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1. I n t r o d u c t i o n  

R ig id i ty  is a f undamen ta l  p h e n o m e n o n  in hyperbo l i c  g e o m e t r y  and  ho lomorph ic  dy-  

namics .  I t s  mean ing  is t h a t  t he  met r i c  p rope r t i e s  of  ce r t a in  mani fo lds  or d y n a m i c a l  

sys tems  are  d e t e r m i n e d  by  the i r  combina tor ics .  Ce l e b ra t e d  works  of Mostow,  Thur s ton ,  

Sull ivan,  Yoccoz, among  others ,  p rovide  us wi th  examples  of  r igid objec ts .  Moreover ,  

th is  phenomenon  is i n t ima t e ly  l inked to  the  un iversa l i ty  phenomenon ,  to  bas ic  measu re -  

theore t i ca l  and  topo log ica l  p rope r t i e s  of sys tems,  to  the  p rob l e m of  descr ib ing  typ ica l  

sys tems.  

In  the  se tup  of ho lomorph ic  d y n a m i c s  the  genera l  r ig id i ty  p rob l e m can be posed  as 

follows: 
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Rigidity problem. Any two combinatorially equivalent rational maps are quasi- 

conformally equivalent. Except for the Latt~s examples, the quasi-conformal deforma- 

tions come from the dynamics on the Fatou set. 

Though the general problem is still far from being solved, there have been recently 

several breakthroughs in the quadratic case when the problem is equivalent to the famous 

MLC Conjecture ("the Mandelbrot set is locally connected"). In this case the problem 

has been directly linked to the renormalization theory. In 1990 Yoccoz proved MLC 

for all parameter values which are at most finitely renormalizable. In this paper we will 

prove MLC for a certain class of infinitely renormalizable maps. To this end we carry out 

a geometric analysis of Julia sets which has already found a number of other interesting 

applications. 

Our analysis exploits a new powerful tool called "puzzle". It was introduced by Bran- 

her and Hubbard [BH] for cubic maps with one escaping critical point and by Yoccoz for 

quadratics (see [Hu], [Mi2]). The main geometric result of these works is the divergence 

property of moduli of a certain nest of annuli (provided the map is non-renormalizable). 

This implies that  the corresponding domains ("puzzle pieces") shrink to points, which 

yields, for a non-renormalizable quadratic, local connectivity of the Julia set. Transfer- 

ring this result to the parameter plane yields local connectivity of the Mandelbrot set at 

the corresponding parameter values. 

The geometric results of Branner-Hubbard and Yoccoz do not contain information 

on the rate at which the pieces shrink to points. In this work we tackle this problem. We 

consider a smaller nest V ~ D V1D... of puzzle pieces called principal, and prove that  the 

moduli of the annuli A n = V n - I \ V  n grow at linear rate over a certain combinatorially 

specified subsequence of levels: 

THEOREM III  (moduli growth). Let n(k) count the non-central levels in the prin- 

cipal nest { v n  } . Then 

mod(A n(k)+2)/> Bk,  

where the constant B depends only on the first modulus # l - -mod(A1) .  

To gain control of the first principal modulus, mod(A1), we consider a class 3 / :  of 

quadratics satisfying the secondary limbs condition. This class, in particular, contains 

�9 maps which are at most finitely renormalizable and do not have non-repelling 

periodic points (Yoccoz class); 

�9 infinitely renormalizable maps of bounded type; 

�9 real maps which do not have non-repelling periodic points. 

In w Theorem I, we construct, for maps of class $/ : ,  a dynamical annulus A 1 with 

a definite modulus. 
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A basic geometric quality of infinitely renormalizable maps is a priori bounds. They 

provide a key to the renormalization theory, problems of rigidity and local connectiv- 

ity. In this paper we prove a priori bounds for maps of class S s  with sufficiently big 

combinatorial type (w Theorems IV and IV'). 

