
MEASURABLE DYNAMICS OF THE EXPONENTIAL 

M. Yu. Lyubich UDC 517.53 

i. Formulation of the Results 

We consider the exponential transformation f: z § e z of the complex plane C. By fn we 
denote its n-th iterate. The investigation of the trajectories {l~zl~=0 of the obtained dy- 
namical system is a meaningful problem, which in the last years has attracted great interest. 
In this paper we investigate this system from the point of view of the typical properties 
with respect to the Lebesgue measure. 

The starting point for us has been Sullivan's question on the ergodicity of the exponen- 
tial with respect to the plane Lebesgue measure [i, p. 45]. Ergodicity means that there 
exists no partition of the plane C into two measurable invariant subsets of positive measure. 
We obtain a negative answer to this question. 

THEOREM i.I. The exponential transformation f: z + e z of the complex plane is not er- 
godic. Each ergodic component has measure zero. 

Thus, the transformation f has a continuum of ergodic components.* 

A set XcC is said to be wandering if pXN~X=~ for n>m~0. In [2] it is proved 
that fdoes not have wandering sets of positive measure on which all iterations fn are injec- 
tive. As shown by the next result, the last condition is essential. 

THEOREM 1.2. The exponential transformation f: z + e z has a wandering set of positive 
measure. 

In [2] one formulates the problem of the existence of an absolutely continuous invariant 
measure for f. A partial solution of this problem is given by 

THEOREM 1.3. The exponential transformation f: z + e z does not have an absolutely con- 
tinuous invariant measure that is finite on compacta. 

Our subsequent results give a detailed description of the behavior of a typical# tra- 
jectory of the exponential. The first step in this direction has been made in [3, 4]. In 
order to formulate the result of these papers, we introduce the following notations: mf(z) 
[or simply m(z) if it is clear what mapping is considered] is the set of the points of the 
complex plane C which are limit points for the trajectories {]~zl~-0, ~=p0. 

THEOREM 1.4 [3~ 4]. ~f(z) = {an}~_-0 for almost all z~ C. 

Thus, a typical trajectory of the exponential is not recurrent [the trajectory of the 
point z is said to be recurrent if z~ ~(z) ]. We describe in detail the content of Theorem 
1.4. For almost all points z~ C there exist sequences of natural numbers ks, ks, ts (depend- 

ing on z) such that k~ l~+~=l~+k~+t~+2 and Ifl~+iz 
I l s + ~ s + i  \ 

We consider the circumference T ; it is convenient to identify it with the quotient RI2~Z. 
In this case, to the continuous functions on T there correspond continuous 2~-periodic func- 

*An ergodic component of positive measure is a completely invariant set Z, mes Z > 0, on which 
the transformation f: Z § Z is ergodic. Ergodic components of measure zero are defined cor- 
rectly within the framework of the theory of measurable partitions (see [8]) as elements of 
the finest measurable partition into completely invariant sets. 
THere and in the sequel, the typicalness of some property means that the property holds for 
almost all points with respect to the Lebesgue measure. 
%If t s = 0, then this section of the trajectory is missing. 
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tions on R. Points a~ R will be necessarily considered as points of the circumference 
T, without introducing special notations. We say that a sequence {ai} is uniformly distributed 
on the circumference T if for any continuous function ~ ~ C(T) we have the equality 

j 2= 

j~ 7 i = l  0 

Instead of continuous functions �9 one can take the characteristic functions • of all pos- 
sible intervals I c T. In this case the equality (0) has the following intuitive meaning: 
the frequency of the hits of an interval I by the sequence {ai} is proportional to the length 
of the interval. 

THEOREM 1.5. For almost all z ~ C we have 

a) the sequence {arg ]'z: n ~ U [l~+ k~ + i, l~+i]} is uniformly distributed on the circumference 

T~ 
n 

iF b) Jim -Z--z. ~ ts = t ,  

c) l i r a  (k~/s) - -  3 . 5 .  

The proofs in this paper have a constructive character. For their understanding we need 
very unpretentious preliminary information. Namely: 

Misiurewicz's Theorem [5]. The Julia set J(f)coincides with the entire plane C. 

COROLLARY i.I. For any domain D and any compactum K, not containing 0, there exists N 

such that pD~K for n~N. 

COROLLARY 1.2. The exponential transformation ]has a dense trajectory 1~nz,n=o. I~ The set 
of points with dense trajectory is massive.* 

In fact, we shall make use only of Corollary i.i. Corollary 1.2 is in a curious con- 
trast with Theorem 1.4. This is another illustration of the difference between the category 
and metric points of view. 

The basic analytic technique in the present paper is Koebe's distortion theorem. In 
order to formulate it, we introduce the notation: B(a,p)={z: ]z-a] <p}. 

Koebe's Distortion Theorem [6]. Suppose that ~(z) is a univalent holomorphic function in 
the circle B(a, p); 0 < q < i. Then for z~B(a, Np) We have the estimates: 

a) I~'~) 1 ~__.' 
(l§ "~ "(1--~)2 , 

b) i - - n  <-I~'(z) l ~  i §  

c) ]arg ~ ( = ) l ~ 2 1 n t §  ~' (a)  [ " ~  t - -  ~" 

From part a) there follows 

The i/4-Theorem. The domain ~B(a, p) contains a circle with center at the point ~(a) and 

radius ~I (a) I Pl 

The role of the points a n = fn0 consists in the fact that the singular points of the 
inverse function f-n are ~0,...,~n_1. Therefore, if a simply connected domain U does not 

contain these points, then]-nU= ~ D~, where D~nDj=~ (i ~ j), and the domain D i under 
i=l 

the action of fn is mapped univalently onto U. The inverse function ,~c U ~ D~ is called a 
(single-valued) branch of the function f-n. We shall apply Koebe's theorem to the branches 
of the inverse functions. It has been used in a similar manner for the first time in [7]. 
Finally, we shall apply systematically Lebesgue's theorem on density points, while in the 
proof of Theorem 1.5 we shall apply the strong law of large numbers for a stationary sequence 
of independent random variables (the ergodic theorem for the Bernoulli shift). 

�9 A set X~C is said to be massive if E\X is of first Baire category. 
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First we prove Theorem 1.4 (in Sec. 3). Then in Sec. 4 we shall prove Theorems 1.1-Io3. 

Theorem 1.5 is proved in Sec. 5. It relates to Sec. 3 and does not depend on Sec. 4. 

We introduce notations: N = {0, i, 2, ...} is the natural series; K(a, p) is the square with 
center at the point a and side 2p. We shall write both exp z and e z. 

