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0 TOPOLOGICAL QUANTUM FIELD THEORIES

Albert Schwarz

Abstract. Following my plenary lecture on ICMP2000 I review my results
concerning two closely related topics: topological quantum field theories and
the problem of quantization of gauge theories. I start with old results (first
examples of topological quantum field theories were constructed in my papers
in late seventies) and I come to some new results, that were not published yet.

0. Introduction.

I review my results concerning two closely related topics: topological quantum
field theories and the problem of quantization of gauge theories. I’ll start with old
results (first examples of topological quantum field theories were constructed in my
papers in late seventies) and I’ll come to some new results, that were not published
yet. But first of all I would like to give a short (and very incomplete) overview of
these problems and of some related questions (see, for example , [8], [24] for more
complete review).

Massive intervention of topology into quantum field theory was triggered by
discovery of magnetic monopoles in SU(2) gauge theory with scalar fields-Georgi-
Glashow model (Polyakov [26], ’tHooft [19]). It was recognized very soon ([13],
[14], [28], [25], [2]) that magnetic charge has topological nature and that simple
topological considerations can be used to prove the existence of magnetic monopoles
in a large class of gauge theories (including all grand unification theories ).

Other topologically non-trivial field configurations were considered shortly .The
most significant role was played by topologically non-trivial extremals of Yang-Mills
Euclidean action-gauge instantons [7].

I started as a topologist in fifties, and it was very pleasant for me to find im-
portant applications of topological ideas to physics-homology and homotopy theory,
characteristic classes, Atiyah-Singer index theory became common tools in quan-
tum field theory. I was pleased even more when I found an idea permitting to apply
quantum field theory to topology. The idea was very simple-if an action functional
depends only on smooth structure of a manifold then corresponding physical quan-
tities (in particular, the partition function) should have the same property. The
simplest example is a functional

S =

∫

M

A ∧ dA,(1)
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2 ALBERT SCHWARZ

where A is a 1-form on three-dimensional compact manifold M . This functional is
invariant with respect to gauge transformations A → A+ dλ, therefore to calculate
its partition function one should impose gauge condition. The gauge condition can-
not be invariant with respect to diffeomorphisms; it should involve some additional
data, for example Riemannian metric. However, the answer should not depend on
the choice of gauge condition. This logic is not flawless; formal arguments above
can be destroyed by quantum anomalies. However, it is possible to give a rigorous
theory of partition function of degenerate quadratic functionals and to relate the
partition function of the functional (1) and of its multidimensional generalizations
to Ray-Singer torsion-smooth version of Reidemeister torsion.(See [30], [32] and
Sec.2 )

The theory described by the action functional (1) is the simplest example of
topological quantum field theory. It admits a non-abelian generalization-so called
Chern-Simons action functional

S =

∫

M

1

2
Tr A ∧ dA +

1

3
Tr A ∧ A ∧ A(2)

where A is a matrix-valued 1-form on three-dimensional compact manifold M . (The
functional (1) is called sometimes abelian Chern-Simons action.) It was conjectured
in [34] that the action functional (2) leads to invariants of manifold M that are
closely related to Jones polynomial of knots. I was not able to prove this conjecture.
This was done a year later in remarkable paper by E. Witten [44], who found a
way to calculate physical quantities associated with Chern-Simons action in terms
of two-dimensional conformal field theory. It is difficult to overestimate the influ-
ence of this paper and of the papers [42], [43] that E. Witten has written almost at
the same time. It became clear after these papers that using topological quantum
field theories one can obtain very interesting mathematical results and that these
theories are very useful not only in mathematics, but also in physics. The papers
[42], [43] are closely related to earlier Witten’s paper [41] and to work of Donald-
son, Floer and Gromov [12], [16], [15], [18]. Donaldson and Floer used some ideas
from physics to obtain beautiful mathematical results. Donaldson applied instanton
moduli space, studied earlier in [29], [31], [5] to obtain very strong results about
4-manifolds. Floer’s starting point was Witten’s paper about supersymmetry and
Morse theory [41]. Witten has shown that their constructions, as well as Gromov’s
invariants of symplectic manifolds, can be understood in the framework of topologi-
cal quantum field theory. This understanding led to very important development in
pure mathematics culminating in theory of Seiberg-Witten invariants of 4-manifolds
based on results of [27], [45]and in enumerative geometry of (pseudo)holomorphic
curves on symplectic manifolds [10],[22], [17]. After axiomatization of topological
quantum field theories by Atiyah [4]these theories became a subject of extensive
mathematical analysis; I’ll stay mostly on Lagrangian viewpoint in this lecture.

I would like to mention a couple of important ideas that appeared in Witten’s
papers. One of them is to allow dependence of action functional S of metric gαβ,
but to require the energy- momentum tensor T αβ = δS/δgαβ that governs the de-
pendence of S of the metric to be BRST-trivial (See Sec.3 for introduction to BRST
formalism.) Then expectation values of observables (of BRST closed functionals)
should be metric independent, i.e. the quantum field theory is topological. One
calls theories of this kind topological quantum theories of Witten type, as opposed
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to topological theories of Schwarz type, when the action functional is metric inde-
pendent. The next idea that in supersymmetric theories one can declare a super-
symmetry generator that squares to zero to be a BRST operator. Then it follows
from supersymmetry algebra that the translation operator is BRST-trivial; this
means that correlation functions < A1(x1)...An(xn) > of BRST closed observables
A1, ..., An don’t depend on x1, ..., xn. One can say that BRST closed observables
are topological observables: it is possible construct a topological quantum field
theory where correlation functions are equal to correlation functions of topological
observables of sypersymmetric theory. One says that topological theory is obtained
from supersymmetric theory by means of twisting. Twisting N = 2 supersymmet-
ric four-dimensional gauge theory one can obtain topological theory that is closely
related to Donaldson invariants of four-dimensional manifolds. Two-dimensional
sigma-model has N = 2 superconformal symmetry if the target space is a Kaehler
manifold. There are two essentially different possibilities to choose BRST-operator
and to twist the theory. (This is true for any N = 2 superconformal theory; see
[39] for discussion in the framework of axiomatic quantum field theory.) In one
case we obtain so called A-model; it is defined for every symplectic target and its
correlation function can be expressed in terms of (pseudo)holomorphic curves (in
terms of Gromov-Witten invariants). In an other case we obtain B-model where
one should assume that the target is a complex Calabi-Yau manifold. We’ll not dis-
cuss remarkable theory relating A-model on one manifold with B-theory on another
(mirror) manifold ([10], [22], [17]).

