& + cfa de” - cf@ 

so that 

ip * = iBo + C ifi df#0” - df@ + xf,& de" 

= 0. 

The terms on the right cancel by virtue of (6.12) and (4.3). 
Thus w # satisfies the first requirement of a basic element. Next observe that 

DoX=do+D2cf.9” =0 
( > 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

because dw = 0 on M and D2= 0 in a*(M) @ W(g). It follows finally that 
9(X,) = i,D + Di, also vanishes on o x thereby establishing the second condition of a basic 

class. Thus our assertion is proved in one direction. 
Next assume that 

(6.15) 

is a basic closed extension of w #. We then have to show that the g, are the components 
of a Poisson lifting. 

From the first basic condition: 

i,,u = SIB and i& = 0, gg?. = 0. (6.16) 

From the assumption Do * = 0 it follows that 

dg, = 5, and that gzB = c c&g; (6.17) 

the first by considering terms involving only U, and the second by considering the terms 
involving ~~8”. 

This computation then proves the inverse and we have thus established the proposition: 

PROPOSITION (6.18). There is a natural one-to-one correspondence between Poisson 

hftings of a s!lmplectic action. and equicariant closed extensions o * of the symplectic form 

(0 to R,*(M). 
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$7. RELATIONS WITH THE DUISTERMAAT-HECKMAN FORMULA 

In the previous section we have reviewed eseentially-known material in a manner which 
is hopefully accessible to the non-expert in cohomological matters. We come now to an 
immediate application of these ideas to the push-forward of the symplectic volume under 
the moment map. 

This push-forward @+(w”/n!) has many beautiful properties, the most notable being 

that 

For any symplectic torus action T which admits a 

@:M-+g* = R’, 

moment mapping 

(7.1) 

the support of @,*(w”/n!) (i.e. the image set a(M)) is a convex polyhedron. 

This result generalizes inequalities of Schur and Horn relating the eigenvalues and 

diagonal elements of a Hermitian matrix (and the extension of Kostant to other compact 
Lie groups), and was established independently by Atiyah on the one hand and 
Guillemin-Sternberg on the other. (See Guillemin-Sternberg[ 141 and Atiyah [ 11.) 

As explained in the Introduction the Duistermaat-Heckman result focuses on another 
very special feature of this measure on IR’, namely, that it is piecewise polynomial. 

To start off, consider again an action of the circle S on the symplectic manifold (M, 0). 
Let X be the infinitesimal generator of the action, and assume that the action has a moment 
map, i.e. there exists a function f =fx on M such that 

i(X)o = df. (7.2) 

We saw in the last section that once such an f is chosen, then 

o*=w-fu 

extends w to a closed equivariant class in Q,*(M). We may therefore consider the class 

e o* = eWe-fu (7.3) 

in A;(M) (where A = H @,,,,R[[u]] is now a module over the ring of formal power 

series+and apply our integration formula (3.8) to it. This leads to the relation: 

nge"e-f"- 
ip* ewe-” ‘I - 

E(vP) j 
> (7.4) 

But recall now that n* annihilates all but the forms having the dimension of the 
manifold on which it is applied. Hence the 1.h.s. of (7.4) is given by 

s ” 1.h.s. = W e-l”, 
M n! 

whereas on the r.h.s. we obtain corresponding expressions depending in complexity on the 
dimension of the fixed point set. 

Let us interpret this r.h.s. in the simplest case when F consists of an isolated and hence 
finite set of points {Pj. As explained in $3 the Euler class E(vp) is then given (see 3.7) by 
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a nonzero multiple of u”: 

E(vp) = epzP, e,EZ. 

Hence the r.h.s. is given by the expression 

e -fVkr 

c- p epun ’ 

so that (7.4) goes over into the identity 

(7.5) 

of the introduction, provided we replace the “indeterminate” u by the “variable” it. 
Remarks. (1) The reinterpretation of u as a parameter is essentially the same process 

described in g5 in connection with Witten’s work. 
(2) If one wants to avoid formal power series it is of course equivalent to apply (3.8) 

to the separate powers of w # . 
(3) We next explain how the cohomological number epr is related to the stationary 

phase expansion of the integral e-‘fl{w”/n!} near P. 
By hypothesis the circle acts on vp by nontrivial irreducible representations and 

correspondingly decomposes vp into the direct sum of 2-planes 

VP= 8 Vk k=l,...,n, 

already discussed in $3. 
We now introduce linear coordinates (xk, y,} on V, which are orthonormal relative to 

the invariant metric on Mp and oriented in such a manner that the normalized infinitesimal 
generator X of the action takes the form: 