2. Preliminary Constructions and Estimates 

LEMMA 2.1. For every e > 0 there exists N such that for k ~N we have the estimates 

< I I  < I I  < 
i~l i~l 

Proof. We select a such that ex(Inx)i+~<~x TM for x>~a. Let a~a. We show by induction 

on k~n that ll(e~i)~ +~. For k = n this is obvious. If this holds for k - i, then I] 

~+~ = ea~ (ln a~) ~+~ ~ + ~  

( l n x ) ~ + ~ < x  '+". f o r  x>~b .  L e t  a~_,~>b. 

inequality of the chain is proved. 

n - i  

Now we set A=I](ea0 and we find b>~a such that ehx • 
i=l 

Then II ~+~ q "~+~<Sa t+~ (e~z~)~A~zh_~eo~ = Aeons(n~zh) --~ ~ �9 The right-hand 
'~=1 

In order to prove the left-hand inequality, we mention that e - l ~  ~ i for i ~ 2 .  Let a~-2~  
e 4. D i s c a r d i n g  t h e  f a c t o r s  e - l ~ i  ( i  = 2 . . . . .  k - 3 ) ,  we o b t a i n  

k 

i=l 

LEMMA 2.2. For each point z~C there exists an index k = k(z) for which ][~+~z• 

(i = 0 .... ,k - i), {f~+Iz-ah]~i. 

Proof. If ~B(a~, i), then [/~[~[~iinf{]y(t)[: t~B(~, l)}>~[~[exp(~-i)=l~[e-~a~+~. We as- 
h 

sume that fk(/z) ~B(a~, i) (k = 0, 1 .... ). Then i>If h(fz)l~II(eqla~)I/zl>~hlfzl (the last in- 
i=l 

equality is satisfied for large k by virtue of Lemma 2.1). Since fz t 0, the inequality 
i >~hI/zl is violated for large k. The contradiction proves the lemma. 

Now we define a mapping S:C-+ C in the following manner: Sz =/k<~)+~z, where k(z) is defined 
in Lemma 2.2. This mapping will play an important role in the subsequent investigation. We 

mention that if Hez~0 , then Sz = fz. 

which are unions of rect- Let k ~ Z, ~ {--+i}. We define vertical strips V k and sets V k 

angles : 

V~ = {X-~ ig: a,kl? + 3ct,ql- ? ~ ]xI ~< 0r I - -  3a!~l:~, sgn x = sgn k}, 

V~ := { x +  ig ~ Vh : I cos g[ ~ 2/alhl-1, sgn  (Cos y) = ~} C Vk. 

LEMMA 2.3. There exists N such that for k > N we have the inclusions: 

i) SV + = I V  + ~ v~+~; 

2) SV-f = ]Vf  ~ V_(~+~); 

3) SV+~ =/~+~V+~ ~ V~+~; 

4 )  SV-~ =/~+2V2~ ~ V~+~. 

P r o o f .  1,  2 .  L e t  z = ~ x + i g ~ V  + U V~. Then Sz = f z  and  iRe(Sz) I = e ~ ] e o s y t ~ > e x p ( a ~ - ~ +  
a~-~) ( 2 / a ~ - ~ ) = 2 a ~ > ~ + 3 ~ _ , . *  On t h e  o t h e r  h a n d ,  ]Re(Sz) l ~ < e x p ( u ~ - a ~ _ ~ ) = a ~ + J d ~ < u ~ + , - 3 ~ .  S i n c e  
s g n ( R e ( S z ) )  = ~ f o r  z ~ V ~ ,  t h e  i n c l u s i o n s  1, 2 a r e  p r o v e d .  

3 ,  4 .  L e t  z=x+iy~V_~UV+_~ .  We as sume  t h a t  l f ( fz ) -~ l< l  (]=0, f , . . . ,  i ' - - i ) .  Then 
~-i i-I 

I I] max {I ] '  (~)l: ~ ' ~  B  lfz I l l  + :) I H 
J = o  j = o  ' =  

*We shall not state continuously that certain inequalities hold only for sufficiently large 

k. 
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;Z ~+s/2 2 Let ~ > O. By v i r t u e  of Lemma 2.1, the l a s t  expression does not exceed ] a~_~ e ~{_i~.{< 

/z~ ~+~ . ~ ~xh-~. Con- l i--2(Zi--l[Zi" Further, since--Rez~>a~-~+3a~-~, we have l/zl<-~exp(--a~-~--3a'~-~) -a-~ - 
s e q u e n t l y ,  

I /  
I (!z) ~ 1 ~ - ~ - ~  ~+~ - -  ~ ~ ~ - ~ - ~ a ~ v ~ a ~ "  ( 1 )  

1+8 - - 2  - -  For i<~k we obtain I/~(/z)--~l<~_~}_~L By induction, the last inequality is satisfied 
for all i = 0, 1 ..... k [and thus, also inequality (I) for i = 0, 1 ..... k + i]. 

h k h + l  

On the other hand, [/h+~ (/z) " ah+~ l~I/z l l-[ min {I/' (~) 1 : ~ ~ B (a~, ~)} ~ I/zl ~ exp (a~-l)-- I/z [r~ 
/ = 0  ~=0 i = 1  

(e-%~), By virtue of Lemma 2.1, the last expression is not smaller than ]/zla~a~+. Since 
2 - -Bez~a~--ah_~,  we have I / z lahah+~exP(- -ah .+a ,~_~)a~a~+~=a~.  Thus, l/h+Zz - - a h + ~ l > a h > t "  This 

shows that Sz = fk+~z and 

]Sz - -  o~+~ 1> a~. (2) 

Further, setting in inequality (i) i = k + I, we find 

l S z  - ~+~ I< ~+~/a~--~ -- o (~.+1/~_~) (~_~ ~) .  ( 3 ) 

In the  c i r c l e  ~ : ] ~ - - a h + a l < ~ a h + x  a l l  t he  branches  of  the  f u n c t i o n  f - (k+~)  a re  d e f i n e d  ( s i n c e  

this circle does not touch the points ak)o We consider that one for which /-(~+~+~= O. From 
Koebe's theorem and from equality (3) there follows that [arg(/7(~+')'(Sz)! = o(17a~-~). Therefore, 
larg(Sz-o~+~)-arg(/z)[ =o(I/o~-~). Since arg(fz) = Imz = y, while [cosy[~2/a~-~, denoting arg 
(Sz -~k+~) by ~, we obtain 

From (2), (4) we find 

lcos O] /> t/a~_~, sgn(cos O)= sgn(cos y). (4) 

] Re (Sz) - o~+~ l ~ ~ / o ~ - 1  > 3o~k. ( 5 )  

Finally, it is obvious that from (3) there follows 

a~+ 3c,~_~ < lqe (Sz) < c,~+~ - 3~z~_~. (6)  

From (4)-(6) there follow the required inclusions 3, 4. Lemma 2.3 is proved. 
I 

LEMMA 2.4. If z ~ V~, then 1S' (z) I ~-~ a,hl-1. 

Proof. By virtue of Lemma 2.3, the distance from the point Sz = fPz to the set {a~,}a~-0 
is not less than 3al~I_,. Therefore, in the circle B=B(ffz, 3=t<_, ) all the branches of the in- 

verse function f-P are single-valued. We consider tlhose for which f-P(Sz) = z. The domain 
f-PB does not contain vertical segments of length 2~. On the other hand, by the i/4-theorem, 

3~ 3c~1kt-1 l this domain covers a circle of radius ~ (/-P)' (Sz)I. Consequently, [(/p)' (z)i ~__~ ~T ai~l-1 ; 

this is what we intended to prove. 

We prove a lemma which will play a key role in Sec. 4 (while in Sec. 3 it is not needed). 

