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Introduction

The aim of these lectures is to introduce mathematicians to the basic physical
concepts and mathematical structures of classical mechanics, quantum mechanics,
and quantum field theory. From the physicist’s perspective the presentation will
be very standard, being a highly compressed version (minus the detailed examples
and computational techniques) of the standard graduate courses in these subjects.
I have deliberately avoided translating the material completely into the language
and notation of modern mathematics, preferring to present the standard physics
notation and terminology (but with a running mathematical commentary). My
goal is to help the student learn to read the physics literature and converse with
its authors on their own terms, as well as to introduce the specific subject matter
of quantum field theory (QFT). I have used the standard notation of each field of
physics I discuss, but this unavoidably leads to some conflicts when the standard
notations of different fields happen to coincide. I have tried to point out such
ambiguities when they arise. An extensive set of exercises appears at the end of
these lecture notes.

I do not assume prior knowledge of physics beyond F = ma, although some
previous exposure to quantum mechanics would cushion the shock of absorbing it
all at once. The mathematical background of a first-year graduate student should
be more than adequate, with perhaps some review of the following topics: the
elementary methods of the calculus of variations needed for the derivation of the
Euler-Lagrange equation; linear algebra, especially the spectral properties of Hermi-
tian operatorsin finite-dimensional spaces and the faith that unbounded self-adjoint
operators in Hilbert spaces behave similarly; what is meant by a representation of
a Lie group or Lie algebra; and some idea of how to work with distributions and
Fourier transforms.

These lectures may also be viewed as an introduction for mathematicians to the
alien culture of the physics community. One important cultural difference to keep
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186 J. M. RABIN, INTRODUCTION TO QUANTUM FIELD THEORY

in mind is that the notation used in physics is not designed to emphasize the logical
relations of the concepts involved, but rather to facilitate explicit calculations. It
is often intentionally ambiguous so that a given formula can be reinterpreted in
whatever way makes calculation easiest and most natural, and it discourages one
from getting bogged down in questions of rigor. Another difference, in fact, is that
these questions of rigor are not addressed from the start, at the stage of definitions,
but later, after the heuristic calculations have been done on the basis of provisional
definitions. The philosophy is to proceed formally until difficulties are encountered,
and only then resolve them. The difficulties often arise from an over-idealized
mathematical model of a given physical situation, and only after the calculation is
completed can one understand their physical origin and base the correct resolution
on the true behavior of the physical system under consideration.

It is not easy to recommend references on the subjects of these lectures for a
mathematical audience. Standard graduate physics texts are written for readers
whose physical intuition has been developed through exposure to many examples
and computations in classical and quantum mechanics and electromagnetism, and
who are thoroughly steeped in the alien culture described above. Nevertheless the
following suggestions should be useful. For classical mechanics, V. Arnold, Mathe-
matical Methods of Classical Mechanics [1], or the standard graduate physics text,
H. Goldstein, Classical Mechanics [2]. Among the many textbooks on elementary
quantum mechanics, A.Z. Capri, Nonrelativistic Quantum Mechanics [3] is more
careful than most concerning unbounded operators, and R. Shankar, Principles of
Quantum Mechanics [4] contains a discussion of path integrals. For the path inte-
gral formulation of quantum mechanics direct from the source, see R.P. Feynman
and A.R. Hibbs, Quantum Mechanics and Path Integrals {5]. Two books on QFT
which mathematicians have found palatable are P. Ramond, Field Theory: A Mod-
ern Primer [6], and L.H. Ryder, Quantum Field Theory [7]. See also R.J. Rivers,
Path Integral Methods in Quantum Field Theory [8]. A comprehensive treatment
of all aspects of renormalization theory can be found in J. Collins, Renormaliza-
tion [9]. Finally, I recommend two books on the rigorous foundations of QFT with
the warning that such books are somewhat removed from the actual practice of
field theory by physicists, and from the geometric and topological subject matter
of “physical mathematics”. They serve to reassure mathematicians who find them-
selves unable to suspend their disbelief that QFT is not built on sand. These are J.
Glimm and R. Jaffe, Quantum Physics [10], and N.N. Bogolubov, A.A. Logunov,
and R.T. Todorov, Introduction to Aziomatic Quantum Field Theory [11].
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LECTURE 1
Classical Mechanics

We begin with the elementary formulation of classical mechanics for a single

particle of mass m moving on a path x(t) in R3, as described by Newton’s second
law of motion,

d?x

(11) m?i?* =F(X,t),

where F is the force acting on the particle. We restrict ourselves to the case of a
conservative force, namely one which is the gradient of some (time-independent)
potential energy function V on R?, F = —~VV(x). Then there is an energy function
which is conserved along the particle’s trajectory,

2

d
X +V(x),

1
1.2 E==
(1.2) 2m’dt

dE dx d?x dx
E{—mzl—t--gﬁ—i-%-VV(x):O.

(1.3)

Although Newton’s law of motion is in a sense a complete statement of classical
mechanics, there are several reasons to desire another formulation. Newton’s law
is a vector equation, and it is unpleasant to transform components of vectors into
exotic coordinate systems. It requires that all forces acting on a mechanical system
be known explicitly, whereas in practice one often describes a force implicitly by
its effects, e.g. constraining the trajectory to lie on the surface of a sphere. And it
describes the motion locally, in terms of the local acceleration caused by the local
force. Newton’s law gives almost no insight into the mathematical structure of
classical mechanics, nor is it a suitable starting point for quantization of a classical
system. And it cannot describe classical systems which do not consist of particles,
such as the electromagnetic field. The Lagrangian formulation of mechanics to
be discussed now gives a global and coordinate-free characterization of the classical
trajectory. Then we will derive the Hamiltonian formulation which reveals symplec-
tic geometry as the mathematical structure of mechanics. Both formulations are

187



188 J. M. RABIN, INTRODUCTION TO QUANTUM FIELD THEORY

general enough to describe fields as well as particles, and both are suitable for .the
transition to quantum mechanics. The Hamiltonian approach leads to the capomcal
formulation of quantum mechanics in terms of self-adjoint operators in a Hilbert
space, while the Lagrangian approach leads to the path integral formulation.

Let us generalize to a system of many particles having coordinates gi(t) and ve-
locities ¢;(t) = dg;/dt. (Custom dictates Newton’s notation in which a dot denotes
the time derivative.) For N particles moving in R3, i runs from 1 to 3N, and the
motion is described by a path in the configuration space R3". However, we do not
assume that the g; are necessarily rectangular coordinates. Any set of 3V variables
labeling the particles’ locations will do. Given the points in configuration space
representing the system at initial time ¢; and final time 2, we wish to charactienze
the actual path followed by the system, among all others joining the same points,
as the one which extremizes some functional S of the path, called the action. So
we introduce

ta

(1.4) S= [ L(ggi)dt.

1

The function L is called the Lagrangian and will be specified later. It depends on
two independent sets of 3N variables, denoted ¢; and ¢; for mnemonic reasons, but
the latter are not the derivatives of the former. This is an example of intentionally
ambiguous notation. The mnemonic reminds us how to evaluate S on a given pa.th:
substitute g;(¢) and ¢;(t) for the arguments of L and integrate the resulting function
of ¢.

Let g;(t) be a path for which S is stationary. That is, under the change qi(t? —
i(t) 4+ 6¢i(t), with 6¢;(t) an arbitrary (smooth) function vanishing at the endpoints
t; and t,, the change 65 in the action should be zero to linear order in 8¢;(t). We
compute to linear order

ta oL 6L>

(1.5) 58 /t <5q PRl
ta 8L d oL { 8L]t2
= N LRl I PR F Yl
(1.6) /n i (aqz' dtaqz’) T t

where we have integrated by parts. The Einstein summation convention is in effect
throughout these lectures: a sum is implied over any index such as : WhiCh' is
repeated in a given term. Since 6¢; = 0 at the endpoints, the boundary contribution
vanishes and we obtain the Euler-Lagrange equations for the extremal path,

oL oL _
8q; dtdg;

(1.7)
To recover Newton’s equations for a particle we can take

m:i:i.ii —_ V(.’lti),

(1.8) L(z;, &;) =

N =
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leading to the Euler-Lagrange equations

oV d
1. ——— — —(m;) =0,
(1.9) oz, @ (mi;) =0

which indeed agree with Newton’s law. In general the Euler-Lagrange equations
are second-order ODEs which can be expected to have a unique solution given the
initial positions and velocities of the particles.

A great advantage of the Lagrangian formulation of mechanics, and a run-
ning theme of these lectures, is the beautiful connection it reveals between the
symmetries of a physical system and its conservation laws. The first example of a
conservation law is evident from Eq. (1.7), namely, if the Lagrangian is independent
of a particular coordinate g; then the quantity p; = OL/d4; is conserved during the
motion. It is called the momentum conjugate to the coordinate g;. For example,
for a free particle with V' = 0, L is independent of all coordinates and the three
conserved quantities p; = ma; are just the components of the usual momentum
vector of elementary mechanics.

More generally, suppose there is a continuous symmetry (a l-parameter Lie
group action on the space of paths) which leaves the action unchanged regardless of
the limits of integration ¢, 1,. Infinitesimally this is a variation g;(t) — ¢;(£)+6¢;(t)
for which we no longer assume 6¢;(t1) = 8gi(t2) = 0. Noether’s theorem states
that such a symmetry implies the existence of a conserved quantity. To see this,
we reverse our viewpoint on Eq. (1.6): the boundary term no longer vanishes
automatically, but the first term is zero along the extremal path because that path
obeys the Euler-Lagrange equations. Then we have

ta
(1.10) 0=465= [6qi?—£]
04 1
Because ¢; and ¢; can be arbitrary times, we see that p;6¢g; is conserved along the
extremal trajectory. The simplest example is again the free particle. The fact that
the Lagrangian is independent of the coordinates can be recast as the invariance
of the Lagrangian under the three infinitesimal translations ¢; — ¢; + ¢;, which are
of the above form with 6¢; = ¢;. By Noether’s theorem, p;6¢; = €;p; is conserved.
Since the ¢; are arbitrary, we recover the conservation of the three components
of momentum. In general there is a conserved quantity corresponding to each
generator of the Lie algebra of a Lie group of symmetries. However, discrete groups
of symmetries do not lead to conservation laws: it was crucial to the entire argument
that the symmetries could be taken to lie in an infinitesimal neighborhood of the
identity.

The Lagrangian approach to mechanics gives a global and coordinate-free de-
scription of the path in configuration space, as well as a deep understanding of the
origin of conservation laws. As we will see later, the same framework can describe
physical systems such as fields which do not consist of moving particles, simply by
choosing a different Lagrangian function. Papers in the physics literature always

specify the system under consideration by writing down the Lagrangian. From our

present viewpoint, perhaps the only complaint about this formulation of mechanics
that comes to mind is that the Euler-Lagrange equations are second order ODEs,
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whereas it is first order ODEs which have a nice geometric interpretation as flows
along vector fields. We motivate the Hamiltonian formulation of mechanics by the
desire to interpret the time evolution of a physical system as such a flow.

We define the Hamiltonian of a system as the function of 6N suggestively-
named variables H(g;,p;) = pigi — L(¢i,¢;). The meaning of this equation is as
follows. The right side is a function of ¢; and ¢;. We assume that the defining
equations for the momenta, p; = 8L/8¢;, can be inverted so as to solve for the ¢; in
terms of ¢; and p;, and we use this to eliminate the ¢; and reexpress the Hamiltonian
in terms of the ¢; and p; only. This procedure is called a Legendre transformation.
By the implicit function theorem, we can carry it out provided that

Op; 0?L
1.11 St =
(1.11) d4;  04:04;

is a nonsingular matrix. This is always true in simple examples, and we can give
a physical argument that it is true in all particle mechanics problems. Recall that
L normally contains a kinetic energy term which is quadratic in the velocities g;.
The matrix will be nonsingular provided that each velocity component contributes
to the kinetic energy, which is certainly expected. However, as we will see, it is
not true in gauge theories, and this is the origin of all the difficulties in quantizing
gauge theories.
Computing the differential of H, we find

oL oL
d = pidg; + ¢idp; — 5—dgi — =—dg;
H pidd; + gidp 0 %~ 5 q
oL
1.12 = ¢idp; — —dg;,
(1.12) Gidpi — 5 ~da

where the first and last terms cancel by definition of the momenta. Thus dH is
automatically expressed in terms of the differéntials of the variables on which H
depends. This in fact motivates the Legendre transformation, and it allows us to
read off the partial derivatives of H as

o 0H oL

1.13 — =g ==,
(1.13) Op; q, 0q; 0q;

All this follows purely from the definition of H. Now, however, suppose that we
are on the trajectory obeying the Euler-Lagrange equations,

0L d oL .
1.14 = 2 = p
Combining this with Eq. (1.13) gives the alternative characterization of the ex-
tremal trajectory in terms of Hamilton’s equations of motion,

o0H . 0H

1.15 Ji = = i = T Q.
(1.15) e M7 o
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which are first order equations as promised. Furthermore, along the extremal path
we have dH = §;dp; — p;dg;, or, dividing by dt, dH/dt = 0, and H itself is a
conserved quantity.

For an example of all this formalism we return to the particle in a potential
V(z;), for which

" :(mM@—%th+Wm)

1 .
= -2-m(.732) + V(z;)

(1.16) = =+ V().

(Note the summation convention even in p?!) Here the Hamiltonian is conserved
because it is the total energy. Hamilton’s equations of motion become #; = pifm
and p; = —V,;V, equivalent to Newton’s laws.

Now let us compute the time derivative, along the extremal path of course, of
an arbitrary function A(g,p) of the ¢’s and p’s.

dA _ 9A. | 0A.
im0, 0,
DAOH 0AOH
0gi Op;  Op; Dqs

(1.17) (4, H].

The.x expression [A, B] defined for any two functions of the variables ¢, p is called
their Poisson bracket, and has the usual properties of a Lie bracket:

(1.18) [4,B] = —[B, 4],

(1.19) [a4 +bB,C) = a[A,C] + b[B,C],
where a,b are constants;

(1.20) [AB,C] = A[B,C] +[4,C)B,

(1.21) [4,[B,C]1 +[B,[C, A]] + [C,[A, B]] = 0,
as well as the fundamental or canonical Poisson bracket relations
(1.22) l9:,95] = [ps,05] =0, [gi,p5] = 6ij.
The equation dA/dt = [A, H] reduces to Hamilton’s equations themselves if

A = g; or p;, and may be considered the basic dynamical equation of Hamiltonian
mechanics. It says that the Hamiltonian is the infinitesimal generator of time
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evolution via the Poisson bracket, and makes it clear that the conserved quantities
are precisely those whose bracket with the Hamiltonian vanishes.

The Poisson bracket allows us to expose an even deeper connection between
symmetries and the associated conserved quantities. Consider a system admitting
an infinitesimal symmetry ¢; — ¢; + €f;(q), with € an “infinitesimal parameter”
(a physicist’s reminder that only linearized variations are important) and the f;
some functions. The corresponding conserved quantity from Noether’s theorem is
Q = p; fi(¢). We compute the Poisson bracket,

0g; 0Q  9g; 0Q

0q; apz Op; aq: - 6”fz( ) fj(Q)a

(1.23) lg;, @l =

and therefore 6¢; = €[g;, Q}, showing that the conserved quantity is the infinitesimal
generator of the symmetry via the Poisson bracket. The status of the Hamiltonian
as the generator of translations in time is a special case of this general phenomenon.
[Actually, before asserting that () generates the symmetry we should verify that
8p; = €[p;, Q] as well. It would take us somewhat afield to discuss the effect of
symmetries on the momenta p;; this would lead us into the geometry of canonical
transformations, or symplectic diffeomorphisms. We would quickly discover that if
there is a Lie group G of symmetries, of dimension k, then the Poisson bracket alge-
bra of the k conserved quantities @, coincides (up to a possible central extension)
with the Lie algebra of G.]

The Geometry of Hamiltonian Mechanics

Although we will not use it in these lectures, I want to give a translation dic-
tionary between the concepts of Hamiltonian mechanics developed above and the
coordinate-free language of symplectic geometry. This should help mathematicians
to better understand the physicists’ coordinate-dependent notation, as well as con-
necting the treatment given here to that in Robert Bryant’s lectures in this volume.

The variables denoted ¢; were global coordinates on the configuration space
R3Y; more generally they will be local coordinates on a configuration space M
which may be any manifold whose points correspond to the possible configurations
of the system under discussion. The variables ¢; should be viewed as fiber coordi-
nates for the tangent bundle T(M) inasmuch as they describe all possible tangent
vectors (velocities) to all possible paths in M. The Lagrangian L(g, ) is a globally
defined function on T(M). Given a smooth path in M, one can lift it to a path
in T(M) by lifting it along the fiber T,(M) at each point p to its tangent vector
there. Then one can restrict the Lagrangian to the lifted path and integrate this
restriction to obtain the action §.

The momenta p; are fiber coordinates for the cotangent bundle T*(M) which
is known as the phase space; it follows from the definition p; = 6L/8¢; that under
a change of coordinates p; and ¢; transform by inverse matrices, corresponding to
dual bundles. Then the change of variables from (q,q) to (g¢,p) is supposed to be
the expression in coordinates of a diffeomorphism from T'(M) to T*(M) which is
the identity on M. In the usual case in which L is quadratic in the ¢; it is a linear
isomorphism on the fibers, but in general it may not be linear or even surjective.
Recall that there is not even a canonical identification of the fibers T,(M) and
T, (M) unless some additional data such as a metric is given; in the usual case
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the kinetic energy term in L is a quadratic form on Tp,(M) which serves as this
metric. The Hamiltonian H(q,p) is a function on T*(M). The cotangent bundle
of any manifold always has a canonical symplectic structure given by the closed,
nondegenerate 2-form w = dg;dp; = —d(pidg;). This form is globally defined desplte
being specified in local coordinates: the fact that p; are fiber coordinates for the
cotangent bundle means precisely that p;dg; is an invariantly defined 1-form. To
any function A(g,p) on T*(M) we associate a vector field A which is its symplectic
gradient; namely the vector field which is dual to the 1-form dA in the sense that
w(A,-) = dA. In coordinates we have
(1.24) A= (a—A —8‘4) _040 049
Op:’ g Opi 0¢;  Oq; Op;

Then Hamiltonian dynamics is simply the flow _along the vector field H and the
Poisson bracket is nothing but [4, B] = w(A, B). It has the properties of a Lie
bracket because the correspondence between functions and vector fields associates
the Poisson bracket [A4, B] to the Lie bracket {B A] Finally, a conserved quantity
@ gives rise to a vector field Q whose flow commutes with that of H and represents
the action of the symmetry on the points of phase space; the Lie bracket algebra
of the vector fields generating a Lie group of symmetries should reproduce the Lie
algebra of that group.



LECTURE 2
Classical Field Theory

We have stressed that the Lagrangian and Hamiltonian formulations of me-
chanics are applicable to systems such as the electromagnetic and gravitational
fields, which (classically) do not consist of particles.? These systems are described
by PDEs such as Maxwell’s equations rather than the ODEs which describe the mo-
tion of particles. We consider the mathematically simplest example of a real-valued
field ¢(z) on R* which satisfies the Klein-Gordon equation,

(2.1) (A +m?)p(z) = 0.

Here z = z# = (2°,2',2%,2%) = (t,2,y,2) is 2 point in R* specifying a location
x = z* in space and a time ¢ at which the field is measured. Note the convention

are the spatial components of z#. A = £5 — 25 — BT §:—2 is the wave operator,
the four-dimensional Laplacian or D’Alembertian corresponding to the Minkowski
or Lorentz metric

10 0 0

0 -1 0 o0
HY —_

0 0 0 -1

[Actually the four-dimensional Laplacian is more commonly denoted by a square
(four sides) than by A (three), but this character wasn’t available to my typesetting
program!] We abbreviate 8, = 8/0x*, so that A = 9#¥3,9,. We also make the

2Mathematicians sometimes bemoan the absence of a definition of the term “field” in the
physics literature. But “field”, like “particle”, is a physical concept, not a mathematical one. An
appropriate answer to the question, “What is a field?” would be, “The electromagnetic field is a
field.” Fields really exist and can be observed in the laboratory. Of course, within a given theory
we represent fields and particles by specific mathematical structures. One theory might say that a
particle is a path in R® while another says it is an irreducible representation of the Lorentz group.
For present purposes a field is a function from R* to some algebra, usually the real numbers.
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convention that the indices on any tensor can be raised and lowered using the
metric, e.g.

g =20 9 0
(2:3) =00 = (5= 50 "5y "7
and we write the Klein-Gordon equation as (0,0% + m?)¢ = 0, or even as (82 +
m?)¢ = 0. The parameter m will ultimately turn out to be the mass of something
when we reach QFT. [The contortions with indices express the fact that the metric
allows us to identify cotangent vectors (those with upper indices) with tangent
vectors (those with lower indices), but this geometric view is overly sophisticated
when one is in Euclidean space. Think of them as merely a notational device to
keep track of the minus signs arising from the indefinite metric.]