Being specified for real quasi-quadratic maps of Epstein class, this result yields 

complex bounds on every renormalization level with sufficiently big "essential period" 

(w Theorem V). In a more recent work [LY] complex bounds were established for maps 

with essentially bounded combinatorics. Altogether this yields: 

COMPLEX BOUNDS THEOREM (joint with Yampolsky). Let f be an infinitely renor- 

malizable quasi-quadratic map of Epstein class. Then for all sufficiently big m, the renor- 

malization Rmf  is quadratic-like with a definite modulus: mod(Rmf)>~#>O, with an 

absolute #. If f is a quadratic polynomial, this occurs for all m. 

This result was independently proven by Levin and van Strien [LvS]. 

In Part II we use the above geometric information to prove the following result: 

RIGIDITY THEOREM. Any combinatorial class contains at most one quadratic poly- 

nomial satisfying the secondary limbs condition with a priori bounds. 

We also show that the quadratics satisfying the above assumptions have locally 

connected Julia sets (w Theorem VI). In particular, all real quadratics have locally 

connected Julia sets (see also [LvS]). 

CONJECTURE.  The secondary limbs condition implies a priori bounds. 

Let QC(c) cTop(c) cCo,m(c) c C  stand respectively for the quasi-conformal, topolog- 

ical and combinatorial classes of the quadratic map Pc. A map Pc is called combinatori- 

ally, topologically or quasi-conformally rigid if Com(c)={c}, Top(c)={c} or QC(c)={c} 

respectively. 

The strongest, combinatorial, rigidity of a map Pc turns out to be equivalent to the 

local connectivity of the Mandelbrot set M at c (see [DH1], [Scl]). This property of M 

was conjectured by Douady and Hubbard under the name "MLC". 

COROLLARY 1.1. For a quadratic polynomial PcC,_~s of a sufficiently big type (i.e., 

satisfying the assumptions of Theorem IV') the Julia set J ( f )  is locally connected, and 

the Mandelbrot set is locally connected at c. 

In particular, this gives first examples of infinitely renormalizable parameter values 

cEM of bounded type where MLC holds (though one needs a minor part of Corollary 1.1 

to produce some examples of such kind). 
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One might wonder: how big is the set of infinitely renormalizable parameter values 

satisfying the assumptions of Corollary 1.1? It is obviously dense on the boundary of 

the Mandelbrot set. We can show that  this set has Lebesgue measure zero and Hans- 

1 where 2=HD(OM) by Shishikura's dorff dimension at least 1 [L10]. Note that  1=~ .2  

theorem [Shl]. 

Let us now dwell on the case of real parameter values ce  [ -2 ,  �88 Corollary 1.1 

implies MLC (and thus complex rigidity) at real c with sufficiently big "essential period" 

on all renormalization levels (w Theorem VIII). For the rest of real parameters the 

Rigidity and Complex Bounds Theorems imply a weaker property, real rigidity. Let us 

say that  a parameter value c E R  (or the corresponding quadratic polynomial Pc) is rigid 

on the real line if Com(c)AR={c}.  Thus we have: 

DENSITY THEOREM. Any real quadratic polynomial Pc without attracting cycles is 

rigid on the real line. Thus hyperbolic quadratics are dense on the real line. 

(The latter statement follows from the former by the Milnor-Thurston kneading 

theory [MT].) 

Among other applications of the above results are the proof of the Feigenbaum- 

Coullet-Tresser renormalization conjecture [L9] and an advance in the problem of abso- 

lutely continuous invaxiant measures (joint with Martens and Nowicki [L8], [MN]). 

Let us now describe the structure of the paper. 

In w we overview the necessary preliminaries in holomorphic dynamics, particularly 

Douady-Hubbard renormalization and the Yoccoz puzzle. 