LEM34A 2 .5 .  Let  z, ~ V ~ ,  Sz, S~,~Vj.  I f  I R e z - R e ~ [  >2a,~l-z, then ]Re(Sz)-Re(S~)l>2czl j l -~ 
(for sufficiently large In I). 

Proof. Let z ----- x + iy, ~ = x, + iy~, !xI > Ix,'[. 

i. Let n > 0. By Lemma 2.3 we have l J! = n + i. Moreover, SVn H = fVn ~ and thus, 

I I~e (Sz)] = e~Icos y] >~ e = (2/~_~) = 2 exp (x - a~_~);] Re (S~) ] = e ] cos Yl I~-~ ex~. Consequently, I Re (Sz) l -- 

] Re (S~) ] ~ e (2 exp (x -- x I -- (Zn__2) -- i) > e xl > e an-I > 2(Zn_ 1 = 2alJl_ 2. The required inequality is 
proved. 

2. Let n < 0, k = In I. By Lemma 2.3, j = k + 1 or k + 2. We have ]/z] =exp(--Ixl), 
arg(/z)=y; I/~I=exp(-ix~]), arg(/~)=y~. We make use of the inequality (3) from the proof of 

--o '/=h+1~ and similarly for the point ~. We consider in the circle Lemma 2.3: ISz--ah+11_ \~h-~.! 
r 

i ~ : I ~--ah+zl <~I ~h+11 the single-valued branch of the function f-(k+l) for which /-(~+')~+~-----0 

By Koebe' s theorem 
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I 2 (7) ]S~ --  ah+~. I I f~] / -t-- o (---L-I ~ t ~  .l..l exp (I x I - I x~ [) ~ ~ as~_~. 

We set 0 = arg (S$ -- ~k+,). Then IRe (Sz)--Re(St) 11>I mE- ~+, I cos 0- I Sz- ~+11 = I Sz - ~+, I(i St GCk+ 1 I 
Sz -- ~h+z I • 

cos 0 - I). By virtue of the inequalities (2), (4), (7), the last expression is not less than 

a~ a~-i t - - t  -----yak-ieZh--t>2ah. Since  k = j - 1 or  j - 2, t h e  lemma i s  p roved .  

3. Typical Behavior of the Trajectories 

We divide the strip V k into the rectangles Qj by the lines x =l~, y=7 + 2ns, where ~ -< 

l~+i--l~2m The index j runs through some countable set h k. We set A= U Ah, where N is 
Ihl;N 

chosen so that the Lemmas 2.3-2.5 should hold. For ] , ~A~  we consider two rectangles Q~=Qj f] 
V kp (p = +_I). The rectangles of this family are numbered by the index s=(j~ p)~F~=AkX{• 

We set r = U Fh. The mapping S is continuous (and analytic) on the rectangles Q~. We have 
Ikl>~N 

c~ (8) 
rues (Qj\(Q+ U QT)) ~ a l . l _ l  ( ] ~  A#~). 

Further, by Z~ we denote the union of those rectangles Qj which are contained entirely 

in SQ~. Let P~ = Q~ N S-iZ~. The set SQy\%~ is contained in a 2~2-neighborhood of the 
5-2~__.__~< 100 _ 

boundary O(SQ~). By virtue of Lemma 2.4, the set Q~\Py is contained in a ai~l_1 al. l_l  

neighborhood of the boundary OQ~ (/~Ah) (i.e., P~ is almost a rectangle). Therefore, 

mes(Q~xP~) ~ C 9 (/~Ah)" (9) 
mes ?~ alh I-1 

From the inequalities (8), (9) there follows that 

m e s ( Q i \ (  P+ U P T ) ) ~  c`~ ( ]~A~).  (10) 
alkl-t 

The image SP~ i s  t h e  u n i o n  of  s e v e r a l  r e c t a n g l e s  Qi" Then i t  i s  t h e  u n i o n  of  t h e  a l m o s t  

r e c t a n g l e s  P~. Thus,  t h e  f a m i l y  of  a l m o s t  r e c t a n g l e s  P ~ ( ( i , F ) ~  r) has  t h e  Harkov p r o p e r t y .  

T~t  ~=(~0 . . . . .  ~o), , = ( , 0 ,  . . . ,  , : ) , w h e r e  (i,, , , ) ~ r - = r  ~ We c o n s i d e r  t h e  s e t  P'~={z:Siz~P~/ 

(1 = 0 . . . .  , n)}. By r~ we d e n o t e  t h e  family of  i n d i c e s  ( i ,  p) f o r  which t h e  s e t  P~_ has  a non-  

empty i n t e r i o r  and i s  c o n t a i n e d  in  V k. Sometimes t h e  s e t s  P~ t h e m s e l v e s  w i l l  be c o n s i d e r e d  

as  t h e  e l e m e n t s  o f  t h e  f a m i l y  r~ .  Thus,  W ~ I ' ~  means t h a t  W-=P~ ,  where (_L_~)~rT. We s e t  

r n= (J F~. From the Markov property of the family F there follows that if W'~ r", then 
IM>~N 

S"W~F. Consequently, sn+iw is the union of the squares Os ( j ~ A ) .  We set yn= U P~. 
(!,~)~r ~ - 

LEMMA 3 .1 .  There  e x i s t s  a c o n s t a n t  A s such  t h a t  i f  W ~  r~, t h e n  m~ A~ 
m"~s W "~ al~l+ n" 

Proof. The set sn+Iw is the union U Qj, where L is some subset in A. By Lemma 2.3, 
j~L 

the set sn+IW is contained in V~, where Ill ~ Ikl +n+l, and thus, it is situated at distance 

considerably larger than 2~ from the set {=~}~0 �9 We denote by ~ the inverse mapping S-<~+~): 
U Qj-+W. By Koebe's theorem, for z, ~ ~ Q~ we have 
~L 

I ~~ (Z)I ~'B (11) 
i q), (~) i  " ~ , ,  

where B is an absolute constant (independent of k, n, W, j, z, ~). From the inequalities 
(i0), (ii) there follows that 

rues ((p (Qj~.(P? U PT)) ~ B2 mes (Qj~(P? U P'j)) A~ 
rues (~pO~) rues 07 ~ eZl~l_ ~ "  
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Since W\Y"+~= U ~(Qi \ (P[  U P;)), the last inequality implies what had to be p r o v e d .  
j~L  

Now we consider the invariant set Y~ = ~ Y~, which will play a very important role in 
the sequel, n=o 

LEMMA 3.2. Let K be a rectangle whose sides are parallel to the coordinate axis and 
have length at least h > 0. Assume that K is contained in Vko Then we have the estimate 

m e s ( K \ Y ~ ) < ~ A ~ ( h )  

AT(h ) = " IB:  
( h / > t ) ,  

where BT/h(h<l ) and the constant B 7 does not depend on h. 