As I emphasized from the very beginning the development of topological quan-
tum field theory was intertwined with the progress in our understanding of quan-
tization of gauge theories. To analyze topological theories related to Ray-Singer
torsion it was necessary to deal with so called reducible gauge theories; the analysis
of this class of gauge theories was given in [32]. In this case the needs of TQFT
led to progress in the problem of quantization. (See Sec.1 and 2) Later, as we
have seen, BRST formalism in quantization of gauge theories was used to construct
topological quantum theories of new type. It seems that Batalin-Vilkovisky version
of BRST formalism is very convenient to construct action functionals of TQFT.
I’ll give a short exposition of Batalin-Vilkovisky formalism from geometric view-
point following my papers [36], [37] [38]. This geometric approach will be used to
construct BV topological sigma-model, that includes many interesting topological
quantum field theories as particular cases [1]. In particular, it includes BV version
of Chern-Simons action functional as well as its multidimensional generalization
(Sec.4). It is interesting to notice that some of Witten type topological theories
can be formulated as theories with metric independent action in BV formalism; may
be this is true for all theories of this kind. Sec.5 devoted to perturbation theory
in BV-formalism. It seems that the version of perturbation expansion described in
this section was not analyzed in previous publications although it was used implic-
itly in [8]. In Sec.6 I’ll discuss recent results about quantum observables in BV
formalism and their application to TQFT following [40].

In Sec.7 I’ll formulate some new results about families of action functionals.
It will be shown that using families of equivalent action functionals or families of
gauge conditions one can construct some numbers generalizing expectation values
of observables. More precisely, one can consider a kind of moduli space correspond-
ing to a given action functional and under certain conditions one can define closed
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differential forms on moduli space. Integrating these forms over cycles we obtain
some interesting quantities. In particular, one can show that the application of
this construction to two-dimensional topological quantum field theory gives string
amplitudes. Applying it to multi-dimensional analog of Chern-Simons action func-
tional we obtain cohomology classes of BDiff (M) constructed by M.Kontsevich.

The results I know in this direction are not complete. Some of them were
obtained in collaboration with M. Kontsevich. Several years ago we planned to
work together on families of topological quantum field theories, however both of us
found more urgent problems to study.

1. Quantization of gauge theories.

Let us consider a functional S defined on space E (”space of fields”). We
can regard S as classical action functional; Euler-Lagrange equations for station-
ary points of S are interpreted as equations of motion of corresponding classical
mechanical system. We can also try to consider corresponding quantum system;
this means that we should calculate the integral Z of exp(−S) over E (the par-
tition function) and the expressions of the form ZA =

∫
E

A exp(−S) where A is a
function on E . (One can regard ZA/Z as an expectation value of the observable
A ). Notice, that in the above terminology we consider A as a Euclidean action
functional.

In interesting cases the space E is infinite-dimensional, therefore the integrals
Z and ZA are ill-defined; it is quite difficult to make sense of them. However, if E
is a vector space and S is represented as a sum of quadratic functional Squ and
polynomial functional V one can try to construct perturbation series for these
integrals, considering V as a perturbation. This problem is much easier, but still it
is not simple. (To solve it one should analyze the integrals of AV n exp(−Squ) over
E .) If the functional S has a large symmetry group (gauge group), the quadratic
part of S is degenerate and in addition to other problems we should deal with the
divergence of gaussian integral

∫
E exp(−Squ).

The standard way to work with ill-defined infinite-dimensional integrals is to
consider similar finite-dimensional integrals and to apply rigorously proven finite-
dimensional formulas to infinite-dimensional case without any justification. (Such
a justification is impossible because usually we don’t have any rigorous definitions
of integrals at hand. Sometimes it is useful to say that finite-dimensional theorems
become definitions in infinite-dimensional case ).

Let us consider a compact Lie group G that acts on finite-dimensional Rie-
mannian manifold M preserving the Riemannian metric. Let us fix a G-invariant
function f on M . If G acts freely on M and Σ is a subset of M having precisely
one common point with every orbit of G, then we can reduce the integration over
M to the integration over Σ. (In physics G plays the role of gauge group; replacing
M by Σ we impose gauge condition.) More precisely, if the set Σ is singled out by

means of equation F (x) = 0 where F == (F 1, ..., F k) is a map of M into R
k, then
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∫

M

exp(−S)dµ =

∫

M

exp(−S)WF (x)δ(F (x))dµ

where WF (x) is specified by the formula

WF (x) ·

∫
δ(F (gx))dg = 1.(4)

(Here dg stands for invariant volume element on G normalized by the condition
that the volume of G is equal to 1.)

If M is an infinite-dimensional manifold one can consider the right hand side of
(3) as a definition of left hand side. This idea (Faddeev-Popov trick) is very useful
in quantization of gauge theories. Of course, to apply this idea one should verify
that the left hand side does not depend on the choice of Σ (on the choice of gauge
condition).

The physical quantities are defined as functional integrals of A exp(−S) where
both S and A are gauge invariant. In many cases Faddeev-Popov trick permits us
to obtain a perturbation series for quantities of this kind.

We will use an invariant form of Faddev-Popov trick that is based on the
following finite-dimensional statement.