It is crucial to understand the transition from our earlier variables ¢;(t) to the
field ¢(z) = ¢(x,t). The field ¢, like an electric field, is an observable quantity
which can be measured at any location x in space at any time. Similarly ¢; is
an observable quantity which can be measured, for each 7, at any time. Thus, ¢
corresponds to g, t is always the time, and — most importantly — x corresponds
to the index ¢. Sums over ¢ in the formulas of particle mechanics can be expected
to translate into integrals over x in field theory. For this reason field theory is often
described as the mechanics of systems having infinitely many degrees of freedom.

We can obtain the Klein-Gordon equation as the extremal condition for either
of the two actions

(2.4) S = —% /V d*z §(0,0" +m*)¢,
or
(2.5) S = %/V d*z (8,00%$ — m2¢?).

These differ by a boundary term resulting from integration by parts, but this will
not change the extremal condition. The integrand for § is called the Lagrangian
density £; technically its integral over space (sum over ) would be the Lagrangian
L, although commonly £ itself is called the Lagrangian.

Let us obtain the condition for a general action to be stationary to first order
under variations 6¢ which vanish at the boundary of the volume V. From

(2.6) S= / d*z L(¢,0u0)
v
we obtain
_ " oL _‘3’5_)
@7 65 = de(5¢a¢+au5¢aau¢
_ 4 ﬁé.) 4 (QE _a ﬁﬁ_) :
(2.8) = /Vd w@u<6¢aau¢ +/Vd z ¢ 9 “63,“;5
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The derivatives appearing here are formal derivatives of £ thought of as a function
of the independent variables ¢ and 8,¢. The first integral is zero by the divergence
theorem for 8¢ vanishing on 9V, so the Euler-Lagrange equations are

oL oL

0.
For the Lagrangian of Eq. (2.5) they are easily seen to give the Klein-Gordon
equation.

In field theory there is a much stronger, local version of Noether’s theorem.
Again we suppose that 6¢ is an infinitesimal symmetry, so that §S = 0 for any
region V' even though 6¢ no longer vanishes on the boundary. Along the path
satisfying the Euler-Lagrange equations the second integral in Eq. (2.8) is now
zero, whereas the vanishing of the first integral for all regions V' implies that

oL
2.10 Oujt =0, j#=6 .
Separating the time and space components of the current vector j# = (7°,) gives
the differential conservation law 8pj° = —V-j. If we define the total charge at time
t by

(2.11) Q) = /d%j"(t, x),

and assume that j vanishes fast enough at infinity, then the divergence theorem
implies the conservation of charge dQ/dt = 0. However, we can also define the
charge inside a specified region,

(2.12) Qv(t) = /Vd?’wj“(t,X),

and deduce that any change in this charge must be accounted for by a flux of the
current vector j through the boundary of V. This local conservation law is much
stronger than the overall conservation of @ throughout space, which would allow
charge to simply vanish from one region and simultaneously reappear elsewhere
without traversing the space between. These conserved currents play a fundamental
role in QFT and particle physics. [The terminology stems from electromagnetism,
where the ) corresponding to the U(1) symmetry group is indeed the electric
charge, and j is the electric current density. Physicists often refer to any conserved
quantity as a charge or current.]

The above discussion gives only the simplest version of Noether’s theorem,
applicable to an “internal symmetry”. For a symmetry such as a spatial rotation,
which acts on the coordinates z* as well as the field ¢, the derivation requires more
care because the integration region V is different in the new coordinate system.
Goldstein [2] derives the conserved current

oL

(2.13) i* = (66 = 6"0,6) 55—
7]

+ Léx*
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in this case.

I will give only a brief discussion of the Hamiltonian formulation of field theory,
mainly to fix some notation and introduce the notion of functional derivative which
will be useful later. Each field ¢ appearing in the Lagrangian has a conjugate
momentum field defined by 7(z) = 8L/ ¢, and the Hamiltonian is defined by

(2.14) H= / d*z[n(z)Bod(x) — L].

H is constructed from the fields at a fixed time ¢, but as usual it will be conserved
and thus independent of ¢. For example, for the Klein-Gordon field we find 7(z) =
3’ ¢(z) and

(2.15) H= -;—/d% (7 +|V9|* + m*¢?),

a positive definite functional of ¢(x) which can be identified as the energy in the
field. The Hamilton equations of motion can be written in nearly the same form
they had in particle mechanics by introducing the functional derivative notation,

6H

w(x,t) = grrTet

(2.16) d(x,t) = - ¢ ( X

or alternatively in the Poisson bracket form A = [A, H] with

, [ 6A 6B  6A 5B
(2.17) [4,B] = /d z [5¢(z) on(z) 6n(z) 8¢(z)

The functional derivative appearing in these equations is merely the physicists’
way of expressing the (Fréchet) derivative of a functional on an infinite-dimensional
function space. To define the derivative of a functional F' on a function space at
a particular point ¢, a mathematician would linearize the functional about that
point, writing F[¢ + 6¢] = F[¢] + Fy[6¢] + O(6¢?), and define the linear map Fy
to be the derivative. Physicists, however, insist on expressing such linear maps in
terms of their integral kernels. For example, the simple linear functional ¢ — ¢(0)
is thought of in terms of the Dirac delta function, ¢(0) = [ dx ¢(z)6(x). Similarly,
the functional derivative is the integral kernel of Fy:

(2.18) Fyl64] = / Prb(x) 53 ¢ ( ;

The integral d®z here is appropriate for Hamiltonian mechanics, in which the fields
are thought of as functions on R? at each fixed time; later we will encounter func-
tional derivatives with respect to functions on R or R*. An alternative definition,

oF

(2.19) W

= lim g{p[qs(x) +e83(x — y)] - Flo(x)]},
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where §3(x — y) is the Dirac delta distribution in % with support at y, shows that
the functional derivative measures the response of the functional F to a change in
the function ¢ supported at a point y; it does depend on the point y in general.
Some basic examples (in four dimensions) which will be useful later are

(2.20) E}s%ﬁ / d*z ¢"(z) = ng™ (y),

(2.21) &I;Z—yjexp/d’*a: J(z)p(z) = J(y) exp/d"x](m)qﬁ(z).

Returning to mechanics we also have §¢(x)/6¢4(y) = 63(x — y), which leads to the
canonical brackets

(2.22) [6(x), n(y)] = 8*(x ~ ).

The fact that the canonical Poisson bracket is a distribution rather than a
smooth function reflects our choice of coordinates for field theory. The configuration
space M is the space of smooth functions ¢(x) on R3, perhaps with some boundary
conditions at infinity. Compare the configuration space R? for a single particle,
which can be viewed as the space of functions on the index set i € {1,2,3}, recalling
that x is analogous to i. The coordinate function ¢; on R? assigns to any function
on the index set its value on the index . Similarly, ¢(x) above is the coordinate
function on M which assigns to any function on R? its value at x. m(x) is a
similar coordinate function on the fibers of 7*(M). But we know that the values
of functions at points are never the best coordinates on function spaces; much
better coordinates are things like Fourier coefficients which are the integrals of the
functions against various kernels. For each test function f on R® we can introduce
a better coordinate function ¢[f] = [d3zf(x)é(x) and similarly for n[f]. Then
the Poisson bracket becomes nonsingular; [¢[f], 7[g]] = [ d3z f(x)g(x). These ideas
will reappear in QFT.

As an example of a physically important field theory, in fact a gauge theory, let
us now discuss electromagnetism. The classical electromagnetic field in a vacuum
is described by a pair of time-dependent vector-valued functions on R3, the electric
field E(x) and the magnetic field B(z). In some system of electromagnetic units,
in which the speed of light ¢ is equal to unity, they obey Maxwell’s equations,

B

(2.23) V:-B = 0, VXE+E~O
(2.24) V.E = o0 VxB—%%—:O
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These equations assume a more covariant appearance in terms of the antisymmetric
electromagnetic field strength tensor,

0 -E' -E* -E3

E! 0 -B® B?

E2 B3 0 __Bl 9
E* -B* B! 0

(2.25) FH =

or the corresponding 2-form F = %F‘“’dwudwy. The Hodge dual *F corresponds to
the dual tensor F# = 1etA% P, where e#”** is totally antisymmetricin its indices
and €9123 = 11, Then Maxwell’s equations (2.23) read 9, F*” = 0 or dF = 0, while
Eqns. (2.24) become 8, F* = 0 or d*F = 0. Since we are in Fuclidean space,
dF = 0 is solved by F = dA or F** = g+ AY — 9¥ A* for some 1-form called the
potential. Of course A is not unique; we have the freedom to change it by any
gauge transformation A — A + dA or A¥ — A¥ + A with an arbitrary function
A.

If we assume the representation F' = dA, then the remaining Maxwell equations
8,F* = 0 can be obtained by varying A* in the gauge-invariant action

(2.26) S = ﬁ/d% F o F* = ——;-/F A*F.

Alternatively, both these equations and the relation between A and F can be ob-
tained from

(2.27) S = -% / d*z F,, (0" AY — 0" AP) + % / d*z F, ™

by varying A and F independently.

We see that the equations of this gauge theory coincide with the equations for a
connection on a U(1) principal fiber bundle over R*. A is the connection viewed as
a U(1) Lie algebra (= R) valued 1-form on the base space, and F = dA+ 3[4, A]is
the curvature, with [A, A] = 0 for this Abelian algebra. A — A + dA is the change
in A under a change of bundle trivialization. To see this, write an element of the
gauge group as g = e'A, so that g7'dg = idA and A — A+ dA can be rewritten as
A — g7 1Ag —ig~'dg, which looks more familiar as 14 — g YiAg+ g~ 'dg. So the
mathematician’s connection is 7A4; this relative factor ¢ between mathematicians’
and physicists’ conventions occurs frequently. Its origin is that physicists want
A to be real, or more generally Hermitian, whereas mathematicians prefer skew
Hermitian.

From the action of Eq. (2.26) we compute the momenta 7 = 8L/08¢ A, con-
jugate to A* as ° = 0,7" = F® = E* = 9° A" — 0 A’. As advertised, in this gauge
theory the velocity 8yAp contributes nothing to the kinetic energy, consequently
7® = 0 and we cannot solve for the velocities in terms of the momenta to perform
the Legendre transform. It is easy to understand why this phenomenon is linked
with gauge invariance. If it were possible to pass to the Hamiltonian formulation,
we would obtain a unique solution to the initial value problem for the equations
of motion: given the initial point in phase space, simply flow along the Hamilto-
nian vector field. However, the initial value problem cannot have a unique solution
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in a gauge theory: a gauge transformation with a time-dependent function A can
produce a different solution with the same initial data.

One way to evade this difficulty is by gauge-fixing: seeking solutions to the
equations of motion which obey some additional condition which picks out one A
from each gauge orbit. In general there are topological obstructions to such a choice
of gauge [12], but evidently it is enough to pick out a subset of A’s whose stabilizer
contains only time-independent gauge transformations. In electrodynamics, either
the temporal gauge A’ = 0 or the Coulomb gauge V- A = 0 plus A° = 0 is a
satisfactory choice, but in quantized non-Abelian gauge theories a straightforward
gauge-fixing is computationally intractable. The extensive machinery of BRST
quantization and Faddeev-Popov ghost fields has been developed to handle such
systems. For an introduction, see [13, 14, 15].



LECTURE 3
The Lorentz Group and Spinors

The particles which are produced and studied in accelerators have velocities
comparable to the velocity of light ¢ (which is 1 in our units!), and consequently
exhibit clearly the effects predicted by the special theory of relativity. The mathe-
matical content of special relativity is that the Lorentz group, in fact the Poincaré
group, (or at least the connected component of the identity in these groups) must
act on the space of solutions to the equations of motion of particles and fields.

In relativistic physics we are concerned with inertial observers, namely observers
for whom free particles appear to move with constant velocity. Intuitively such
observers are themselves unaccelerated (e.g. not observing the world from a roller
coaster) but may be in uniform motion relative to one another. Each such observer
sets up a three dimensional coordinate system as well as a clock to measure time,
and assigns to each event of interest a set of coordinates in the resulting coordinate
system on R*. The coordinate transformations relating the coordinate systems of
different observers comprise the Poincaré group; the subgroup fixing the origin of
R* is the Lorentz group (by convention the origins of the spatial coordinate systems
of the corresponding observers coincide at time ¢ = 0). The Poincaré group must act
on the space of solutions of the equations of motion of any physical system, so that
each orbit can be interpreted as a single physical solution viewed in the coordinates
of all possible inertial observers. The simplest way to ensure this in the Lagrangian
formulation of mechanics is to require the action to be Poincaré invariant. By
Noether’s theorem, any relativistic theory will then contain conserved quantities
whose Poisson bracket algebra is that of the Poincaré group; these quantities are
the energy, momentum, and angular momentum of the system.

The basic result of special relativity is the identification of the Lorentz group
as the group O(1, 3) of linear transformations of R* preserving the quadratic form
Nuva#z” = t2 — 2% — y? — 22. The null vectors of this form satisfy 22 +y2 + 22 = ¢2,
which is the equation of a sphere in R? of radius . If a pulse of light is emitted at
the origin at ¢ = 0 it will reach this sphere at time ¢, so the constancy of the speed
of light for all observers implies that the Lorentz group must preserve this sphere.
Some more physical input, such as the homogeneity and isotropy of space, is needed
to conclude that the quadratic form and not merely its nullspace is preserved. The
Poincaré group is the semidirect product of the Lorentz group with the translation
group of R%. '
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Let the 4 x 4 matrix A belong to the Lorentz group, so that z'# = A#,z" is a
Lorentz transformation (humor me regarding the index locations). The condition
of preserving the quadratic form implies ATpA = 7. Taking the determinant of
this equation, we learn that det A = #1. Taking its 00 component gives (A%)? =
14+ AfgA%y > 1. Therefore, the Lorentz group consists of at least — in fact,
exactly — four connected components, characterized by the signs of detA and
A%;. The identity component, for which both signs are -+, is the proper Lorentz
group. The other components contain various reflections in the space and time
axes, which in fact are known not to be exact symmetries of the laws of particle
physics. (The violations of parity and time-reversal invariance were among the
revolutionary experimental discoveries of the 1950s and ’60s in particle physics.)

To expose the important relation between the Lorentz group and SL(2,C) we
associate to any vector z# in R? the Hermitian matrix

20+ 2% 2t —ix?
3.1) X = ( oltiz? -2 )T zhoy.

Here the Pauli matrices ¢, form a convenient basis for the space of 2 x 2 Hermitian

matrices,
) 10 0 1
(32) og = (O 1), 0‘1=<1 0),
0 - 1 0
(33) 02 = (Z 0 ), 0’3:(0 _1)

They obey o;0; = i€;j10; and are orthogonal with respect to the inner product
Tr(0,0,) = 26,,. This allows us to invert relations like Eq. (3.1) by dotting each
side with o, to obtain z# = 1 Tr(Xo,).

We note that under the correspondence (3.1) the Lorentz norm corresponds
to the determinant: z#z, = detX. For any matrix A belonging to SL(2,C),
the complex 2 X 2 matrices of determinant 1, the transformation X’ = AXA'
preserves the Hermiticity and the determinant of X and consequently induces a
Lorentz transformation on z#, proper in fact because SL(2,C) is connected (A' is
the standard physics notation for the adjoint or Hermitian conjugate of a matrix,
the complex conjugate transposed). We can find this Lorentz transformation as
follows:

1 1
(3.4) 't = %Tr(X’a“) = §Tr(AXATa,,) = é—x”Tr(AaVA*cru).
Thus A#, = 1Tr(s,Ag, AY). It also follows that
(3.5) Ao, = Alo,A,

a formula which we will need shortly. It is not difficult to show (exercise) that we
have defined a homomorphism of SL(2,C) onto the proper Lorentz group, with
kernel exactly {%1}. Therefore the proper Lorentz group is doubly connected, and
SL(2,C) is its universal cover.
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Suppose that two observers O and O’ each measure some physical quantities,
such as the electromagnetic field components, at a point P to which they assign
coordinates # and 2’# = A¥,z¥ respectively, obtaining the results F*” (z) and
F'# ("), respectively. The simplest assumption one can make is that their results
are related by the matrix associated to A in some representation of the Lorentz
group which is characteristic of the particular quantities measured.

Example 3.1. ¢(z) appearing in the Klein-Gordon equation is called a scalar field
because it is associated to the trivial representation: ¢'(z') = ¢(z). Indeed, the
Klein-Gordon equation is invariant under this representation in the sense that if
(A 4+ m?)¢(x) = 0 then automatically (A’ + m?)¢'(z') = 0, because m is a scalar
and A is a Lorentz-invariant differential operator.

Example 3.2. Maxwell’s equations are invariant if the potential A transforms ac-
cording to the fundamental vector representation of the Lorentz group, A'*(z') =
A#, A”(x), while the field strength F transforms by the tensor product of two vector
representations, F'#¥(z') = A#,AY . F7%(z). We see the motivation for the fanatical
index conventions: any product of tensors which is summed over a pair of upper
and lower indices will transform correctly as a tensor having the remaining indices.
Contracting all pairs of indices so that none remain gives a Lorentz scalar, suit-
able for use as a Lagrangian — the physicist’s solution to the problem of invariant
theory.

Example 3.3. A representation of SL(2,C) assigns to the elements +A either the
same matrix, or a pair of matrices M. In the former case it induces a true repre-
sentation of the Lorentz group, while in the latter case we say we have a “double-
valued representation” of the Lorentz group. There are in fact two inequivalent
complex two-dimensional representations of SL(2,C): left-handed spinors which
obey 97 (2') = Ay (), and right-handed spinors obeying ¥} (z') = (A1)~ lx(z).
Each v is a two-component complex column vector. The direct sum of these two
“chiral representations” is called the Dirac spinor representation, and it acts on
four-component complex column vectors by ¢'(z') = S(A)¢(z), where

(3.6) ¢=(jﬁ;), s

Il
N
=o
L
’

Before constructing a Lorentz-invariant wave equation for ¢(z), let me clarify
the physical interpretation of double-valued representations. The notation S(A)
is misleading because the Lorentz transformation A only determines S up to sign.
Therefore, the relation between the values of 1) measured by observers O and O’ is
also ambiguous by a sign. Of course I have not yet given a physical interpretation
of 9 or a procedure for measuring it, and in fact no satisfactory interpretation
exists outside the context of QFT. However, part of the interpretation must be
that the overall sign of ¢ is an arbitrary convention and not determined by the
physical measurements. Observable quantities such as the energy or momentum
associated to the field ¢ will turn out to be quadratic in ¥ and unaffected by this
sign ambiguity.
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For convenience in manipulating Dirac spinors we define 4 x 4 matrices analo-
gous to o, the Dirac v matrices which in terms of 2 x 2 subblocks are

o_[ 0 oo i 0 —oj
(3.7) 7—(00 O), 71—((,], 7i ).

They satisfy the Clifford algebra v#4¥ + Y~ = 29#¥1, where I is the 4 x 4 identity
matrix which is often omitted from this and similar formulas. This is a hint of
the well-known relationship between Clifford algebras and the (pseudo-)orthogonal
Lie groups. Note that 4° is Hermitian but 4/ is skew Hermitian. The projection
operators onto the two-dimensional subspaces of the left and right handed spinors
are (1 ++°)/2, where

. 10
(3.8) 7 =i’y = ( 0 -1 ) -

(The story behind the notation 7° is this. In the early days of relativity some au-
thors used four-dimensional coordinates z# with y = 0, 1, 2, 3 while others preferred
p =1,2,3,4. Consequently one author’s v* was likely to be another’s 4°, and to
avoid confusion this new matrix had to be called 7°.) Two crucial properties of the
v matrices are S™! = 4% 8§40, which can be verified directly, and S~1y*S§ = A#, 7,
which is a consequence of Eq. (3.5). They imply that in a certain sense the index on
~* behaves like a Lorentz vector index and can be used as such to form invariants.
For example, consider the four complex functions (actually 1 X 1 matrices)
J* = Yy*p, where P = ¥+ is the “Dirac conjugate” of 4. I claim that under
Lorentz transformations they behave as the components of a vector field. Proof:

¢ (@) (a') = 1 () STy S (2) = P(2)7° ST+ Sy (=)
D(2)S™ I S (x) = AP, P (z)v Y (z) = A*, 57 ().

