MEASURABLE DYNAMICS OF THE EXPONENTIAL

M. Yu. Lyubich UbC 517.53

1. Formulation of the Results

We consider the exponential transformation f: z » e% of the complex plane (C. By fo we
denote its n-th iterate. The investigation of the trajectories {f"z]5_, of the obtained dy-
namical system is a meaningful problem, which in the last years has attracted great interest.
In this paper we investigate this system from the point of view of the typical properties
with respect to the Lebesgue measure.

The starting point for us has been Sullivan's question on the ergodicity of the exponen-
tial with respect to the plane Lebesgue measure [1l, p. 45]. Ergodicity means that there
exists no partition of the plane C into two measurable invariant subsets of positive measure.
We obtain a negative answer to this question.

THEOREM 1.1. The exponential transformation f: z -+ e2 of the complex plane is not er-
godic. Each ergodic component has measure zero.

Thus, the transformation f has a continuum of ergodic components.®

A set X=C is said to be wandering if XN X =9 for n>m=0. In [2] it is proved
that fdoes not have wandering sets of positive measure on which all iterations f® are injec-
tive. As shown by the next result, the last condition is essential.

THEOREM 1.2. The exponential transformation f: z + e? has a wandering set of positive
measure.

In [2] one formulates the problem of the existence of an absolutely continuous invariant
measure for f. A partial solution of this problem is given by

THEOREM 1.3. The exponential transformation f£: z - eZ does not have an absolutely con-
tinuous invariant measure that is finite on compacta,

Our subsequent results give a detailed description of the behavior of a typicalt tra-
jectory of the exponential. The first step in this direction has been made in [3, 4]. 1In
order to formulate the result of these papers, we introduce the following notations: wg(z)
[or simply w(z) if it is clear what mapping is considered] is the set of the points of the
complex plane C which are limit points for the trajectories {f"sln-,, a.=/"0.

THEOREM 1.4 [3, 4]. m,@)=:&mJ§;o for almost all ze=C.

Thus, a typical trajectory of the exponential is not recurrent [the trajectory of the
point z is said to be recurrent if z=w(z2) ]. We describe in detail the content of Theorem
1.4, For almost all points z=C there exist sequences of natural numbers &g, kg, ts (depend-

ing on z) such that k, = o, [, =11 +k,+%+2 and \f13+iz—0611<1 (t=0,1,...,k—1), ifZSMs

1’ Re (fls-f—ks"l'iz) > afis+i—1 (l = 1, ey ts) . £ Re (fls+k5+is+lz)

We consider the circumference T ; it is convenient to identify it with the quotient R/2aZ.
In this case, to the continuous functions on T there correspond continuous 2m-periodic func-

z——a%\:>

< - (Zhs.'_ts.

*An ergodic component of positive measure is a completely invariant set Z, mesZ > 0, on which
the transformation f: Z > Z is ergodic. Ergodic components of measure zero are defined cor-
rectly within the framework of the theory of measurable partitions (see [8]) as elements of
the finest measurable partition into completely invariant sets.

+Here and in the sequel, the typicalness of some property means that the property holds for
almost all points with respect to the Lebesgue measure.

#If t4 = 0, then this section of the trajectory is missing.
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tions on R. Points a;e=R will be necessarily considered as points of the circumference
T, without introducing special notations. We say that a sequence {aj} is uniformly distributed
on the circumference T if for any continuous function ¢ &€ C(T) we have the equality

j—>o0

i 27

RN 1

tim 4 ¥ ¢ (@) = o | 0 (@) do. ()
i=1 0

Instead of continuous functions ¥ one can take the characteristic functions xy of all pos-
sible intervals 7<T. In this case the equality (0) has the following intuitive meaning:

the frequency of the hits of an interval I by the sequence {a;} is proportional to the length
of the interval.

THEOREM 1.5. For almost all z=C we have

a) the sequence f{arg f'z: n= U[l,+k,+ 1, l.,,]} is uniformly distributed on the circumference
T

¥

LN,
b) hm—n~s‘:1ts-1,

M —oco

c) lim(kys) = 3.5.

§»00

The proofs in this paper have a constructive character. For their understanding we need
very unpretentious preliminary information. Namely:

Misiurewicz's Theorem [5]. The Julia set J(f) coincides with the entire plane .

COROLLARY 1.1. For any domain D and any compactum K, not containing 0, there exists N
such that frD> K for n=N.

COROLLARY 1.2. The exponential transformation has a dense trajectory {f"zlm.,. The set
of points with dense trajectory is massive.®

In fact, we shall make use only of Corollary 1.1. Corollary 1.2 is in a curious con-
trast with Theorem 1.4. This is another illustration of the difference between the category
and metric points of view.

The basic analytic technique in the present paper is Koebe's distortion theorem. In
order to formulate it, we introduce the notation: B(e, p)={z: 1z —a] <p}).

Koebe's Distortion Theorem [6]. Suppose that ¢(z) is a univalent holomorphic function in
the circle B(a, p); 0 < n < 1. Then for z= B(a, np) we have the estimates:

a) K (a)|ﬂ9<iq>(z)_(p(a)‘<l¢‘ {a) | mp

(1 4+n? -’
p) A=n Y@l - 141
) 1+ )3<lq>’(a)l<(1—n)3’
9’ (2) 1+
c)hmww)gzmi_w

From part a) there follows

The 1/4-Theorem. The domain @B(a, p) contains a circle with center at the point g(¢) and

. 1 ,
radius —|¢'(a)]p.

The role of the points o, = fR0 consists in the fact that the singular points of the
inverse function £7 are og,...,05-;. Therefore, if a simply connected domain U does not
contain these points, then f U = G D;, where D;ND;=2 (i # j), and the domain D4 under

i=1
the action of f' is mapped univalently onto U. The inverse function ¢: U - D, is called a
(single-valued) branch of the function f™®. We shall apply Koebe's theorem to the branches
of the inverse functions. Tt has been used in a similar manner for the first time in {7].
Finally, we shall apply systematically Lebesgue's theorem on density points, while in the
proof of Theorem 1.5 we shall apply the strong law of large numbers for a stationary sequence
of independent random variables (the ergodic theorem for the Bernoulli shift).