Let us consider again a compact group G of isometries of Riemannian manifold
M and a G-invariant function f . Without loss of generality we can assume that
stable subgroups Hx for all points x ∈ M are conjugate (this fact is always true for
almost all points). Then

∫

M

f(x)dµ =

∫

M/G

f(x)(D(x))1/2(V (Hx))−1dν(5)

Here dν is the volume element corresponding to the natural Riemannian metric
on M/G, V (Hx) stands for the volume of Hx in the metric induced by invariant

Riemannian metric on G obeying V (G) = 1 and D(x) = det T̃ +
x T̃x where T̃x is a

linear operator acting from Lie G/Lie Hx into tangent space Tx(M). (The action
of G on M determines an operator Tx: Lie G → Tx(M). This operator descends to

T̃x : Lie G/Lie Hx → Tx(M).) Let us say that the compact Lie groups G0, ..., GN

and homomorphisms Ti : Gi → Gi−1 form a resolution of subgroup H ⊂ G if
G = G0, Im T1 = H, Im Ti+1 = KerTi. We introduce an invariant Riemannian
metric on Gi, and assume that it is normalized by the condition V (Gi) = 1. The
homomorphism Ti generates a homomorphism Ti of corresponding Lie algebras; it

descends to a linear map T̃i :Lie Gi/KerTi →Lie Gi−1. Using (5) it is easy to check
that

log V (H) =
∑ 1

2
(−1)i−1 log det T ∗

i Ti.(6)
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Combining (5),(6) we obtain
∫

M

f(x)dµ =

∫

M/G

f(x)(det T̃ ∗
x T̃x)1/2Π1≤i≤N (det T̃ ∗

i T̃i)
1
2
(−1)i

dν = (7)

∫

M/G

f(x)(det �0(x))1/2Π1≤i≤N (det�i)
σidν

where �0(x) = T ∗
x Tx + T1T

∗
1 , �i = T ∗

i Ti+T i+1T
∗

i+1, σi = 1
2 (−1)i/(i + 1).

Let us consider the case when the function f(x) is defined on vector space E
and has the form f((x) = exp(−S(x)) where S(x) is a quadratic functional. If E is
equipped with inner product we can represent S(x) in the form

S(x) =< Sx, x >=< x, Sx > .

In finite-dimensional case

∫

E

e−<Sx,x>dx = (detS)−1/2(8)

for appropriate normalization of the volume element on E . If S is non-degenerate
we accept the right hand side of (8) as a definition of infinite-dimensional Gaussian
integral. However, to apply this definition we should have a definition of infinite-
dimensional determinant. One of possible approaches is based on the notion of
zeta-function:

log detS =
1

2
log det S∗S = −

1

2
ς ′S∗S(0).

(One can define the zeta-function of nonnegative operator A by the formula
ςA(s) =

∑
λ−s

i , where λi runs over positive eigenvalues of A. In the case when A
is an elliptic operator on compact manifold the series converges for s ≫ 0, however
one can define ς ′A(0) = dςA(s)/ds|s=0 by means of analytic continuation. Notice
that this definition can be applied also to operators having zero modes, because
zero eigenvalues don’t enter the expression for zeta-function.)

If the functional S is degenerate, one can try to define the Gaussian functional
integral (the partition function corresponding to S) by the formula (8). However,
such an attempt does not lead to interesting results; we need additional structure
to give a reasonable definition.

Let us consider a quadratic functional S on the space E = E0, vector spaces
E1, ..., Enand operators Ti : Ei → Ei−1, obeying Ti−1 · Ti = 0, S(x + T1y) = S(x).
We will assume that spaces Ei are equipped with Hermitian inner product; this
means that we can represent S(x) in the form S(x) =< Sx, x >=< x, Sx > and
consider adjoint operators T ∗

i .

We will say that the spaces Ei and operators Ti constitute on ellliptic resolution
of the functional S if the space Ei, i = 0, ..., N, can be considered as a space smooth
sections of vector bundle with compact base and the operators �0 = S2 + T1T

∗
1 ,
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�i = T ∗
i Ti + Ti+1T

∗
i+1 are elliptic operators. We define the partition function of

the functional S with respect to elliptic resolution by the formula:

Z = Π0≤i≤N (det�i)
(−1)i+1(2i+1)/4.(9)

(We can come to this definition applying formally Eqn (7)). In general, Z depends
on the choice of inner products on E0, ..., EN . However, it is possible to calculate the
variation of Z when these inner products vary. Let us suppose that we have a fam-
ily <, >u

i of inner products on Ei depending om parameter u denote the operators
governing infinitesimal variation of inner product by Bu

i :

d

du
< f, g >u

i =< Bu
i f, g >u

i =< f, Bu
i g >u

i .

Then

d log Z(u)

du
=

1

2

∑

0≤i≤n

(−1)iΨ0(B
u
i |�

u
i ).

(The Seeley coefficients Ψk(R|A) are defined by means of asymptotic expansion:

Tr(R e−At) =
∑

Ψk(R|A)t−k

for t → 0). We assume that the operators �i do not have zero modes (the resolution
is an exact sequence); to take zero modes into account one should subtract the trace
of Bi on the space of zero modes from Ψ0.

If �i are differrential operators then the Seeley coefficients are given by local
formulas. If the operators �i act on vector bundle with odd dimensional base then
Ψ0 vanishes and Z does not depend on u. In other words, we don’t have quantum
anomaly in this case. (One speaks about quantum anomaly if something that is
true for classical theory is violated at quantum level. Classical theory is determined
by the functional S in our case; it does not depend on inner products. Therefore
dependence of inner products can be characterized as quantum anomaly.)

Notice that in this statement we assumed that the operators �i don’t have zero
modes. In general we have to consider a vector spaceH =

∑
Hi =

∑
KerTi/ImTi+1 ≈∑

Ker∆i (homology of the resolution (Ei, Ti)). The partition function can be re-
garded as a measure on linear superspace H (natural Z2-grading determines a struc-
ture of superspace on H). If the relevant Seeley coefficients vanish the partition
function does not depend on the choice of inner products on Ei (see[32] [33]).

2. Topological gauge theories.

Let us consider an action functional

S =

∫

M

A ∧ dA(10)
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where M is a compact (2n + 1)-dimensional manifold, A is an n-form on M . This
functional is invariant with respect to transformations A → A + dλ, where λ is
an (n − 1)-form on M . Denoting the space of smooth k-forms on M by Ωk we
can say that S is a degenerate quadratic functional on Ωn and that Ωn−1 can be
considerate as symmetry group of (10). In the case n = 1 we can use the Faddeev-
Popov trick to calculate the corresponding partition function. If n > 1 then the
map d : Ωn−1 → Ωn has an infinite-dimensional kernel; in this case we can use
the notion of elliptic resolution to define the partition function of (10). Namely,
the spaces Ωn, Ωn−1, ..., Ω0 and operators d : Ωk−1 → Ωk provide us with elliptic
resolution of (10).