In w we present our approach to the combinatorics of the puzzle. The main concepts 

involved are the principal nest of puzzle pieces, generalized renormalization and central 

cascades. As we indicated above, the principal nest V ~ DV1D... contains the key combi- 

natorial and geometric information about the puzzle. We describe the combinatorics of 

this nest by means of generalized renormalizations, that  is, appropriately restricted first 

return maps considered up to rescaling. 

It may happen that  a quadratic-like map gn: Vn--*V n-1 has "almost connected" 

Julia set. This phenomenon often requires a special treatment.  Such a map generates 

a subnest of the principal nest called a central cascade. The number of central cascades 

in the principal nest is called the height x ( f )  of a map f .  In other words, x ( f )  is the 

number of different quadratic-like germs among the gn's. It will play a crucial role for 

our discussion. 

In w we study the initial geometry of the puzzle. The main result of this section is 

the construction of an initial annulus A 1 = V ~  1 with definite modulus, provided the 

hybrid class of a map is selected from a truncated secondary limb (Theorem I). 
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In w we define a new geometric parameter (worked out jointly with J. Kahn), the 
asymmetric modulus, and prove that it is monotonically non-decreasing when we go 

through the principal nest (Theorem II). This already provides us with lower bounds for 

the principal moduli #n=-mod(A n) (which, by the way, implies the Branner-Hubbard- 

Yoccoz divergence property), and upper bounds on the distortion. We reach these results 

by means of a purely combinatorial analysis plus the standard Grhtzsch inequality. 

Our main geometric result, Theorem III, is proven in w The above analysis does not 

always yield the linear growth of moduli. In particular, it is not good enough for the basic 

example called the Fibonacci map. The proof of the moduli growth for the Fibonacci 

combinatorics is the heart of the whole paper (w This crucial step is based on the 

definite Grhtzsch inequality, estimates of hyperbolic distances between puzzle pieces and 

analysis of their shapes. The key observation is that sufficiently pinched pieces make a 

definite extra contribution to the moduli growth. 

In the next section, w we prove a priori bounds for infinitely renormalizable quadrat- 

ics of sufficiently big type (Theorems IV and IV1). The meaning of this condition is that 

certain combinatorial parameters of the renormalized maps Rnf are sufficiently big. The 

main such parameter is the above mentioned height, but there are Mso a few others. 

These conditions together mean roughly that the periods of Rnf are sufficiently big, 

except for a possibility of long "parabolic or Siegel cascades". 

In the last section of Part I, w the above discussion is specified and refined for real 

maps of Epstein class. We define a notion of "essential period" and prove that mod(Rf) 

is big if and only if the essential period per~(f) is big. This discussion exploits essentially 

Martens' real bounds [Mar] and complex bounds of [L4]. 

Let us now pass to Part II. In w we show that the secondary limbs condition and 

a priori bounds yield a definite space between the bouquets of little Julia sets. This 

provides us with special disjoint neighborhoods of little Julia bouquets with bounded 

geometry (called "standard"). Together with the work of nu  and Jiang [H J], [J] and 

McMullen [Mc3] this yields local connectivity of the big Julia set (Theorem VI). 

In the next two sections we prove the Rigidity Theorem. We start w with a discus- 

sion of reductions which boil the Rigidity Theorem down to the following problem: Two 

topologically equivalent maps (satisfying the assumptions of the theorem) are Thurston 

equivalent. Then we set up an inductive construction of approximations to the Thurston 

conjugacy. In particular, we adjust an approximate conjugacy in such a way that it 

respects the standard neighborhoods of little Julia bouquets. 

The next section, w presents the proof of the Main Lemma. This lemma gives a 

uniform bound on the pseudo-Teichmiiller distance between the generalized renormaliza- 

tions of two combinatorially equivalent quadratic-like maps (the bound depends only on 
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the selected secondary limbs and a priori bounds). The main geometric ingredient which 

makes this work is the linear growth of the principal moduli (Theorem III). 

In the last section, w we discuss rigidity and deformations of real quasi-quadratic 

maps. 

In Appendix A we collect necessary background material in conformal and quasi- 

conformal geometry. 