Proof. First we prove this inequality for the rectangles Qj (] ~ A~). Let Y~:Qj N Y~ 
0 n ,  n + l  (0 < n < ~). We mention that Yj= P~ U P~. According to the previous lemma, mes(Yj \Yj )<.~ 

As/alhi+~. Summing with respect to n, we find mes(Y~\Yf)<~A~ (I/a~k~+~)<~C/a)~. Making use of 

the inequality (i0), we obtain what we intended to prove: 

rues (Q~\ Y~) ~ C~Jam-, (12) 

Now we proceed to the general case. We startto proceed in the same way as at the proof 
of the inequality (i0). We divide K into rectangles K i by the lines y = v/2 + ~n (n = i, .... 
Z). Let a be the length of the horizontal sides of the rectangles K i and let b i be the 
lengths of their vertical sides (b i = ~ for i ~ i, s We consider also the rectangles N i = 
K i ~ (V~ U V~). Let Zi be the union of the rectangles Q~ (] ~ A), contained entirely in the 
image SNi; let L i =N~S-'Z~. In the same way as for the proof of the inequality (i0), we can 
see that the set K i \ L i is in the gk-neighborhood of the boundary SKi, where 8~ = C/~i~i-~. 
Therefore, 

m e s ( K i ~ L i ) ~  C 2(a@bi  ) 2C / i  , I \  

  he a texpr ss ooao  no ox ood , elm_ I ~ + and, consequently, 

<' ') "' 
lnes[U2ffi~U2L~ <a,h,_ I q- rues U K(. (14) 

For i = i, ~ we make use of the fact that (mesKi)/b i = (mesK)/b and of inequality (13): 

2d' [ i  ~ ) m e s K < h ~ , .  C. m e s K .  ( 1 5 )  rues ( K i \ L i )  ~ ~ ~1-------;1 ~-a- + . '~ lhl-1 

According to (14), (15), we have 

mos(K\L/~ 2C /3 ~,  
mesK "~ ~ [-# + ~,/ (16) 

z i 
where L = U Li. Assume now that Qj are rectangles of the family A, contained in SLi; let 

i=I 

~i]=S-1:Q]-+Li be a branch of the inverse function. For it we have the estimate of Koebefs 

theorem I~'ij (z) I/l ~j(~)I~ B, where B does not depend on i, j. Consequently, 

H~.-  --------= <~< ~ . . . .  
rues ((pijQj) "' ~ "" mes O~ a aihl-t 

[the last inequality by virtue of (12)]. Summing with respect to i, i we obtain m e s ( L ' \ Y ~ 1 7 6  

From the last inequality and (16) we obtain the required result. The lemma is proved. 
c~lM_l " 

Lemma 3 . 2  shows  t h a t  t h e  s e t  Y~ i s  v e r y  t h i c k  i n  a n y  r e c t a n g l e  c o n t a i n e d  i n  V k ( p r o v i d e d  
i t s  d i m e n s i o n s  a r e  n o t  c o m p a r a b l e  w i t h  ,l/,at~l_~). 

We i n t r o d u c e  some n o t a t i o n s  and  t e r m i n o l o g y .  We r e c a l l  t h a t  K ( z ,  r )  i s  a s q u a r e  w i t h  
center at the point z and side 2r. Let D be a domain, let z~D, let g(z, r) be the circle 
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inscribed in D, and let B(z, R) be the circle circumscribed to D. By the distortion of the 
domain D (relative to the point z) we shall mean the ratio R/r. If X is a measurable set, 

then by the density (upper, lower) of the set X at the point z we mean ]immeS(X NB(Z, RD 
~R 2 

(resp. lim, lim). Lebesgue's theorem on density points asserts that if mesX > 0, then the 
density of the set X at almost all points z~X is equal to i�9 

�9 yOO 
Proof of Theorem i 4. By Lemma 3.2 we have mes > 0. From Lemma 2.3 there follows 

that IRe(S"z)]-+~(n-+~) for z~Y ~. The latter means that c0/(z) c{~n}n~=0 for z~Y~. ~ 
oo 

Now we consider the set Y= U fY=. It is completely invariant (i.e., f-iy = y) and 

has a positive measure. We show that mes(YNB(z,r))>0 for every diskB = B(z, r). Indeed, 

mes(YN ~ fBl=O. But by virtue of Misiurewicz's theorem we have ~ /nB=C. Con- otherwise 

tradiction. 

Now we consider the completely invariant set Z----{z: ~/(z)<~ {an}n~=o}. According to what 

nh has been proved, %NY=f~. Let z~%. Then there exists a point ~ ~ a n such that zh= / z-+~ 

for some sequence n k + ~. Let P----~m~nl~--anl; let f -nk be a single-valued branch of the 

inverse function in the circle B(~, 2p), for which f-nkzk=z; Oh=f-nkB(~, P). Let R k and r k be 
the radii of the circles with center at the point z, inscribed in and circumscribed to the 

rain [ ( f  ~) domain D. By Koebe ' s  theorem we have ~,,o~:,o)'l 0 - ~ 9  ' (~)I' >~ •  where ~, does  not  depend on k. 
Consequently, 

1) --;---.>-~ p _ [ z ~ _ ~ l  <..~a, 

2) mesas (Y D~ fl oh) ~ x2 rues (Y ~P 2fl B (~, p)) ~ b > 0, 

where the constants a, b do not depend on k. 

We show that R k + 0. Indeed, if Bk~>6>0 for some sequence k(i) + ~, then rh(~>~a-~8~r 
and thus, D k m B(z, r). But then f~h(r r)~B(~, p). This contradicts the corollary to 
Misiurewicz's theorem: the set fnB(z, r) covers any compactum KcC* for sufficiently large 
n. The contradiction shows what we intended to prove. 

Further, from properties I, 2 there follows that 

mes(r fl 17(z, Rh)) _ Ines(r N Dh) mes(r N Dk)>  b > 0 .  
~R~ /> ~ y  ~ a2mesDh ~ a ~ 

Thus, the upper density of the set Y at the point z is positive and, consequently, the lower 
density of the set Z at the point z is less than I, By Lebesgue's theorem on the density 

oo 

points, we have mesZ = 0. We have proved that m(z) c {~n}n=0 for almost all z~C. 

Now we prove the inverse inclusion�9 We consider the invariant set 
' oe 

U,----{z: m(z)~{an}~=0, R e ( f z ) > ~ - - t  (n----0, t . . . .  )}, 

where t > 0. Let ~/2 < O < ~. The set O t does not intersect the sector {z: 0 < argz < 2~-0, 
[z[ >t/sin0}. Since U t is invariant, it does not intersect the union of the semistripes: 

oo 

Ft= [j {x+ig: O + 2 g n < y < - - O + 2 g ( n + i ) ,  x>ln(t/sinO)}. 
7 ~ = - -  c o  

L e t  z~Ut,  z~=/"z=x~+iy,, 0 < a < g / 2 .  We show t h a t  t h e r e  e x i s t s  a sequence  n k + ~ such 
t h a t  x~-++ oo, lY%[>~. We c o n s i d e r  two c a s e s .  

i. x n § +~. We assume that [y~l ~<~ for all n, starting somewhere�9 Let c---- inf sing>0. 
Ivl~<~ Y 

Then ly~+~l----e~lsiny~l >~c-~e~"[y~l>~21y~lfor s u f f i c i e n t l y  l a r g e  n.  C o n s e q u e n t l y ,  lYnl + ~- 
Contradiction. 
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2. Xph-1~Y for some sequence Pk + ~" Then Iz~kl ~e v. We screen the sequence {Pk} (with- 

out changing the notation) so that zv~-+~(k--~co). Since z~U~ we have ~(z)~{~n}~=0 and, thus, 

we have ~ = a~ for some ~. We find ~ such that e xcos~ > 2x for x~ and then s~N such that 

~f+~>~. Since Zph-+ez, we have Zph+s-+O:l+, (k § ~) and, consequently, xeh+s>~ for sufficiently 

large k. We assume that 

lye] ~ a  ( p ~ + s < ~ < ~ p k + s q - ] - - l ) .  (17) 

:r We verify by induction on i that x~+~>2x~(p~+s~i~p~q-s+]--l). Indeed, x~+1----e cosyi~J~cos~. 
By virtue of the induction hypothesis, xi~Xpk+~>~ and thus, e cosr this is what we in- 
tended to prove. 