(@)
(3.9)

A similar computation shows that the following is a Lorentz invariant. action:

(3.10) [ b, - mpe),
whose variation with respect to the components of ¢ yields the Dirac equation
(3.11) (iv#0, —m)y = 0.

The parenthesized expression is a 4 x 4 matrix differential operator; the constant
m (which really means mJI) will ultimately be the mass of some particle, such as an
electron, which is somehow related to . By applying the operatoriv”8,+m to both
sides of the Dirac equation, one can verify that each component of ¢ individually
obeys the Klein-Gordon equation. In terms of the right and left handed spinors the
Dirac equation reads
(3.12) (0000 — 00;)¥r ] _ [ myr, } .
: (000 + 001 myp
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Physicists call the self-adjoint operator iy#8, — m the Dirac operator, whereas
mathematicians would use this term for one operator of the adjoint pair i{o0Bo =
0;0;) which map the chiral subspaces to each other. We note that for m = 0 we can
write an invariant equation for each chiral spinor separately, but for m # 0 Lorentz
invariance necessarily couples them. This is the motivation for introducing the
reducible Dirac representation. If, as some experiments now suggest, the electron’s
neutrino has a nonzero mass, we would have to abandon the traditional view of the
“left-handed neutrino” described by the chiral spinor 7, alone.

The Dirac equation is invariant under the U(1) action ¢ — ey, and the
corresponding conserved current is precisely j*# of Eq. (3.9). It represents the elec-
tric current carried by the moving particles (e.g. electrons) which are (somehow)
described by the Dirac equation. As promised earlier it is quadratic in the compo-
nents of 9 and therefore insensitive to the sign ambiguity in those components. As
a last note on the Dirac equation, note that we are free to change basis in the four
dimensional Dirac representation space by ¢ — K1 and v — K~v*K~! with K
a constant matrix. This leads to different representations of the v matrices which
are more convenient in various situations when it is not important to separate the
chiral components of .

Finally, a comment on the geometric interpretation of fields. In these lectures,
we always take R* as our model of spacetime. We have of course exploited the
simple geometry of R* to simplify our formulas, but this necessarily obscures the
general situation. On a general spacetime manifold M we would have a principal
fiber bundle P whose structure group is the full symmetry group of our physical
theory, G = Lorentz xU(1) x- - -, together with vector bundles associated to various
representations of G. Some fields, such as the electromagnetic potential A4, are
viewed as connections on P, while others such as 1 are sections of the associated
bundles. The action is some invariant integral over M which depends on the fields
but not on arbitrary choices such as local trivializations. The Lorentz group factor
of G acts on the frame bundle of M, which is one factor of P, rather than on M
itself. In our case we have implicitly used the simple geometry of M = R? in several
ways. Since R* is contractible, all bundles are trivial. Hence we can pick global
trivializations and view connections and sections as functions on the base space.
Under a change of global trivialization the structure group acts on these functions
according to various representations, as we have described. Furthermore, R* can
be identified with its tangent space at any point. Hence we can set the frame
bundle connection (gravitational field) to zero, and restrict ourselves to changes of
trivialization which are uniform over M and hence preserve this condition. Then
the Lorentz group can be viewed as acting on M rather than on the tangent spaces.
A physicist would say it has become a global symmetry rather than a local one.



LECTURE 4
Quantum Mechanics

Very small objects, such as molecules, atoms, and subatomic particles, do not
obey the laws of classical mechanics. Quantum mechanics was developed during
the 1920s in order to account for their behavior. The Schrodinger equation is to
quantum mechanics what Newton’s second law is to classical mechanics: a simple
and, in principle, complete statement of the basic physics which however is not the
most powerful method for solving practical problems, and which moreover obscures
the true mathematical structures of the theory. Nevertheless we will begin with
this equation because of its familiarity to some readers.

A particle of mass m is described in quantum mechanics by a complex-valued
“wave function” ¢(x,t) (not to be confused with the four-component Dirac spinor
despite the coincidence of the standard notations) which obeys the Schrodinger
wave equation,

L0 R,

(4.1) zh—ét— = %V P+ V(x),

where V(x) is the same potential energy function that appeared in classical me-
chanics, and i = h/2r = 1.055 x 10™%7 erg-sec is a fundamental constant called
Planck’s constant (Actually h was originally Planck’s constant, but since /27 ap-
pears in most formulas a special notation was introduced for it). We will shortly
adopt units in which A = 1 as we did for the speed of light. The standard way to
solve such a PDE is of course by separation of variables, seeking solutions of the
form 9 (x,t) = 9(x) exp(—iEt/h), where E is a constant having the dimensions of
energy. This leads to the eigenvalue problem

K2 2 _
(4.2) 5=V +Vy = By,

known as the time-independent Schrédinger equation. The physical interpretation
of the wave function, also known as the probability amplitude,® is that |¢(x, t)|?d%x

3The term amplitude refers to anything which must be squared in order to produce the quantity
of physical significance. It derives from wave theory, where the energy of a wave is proportional
to its amplitude squared.
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represents the probability of finding the particle located in an infinitesimal volume
element d3z at the point x at time ¢. ¢ should belong to L?(R3) so that the
total probability can be normalized to unity, f d®z |¢)?> = 1, and this provides the
boundary condition for the eigenvalue problem. The fundamental tenet of quantum
mechanics is that no amount of knowledge concerning the initial conditions or
the physical environment of the particle will enable one to predict more about its
future motion than the probabilities given by . For those accustomed to classical
mechanics, this failure of determinism can be difficult to accept. It has been said
that if you believe quantum mechanics when you first learn it, then you didn’t
understand it!

We will now give the Hamiltonian formulation of quantum mechanics which
reveals its true mathematical context as the spectral theory of operators in Hilbert
space. The setting is completely different from classical mechanics, but the central
fact that time evolution is a flow generated by the Hamiltonian is preserved. The
description of any particular physical system starts with a complex vector space
H associated to that system and called “The Hilbert Space” whether it is one
or not (generally it fails to be one only in that the scalar product may not be
positive definite). Usually H is infinite-dimensional, often the space of complex L?
functions on the classical configuration space M, sometimes tensored with another
finite-dimensional vector space. The spectral properties of the Hermitian operators
on H play a central role.

This creates a problem because the operators of interest are generally un-
bounded and often have no eigenfunctions in H. For example, in L*(R) we will be
interested in the operator —id/dz, whose eigenfunctions are exp ipx with eigenvalue
p. Even in the best case, when p is real, these do not belong to H. Even worse,
the operator z (that is, multiplication by z) has no eigenfunctions at all unless we
allow distributions like §(z — a), an “eigenfunction” with eigenvalue a. Of the many
ways to deal with this situation, I will describe only the setup known as a rigged*
Hilbert space. This is a nested sequence  C H & 'H* C 2%, where Q is a “nuclear
subspace” dense in H, and Q* is its dual space. The definition of a nuclear subspace
is complicated, but when H is a function space Q can be the functions decreasing
faster than any power of |z| at infinity. Then the “eigenfunctions” encountered
above can be viewed as distributions belonging to *, e.g. expipz is reinterpreted
as the linear functional f(z) — [daf(x)expipz, namely the Fourier transform.
Further, the inverse transform f(z) = [(dp/2n) f(p) exp —ipz can be viewed as the
expansion of the vector f(z) in H in terms of the “basis” of eigenfunctions of the
Hermitian operator —id/dz. In this sense, the spectral theory needed to formulate
quantum mechanics works fine even though the relevant eigenfunctions are not in
H.

Returning to quantum mechanics, each state of the physical system is supposed
to be represented by a normalized (unit length) vector in H. The state of a system
is the totality of information about the system at a given time needed to solve the
initial value problem for its evolution starting at that time. In classical mechanics
the states were represented by the points of phase space, the values of all coordi-
nates and momenta at a given time. Next, the observables of the system — the
measurable quantities such as positions or momenta of particles, their energies or

4¢Rigged” not in the sense of prearranged for dishonest purposes, as a rigged election, but in
the sense of well-equipped for a voyage, as a rigged schooner.
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angular momenta and so forth, which were functions on phase space in classical
mechanics — are represented by Hermitian (self-adjoint) linear operators (usually
unbounded) in H. Notation: vectors in H are denoted by |y >, where % is any
convenient mnemonic label; e.g. an eigenvector of some operator A with eigenvalue
a might be denoted by |a>. The scalar product (¢, A¢) is written < ¢|Alp > and
is called a matrix element of A; if there is an orthonormal basis of H containing
the vectors |¢ > and |/ > then this is an entry in the matrix of A relative to this
basis. The symbol < ¢| appearing by itself denotes the vector in V* which is dual
to |¢ > via the scalar product. The notation < ¢|Al|¢)> is intentionally ambiguous,
readable as a scalar product or as the evaluation of a dual vector on a vector.

Suppose then that the system is in a state |4 > and we measure some observable
represented by the Hermitian operator A — what result will we obtain? The answer
depends on the spectrum of A. It is conventional to discuss separately the cases
of discrete and continuous spectrum, although a unified discussion could be given
in terms of the spectral projection operators associated to A. We also assume for
simplicity that the eigenvalues are all simple (nondegenerate). Thus, let A have
eigenvectors |a > obeying Ala >= ala > and normalized so that < dla>= bgar
for discrete spectrum, or <a'la>= 6(a — a’) for continuous spectrum.® Then the
result of the measurement will be one of the eigenvalues a of A, with probability
| < aly > |? for the discrete spectrum. For continuous spectrum | < aly > |?da is
the probability that the result lies between a and a + da. The total probability is
1 because of the normalization of |/ >, and the eigenvalues are real because A is
Hermitian.

We will frequently use the identity >, la><a| =1 for the orthonormal eigen-
vectors of any Hermitian operator, called “inserting a complete set of states”. Ap-
plying both sides to any vector gives 3__ Ja >< aly >= |¢ >, which is just the
expansion of |¢/> in an orthonormal basis. (It is conventional to write such formu-
las as if the spectrum were discrete, with the understanding that the sum means
an integral over a spectral measure in general.) As an example of its use, let us
calculate the average value obtained over many measurements of A in state |¢ >.
This is the sum of the possible values weighted by their probabilities,

(4.3)
Sal<alp>? =) a<gla><alp>= 3 <yldla><aly>=<y|Alp>,

giving a direct physical interpretation to the diagonal matrix elements of A.

Among the observables are the coordinate functions ¢; and p; on phase space
themselves, which classically obeyed the Poisson bracket relations (1.22). We as-
sume that the corresponding operators in quantum mechanics obey

(4.4) 4,951 = pirps] =0, g5, Pe] =165k,

where the bracket is now the commutator, [A, B] = AB — BA. The factor i (which
means the multiplication operator by the constant i) is necessary because the com-
mutator of two Hermitian operators is not Hermitian but skew Hermitian. As a

51n the rigged Hilbert space framework, this means that for any two vectors in Q, % >=
J da' f(a')|a' > and |$>= J dag(a)|a>, we should have <4|¢>= J daf*(a)g(a).
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first approximation, any classical function on phase space is assumed to go over to
the same function of the operators p and ¢ upon quantization. This prescription
is ambiguous because, for example, pg? = ¢*p = gpq classically but not quantum-
mechanically, but in simple physical examples the correct ordering of operators can
be fixed.

To complete the postulates of quantum mechanics we must give the rule for time
evolution. Among the observables of a system is the total energy; the corresponding
Hermitian operator is the Hamiltonian H. We assume that if a system is initially
in the state |¢/(0) >, then its state at time ¢ will be

(4.5) [(t) > = e™*H|5h(0) >,

so that time evolution is a one parameter group of unitary transformations gener-
ated by H. The Schrédinger equation follows immediately in the form

(4.6) 2 (e) > = Hlw(t) >

[This discussion assumes that H has no explicit dependence on ¢. If it does, the
Schréodinger equation remains correct, but the resulting unitary time evolution op-
erator U(t) is not simply given by exp —itH.] Any state can be expanded in the
basis of eigenstates of H, which satisfy H|E >= E|FE > and change only by a
phase under time evolution: |F(t) >= exp —iEt|E(0) >. Therefore, diagonalizing
H solves the time evolution problem for all states. These eigenstates of H are often
called stationary states, because all probabilities | <|E(t) > |> with fixed |¢) > are
constant in time.

Let us complete this circle of ideas by deriving the Schrédinger equation (4.2)
from this general framework. The Hilbert space for a particle in R? is L?(R?), so
a state |t/ > is a square-integrable function ¥(x). The fundamental commutation
relations for coordinates and momenta can be satisfied by choosing the operators x;
to be multiplication by z;, and p; to be —id/dx;. Furthermore, a rough statement
of the von Neumann uniqueness theorem is that this is the only realization of
the canonical commutation relations up to unitary equivalence. The Hamiltonian
operator should then be.

2
p L o2
4.7 H=_—+4+V(x)=-—V*+V{(x),
(7) P V=5V 4 V()
and the Schrodinger equation is nothing but the eigenvalue problem for H. Re-
calling that [y > = 63(x — y) is an eigenfunction of the position operators z; with
eigenvalues y;, we have

(48) <yl>= [ a8 -y = v,

so that the general postulates of quantum mechanics give the interpretation of ¢/(y)
as the probability amplitude for finding the particle located near y.

It will be helpful later to be familiar with the eigenfunctions of H for a free
particle, the case V = 0. Then H = p?/2m, and the eigenfunctions e’ of p =

LECTURE 4. QUANTUM MECHANICS 213

—id/dx are also the eigenfunctions of H, with eigenvalues p? /2m. Note that p here
refers to either the operator or its eigenvalues depending upon the context. We see
that H has continuous spectrum, and its eigenfunctions do not belong to L?(R?) but
must be viewed as elements of 0* in the rigged Hilbert space setup. The correctly
normalized eigenstates satisfying <p[p’>= 63(p — p’) are [p>= (27)~3/2e'Px

Symmetries in Quantum Mechanics

When a physical system is invariant under some Lie symmetry group G, we assume
that a unitary representation of G acts in the Hilbert space and commutes with
the time evolution operator exp —iHt. For each one-parameter subgroup of G we
will have an Abelian group of unitary linear operators U(6) which act on a state of
the system |1/ > to give the state of the system after the symmetry transformation,
e.g. after rotation by angle § about some axis. The unitarity guarantees that scalar
products are preserved; since the observable predictions of quantum mechanics are
given by various scalar products this ensures that the symmetry transformation
does not change the results of experiments. Stone’s theorem guarantees that each
one-parameter subgroup has a Hermitian generator A such that U(6) = exp —if A,
and it follows that the observable A commutes with the Hamiltonian, [4, H] = 0.
Therefore A is conserved, in the sense that any matrix element

(49)  <g®)IAlp(t)>=<p(0)|e" " Ae™ [ (0) > = < $(0)| A|9(0) >

is independent of time. Thus, in quantum mechanics we have a very direct proof
that conserved quantities are the generators of symmetries.

Symmetries are of great practical use in diagonalizing H in concrete problems.
Because [A, H] = 0, the eigenstates of H can be chosen to be simultaneously eigen-
states of A, whose spectrum may already be known. In fact, for any element g of
the symmetry group G, and any eigenstate |[E'> of H, it is easy to see that g|E >
is another eigenstate having the same eigenvalue. Therefore, each eigenspace of H
carries a unitary representation of G! Knowledge of the unitary representations of
common symmetry groups such as SO(3) is thus extremely valuable in understand-
ing the spectrum of an invariant Hamiltonian, which is why it is taught in quantum
mechanics courses under titles such as “theory of angular momentum?.

Heisenberg Picture

Our entire discussion of quantum mechanics so far has been in the so-called Schro-
dinger picture which leads to the Schrédinger equation as the description of dynam-
ics. In this picture the vectors representing the states of the system change with
time, but the operators representing physical observables do not. This situation is
reversed in the Heisenberg picture, which is more useful in QFT.

The Heisenberg picture is obtained by a time-dependent unitary map of H onto
itself. Fach state |1/ > at time ¢ is mapped to e'#?|s) >, and each operator A is
mapped to e*f* Ae~i?, Because the map is unitary, it preserves all scalar prod-
ucts and matrix elements of operators, hence all physically measurable quantities.5

Recall that I also spoke of symmetries as preserving all measurable quantities, even though
symmetries act unitarily on the states and leave the operators unchanged, hence do not preserve
matrix elements. This is actually as it should be: a rotation of a system in space should not pre-
serve the matrix elements of p;, the momentum component along the = axis, unless the coordinate
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Because it inverts the time evolution operator on the states, the state of a system
in the Heisenberg picture never changes. Instead, the operator representing a given
observable will change with time according to A(t) = e#tAe~*Ht or, infinitesi-
mally,

(4.10) 44 _ i, m).
dt

This replaces the Schrédinger equation as the description of dynamics. Note that
it is identical to the classical Hamilton equation of motion (1.17) with the Poisson
bracket replaced by —i times the commutator. This makes it especially clear that
the conserved quantities are those which commute with the Hamiltonian. Finally
note that the canonical commutation relations [g;, px] = 6, hold in the Heisenberg
picture only if the operators involved are evaluated at equal times. The commutator
[g;(t), p(t')] is more complicated and depends on the specific form of H.

axes are rotated along with the system. That second rotation, not the first, would produce a new
operator having the same matrix elements as the original pg.

LECTURE 5
The Simple Harmonic Oscillator

The simple harmonic oscillator is the most important exactly solvable system
in quantum mechanics. It has been called the only exactly solvable system in the
sense that virtually all others can be reduced to it by a change of variables. It is the
basis for QFT as well as a first approximation to the description of any oscillating
system, from atoms in a solid to gravitational radiation detectors.

At the classical level we have a particle of mass m moving along the z axis
and attached to the origin by a spring of force constant k, so that the force acting
on the particle is F = —kz. Newton’s equation of motion m& + kz = 0 has the
solution z(t) = Asin(wt + @), a sinusoidal oscillation with frequency w? = k/m.
The Hamiltonian for the system is

2 2
‘ p 1, o_ P 1 99
1 =4 = = 4= .
(5.1) H 2m+2x 2m+2mwx
The Schrédinger equation for this Hamiltonian can be solved directly in terms
of special functions (Hermite polynomials), but much more insight results from
diagonalizing H using methods of Lie algebra representation theory.
We introduce two new operators in the Hilbert space L?(R),

mw . 1
(5.2) a = .Z"/T‘f‘lpv—fmw,
- mw ; 1
2 p\/2mw'

They are indeed adjoint operators, and they obey [a,a’] = 1 as a consequence of
[#,p] = i. Further, the Hamiltonian can be written as

(5.3) al

1

(5.4) H= %w(a“a +aa’) = w(ata + l) =w(N + 2).

2

Diagonalizing H is then equivalent to diagonalizing the Hermitian operator NN,
which is easily found to obey [N,af] = af and [N,a] = —a. Together with [a,al] =
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1, these relations define a Lie algebra called the Heisenberg algebra, and by studying
its representations we will determine the spectrum of N.
Let |n> be a normalized eigenstate of N, so that N|n>= n|n>. We have

(5.5) Naljn> (@'N +an>= (n+ Dalln>,
(5.6) Naln> = (aN-a)jn>=(n-1)aln>.

This says that when af (resp., a) acts on an eigenstate of N, it gives a new eigen-
state with eigenvalue raised (resp., lowered) by one unit. In particular it would
seem that by repeatedly applying a we could obtain eigenstates of N or H having
negative eigenvalues. However, H is a sum of squares of Hermitian operators and as
such cannot have negative eigenvalues. The only escape from this paradox is that
repeated application of @ must eventually terminate with a state obeying al > = 0.
Because a is in reality a first-order differential operator, this state is unique up to
normalization.” By applying a' we see that N |t >= 0. We should therefore denote
this state, called the ground state or vacuum state, as [0 > (not to be confused
with 0, the zero vector in the Hilbert space). By repeated application of af to [0>
we obtain eigenstates of NV with all nonnegative integers as eigenvalues. This is
the complete eigenvalue spectrum of NV, since if there were a state with nonintegral
eigenvalue then repeated application of a would bypass |0 > and contradict the
positivity of H.