*A set X< € is said to be massive if C\X is of first Baire category.
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First we prove Theorem 1.4 (in Sec. 3). Then in Sec. 4 we shall prove Theorems 1.1-1.3.
Theorem 1.5 is proved in Sec. 5. It relates to Sec. 3 and does not depend on Sec. 4.

We introduce notations: N={0, 1, 2, ...} is the natural series; K(a, p) is the square with
center at the point a and side 2p. We shall write both expz and eZ.

2. Preliminary Constructions and Estimates

LEMMA 2.1. For every € > 0 there exists N such that for £t>=N we have the estimates
. 3
an10on < [ (e %at;) H(eoh <oc1+e.
=1 :

Proof. We select a such that ex('ln Yyttt <z for z=a Let o.=a¢. We show by induction
E— &

on k= n that H(eo'z) ai*®. For k = n this is obvious. If this holds for k — 1, then II
=n i=n
’ﬂ—l
(eos) < ear it = ey (Inay) T <Lak™ . Now we set 4= H (eo;) and we find b>a such that eAx x
(Inx)'"** < z'*e for 2>0b. Let o-y=5b. Then H(eai)ngch_leochzAeock(lnoch) t*Lak - The right-hand
i=1
inequality of the chain is proved.

In order to prove the left-hand inequality, we mention that e¢~'a;=1 for i=2. Let =
e*. Discarding the factors e !ay (i = 2,...,k — 3), we obtain

]:[1 (7 % 1) = (e ann) ctnmy0tn > ctp .
P ;

LEMMA 2.2. TFor each point z&C there exists an index k = k(z) for which [f*'z — ol <1
(1 =0,...,k = 1), IFz—a =1

Proof. If t=B(ay, 1), then /5l =Itlinf{lf' (t)]: t=B (o, 1)} = 1Clexp(o—1)=Lle o, We as-
sume that f*(fz) =B (e, 1) (k =0, 1,...). Then 1>lfk (f2) | H(e‘la)lfz >ayl|fz] (the last in-
equality is satisfied for large k by virtue of Lemma 2.1). Since fz # 0, the inequality
1>a,lfzl is violated for large k. The contradiction proves the lemma.

Now we define a mapping S:C—C in the following manner: Sz = f**+'z where k(z) is defined
in Lemma 2.2. This mapping will play an important role in the subsequent investigation. We
mention that if Rez=(Q , then Sz = fz.

Let k=Z, p={x+1}. We define vertical strips Vi and sets Vﬁ which are unions of rect-
angles:

= {x-l- iy: T + 305,;,1 - < |zl < oy — 3ay-1, SgNZ = sgn k},
VM ={x + iy Vy:|cosy|>> 2oy, sgn (cosy) = p} = V.
LEMMA 2.3. There exists N such that fér k > N we have the inclusions:
1) SVi = fVF < Vi
2) SV = Vi & V_@peny;
3) SVE, = ", < Vs
4) SV, ="V, < Vit

Proof., 1, 2. Let z=z+ iye Vi UVy. Then Sz = fz and [Re(Sz)| = e*cosyl =exp(on- T
Qpms) (27064 ) = 20, > ota + 3., .% On the other hand, |Re(Sz)| < exp (o — p—1)= Cast/C <01 — 3o Since
sgn (Re (Sz)) = p for zeV}, the inclusions 1, 2 are proved.

3, 4. Let z=x+ier UV . We assume that lfJ(fz)—och<1 (j=0,1,...,i—1). Then

| £ (72) |<IfZII]ma\{lf ©1:te B(w, 1>}<|leﬂexp<aj+1 —lleH(ea;

*We shall not state continuously that certain inequalities hold only for sufficiently large
k.
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Let € > 0. By virtue of Lemma 2.1, the last expression does not exceed Uz]oc%f;ﬂezai_laig

: -1 -
| fz]ed 5, 10 Further, since —Rez= ou— + 3y, we have |fz|<Cexp (— ooy — 30—s) = 0} @i Con-
sequently, . ,

] 1109 — e | < o iyt ey ()

For i<k we obtain \]‘ (f2) — ;| < ab5e?; << 1. By induction, the last inequality is satisfied
for all i = 0, 1,...,k [and thus, also inequality (1) for i =0, 1, Lk o+ 017,

On the other hand, !]‘h+1(fz)—;ak+1\ ]lemm {17 (C)l Le B(ay, MHBXP O‘"‘M"Efziﬁl

i=0

(e"loc) By virtue of Lemma 2.1, the last expression is not smaller than |fzlautai. Since
—Rez< o, — o4y, we have | 72| cpotpys 2> eXp (— op + 0tg—y) @plpyr = G Thus, lfk+22 —‘“h+1i>@;21>1- This
shows that Sz = fk+2z and

|82 — apii] > af. (2)
Further, setting in inequality (1) i = k + 1, we find
- {
| Sz — opyq [ < Och+1/0§§~f == 0 (0 41/0p—q) (k> 00). (3)
In the circle {C:!C—ak+1i<%th+1} all the branches of the function £~ (k*1) are defined (since

this circle does not touch the points op). We consider that one for which f%*%g,,=0. From
Koebe's theorem and from equality (3) there follows that larg(f~*+")’(Sz)| =0 (4/aw-). Therefore,

larg (Sz — oy.4.) — arg (fz) | =o0(1/an-1). Since arg (fz) = Imz = y, while lcosyl =2/atss, denoting arg
(Sz = ay4,) by 6, we obtain
lcos 8 =14/ann—;, sgn{cos 8)= sgn(cos y). (4)
From (2), (4) we find
{Re (S2) — apyy | > af/ony > 30y (5)
Finally, it is obvious that from (3) there follows
o F Sty < Re (82) < aypg — S0t (6)
From (4)-(6) there follow the required inclusions 3, 4. Lemma 2.3 is proved.
LEMMA 2.4. If ze V), then |S' (2= -a’lkl -
Proof. By virtue of Lemma 2.3, the distance from the point Sz = fPz to the set {0n}rmo
is not less than 3apy-.. Therefore, in the circle B=DB(/"z, 3a4s-.) all the branches of the in-

verse function f7P are single-valued. We consider those for which £ P(8z) = z. The domain
£ PB does not contain vertical segments of length 2Zm. On the other hand, by the 1/4-theorem,

. . . ; Baypyy (7Y (S2)| P Ik! 1 1§ .
this domain covers a circle of radius —4—-] ) (S2) . Consequently,[(]') ’z\ > == et s
this is what we intended to prove.