In Appendix B we make further reference comments. 
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Part I. Combinatorics  and geometry  of  the Yoccoz puzzle 

2. Douady-Hubbard  renormalization and Yoccoz puzzle 

2.1. General terminology and notations 

We will use the following notations: 

D r = { z :  H < r }  is the standard disk of radius r, D - D 1  is the unit disk. 

Tr=OD~ is the standard circle of radius r, T - T 1  is the unit circle. 

A(r, R )={z  : r <  Izl <R} is a standard annulus; similar notation is used for a closed 

annulus A[r, R] (or a semi-closed one). 

Given two sets A and B, let dist(A, B)=inf{dist(z ,  ~ ) :zeA,  r  

Given two subsets V and W of the complex plane, we say that  V is strictly contained 

in W, V ~ W ,  if c l V c i n t  W. 

By a topological disk we will mean a simply-connected region in C. By an annulus 

we mean a doubly-connected region. A horizontal curve in an annulus A is a preimage of 

a circle centered at 0 by the Riemann mapping A ~ {z : r < l zl < R} (here 0 ~< r < R ~ co). 
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Let us consider a family of two topological nested disks D1 cD2 with Fi=ODi and 

A=D2\D1. The statement that  mod(A)>~ with an e > 0  uniform over the family will be 

freely expressed in the following ways: "the annulus A has a definite modulus", "D1 is 

well inside D2" or "there is a definite space in between F1 and I~2 '' . 

Quasi-conformal and quasi-symmetric maps will be abbreviated as qc and qs corre- 

spondingly. 

By orb z we denote the forward orbit {fnz}~_ 0 of z, and by w(z) its w-limit set. Let 

also orb~ z={f'~z}~=o . Let Pc: z~--~z2+c. 

2.2. Polynomials 

By now there are many surveys and books on holomorphic dynamics. The reader can 

consult, e.g., [Bea], [CG], ILl], [Mil] for general reference, and [Br], [DH1] for the qua- 

dratic case. Below we will remind the main definitions and facts required for discussion. 

However, we assume that  the reader is familiar with the classification of periodic points 

as attracting, neutral, parabolic and repelling. 

Let f :  C--*C be a monic polynomial of degree d~>2, f ( z ) : z d - ~ - a l z d - l - ~ - . . . ~ - a d  �9 The 

basin of co is the set of points escaping to c~: 

Df  (co) - D ( ~ )  = {z e C :  fnz ~ oo}. 

Its complement is called the filled Julia set: K(f)=C\D(c~). The Julia set is the 

common boundary of K(f)  and D ( ~ ) :  J(f)=OK(f)=OD(c~). The Fatou set F(f) is 

defined as C \ J ( f ) .  The Julia set (and the filled Julia set) is connected if and only if 

none of the critical points escape to ~ ,  that  is, all of them belong to K(f).  
Given a polynomial f ,  there is a conformal map (the BSttcher function) 

BS: US {a: Izl > rs > 1} 

of a neighborhood Uf of infinity onto the exterior of a disk such that  By(fz)=(Byz) d 
and Bf(z),.~z as z--+c~. There is an explicit dynamical formula for this map: 

By(z) = lim (fnz)l/d'~ (2.1) 
n---+c~ 

with an appropriate choice of the branch of the d'~th root. 

If the Julia set J(f) is disconnected then OUr contains a critical point b of f .  Other- 

wise B/co inc ides  with the Riemann mapping of the whole basin of infinity D(cc)  onto 

{z: H > I }  (in this case ry---1). 
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The external rays R ~ =-R~ of angle 0 and equipotentials E r - E ~  of level r are defined 

as the B/-preimages of the straight rays {rei~ r /<r<oo}  and the round circles {erei~ 

0~<0~<2zr}. They form two orthogonal invariant foliations of U/. Moreover, even in the 

disconnected case, a ray R e can be infinitely extended towards the Julia set, unless it 

"bounces off" a critical point, and the Bbttcher function can be analytically continued 

along this ray (see [GM, Appendix B] for a detailed discussion). 