If the state |n> is normalized, we can compute the norm squared of af|n > as

(5.7) <njaatn>=<nla’a+1n>=n+1.

It follows inductively that [n>= (n!)~'/2(a")"|0> is a normalized eigenstate of N
with eigenvalue n for each positive integer n. The action of the raising and lowering
operators on these normalized states is ’

(5.8) aln>=vanFiln+1>, an>=Van-1>.

The uniqueness of the ground state was shown above. This is a question about the
irreducibility of this particular representation of the Heisenberg algebra in L?(R)
which, as we saw, is not determined by the algebra alone but by the specific dif-
ferential operator representing a. We can now show inductively that in fact each
eigenspace of V is one-dimensional. Suppose n is the smallest eigenvalue for which
there exists a normalized eigenstate |n’ > linearly independent of |n>>. Then

(5.9) n|n’ > = alaln' > = Vnaljn — 1> =n|n>,

a contradiction. This completes the determination of the spectrum of N as usually
given in physics texts. However, since the spectrum of an unbounded operator may
not be exhausted by its eigenvalues (equivalently, there may be more eigenfunctions
in ©*), we should check that the states |n > are already complete in . This is
done in Glimm and Jaffe [10], for example.

"By solving the differential equation a|> = 0 we can obtain the corresponding wave function
as P(z) = Cexp(~mwa? /2).
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We thus have a ladder of simple eigenvectors of H, with eigenvalues (n+ %)w
A measurement of the energy of an oscillator in the state |n> is certain to yield this
result. Matrix elements <m|A|n> of any operator A(=,p) of physical interest are
easily computed by reexpressing A in terms of @ and a and using Egs. (5.8). It is
often stated that the oscillator can emit or absorb energy only in integer multiples
of w, by making a “quantum jump” between pairs of states |n>. To explain this,
suppose that the oscillator interacts with some external system, such as an electric
field, for some time interval 0 <t < 7. During this interval, the Hamiltonian of
the oscillator is changed by the addition of a potential energy term describing the
interaction. Before and after this interval the states |n > are eigenstates of H, but
during the interval they are not. Under time evolution, an initial state [n>att=0
may evolve to a linear combination ) c,|m > at t = T. If the interaction term in
H is small, the coefficients ¢, can be calculated by using perturbation theory to
approximately diagonalize the new Hamiltonian. A measurement of the energy in
the final state of the oscillator will yield the result (m + %)w with probability |c,,|?
(and, according to the controversial “reduction of the state vector” postulate, the
oscillator will be left in the corresponding state |m >, thus completing the jump).
The difference between this energy and the initial energy, which is a multiple of w,
is absorbed from or emitted to the external system.



LECTURE 6
The Path Integral Formulation of Quantum Mechanics

The Hilbert space formalism for quantum mechanics corresponds to the Hamil-
tonian version of classical mechanics in that the Hamiltonian is the infinitesimal
generator for the time evolution. We will now derive an expression for quantum
mechanical time evolution in terms of the action of the various paths the system
might follow classically. This Lagrangian formulation of quantum mechanics leads
us to path integrals. Our treatment will be very standard; an instructive alternative
approach can be found in [16].

We consider for simplicity a particle moving in one dimension, with Hamiltonian
H = p*/2m + V(z). Suppose that at time ¢ the particle is located at z, so that its
state is the eigenstate |2 > of the opefator z. We want to compute the probability
amplitude that the particle will be found at position 2’ at a later time ¢, denoted
<a',t'|z,t>. This can be computed as

(6.1) <z |z, t>=<a'le”HE-D|z>

In the Schrédinger picture the interpretation is that the initial state is |z >, we
apply the time evolution operator to obtain the state e *#('~9|z > at time ¢/,
and we project this onto the eigenstate |¢’ >. In the Heisenberg picture, the state
is initially and always the eigenstate |z,t >= e'¥*|z > of the position operator
at time ¢, z(t) = e'#'z(0)e~*#*, where £(0) coincides with the standard position
operator of the Schrédinger picture, and we take the component of this along the
eigenstate |z, ¢' > = e’ |z’ > of z(t'). In either case, we should not be surprised to
encounter singular distributions in calculating this quantity in view of the singular
nature of the eigenstates of position. From a mathematical point of view it should
be regarded as the integral kernel of the time evolution operator. Namely, given
any two states |¢> and |4/ > we can insert two complete sets of position eigenstates
to obtain

<gle HEDlys = / dz da' <gla'><a|e" HE D> < alp>

(6.2) = /d.z' dz' ¢* (2" ) K (z, t; 2", ¢ )¢ ().
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The plan will be to compute <a’,¢|z,t> first for infinitesimal At = ¢ —¢, and
then to somehow integrate up to finite time intervals. We compute

<z|e”HA > = <:v'[e“mtv(””)e'mtp2/2m[1 + O(A))|z >
e iAtV(2) <xl(e—-iAtp2/2mlx>

e—iAtV(z)/dpdp/ <:L"|pl><p/le—iAtp2/2m|p><p|$>

e~ itV (2) / dgip,e—iAthﬂmé(p/ _ p)ez‘p’z'e——ipw

(6.3) — e-—iAtV(:c)/;l_peip(m'—m)e——iAtp2/2m’
T

where we have inserted complete sets of eigenstates of p in the third line. (By
now the reader should distinguish effortlessly between the operators z and p and
their eigenvalues z and p!) The resulting Gaussian integral is only convergent if we
assume that At has a small negative imaginary part. We will discuss the meaning
of this assumption extensively below, but for now we simply look up the integral
and obtain

(6.4) <&tz t>= (2 mAt)l/z gim(a'~a)? /281 ,—iAtV (s)
’ me

This formula has a remarkable interpretation. Imagine that the particle travels at
constant velocity from point z at time ¢ to point z’ at time #, so that its path in an =t
plane is a straight line segment. The constant velocity must be (z' ~ z)/At, so that
the kinetic energy is m(z’ — z)%/2At2. When < 2/,t'|z,¢ > is used as an integral
kernel, the rapidly oscillating phase ensures that the dominant contributions for
small At occur for 2’ near z. Then the potential energy is approximately V(z) and
the exponent in our formula is just the action for this straight-line path! That is,

(6.5)

1/2 ' q 1/2
<z t|z,t>= ( - ) expz’/ [zmi?® — V{(z)]dt = ( = ) exp S,
1 2

2wiAt 2miAt

for infinitesimal At.

To compute < z',t'|z,t > for a finite time interval, we subdivide the interval
by choosing intermediate times ¢’ > ¢; > t5> --- > ¢, > ¢ and insert complete sets
of eigenstates of the Heisenberg operators z(¢;) to obtain

(6.6)

<z t|z,t>= /dml---dwn <z’ t|zr,t1 ><z1, 1|2, te > v <Tpy bz, t>

As n — oo, by our previous computation, each of these matrix elements is propor-
tional to expiS, where S is the action for a straight-line path joining the appro-
priate points. Multiplying them together, we obtain expiS with S the action for
a zigzag path composed of straight line segments joining the intermediate points
(z4,t;) (Figure 6.1). The integral over the z; is an integral over the space of all
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t 1, ty t

Figure 6.1. Piecewise linear path from z at ¢ to 2’ at t'. The integration
over the locations z; of the corners approximates the Feynman path integral.

piecewise linear paths with corners at the intermediate times ¢;. In the limit this
should approach an integral over the space of all continuous paths from (z,t) to
(z',t") with each path weighted according to its action, formally,

t/
(6.7) <z, t|z,t>= N/[D.z'] expz'/ [—é-m:/r:2 — Viaz)ldt,
, ¢

with [Dz] a formal measure and N a formal normalization constant. This path
integral is the basic formula of this approach to quantum mechanics. Clearly our
calculations have been heuristic, and much remains to be done to rigorously estab-
lish such a formula. One must prove that the limit n — oo exists, and equals the
matrix element we wanted to compute. This will involve a careful estimate of the
errors made in our computation for “infinitesimal” A¢. Then one should prove that
the limit of the measures on the spaces of piecewise linear paths exists and gives a
measure on continuous paths. In fact, no one has ever succeeded in doing this, and
the reason is closely related to our need to assume a small imaginary part for At.
The time evolution operator exp —iHt whose matrix elements we have been
computing makes sense for certain complex, as well as real, values of £. Recall that
the spectrum of H in general is bounded below but not above. Therefore exp —iHz
is a very nice operator, analytic in z, for z in the lower half of the complex z
plane. However, in the upper half plane it gives exponentially increasing weight
to the higher eigenvalues of H and is too unbounded to possess an integral kernel
<z',t'|z,t>. The real axis, containing the values of physical interest, is the bound-
ary between these regions, and as such formal computations here can be dangerous.
(By the spectral theorem, exp —i H z is strongly continuous for Im z < 0 and we are
interested in the continuous boundary values of an analytic function.) The small
negative imaginary part assumed for At above simply amounts to computing the
kernel by analytic continuation from slightly below the real axis. This turns out to
be such a good idea that we will carry it to the extreme and compute the kernel by
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analytic continuation from the negative imaginary axis. We parametrize the imagi-
nary axis by z = —¢7 with 7 real, and compute the kernel of exp —iHz = exp —HT.
Retracing our derivation of the path integral, or just formally substituting t = —i7
in the result, gives the Feynman-Kac formula

(6.8)

T/
/ 1 .
<z, e, r>=<a ez > = N/[Da:] exp —/ d’r{—2—mz2 + V().
T

The integral is over all paths from (z,7) to (z',7). This formula can indeed be
rigorously proven by the means sketched previously. The important estimates are
contained in the Trotter product formula,

(6.9) e~ (A*B) = [im (e=4/me~B/m)n

n—r00

for suitable operators A and B. The resulting measure on the space of continuous
paths in the case V(z) = 0 is (conditional) Wiener measure. Neither the constant
N, the formal Lebesgue measure [Dz], nor the exponential of the kinetic part of
the action (because Wiener measure is concentrated on nondifferentiable paths)
make sense separately, but only their product which is Wiener measure. The /2
rotation of our attention from the real axis to the imaginary is called “Wick rotation
to Euclidean space”, named for the physicist G.C. Wick. We will see shortly how
to view it as a literal rotation. Although at the moment we are not concerned with
Lorentz invariance, in QFT we will be, and the term “Euclidean space” refers to the
effect of the rotation in changing the indefinite Minkowski metric 2 — 2?2 — y2 — 22
to the definite Euclidean metric —72 — % — y? — z2. The quantity $ma&* + V(z) is
called the Euclidean Lagrangian (and sometimes coincides with the Hamiltonian).
Our earlier “Minkowski” path integral formula is viewed as a mnemonic for the
Feynman-Kac formula plus analytic continuation in Az = —i(7’ — 7) back to the
real axis.

The path integral would not be the versatile tool that it is if it could only
compute the kernel of the time evolution operator. It can also be used to compute
matrix elements of the position operators in the Heisenberg picture. Consider the
computation of

(6.10) <z’ t|z(t1) - x(tn)|, t>,

where t' > t; > --- > t, > t. Inserting complete sets of eigenstates of x(t;) at the
intermediate times allows us to rewrite this as

(6.11) /dm coedxp Xy Ty <3, |T1,01> 0 <Tp,telz,t>,
and the path integral representation for the remaining matrix elements gives

6.12) <o\ tlo(t) - alt)la,t>= N / [Dajo(t:) - 2(tn) expiS,
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where z(t;) in the integral denotes the location of the path z(t) at time ;. Note
that the factors z(¢;) on the right side of this equation are just numbers (actually
functionals of the paths) and can be rearranged freely, while those on the left are
noncommuting operators and must be arranged in decreasing order of their time
arguments. That is, the path integral on the right automatically computes the
matrix element of a product of (t) operators in a particular order. We define the
time ordering symbol T so that T'[z(t1)- - z(t,)] is the product of the operators in
decreasing time order, regardless of their order as written. Then we have the path
integral formula,

(6.13) <2, ¥|T[e(t1) - z(tn)]|z,t>= N/[Dx]a:(tl) - z(tn) expiS,

with no restriction on the order of the intermediate times ;.

Even more cleverly, we can write a generating functional for all such matrix
elements at once. We add a so-called source term xz(t)J(t) to the Lagrangian,
where J(t) is a given function with support in the interval [t,#']. The path integral
with this new Lagrangian is a functional of J(¢), and we can take its functional
derivatives. We obtain

<z, ¢|T[x(t1) - z(tn)]|z, t >=
8" vl
(6.14)  (=4)" —s—5-=N [[Da]expi [ dt[;mi®-V(z)+2J]|
8T (t1) - 8J(tn) / /t 2 1o

because each functional derivative on the right brings down a factor z(¢;) into the
integrand, reproducing our previous formula.

"This may strike you as the ultimate in cleverness, but there is one more step to
take. Even more useful than matrix elements between states like |z, > are matrix
elements between the eigenstates of the Hamiltonian, especially matrix elements in
the ground state |0 >. The following trick allows us to compute these as well by
means of path integrals. Let the source J(t) now have support in a subinterval [a, b]
of [t,t']. Adding the source term to the Lagrangian will change the Hamiltonian as
well, into, say, H’. The corresponding unitary time evolution operator U” (t1, ;)
between times ¢; and ¢, will not coincide with exp —¢H (t2 — t1) when the source is
nonzero. Its matrix elements are

<z |z, t>7 <2|U7(t,¢)|z>
(615) = <$Ile_iH(tl—b)UJ(a’ b)e—iH(a——t)Im> .

We now insert complete sets of eigenstates |n > of H, with eigenvalues E,, (which
are not generally eigenstates of H”) to obtain ‘

<z, t|z,t>7 = Z <a'|e" HE =V m > <m|U? (a,b)[n>< nle~H@=D|g >
m,n

(6.16) = Z <z'lm><nlz> e I En'=0e=iEa(a=t) <7 (g, B)|n > .
m,n
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Now we want to take the limits t — —oo, t' — -+oco. This makes sense when
we recall that < z’,#|z,t > is the analytic continuation of the Euclidean matrix
element < ', 7’|z, 7>, which has a representation as above with e~ 'Fm replaced
by e~ = so that we can let 7 — —oo, 7/ — +oo. Equivalently, we let t —
—co, t' — 4oo in the complex plane, along a line with a small negative slope
rather than the real axis. We also assume, as is usual in QFT for just this reason,
that a constant has been added to H to make the ground state energy equal to
zero. Then in the limit only the ground state contributes to < z’,#'|z,t>7, which
becomes

(6.17) <z’ |z, t>7=<2'|0><0z> Z(J),
where, by definition, the vacuum functional or partition function Z(J) is
(6.18) Z(J) =<0JU’ (a,0)|0> =< 0|U7 (¢,£)[0> .

We have the normalization condition Z(0) = 1, but in general Z(J) # 1 because
|0> is not an eigenstate of H” when J # 0. Rewriting (6.17) as

<z |z, t>7

19 Z() = =% T2
(6.19) (7) <z'|0><0]z>"’

we obtain the path integral formula for Z(J),
(6.20) Z(J)=N / [Dz]expiS?,

with N chosen so that Z(0) = 1. The integral is over all paths having fixed but

arbitrary endpoints z’, z at the times +co. Furthermore, repeating these arguments -

for the matrix elements (6.14) gives

6”
Oy RRrR I RS A

(6.21) <OT[z(t1) -+ z(tn)]j0> = (—D)"
Z(J) is thus the generating functional for a whole series of ground state matrix
elements which turn out to have direct physical meaning in QFT. They are called
Green’s functions, correlation functions, or n-point functions, and in a real sense
they contain all the physical predictions of the theory.

Before we learn how to actually compute path integrals, let me add two com-
ments about their importance in physics. First, the path integral formalism is the
most elegant way to understand the connection between quantum and classical me-
chanics. With physical units restored, the path integral weight exp:S is actually
exp iS/h. In the limit i — 0 it is reasonable to try to compute the integral by the
method of stationary phase. The integral over paths should be dominated by the
neighborhood of the path which extremizes S, which is precisely our Lagrangian
formulation of classical mechanics. The asymptotic expansion of the path integral
for small /i is known as the semiclassical or WKB (Wentzel, Kramers, and Brillouin)
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approximation in physics. Second, the Euclidean path integral (6.8) has an inter-
pretation in terms of statistical mechanics which leads to the modern convergence
between the subjects of statistical mechanics and QFT. In a small nutshell, statis-
tical mechanics is a probability theory in which a physical system at temperature T’
has a probability proportional to exp — E/kT of being found in a state having energy
E, with k being Boltzmann’s constant. The Euclidean path integrals for a particle
can be reinterpreted as moments of this probability measure for some continuous
one-dimensional system, e.g. z(r) is the pressure or density in a one-dimensional
gas at location 7 and the Euclidean action is the energy of the gas. Note that 7
has become a spatial coordinate while z is the value of a field at that location.
The term “partition function” itself comes from statistical mechanics, where Z(J)
is related to the number of ways of partitioning the system’s total energy among
its constituent particles.



LECTURE 7
The Harmonic Oscillator via Path Integrals

We will now see how path integrals are actually computed, by calculating Z(.J)
for the simple harmonic oscillator. Just as the oscillator is the only exactly solvable
problem in physics, so this type of “Gaussian” path integral is the only one that can
honestly be evaluated. As such our computation is fundamental for all applications
of path integrals in QFT.

We want to compute

(7.1) Z(J)=N / [Da]expi / dt(L+zd), Z(0)=1,
where
(7.2) L= _%mm(djﬁ + w?)z.

This form of the Lagrangian differs from that of Eq. (1.8) by an integration by
parts, like the forms in Eqs. (2.4,2.5). It exposes the central role of the self-adjoint

2 . . . .
operator %g + w?. To see how to proceed, compare the finite-dimensional integral
over column vectors z in R"

(7.3) /d"m exp(—2T Az + JTz),

with J a fixed vector and A a nonsingular symmetric matrix. (In fact, the finite-
dimensional integrals over piecewise-linear paths which approximate the path inte-
gral have this form.) We complete the square

~2T Az 4+ Iz = —(2 - %A‘IJ)TA(;E - %A“lJ) + %JTA'lJ
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and use the translation-invariance of Lebesgue measure to substitute y = z —
3A™1J, obtaining

(7.4) eJTA—lJ/‘l/d"y e~V Ay,

‘We can normalize the result to unity when J = 0 by simply dividing by the integral,
so that the result is obtained from the translation-invariance of the measure without
ever evaluating an integral.

Since the formal Lebesgue measure [Dz] is also translation-invariant,® we can
apply the same procedure to Z(J) as soon as we know “the” inverse for the operator

A= a%; + w?. That is, we need to solve the differential equation

d2
(75) () (0) = o(t).
As we have previously mentioned, physicists like to express linear operators in
terms of their integral kernels, so that the solution is written in terms of a Green’s
function G(t, s) as

(7.6) 50 = [ dsGt.5)a(o),

and the statement that this inverts A becomes

d2
(77) (8’2'2' + wz)G(t, S) = (5(t — 8).
Not all solutions of this equation are of the form G(t,s) = G(t — s), because of
the freedom to add arbitrary solutions of the homogeneous equation, but I assert
with the benefit of hindsight that the one we are seeking is. We compute it via its
Fourier transform,

(7.8) Gk) = / dt G(t)e i,
(79) o) = [ mGme™,
which satisfies

(7.10) (k% + w)G(k) = 1.

The solution to this equation in the sense of distributions is a bit tricky,
A -1
(7.11) Gk)=Pm—s + h(k)8(k? — w?).

8That is, Wiener measure has the properties that would be expected if it were.
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Figure 7.1. Integration contour in the k plane for computing G(¢) from its
Fourier transform, ¢ > 0.

Th_e point is that the operator 4 has a kernel (“zero modes” to a physicist), so is not
uniquely invertible until boundary conditions are specified for Eq. (7.5). ’G(t) can
be changed by addition of functions in the kernel, which are combinations of e*iwt
Its Fourier transform is thus only determined up to distributions concentrated a1;
k = fw. Yet another way to say this is to note that the inverse Fourier transform

7.12 e

(712) 0= [ frme

is ambiguous because the integration contour (the real axis) passes through two
poles at k = Fw. A prescription for handling thesé poles amounts to a choice of
boundary conditions and selects one of the possible Green’s functions.