We prove a lemma which will play a key role in Sec. 4 (while in Sec. 3 it is not needed).

LEMMA 2.5. Let 2z, {eVh, Sz, Ste=V;,. IflRez—Rell >2am-— then |Re(Sz)— Re(SL)|>2a;-,
(for sufficiently large In}).

Proof. Let z=z+iy, &=a+iy, lzl> |z}
1. Let n > 0. By Lemma 2.3 we have |j| = n + 1. Moreover, svg = fvg and thus,
[Re(Sz)1 =e lcos y| = e (2/cty- 1)——2exp(x-—an 2) |Re(ST)| =e 1lcoqy1|<e Consequently, |Re(Sz)|—

[Re(SQ)|=¢ (Zexp(x—rl—an_)—1)>e >t
proved.

> 20n-1 = 20|jl-3- The required inequality is

2. Letn <0, k= ([n|. By Lemma 2.3, j =k + 1 or k + 2. We have |jzl =exp(—lzl),
arg(fz)=y; /5l =exp(—lz.l), arg(fe)=1y:. We make use of the inequality (3) from the proof of

Lemma 2.3: |Sz-—ock+1l—0k Zr1) and similarly for the point . We consider in the circle

{C-Ig—ak+1i<?ak+1} the 51ngle—valued branch of the function f-(k+l) for which f-%#+q, ,= 0.
By Koebe's theorem
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M_UQ 1 1 _ 1, -
lSZ_ak-FlI - lle (1 + O(ah+1>>> 2 e‘\p (lxl lx1[)> 2 Oqu_.l.

e

We set 0 =arg(St — o).  Then |Re(Sz)—Re(ST) | =] S0t | cosO0—|Sz—apys | =152 — ot ] (M

[ 82— g4
cos® — 1). By virtue of the inequalities (2), (4), (7), the last expression is not less than
1
h—1

1
a§(7a§_1 = —1>=é—ah_1cx§—1>2@k- Since k = j — 1 or j — 2, the lemma is proved.

3. Typical Behavior of the Trajectories

We divide the strip Vi into the rectangles Qj by the lines z =1, y=% + 2ns, where m <
li1—1:<2n. The index j runs through some countable set Ap. We set A= U A, where N is
>N
chosen so that the Lemmas 2.3-2.5 should hold. TFor j= A, we consider two rectangles QF =Q; N
V{i (p = £1). The rectangles of this family are numbered by the index s={(j, w)= I, =A, X {1}
We set I‘:‘hIUNI‘k. The mapping S is continuous (and analytic) on the rectangles QE. We have
>
(8)

mes (Q;\(0F U 07)) < OL!L (i Ay).

-1

Further, by ZE we denote the union of those rectangles Qj whiEh are contained entirely

in SQS-J.. Let P¥ = QY 1 §7'z¥. The set SQ¥\Z} is contained in a 2m/2-neighborhood of the
5.28 /2 < 100

X rl-1 Frl-1

boundary 4{(SQ}). By virtue of Lemma 2.4, the set Q?\P;‘ is contained in a

neighborhood of the boundary 8Q} (j=A,) (i.e., PB-J is almost a rectangle). Therefore,

m BN PY c
=GN o S ea. )
mes QY h -1
From the inequalities (8), (9) there follows that
C .
mes (Q;\(P}" U P7)) <= (1€ M- (10)
The image SPB-1 is the union of several rectangles Q;. Then it is the union of the almost
rectangles PLi‘. Thus, the family of almost rectangles P} ((i,u)=T) has the Markov property.
Let i=(iy, ..., i), B= oy -+ I.), where (i, w)=T'=T°. We consider the set Pjik:{z:SlzeP?l'
(l=0,...,n)}. By FE we denote the family of indices (i, E) for which the set P_% has a non-

empty interior and is contained in Vi. Sometimes the sets PgIL themselves will be considered
as the elements of the family FE. Thus, W T} means that W = P¥, where (i, p)=Ti We set

I'"= ( I'i. From the Markov property of the family I there follows that if WeT" then
1kIZN

S"W eT. Consequently, SP1W is the union of the squares Q; (j&A). We set Y"= [ Pi.
q
(B=rm
+1 A
LEMMA 3.1. There exists a constant Ay such that if WeTy, then meos (W\ 7™ )< LIy
_— ’ mes W \alk|+n

Proof. The set S0y is the union .ULQ], where L is some subset in A. By Lemma 2.3,
1=

the set SM*!W is contained in Vg, where |l = |k| + n+1, and thus, it is situated at distance

considerably larger than 27 from the set {&;}i2, . We denote by ¢ the inverse mapping g—{mt .
U Q;—~Ww. By Koebe's theorem, for z,{<(Q; we have
jeL
v &) ~p (11)
I‘P'(E)lgw’

where B is an absolute constant (independent of k, n, W, j, z, ). From the inequalities
(10), (11) there follows that

mes (0 (0,\ (P10 P7)) _ pu mes(@,\(27 U PD)) _ 4,

mes (9Q) mes ¢; == am_l'
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Since WAY™ ' = | ¢(Q;,\(P} U P7)), the last inequality implies what had to be proved.
j=L
Now we consider the invariant set Y™ = (] YY", which will play a very important role in
the sequel. n=0

LEMMA 3.2. Let K be a rectangle whose sides are parallel to the coordinate axis and
have length at least h > 0. Assume that K is contained in Vy. Then we have the estimate

mes {(K\Y>) < A, (h)
mes K o= Dpy—g

B? (h’>1)9

and the constant B, does not depend on h.
B./h (h < 1) 7 P

where Av(h)::{

Proof. First we prove this inequality for the rectangles Q; (j=A,). Let Y =0Q;NY"
(0<n<o). We mention that Y}= P} (J P;. According to the previous lemma, mes{V\ Y7} <

Ag/oypi4n. Summing with respect to n, we find mes(Y?\Yf)gABnE (1/ognrn)y<<Cloyyy. Making use of
=9

the inequality (10), we obtain what we intended to prove:
mes (QJ\Yw)< Cm/a]h;_l. (12>

Now we proceed to the general case. We start to proceed in the same way as at the proof
of the inequality (10). We divide K into rectangles Kj by the lines y = /2 + m (n = 1,...,
2). Let a be the length of the horizontal sides of the rectangles K; and let by be the
lengths of their vertical sides (b; = 7 for i # 1, £). We consider also the rectangles N; =
K, n iy Vi). Let Zi be the union of the rectangles Q; (j=A), contained entirely in the
image SNj; let L; =N;NS-'Z,. In the same way as for the proof of the inequality (10}, we can
see that the set K; \ Lj is in the ei-neighborhood of the boundary dKi, where e, = (/o .
Therefore,

mes (KiNLy) ¢ 2(a+by) 2 <

mesK; oy, ab, Xipy-1.