Let T~ ~ --T~ '(~'~) stand for the arc of the external ray of angle 0 in between the 

equipotential levels O<~p<r<~oo (with the usual meaning of notations [p, r], [p,r), etc.). 

Note that  if the ray lands at some point a E J ( f )  then ~0,[0,~) also makes sense. 

Each ray comes together with the natural parametrization by the equipotential 

levels. 

THEOREM 2.1 (see [Mil, w or [Hu]). Assume that J ( f )  is connected. Then for 

any repelling periodic point a, there is at least one but at most finitely many external 

rays landing at a. 

Thus the external rays landing at a are organized in several cycles. The rotation 

number of these cycles is the same, and is called the combinatorial rotation number p(a) 

of a. Let T~(a)-T~f(a) denote the union of the closed external rays landing at a, and 

p--1 
U ze(/ka) 

k=O 

(where p is the period of a and ~--orba is the corresponding periodic cycle). This 

configuration, with the external angles marked at the rays, is called the rays portrait of 

the cycle ~. The class of isotopic portraits is called the abstract rays portrait. 

2.3. Quadratic family 

Let now f - P c :  z~-*z2+c be a quadratic map. In this case the rays portraits of periodic 

cycles have quite special combinatorial properties. The reader can consult [DH1], [At], 

[GM], [Sc2], [Mi4] for the proofs of the results quoted below. 

PROPOSITION 2.2 (see [Mi4]). Let ~={ak }Pk--lo be a repelling periodic cycle such that 

there are at least two rays landing at each point ak. 

(i) Let $1 be the components of C\T~(~) containing the critical value c. Then $1 is 

a sector bounded by two external rays. 

(ii) Let So be the component of C \ f - lT~(~)  containing the critical point O. Then 

So is bounded by four external rays: two of them land at a periodic point ak, and two 

others land at the symmetric point -ak .  

(iii) The rays of T~(~) form either one or two cycles under iterates of f . 
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- p - - 1  A particular situation of such kind is the following. Let b={bk}k=o be an attracting 

cycle, p>  1. Let Dk be the components of its basin of attraction containing bk. Then 

the boundaries of Dk are Jordan curves, and the restrictions fPlODk are topologically 

conjugate to the doubling map z ~ z  2 of the unit circle. Hence there is a unique fP-fixed 

point ak E ODk. Altogether these points form a repelling periodic cycle g (whose period 

may be smaller than p), with at least two rays landing at each ak. The portrait ~(g)  

will also be called the rays portrait associated to the attracting cycle b. 

A case of special interest for what follows is the fixed points portraits. There is always 

a fixed point called/3 which is the landing point of the invariant ray 7~0. Moreover, this 

is the only ray landing at /3, so that  this point is non-dividing: the set K(f ) \{ /3}  is 

connected. 

If the second fixed point called c~ is also repelling, it turns out to be dividing: there 

are at least two external rays landing at it, so that  K ( f ) \  {a} is disconnected. These rays 

are cyclically permuted by dynamics with a certain combinatorial rotation number q/p. 
The Mandelbrot set M is defined as the set of cEC for which J(Pc) is connected, 

that  is, 0 does not escape to oe under iterates of Pc. If cEC\M,  then J(Pc) is a Cantor 

set. 

The Mandelbrot set itself is connected (see [DH1], [CG]). This is proven by con- 

structing explicitly the Riemann mapping BM: C \ M--* {z :lzl > 1 }. Namely, let Dc (c~) 

be the basin of cc of Pc, and Bc be the BSttcher function (2.1) of Pc. Then 

B (c) = (2.2) 

The meaning of this formula is that  the "conformal position" of a parameter c E C \ M  
coincides with the "conformal position" of the critical value c in the basin Dc(c~). This 

relation is a key to the similarity between dynamical and parameter planes. 