Thus, if inequality (17) holds, then Xp~+s+i~2J~. If it is valid for all j, then xpk+~+j-~ 
+~ (j § ~), while l yph+~+jI~ a, contradicting the considered case I. Consequently, there 

exists a first value j = m k for which lynkI>~; where n k = Pk + s + m k. Since lyp~I-+O, then 
mk + ~ (k § ~)- Consequently, Xna>2mk~-+ q-co (k-+ oo)and the required sequence {nk} is con- 
structed. 

Now we assume that a and 0 are close to v/2 (it is sufficient that the inequality 1.5. 

" (i I,~) " Then, as one can easilv see, every interval a > 0 should hold).* Let Pk= rain "~[yn h �9 
co 

(Yn k- Pk, Y% + 9~) intersects the family of intervals U (O + 2~n, -- O + 2~(n + i)) and the length 
~%:--oo 

of the intersection is not less than some i > 0, not depending on k. Consequently, mes 

(K r0/m  K >i q. Moreover, the twice as large squares do not 

intersect the real line and, consequently, do not contain the points a n . Therefore, in these 

squares all the branches f-n of the inverse functions are defined. Let f-nk be the branch 
--n~ --nk 

defined in the square K(z%, 2p), for which / z% :z, D~:/ K (z%~ p~). Applying Koebe~s theo- 

rem, we can see that D k is a domain with bounded distortion, diamD k + 0, and 

rues (D~NUt) mes (K (Zn~, 9k) ~ Yt) •163 > 0 

(we have  used  t h e  f a c t  t h a t  U~ fl G = ;~). Thus ,  t h e  lower  d e n s i t y  o f  t h e  s e t  U t a t  t h e  p o i n t  
z i s  l e s s  t h a n  1. By L e b e s g u e ' s  t h e o r e m ,  we have  mesU t = O. 

S i n c e  U t i s  an i n c r e a s i n g  f a m i l y  o f  s e t s ,  we have  rues U U t =  O. But U Ut = { z :  O~o~(z) c 
{~}n~=0]. The theorem is proved, t>0 ~>~ 

A s e t  X i s  s a i d  t o  be a b s o r b i n g  i f  mes C \  -~X t = 0 .  

LEMNA 3 . 3 .  The s e t  Y~ i s  a b s o r b i n g .  

P r o o f .  We c o n s i d e r  t h e  s e t  Z = { z :  0 ~ o ( z ) } \  @ ] - ~ Y ~  �9 By v i r t u e  o f  Theorem 1.4  i t  i s  
' ~ = 0  / 

sufficient to show that mes Z = 0. Let z~Z. Then there exists a sequence nj § co such that 

]~s+~z-+0(]-+ oo). We set x~§ Then xj § -~ (j § ~)o 

We define a sequence of radii in the following manner. If z~.~ V_~, then pj = ~. Other- 
wise, zj is contained in some strip {x+iy: Ix+~I <3a~-~}, where k = k(j). Moreover, we set 
pj = 6a k_~. 

We consider the squares Kj = K(zj, pj). The intersection Wj = K~ ~ ( U V-~ 1 contains a 
~,k>O / 

rectangle, whose vertical side is equal to pj, while the horizontal side is at least 0.5pj. 

Consequently, mesW~2!mesK ~. But by Lemma 3.2, rnes(HZd fl 7ff~)~rnesWi for sufficiently 

i large j. Thus, mes(Ky fl ]z~)~mesK~. 

*We recall that a, 0 have been given arbitrarily in the intervals (0, ~/2) and (~/2, ~), re- 
spectively. 
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The squares K(zj, 2pj) are contained in the left-hand semiplane and, consequently, all 
the branches of the inverse function f-nare defined in them. Let f-nj be the branch in the 

square K(zj, 2pj) for which /-~z~ = z ;  O~ = / - ~ B ~ .  Applying Koebe's theorem in the same way 
as it has been done at the proof of Theorem 1.4, we can see that Dj is a domain with bounded 
distortion, diamDj + 0, and 

rues ( D ~  Z) rues (K~ n r )'->2>0, 
rues D~ ~ ? rues K~ /t" 4 

w h e r e  t h e  c o n s t a n t  u d o e s  n o t  d e p e n d  on j .  T h u s ,  t h e  l o w e r  d e n s i t y  o f  t h e  s e t  Z a t  t h e  p o i n t  
z i s  l e s s  t h a n  1. By L e b e s g u e ' s  t h e o r e m ,  we h a v e  mes Z = 0 and  t h e  lemma i s  p r o v e d .  

The  p r o v e d  temma a l l o w s  u s  t o  i n v e s t i g a t e  t h e  t y p i c a l  b e h a v i o r  o f  t h e  t r a j e c t o r i e s  o n l y  
on t h e  s e t  Y~ and  on i t  we h a v e  s u f f i c i e n t l y  s h a r p  e s t i m a t e s  (Lemma 2 . 3 ) .  

4. Absence of Ergodicity and of an Absolutely Continuous Invariant 

Measure. The Existence of a Wandering Set 

We construct on the set Y~ a symbolic dynamics, associating to a point z~ F ~ the se- 
quence of integers _~(z)=(• • ...) according to the rule Snz~ V• ). By virtue of Lemma 

2.3, we have l•215 By �9 we denote the shift (• zl .... )~(•215 ...) in the space of 
integer-valued sequences. Clearly, ~_(Sz)---- T(_~(z)). 

LEMMA 4.1. Let z, ~Y~. If Snz=S~+"~, then x~(~_(~))-----~_(z) �9 

Proof. Since T'~(z(~))=~_(S~), replacing the point ~ by sm~, we reduce the problem to the 

case m = 0. This will be assumed in the sequel. We find the largest i such that 

• 2 1 5  ( 7 = 0 ,  i ,  . . . ,  i) ,  (18) 

[Re (S~-Jz) - -  Be (S'~-J~) J ~  2al,~n_j(~)l_: (] = 0 . . . .  , i). ( 1 9 )  

We show that i = n [and thus, equality (18) is satisfied for all j = 0, i ..... n, as re- 
quired]. We assume that i < n. We denote q = z~_~(z). 