Let us fix a Riemannian metric on M . This metric induces an inner product on
spaces Ωk; we can use this inner product to calculate the partition function. Using
(9) we obtain an expression of the partition function Z in terms of det∆k,where
∆k = d∗d + dd∗ stands for the Laplace operator on the space of k-forms.

The same construction can be repeated in the case when we allow forms with
coefficients in a local system (i.e. forms taking values in fibres of a vector bundle
equipped with a flat connection).

In the acyclic case (in the case when the operators ∆k have no zero modes) it
follows from the results of Sec.1 that Z does not depends on Riemannian metric
on M . This means that Z is invariant with respect to diffeomorphisms. It is easy
to check that Z coincides with Ray-Singer torsion (smooth version of Reidemeister
torsion) and therefore is a topological invariant. In general case Z is a topologically
invariant measure on superspace H(M) (direct sum of cohomology groups of M).

In the case dim M = 3 one can generalize the action functional (10) to the case
when A is a 1-form taking values in Lie algebra G equipped with invariant inner
product. Such a form can be considered as a connection (gauge field) in a trivial
vector bundle over M and one can modify (10) to get a functional that is invariant
with respect to infinitesimal gauge transformations δA = dγ + [γ, A] where γ is a
G-valued function. This functional (Chern-Simons action functional) has the form

S(A) =

∫

M

(
1

2
A ∧ dA +

1

3
A ∧ A ∧ A)(11)

where A∧ dA stands for hikAi ∧ (dA)k and A∧A ∧A stands for fijkAi ∧Aj ∧Ak.
(We denote by Ai components of A with respect to a basis in G; fijkare structure
constants of G and hik is the metric tensor of G in this basis.)

The Chern-Simons functional depends only on smooth structure of M therefore
one can hope it gives invariants of M . If Γ is a closed curve in M one can construct
a gauge invariant expression WΓ(A) as trace of monodromy of the connection A in
some representation of the group G corresponding to the Lie algebra G. Integral of
WΓ(A) exp(−kS(A)) over infinite-dimensional space of all gauge fields (or, better
to say, over the space of gauge classes of gauge fields) depends only on isotopy
class of Γ considered as a knot in M and on topology of M . There exist two ways
to obtain well defined invariants from this ill-defined integral: to use perturbation
theory or to calculate this integral precisely in terms of two-dimensional conformal
theory. Direct application of Faddeev-Popov procedure leads to very complicated
expressions that I have written down in 1987, but was not able to analyze rigorously.
Mathematical analysis of perturbation series was performed much later in [6], [21]
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on the base of diagram technique that can be obtained from Batalin-Vilkovisky
formalism (see Sec.7). Some remarks about Witten’s explicit solution are contained
in Sec.8.

3. Gauge theories in BRST-BFV formalism.

Let us consider a Z2-graded vector space E equipped with an odd operator Ω̂

obeying Ω̂2 = 0 (in mathematical terminology Ω̂ is a differential, in physics Ω̂ is
called BRST operator; BRST stands for Becchi-Rouet-Stora-Tyutin). An operator

A : E → E commuting with Ω̂ is called quantum observable; such an operator

descends to an operator Ã : Ẽ → Ẽ acting on homology Ẽ = Ker Ω̂/ Im Ω̂. It is easy

to check that Tr A = Tr Ã, where Tr stands for supertrace. (This fact is used in
topology in the derivation of Lefschetz fixed point formula.)

If A can be represented as a (super)commutator of Ω with some operator B we
can say that the observable A is trivial: TrA = 0. Quantum observables are called
also BRST-closed operators, trivial observables are BRST-exact. (Observables are
related to the homology of the space of linear operators on E where Ω acts by the
formula A → [Ω, A], where [, ] stands for supercommutator.) If A and H both

commute with Ω̂ we obtain that

Tr Ã exp(−H̃β) = TrA exp(−Hβ).

This formula shows that at the level of expectation values of observables the theory

with Hamiltonian H on E is equivalent to the theory with Hamiltonian H̃ on Ẽ . This

observation permits us to replace a theory with complicated space Ẽ by a theory
with simple space E at the price of introducing additional degrees of freedom and
BRST operator (see [35] for more detail). One can say that BRST formalism is a
version of standard mathematical idea of resolution, when a complicated module is
replaced with a complex of simple modules.

Let us consider for example operators Tα: : E → E, α = 1, ..., n, acting on
space E and generating a Lie algebra G (i.e. [Tα, Tβ] = fγ

αβTγ). Let us denote by E

the space of all E-valued functions depending on anticommuting variables c1, ..., cn

(the space of cochains of Lie algebra G). The operator

Ω̂ = Tαcα +
1

2
fγ

αβcαcβ ∂

∂cγ

obeys Ω̂2 = 0; corresponding homology Ẽ = H(G, E) are called Lie algebra coho-

mology. The space E , and, therefore, Ẽ have natural Z-grading with deg cα = 1. It

is easy to see that Ẽ0 = H0(G, E) is the G-invariant subspace of E (i.e. Ẽ0 = {x ∈

E : Tαx = 0}). Let H be a G-invariant hamiltonian on E. Then can restrict it to Ẽ0

(i.e we can introduce constraints Tαx = 0.) We will assume that Ẽ i = Hi(G, E) = 0
for i > 0 (the cohomology is concentrated in degree 0). Then the physics described

by the Hamiltonian H restricted to Ẽ0 is equivalent to the physics of H extended
to E if we are interested in expectation values of BRST-closed operators. This is
the easiest way to take into account constraints: instead of restricting the space we
enhance it including ghosts.

The quantum consideration above has a classical counterpart. In Hamilton-
ian approach we should work with symplectic supermanifold M (i.e. with a su-
permanifold equipped with even close nondegenerate 2-form). An analog of a
BRST-operator is a function Ω on M obeying {Ω, Ω} = 0 where {, } stands for
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Poisson bracket. Classical observables are associated with homology of operator

Q̂ : A → {A, Ω} acting on the space of functions on M .

The operator Q̂, obeying Q̂2 = 0, can be considered as an odd vector field on M .
We say that such a vector field specifies a structure of Q-manifold on M . Notice,
that this structure is compatible with symplectic structure (the Lie derivative of
symplectic form with respect to Q vanishes).