The appropriate boundary conditions in quantum mechanics are specified im-
plicitly by the condition that the correlation functions obtained from Z (J) should
be related by analytic continuation to those given by a Euclidean path integral.
The Euclidean path integral for the harmonic oscillator is calculated by the same
technique of completing the square, but the relevant self-adjoint operator becomes

2

d
7.13 — e 2
( ) 72 + w”.

The corresponding Euclidean Green’s function is, unambiguously,

1
(7.14) Gglk) = ——
bec:«.u?se this function has no poles on the real axis.® The Minkowski space Green’s
function we seek is the one related by analytic continuation to the Fourier trans-
form (.)f' GE(k). To determine it, return to Eq. (7.12) and close the contour with
a semicircle at infinity, in the upper half plane if ¢ > 0 (Figure 7.1). This function

9 - L.
One may wonder' why the Euclidean Green’s function is unambiguously determined when
the oPerator (7.13.) still has a kernel, spanned by the functions exp +wt. The point is that these
functions are not in L? or even in the set of distributions *.
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Figure 7.2. Wick rotation of the contour for computing G(t), with ¢ on the
indicated line in the fourth quadrant.

G(t) is analytic in some region of the complex ¢ plane. For ¢ in the fourth quad-
rant, say on the line indicated in Figure 7.2, the semicircle does contribute to the
integral, but we can fix that by rotating the contour in the & plane, providing it
does not cross any poles of the integrand. After a rotation by 7/2 (the Wick rota-
tion), ¢ is on the negative imaginary axis and G(t) becomes the Euclidean Green’s
function. Therefore, G(t) is the analytic continuation of Gg(7) provided only that
the integration contour did not cross poles. This specifies the correct treatment of
the poles on the real axis: the contour must pass below the one at k = —w and
above the one at k¥ = +w, or equivalently the poles must be moved infinitesimally
off the axis to k = £vw? — ie. The resulting Green’s function,

. _ [k =1 ik
(7.15) Gt = / ke — o tie

often called the Feynman Green’s function or Feynman propagator, is easily evalu-
ated by residues as

(7.16) G(t) = —é%[ﬁ(t)e_i“’t +0(—t)e™",

where 0(t) = 0 for t < 0, 6(t) = 1 for ¢ > 0 is the Heaviside step function rather
than the Riemann theta function. Of course, we could easily have determined the
correct G(t) by explicitly evaluating Gg(r) and analytically continuing, but the
method used works in QFT also, and motivates the term “Wick rotation” as well.
Comparing the explicit form of G(£) with the time evolution operator e7*#*, we can
see why the Feynman propagator is often described as propagating positive energy
states (w) into the future (¢ > 0) and negative energy states (—w) into the past
(t < 0). In QFT this is related to the behavior of antiparticles and can be used to
give a physical derivation of the correct Green’s function.
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Armed with the correct Green’s function, we easily complete the square and
finish the computation of Z(J):

(7.17) 2(7) = exp -é-’n; / dt ds J(H)G(t — 5)J(s).

By tgking two functional derivatives we obtain the two-point correlation function
2

N2 6
(=) 5T (£)8J (t')
- ‘%57%[ / dsJ ()Gt — 8 2(])]y=0

<O0|T[z(t)z(t)]|0>

i

Z(JT)ls=0

= _lop_v
= —2a(-1)
1 ; ’a I3 t
(7.18) = %[g(t_t')e'zw(t‘t)+0(t/_t)elw(t—t )].

Note that the second functional derivative has to act on the J(¢) brought down by
the first one in order to get a nonzero result upon setting J = 0. Up to a factor,
the two-point function coincides with the Green’s function. This is why correlation
functions in general are called Green’s functions.

There is a simple rule for computing the n-point correlation functions, called
Wick’s theorem, which is really a general fact about the moments of a Gaussian
measure. When we compute the functional derivative

61’1

(7.19) 5T(t1) - 6 (tn)

Z(J)s=0,

the first derivative brings down a J(¢;), among other things, from the exponential
in Z(J). Unless some other derivative acts on this J(t1), the result vanishes for
J = 0. The nonvanishing terms arise from all possible ways of pairing the functional
derivatives so that one acts on the J(t) brought down by the other. The n-point
function is a sum over all pairings of the product of factors — £ G(t; — ¢;) for each
pairing. For example, the four-point function is

<OITla(t)a(t2)a(t)o(t4)]l0> = ~—3[G (1 — 12)G(ts — ts)
(7.20) HG(tr — t2)G(ts — ta) + G(t1 — )Gtz — ta)].

The n-point functions for n odd vanish since a complete pairing is not possible.



LECTURE 8
Quantum Field Theory: Free Fields

Quantum field theory, to a first approximation, is the relativistic quantum
mechanics of systems having infinitely many degrees of freedom, such as fields. We
want to construct a quantum mechanics of the electromagnetic field, or the Klein-
Gordon field, just as we constructed the quantum mechanics of a particle moving
in a potential. We will in fact discuss the Klein-Gordon equation so as to avoid the
complications associated with nontrivial representations of the Lorentz group and
with gauge invariance.

We recall the action

(8.1) s=1 / d*2(8,60% — m242),

which leads to the Klein-Gordon equation (8,0*+m?)¢ = 0, and the corresponding
Hamiltonian

1

(8.2) H=3

/ Po(n? + Vo +mPé?),

where 7(z) = 0°¢(x). At a fixed time, the infinitely many coordinate and mo-
mentum variables ¢(x,t),n(x,t) should be reinterpreted as Hermitian operators
acting in a Hilbert space H and satisfying commutation relations modeled on their
classical Poisson brackets,

(8.3) [p(x, 1), (. t)] i6*(x - y),
(8-'4) [¢(x$ t)a ¢(y7 t)] = [ﬂ-(x» t)a W(y'» t)] =0.

I

We are adopting the Heisenberg picture in which the operators are time-dependent
and the canonical commutators hold only at equal times. Of course, we have
the option of going to the Schrodinger picture, transferring the time dependence
to the states. However, this obscures the Lorentz invariance of the theory since
the Lorentz group mixes the time and space components of z, and therefore the
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Heisenberg picture is generally more convenient in QFT. One can check that the
Heisenberg equations of motion

(8.5) i(z) = —ilr(2), H], (x) = —i[¢(=), H]

are equivalent to the Klein-Gordon equation.

Unfortunately, the singular § distribution in the canonical commutators shows
that ¢(z) and w(z) cannot be simply operator-valued functions on R, since then
their commutator would also be such a function. We encountered this problem in
the Hamiltonian formulation of classical field theory, and resolved it by choosing
better coordinate and momentum functions on phase space. Similarly here we
postulate that for each test function f(x) on R? there are time-dependent operators

@[f,t], 7[f, t] formally given by
(8.6) o1f, 1] = / Baf@)x,t), wlf,f = / B f )T, b).

Then ¢(x), 7(x) should be viewed as operator-valued distributions, and the canon-
ical commutators actually mean, for example,

(8.7) (617, 8] 7o, 8] = i / &5 F(x)g(x).

It happens that this interpretation of the fields is correct in noninteracting, or free,
field theories such as the Klein-Gordon theory, but that spatial smearing alone is
not suflicient to produce well-defined operators in interacting field theories. In those
cases we assume the existence of fields ¢[f] = [ d*zf(z)¢(z), and similarly for =,
for each test function f on R* rather than R®. In general one cannot make sense
of equal time commutators in these theories.

We will now solve the Klein-Gordon, or free Hermitian scalar field, theory.
This means that we will construct a Hilbert space H containing operator-valued
distributions ¢(z),n(z) satisfying the Klein-Gordon equation and the canonical
commutators. Rather than producing these objects from thin air, I will give the
heuristic derivation which is standard in the physics literature, and only then con-
nect it with the precise mathematical definitions. The mathematician should try to
appreciate how some familiar mathematical objects are described in the language
and notation of physics.

If we view the Klein-Gordon equation as simply a PDE of a standard type for
a real-valued function ¢(z) on R*, the solution can be obtained easily by means of
a Fourier transform:

68)  6@) = [@lae®x 4 of)emikx-R0)

89)  n(z)

/(dk)(——iEk)[a(k)ei(k'x—Ekt) _ a’r(k)e—z’(kx—Ekt)]'

Several comments are necessary concerning the notation here. The suggestively-
named functions a(k),af(k) on R? are complex conjugates of each other, so that
¢(x) is real. The Klein-Gordon equation is satisfied provided only that Ej =
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V1k|2 + m?; we deﬁne a momentum 4-vector k¥ = (Ex,k) which lies on the hy-
perboloid k'2 = m? in R* (often referred to as the “mass shell”), so that k- & =
k#z, = Fit — k - x. Finally, the Fourier integrals over R® use a Lorentz-invariant
measure for convenience,

(8.10) / (dk) = / Gr2E, )32Ek / (g4§42w6(k2—m2)9(k°)

where the last form makes the Lorentz invariance obvious.

In QFT we use the above solution to motivate a change of variables: at some
arbitrary but fixed time ¢ = z° we replace the variables ¢(z), 7(z) by the a(k), at (k)
introduced above. These are now adjoint operators for each k (actually distributions
again), given explicitly by

(8.11) al(k) = / Bz e~ [Bd(a) — in(a)],
(8.12) ak) = / Pz e[ By d(z) + in(z)].

Any resemblance to the change of variables we made in solving the simple harmonic
oscillator is totally intentional. These new creation and annihilation operators are
found to satisfy

(8.13) [a(k),a’(p)] = (27)°2Ew8*(k - p),
(8.14) [a(k),a(p)] = la'(k),a'(p)]=0.

In terms of these operators the Hamiltonian reads

(8.15) H= / (dk) Bfat (K)a(k) + a(k)a’ (k)]

(@)t (a0 + 87 B2 0),

(8.16)

where the second line results from the formal application of the commutator (8.13).

In the meaningless expression [(dk)8m3E26%(0) we have encountered the first
of the famous infinities of QFT, and the easiest to deal with. The Hamiltonian
H should be viewed as describing uncountably many simple harmonic oscillators
labeled by the vectors k, and we expect that there will be a vacuum state |0 >
satisfying a(k)|0 >= 0 for all k. The constant term involving 62(0) is infinite
because it is the sum of the ground state energies w/2 of infinitely many oscillators
[compare Eq. (5.4)]. We propose to subtract an infinite constant from H so that
the energy of the vacuum state will be zero instead, so that we use simply

(8.17) H= / (dk) Bra' (K)a(K).

Two common justifications for this procedure are the following.
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(1) Even in classical mechanics V(x) and hence H are arbitrary by an additive
constant; only differences in energy are measurable and any state can be defined to
have zero energy.

(2) The only function of a Hamiltonian is to generate the correct Heisenberg
equations of motion. Since one can check that both forms (8.15) and (8.17) of H
have the same commutators with a(k) and af(k), they are equally acceptable.

In fact, our original expression (8.2) for H was only formal. It contained expres-
sions such as 7(x)? which, as products of distributions, are not generally meaningful.
We are now defining what those products meant, with the interpretation of H in
terms of oscillators as a guide, and by definition they do not include the infinite con-
stant. A convenient way to formulate the definition is in terms of normal-ordered
products. We say that a polynomial in creation and annihilation operators P(a“, a)
has been normal ordered, denoted : P(af,a):, when each term has been reordered
so that all a’s stand to the left of all a’s. This reordering is done by fiat, as if
all operators commuted, and not by using the canonical commutation relations to
interchange them. For example,

(8.18) 2 st (9a(k) + a(k)a’ ()= o' ()a(k),

so that our modification of the Hamiltonian simply amounts to saying that all
products in it should be interpreted as normal ordered. It is often the case that
normal ordered products of distributions make sense when general products do not.
It is a useful fact that the vacuum expectation value of a normal ordered product
is always zero, which in our case means that the energy < O0[H|0> of the vacuum
vanishes, as we wished.

The Hamiltonian H commutes with several other operators, which are therefore
conserved quantities. As examples we have the number operator,

(8.19) N = /(dk)aT(k)a(k),

and the momentum operator,

(8.20) P= / (dk)ka'(k)a(k),

which, like H, annihilate the vacuum. We can combine H and P into a 4-momentum
operator

(8.21) P¢ = (H,P) = / (dk)k*a' (k)a(k),

which is indeed the generator of the translation group in R,

(8.22) [¢(x), P¥] = i0"¢(z).

As in the harmonic oscillator, we expect that the eigenstates of H can be obtained
by acting on the vacuum |0 > with finite products of the creation operators af(k)
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for various k. By using the commutation relations as we did then, we can verify
that acting with af(k) on a simultaneous eigenstate of N and P* gives a new
eigenstate with eigenvalues increased by unity for N and by k* for P#. Recall that
k> = m?, or E2 = |k|> + m2. This is nothing but the relation between the energy
and momentum of a free particle of mass m in relativity. Although we did not have
time to derive it earlier, we can make it plausible now. With physical units restored
it reads Ex = y/|k[?>c? + m?c!, and in the nonrelativistic limit ¢ — oo this becomes
By = mc? + |k[>/2m, showing the energy mc? corresponding to the (rest) mass as
well as the Newtonian kinetic energy |k|?/2m.

We have been lead to the following remarkable conclusion. The eigenstates
of H are of the form af(ky)---af(k,)|0 >. The total energy and momentum of
this state are exactly those of a collection of n free particles of momenta k;, the
operator N counts the particles, and the operators af(k;) and a(k;) create and
annihilate them. These particles are the quanta of the field, and this is the very
deep connection between fields and particles in QFT: the stationary states of a
free field theory are multiparticle states. The quantization of the electromagnetic
field is technically harder but conceptually the same, and the resulting particles are
photons. The Klein-Gordon equation describes spinless particles such as pi mesons.
(The spin refers essentially to the highest weight of the representation of the Lorentz
group by which the field transforms; it is zero for the trivial representation.)

Let us now translate the physicist’s description of the Hilbert space into rigorous
mathematics. The only thing wrong with the description above, really, is that the
creation and annihilation “operators” are still operator-valued distributions and
must be smeared in k to get actual operators. Physically, they create and annihilate
free particles of definite momenta, and we recall that even in quantum mechanics
the free particle states lie outside the Hilbert space L*(R?), in a rigged extension.
So, rigorously: the Hilbert space H will be the space of all sequences of complex
functions of the form

(8.23) F = {Fy, Fi(k), Fy(k1, ko), ... },

where F, is a symmetric function of n vectors from R3, such that the norm to be
defined below is finite. The sequence {1,0,0,...} is the vacuum state previously
denoted |0 >. The sequence {0,0,... ,F,(ki,... ,k,),0,... }is a smeared n-particle
state which we would have previously written as

(8.24) 7-11-' /(dkl) oo (dkp) Fr(ky,. .., kn)at (k) - - af(k,)[0>,

where any antisymmetric part of F,, would not contribute to this equation because
the a's all commute. The scalar product is

(8.25)
— 1
<F,G>=F;Go+ ) . /(dkl) o (dkn)FE(Ky, - Ky )G (K1, - - k).
n=1

The nuclear subspace € of the rigged Hilbert space can be taken as the sequences
with only finitely many nonzero entries, and each F,, decreasing very fast as any



238 J. M. RABIN, INTRODUCTION TO QUANTUM FIELD THEORY

[ki| — oo. For each test function f(k) there is an operator

(8.26) allf] = [ (@) 09a'(k)

which acts on a sequence F by
(8.27) [ [f1Fln(ks,- . ko) =Y f(kj)Pno1(ks,... ,kj, ..., kn),
j=1

where lch means that this argument is omitted. Similarly,

(8.28) ATk, - . k) = / (dB)F(K) Fopa(K, Ky - ).

All these formulas follow from (8.24) and the canonical commutators (8.13).

Returning to the original Klein-Gordon fields ¢(z), we construct for each test
function g(x) an operator ¢[g,t] = [ d*z g(x)¢(x,t) by using Eq. (8.8). We see
that ¢[g, ] is expressed in terms of a[j] and a'[j], where § is the Fourier transform
of g. The resulting operators do satisfy the Klein-Gordon equation in the sense
of distributions. The Hamiltonian of Eq. (8.17) exists as an operator in H and
generates time evolution according to the Heisenberg equations.

The operator-valued distributions ¢(z),a(k),a’(k) themselves make sense as
operators from {2 into Q* in the rigged Hilbert space. For example,

(8.29) al(p)[0> = |1, > = {0, (27)32E, 8 (k — p),0,... },

which is a sequence of distributions rather than functions. Normal-ordered products
make sense in the same way, e.g.,

(8.30) ' (p)a(p){0, F1(K),0,0,... } = {0, (21)*2E, Fy (p)° (k — p),0,0,... },

and of course af(p)a(p)|0 >= 0. However, other products do not exist in even
this weak sense, e.g. formally a(p)a!(p)|0 >= (27)32E,6%(0)|0 >, which was the
difficulty that motivated us to introduce normal ordering in the first place.

A Hilbert space of this type, which arises in free field theory and rigorously
consists of sequences of functions as above, is called a Fock space (after V.A. Fock).
In the physics literature Fock spaces are defined by giving scarcely more than the
commutators of the relevant creation and annihilation operators, and it is up to
the reader to supply the sequence-space construction if desired. However, a little
experience doing calculations in these spaces should convince mathematicians of
the convenience of the physicist’s way of describing them.

The path integral machinery for computing Green’s functions applies in free
field theories with barely a change in notation, since the relevant integrals are still
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Gaussian. For the Klein-Gordon theory we define

(8.31) Z(J)

N /[D¢] expis,

(8.32) s / d4x[—-;—¢>(6u8” +m*) + J(z)(2)],

where intuitively we integrate over all continuous functions ¢(z) having specified
but arbitrary limits at ¢ — Zo0o. The calculation is again simply completing the
square; all we need is the Green’s function satisfying

(8.33) (0,0* + m*)G(z — y) = §*(z — ),
which is

d*k -1 .
(8.34) G(z - y) ey,

- (27)* k2 — m? + e

where the ie prescription is fixed by the Euclidean Green’s function (k% + m?)™?

and a Wick rotation of the k% axis. This Green’s function can be evaluated in terms
of Bessel functions, but its Fourier transform will be all we need. The partition
function is

(8.35) Z(J) = exp -;— /d4.7: d'y J(z)G(z - y)J (y),

and as usual the correlation functions are given by

n 6"
8J(z1) - 6J(xy)

(8.36)  <O|T[p(w1)--- ¢(zn)]|0>= (—1) Z(J)la=o-

Axioms

I will now present a set of axioms for QFT which reflect our (limited) experience
with the Klein-Gordon field. Mathematicians find it reassuring to see that there
actually are rules of the game which cannot be revised at will. In the 1960s, be-
fore renormalization was deeply understood, the mathematical foundation of QFT
was felt to be insecure due to the cavalier treatment of formally infinite quantities.
Its applicability beyond the subject of electrodynamics, for example to the strong
interactions of particle physics, was also in doubt. The goal of axiomatic quantum
field theory was to rigorously prove the folk theorems of the subject, and to learn
which difficulties of the theory were inherent in its structure and which reflected
unjustified approximations or calculational methods. Today it is somewhat discon-
nected from field theory as practiced by (most) physicists, but it is reassuring to
see how much can be rigorously proven. Note that these axioms are intended to
describe realistic quantum field theories in R*, so they refer to the Lorentz group
and metric. They must be modified for topological and conformal field theories
where spacetime may be compact and no metric is given.
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Axiom 1. (Quantum Mechanics) States and observables of a quantum field
are represented as usual by vectors and operators in a rigged Hilbert space H, as
per the axioms of quantum mechanics.

Axiom 2. (Relativistic Invariance) A continuous unitary representation of the
(double cover of the) Poincaré group acts in the Hilbert space, an operator U/ (A, a)
representing the transformation ' = Az + a. We define the 4-momentum operator
P¥ by U(1,a) = expiP*a,. Its eigenvalues k* lie in or on the forward light cone,
k? > 0. There is a unique (up to a phase) Poincaré invariant vector |0> called the
vacuum.

Axiom 3. (Fields) For each test function f(z) on R* there is a set of operators
¢ilfl = [d*zf(z)¢i(z). All these operators and their adjoints are defined on a
common domain (2, which is dense in H, closed under their action and that of
U(A,a), and is a linear set containing [0>. All the matrix elements < Ulo: [T >
are distributions in f. Under the Poincaré group the fields transform by

837) U a)¢lf(@)]U (A a) = ZMij(A'l)%[f(A“l(x —a))l;

where M;; is some matrix representation of $L(2, C) and this equation holds when
applied to any vector in .