71;*”}7')' (13)

. . 5 i 1
For i # 1, & the last expression does not exceed “fl (ﬁ-+~;) and, consequently,
Bl~1

-1 -1 S )
mes(U K\ U Li)< 2€ (71; +-£-)mes U Ks. (14)
=2 2,

=2 alhl—l i=

For i = 1, 2 we make use of the fact that (mesKj)/b; = (mesK)/b and of inequality (13):

2 (1,1 (15)
mes (KN L)<~ + —lmes K< mes K
(N )\“hl—l(“ * b) ey
According to (14), (15), we have
mes (KN L) - 2 /3 13
mes K <ocm~1 (7[ + -.T{,/" (16)

. .
where L= (J L;. Assume now that Q} are rectangles of the family A, contained in SLj; let
im=1

¢ij=S8"1:Q}—~L, be a branch of the inverse function. For it we have the estimate of Koebe's
theorem [mb(zﬂ/|¢%(@[s;li where B does not depend on i, j. Consequently,
mes (g, (QI\Y™)) < g (oiNr=) - B, 4

mes(q’aog) R mes O} BT

[the last inequality by virtue of (12)]. Summing with respect to i, j, we obtain EE%%%;Zfﬁsg

a’c From the last inequality and (16) we obtain the required result. The lemma is proved.
1Ri—1

Lemma 3.2 shows that the set Y® is very thick in any rectangle contained in Vi (provided
its dimensions are not comparable with 1/ay.-,).

We introduce some notations and terminology. We recall that K(z, r) is a square with
center at the point z and side 2r. Let D be a domain, let z=D, let B{(z, r) be the circle
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inscribed in D, and let B(z, R) be the circle circumscribed to D. By the distortion of the
domain D (relative to the point z) we shall mean the ratio R/r. If X is a measurable set,
mes (X [} B{Z.RY
. nR®
(resp. 1im, lim). Lebesgue's theorem on density points asserts that if mesX > 0, then the
density of the set X at almost all points z= X is equal teo 1.

then by the density (upper, lower) of the set X at the point z we mean lim

Proof of Theorem 1.4. By Lemma 3.2 we have mesY™ > 0. From Lemma 2.3 there follows
that [Re(8"z)| — w(rn — ) for z&Y". The latter means that o;(z) = {On}nee for z= Y=/

oo

Now we consider the set Y= | ]‘“Y°°. It is completely invariant (i.e., £7'Y = Y) and

N=—00

has a positive measure We show that mes(YNB(z r))>0 for every disk B = B(z, r) Indeed,

otherwise mes|Y [} U "B 1=0. But by virtue of Misiurewicz's theorem we have U /"B =C. Con-
n=0 n=Q

tradiction.
Now we consider the completely invariant set Z = {z:0;(z) & {t}is,}. According to what
has been proved, ZNY =@, Let z=Z. Then there exists a point { # a, such that gz, =fnkz->§

for some sequence ny > ». Let p= —mm!@——ocn] let £ 'K be a single-valued branch of the

inverse function in the circle B(Z, 2p), for which f %z, =z D.=f *B(, p). Let Ri and ry be
the radii of the circles with center at the point z, inscribed in and circumscribed to the

—ng
domain D. By Koebe's theorem we have  min l(f (”)l > >0, where % does not depend on k.
Consequently, %, 9=B(E,p) f(f k) (v) [~
R, 1 0|z, — L
1) =< e <
Yynb
2) mes( h)>K2 mes(Y n2B(€v o) >b>0,

mes D, 7P

where the constants a, b do not depend on k.
We show that Ry » 0. Indeed, if R, >8>0 for some sequence k(i) > =, then r,; =a"'8=r

and thus, Dy > B(z, r). But then ™ 9B (z r)= B(C, ). This contradicts the corollary to
Misiurewicz's theorem: the set fPB(z, r) covers any compactum K c C* for sufficiently large
n. The contradiction shows what we intended to prove.

Further, from properties 1, 2 there follows that

mes (Y N B(z, Ry)) >mes (Y N D) __mes(Y N D) >—b——>0.

) = 2 2 = 3 = 2
nR; a (nrh) a mes D, a

Thus, the upper density of the set Y at the point z is positive and, consequently, the lower
density of the set Z at the point z is less than 1. By Lebesgue‘s theorem on the density
points, we have mesZ = 0. We have proved that w(z) c {an}n_ for almost all z=C(C.

Now we prove the inverse inclusion. We consider the invariant set
U=z 0o(@) < {onfnm, Re(f"2)=—1t (n=0,1,...)},
where t > 0. Let 7/2 < 6 < 7. The set Uy does not intersect the sector {z: 6 <<argz<2m—9,
|zl > #/sin 8}. Since Ut is invariant, it does not intersect the union of the semistripes:
= U {+iy: 0+2m<y<<—0+2n(n+1), z>In(/sinb)}.
N=—00
Let ze U, z,=f2=a.+ iy, 0<oa<m/2. We show that there exists a sequence ny > = such
that x,,— + o0, Iynk|>'1- We consider two cases.