Gauge theories in Hamiltonian formalism are systems with constraints. The
simplest way to study Hamiltonian constrained systems is to introduce ghosts as
we have explained. However, usually it is easier to work in Lagrangian formalism.
Lagrangian analogs of above constructions will be described in the next section.

4. Batalin-Vilkovisky formalism.

Let us consider an (n | n)-dimensional supermanifold M equipped with an
odd non-degenerate closed 2-form ω = ωijdzidzj . We’ll say that M is an odd
symplectic manifold (a P -manifold). In appropriate local coordinates ω has the
form ω =

∑
dxidξi, i = 1, ..., n; in other words M can be pasted together from (n |

n)-dimensional superdomains by means of transformations preserving
∑

dxidξi.
In the same way as on even symplectic manifold we can define Poisson bracket

{f, g} on a P -manifold. For every function H on P -manifold M we define first

order differential operator K̂H (a vector field KH) by the formula K̂H(f) = {f, H}.
It is easy to check that KH preserves odd symplectic structure (i.e. Lie derivative
LK of ω with respect to KH vanishes). Conversely, if a vector field K preserves
ω, it can be represented as KH at least locally. If a P -manifold M is equipped
with a volume element we can define an odd second order differential operator ∆
on M by the formula ∆f = divKf . If the operator ∆ obeys ∆2 = 0 we say that
M is an SP -manifold. One can prove that an SP -manifold can be pasted together
from (n | n)-dimensional superdomains by means of transformations preserving
ω =

∑
dxidξi and volume element; the operator ∆ is equal to 2∂2/∂xi∂ξi in the

coordinates (x1, ..., xn, ξ1, ..., ξn).

Let us consider a function A defined on a compact SP -manifold Mand obeying
∆A = 0. One can prove the following statement :

The expression
∫

L

Adν(12)

where L is a Lagrangian submanifold of M does not change by continuous variation
of L; moreover, L can be replaced by any other Lagrangian submanifold L

′

belonging
to the same homology class. (The notion of Lagrangian submanifold of odd sym-
plectic manifold can be defined as in even case; a Lagrangian submanifold of L of an
SP -manifold can be equipped naturally by a volume element dν.) In the case when
A = ∆B the integral (12) vanishes; this means that (12) determines a functional
on Ker∆/Im∆. If the function A is represented in the form A = exp(~−1S) the
equation ∆A = 0 is equivalent to the following equation for S

~∆S + {S, S} = 0.(13)

This equation is known as quantum master equation; it plays an important role
in BV quantization procedure. Namely, in this procedure we can take as a start-
ing point classical action functional and construct a solution to (13); the physical
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quantities are obtained as integrals of the form

∫

L

e−
1
h

Sdν;

the choice of Lagrangian submanifold L corresponds to the choice of gauge condi-
tion. Of course, in the quantization problem we should consider ill-defined infinite-
dimensional integrals; statements about the integral (12) are proved rigorously in
finite-dimensional case, but don’t have any precise meaning in infinite-dimensional
situation. Moreover, it is difficult even to define the notion of infinite-dimensional
SP -manifold and to construct the operator ∆. Nevertheless, one can use the frame-
work of perturbation theory to quantize gauge theories in BV formalism.

Let us emphasize that the notion of P -manifold and the equation

{S, S} = 0(14)

(classical master equation) make sense in the infinite-dimensional case. It is natural
to say that a solution of (14) specifies a classical mechanical system in BV formalism.
We will show that this viewpoint permits us to give a very simple construction of
topological quantum field theories.

First of all we should give a geometric interpretation of the solution to classical
master equation. Let us denote by Q an odd vector field corresponding to S. It
follows from {S, S} = 0 that {Q, Q} = 0 (in other words the first order differential

operator Q̂ defined by the formula Q̂Φ = {Φ, S} obeys Q̂2 = 0). We’ll say that
a supermanifold equipped with an odd vector field Q obeying {Q, Q} = 0 is a Q-
manifold. We see that a solution of classical master equation on a P -manifold M
specifies a structure of a Q-manifold on M ; these two structures are compatible (the
odd symplectic structure is Q-invariant; i.e. the Lie derivative of odd symplectic
form with respect to Q vanishes). It is easy to check that, conversely, every QP -
manifold (i.e. Q-manifold equipped with Q-invariant odd symplectic structure) can
be obtained from a solution of classical master equation.

One can obtain many examples of QP -manifolds by means of simple geometric
constructions. We’ll show how to construct topological quantum field theories this
way.

Notice, first of all that the space {Σ → X} of maps of a Q-manifold Σ into a
Q-manifold X can be considered as a Q-manifold. Let us take as Σ the manifold
ΠTM where M is a d-dimensional manifold (the symbol Π stands for parity change;
one obtains the supermanifold ΠTM from the tangent bundle TM reversing parity
of the fibers). The functions on ΠTM can be regarded as differential forms on
M ; de Rham differential can be interpreted as an odd vector field Q on ΠTM
obeying {Q, Q} = 0. This means that ΠTM can be considered as a Q-manifold.
The natural volume element on ΠTM is Q-invariant (i.e. divQ = 0). Notice that
the volume element on ΠTM is odd if M is odd–dimensional and even if M is
even-dimensional.

To introduce a symplectic structure on the space of maps {Σ → X} we need a
volume element on Σ and a symplectic structure on X . Then the symplectic form
on the space of maps can be defined as an integral

ω̃(δ1f, δ2f) =

∫

Σ

ω(δ1f(σ), δ2f(σ))dσ
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where ω stands for symplectic form on X and dσ for volume element on Σ. To
obtain an odd symplectic structure on {Σ → X} we should assume that the parity
of symplectic structure on X is opposite to the parity of volume element on Σ.