Axiom 4. (Microscopic Causality) If the supports of f and g are spacelike
separated, i.e. (z—y)? <0 for every z and y in the support of f and g respectively,
then

(8.38) [6i1], #5191+ = ¢ilf1eilgl & 6;191:(f] = O,

where the — sign must occur if the operators ¢;[f] represent observables.

Axiom 5. (Cyclicity of the Vacuum) The set of vectors obtained by applying
polynomials in the ¢;[f] and their adjoints to the vacuum is dense in €, hence in
H.

We did not verify microscopic causality for the scalar field, but it is easy to com-
pute [¢(z), ¢(y)] from our solution and to verify that it is a Lorentz invariant func-
tion of 2 — y. Since spacelike separated points can be Lorentz transformed so that
z0 =40 (exercise), microscopic causality follows from the equal time commutators.
This axiom has many important physical consequences. The uncertainty principle
(exercise) places no restriction on the accuracy with which commuting operators
can be measured. The fact that measurements at spacelike separated points do
not interfere with each other reflects the fact that no signal can propagate between
them (faster than light). This axiom also ensures that time-ordered correlation
functions are Lorentz invariant, which is not obvious a priori. The instruction to
arrange operators in order of their time arguments is not Lorentz invariant, because
the time order of spacelike separated events is not invariant (exercise). But pre-
cisely in this case the operators commute, so their order is irrelevant. Finally, the
spin-statistics theorem says that the + sign occurs in axiom (4) for fields associated
to double-valued representations of the Lorentz group. As a consequence, each of
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the four components of the quantized Dirac field obeys 1;[f,t]*> = 0 (recall that in
free field theories spatial smearing is enough). Therefore, in contrast to the scalar
field, there is no vector in the Dirac Hilbert space describing two particles both in
the same state f. This is the famous Pauli exclusion principle which is responsible
for the shell structure of atoms and ultimately the stability of all matter! Particles
obeying the exclusion principle are called fermions, while the others are bosons.

The cyclicity axiom (5) is a substitute for the properties of the creation and
annihilation operators arising from canonical equal time commutation relations,
which do not make sense when smearing over time as well as space is necessary.
Since any vector can be approximated by fields acting on the vacuum, the diagonal
vacuum matrix elements of operators determine all others. This partially accounts
for the central importance of the n-point functions in field theory. The rest of the
explanation will emerge in the next section.

The Dirac Field

As a second examp‘lé of a free field theory satisfying these axioms, and to indicate
the origin of the spin-statistics connection, I will briefly sketch the quantization of
the Dirac equation. We recall the Lagrangian

(8.39) L = Pa(E(v*) pady — Mbpa)as

where for clarity I have introduced indices a, § = 1,2, 3,4 labeling the compone.nts
of ¥ and the matrix entries of v#. The momentum conjugate to 9, is by definition

£ i5(1)pa = i,

(8.40) ma = 5o

so the canonical commutation relations should be

5apb3(x —y),
[1/)&()(, t)v ¢2(y’ t)]i = 07

(8.41) [ta(x,t), ¥} (¥, )]+
(8'42) [’(ﬁa(x, t), ¢ﬁ(ya t)]:t

where I have left the choice of commutators or anticommutators open for now. The
Hamiltonian is constructed as

(8.43) H= / B [rathy — L] = / Bz pT(=iv°v18; + my")y.

The general solution of the Dirac equation, obtained via Fourier transform,
which will motivate our change of variables to creation and annihilation operators,

(844) (@) = ) / (dk)[b(k, s)u(k, s)e~** + dT (k, s)v(k, s)e* 7],
s==%1/2

Z /(dk)[bf(k, s)ul(k, s)e** + d(k, s)vi(k, s)e~ik 3],

s=%1/2

(8.45) '(z)
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For the notation, review our discussion of the Klein-Gordon equation. Unlike the
Klein-Gordon field ¢(z) which was real and observable classically, hence assumed
Hermitian in quantum mechanics, the Dirac field was complex even classically.
Hence we do not take it to be Hermitian in QFT, which is why there are two
distinct sets of creation and annihilation operators bt,b and df,d. We indeed have
a solution to the Dirac equation provided that k? = m? and that the spinors u and
v satisfy the Fourier-transformed Dirac equations

(8.46) (Yhy — m)u(k, s) = (Y"ky, + m)vu(k,s) = 0.

That is, the four spinors u(k,+1/2),v(k,+1/2) are the four eigenvectors of the
matrix y#k,, which has eigenvalues -m as a consequence of

(8.47)
v 1 v v v
(k) = 1k by = 5 (VY + 4 9 huky = 0" kuky = K = m?.

They are conventionally normalized so that
(8.48) a(k, s)u(k,s’) = —v(k, s)v(k,s') = 2méssr.

The pair of spinors u(k,=+1/2) form a basis for a two-dimensional representation
(highest weight 1/2) of the SO(3) subgroup of the Lorentz group which fixes the
vector k, and the Same is true of the pair v(k,+1/2). This is just the spatial
rotation group in the rest frame of the particle, the inertial coordinate system in
which k = 0. This is what is meant by the statement that the Dirac equation
describes particles of spin 1/2. :

In terms of the new creation and annihilation operators, the Hamiltonian be-
comes

(8.49) H=Y" / (dk)Ex[bF (K, 5)b(k, 5) — d(k, s)d' (K, 5)].

The operators themselves satisfy the (anti)commutators
(8.50) [b(k,s),b™(p, )]z = [d(k, s),d"(p, s")]+ = (27)*2Exb,5:6° (k — P),

with other (anti)commutators vanishing. We want to use these relations to redefine
the Hamiltonian by changing the dd' term into d'd and dropping the resulting
infinite constant. Because of the minus sign already present in H, we will get
a Hamiltonian involving either the difference or the sum of the b and d number
operators according to our choice of commutators or anticommutators for these
operators respectively. The choice of commutators means that creating more d
particles will lower the energy, so that the energy is unbounded below. In an
interacting theory the vacuum would be unstable to the spontaneous creation of
more and more such particles. Thus we are forced to quantize the Dirac field
using anticommutators, which is the spin-statistics connection leading to the Pauli
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exclusion principle: the vanishing anticommutator of an operator with itself means
that

(8.51) bi(k, 5)b'(k, s) = d(k, s)dT(k,s) =0,

and it is impossible to create two particles of either b or d type with identical values
of k, s.
The Hamiltonian is now

(8.52) H:=)" / (dik) ExJbt (k, 5)b(k, s) + df(k, 5)d(k, 5)].

It commutes with the following conserved quantities: the particle number
(3.53) N=)" / (dk)[bY (K, 5)b(k, s) + d(k, s)d(k, s)],

the momentum

(8.54) P=) / (dk)k[b' (K, 5)b(K, s) + d' (k, s)d(k, 5)],

the charge

(8.55) Q=eY) / (dR)[bH(k, 8)b(k, 5) — d' (K, s)d(k, s)],

which is in fact the charge associated with the conserved current j# = ¥y*i we
have seen before, but normalized to have eigenvalue e in the state b*(k, $)|0 >, and
the z-component of spin,

(8.56) S.=> / (dk)s[bi(k, 5)b(k, s) + dT(k, s)d(k, s)],

so called because this operator is part of the generator of rotations about the z axis
in the SO(3) subgroup mentioned above. Hence we obtain the particle interpre-
tation of the Dirac field: b¥(k,s) creates particles (electrons in the application to
quantum electrodynamics) of mass m, momentum k, spin component s, and electric
charge e, while df(k, s) creates their antiparticles (positrons), which have the same
mass, momentum, and spin but opposite charge. We see that QFT predicts the ex-
istence of antiparticles as well as the spin-statistics connection. The mathematical
description of the Dirac Fock space in terms of sequences of functions is left to the
reader. The path integral formulation of the Dirac field, which involves fundamen-
tally new ideas because of the anticommutation relations, is unfortunately beyond
the scope of these lectures (but see those of Orlando Alvarez in this volume).



LECTURE 9
Interacting Fields, Feynman Diagrams, and Renormalization

~ Free field theories describe particles which do not interact with each other.
The eigenstates of H, which change only by a phase factor under time evolution,
contain particles whose momenta are constant for all time. Interacting particles are
described by nonlinear field equations, whose Lagrangians contain higher powers
of fields than quadratic. Continuing to avoid the mathematical complications of
gauge invariance or nontrivial Lorentz representations, we take as our example the
Klein-Gordon field with a quartic interaction,

1 1 1
_ = 11 Sy 3 v 4.
(9.1) L 26,@6 ¢ 5™ ¢ 4!)\¢
We choose a quartic rather than cubic interaction so that the Hamiltonian,
(9.2) H= /d"’w[lwz + l|V¢]2 + -1-m2¢2 + i,\qs‘*]
- 2 2 2 4! ’

is positive definite. To get a feeling for the effects of the quartic term, suppose
we express it in terms of the a,a’ operators using the change of variables (8.8). It
becomes a sum of terms having the structure

(9.3) /(dkl) oo (dkg)a(ky) - at(ke)6* (ks + -+ — k).

That is, it can create or destroy any combination of four particles provided that the
total energy and momentum do not change. By destroying two particles and then
recreating them with different momenta it can describe collisions in which particles
exchange momentum. It can also change the total particle number, allowing the
description of processes in which new particles are created from the kinetic energy
of others.

This so-called A\¢* field theory can be rigorously constructed in two or three
space-time dimensions, but not (thus far) in the physical case of four dimensions.
What we know about it (assuming it exists) is a combination of general theorems
of axiomatic field theory and perturbative series expansions in powers of A around
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the free limit A = 0. We will in fact develop a series expansion for the partition
function which is formally given by the path integral

04)  2()= [Dolexpi [ atal30,60% - Gmie - 1ot + T4,

normalized to Z(0) = 1. (We know that the quadratic terms in this exponential
define an honest Gaussian measure on a path space, but what is hard is to interpret
the rest of the exponential as an integrable function with respect to this measure.)
From experience with the corresponding one variable integral,

(9.5) /dm exp —(z% + Az?),

we should not expect such an expansion to converge, but ideally it would be an
asymptotic expansion for the exact result which would give accurate numerical
results for A small. In quantum electrodynamics, where the expansion parameter
is e?/hc =~ 1/137 (e is the charge of an electron), such perturbative calculations do
agree with experimental measurements to as many as 12 decimal places.

Most experimental tests of QFT involve scattering experiments in which beams
of known particles are created at accelerators and allowed to collide. One measures
the probabilities that various types and numbers of particles emerge from the col-
lision with various momenta. In our model field theory we ask for the probability
amplitude to begin with m particles of 4-momenta k; at £ = —oo and to end with
n particles of momenta p; at ¢ = +oo, denoted < {p; }out|{k;}in>. This is viewed
as an element of a matrix, the scattering or S-matrix, whose rows and columns are
indexed by the stationary states of the free field theory. Intuitively we expect that
any collection of particles will separate as ¢ — oo into widely separated, hence
noninteracting, particles (and perhaps bound clusters of particles, e.g. atoms). In
field theory we express this by some statement such as ¢(z) ~ Z/2¢oy(z) for
t — +oo, and ¢(z) ~ Z'/%¢in(z) for t — —oo, where ¢ is the interacting field,
oin and ¢oyt are free fields obeying the Klein-Gordon equation, and Z is not the
partition function but merely some normalization constant which can be shown
to be the same for both limits. The in and out states appearing in the S-matrix
element are created by the af operators in the Fourier expansions of ¢iy, dous. The
precise meaning of these operator limits is quite subtle, e.g. they certainly do not
hold as strong operator equations, but only weakly as relations between certain of
their matrix elements. Using them, one can derive the remarkable LSZ (Lehmann-
Symanzik-Zimmermann) reduction formula expressing the S-matrix elements in
terms of the correlation functions:

<{p:}out|{k;}in> = (iZz7V/H)mtn / d*wy - diapdty, - diypeiPiviRiTi)

(9.6) X(Dgy +m?) -+ (Ay, +m?) <O|T[p(z1) - $(yn)]|0> .

In view of the fact that A + m? becomes —k? + m? under Fourier transform,
this says that the Fourier transform of the correlation function must have poles at
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the mass shell values p? = k? = m?, and the residues of these poles are the measur-
able scattering amplitudes! This accounts for the emphasis on the computation of
correlation functions in field theory. As a check, one finds that in free field theory
S conserves particle number and momenta.

Let us now derive the asymptotic expansion for Z(J) and hence for the cor-
relation functions. This is cleverly done by using the source J(z) to replace the
quartic term by four functional derivatives:

2() = [IDslexp [ / d‘*m-—-—¢4} expi [ d'a(50,00%6 — Jm$ + 4

fiosea[ 273 ()]

X expi/d‘la:[%(?,,(ﬁ(?“(]ﬁ - %m2¢2 + J¢]

o0 = e [0 (igr)

That is, Z(J) is expressed as a series of successively higher functional derivatives
of Zy(J), the partition function for the free theory evaluated in Eq. (8 35). The
correlation functions follow by taking further derivatives,

i

Zo(J).

671
8T (1) 6J (mn)

(9:8) <O[T[g(w1) -+ ¢(zn)]|0>= (—)" Z(I)s=o-

‘They are expressed as power series in A whose coefficients are various integrals of
products of the Green’s functions G(x — y) appearing in Zo(J). Writing out these
terms is a tedious combinatorial exercise which is greatly facilitated by Feynman
diagrams, which are simply graphical representations of the various terms.

Recall from Wick’s theorem that the nonvanishing terms in a repeated func-
tional derivative such as (9.8) come from complete pairings of all the derivatives,
the pairing of §/6J(x) with §/6J(y) leading to a factor G(z — y) in the result.
We represent each possible complete pairing by a graph in which there is a vertex
labeled with each argument z of a functional derivative §/6J(z). Vertices corre-
sponding to paired derivatives are joined by a line. It follows that four lines will
meet at each internal vertex [a vertex corresponding to an operator §*/6J(z)* from
the expansion of the exponential in Eq. (9.7)], while only one line emerges from an
external vertex corresponding to an argument z; in the correlation function being
computed. The following “Feynman rules” specify the contribution to the correla-
tion function (9.8) represented by a given graph. Each internal vertex in the graph
represents a factor —i), so that the number of internal vertices in a graph is the
order of the corresponding term in the power series expansion in A. A line connect-
ing points  and y represents a factor —iG(z —y). The resulting expression is to be
integrated over all internal vertex labels, leaving a function of the external points
only. The correlation function to a given order in A is the sum of the contributions
of all graphs with that number of internal vertices or less.

For some graphs, thereis an additional numerical “symmetry factor” in addition
to the factors specified in these rules. It arises from an incomplete cancellation of



248 J. M. RABIN, INTRODUCTION TO QUANTUM FIELD THEORY
Y
O '
X 1 X 2 X 1 X 2 X 1 X 2
(a) (® ©
Figure 9.1. Feynman diagrams contributing to the two-point function to or-
der A,

(a) ~iG(z1 — :lrg).
(b) § [ d*yG(z1 — y)G(y — 22)G(0).
(c) 2G(z1 — z2) [ d*yG?(0).

two numerical factors already present in the series for Z(J): the 1/4! in the A¢*
interaction, and the 1/;! in the jth term of the expansion of the exponential in
Eq. (9.7). The “normal” situation in a graph is for each internal vertex y to be
connected to four distinct neighbor vertices z1,... ,z4. There are 4! distinct ways
to choose which of the four derivatives §*/6J(y)* are paired with the §/6J(z;), so by
letting one graph denote all such choices we eliminate the factor 1/4!. However, for
some graphs this counting is not correct. Whenever an internal vertex is connected
to fewer than four distinct neighbors, an extra numerical factor must be attached
to the contribution of the graph. For example, in the graph of Figure 4b, there
are 4 X 3 ways to connect z1,z2 to y, but then there is only one way to connect
y to y. This graph has a factor 4 x 3/4! = 1/2. In general, this “symmetry
factor” is 1/N, where N is the order of the permutation group of the lines in the
graph, leaving the vertices fixed. Similarly, the 1/5! at order j is supposed to be
cancelled by the j! ways of labelling the internal vertices with integration variables,
so that by drawing only one of the labelings we can omit this factor. Again, there
are exceptional situations in which different labelings do not give distinguishable
graphs and a symmetry factor is left over, but we will not encounter these.

As an example, let us compute the two point function <O0|T[¢(z1)¢(z2)]|0> to
second order in A. Using Eqgs. (9.7,9.8), we have

<OTe0el0> = (-0 gty [ [ 2 s
(9.9) —ﬁ/d4xd4ym+...] Zo(J) |y -

The results of these derivatives to order A are shown with the corresponding graphs
in Figure 4. At zeroth order in A we have the free field theory Green’s function
—iG(z — y). At higher order we see at once that some diagrams are topologically
connected while others have two (or more) connected components. Each compo-
nent is a separate multiplicative factor in the corresponding expression; no factors
G(z — y) link points in different components. As I will now explain, we should
omit the contribution of every disconnected diagram. This is because of the fact,
which we have ignored until now, that Z(J) was to be normalized so that Z(0) = 1.
To accomplish this, all our formulas for correlation functions must be divided by
Z(0). In fact, we can explicitly exhibit a factor Z(0) in the two-point function,
because Z(0) itself has a Feynman diagram expansion: it is a degenerate case of
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0—-———o+-O=+- e 4 ... =

(1+OO+ )(0—————————- + o—L¢+)

Figure 9.2. Factorization of the two-point function into the zero-point func-
tion Z(0) and the series of connected diagrams.

Y,
. . O O Y, Yo
X, ¥ X, X, Y, v, X, X, X,
(@ (b) ©

Figure 9.3. Connected graphs for the two-point function at order A2.
(@) & [ diyrdtyaGlar - 41)G(ur — 22)G* (1 - 42)G(0).

(b) & [ d*y1d*yaGlor - 11)G(ur — 2)Glyz — 22)G3(0).

(c) i—%?' J @ndtyGler — y1)G®(y1 — ¥2)G(y2 — z2).

a “zero-point” correlation function and as such corresponds to diagrams having no
external vertices at all. Pictorially, the two-point function we computed factors into
two series as in Figure 5, where the first series is Z(0) and the second contains only
connected diagrams. A similar argument shows that ignoring the disconnected dia-
grams is the way to correctly normalize every correlation function. Unfortunately,
the integral corresponding to the remaining connected diagram contains a factor
G(0) which is undefined.

The connected contributions to the two-point function at second order are
shown in Figure 6. The second order contribution also involves divergent integrals
because of the singularity of the Green’s function G(y; — y2) as y1 — y». These are
the rest of the notorious infinities of QFT — the serious ones this time. Obtaining
sensible results from this series of divergent integrals is the goal of the program
of renormalization. The mathematical origin of the divergences is the samé as in
free field theory: the presence of undefined formal products of distributions in the
Lagrangian from which we computed the path integral. Renormalization can in
fact be described in mathematical terms as the problem of defining these products
of distributions, but we will take a more physical approach.

It will be helpful to study not the correlation functions themselves, but their
Fourier transforms. Not only are these are the physically significant quantities
according to the LSZ formula, but we only know G(z — y) through its Fourier
representation anyway. Mathematically it is standard to study products of distri-
butions in terms of their symbols. Therefore we study the two point function in
momentum space,

(0.10)  Glpr,pe) = / dio1dtzy <O[T[B(21)¢(w2)]|0> e~ P11 e ipraz,
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For example, computing this transform for the first order contribution of Figure 4b
and inserting the integral representation of G(z — y) gives

/d4m1 dizq dtp e 7P T TIP3 T2

X _): / d4kl d4k2 d4keik1-(a;1 —m)eikg'(wg—al)eik~0
) (2m)i2

y -1
(k2 — m? + i) (k2 — m? + i€)(k? — m? + ie)

(9.11)

Performing the integrals over z1, z3,x, this becomes

%/d‘lkl d4k2 d*k 54(k1 — p1)64(k2 — p2)64(k1 + kz)

-1
X (k% —m2 + i) (k2 — m? + ie)(k? — m? +i¢)

(9.12)

Using the delta functions to do two more integrals, we obtain

A 1 4 -1
_ A A ———
(9.13) 25 (p1+p2) (P% _ mz)(p% —m?) / k k2 —m2 + ¢’

which we immediately recognize as quadratically divergent.