We assume that the points sn-i-~z and sn-i-~ are contained in the same set V~. Then 
~_~_~(z)=k~-~-~(~) and, by virtue of the selection of i, we must have the inequality ]Re 

(S~-~-~z) - Re(S~-~-~)J > 2aa,-_~. From here, by Lemma 2.5, there follows the inequality llle(Sn-~z). - 
11e(S~-~)I > 2~iqi_2, in spite of the assumption (19). The contradiction shows that the points 

sn-i-lz and sn-i-1~ are contained in distinct sets V~, 

But by virtue of the assumptions (18), the points sn-iz and sn-i~ are contained in one 
set Vq. By Lemma 2.3, this is possible only for q > 0 in one of the three cases: 

1) S~- i - l z  ~ V+_I, Sn-i- l~ ~ V+(q-2)i 

2) S~-i7~z ~ V+q_l, Sn-i-1; ~ V----(q_l); 
3) S"-~-~z ~ V:<q_~), S""~-a; ~ V_+cq_~). 

I n  t h e  c a s e  1 we h a v e  S'~-~z = ](S"-~-~z), w h i l e  S " - ~  = / q ( S " - ~ - ~ ) .  We d e n o t e  v =]~-~(S'~-~- '~) ,  x +  iy = 
S~-:~-~z. From the definition of S we conclude that 

I v - -  g~-~l < t. ( 2 0 )  

By the definition of the set V~_~ we have 

x ~> %_2 + 3%-~, cos y >~ 2/a~-~. (21)  

From the inequalities (20), (21) there follows Re (Sn-~z) -- Re (S~-~)) e ~ cos y -- J e~J~> =~_~=~_= (2/ 
~q-2)-ea~_~>2~o._~, which contradicts the assumption (19). The contradiction shows that case 
1 is excluded. 

Case 2 is entirely similar to case i. 

In case 3 we make use of inequality (3) from the proof of Lemma 2.3. We obtain ~q - 
S~-~z<aj2, S~-~--~-~<a~-J2. Consequently, S~-~z-S~-~>(a~-3a~_~)/2>2a~_~ and we have ob- 
tained again a contradiction with inequality (19). The lemma is proved. 

We denote W~= Vh~ Y=. 

LEMMA 4.2. Let z, ~W~. We assume that fPz = fq~ for some piq~N. Then a) ~(z)=~(~) , 
b) p=q. 
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Proof. We consider two nonintersecting sets V~ = U V~, B~-- U B(czk,, ~). The trajectory 
IM>N h=o 

I/nz}~-0 of any point z~ Y~ is contained in V~ U B~ and visits each of these sots infinitely 
often. We note that if n = 0, LI, L2,... are the moments at which the trajectory is in the 

set V~, then fLiz = Siz. 

Let u = fPz = fq~. We find the smallest moment S~ N such that p~ ~ V~. Then S~z~ f~u = 
SZ~ for appropriate n~ l~N. We assume, for the sake of definiteness, that l~n. By Lenm~a 
4.1 we have ~(z)=T~_x(~), whore m = s - n. Consequently, x0(z)=• But for m > 0 we have 

Ixm(~)[ > l• Lki----Ix~(z)1. Thus, m = 0 and, consequently, !(z)=~(~), i.e., a) is proved. 

In addition, we have shown that Snz = sn~ for an appropriate n. 

Now we define natural numbers Zi(z) in the following manner: Siz-~/ii(z)(Si-lz). Lemma 2.3 
allows us to find s in terms of Wi-i(z) and • Namely; I) if • then Zi(z) = i~ 
2) if • then two cases are possible: a) •215 then Zi(z)----z~(z); b) • 
Ixr +i, then /i(z)=xi(z)+i. 

Since z~(z)=• for all i~N~ we have /~(z)=/i(t)------t, We set L~ ~Zi, where n has been 
i=I 

defined above. Then /Lz--S~z =/p§ Since the point z is not preperiodic, we have L = p + s. 
Similarly, L = q + s and part b) is proved. 

Now we are completely ready for the proof of our fundamental results. We set ~V~ = Vii- 
yoo, W~-=: Vk N Y% 

Proof of Theorem i.i. Let z ~ W ~ ,  ~ W ~ .  Then • and thus, _~(z):z(~j). 
By Lemma 4.2~ the trajectories of the points z and do not intersect. Consequently, the in- 

variants sets U~- ~ fW + and U[--= /nV/~ do not intersect. We consider the partition of 
~:0 ?z=O 

the plane into two completely invariant sets X + -- ~ l'nU+, X; = C\X~-. Since X~ ~ W;~, it 
+ ~=0 ,  

follows that both sets X~ have positive measure (Lemma 3o2). The nonergodicity of the trans- 
formation f is proved, 

Now we assume that the transformation f has an ergodic component Z of positive measure. 
Let z~Z.Q Y~, z~=z~(z). We consider the square K n = K(snz, ~) and we partition it into two 

I 
sets: K +---K~ f] {x+iy: cosy>0}, KS =Kn f] {x+iy: cos~ < 0}. We have mesK~=:fmesK~(,~=:+_:i). 

By Lemma 3,2; the measure of the set Kn f]W~n ~ K~ ~ Y ~176 is almost equal to ~mesK~. 

Further~ from the ergodicity of the transformation f: Z § Z there follows that one of 

the sets Z ~ X~ (~ =-+I) will be of zero measure. Moreover, mes(Z~Q K? f] W~$~) -~0. Therefore, 

men (Z fl K~) </men (Kn".QWPm~ (22) 
, ~'~-~ (~-+co). 

men K n ~ . men K n 

:Z9% 
Let Snz- f z, and let / *n be the branch of the inverse function in the square K(snz, 

2~) for which /-zn(Snz)=z; Dn----/-*nKn. Applying Koebets theorem, we can see that D n is a 
domain with bounded distortion and diamD n + 0. Making use additionally of inequality (22), 
we obtain that the density mes(Zf]D~)/mesD~ of the set Z in the domain D n is separated from 
i, i.eo, the lower density of the set Z at any point z~Zf]Y ~ is less than i. By Lebesgue's 
theorem, we have mes(Z~ Y~)=0. From the invariance of Z and Lemma 3.3 there follows that 
rues Z = 0. 

Proof of Theorem 1.2. A wandering set of positive measure is the set W k. Indeed, the 
positivity of the measure follows from Lemma 3.2, while Lemma 4.2 (statement b) means that 
ffW~ f] /~W~ = ~ for p > q >~ O. 

Proof of Theorem 1.3. We show that A(B(~k, e)) = ~ for every k~N, ~>0. We consider 

the set W_~ = ~ ~4~_~. By Theorem 1.4, the return mapping T: W_=-~ ~7 Tz=S'z, where n = 
It ~ N  

n(z) is the first moment for which S"z~ W_=, is defined almost everywhere. We show that the 
set W_ k is wandering under the action of the transformation T. indeed, let T'~z=T"~ (% ~ 
W_k). Then, by Lemma 4.2 we have _x(z)=!(~). But T"z:=S~z, T~=Sr for appropriate p, q. 
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Assume, for the sake of definiteness, that p~q. If p > q, then i• l > l~(z)[ = l• and 
the equality SPz = sq~ is not possible. Consequently, p = q. Thus, T% =SPz=SP~=T'~. 
But the numbers n, m are uniquely found from p and the sequence •215 Indeed, they 

are equal to the number of the negative components of the vector (• x2 ..... • Thus, n = m; 
this is what we intended to prove. 

