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THE MAXIMUM-ENTROPY MEASURE OF A RATIONAL ENDOMORPHISM
OF THE RIEMANN SPHERE

M. Yu. Lyubich UDC 517.53

let £(z) be a rational function of a complex variable regarded as an analytic endomor-
phism of the Riemann sphere S$®. 1In the present note an existence and uniqueness theorem 1is
established for the maximum—-entropy measure u of the endomorphism f. We prove that the roots
of the equation fU7 = ¢ (z) are asymptotically equally distributed with respect to the measure
U, where ¢ is an arbitrary rational function, apart, possibly, from two exceptional constants.
In particular, the full inverse images f "c (where ¢ is not an exceptional constant), as well
as the periodic points of the endomorphism f, are asymptotically equidistributed according to
the measure u.

We shall construct a maximum-entropy measure by investigating a special operator in the
space of continuous functions. Let A be a bounded operator in the complex Banach space B .
We consider its subspaces: % ,;, the closure of the linear hull of the eigenvectors of the op-
erator A corresponding to unitary eigenvalues (Al = 1); By ={p= B |4"¢ [~ 0 (m — oo)}

Definition. The operator A is called almost periodic if the orbit {d™¢!,,_, of any vector
¢=® 1s strongly precompact.

Theorem on the Decomposition of a Unitary Discrete Spectrum (see [1]). If A is an almost
periodic operator in the Banach space % , then we have the direct decomposition B = B, B, .

COROLLARY. Let the almost-periodic operator A have no unitary eigenvalues other than 1,
and let the subspace of invariant vectors be one-dimensional (= Lin{h}). Then there exists
an A*-invariant functional uwe®*, uth) = 1 such that for any vector p =B 4™ —u (P h|—

0(m » «).

We apply this result to the following operator: A: C(S®) - C(S*) in the space of contin-
uous functions:

(n=1degj, o= C (5%, z= §%), where the roots of the equation ff = z are counted with their numbers
of multiplicity. We shall use the concepts of an "irregular point” and an "exceptional point’
as defined, e.g., in [2]. By F we denote the compact of irregular points. By 1 we denote the
function identically equal to 1. We put [el = sup [P (2) |

THEOREM 1. There exists an A®*-invariant probability measure’ 1 on the sphere $® such
that

P T

By "measure" we shall always mean a complex Borel regular measure.
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for any compact K C $* containing no exceptional points of the function f, and any ¢ e C (52 .

We denote by SC a unit mass concentrated as the point §. Let ¢(f) be a rational funec-
tion. We consider the following measures:

1 . 1
!‘l’m (p:.—?n_ 5;9 Pm Q):"“""_ (S,
: 2 J ) X § S
" =) @ M=ty

where the roots of the equation {=¢(f) are counted, respectively, with and without their
degrees of multiplicity, and ¥m,¢ is the number of roots counted, ignoring their degrees of
multiplicity.

THEOREM 2. For all rational functions ¢, apart, possibly, from two exceptional constants,
the measures p, , and u;’@ converge weakly to a certain probability measure U independent of
(‘D.

If ¢=c¢, where the constant ¢ is not exceptional, the convergence P, , -k (m— ) follows

from Theorem 1 with K = {c}. This result was cbtained in [3] for a polynomial f by methods
of potential theory, which apparently do not work in the general case of a rational functiom.

COROLLARY, The periodic points of a rational endomorphism are asymptotically equidis-
tributed according to the measure .

Proposition. a) The carrier of the measure u is the set ¥ of irregular points. b) If
e .
F # S, the measure u and the Lebesgue measure are mutually singular.

THEOREM 3. a) The measure u is f-invariant. b) The dynamical system (£, u) is exact.
¢) The entropy hy(f) = log n.

It was proved in [4] and [5] that the topologic entropy h(f) = 1n n. Thus, u is the
maximum-entropy measure of the endomorphism f. We remark that the mere existence of a maxi~-
mum-entropy measure of a rational endomorphism can be deduced from fairly general considera-
tions. Namely, asymptotically h-expansive endomorphisms were defined in [6], and for these
the existence of a maximum—entropy measure was established.

THEOREM 4. Rational endomorphisms of the gphere are asymptotically h-expansive.

Remark. A rational endomorphism (and even its restriction to the set F) is, generally
speaking, not h-expansive (for the definition, see [7]).

THEOREM 5. A rational endomorphism of the Riemann sphere has a unique maximum-entropy
measure.