By applying the same transform to an arbitrary graph, we obtain a set of Feyn-
man rules for directly writing down the series expansion of the Fourier transforms
of the correlation functions. We draw the same diagrams as before, but instead
of labeling the vertices we label each line with a 4-momentum variable k. The
lines should be directed; with our Fourier transform conventions the momenta on
the external lines (those containing an external vertex) should flow into the graph,
but the directions on the internal lines are arbitrary. Each line represents a factor
i/(k* — m? + i€), and each vertex represents a factor —iA(27w)*6*(3_ k), where the
delta function sets to zero the net momentum flowing into the vertex. Multiply
by the symmetry factor 1/V and integrate the internal momenta with the measure
[1d*k/(27)%. As in the above example, these rules always produce an overall delta
function which expresses the conservation of the total momentum flowing into the
graph, and there will always be explicit poles when an external momentum p? = m?,
as required by the LSZ formula. Often we omit these factors for brevity. As another
example, Figure 7 shows a second order graph and its contribution.

To analyze and tame the divergences it is helpful to introduce a regularization,
or cutoff, for the integrals. The simplest (though not computationally the most
useful) way to do this is to fix a large number A and restrict each momentum
integral d*k/(27)* to the region k2 < A%. Because this region is not compact
when %2 is defined with the Lorentz metric, we should perform the Wick rotation
to Euclidean space on all the k° integrals first. This amounts to replacing every
term k2 in the Lorentz metric by —&? in the Euclidean metric. We then compute
integrals over balls of radius A, and the results, which are finite but depend on
A, are related by analytic continuation to the integrals of actual interest. The
problem is to determine how singular the integrals are in the limit A — oo, and
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)pl > ky th

P~ ki~ ks
Figure 9.4. The second-order contribution of Figure 6c to the two-point func-
tion in the momentum space (Fourier transform) representation:
(21484 (p1 + p2) (93 — m?) ™ (3 — m?)~1 =2
x [ LELE (62 — m? 1 ie)=1 (1 —m? + i)~ [(p1 — b1 — k3)? —m? 4 ie] 1.

how to modify them to remove this divergence. Of course, the modification cannot
be arbitrary, but should be physically motivated so that we know how it affects the
physical interpretation of the finite results.

Let me remark that this regularization procedure is precisely what a mathe-
matician might do to study singular products of distributions. For example, to
study products of delta functions, we might replace them by delta sequences of
smooth functions which become more localized at zero. One way to do this is to
impose a cutoff % < A% on the Fourier integral representation,

dk tkz
ﬂ'e .

We could then study the singularity in the products of such smooth functions for
A — oo,

We have estimated the “degree of divergence” of our integrals thus far by “naive
power counting”: each momentum integration d*k is counted as A%, each denom-
inator (k* — m?) counts as A~2, we multiply these factors to obtain AP, and the
integral is finite if D < 0 but divergent if D > 0. A basic result known as Weinberg’s
theorem [17] (due to Nobel Laureate — but not at the time — Steven Weinberg)
justifies this procedure. It shows that the contribution to the integral from a region
in which all integration variables are of order A does behave as this naive power of A
(where A® is understood to mean In A). There may be contributions with different
behavior from other regions, but they are associated with identifiable subgraphs of
the Feynman diagram. This makes possible an inductive study of the divergences.

Let us return to the two-point function G’(pl, p2) to order A2 which diverges
as A% by our calculations and Weinberg’s theorem. Observe that it is a Lorentz-
invariant function of p;,py supported at p; = —p,, therefore a function only of
pi = p§ = p*. By Taylor-expanding the integrands of the Feynman graphs in p, we
can write

(9.15) G )=A+Bp+C(*)* +---,
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where A, B,C,... are certain integrals over internal momenta k; obtained by dif-
ferentiating the original integral and setting p = 0. The key point is that each
derivative produces more momentum factors in the denominator, thereby lower-
ing the degree of divergence according to Weinberg’s theorem. Thus, A diverges
as A%, B diverges as In A, and higher coefficients are actually finite. The crucial
result, which holds for all graphs and is well-known in distribution theory, is that
the divergences can always be isolated in the form of a polynomial in the external
momenta, in this case A + Bp®. Subtracting this polynomial from G leaves a finite
result, but we must understand the effect of such subtractions on the interpretation
of the theory.

To do this, let us return to the Lagrangian of Eq. (9.1) and ask for the physical
interpretation of the parameters m and A. We know that when A = 0 the particles
are free and have mass m, which leads us to guess that in general m is their mass
and A is some measure of their interaction strength or charge. To confirm this, we
should choose some measure of interaction strength, perhaps the average deflection
angle of interacting beams of particles of some specified momentum, and compute
it in terms of m and A using Feynman diagrams. We might also deduce the particle

"mass in terms of m and A by comparing deflection angles at various momenta.
Given our experience, the result of the computation is likely to be divergent. So
let us admit that we do not know the physical meaning of the parameters in the
Lagrangian. To indicate this, let us rename them as the “bare” or “unrenormalized”
mass my and charge Ag, in contrast to the “dressed”, “physical”, or “renormalized”
mass m and charge A which are defined and measured by actual experiments. We
also rename the bare field ¢g, so that the bare Lagrangian is

1 1 1
(9.16) £ = 50,600" 0 ~ §m§¢§ - ;4—;/\045‘3-

We define the renormalized field by ¢ = Z~1/2¢,, where Z is the constant in the
LSZ formula (9.6), so that ¢ is the field which actually becomes free in the limits
t — oo. We assume that Z,mg, and A¢ can be related to the physical mass and
charge by asymptotic series of the form

(9.17) Z = l+amr+aX+---,
(9.18) me = m(l4+bA+bA?+--),
(9.19) X = AMl4ar+er’+-),

where the coefficients may depend on m, A, and on the fixed momentum in the
experiment defining the physical charge. These series guarantee that in the free
theory with A = 0 we have Z = 1, Ap = 0, and my equal to the physical mass.

Now, perturbation theory has given us an expression for G(p?) in terms of
Mg, Ao, A through order A2. We demand that Z ’1G(p2), the correlation function
for the fields ¢ rather than &g, should be finite in the limit A — oo when it
is reexpressed in terms of the physical quantities m, A using the series above to
order A%, If it is possible to choose the coefficients a;, b;,c; in these series so as
to make all the n-point functions finite to all orders in A in this way, our theory
is called renormalizable. In fact, the A¢* theory is renormalizable, as is quantum
electrodynamics.
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One way to see how renormalization works is to substitute the series (9.17)-
(9.19) into the bare Lagrangian (9.16), obtaining

1 1 1
e B 242 - 4
1
+‘2'(al)\+a2)\2+---)6,‘¢6“¢
1
- §m[(a1 + b))+ (az + by + albl))\2 4o .]¢2

1
(9.20) = gil(er + 200X + (2 + 20z + af + 2a100)0% + - ],

The substitution has produced many new interaction terms in the Lagrangian,
called counterterms. When we expand Z(J) in its perturbation series, the new
terms will lead to new types of vertices in the Feynman diagrams. The counterterm
proportional to 9,60 ¢ leads to a vertex where two lines meet representing a factor
p*(a1A +---) (p is the momentum flowing through the vertex; the p? arises from
the Fourier transform of the two derivatives). The counterterm proportional to ¢?
is another vertex where two lines meet representing the factor —i(ay +b1)mA+---,
and the ¢* counterterm is a four-point vertex representing —i(c; + 2a;)A + «+-.
There will be new diagrams involving the two-point vertices making contributions
of the form A + Bp? to G(p?), and by choosing the coefficients correctly they will
precisely cancel the divergences we found earlier. The four-point counterterm is
needed to cancel divergences in the four-point function which we have not studied.

In order for this theory to be renormalizable it is clearly necessary that we do
not continually encounter new divergences as we compute new Green’s functions
or as we proceed to higher orders in A, because we only have three types of coun-
terterms available to cancel them all. To see that this condition is satisfied, we will
determine the degree of divergence of an arbitrary diagram having F external lines,
V internal vertices, and I internal lines. There are I internal momentum integrals,
and V — 1 delta functions expressing momentum conservation at each vertex (the
—1 is for the overall conservation of external momenta, which will not help us do
any integrals), leaving L = I — V + 1 integrals to do (this is also the number of
independent loops, or generators of the fundamental group, of the graph). There
are I denominators containing momenta, so the graph behaves like A raised to the
power 4L —2I = 4(I -V +1)—2I = 2] —4V +4. Now we need a relation between V
and I. Since four lines meet at each vertex, the total number of lines in the graph
should be 4V, but this counts the internal lines twice, so in fact 4V = F + 2I.
Substituting, the graph behaves like A*~®. This crucial result shows that the di-
vergences do not get worse as the graphs get larger. In fact, the two-point function
is quadratically divergent at all orders, the four-point function is logarithmically
divergent (that’s what the third counterterm was for!) and the other Green’s func-
tions are “superficially convergent” (that is, if they diverge, it is only because they
contain two- or four-point subgraphs). From here the proof of renormalizability is
a (nontrivial!) combinatorial exercise of checking that the same counterterm that
makes a given graph finite will also appear with the correct coefficient to cancel the
divergences arising when this graph appears as a subgraph of a larger one.

Let me conclude this introduction to renormalization theory with several com-
ments and hints concerning topics beyond the scope of these lectures.
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(1) The key to the renormalizability of A¢? theory is our computation of the
degree of divergence 4 — E for the E-point function. This depends on a delicate
balance between the dimension of spacetime, which leads to numerator factors d*%
in Feynman integrals, and the power of ¢ in the interaction term of £, which
controls the number of lines meeting at each vertex and indirectly the number
of momentum denominators in the integrals. One finds that A¢* theory is not
renormalizable in more than four dimensions, and is superrenormalizable (diagrams
actually become less divergent at higher orders in A, and beyond a certain order
no more counterterms are needed) in less than four dimensions. An easy way to
understand this is to apply dimensional analysis to the Lagrangian of Eq. (9.1). In
order for the action to be dimensionless, so that exp:S makes sense, we see from
the kinetic term that ¢ must have dimensions of length™!, or of momentum, in four
dimensions, and then from the interaction term that A is dimensionless. Since each
Green’s function has a fixed dimension, and A is dimensionless, the momentum
integrals at every order in A have the same dimensions, and therefore the same
degree of divergence. In contrast, in more than four dimensions, A would have
dimensions of momentum to some negative power, so that momentum integrals
at higher orders must have more momenta in their numerators and hence higher
degrees of divergence. In general, a dimensionless expansion parameter is the poor
man’s test for renormalizability.

(2) The only condition we have imposed on the counterterms a;,b;,c; is that
they contain terms with behavior A2 and In A which cancel the divergences of the
Feynman integrals for A — co. But we also want to compute the resulting finite
Green’s functions. Since a;,b;,c; are still arbitrary by constants independent of
A, the renormalized Green’s functions are far from unique. How do we fix or
understand this ambiguity? The answer is that we specify that m is the physical
mass of the particles, and A is their charge as measured in a specific experiment.
When we compute the results of this experiment via Feynman diagrams and demand
that they be equal to m and A to each order of perturbation theory, this will fix
the arbitrary constants in the counterterms to that order. If we choose another
definition of the charge, as being the result of some other experiment, the constants
will change. In general, there is a standard physical definition of the mass, while
the meaning of the charge is more a matter of convention, but even this need not

always be the case. For example, in quantum chromodynamics (QCD) we believe

that quarks attract each other by such strong forces that they can never be isolated
as free particles. In such a case, the mass of a free quark cannot be measured, and
several indirect definitions of mass via various experiments are used. What we really
have is a two-parameter family of quantum field theories for which we can choose
coordinates m and A in many convenient ways. The freedom to add constants to
the counterterms is the invariance of this family under reparametrization, which is
one form of what is called the renormalization group.

(3) Suppose we have fixed some experimental definitions of m and A. In order to
get a renormalized theory with these specific numerical values of m and A, according
to Egs. (9.18,9.19) the bare parameters mo and A¢ must flow in a specific manner
with A as A — oco. (Of course, the asymptotic series may not have any validity
for A — co. We are really assuming that they are asymptotic expansions of some
expressions which do make sense.) This one-parameter Abelian group action on
the two-dimensional space of mg and g parametrized by A is another form of the
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renormalization group. For a more profound discussion of renormalization in terms
of this flow, see [18].

(4) After renormalization, every term in the perturbation series of every Green’s
function is finite. However, this says nothing about the convergence of the series it-
self. As mentioned already, in those two- and three-dimensional field theories which
can be constructed rigorously, perturbation theory is only asymptotic to the exact
Green’s functions, and we hope/pretend this is the case in four dimensions. In some
cases Borel summation of perturbation theory gives the exact Green’s functions,
while in other cases the series is not Borel summable. Nevertheless we know from
experiment that the first few terms of the series in quantum electrodynamics give
correct results to many decimal places. The mathematician reader should stop to
absorb the fact that the renormalizability of electrodynamics is not just a theorem
to a physicist: physics students must actually be trained to compute renormalized
Green’s functions correct down to the signs and factors of 27!

(5) Recall that a Lagrangian with a continuous symmetry possesses a con-
served current j#,0,j% = 0, which is generally some quadratic expression in the
fields. Green’s functions involving this current, as given by Feynman integrals be-
fore regularization, will formally satisfy

(9.21) By <O|T[5*(z)¢(x1) - - $(xn)]|0> = 0.

However, the cutoff Feynman integrals may not satisfy this relation, and there may
be no choice of counterterms for which the renormalized Green’s functions satisfy
it. [Because j* is quadratic in the fields, this Green’s function is an (n + 2)-point
function with two arguments coinciding. Even after renormalization, Green’s func-
tions are normally singular when their arguments coincide. Further counterterms,
amounting to a modification of the formal definition of j#, are required to make
this Green’s function finite. This is called the renormalization of composite opera-
tors.] In such a case the conservation law 9, j* = 0 was only formal; the rigorously
defined operator-valued distribution j#(z) is not conserved, and we say there is an
anomaly. Such anomalies typically occur in theories involving Dirac fields and are
deeply related to the Atiyah-Singer index theorem for the Dirac operator.
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Self-adjointness and time evolution in quantum mechanics

Let H be a complex separable Hilbert space. An operator A on H is a linear
function from a linear subspace D(A) to H; A : D(A) — H for short. The linear
subspace D(A) is called the domain of A. For the most part we are interested only
in the case where D(A) is dense in H. Key examples to keep in mind are differential
operators on L?(R"), which cannot be defined on all of L?(R") in any natural way.

Definition. Given two linear operators A and B on H, we say that A C B if

Definition. Given a densely defined operator A on H we define the adjoint
operator A on H as follows: an element y in H is in D(A?") iff there is a z in H
such that < Azly >=<z|z> for all z in D(A). For such a y we define Aty = 2.
Remark: if A4 is a bounded operator on all of H then D(A!) = H also.

Definition. A densely defined operator A on H is said to be symmetric if
A C A'. This is equivalent to saying that < Az|y>= <z|Ay> for all ,y in D(A).

Definition. A dénsely defined operator A on H is said to be self-adjoint or
Hermitian if A = A, i.e. AC AM and AT C A.

1. Show that the following operators are symmetric but not self-adjoint.
(a) Let H = L?([0,1]) and D(A) = C* functions on (0,1) with compact sup-
port, and Af = f" for f in D(A).
(b) Let H and D(A) be as above, but now take Af = if’.
(c) Let H = L%*(Q2), where Q is a bounded open subset of R". Take D(A4) = C®
functions on  with compact support, and Af(z) = 8;(a;;(z)d;f)(z), where
the matrix a;;(z) is Hermitian with C?! entries.

What is so special about self-adjoint operators? Part of the answer is contained
in the following theorem. '

Theorem (Stone and von Neumann). Suppose that for each t in R, U(t) is
o unitary operator on H, with U(0) = 1. Also assume that U(t + s) = U(t)U(s)
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for all s,t and that for each z in H we have limy_,oU(t)x = z. (Such a U is
called a strongly continuous one-parameter group of umitary transformations, or
a continuous symmetry for short.) Define a linear operator A on H as follows:
Az = —ilimyo[U(t)x — z]/t, with D(A) consisting of all z in H for which this
limit exists and belongs to H. Then A is a densely defined self-adjoint operator
called the infinitesimal generator of U. Conversely if A is a densely defined self-
adjoint operator on H, there is a unique continuous symmetry for which A is the
infinitesimal generator. (This U(t) is denoted by expitA.) Furthermore, if u(t) =
e**4ug with vy in D(A), then u(t) is in D(A) for all t and is the unique solution to
the equation u(t) = iAu(t) with u(0) = u,.

Therefore there is a 1-1 correspondence between continuous symmetries and
self-adjoint operators A. We will see below that self-adjoint cannot be replaced by
symmetric.

2. In each of the problems below a continuous symmetry U(t) of H and a subspace
V of H will be given. Let A denote the infinitesimal generator of U(t). In each
case show that V' C D(A) and find the action of A on functions in V.

(a) H = L*(R3),U(t)f(z) = f(z + tv) for a fixed v in R?, and V is the C!
functions with compact support on R3.

(b) H and V are as in part (a). Set U(t)f(z) = f(e~*Pz) where B is a skew
symmetric 3 X 3 matrix. Also show that U(t) is unitary for each t.

(c) Let H = L*([0,2x]) and U () f(z) = Ua(t) f(2) = o™+ f(r(z + t)), where
a € C with |a| = 1 and the functions » and r on R are defined as follows. For
each s in R let s = n(s)27 +7(s) where n(s) is an integer and 0 < r(s) < 27.
Let V =V, = {f € C'([0,2n]) : f(27) = af(0)}. Also show that U, is a
continuous symmetry.

3. Let H = L*([0,2x]) and Af = —if’ on D(A) = C" functions on (0,27) with
compact support. (Note that by part 1b, A is symmetric but not self-adjoint.)
For each o € C with || = 1 let A, denote the infinitesimal generator of U,
defined in problem 2c.

(a) Show that A C A,. So A, is a self-adjoint extension of A.

(b) Let uo(z) be a positive C* function with compact support in (r/2,7) so
that ug is in D(A). Show that the unique solution to the partial differential
equation dyu(t,z) = iAu(t,z) = dyu(t,z) with u(0,z) = uo(z) is u(t,z) =
uo(z +1t). Notice for ¢> 0 that u(t,-) stays in D(A) as long as t <7/2. But
for ¢ large enough the function u(%,-) is no longer zero at the left end point.
This gives an indication of why A being symmetric is not good enough for
producing continuous symmetries. For differential operators the choice of
domain is essentially a choice of boundary conditions. A choice which makes
the differential operator symmetric but not self-adjoint indicates that one
has specified boundary conditions which are too restrictive. As a result there
is no possible unitary time evolution which will maintain these boundary
conditions. This is what happened in this problem. It is an interesting
fact that the boundary conditions f(27) = af(0) with |a| = 1 are the only
possible boundary conditions which produce a self-adjoint extension of A.
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Gaussian measure problems

A basic formula in the study of Gaussian measures is

(9.22) / e~ 124y = \ /27 /a.
R

Definition. The measure g on R™ given by
(9.23) du(z) = Z 7 te™<A8> 2 gy,

where A is a positive definite matrix and Z is a constant such that g(R") =1, is
called the mean-zero Gaussian measure on R" with covariance G = A1,

4. (a) Find the constant Z.
(b) Show that [, eP* du(z) = e<GP.P>/2 for all p in R™.
(c) Use analytic continuation to show that [, e’P®>du(z) = e~ <CPP>/2,

Definition. For any finite measure g on R™, the function f(p) =
Jon €™ dp(z) is called the Fourier transform of p.

Fact: ji uniquely determines the measure p.
(d) For v in R™ and f : R™ — R “nice”, set 9, f(2) = <v, Vf(z)>. Show that

(9.24) /R 0, (2)du(z) = /R < Avz> du(@)

for nice f. Use this to show that 8! = —0y+ < Av,->.
(e) Show that [, <v,z><w,z> dp(r) = <Gv,w> for all v,w in R".
(f) (Wick’s theorem.) Show more generally that

(9.25)
/ <V, &> -+ <Vgp, 2> dp(z) = Z < Guyy,v5, > - <G, v5, >,

where the sum is over all pairings (é1,1),... ,(in,jn) of the integers
{1,2,...,2n}. Hint: integrate by parts or use part (b).