Now we can say that {Σ → X} is a QP -manifold if Σ is a Q-manifold equipped
with even Q-invariant volume element and Σ is a QP -manifold. If Σ is a Q-manifold
with odd Q-invariant volume element, then we can introduce a structure of a QP -
manifold in {Σ → X} in the case when X is a Q-manifold with Q-invariant even
symplectic structure. The functional S on {Σ → X} corresponding to the vector
field Q obeys {S, S} = 0 and specifies a classical mechanical system, that can be
called BV sigma-model. In the case when Σ = ΠTMcorresponding sigma-model
can be considered as topological field theory (the action functional depends only on
smooth structure of the manifold M and therefore corresponding physical quantities
should provide diffeomorphism invariants of M). This general construction leads
to many interesting TQFTs. In particular, we can obtain (generalized) Chern-
Simons theory in the following way. Let us take as X a linear ΠG where G is a
Lie algebra equipped with invariant inner product. One can consider ΠG as a Q-
manifold equipped with Q-invariant symplectic structure. Functions on X can be
interpreted as cochains of Lie algebra G; the differencial acting on cochains can be
considered as vector field Q on X . The symmetric inner product on G specifies an
even symplectic structure on X = ΠG).

A map of Σ = ΠTM into X = ΠG can be considered as G-valued differential
form A on M . To obtain a structure of a QP -manifold on {ΠTM → ΠG} we
assume that M is an odd-dimensional manifold. Above arguments lead to the
following action functional:

S(A) =

∫

M

(
1

2
A ∧ dA +

1

3
A ∧ A ∧ A)(15)

In the case dim M = 3 we obtain a BV version of Chern-Simons action functional.
Let us consider the space {ΠTM → X} where M is an odd-dimensional man-

ifold and X is an even symplectic manifold equipped with trivial Q−structure
(Q = 0). We will analyze in detail the case when X is a symplectic vector space with
symplectic form having constant coefficients ωαβ . In this case maps ΠTM → X
can be identified with vector valued forms Aα on M (α = 1, ..., dimX) and the
action functional is quadratic.

S =

∫

M

ωαβAα ∧ Aβ .(16)

We obtain a BV-version of action functional (10); corresponding partition func-
tion is related to Ray-Singer torsion.

For every manifold Y we can construct a structure of a Q-manifold on ΠTY
and a structure of a P -manifold on ΠT ∗Y . If Y is an even symplectic manifold we
can identify ΠTY and ΠT ∗Y and obtain a structure of a QP -manifold on ΠT ∗Y ;
corresponding solution to classical master equation can be written in the form
s = ωαβ(y)ηαηβ , where y ∈ Y , ηα are odd coordinates in the fibres of ΠT ∗Y

and ωαβ stands for bivector that is inverse to symplectic form ωαβ . It is easy to
verify that this construction specifies a structure of a QP -manifold on ΠT ∗Y in
more general case when Y is a Poisson manifold (s = ωαβ(y)ηαηβ obeys classical

master equation iff ωαβ determines Poisson structure on Y ).We can consider now
topological BV sigma-model on the space of maps {ΠTM → ΠT ∗Y } where M is a
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two-dimensional (or, more generally, even-dimensional) manifold and Y is a Poisson
manifold. In the case when M is a disk this sigma-model was used by Kontsevich
in his famous work about formal quantization of Poisson manifolds [23], see also
[11]. Taking a symplectic manifold equipped with an almost complex structure as
Y we can single out a Lagrangian submanifold L of {ΠTM → ΠT ∗Y } in such a
way that restriction functional to L leads so called A-model [1].

5.Perturbation theory in BV-formalism.

Let us begin with finite-dimensional case. We consider a functional S defined on
linear SP -manifold E . (Every manifold of this kind is isomorphic to R

n|n equipped
with standard odd symplectic form and volume element.) We represent S as S0 +V
where S0 consists of quadratic terms in Taylor series at stationary point x0 of S;
without loss of generality we can take x0 = 0. We assume that S obeys both
quantum and classical master equations (i.e. {S, S} = 0, ∆S = 0). Then S0 and
V also have this property: {S0, S0} = 0, ∆S0 = 0, {V, V } = 0, ∆V = 0; therefore
{S0, V } = 0. Let us consider a linear Lagrangian subspace L ⊂ E ; we suppose that
S0 is nondegenerate on L and the integral

Z(λ) =

∫

L

e−(S0+λV )dυ,

representing the partition function of action functional S0 + λV , converges. We
can apply standard methods to get a perturbative expansion of Z(λ) /Z(0) with
respect to λ. The series we obtain does not depend on the choice of L; therefore
one can describe the answer in a form where L is not involved. We’ll prove that
one can use the standard Feynman diagram technique where vertices are governed
by V and the propagator p is a bivector on E that obeys

qα
γ pγβ − pαγqβ

γ = ωαβ(17)

Here ωαβ is the bivector that is inverse to the matrix ωαβ of odd symplectic form,
qα
β = ωαγsγβ where sαβ stands for the matrix of quadratic form S0. In more

invariant form we can say that quadratic form S0 generates a vector field Q on E .
The coordinates of Q are linear functions on E , therefore we can construct a linear
operator q acting on E ; it follows from {S0, S0} = 0 that q2 = 0. This means that
we can regard q as a differential; it follows from our assumptions that corresponding
homology is trivial (Ker q = Im q). The operator q generates a differential in the
space of bivectors; we’ll use the same symbol for it. The condition (17) means that
qp = ω where ω stands for bivector, that is inverse to symplectic form. Notice
that for two bivectors p′ and p that obey (17) we have q(p′ − p) = 0. It follows
from acyclicity of q that there exists an odd bivector u satisfying p′ − p = qu. One
can use this remark to show that diagrams constructed by means of propagator p′

coincide with diagrams with propagator p.

The above prescription can be justified in the following way. One can introduce
such a coordinate system x1, ..., xn, ξ1, ..., ξn on E that S0 depends only on ξ1, ..., ξn;
the parity of ξi is opposite to the parity of xi, the odd symplectic form is equal to∑

dxidξi and the volume element is standard (see [37]). Then the partition function
can be written as integral of exp(−(S0 +λV )) over Lagrangian submanifold x = X ,



14 ALBERT SCHWARZ

where X1, ..., Xn is a fixed vector. This integral can be converted into an integral
over E :

Z = const

∫
e−(S0+σ)−λV dξdx(18)

(we included δ(x − X) into the integrand, multiplied it by exp(−σ(X)) and in-
tegrated over X . Here σ(X)stands for nondegenerate quadratic form; we require
convergence of the integral of exp(−σ(X)) over X1, ..., Xn).