Now we show that )~(T~W_~)~%(W_~). Indeed, for a given n we partition W_ k into the union 
0 X~i: z~Xnj if Tnz = fJz. By Lemma 4.2, we have fX~jnfX~=~ for i ~ j and from the in- 

variance of the measure ~ there follows that %(fX)>~)~(X) for every measurable set X. Thus, 

(TW_~) = E ~ (?Xn~) >~ E' ~ (X,~) = ~ (W_,~). 

F u r t h e r ,  acco rd ing  to  Theorem 1.4 and Lemma 3.3 we have )~ ~ 0 ,  from where 

%(W_=)>0. But then ~(W_~)>0 for an appropriate k. Therefore, X U = ~(T~W_~)) 

~ ~(W_~)-~ oo for every ~. But the set ~ TnW-~ is contained in the left semiplane {z: Re z < 
n--I  n-.=l 

- ~ } .  Consequent ly ,  mes {z: Re z < - - M } =  oo f o r  a r b i t r a r i l y  l a r g e  M. I t  remains to  no te  t h a t  
f-(~+'B(a~, e) c o n t a i n s  some l e f t  semiplane  and, t hus ,  ~(B(a~, e))=X(/-(~+i)B(~, e)) =~176 The theo-  
rem is proved. 

Question. Is there an absolutely continuous invariant measure, whose density is smooth 

in C\{=n}n~0 (at the points ~n it must have nonintegrable singularities)? 

5. Distribution of the Arguments 

We consider the set QT=Qj N Y~(j~A) and we define on it the conditional measure ~j(X)= 
mes(X N Q~)/mesQ~, where X is a measurable subset in Qj. We introduce the following nota- 
tions. If X is a subset of the circumferenceT=R/2~Z, then IXI is its Lebesgue measure and 

= ~--I IX I is its normalized Lebesgue measure. If x~R, then x~X means that x(mod2~)~X. p (X) 

If %0, ..., X~T, Z~N, then we set [Xo...X,]~={z~Qj: lm(S~z)~Xm (m ~ Z,. . ., l + n) ] (we shall 
omit the index ~ = 0). 

LEMMA 5.1. Let I0,...,I n be intervals on the circumferenceT ; assume that p(fk)~h>0; 
] ~ Ak- Then 

(t All I f i p ( I ~ ) ~ j [ I o  . . / ~ ] } ~ ( i +  A1------L--1 ) t ip(In, .  
~ I M + I - I  / m=o " ~ lh l+ l - - i  m=0 

where the constant A11 = All(h) 
same as in Lemma 3.2 (with other constants). 

Proof. First for ~ = 0 we carry out induction on n. 
tangles K = [I0] j and Qj: 

( t  A7 )mesK~mes(K n Y~)~(I  
aiM-1 

i 

does not depend on j, ~, n, while the dependence on h is the 

We apply Lemma 3.2 to the rec- 

A,) + ~ rues K, 

A, rues O~ ~ mes QT ~ I + mes Oj. 
~Ik l -1 

Dividing the first inequality by the second one, we obtain the basis of the induction: 

( t  al ) p(fo)~Jts(K)~(i + ~ ) p ( I o ) .  (23) 
a t h l - i  

Now we  a s s u m e  t h a t  f o r  i ~ Ak+,, we h a v e  
n 

b 

where the constant b satisfies some additional lower estimate, given below. Further we shall 
proceed according to the same scheme as in Lemma 3.2. Let Z be the union of those rectangles 
Q~ (i~A) which are entirely included in SK and let L = K n S-I%. Assume that QicS@, ~i=S-~: 
Qi § L is a branch of the inverse function. The rectangle Qi is contained in the strip V~, 
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where J~J i> Jkj + 
set{a~}n~_-0 . Moreover, Qi has bounded dimensions (at most 2~ • 2~). 
have 

_ _  I + + ( + + ) I  _ c 

al~l-I ~ ~I~{-~ 

Consequently, 

and, thus, it is situated at a distance not smaller than ~i~i-~ from the 
By Koebe's theorem we 

+ < ) 
Summing w i t h  r e s p e c t  t o  i ,  t a k i n g  i n t o  a c c o u n t  t h e  i n d u c t i o n  h y p o t h e s i s  ( 2 4 ) ,  we o b t a i n  

< )< ) < ,)< 
But f o r  ~rj(L) t h e  e s t i m a t e  ( ! 6 )  f rom t h e  p r o o f  o f  Lemana 3 .2  h o l d s  

al~l-1 ~j (K) ~ nj (L) % + aj~l_l ] 

I f  b i s  s e l e c t e d  in  a d v a n c e  so t h a t  we h a v e  t h e  e s t i m a t e  I + - - ~ b  ~ t + 4 t +  ~ ,  

t h e n  f rom t h e  i n e q u a l i t i e s  ( 2 5 ) ,  ( 2 6 ) ,  ( 23 )  t h e r e  f o l l o w s  t h e  r e q u i r e d  e s t i m a t e  

( t b ~ b .. n 

The case of an arbitrary s is obtained from ~ = 0 by considering the mapping S+: Q+~-->+-C 
and by carrying out exactly the same reasoning as above. We omit the details. 

We consider the space 7.+ of sequences e= {e~}n~_0 of zeros and ones. Let I be an interval 
on the circm~ference and let XI be its characteristic function. We fix a rectangle Q =- Qj. 
We construct the mapping hi: Q~-+y2 +, associating to the point z~Q ~ the sequence {~n(z)= 

n co 

%~([m(S z))}n=0, and we carry over the measure .~ ~ ~j from Q~ to ~: ,u z = (hJ.~+ In addition, 
we consider on E+ the Bernoulli measure ~I (i.e., the measure corresponding to the scheme 
of independent trials), the probability of the appearance of unity being p(I). Finally, by 

~ denote the o-algebra on E , generated by the random variables e~ (n =Z, {+ i .... ),| =: P. | 
is the tail o-algebra. +=0 

A measure H on E + will be said to be asymptotically Bernoulli if for some Bernoulli 
measure v there exists a sequence ~s -+ 0 such that (i--e~)v(X)~(X)~(l§ for every 
set X~= | 

LEMMA 5.2. For every interval I on T , the measure UI is ass~nptotically Bernoulli. 
More exactly, if p(1)~> h, Q c V~, then for every set X~ ~, we have the estimates 

t - -  ~l~J+~-~Au .~ ~ (X) ~ ~(X) ~ 7  I + ~+~+1+~_1, ] 

where  A ~  = A ~ ( h )  i s  t h e  c o n s t a n t  f rom Lemma 5 . 1 .  

P r o o f  We s e t  I0 = T \ I ,  I~ = I .  B y  [eo. e+] + we demote  t h e  c y l i n d e r  in  t h e  s p a c e  ~+ " " " 2 , c o n -  

sisting of those sequences x={x~}~=0 for which x+=e~_~ (~=~ .... , l J-n). We have ~[~0...~+~]~= 

[/% .. e~], v<[e0.., s~] z= [e~). Now from Lemma 5.1 we obtain the required inequality for 

cylindrical sets X =[e0... e~] ~. Since these sets generate the entire o-algebra | the lemma 
is proved. 