The following lemmas are used to prove Theorem 5:

LEMMA 1 (see [8]). Let f: X » X be a continuous endomorphism of a metric compact X, and
let u be an f-invariant ergodiec probability measure. Let Y C X and u(Y) > 0. Then hﬁ(f} <
he(Y), where he(Y) is the topologic entropy of £ with respect to Y, as defined in [7].

let E= {1, ..., n}, 0 €k <1, We consider the set G,(» CE™ of all sequences of length
m in which the element 1 appears at least =m times.

LEMMA 2. Let »>1Yn. Then there exist K> 0 and 0 <8 < n such that |Gy ()| < KO™ .

We shall say that a system of sets distinguishes the measures u and v if u(2) # v(Z) for
some set of the system.

LFMMA 3. Let the measure v be mutually singular with. the measure yu constructed in Theo-

Y

vem 1. There exists such a natural r and such a covering D = {Di}?=l of the sphere by closed
sets that D; = D% 2 DINDY=@ (=i 3) -+ (U =0: 4) the intersection of DJ and f 'z
is composed of not more than one point (1 €1 < n¥, z e $%); 5) the covering D distinguishes
u from v.

Added in Print. The results in this note were presented at the Fifteenth Voronezh Math-
ematical Winter School (January, 1981); the theses are deposited with the All-Union Scientific
and Technical Information Institute (VINITI) (No. 5691, pp. 65-66).
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INVARTANT ORDERINGS IN SIMPLE LIE GROUPS. THE
SOLUTION TO E. B. VINBERG'S PROBLEM

G. I. 01'shanskii UDC 519.46

Let g be a real simple noncompact Lie algebra; g=1£f . p the Cartan decomposition; G and
K simply connected Lie groups corresponding to the algebras g and t. We assume that D = G/K
is a bounded symmetric domain. Tt is known [1] that in this case the set Con of all closed
convex G-invariant cones in g distinct from {0} and g is not empty. There is a maximal and
a minimal cone, C and Cp3, in Conj; they are unique up to a multiplication by —1. The set

max
Con has been described in [2] and [3], [4] (also see Sec. 2).

Let C = Con and let P = P(C) be the closed semigroup in G topologically generated by the
set exp C. It defines an invariant partial ordering in G for which {glg 2 e} coincides with
P. The ordering is nontrivial if P # G. E. B. Vinberg [1] proved that P # G and P (  P™* =
{e} for C = Cyipy and raised the question whether it was true for all C < Con. §S. Paneitz [3]
proved that P(C) # G for all C = Con if D is a classical domain of tubular type; the defini-
tion can be found in [5].

THEOREM. (1) P(C)#+= G C Z + ¢, (the cone Co & Con is defined in Sec. 3), with Co = Crmax
for tubular D and Co # Chax for nontubular D. (ii) If P = P(C) # G, then P OP™* = {e} and
the "tangent cone'" C(P) (cf. [1]) coincides with C.

If ¢ # sp(n, R), su (2, 1), EITT, then Co # Cpj, and the existence of a continuum of in-
variant orderings in G follows from (ii).

1. Notation. 3% 1s the one-dimensional center; y Zf, Cartan subalgebra; bg, = ih; W,

Weyl group for (., bc); A* C by, , set of noncompact positive roots; {oy, ..., art © AT family of
pairwise orthogonal roots, where v = rank D; E; and E_,, root vectors corresponding to the
roots iuk(k =1, ..., r) normed in such a way that Hp = [Ek, E_pl &bges X = B + B =3,

i(Egy — Eox) €p, o () = 25 Z, element of i defined by the condition that a(Z) = 2 Yo e 4* ;
Ho = Z —Hy; — ... —Hy); and ¢,>, Killing form.

2. Information from [1], [2]. Each C = Con lies in G.h and is uniquely determined by
the cone ¢= iC{ bp, (we write C <> c); here ¢ contains either Z (then we write C = Con+) or
—Z., IfCr=Xesg]l— X.Y,20VY (), c* ={Xahgl|X,Y,.20VYe&c, then C <> c implies C* <> c*,

Let cpiyn C bp. be the cone spanned by At and Chax = Cmins then Cpij, < cpi, and C

If ¢ Zbg. is a closed convex cone, then (¢ > C for some ¢ € Cont) & (We=rc, ¢ CeSe ) .

max Cmax-

3. The Definition of the Cone Co. Co <> Co, where c¥ is the cone spanned by ¢ and

min

K‘IHO .

If D is of tubular type, then He = 0 and Co = C
Ho # 0, Hy=c¢ Hye& cpyn » and Co # Cpax-

max- 1f D is not of tubular type, then

nax,

Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 16, No. 4, pp. 80-81,
October-December, 1982. Original article submitted June 4, 1981,
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