‘-

!, where ko = D™ ![mp + (g + 1/2)a], Qn+¢{t) is a polynomial of degree n + 1, and @ = arccosV1 — 24,D, We choogg
: Ay by setting @ = mm;/m,, where m;/m, is an irreducible fraction and my > 2Mymy (the arithmetical condition)
We require that the coefficients of tO*! in the polynomials ap.(t), 1 =n =< My~ 1, are equal to 0, Hence, the
remaining coefficients in (2) are uniquely determined,

The constructed diameter corresponds to the elliptic periodic trajectory of the billiard that has very
strong degeneracy, Let us find out of what type is the corresponding part of the spectrum of the Laplace
operator, Letus setp= (m—s)m,,q= mys, We get the following formula for Apg = kqu from (5):

g =AM b d o (1 O (078} 4 0 (), 6)

where the estimates O(m~¢) and O(m™!") are uniform with respect to s such that 0 < s = const ml“a,

1 1 11
a=oaXctgta)mi 40, e=g-l <1Tz otg 2a + 7 8in 20 4 5o sin 4a) 0.

It follows from (3) that for a certain ¢y > 0 each interval [Apyg — ¢ym™?, Ams + ¢ym™?] contains at least one
eigenvalue of —A, Since 0 = s = const ml"c’, the considered spectrum is divided into narrow groups of dimen-
sion ~m~®, the group near Am, contains Ny, = const m!~€ eigenvalues, the distance between which ~m~!, |t
the estimate r()\):O(A(i/z)“S), € <26 <1 +eg, is valid, then it would follow from (1) that Ny, = O(m1'26), which
contradicts the above lower estimate,
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ENTROPY OF ANALYTIC ENDOMORPHISMS OF THE
RIEMANNIAN SPHERE

M. Yu. Lyubich UDC 517,53

1. Bowen has asked the following question in the survey [1]: Let P(z) be a complex polynomial, considered
as a continuous mapping 8% — S?, Is it true that the topological entropy h(P) is equal to In (deg P)? In the present
note we obtain an affirmative answer to this question and, in addition, prove the formula h(f) = In (degf) for all
rational functions f(z) (#const), In this connection, degf is defined as the maximum of the degrees of the num-
erator and the denominator in the irreducible representation of f(z),

2. Let M be a smooth manifold equipped with the Riemannian metric 4,z < &, and B (z; Ne={l|te Ml
Z)<r} (r>0). For arbitrary e, 6, k (0 < ¢ < 6, 0 <k<1)andan arbitrary finite Z ={z1, e zn} let v, k, Z,
g) denote the smallest number of points ug .. ., u, = M such that <p< B (u; kd (w,  Z)) DB (Z; 6)\ B (Z; ). |

ISy i

LEMMA 1, If M = R? and d is the Euclidean metric, then

Y (6 ks Z,0) < o (% (In (£39) -+ a (). @

Proof, The boundary 8B(Z; r) is the union of circular arcs that are less than n? in number. Marking
equidistant points vy, ..., v4 with angular step k on each of these arcs, we get, gj B (v;; kr) DB (2Z; ar) \\ B (Zi. 1)
1i<s

where @ = a (k) depends only on k (for reasons of symmetry) and s < c(k)n?, Using this construction for r =
ale (i=0,1,,.., [(lna)"tn €™16)]), we get the desired system of points,
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The following proposition follows from Lemma 1,

Proposition 1, If M is a two-dimensional compact Riemannian manifold, then there exists a 8y = 64(M)
such that estimate (1) is valid for 6 < Oy

Now let M = S? be the unit sphere in R?® with the induced metric d. The stereographic projection iden-
tifies 8% with C,

Proposition 2, Let 0 <7 < n/2, § >0, Then there exists a k = k(n, 6) (0 <k < 1) with the following prop-

erty: If m B (u;p) —» 82 (0<p < n) is a univalent meromorphio function that does not take values in some n-net in
S%, then rB (u: kp) & B-(hy; O).

Proof, Let v = hu, w be the diametrically opposite point, and & = 5 (w; ) be a point of the n-net, Let us
consider the bilinear transformations @ and Y that preserve the metric d and are such that ¢(¢) = = and yu) = 0,
The function g = ghy~! is holomorphic and univalent in the disk B(0; p). If w = g(0), then d(w, 0) = 7 — d{w, ©) =

7= d(v, ) <. By virtue of our conditions, the function g has an exceptional value ¢ such that d(¢, w) < .
Since

(2oost ) |z — 2 | < d (s, 20) < 2| 2y — 2|
. in the disk B (0, 2n) (0 < n < a/2), it follows that | ¢ — 0| < /2 cos? .

Let us denote the Euclidean disk of radius R with center at a by D(a; R)." Let M(R) be the Euclidean radius
. of the disk with center w that is circumsecribed about the domain gD(0; R) and m(R) be the radius of the in-

scribed disk, By virtue of what we have proved above, m (tg —%)'g n/2 cos® 1. It follows from the Koebe distértion

theorem (for r =1 /2) that M(—;; tg %)< Im (—3— tg %)g /2 costn, If 0<C & < min (—;—, 8 cos? n/18n> , then by the Schwartz

i Temma we get M (k g 7)<92 Le., eD(0k tg —g-) cD (m; %) Hence gB (0 kp) C B (o; 8). Reverting to h, we get the
desired inclusion,

3. THEOREM 1, Let f: 8> — 8% be a rational function that is not a constant, Then the topological entropy
h(f) = In (degf),

Proof, The lower estimate h(f) = In (degf) follows from the Misiurewicz— Przytycki.theorem [2].