Using the Riemann mapping BM we can define the parameter external rays and 

equipotentials as the preimages of the straight rays going to c~ and round circles centered 

at 0. This gives us two orthogonal foliations in the complement of the Mandelbrot set. 

A quadratic polynomial Pc with cEM is called hyperbolic if it has an attracting 

cycle. The set of hyperbolic parameter values is the union of some components of int M 

called hyperbolic components. Conjecturally all components of int M are hyperbolic. This 

conjecture would follow from the MLC Conjecture asserting that  the Mandelbrot set is 

locally connected (Douady and Hubbard [DH1]). 

The main cardioid of M is defined as the set of points c for which Pc has a neutral 

fixed point ac, that  is, IP~'(ac)l=l. It encloses the main hyperbolic component where Pc 

has an attracting fixed point. In the exterior of the main cardioid both fixed points are 

repelling. 
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Let H C i n t  M be a hyperbolic component of the Mandelbrot set, and let b(c)= 
p--1 {bk(C)}k= o be the corresponding attracting cycle. On the boundary of H the cycle 

becomes neutral, and there is a single point dEOH where (PP)'(bo)= 1 [DH1]. This point 

is called the root of H.  

If H is not the main component then for any cCH there is the rays portrait  T~c 

associated to the corresponding attracting basin. Let 01 and 02 be the external angles of 

the two rays bounding the sector $1 of Proposition 2.2. 

THEOREM 2.3 (see [DH1], [Mi4], [Sc2]). The parameter rays with angles 01 and 02 

land at the root d of H. There are no other rays landing at d. 

The region Wd in the parameter plane bounded by the above two rays and containing 

H is called the wake of Wd. The part  of the Mandelbrot set contained in the wake 

together with the root d is called the limb Ld of the Mandelbrot set originated at H.  

The root d is also referred to as the root of the wake Wd or the limb Ld. 

Recall that  for cEH, ?tc denotes the repelling cycle associated to the basin of the 

attracting cycle b~. The dynamical meaning of the wakes is reflected in the following 

statement. 

PROPOSITION 2.4 (see [GM]). Under the circumstances just described, the repelling 

cycle 5~ stays repelling throughout the wake W d originated at H. The corresponding rays 

portrait ~ ( ~ )  preserves its isotopic type throughout this wake. 

The limbs attached to the main cardioid are called primary. Let H be a hyperbolic 

component attached to the main cardioid. The limbs attached to such a component 

are called secondary. More generally, if H is a hyperbolic component obtained from the 

main cardioid by means of n consecutive bifurcations, then the limbs originated at such 

a component will be called limbs of order n. 

A truncated limb is obtained from a limb by removing a neighborhood of its root. 

2.4. Douady-Hubbard  polynomial-like maps 

The main reference for the following material is [DH2]. Let U'~U be two topological 

disks. A branched covering f :  Ut--~U is called a DH polynomial-like map (we will some- 

times skip "DH" in case this does not cause confusion with "generalized" polynomial-like 

maps defined below). Every polynomial with connected Julia set can be viewed as a 

polynomial-like map after restricting it onto an appropriate neighborhood of the filled 

Julia set. Polynomial-like maps of degree 2 are called (DH) quadratic-like. Unless other- 

wise is stated, any quadratic-like map will be normalized so that  the origin 0 is its critical 

point. 
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Fig. 1. Truncated secondary limbs of the Mandelbrot set 

One can natural ly define the filled Julia set of f as the set of non-escaping points: 

K(I)  = {z: f'~z �9 g', n = O, 1, ...}. 

The Julia set is defined as J( f )=OK(f ) .  These sets are connected if and only if none of 

the critical points is escaping. 

The choice of the domain U ~ and the range U of a polynomial-like map  is not canoni- 

cal. It  can be replaced with any other pair V~�9 such tha t  f :  V t ~ V  is a polynomial-like 

map  with the same Julia set (compare [Mc2, Theorem 5.11]). 