1. x, > +=. We assume that [y,| <« for all n, starting somewhere. Let ¢= inf Ei—n'—y>0,

< ¥

Then |ynis]=¢ "|sinyn| >c¢ ' " yn|>=2|ya|for sufficiently large n. Consequently, |yp| > =.
Contradiction.
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2. @p,1<{Y for some sequence py + ». Then |z, |<Ce’. We screen the sequence {py} {with-
out changing the notation) so that Zp, >~ (k= o00). Since ze& U, we have © (2) = {tn}nee and, thus,
we have T = oy for some L. We find g such that e*cosa > 2x for =5 and then seN such that
o >B.  Since 2p, —a;, we have Zp+s>014s (k > ») and, consequently, Zp,+s>>p for sufficiently
large k. We assume that

gl <a (pts<i<p.tst+j—1). (17)
We verify by induction on i that zy, >2n(p T s<is<p,ts+j—1). Indeed, Z;4; =¢ ‘cosy; e 'coso.

By virtue of the induction hypothesis, xi;21@k+s:>ﬁ and thus,‘f%cosa:>2xi; this is what we in-
tended to prove.

Thus, if inequality (17) holds, then zp,4.4;>>28. If it is valid for all j, then Zp e~
oo (§ > o), whilelypyw+j|s; a, contradicting the considered case 1. Consequently, there
exists a first value j = my for which Iynkf>>“= where nip = pyx + s + mg. Since lyph[~»0, then

mg »  (k + ©). Consequently, Zn, > 2" "> + oo (k— =) and the required sequence {ng} is con-
structed.

Now we assume that o and 6 are close to w/2 (it is sufficient that the inequality 1.5

. 1
a > 6 should hold).* Let Pk==nun(§|ynkLTQ- Then, as one can easily see, every interval

(Yn, — Ors Yn, + O») intersects the family of intervals nLJ (8 4 2nn, — 04 27(n+ 1)) and the length

of the intersection is not less than some A > 0O, not depending on k. Consequently, mes
(K (2n,» px) N Ty)/mes K (2n,, 4) > Mn=q. Moreover, the twice as large squares K (2ny, 205) do not
intersect the real line and, consequently, do not contain the points ap. Therefore, in these
squares all the branches £ ™ of the inverse functions are defined. Let f-nk be the branch
defined in the square K (zn, 20), for which fq%A%::z,Dk==f%th@nwg%). Applying Xoebe's theo-
rem, we can see that Dy is a domain with bounded distortion, diamDy + 0, and

mes (D, \Uy) =2 mes (K (2, 0) N 1) >ﬁ>0

= =
mes D, mes K (znh, pk) i

(we have used the fact that U,NT,=®&). Thus, the lower density of the set Ut at the point
z is less than 1. By Lebesgue's theorem, we have mesU;y = 0.

Since Uy is an increasing family of sets, we have mes J U;,= 0. But {J U, = {z: 0 oz
{&n}meo}. The theorem is proved. i =0 =0
A set X is said to be absorbing if nu&(c\\t}f_@X) =0.
n=g

LEMMA 3.3. The set Y* is absorbing.
Proof. We consider the set Z:={z:OEEo)&H\\< G f_nYm>. By virtue of Theorem 1.4 it is
n=o0

sufficient to show that mesZ = 0. Let ze=Z. Then there exists a sequence n; - o such that
+1 . =
]‘nJ z—>0(j > «). We set xjﬁ—iyj::f%z. Then Xy > (3 » o),

We define a sequence of radii in the following manner. If z<=V._, then p: = m. Other-
wise, z3 is contained in some strip {z+iy: |z a,] < 3a,_,}, where k = k(j). Moreover, we set
Py = bak-;.

We consider the squares Kj = K(zj, pj). The intersection Wj = K; (U V_h) contains a
k>0
rectangle, whose vertical side is equal to Pis while the horizontal side is at least O.Spj.
Consequently, mesWJ-}%mesKj. But by Lemma 3.2, mes (W]. n Yw}}——;-mest for sufficiently

large j. Thus, mes(K; | Y°°)>%mesl{j.

*We recall that o, 6 have been given arbitrarily in the intervals (0, 7/2) and (w/2, 7), re-
spectively.
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The squares K(zJ, 2pj) are contained in the left-hand semiplane and, consequently, all
the branches of the inverse function f=Pare defined in them. Let f ™J be the branch in the

square K(zj, 2pj) for which 2=z l%:=fﬁﬂ?ﬁ- Applying Koebe's theorem in the same way
as it has been done at the proof of Theorem 1.4, we can see that Dj is a domain with bounded
distortion, diaij -» 0, and

mes (D;\ Z) < mes (K n Y°°)
mes D]- = mes K

>3 >0,

where the constant y does not depend on j. Thus, the lower density of the set Z at the point
z is less than 1. By Lebesgue's theorem, we have mesZ = 0 and the lemma is proved.

The proved lemma allows us to investigate the typical behavior of the trajectories only
on the set Y* and on it we have sufficiently sharp estimates (Lemma 2.3).

4. Absence of Ergodicity and of an Absolutely Continuous Invariant

Measure. The Existence of a Wandering Set

We construct on the set Y* a symbelic dynamics, associating to a point z€ Y* the se-
quence of integers x(z)==(x,(2), %.(2), ...) according to the rule S"zezv}nuy By virtue of Lemma

2.3, we have [%,,:(2)|>1l%,(z)|. By T we denote the shift (xg, %1, ...)~ (%q, %, ...) in the space of
integer-valued sequences. Clearly, x(Sz)=1(x%(2})).
LEMMA 4.1. Let z te¥Y~. If Sz2=38""f, then v"(%(}))=x(3)..

Proof. Since v"(%(%))=x(S"C), replacing the point { by S™C, we reduce the problem to the
case m = 0. This will be assumed in the sequel. We find the largest i such that
Hams(D)=sasy(8) (=0, 4, .., 0), (18) -
[BB(S”—%)——Be(SW”Q|$§2awn_%m_z (Gj=0,...,9. (19)

We show that i = n [and thus, equality (18) is satisfied for all j = 0, 1,...,n, as re=
quired]. We assume that i < n. We denote ¢= ¥a.—:i(2).

We assume that the points SP"1-1z and SR~1i-1f are contained in the same set Vﬁ. Then
Hneivg (8)=k = %n—is(§) and, by virtue of the selection of i, we must have the inequality |Re
(8™*~1z) — Re (S *'{)|.> 20 y—s. From here, by Lemma 2.5, there follows the inequality |Re(S"z)—
Re(S* %) > 2042, in spite of the assumption (19). The contradiction shows that the points
sn-i-1; and SN-1i-1f are contained in distinct sets Vﬁ.