Letus fix n e (0, w/2) and consider the finite n-net X C s that contains all the critical points of the map-
ping f, Weset Z, = U fix m=1,2,3.. ) Let 6§ < 60(82) (see Proposition 1), k = k(n, 6) (see Proposition 2), and

<ism
em = 6L™™, where L is the Lipschitz constant of the mapping f in the spherical metric, By Proposition 1,
V8 ki Ziny em) =0 (m%). Letuy, ... » Uy be the corresponding points and Uy+1s o o o5 UB be a minimal (k6)-net for
§*N B (Zm; §). Then B =7y + O(1) = O(m®). If Pm (W) = min (d{u, Z ), 6), then the disks B (Wi kpm (w)) 1 < i< B) cover
§2N B (Zm; em). On the other hand, since the critical values of the mapping fM are contained in Zyy,, it follows
- that all the branches HBl=i=m,1=sr= (deg£)™) exist and are analytic in the disks B(uj; Pmui) @ =i=p),
All the branches 3! are univalent,

Let z & 52, We define the number j &1 =j=m) as the smallest number such that /"2 = B (z,,; en) [in the
case where fiz & B (Zp; sm) (i=0,...,m), we set j =m]. Let us suppose that =1 <j < m, Then there exists a 7, &
Zy such that f+1, = B (zy; em), and a uy (I = p = B) such that fz e B (wy) kpm (uy)). The "endn {fi}i of the trajectory

Of the point z is §-compressed by the trajectory (%) of the point zy, since epnIii=1 < =j+1,...,

‘m); For the compression of the initial part {fiz}% we select the branches fxi (1 =i=j) in the disk B (i P ()
f:,’by the conditions f;f& = 72 (& = fiz), The indicated part is d-compressed by the corresponding part of the trajec-
‘«itory of the point vy, Ay E,‘;;'uu. Indeed, the functions f;;,{;i) (0< i< do not take values in the n-net X, By Propo-

sty - ” - =), 4
(Sition 2, fis = 708 < B (0 Pu; 0). But A = 1o,

For j = =1 the whole trajectory is 6-compressed hy the trajectory of the point Zy, and for j = m it is 6-
“tompressed by the trajectory of the point Vit A '

In the sequel we will use the definition of the topological entropy introduced in [3]. Let us consider the
‘Covering of Us by all 6-disks and form the covering Up = >/< 17Us It follows from what we have proved that
. oism
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the smallest number of elements in subcoverings of the covering U(Ign satisfies the inequality ¥ (v}) < | Zp | X
B D) (deg /) = O (m* (deg /™) . Hence h(f, Us) = In {degf). Consequently, h(f) < In (deg ).

oism

Remark 1. In the case where f is a polynomial, the preparatory part of the proof is somewhat simplifieg
due to the localization of the dynamics in the finite part of the plane C.

Remark 2, Let $: be the class of the rational functions of degree ! for which the trajectories of all the
critical points converge to attracting cycles, In [4-6] a symbolic dynamics for the polynomials of the class i,
and in [7] that for all f e %, has been constructed. The desired estimate h(f) = In! for f = $ follows imme-
diately from these results, However, this estimate also follows easily from the fact that the family of all the
branches f>'\1 exists and is normal in the neighhorhood of each irregular point for je %,
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PROPERTIES OF A CLASS OF NON-SELF-ADJOINT OPERATORS

Ya. V. Mikityuk ‘ UDC 513,88

The present paper is devoted to an extension to the case of abstract operators of a well-known result
of Pavlov [1] which states that if the function q: R® — C is continuous and if lg(z)fexp (e | 2|7y < for some c,
& >0, then the operator —A + ¢, regarded as an operator in I,(R%), has a finite number of eigenvalues,

Let H = I, (R; E), where E is a separable Hilbert space, Following [2], we consider the operator T: H —
H associated with the sesquilinear form#*

(&) = (1, S"9)y + (BVY, AUR)y, fe=D(V), geD (s, &)

where S is the operator of multiplication by the independent variable in the space #, » eN, U= ($T+ 1)V, V=
(82 + N2 0 < v < i — 1, and the operators A and B belong to % (#; T (G is some auxiliary Hilbert space).
Let T be the Fourier— Plancherel operator in H, and let ¢ be an arbitrary but fixed number in the interval ]0;
1{. We denote by ##,, where 0 <6 = 1, the countable Hilbert space whose elements are those f e H, for which

det , 7 .
11y = { § exp @vIe1) 17/ (1)< oo

—00

for all y=10; e[, The space %, furnished with the topology generated by the norms |. s, ¥ 10el, is every-
where dense and continuously imbedded in H,

*D(+) denotes the domain of the operator -,
t@ (46 (@, (8;6) is the space of all continuous (completely continuous) linear operators from H into G.
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