X = W)Cmk (7.6) 

with the m, positive integers. 
By means of the exponential map we can interpret these xk and y, also as coordinates 

near P in M, and then after a rotation in the xk and Yk (commuting with X) o will also 
take on a diagonal form at P, so that near P: 

CII = c 1, dxk A dy, + higher order 

with Lk # 0. We write (- 1)’ for the sign of ;I,&. . . EL,, so that 

(7.7) 

this sign measures the 
compatibility between the orientations of vp induced by X, and by 0”. 

Now in this convention the Euler class of V, is simply mku, so that the Euler class of 
I’~, with its proper orientation is given by: 

E(Vp) = (- I)’ fimk U” 
( 1 I 

whence 

(7.8) 
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It follows that, up to second order, the Taylor series off near P has the form: 

Hence the Hessian off at P relative to the sk and _rk has the determinant: 

det Hfp = (27~)‘” fi (m&J’. (7.10) 

(7.9) 

Recall now the stationary phase prescription for computing an approximation to the 
integral 

for large t. The recipe 
nondegenerate critical 

s e"'w “In! (7.11) 

(see for instance Woodhouse [ 181, p. 293-294) is as follows. Every 
point P contributes the leading term: 

y /det (Hfp)l - I ;2 e(m/4) sign Hfp elrf(P) 
fl jbk (7.12) 

where sign Hpf = number of positive-number of negative eigenvalues of Hfp. 

In our situation and assuming that precisely 1 of the i,, at P are negative, (7.12) goes 
over into: 

(l/t)nelni4/(2n-2/3-21)eirflP) firnk , (I 1 
-I 

(7.13) 

as follows from (7.10). Finally in view of (7.8) this simplifies to j n elr/lP) o- 7 eP 
(7.14) 

so that the leading term of “stationary phase” takes the form: 

(7.15) 

On the other hand changing the sign of t in our integration formula (7.5) gives the 

equality : 

(7.16) 

In short (7.5) proves that already the leading term of the stationary phase approximation 

gives the precise ,formula. 

Note that the sign which appears in ep makes very good sense in terms of the Morse 
theory of our moment map f. Indeed the number 21 above is simply the Morse index of 
the moment map f at P. That fits in with the discussion at the end of this section. 

We shall now compare our proof of (7.16) with that of Duistermaat and Heckman. 
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As mentioned in the introduction they prove that the push-forward measuref*(o”/n!) is 

a piecewise polynomial function. The “breaks” arise from the critical points offand away 
from these we can form the symplectic (or Marsden-Weinstein) quotients IV, of M. The 
push-forward measure, as a function of s, is then just the total symplectic volume of M,, 
namely lb,, o’,-‘/(n - I)!. The key lemma of Duistermaat-Heckman is then that w, is 
(between breaks) linear in s (as a cohomology class in M,, which is locally independent 
of s). In fact o,, is essentially our w # of (6.8) 

w*=w-fi 

with f = s and u now interpreted as the first Chern class of the S-fibering. Thus formula 
(6.8) is the key step in both proofs. The proofs only differ in the way in which it is applied, 
one proof using analytical arguments and the other using more homology theory. 

We conclude this section by pointing out a further property of equivariant cohomology 
in the symplectic case, namely that H;(M) is a free module and in particular that it has 
no rorsion. This follows from Morse theory applied to a generic component 4 of the 
moment map, by arguments explained in (Atiyah-Bott [2]) but which essentially go back 
to a paper of Frankel[l3]. The generalized Morse cells of 4 give a stratification of M 

(invariant under 7’) and Hf(M) can be computed from the exact sequences of this 
stratification because (as one proves) these exact sequences all split into short exact 
sequences. Since all these exact sequences are built up starting from the cells (which retract 
onto components of the stationary set F of T), it follows inductively that all terms in the 
exact sequences (and in particular H;(M)) are free modules. The argument also shows that 
a graded module basis of H;(M) is given by taking a basis for H*(F) = @ H*(P) and 
assigning the degree q + a(P) to each II/ E P(P), where o(P) is the Morse index of P. 