But by virtue of the assumptions (18), the points SP iz and SP-ig are contained in one
set Vg. By Lemma 2.3, this is possible only for q > 0 in one of the three cases:

1) S e Vi, STUe Vi
2) S”_i,‘lz = V;—lq Sn_i—lc = V:(q—1)§
3) Sn_i“lz &= V:(q—l)v Sn—i—lc =] Vt(q_z) .

In the case 1 we have Sz = f(§"'~!z), while S"'f = f#(S"~-'f). We denote v = f&-*(S"-'}), z+iy=
S*-1z;  From the definition of S8 we conclude that

b — el < 1. (20)

By the definition of the set Va_l we have
T2 Gyt 3tgos, COS Y = 20ty (21)
From the inequalities (20), (21) there follows Re(S”—z)——Re(S”“t);aexcosy——[e”[;aa@_gﬁ_zay

Olg—2) — €0lg—y > 20lg—3, which contradicts the assumption (19). The contradiction shows that case
1 is excluded.

Case 2 is entirely similar to case 1.

In case 3 we make use of inequality (3) from the proof of Lemma 2.3. We obtain aq —
S§*z < /2, §"C — og-y <og,/2. Consequently, S*—iz — S~ > (a, — 3a-1)/2 > 20, and we have ob-
tained again a contradiction with inequality (19). The lemma is proved.

We denote W,=V,N Y=,

LEMMA 4.2. Letz t=W, We assume that fPz = £f9¢ for some p,,g=N. Then a) E(z—)=~x_(§) ,
b) p =
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Proof. We consider two nonintersecting sets Vo= | Vi, Bo= U B(ay 1). The trajectory
(RN k=0

{f"2lnee of any point z= Y= is contained in V. UB, and visits each of these sets infinitely
often. We note that if n =20, L,, L,,... are the moments at which the trajectory is in the
set Ve, then fLiz = g%z,

Let u = £z = qu. We find the smallest moment s N such that fueV.. Then $fz=fu=
SQJC for appropriate n, {=N. We assume, for the sake of definiteness, that IZn By Lenmma
4.1 we have x{z)=1"x (L), where m = & — n. Consequently, {2} = 34,(§). But for m > 0 we have

I (5] > 12,(8) | = |kl = lxs(z)l. Thus, m = 0 and, consequently, #(z)=%(), i.e., a) is proved.
In addition, we have shown that SUz = SB{ for an appropriate n.

Now we define natural numbers £i(z) in the following manner: Siz:fl"m ($'z). Lemma 2.3
allows us to find 2i(z) in terms of % (z) and x:(z). Namely: 1) if x:(2)>0, then 2;(z) = 1;

2) if % (2)<<0, then two cases are possible: a) w:(z)= ln.. ()] + 2, then L{z)=2»:(2); b} xn(z)
[%:-:(z)| +1, then [(z)=x(z)+ 1.

n
Since #;(z)=w:(t) for all i=N, we have [(z)=1L(f)=1. We set L= 2, where n has been
i1

defined above. Then f*z2=38"2= /"2 Since the point z is not preperiodic, we have L = p + s.
Similarly, L = q + s and part b) is proved.

Now we are completely ready for the proof of our fundamental results. We set Wi = Vi )
Yo, Wy =V, Y™

Proof of Theorem 1.1. Let z&Wj, teWy. Then x,(z)>0>x,() and thus, %{z)==(%).
By Lemma 4.2, the trajectories of the points z and do not intersect. Consequently, the in-

oo - oo
variants sets Uj = { f"Wi and Up = |J /"W, do not intersect. We consider the partition of
n=g n=0

the plane into two completely invariant sets Xi = U f Uy, X7 =C\X{. Since XFfoWr, it
R T={}

+
follows that both sets Xj have positive measure (Lemma 3.2). The nonergodicity of the trans-
formation f is proved.

Now we assume that the transformation f has an ergodic component Z of positive measure.
Let 2€Z0Y%, %,=%.(2). We consider the square K, = K{(5"z, v) and we partition it into two

sets: Kf =K, NA{z +iy: cosy>0}, Ki =K, {z+iy: cosy < 0}. We have mes K} = %mesKﬂ(yu = - 1),

By Lemma 3.2, the measure of the set K, NW) =KL Y™ is almost equal to %mesl{%.

Further, from the ergodicity of the transformation f: Z > Z there follows that one of
the sets Z | X} (p==1) will be of zero measure. Moreover, mes (Z N Ka ﬂ-WiZ) =0, Therefore,

mes(Z N K mes Kn\‘WL:n\} 1 ‘ (22)
( n) o il = (R~ 00)
mesK, = % “mes K, 2 :

H -1
Let S"z=f"z, and let f " be the branch of the inverse function in the square K(s"z,

27) for which f_l"(S"z):z; Dn:fﬁann. Applying Koebe's theorem, we can see that D, is a
domain with bounded distortion and diamD, » 0. Making use additionally of inequality (22),
we obtain that the density mes(ZND,)/mesD, of the set Z in the domain D is separated from
1, i.e., the lower density of the set Z at any point z&€ZN Y~ is less than 1. By Lebesgue's

theorem, we have mes(ZNY>)=0. From the invariance of Z and Lemma 3.3 there follows that
mesZ = 0.

Proof of Theorem 1.2. A wandering set of positive measure is the set Wy. Indeed, the

positivity of the measure follows from Lemma 3.2, while Lemma 4.2 {statement b) means that
PW.N W, =2 for p>q=0.

Proof of Theorem 1.3, We show that A(B(oy, £)) = = for every k=N, ¢>0. We consider

the set W_, = (J W_,. By Theorem 1.4, the return mapping T: W__ > W_,, T7=_8"3, where n =
h 2N

n(z) is the first moment for which Sz = W_., is defined almost everywhere. We show that the
set W.y is wandering under the action of the transformation T. Indeed, let 77z=7"( (3, L
W_1). Then, by Lemma 4.2 we have %x(z)=xn(f). But T"z=S8%z, T"{=2S"C for appropriate p, q.
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Assume, for the sake of definiteness, that p=gq¢. If p > q, then |x,{(z2)] > Ix,(2)| = [%,{(C)! and
the equality SPz = 897 is not possible. Consequently, p = q. Thus, Trz = 8%z = §PC = T™L.