It follows from (18) that Z(λ)/Z(0) can be represented by means of Feynman
diagrams where propagator is inverse to S0 + σ. It is easy to check that this recipe
coincides with the above prescription for specific choice of bivector p obeying (17).
This means that we can use any bivector satisfying (17). (We mentioned already
that diagrams don’t depend on the choice of propagator as long it obeys (17).)

We can apply the diagram technique developed in finite-dimensional case to
infinite-dimensional situation.

Let us consider for example the BV-formalism of Chern-Simons action func-
tional (i.e. functional (15) for dimM = 3). Then we obtain precisely diagrams
constructed by M. Kontsevich [21]. It is necessary to emphasize, however, that our
considerations in infinite-dimensional case are heuristic. To obtain rigorous results
one should analyze the convergence of integrals representing the diagrams,etc. (see
[21]).

6.Observables .

Let us consider an SP -manifold M and a quantum system corresponding to a
solution S of quantum master equation (13). We say that a function A on M is a
quantum observable if it satisfies the equation

~∆A + 2{A, S} = 0(19)

It is important to notice that A is not necessarily an even function. The
expression

∫

L

AeS/~dν

where L is Lagrangian submanifold of L, has the meaning of the expectation value
of A. This expression depends only on homology class of L. For even A this fact
immediately follows from the remark that the equation (17) holds that iff S + εA
where ε is an infinitesimal parameter obeys quantum master equation; analogous
statement is true for odd A. If a quantum observable can be represented in the
form A = ~∆B + 2{B, S} then its expectation value vanishes; we say that such an
observable is trivial.

The above remarks show that observables can be studied in the framework of
families of quantum systems; expectation values of observables govern the variation
of partition function by the infinitesimal change of paramaters.

One can prove the following statements:
a) If A and B are quantum observables, then {A, B} is also a quantum observ-

able. (In other words, quantum observables constitute a Lie superalgebra.)
b) Let us suppose that quantum observables Tα span a Lie (super)algebra G

(i.e. {Tα, Tβ} = fγ
αβTγ) and that the antisymmetric tensor cα1...αk represents a
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homology class of G. Then cα1...αkTα1
...Tαk

is also a quantum observable. If the
tensor cα1...αk belongs to the trivial homology class, the corresponding observable
is also trivial.

One can derive these statements by means of straightforward calculations based
on the definition of homology, on the relation

{S, KL} = {S, K} · L + (−1)ε(K){S, L} · K

and on the formula

∆(KL) = ∆K · L + (−1)ε(K)K · ∆L + (−1)ε(K){K, L}.

Taking ~ = 0 in the definition of quantum observable we obtain a definition of
classical observable. We can also consider functionals that verify the condition (19)
for all ~. One can say that these functionals are quantum and classical observables
at the same time; we will omit the adjective talking about observables of this
kind. These observables are related to infinitesimal variations of action functionals
obeying quantum and classical master equations simultaneously: ∆S = 0, {S, S} =
0. As we emphasized, in infinite-dimensional case the operator ∆ is ill-defined,
therefore it is difficult to work with quantum master equation. It is much easier
to make sense of equation ∆S = 0; it can be written in the form divQ = 0 and
means that the odd vector field Q corresponding to the functional S is ”volume
preserving.”

In Sec. 7 we’ll discuss how to obtain topological invariants in the framework
of perturbation theory taking as a starting point the BV version of Chern-Simons
action functional (15) .Notice that it is possible to obtain perturbative Chern-
Simons invariants also from quadratic action functional (16) considering non-trivial
quantum observables. Lie algebra H of polynomial Hamiltonian vector fields on X
can be considered as an algebra of symmetries of the functional (16). This means
that we can associate a quantum observable with every homology class of this
Lie algebra. Corresponding expectation values are topological invariants of M .
Kontsevich constructed a graph complex having homology closely related to the
homology of Lie algebra H (see [21]). It follows from this result that one can
associate topological invariants of M with homology of graph complex. It is shown
in [40] that invariants obtained this way coincide with invariants derived in [21]
from the analysis of perturbative Chern-Simons theory. One can say that these
observations give physical explanation of some results of [21].

7.Families of action functionals.

Let us consider a smooth family Sλ of functionals defined on manifold M and
labeled by points λ ∈ Λ. We assume that these functionals obey quantum and
classical master equations for every λ ∈ Λ:

∆Sλ = 0, {Sλ, Sλ} = 0.

Let V stand for a vector on Λ. Then the variation of S in the direction V is
governed by oVbservable T (V ) :

V̂ S = T (V ), ∆T (V ) = 0, {T (V ), S} = 0.
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We will assume that there exists functional B(V ) on M obeying

T (V ) = {B(V ), S}, ∆B(V ) = 0.(20)

Then the observable T (V ) is trivial, because

V̂ eS = T (V )eS = {B(V ), eS} = ∆(B(V )eS)

This means that the partition function corresponding to the action functional
Sλ does not depend on λ. It seems that the consideration of the family Sλ is
superfluous and we can restrict ourselves to one of the members of this family.
We’ll see that this is not the case. The functional T (V ) is defined for every vector
V on (super)manifold Λ. For definiteness we consider only even vectors; then T (V )
is an even functional and B(V ) is an odd functional. We will use the notation B(V )
also in the case when V is a vector field; then B(V ) is a function depending on
x ∈ M and λ ∈ Λ. It is easy to check that

V̂1V̂2e
S = V̂1{B(V2), e

S} = {V̂1B(V2), e
S} + {B(V2), {B(V1), e

S}}.

Comparing this formula with

[V̂1, V̂2]e
S = {B([V1, V2]), e

S}

we obtain that

B([V1, V2]) = V̂1B(V2) − V̂2B(V1) − {B(V1), B(V2)} + ξ(V1, V2)

where ∆ξ(V1, V2) = 0, {ξ(V1, V2), S} = 0.
We see that ξ(V1, V2) is an observable.
We consider ξ(V1, V2) as a function on M and two-form on Λ; one can check

that this two-form is closed. In most interesting cases this form can be represented
as a differential of one-form η obeying ∆η = 0, {η(V )), S} = 0. If this exactness
condition is satisfied we can replace B(V ) with B(V ) − η(V ) preserving relations
(20); with this new definition of B(V ) the form ξ(V1, V2) vanishes, i.e.