One can also give a slightly different argument by computing ranks and then showing 
that the spectral sequence of the fibration M, +BT must be trivial. The homological 
triviality of this fibration is in any case equivalent to the freeness of H;(M). Thus the 
restriction HT(M)+H*(M) is surjective. In the de Rham model of $4 this means that every 
closed T-invariant form $ on M extends to an equivariant closed form II/ #. Thus, for the 
case of a circle action 

where i0 = Ic/. each Ic/l. is T-invariant and 

dlClk + i(X)+, _ , = 0 k 2 1. 

These equations express, on the form level, the triviality of the spectral sequence of the 
fibration M,+BT. Note in particular, taking k = 1, that i(X)+ is an exact form. This is 
something one might expect to prove purely analytically. 

Since H;(M) is free the localization theorem (3.5) is now considerably strengthened, 
and in particular 

i*:Hf(M)-+HF(F) 

is injective. 

In Witten’s set-up described in $5 the dimension of the null-space W, of the 

Hamiltonian H, is now independent of s, even for s = 0. 

We have seen in this section how the Duistermaat-Heckman integration formula on 

symplectic manifolds can be viewed as a special case of more general results about 



24 M. F. ATIYAH and R. BOTT 

equivariant cohomology. One incidental advantage of this more general viewpoint is that 

it includes the case of degenerate symplectic manifolds, i.e. manifolds where the closed 

‘-form w is allowed to degenerate so that w” is not required to be everywhere non-zero. 

The moment map is again defined by (7.2), and the fixed-point contribution is just the same 

as before. The only point that requires special treatment is the orientability of M. If w” 

is nowhere zero so that M is symplectic then M is automatically orientable. However if 

0” = 0 on a subset S c M then S represents the first Stiefel-Whitney class of M and M 

is only orientable if this class in H’(M, Zz) is zero. We must therefore make the 

orientability of M a separate assumption (otherwise there is no fundamental cycle for our 

integration). 

The degenerate case can be applied to obtain integral formulae of the following type. 

Assume that M is simply-connected, of dimension 2n, and admits a circle action with 

isolated fixed points (P). Let x,, . . . , xk be a basis of H’(M, R) and represent these by 

closed 2-forms o,, . . . , wk. By averaging over the circle action we can assume that all the 

oj are invariant. Since M is simply-connected we can define functionsf; as in (7.2). so that 

k(d = dK 

They are uniquely determined modulo constants. Now apply the basic integration formula 

(7.5) with 

and equate, for example, the terms independent of t. This gives 

Equating the various monomials in the A, we deduce that, for any monomial (and hence 

polynomial) 4 of degree n in k variables, 

s M 
g5(0,, . ) Ok) = ( - 1)” ; 4(/;(P)Yep rfk(? 

I , 
(7.17) 

Note that the integral is just the value on the fundamental cycle of the cohomology class 

4(?c,, . . . , .xJ. Thus (7.17) evaluates such “cohomology numbers” in terms of the values 

of the corresponding functionsf; at the fixed-points. We shall discuss results of this type 

in more detail in the next section. 

§&ON EQUIVARIANT CHERN NUMBERS 

We close with some comments on the relation between the residue formulae of (Bott [7]) 

which express the Chern numbers of a bundle E, on which a Killing field X acts, in terms 

of the behavior of X at its fixed point set. All these results come into better focus in the 

context of the equivariant theory, as we will now explain. For simplicity we restrict 

ourselves to a circle action (with generator X) and take E to be a complex line bundle on 

which the circle S is assumed to act compatibly with its action on M. Thus if T(E) denotes 

the space of smooth sections of E, and s is such a section of E, then the action of X on 
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s, written X’s, is a well-defined new section, and the operator X has the derivation property: 

X(fi) = Gt-f)s +.m, (8.1) 

relative to multiplication by a function f on M. 
Let us take the point of view that a connection on E is a first-order operator 

D:l-(E)+I-(E @ T*) 

subject to the derivation property 

D(B) = (df)s + fDs; (8.2) 

and call a connection D equivariant if the actions of D and X commute. 
In terms of a generating section of E over U, the action of X on s is described by a 

function L(s), satisfying 

Xs = L(S)& (8.3) 

while the connection D is described by a l-form e(s) satisfying 

Ds = O(s)s, (8.4) 

and in terms of these data the equivariance of D is expressed by the identity: 

dL+Le=i!(X)o+eL; 

that is, by the relation 

dL(s) = e(X)@). (8.5) 

Observe next that equivariant connections always exist for a compact group action. 
Indeed, if D is an arbitrary connection on E, its transform under an element g E G of the 
action is a well-defined new connection on E given by 

Dgs = g - ID@), (8.6) 

and as connections can be averaged the integral JG Dg dg over the compact group G will 
commute with the action and hence also with X. 