But the numbers n, m are uniquely found from p and the sequence x=x%(z)=1x(f). Indeed, they
are equal to the number of the negative components of the vector (%, %, o %p). Thus, n = m;
this is what we intended to prove.

Now we show that A(7"W_,)=A(W_,). Indeed, for a given n we partition W_y into the union
U Xpjt 2 Xy if Tz = flz. By Lemma 4.2, we have FX, ;NfX,=9 for i # j and from the in-
7

variance of the measure A there follows that A(FX)=A(X) for every measurable set X. Thus,
AMTW _y) Zh(f’Xm)>27» ) = A (W_p).

Further, according to Theorem 1.4 and Lemma 3.3 we have A (C\ U f'"W_w> =0, from where

n=0
A(W_.)>0. But then A(W.,)>0 for an appropriate k. Therefore, 7»( ﬁ T”W_k> = D MTW_,) =
n=:] n=l

N A(W_p) = oo for every %. But the set UlTnW_k is contained in the left semiplane {z: Rez <
M=

n=l
—ug}. Consequently, mes{z: Rez<< —M}=o for arbitrarily large M. It remains to note that
f~®™YB(a,, ) contains some left semiplane and, thus, A(B(o, £))=A(/""*"B(o, €¢))=>. The theo-
rem is proved.

Question. Is there an absolutely continuous invariant measure, whose density is smooth
in C\{%n}ney (at the points a, it must have nonintegrable singularities)?

5. Distribution of the Arguments

We consider the set @ =Q; N Y7 (j=A) and we define on it the conditional measure T4 X)=
mes (X N QF )/mes Q7, where X is a measurable subset in Q:;. We introduce the following nota-
tions. If X is a subset of the circumferenceT = R/2nZ,” then |X| is its Lebesgue measure and

p(X) :—Z%IX| is its normalized Lebesgue measure. If z<R, then z=X means that z(mod2m)e X.

If X, ..., X,eT, [N, then we set [X,...Xyli={2€Q;: Im(8"2) &Xn, (m=1,...,1+ n)} (we shall
omit the index & = 0).

LEMMA 5.1. Let Ig,...,I, be intervals on the circumference T; assume that p(f)=h>0;
jeA;,.  Then

n A n
(1—a )Hp <. .. n]§<(1+_L_)Hp(1m),
l+i-1 0

m=0 OClkl-{-l—l ] m=

where the constant A,; = A;;(h) does not depend on j, %, n, while the dependence on h is the
same as in Lemma 3.2 (with other constants).

Proof. First for & = 0 we carry out induction on n. We apply Lemma 3.2 to the rec-
tangles X = [Io]j and Qj:

A
(1-—- z )mesK <mes (K NY*) <L ( )mesK
Xy p—1

Xri—1

A A
(1— )mesQ, mesQ}"’g(l B p— )mes()j.
dlkl 1 o

|Bl~1

Dividing the first inequality by the second one, we obtain the basis of the induction:

(1— l:l* )p(l(') (R (1+ Ly 1)p(I°)' (23)

Now we assume that for i€ A,,, we have

)I=I (24)

where the constant b satisfies some additional lower estimate, given below. Further we shall
proceed according to the same scheme as in Lemma 3.2. Let Z be the union of those rectangles
Q: (i€ A) which are entirely included in SK and let L=KNS'Z. Assume that Q=S50 @i=8""
Qi » L is a branch of the inverse function. The rectangle Q; is contained in the strip Vg,

(1_ o‘lbl)Hp(I"‘)<”i[Il --~In]i<(1+
k m==]1

%nl
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where Il = 1kl +4 and, thus, it is situated at a distance not smaller than op-, from the

set{on)ne . Moreover, Q; has bounded dimensions (at most 2m x 2w). By Koebe's theorem we
have
z
TP L 151 IR
e P 3Y Y
Consequently,

— ‘ . X nj<q)i[[1"‘[‘n]i). ( a, j T I
(1 alkl'—l)nl [11...I‘n]1< RJ((P101) < 1+°‘-|m_1 ) ﬂz[ 1o n]z-

Summing with respect to i, taking into account the induction hypothesis (24), we obtain

a, : Ln [[ ...In}-) ( 122 ) (25)
_ 2 T y<" J( 0 J < 1+ ]
O %wﬂ)( %m)IIp(m’ a;{L) +“mk1 ( “m)llp(

But for ﬂj(L) the estimate (16) from the proof of Lemma 3.2 holds

2 /
(1_%&_1)“7( ST {1+

a,
If b is selected in advance so that we have the estimate (i%—m——\I]j< aw;i>$£1-FakT ’
[h‘ i=1 = fel—1

then from the 1nequa11t1es (25), (26) (23) there follows the required estimate

3 >q} (K). (26)

The case of an arbitrary £ is obtained from % = 0 by considering the mapping S%: Q7 —C
and by carrying out exactly the same reasoning as above. We omit the details.

We consider the space Zi of sequences &= {es}ny of zeros and ones. Let I be an interval
on the circumference and let ¥} be its characteristic function. We fix a rectangle Q = QJ
We construct the mapping h;: Q°—Z; associating to the point zt:Qm the sequence le, () =
%7 {Im (8"2))}_,» and we carry over the measure T = = my from Q® to %7 wr=(hy)em. In addition,
we consider on %; the Bernoulli measure vy (i.e., the measure corresponding to the scheme
of independent trials), the probability of the appearance of unity being p(I). Flnally, by

€, denote the o-algebra on Et, generated by the random variables e, {n=1 {1, M-(? G
is the tail o-algebra. =0

A measure Yy on Zt will be said to be asymptotically Bernoulli if for some Bernoulli
measure v there exists a sequence €g + 0 such that ({ —e)v(X)<p(X)<{1+e)v(X) for every
set X=6,.

LEMMA 5.2. TFor every interval I onT, the measure U1 is asymptotically Bernoulli.
More exactly, if p(I}=h, Q<= V, then for every set X=®&, we have the estimates

[
{—
\ Fe) 411

where A;; = A;;(h) is the constant from Lemma 5.1.