Given a polynomial-like map  f :  U'--*U, we can consider a fundamental annulus 
A = U \ U  ~. It  is certainly not a canonical object but rather  depending on the choice 

of U ~ and U. Let 

m o d ( f )  = sup mod(A),  

where A runs over all fundamental  annuli of f .  

Two polynomial-like maps f and g are called topologically (quasi-conformaUy, con- 
formally, agfinely) conjugate if there is a choice of domains f :  U~--*U and g: V~--*V and 

a homeomorphism h: (U, U')-*(V, V') (qc map, conformal or affine isomorphism corre- 

spondingly) such tha t  hoflU=gohlU. 
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If there is a qc conjugacy h between f and g with 0 h = 0  almost everywhere on the 

filled Julia set K ( f ) ,  then f and g are called hybrid or internally equivalent. A hybrid 

class Tl(f) is the space of DH polynomial-like maps hybrid equivalent to f modulo 

affine equivalence. According to Sullivan [S1], a hybrid class of polynomial-like maps can 

be viewed as an infinite-dimensional Teichmiiller space. In contrast with the classical 

Teichmiiller theory this space has a preferred point: 

STRAIGHTENING THEOREM [DH2]. Any hybrid class 7"l(f) of DH polynomial-like 

maps with connected Julia set contains a unique (up to a]fine conjugacy) polynomial. 

In particular, any hybrid class of quadratic-like maps with connected Julia set con- 

tains a unique quadratic polynomial z~--* z 2 + c  with c=c(f)E M. So the hybrid classes of 

quadratic-like maps with connected Julia set are labeled by the points of the Mandelbrot 

set. In what follows we will freely identify such a hybrid class with its label cEM. 

Sullivan supplied any Teichmiiller space of quadratic-like maps (with connected Julia 

set) with the following Teichmiiller metric IS1]: 

distT(f,  g) = inf log Dil(h), 

where h runs over all hybrid conjugacies between f and gi and Dil(h) denotes the qc 

dilatation of h. It is easy to see from the construction of the straightening that  the 

Teichmiiller distance from f to the quadratic Pc(f): z~-~z2+c(f) in its hybrid class is 

controlled by the modulus of f :  

PROPOSITION 2.5. / f  mod(f )~>#>0 then distT(f, Pc(f))~C with a C = C ( # )  de- 

pending only on #. Moreover, C(#)--*O as #--*c~. 

This is a reason why control of the moduli of polynomial-like maps is crucial for the 

renormalization theory (see [$2]). 

Given a polynomial-like map with connected Julia set, we can define external rays 

and equipotentials near the filled Julia set by conjugating it to a polynomial and trans- 

ferring the corresponding curves. This definition is certainly not canonical but  rather 

depends on the choice of conjugacy. If mod( f )>~ ,  then we can use a K(c)-qc conjugacy. 

In what follows we always assume that  the choice of the curves is made in such a way. 

2.5. Douady-Hubbard  renormalization 

The reverse procedure under the name of tuning is discussed in [DH2], [D1] and [Mi3]. 

A more general point of view (but which is equivalent to the tuning, after all) is discussed 

in [Mc2]. 



DYNAMICS OF QUADRATIC POLYNOMIALS, I-II 197 

Fig. 2. Renormalization domain for the Feigenbaum polynomial 

Let f :  U'-~U be a quadratic-like map. Let ~ be a dividing repelling cycle, so that  

there are at least two rays landing at each point of ~. Let 7~7~(~)  denote the configu- 

ration of rays landing at 5, and let T ~ = - ~  be the symmetric configuration. Let us also 

consider an arbitrary equipotential E.  Let now ~ be the component of C\(EDT~UT~ I) 

containing the critical point 0. By Proposition 2.2, it is bounded by four arcs 7i of 

external rays and two pieces of the equipotential E. 