With this understood, recall now that, in terms of the connection form 13(s), the 
ordinary first Chern class of E is represented by 

- d&‘(s) 

27ci (8.7) 

on 11. 
More precisely. this form is seen to be independent of the generating section s chosen, 

and hence is the restriction to U of a global 2-form c,(E; D). In the equivariant theory 
we claim this same property for the expression 

c,(E, D; s) = - &. {de(s) - [L(s) - i(X)O(s)]u) (8.8) 
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in Q,Ju]. Indeed, let s’ be another generating section for E over U. Then we have 

s’=gs 

where g is some smooth non-vanishing function, and the derivation properties (8.3) and 
(8.4) imply that 

L(s’) = i(X) d lng + L(s’) 

and 

e(s’) = d(lng) + 0(s), 

whence c,(E, D; s) = c,(E, D; s’) on U. Thus (8.8) defines a global class in Q*[u]. To check 
that this expression lies in fif[~] it therefore remains only to verify that 

G(X) d0 = 0 and &Y)(L + i(X)e) = 0. 

Both these properties follow readily from the invariance property (8.5). 
Finally we see that our form c,(E, d; s) is closed: 

dxc, = 0, (8.9) 

again as an immediate consequence of (8.5). In short then any equivariant connection D, 
defines an equivariant first Chern class 

c,~(E; D) = w +fu, (8.10) 

with o representing the ordinary first Chern class in R* and f a global function given 
locally in terms of a generating section s by 

f = & {L(S) - i(x)W}. (8.11) 

We are now on very familiar ground and in particular may apply our integration 
formula to clX(E, D) to obtain the identity: 

s eJ74u 
ew@=C-, 

M P ep 
(8.12) 

assuming isolated fixed points {P). This implies the desired formula for the Chern number 
of E: 

s c,(E)” = xfE, 
M P ep 

(8.13) 

when dim M = 2n, and this formula is now easily identified with the corresponding 
formula in the paper cited above. 

Remarks, (1) When X acts on a vector bundle E and D is an equivariant connection 
for E, an equivariant curvature K, is given by the expression 

K,=KfLu (8.14) 
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where K is the usual curvature of E and L is the global endomorphism L,: T(E)-+T(E) 
given by 

L,s = Xs - i(X)Ds. (8.15) 

This L, thus extends the intrinsic action of X on the fibers of E over the fixed points of 
X to all of E. Applying a symmetric polynomial cp to K, is then seen to produce an 
equivariant form in Ql;, and the integration formula then evaluates jM 4(K) in terms of 

$(4 (L Ye& 

Formulae of this type go back to (Bott[7]), but were there, and in the subsequent 
papers, derived by a different principle. Namely, it is argued there that on the compfemenf 
of the fixed point set {P> of the action, one can always find a connection D whose 
corresponding endomorphism Lras defined by (8.15)--vanishes identically. From this 
observation one then derives an explicit local way of 
M - {P}: 

4(G) = dll/(K,, Lx). 

writing $J(K,) as a boundary on 

The form $ blows up at the fixed points in a manner involving only local information and 
so finally the integral SW cp(K,) is evaluated by a limiting procedure as ‘,1~ - js II/ of 
integrals over c-small spheres about the fixed points. 

This procedure is much more cumbersome than the one we outlined above but has the 
advantage of being applicable in noncompact situations, where the averaging process is 
not available. In particular this is the case for holomorphic vector fields, which actually 
were the primary motivation for these residue formulae. 

(2) Returning to our original framework of a Poisson action of S on (M, u), note that 
if o has integral periods, then the results of 57 are quite equivalent to those of 58. Indeed, 
under our assumption, there exists a complex line bundle E with connection D such that 

(1) the Chern class c,(E, D) equals o, 
(2) the action of S lifts to E in such a manner that D is equivariant. 
The construction of E and this lifting is of course at the heart of the prequantization 

procedure of Segal, Kostant and Souriau, see, for instance, Woodhouse[ 181. 
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