A\

Jve ),

) vi(X)<pr(X)<< (1 +

OCIm+z1

Proof. We set ;=T\, I,=1 By [e...e,] we denote the cylinder in the space Ei, con-
sisting of those sequences z = {m}p=y for which z =g, (i=1I, ..., [+n). We have urigy...e]" =
n

n[[s...

. I%Jﬂ vfko...&Jl==;I;([%). Now from Lemma 5.1 we obtain the required inequality for
=0

cylindrical sets X=/Jg;...e,]. Since these sets generate the entire o-algebra &, the lemma
is proved.

COROLLARY 5.1. The measures uy and vy coincide on the tail o-algebra: p:(X)=+,(X) for
Xe6,.

We proceed to the proof of Theorem 1.5, formulated in the introduction. We shall make
use of the notations 24, kg, tg, introduced there.

Proof of Theorem 1.5. Since the set Y is absorbing (Lemma 3.3), it is sufficient to
verify the typical properties of the trajectories on Y . In turn, it is sufficient to do
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this on the set g*=QNY™, where Q is an arbitrary rectanglie of the family A.

%+%z;:5(}%-2). Therefore, it is

convenient to formulate Theorem 1.5 in terms of the transformation S: for almost all ze=(Q>

the sequence{arg(foSnz):=hn(SnZ) (mod 2m)} ey is uniformly distributed on the circumference T.

In other words, for every interval I<T, almost everywhere relative to the measure m, we
n—1

have the equality li“‘%jzz XIUHI(S%))==P(I) Passing to the space Zi, we obtain the follow-
'n,f»oo . i==0

By the definition of the transformation S we have f

ing formulation: for almost all sequences e=3} , relative to the measure uy, we have the
equality -
1'n-—l
\ \ ,
lim 72 8i:P([)~ (27)

i=0

We consider the set X, consisting of all sequences for which equality (27) is satisfied. This
set belongs to the tail o-algebra &.. Making use of the corollary to Lemma 5.2, we obtain
pp(X) = vi(X). But by the strong law of large numbers, for a sequence of independent random
variables we have vy(X) = 1. Part a) of Theorem 1.5 is proved.

Since almost all trajectories return to the left semiplane, we can assume without loss

of generality that the rectangle Q is contained in the left semiplane. Moreover, we can set
lo—

Lhi=1 lLet I= [—%,%JcT. We consider the sequence s ZXI(Im (fs 1z)). The sequence y={y,}
is constructed from the sequence‘§==(hﬂ*z in the following manner. Since ¢, = 1, we have
Yo = €9. If vg = gp, and gy is the first zero coordinate of the sequence g, occurring after
€pg? then vg4, = €94,. It is easy to show that {yg} is a stationary sequence of independent
(relative to the Bernoulli measure vy) random variables with mathematical expectation 1/2.
By the law of large numbers we have

n—1
im L $ ., 1 28
tm + Ze § =

almost everywhere with respect to the measure vy and, therefore, also with respect to the
measure Hy.

By Eg = Eg4(z) we denote the segment [[,+ k,+ 1, l.;s — 1] of the natural series and let E =
UEg. From part a), proved above, and from equality (28) there follows that the mean value
of the sequence {y;(arg(f*z)): ne E} ={y;(Im(f**z)): n=E}, obtained by discarding y from g, is
also equal to 1/2. This means that, on the average, the trajectory {f*z: n=E} is in the left
semiplane as often as in the right semiplane. But on the s-th segment {f*z: n=E,} of this

trajectory, exactly one point f%+rqz is in the left semiplane, while tg are points in the
right semiplane. Consequently,

-1
lim iz fo=1, (29)

Nn-»>00 B s=0

and part b) is proved. v
) ls+hs, lothgttgt1
Further, from Lemma 2.3 there follows successively that 7 2 Vi, 1 36 Vigbwgt o1

and, finally, k..=k.+y.,+4+2 Taking the average with respect to s and using then the
equalities (28), (29), we obtain the required equality

n—1 n—1
R S T _
lim 3 Jn = Jim 52 2 (s — k) = lim = 3, O+t 2) =35

The theorem is completely proved.

In conclusion, the author expresses his gratitude to A. M. Vershik for stimulating dis-
cussions.
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APPROXIMATION OF INTEGRAL CURVATURES OF CURVES IN R" AND s"

I. F. Mainik UbC 513.73

In [1] Aleksandrov suggested a method for constructing a general theory of nonregular
curves in R? on the basis of their approximation by polygonal arcs. The curvature and tor-
sion are replaced by the integral curvature and integral torsion, which are defined as limits
of sums of angles between segments and planes of polygonal arcs inscribed in the curve. It
turned out to be fruitful to combine this method with the integral-geometric method of pro-
jections suggested by Reshetnyak [2].

In [3, 4] a theory of nonregular curves was constructed by a method not based directly
on approximation by polygonal arcs. The integral curvatures were defined here as limits of
sums of angles between k-dimensional tangent planes in their natural order of succession and
condensation of points of tangency. 1In the present paper we consider questions of approxi-
mation of integral curvatures of curves in R® and S% by curvatures of polygonal arcs and se-
cant planes.

We cite the basic concepts needed.

Let PK and QK be oriented k-dimensional planes in R%, k < n. We define the angle be-
tween them by the equation

o (P", @) = [ +*(PP*, PQ") dpy.,
sk

whereﬁng is the manifold of k-dimensional planes in R, passing through one point, Mg, n is

the unit measure on Rn, invariant with respect to transformations of %% corresponding to
motions of R [5]. The function vK on %! is the following:

V4 (P)=v*(PP*, PQ*) =1,

if the orientations of the orthogonal projections PPE and PQK of the planes PE and QK on
P St,’i are different;

Vi(P)=v"(PP", PQ*)=0,

if theorientations of PP¥ and PQK coincide. The orientations of the projections are deter-
mined in the natural way, vEK is defined almost everywhere with respect to the measure uy ,,
k-dimensional planes in S™ and the angle between them are defined in the natural way by iden-
tification with (k + 1)-dimensional planes in R™*?, passing through the center.

Further the curvatures are understood as classes of equivalent parametrizations with the
Frechet metric [6]. We define the k-dimensional tangent planes of a curve and indicatrices
of k-dimensional tangent planes. We restrict ourselves for simplicity to the case when K = R"
and the curve has no arc of dimension less than n — 1. Let x(t,) be a point of the curve
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