COROLLARY 5.1. The measures ~I and ~I coincide on the tail o-algebra: p~(X)=',:~(X) for 
X~| 

We proceed to the proof of Theorem 1.5, formulated in the introduction. We shall make 
use of the notations s ks, ts, introduced there. 

Proof of Theorem 1.5. Since the set Y~ is absorbing (Lemma 3.3), it is sufficient to 
y~ verify the typical properties of the trajectories on In turn, it is sufficient to do 
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this on the set Q~= Q N Y~, where Q is an arbitrary rectangle of the family A o 

By the definition of the transformation S we have fz~+%z_--S (/~-iz I. Therefore, it is 

convenient to formulate Theorem 1.5 in terms of the transformation S: for almost all z~Q ~ 

o, ~ ~-- (S~z) (m0d2~)l~=0 is uniformly distributed on the circumference T. the sequence {ar~ (/o S z) Im 
In other words, for every interval f ~ T, almost everywhere relative to the measure 11, we 

~--I 

have the equality ]im--i~ %l(Im(S~z))=p(f). Passing to the space Z +, we obtain the follow- 
n~oo n 

�9 i=0 

ink formulation: for almost all sequences e~Y2* , relative to the measure ~I, we have the 
equality 

n--i 

lira ~ e i =  p ( / ) .  (27)  
n - * o o  i = 0  

We c o n s i d e r  t h e  s e t  X, c o n s i s t i n g  o f  a l l  s e q u e n c e s  f o r  which  e q u a l i t y  (27)  i s  s a t i s f i e d .  T h i s  
s e t  b e l o n g s  t o  t h e  t a i l  o - a l g e b r a  ~ .  Making u s e  o f  t h e  c o r o l l a r y  t o  Lemma 5 . 2 ,  we o b t a i n  
v I ( X )  = v i ( X ) .  But  by t h e  s t r o n g  law o f  l a r g e  n u m b e r s ,  f o r  a s e q u e n c e  o f  i n d e p e n d e n t  random 
v a r i a b l e s  we h a v e  v i ( X )  = 1. P a r t  a )  o f  Theorem 1 .5  i s  p r o v e d .  

S i n c e  a l m o s t  a l l  t r a j e c t o r i e s  r e t u r n  t o  t h e  l e f t  s e m i p l a n e ,  we can  assume w i t h o u t  l o s s  
o f  g e n e r a l i t y  t h a t  t h e  r e c t a n g l e  Q i s  c o n t a i n e d  in  t h e  l e f t  s e m i p l a n e .  M o r e o v e r ,  we can  s e t  

/0=i. Let /----[----~,~]~T. We consider the sequence?, ~%z(Im(/l~-tz)). The sequence ~_={%} 

is constructed from the sequence e= (hl),z in the following manner. Since ~0 = i, we have 
~0 = go. If ~s = gPs and s~ is the first zero coordinate of the sequence E_, occurring after 

Spa, then ~s+l = s~+1. It is easy to show that {~s} is a stationary sequence of independent 
(relative to the Bernoulli measure v I) random variables with mathematical expectation i/2. 
By the law of large numbers we have 

n--I 

i (28)  l im-- i  ~ ? ~ _ = T  
n ---> oo n 

a ~ O  

a l m o s t  e v e r y w h e r e  w i t h  r e s p e c t  t o  t h e  m e a s u r e  v I and ,  t h e r e f o r e ,  a l s o  w i t h  r e s p e c t  t o  t h e  
measure ~I" 

By E s = Es(z) we denote the segment[L+k~+i, l~+~--i] of the natural series and let E = 
DE s . From part a), proved above, and from equality (28) there follows that the mean value 
of the sequence {E~(arg(/~z)): n ~ E} -- {Z~(Im(]~-~z)): nEE} , obtained by discarding ~ from s_, is 
also equal to 1/2. This means that, on the average, the trajectory {/~z: nEE} is in the left 
semiplane as often as in the right semiplane. But on the s-th segment {pz: n ~E~} of this 

trajectory, exactly one point f~+~-lz is in the left semiplane, while t s are points in the 
right semiplane. Consequently, 

~-1 (29) 
i i m ! ~  t , = t ,  

S ~ O  

and p a r t  b)  i s  p r o v e d .  
&+ks. V fs+%+t~+lz~ 

Further, from Lemma 2.3 there follows successively that ! z ~  n~+%, Vks+%+t~+l 
and, finally, k~+~=k~+%+t~+2. Taking the average with respect to s and using then the 
equalities (28), (29), we obtain the required equality 

~--I n~l 

lira __i kn = lira ~ (k~+~ -- k~) ---- lira ~ (% + t~ + 2) = 3.5. 

The t h e o r e m  i s  c o m p l e t e l y  p r o v e d .  

I n  c o n c l u s i o n ,  t h e  a u t h o r  e x p r e s s e s  h i s  g r a t i t u d e  t o  A. M. V e r s h i k  f o r  s t i m u l a t i n g  d i s -  
cus  s ions. 

i. 
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APPROXIMATION OF INTEGRAL CURVATURES OF CURVES IN R n AND S n 

I. F. Mainik UDC 513.73 

In [i] Aleksandrov suggested a method for constructing a general theory of nonregular 
curves in R 3 on the basis of their approximation by polygonal arcs. The curvature and tor- 
sion are replaced by the integral curvature and integral torsion, which are defined as limits 
of sums of angles between segments and planes of polygonal arcs inscribed in the curve. It 
turned out to be fruitful to combine this method with the integral-geometric method of pro- 
jections suggested by Reshetnyak [2]. 

In [3, 4] a theory of nonregular curves was constructed by a method not based directly 
on approximation by polygonal arcs. The integral curvatures were defined here as limits of 
sums of angles between k-dimensional tangent planes in their natural order of succession and 
condensation of points of tangency. In the present paper we consider questions of approxi- 
mation of integral curvatures of curves in R n and S n by curvatures of polygonal arcs and se- 
cant planes. 

We cite the basic concepts needed. 

Let pk and Qk be oriented k-dimensional planes in R n, k < n. We define the angle be- 
tween them by the equation 

w,h 

where ~k is the manifold of k-dimensional planes in R n, passing through one point, ~k,n is 
the unit measure on ~I~, invariant with respect to transformations of N~, corresponding to 
motions of R n [5]. The function ~k on ~ is the following: 

v~(P) = vk(PP k, PQ~)= t, 

if the orientations of the orthogonal projections ppk and pQk of the planes pk and Qk on 
P ~  are different; 

v~(p) = v~(pp~, pQk)= O, 

if the orientations of ppk and pQk coincide. The orientations of the projections are deter- 
mined in the natural way, v k is defined almost everywhere with respect to the measure ~k,n, 
k-dimensional planes in S n and the angle between them are defined in the natural way by iden- 
tification with (k + l)-dimensional planes in R n+1, passing through the center. 

Further the curvatures are understood as classes of equivalent parametrizations with the 
Frechet metric [6]. We define the k-dimensional tangent planes of a curve and indicatrices 
of k-dimensional tangent planes. We restrict ourselves for simplicity to the case when K~/q ~ 
and the curve has no arc of dimension less than n - I. Let x(t 0) be a point of the curve 
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