B([V1, V2]) = V̂1B(V2) − V̂2B(V1) − {B(V1), B(V2)}.(21)

We’ll assume that (21) is satisfied. Then one can prove that the n-form ∆ωn =
∆(B(V1)...B(Vn)eS) is a differential of (n− 1)-form ωn−1 = B(V1)...B(Vn−1)e

S on
Λ. This means that for every n-cycle Γ on Λ we have

∆

∫

Γ

B(V1)...B(Vn)eS = 0.

Integrating
∫
Γ

B(V1)...B(Vn)eS over a Lagrangian submanifold L ⊂ M we obtain a
number that depends only on homology classes of Γ and L.

The above statement can be generalized to the case when ξ(V1, V2) does not
vanish. In this case it is convenient to consider an inhomogeneous form ω =

∑
ωn.

One can prove, that

∆ω = (d + ξ)ω.

Notice that instead of family S(λ) of equivalent action functionals we can con-
sider a functional S obeying ∆S = 0, {S, S} = 0, and a family of Lagrangian
submanifolds Lλ labeled by λ ∈ Λ.

Let us denote by L the infinite-dimensional manifold of all Lagrangian submani-
folds of M . (If L ⊂ M is a Lagrangian submanifold we can identify a neighborhood
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of L in M with ΠT ∗L. Using this identification we can construct for every odd
function Ψ on L a Lagrangian submanifold by means of the formula ξi = ∂Ψ

∂xi

where xi are coordinates on L, ξi are coordinates on the fibers. This construction
gives a parametrization of a subset of L in terms of functions on L; we see that L
can be considered as infinite-dimensional manifold. Lie algebra of even vector fields
preserving odd symplectic structure and volume element on M acts on L in natural
way; it is easy to check that this action is Lie algebra of odd functionals B on M
obeying ∆B = 0. This means that to every B obeying ∆B = 0 and every L ∈ L
corresponds a vector V ∈ TL(L) (a tangent vector at the point L ∈ L) and that
this map is surjective. The inverse map is multivalued, but one can fix one-valued
smooth branch B(V );we’ll use the same notation when V is a vector field on L .
We’ll assume that

B([V1, V2]) = V̂1B(V2) − V̂2B(V1) − {B(V1), B(V2)}.

as in the case of family of action functionals considered above.
Let us consider an n-form on L defined by the formula

ωn =

∫

L

B(V1)...B(Vn)eSdν

One can prove that this form is closed. The proof is based on the relation

V̂

∫

L

ϕdν =

∫

L

{ϕ, B(V )}dν

(We consider infinitesimal transformation of M preserving volume element and
odd symplectic structure. To calculate the variation of

∫
L

ϕdν by the variation of
L we use the fact that instead of changing L we can change the integrand.)

Notice that we can modify the definition of the forms ωn including an observable
A into the integrand. The forms remain closed after such a modification (this
follows immediately from the remark that observables are related to infinitesimal
variations of action functional).

One can consider L or the space of equivalent action functionals as a kind of
moduli space for the problem at hand. We obtained under certain conditions closed
forms on this space. Integrating these forms over cycles in moduli space we obtain
numbers that generalize expectation values of observables (these expectation values
correspond to 0-forms).

Let us apply the above consideration to the case of topological theories. In this
case every metric on the worldsheet determines one of equivalent action function-
als (in Witten’s approach) or a gauge condition (a Lagrangian submanifold in BV
approach).Under certain conditions closed forms on the space of metrics are equi-
variant with respect to diffeomorphisms of worldsheet M and therefore descend to
the quotient space M={metrics}/{diffeomorphisms}. The space of metrics is con-
tractible hence the quotient space is closely related to the classifying space BDiff(M)
of diffeomorphism group. In the case of multidimensional version of BV Chern-
Simons functional the differential forms constructed above are related to forms on
BDiff(M) considered in [8]. (Notice that Kontsevich modifies the space BDiff (M)
to get rid of quantum anomalies connected with zero-dimensional homology of M .)
In the case of two-dimensional topological theory the numbers obtained by means
of integration of differential forms on moduli space over cycles coincide with string
amplitudes. Notice, that in two-dimensional case the moduli space of metrics M
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is homotopy equivalent to the moduli space of conformal structures on the world-
sheet (=moduli space of complex curves with given topology). The appearance of so
called Deligne-Mumford compactification of the moduli space of complex curves is
related to the fact that one can obtain reasonable gauge conditions allowing metrics
with some mild singularities.

8. Chern-Simons theory and topological sigma-model.

Chern-Simons theory is closely related to so called G/G model. This two-
dimensional topological model can be considered as gauged WZNW model and can
be solved either by conformal field theory methods or directly. To establish the
relation between of Chern-Simons theory and G/G model one can use WZNW
model as an intermediate step (see [44]); there exists also more direct way found
in [9].

All these approaches are based on the remark that 1-form A satisfying the
equations of motion corresponding to Chern-Simons action functional (11) can be
considered as a flat connection on trivial vector bundle. In topologically trivial situ-
ation all flat connections are gauge equivalent; this means that every flat connection
can be represented in the form

A = g−1(x)dg(x)(21)

where g(x) is a function taking values in the group G . (We suppose that G is a Lie
algebra of the group G.) Another method uses BV-formalism; this approach can
be applied also to multidimensional generalization (15) of Chern-Simons action
functional. It is based on the remark that equation of motion corresponding to the
action functional (15) can be easily solved. These equations have the form

dA + A ∧ A = 0(22)

where A is ΠG-valued function on ΠTM (G-valued inhomogeneous form on M).
To every G-valued function g(x) on ΠTM we can assign a ΠG-valued function

on ΠTM by formula A = g−1(x)(Qg)(x) or, more precisely,

A = (g−1(x))∗(Qg)(x).(23)

Recall that ΠTM is a Q-manifold. The vector field Q on ΠTM determines
a vector field on the space of maps {ΠTM → G} that is denoted by the same
letter. The symbol (g−1(x))∗ stands for the map of tangent space g(x) of the space
{ΠTM → G} at the point into tangent space at the point g(x) = 1 that is induced
by left multiplication: h(x) → g−1(x)h(x).

It is easy to check that (23) satisfies Eqn (22) and that in topologically trivial
situation all solutions to (22) can be obtained this way.
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