(g) Suppose that F' and H are bounded measurable functions on R™ of the form
F(z) = f({<wvi,z>}) and H(z) = h({<wj, z>}), where the v; and w; are
a finite collection of vectors in R™ such that < Gv;,w; >= 0 for all ¢, j. Show
that

020) [ F@H@M = [ F@au) [ A@ine)

You may use the fact that F' may be approximated in L?(dp) by finite linear
combinations of functions of the form exp? ) ax <vk, x> where the oy, are
real numbers.
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5. (Gaussian measures and the heat equation.) Keep the same notation as in

problem 4. Let L be the second order differential operator L = (1/2)G;;0;9;.
Let el be the solution operator to the partial differential equation u; = Lu
(using L?(dz) functions here). That is, if u(t,z) = (e!* f)(x), where f is a C?
function on R” such that all its derivatives up to second order are in L?(dz),
then u(?, ) is the unique function satisfying u; = Lu,u(0,z) = f(z), and u(t,-)
is in L?(dz) for each time ¢. Facts: e'” extends to a bounded operator on L2(dz)
for t > 0, e'L(L2%(dz)) C C®(R") for t> 0, and et for ¢ <0 is not defined on
all of L?(dz) and is unbounded. Show that

(9:27) el f(z) = /Rn Fla+ 8 2y)du(y) = (p: * f)(2),
where
(9.28) pi(z) = Z;7le™AS>/2t

with Z; chosen so that fRn pi(z)dz = 1. In particular we conclude that
Jan F(x)dp(z) = eL£(0). This formula is useful for computing Gaussian in-
tegrals in cases where f is a nice function like a polynomial or an exponential.

In these cases e’ f can be computed by using the power series expansion for
tL
e’

. (Normal ordering.) Normal ordering is a standard operation in QFT. There is a
function version of normal ordering and an operator version. In this problem we
explore the function version. Fact: loosely speaking, if ¢ > 0 and f is a function
for which el f makes sense, then e*! f(z) is real analytic in z.

Definition. Given a function f on R", : f: (z) = eI f(z) is called the normal
ordered version of f.

From the fact above, for this to make sense f must at least be analytic. More

precisely f must be of the form f = elg for some function g.

(a) Show that : f: is defined if f is a polynomial in z, or if f(z) = e<®®. Also
find :e <P, .

(b) Show that :<v1,&> -+ <VUp,>:= B4, +* O, :€*¥*>: at @ =0 in R™.

(c) Show that 8, : f:=:8,f:.

(d) Let My denote the multiplication operator M rg = fg. Show that
[e'r, M4, 5] = terdg, by showing that both sides satisfy the same ordi-
nary differential equation with the same initial condition.

(e) Use parts (c) and (d) to show that :<v,-> f:i=<w,>:f: —=0gy : f:. A
nicer way to write this formula is < v,-> f:= 8};0 : f:. As a corollary of
this formula we see that : [, <v;,->= ([[;8%,)1.

(f) Let @, be the orthogonal projection onto the subspace of L?(du) orthog-
onal to the polynomials in z of degree n or less. Show that for (n + 1)-
homogeneous polynomials of the form f = H?:ll < vj,- > we have : f:=
f — Qnf. This is sometimes how normal ordering is defined. Hint: use the
last formula of part (e).
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(g) Find a graphical technique for computing integrals of the form fRn 2fieee
: fn: dp where each of the f; are homogeneous polynomials.
(h) Use part (g) to show that

k ! k
(9.29) / :H <v,~,->::H <w;, >rdp = 5“21_[ <Gvi,wa(i) >,
R* 1 i=1 i=1

where the sum is over all permutations o of {1,2,... ,k}.

. In this problem we turn to the operator version of normal ordering.

Notation. Set a(v) = g, and at(v) = 9}, for each v in R". The a(v)
are called annihilation operators and the a'(v) are creation operators. Also set
¢(v) = a(v) + a’(v) = M4y, >, the so-called field operators.

(a) Show that [a(v),a’(w)] = <Gv,w> 1.

Definition. Let O be an operator expressed as a linear combination of
products of annihilation and creation operators. The normal ordered version
of O, denoted :0:, is the operator formed by reordering each term of O so
that all creation operators stand to the left of all annihilation operators.

Example. If O = a(v)a’(w) then :0:= at(w)a(v).

Remark. The notation is misleading. The normal ordering operation is
not a function on operators but on the formal expression of an operator in
terms of creation and annihilation operators. For example by part (a) we
can write O of the above example as O = af(w)a(v) + <Guv,w> 1 which is
already in normal ordered form. So unless < Gv,w > = 0 we obtain distinct
results by normal ordering different expressions of the same operator.

(b) Suppose that A and B are bounded operators on a Hilbert space such
that the operator C = [A, B] commutes with both A and B. Show that
eATB = eAeBe[ABl/2) Hint: let ¥(t) = e '4e¥4+B) and show that
¥(t) = e"*4Be'Ay(t). Then show that e *4Be!4 = B — tC by differen-
tiation, and solve for 1.

(c) Suppose that f(z) is an analytic “nice” function on R" and that f(z) =
2 foIl < wi,z >%, where v1,...,v, is a basis for R®, f, are complex
numbers, and the sum is over all multi-indices a = (a;,... ,a,) with each
@; a nonnegative integer. Notice that the multiplication operator My may
be written as My = 3 fo [] #(v;)*:. Show that : My := M, where : f:
was defined in the previous problem. Hint: first take f(z) = e<"*> so that
M; = ™). Show that :e?(?) := e~ <G¥*>/2¢4(%) ysing part (b). Disregard
the fact that a(v) and a'(v) are unbounded operators.

. (Relations between L?(du) and “Fock space” on R".) For notational simplicity
m

we now take A = I, so that G = I also. Let S(R") denote the complexi-
fied symmetric tensor algebra on R™. For vy,... ,v; and wy,... ,w; in R" set
<V Up, Wy wr > = by ) [ < i we(s) >, where the sum is over all permu-
tations of {1,2,--. ,k}. Extend this form to S(R") by sesquilinearity to get an
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inner product. The symmetric Fock space on R” is the completion of S(R™)

with respect to this inner product, and is denoted F/(R™).

(a) Let U: F(R"™) — L%(dp) be given by U(vy -+ - vg) =:]] <w;, >t extended by
linearity and continuity to F(R™). Show that U is a unitary isomorphism
of Hilbert spaces.

(b) Define for vin R™, e” = 312 v*/k!in F(R"). Show that U(e?) =:e<®>:.
This formula could also be used to define U.

(c) Show that U™ a’(v)U(vy -+ vg) = vovy - - - vk, and that

k
(9.30) U_la(vo)U(wowl cewg) = Z <V, Wi > Wo - Wy -+ - W,

1=0

where the caret means omission of the vector w;. Compare Equations
(8.27,8.28).

. (Gaussian measure on infinite dimensional Hilbert space.) Let H be the Hilbert
space of square summable infinite real sequences, z = (z1,23,... ). Let <z,y>
= ), #;y; be the inner product on H. Also let V denote the vector space of all
real sequences. We say that x in V has finite support if z; = 0 for all sufficiently
large i.

Theorem. There exists a wunique measure g on V such that [i(p)
= [, P du(z) = e~ PP>/2 for all sequences p of finite support. Informally
this is the measure du(z) = Z~te™<®®>/2[[2, dx;.

(a) Suppose that F(z) = f(z,... ,2,) is a function on V depending on only
a finite number of variables. Show that [, F(z)du(z) = [g. f(¥)dun(y),
where p,, is the Gaussian measure on R"™ with covariance 1.

(b) Let @ € V be asequence of positive terms. Let Hy, = {z € V: ) a?z? <co}.
Prove that u(Hy) = 1if 3 o? <oco and p(H,) = 0 otherwise. Outline:

(i) Notice that 1g_(z) = lime_o exp —€2 Y 1o, a?z?, so that

(9.31) p(Ha) = lim / exp(—€® Y _ aZaf)dp(z)
e Vv =1

by the dominated convergence theorem.
(i) Again by the dominated convergence theorem,

(9.32)
/exp(-—-ezzafzf)du(w): lim / exp(—e22afa:?)du(x).
v i=1 ey i=1

(iii) Compute this last integral explicitly.

Remark. From part (b) above we see that p(H) = 0! This can also be seen
from the strong law of large numbers, which implies that lim, .0 Y1y 7 /0
= 1 for almost every z in V with respect to pu.
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(c) For vin H let v" = (v1,vs,...,v5,0,0,...). Show that lim,_,co <", >
exists in L*(dp). We abuse notation and denote the limit as <v,-> which
is an L?(dp) almost everywhere defined function on V.

(d) Show that for v,w in H, Jy <v,z><w,z > dp(z) =< v,w > and
fV ei<v,:c>dﬂ($) — e—-<u,u>/2.

Remark. Because of the above result, even though #(H) = 0 the function
<, > is still a well-defined element of L?(dy) as an almost everywhere
defined function on V. Furthermore the usual Gaussian integral formulas
still hold. Because of this most of what was done in Exercises 4 — —8 above
is valid for any Hilbert space H provided <w,-> is interpreted properly.

10. In this problem we study Wiener measure which is described informally by

(9.33) du(z) = 2  exp [—% /0 lx'(s)zds] IT da(s),

0<s<1

where the measure p is on continuous functions on [0, 1] such that z(0) = 0, and

Z is a normalization constant so that u has total weight unity.

(a) Set < f,g>= fol f(s)g(s)ds and |f|? =< f,f > for f and g functions on
[0,1]. Do an informal computation by completing the square to show that

(9.34) / e dp(z) = eV f2,

(b) Let h be a continuous function and set f(s) = — fsl h(u)du, so that f' = h
and f(1) = 0. Use this f in part (a) and do an integration by parts to
conclude that

(9'35) /6<h’w>dﬂ(z‘) — e<Gh,h>/2,

where Gh(s) = fol min(s, u)h(u)du.

Remark. The function min(s,u) is the Green’s function for the differential
operator A = —d?/ds?> with a Dirichlet boundary condition at 0 and a
Neumann boundary condition at 1. The functions u,(s) = C, sin(nw+m/2)s
for n > 0 form an orthonormal basis of eigenfunctions of A with eigenvalues
An = (nm + 7/2)?. From this information it follows from the previous
problem that u(L?(ds)) = 1 but p(L}(ds)) = 0, where L3(ds) denotes the
functions on [0, 1] with a derivative in L?. N. Wiener proved the following
stronger result.

Theorem. There is a unique probability measure p on V = {z € C([0,1)]):
z(0) = 0} such that

(9.36) /e<h’z>du(x) — ¢~ <Gh,h>/2
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for all continuous functions h on [0,1].

(The continuous functions z(s) are often called Brownian or Wiener paths.)
Since this is the prototypical Euclidean path integral, we will show more
directly that the differentiable functions have measure zero. This will also
serve to introduce you to stochastic calculus.

(c) Set h(s) = Y.i., hib(s — s;) with s; € [0,1] and h; real. Plug this A into
Eq. (9.36) above to conclude that [z(s1),... ,2(sn)] is distributed as the
Gaussian measure on R" with covariance G;; = min(s;, 5;).

(d) Let P = {0 = sp <81 <:-- <8, = s} be a partition of the interval [0, ].
Define the function Vp(z) = Yo, [z(si) — #(si-1)]? for x in V. Show that
Vp(z) — s in L?(dp) as the mesh of P goes to zero. This says that the
quadratic variation of a typical path up to s is s. Show that this cannot
happen if the path is C.

Remark. Part (d) can be written suggestively as dz(s)? = ds, whereas in or-
dinary calculus one has dz(s)? = 0. As a result the calculus formula df (z(s)) =
f'(z(s))dz(s) must now be replaced by df(z(s)) = f'(z(s))dz(s)
+ (1/2)f"(x(s))ds for Brownian paths. This is called Ito’s formula and is one
of the basic ingredients of stochastic calculus. Of course the formula must be
interpreted properly.

Miscellaneous physical problems

11.

(Special Relativity.)
(a) Show that the linear transformation &’ = Az, with

O OO
OO0

Y v

| =B

(9.37) L
0 0

with |8] < 1,7 = (1 — #?)/2 is a proper Lorentz transformation, and
that its inverse is obtained by replacing 3 by —f. Show that the spatial
(z',y',7") coordinate axes are parallel to the (z,y,z) axes, and that the
origin of the primed coordinate system is observed in the unprimed system
to move along the positive x axis at velocity 3. This Lorentz transformation
is called a boost along the positive z axis at velocity .

(b) (Time dilation.) In the primed coordinate system, two events are observed
to occur at the same location but separated by the time interval T. Show
that in the unprimed system they are separated by the time interval vT'.

(¢) (Relativity of simultaneity.) In the primed coordinate system, two events
are observed to occur simultaneously at points on the z’ axis a distance
L apart. Show that in the unprimed system these events are separated
by the time interval y8L. Which one occurs first? Conversely, suppose
that in the unprimed system two events occur at points on the z axis,
separated by a distance L and a time interval T with 72 — L? < 0. For
such “spacelike separated” events, show that § can be chosen to make the
events simultaneous in the primed frame.

12.

13.

14.

EXERCISES 265

(d) (Length contraction.) A ruler is at rest in the primed system, extending
along the z' axis from the origin to 2’ = L. To measure its length, an
observer in the unprimed system will note the location of its endpoints at
some fixed time (her own t coordinate!) and measure the distance between
them. Show that she will obtain L/~.

(The Lorentz group and SL(2,C).)
Asin Eq. (3.1), we associate to each vector z* in R* the 2 x 2 Hermitian matrix

20+ 23 2! —iz?
(9.38) X:( ) )

! +ix? 2 — 28

Now define a map from SL(2,C) to the proper Lorentz group by sending A €
SL(2,C) to the Lorentz transformation X’ = AXA!. Show that this is in fact
a surjective homomorphism with kernel {%1}.

(Heisenberg’s uncertainty principle.)

Let | > be any vector in L?(R), and z and p the usual quantum-mechanical
operators satisfying [z,p] = 4. Then the Hermitian operators & = z — <#|z|¥ >
and p = p — <¢|p|Yy > measure the deviations of z and p from their mean values
in the state [¢) >. Note that [#,5] = i. Now define (Az)? = < 4|42y > and
(Ap)? = <9|p®|y >, which measure the mean square deviations of z and p from
their average values. Use Schwarz’ inequality to prove that

(9.39) (Az)*(Ap)® > | <9lEply> |2

By writing #p as the sum of Hermitian and skew Hermitian parts, deduce the
uncertainty principle,

(9.40) (Az)*(Ap)* 2 1/4,
or, with physical units restored,
(9.41) (Az)*(Ap)® > K% /4.

Show that the ground state of the simple harmonic oscillator is actually a mini-
mum uncertainty state, with equality in this formula.

(Harmonic oscillator Green’s function.) Use our solution of the simple harmonic
oscillator in terms of creation and annihilation operators to compute the Green’s
function

(9.42) G(t—t') = im <O|T[z(t)z(t)]|0>,

thus verifying that analytic continuation from the Euclidean space path integral
does select the correct Green’s function. Also show directly from the Heisenberg
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equation of motion for z(t) that the Green’s function must satisfy

(9.43) (Ed; + G ~t)=6(t—1).

(Angular momentum and SO(3).) The Lagrangian L = {m|x|* — V(|x|) de-
scribes a particle moving in R? in a spherically symmetric, or central, potential
— one which depends only on the particle’s distance from the origin. It is in-
variant under the usual action of the rotation group SO(3) by 3 x 3 orthogonal

matrices multiplying x.
(a) Show that the conserved quantities associated by Noether’s theorem to the

generators of rotations about the z, y, and z axes are just the components
of the angular momentum vector L = x x p:

(944) Ly = L, = YDz — 2Py,
(9.45) Ly Ly = zpy — zp2,
(9.46) Ly = L,=zpy— ypo,

where p = mx.

(b) In quantum mechanics, where [z;,px] = i6;x, verify that [L;, zx] = iejma,
[L;,pr] = i€rip1, and [Lj, Lg] = i€jp L1, where €y is &1 according as jkl is
an even or odd permutation of 123, and is zero if j, k,! are not all distinct.
This type of commutation relation with L; is characteristic of any triple of
operators which transform like the components of a vector under rotations.
Note that vy — vg + (¢6)i€ v is precisely the change in the kth component
of a vector under an infinitesimal rotation by angle 6 about the z; axis.

(¢) Verify that L is indeed conserved in quantum mechanics by checking that
[H,L;] = 0, where the Hamiltonian is H = |p|?/2m + V(|x|). You will find
it useful that [f(x),p;] = 10; f(x).

(d) SO(3) also acts on L2(R?) by Af = foA™!, where A € SO(3), f € L*(R?).
Show that the L; are the generators of this representation by showing that,
e.g., 1 —ifL, acts as an infinitesimal rotation by angle  about the z axis.

(The hydrogen atom.)

Warning: this problem involves a great deal of tedious calculation! You don’t
have to do it all!

The hydrogen atom consists of an electron of mass m and charge e moving in
the central electrostatic field of a proton, which we assume to be fixed at the
origin. The Hamiltonian for the electron is

2 2
(9.47) =L _ Iif

m

H acting in L?(R®) has a discrete spectrum of negative eigenvalues giving the
atomic energy levels which we will compute. (There is also a continuous spectrum
of positive eigenvalues which describe a free electron coming in from infinity with

EXERCISES 267

kinetic energy equal to the eigenvalue, scattering off the proton’s electric field

and moving out to infinity again. These will not concern us.) ,

(a) H has a large symmetry algebra. In addition to the conserved angular
momentum, [H, L] = 0, there s also the Runge-Lenz vector R, the Hermitian
operator
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1
9.48 R=— - -
(9.48) o (pxL-Lxp) m

X,

for example,

(9.49)

1
R, = ;(Zpﬁ + 2P} — Tpaps — Ypypa +ips) — 22(x® + ¢ + 22)71/2,

Show that [H,R] = 0. In classical mechanics, the electron would follow an
elliptical orbit with the origin at one focus, and this vector points from the
origin to the nearer vertex of the ellipse. Its length is proportional to the
eccentricity of the orbit.

(b) Show further that

(9.50) R L=L-R=0,
(9.51) [Lj, Be] = iejui Ry,
(9.52) RI? = e* + %H(lle +1),
(9.53) [R;, Bi] = —-%Hejlel.

(¢ Iiet D c L?(R?) be the span of the eigenvectors of H having negative
eigenvalues. We define a Hermitian operator K with domain D by ’

(9.54) K= (—%)WR.

Further defining M = (L + K)/2, N = (L — K)/2, show that

(9.55) [Mj, My] = iejri My,
(9.56) [Nj, N = tejriNg,
(9.57) [M;, Ni] =0,
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(9.58) IMP* = IN? = (JL]” + [K[*)/4,

(d) According to part (c), the operators M and N acting in D generate a
(unitary) representation of the Lie algebra su(2) X su(2). Suppose we de-
compose D as the direct sum of irreducible representations of this algebra.
The Casimir operators [M|?> and |N|* commute with the generators and
are therefore constant on each irreducible representation by Schur’s lemma.
Therefore, again by (c), H is also constant on each irrep, so these are the
eigenspaces of H. Only those irreps having |M|? = |NJ? occur, and the
value of each of these Casimir operators is j(j + 1) in the 2j 4 1-dimensional
irrep of su(2) having highest weight j = 0, 2,1, 2,.... Defining the princi-
pal quantum number n =25 +1=1,2,..., we deduce that the irrep with
highest weights (j,) is an n?-dimensional eigenspace of H with eigenvalue
—me*/2n?. In fact, each possible value of n occurs in the decomposition of
D, exactly once. To prove this one must construct operators like the at and a
of the harmonic oscillator which raise and lower the eigenvalue of H. This is
even more tedious than what you’ve already been through. Including these
new operators enlarges the su(2) X su(2) symmetry of the hydrogen atom
to so(4,2). See, if you like, [19]. (With physical units restored, the energies
of the stationary states of the hydrogen atom are —me?*/2h%n® = —13.6/n?
electron volts. The ground state energy of —13.6 eV can be measured di-
rectly as the negative of the energy required to ionize the atom, and of course
the energy differences between states can be measured with extreme preci-
sion from the frequencies of photons emitted during a transition between
the states. This precision is more than sufficient to measure the corrections
to the energies you’ve derived, arising from such effects as the motion of the
proton, the spin of the electron, and the non-instantaneous transmission of
the electric force between them, but that’s another story.)

17. (Feynman diagrams.) Draw the Feynman diagrams contributing to the four
point function or vertex function < 0|T[¢(z1)¢(x2)d(x3)$(z4)]|0 > in the Ag*
scalar field theory up to order A2, Write down the corresponding terms of the
perturbation series as well as their Fourier transforms. How divergent are the
integrals?
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