Let p be the period of the above rays, and a be the point of the cycle ~ lying on 0~.  

Let us consider a domain ~1C~,  the component of f-P~ attached to a (see Figure 2). 

If ~ 0  then fP:~--*~ is a double covering map (otherwise ~ is a strip univalently 

mapped onto ~). 

A quadratic-like map f is called DH renormalizable if there is a repelling cycle ~ as 

above such that  ~ '~0 ,  and 0 does not escape ~ under iterates of fP. We will also say 

that  this renormalization is associated with the periodic point a. We call f immediately 
DH reno~nalizable if a is the dividing fixed point a of f .  

Note that  the disks ~1, f~ t ,  ..., f p - l ~  have disjoint interiors. Indeed, otherwise fk~, 
would be inside ~ for some k<p. But this is impossible since the external rays which 

bound fk~, are outside of ~. 

In the DH renormalizable case one can extract  a polynomial-like map fP: V'--*V by 

means of a "thickening procedure" (see [DH1] or [Mi2]). Namely, let us consider a little 

bit bigger domain VDI2 bounded by arcs of four external rays close to ~i, two arcs of 

circles going around the point a and the symmetric point a ~ (i.e., fa~=a), and two arcs 

of E.  Pulling V back by fP, we obtain a domain V'~V such that  the map fP: V~--~V is 

quadratic-like. This map considered up to rescaling (that is, up to afflne conjugacy) is 

called the DH renormalization of f .  

Let now f:z~-*z2+co be a quadratic polynomial, coEM. If it is renormalizable 
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then there is a homeomorphic copy M0 ~co of the Mandelbrot set with the following 

properties (see [DH2], [D1]). For zEM~=Mo\{one point} the polynomial Pc: z~-'*z2+c 
is renormalizable. Moreover, there is the analytic parameter extension ac of the periodic 

point a to a neighborhood of M~ such that  the above renormalization of Pc is associated 

to ac. At the parameter value b removed from M0 the periodic point a~ is becoming 

parabolic with multiplier one. This parameter value is called the root of M0. We say that  

the component H0 of M0 corresponding to the main hyperbolic component of M "gives 

origin" to the copy M0. Vice versa, any hyperbolic component H0 of the Mandelbrot set 

gives origin to a copy of M. In particular, the copies corresponding to the immediate 

renormalization are attached to the main cardioid. 

We will see below that  among all renormalizations there is the first one, which 

we denote R f  (see w This renormalization corresponds to a maximal copy of the 

Mandelbrot set (that is, a copy which is not contained in any bigger copies except M 

itself). Let A/[ denote the family of maximal Mandelbrot copies. 

It may happen that  R f  is also renormalizable, so that  f is "twice renormalizable". 

In such a way we can associate to f a canonical finite or infinite sequence of renormal- 

izations f, R f, R2f,.... Accordingly f can be classified as "at most finitely" or "infinitely 

renormalizable". 

Given any sequence z={M0,  M1, ...} of maximal copies of M, there is an infinitely 

renormalizable quadratic polynomial Pb such that  c(RmPb)EMm, m = 0 ,  1, .... Indeed, 

the sets 

COmN(T) = {b: c(RmPb) E Mm, m = O, 1, ..., N} 

form a nest of copies of M whose intersection Corn(T) consists of the desired parameter 

values. 

We say that  these infinitely renormalizable quadratics have combinatorics ~-. The 

MLC problem for infinitely renormalizable parameter values is equivalent to the assertion 

that  there is only one quadratic with a given combinatorics, i.e., Corn(T) is a single point 

for any T (see Schleicher [Scl] for a detailed discussion of the combinatorial aspects of 

the MLC). 

Let us say that  f satisfies the secondary limbs condition if there is a finite family of 

t runcated secondary limbs Li of the Mandelbrot set such that  the hybrid classes of all 

renormalizations Rmf belong to U Li. Let 8s stand for the class of quadratic-like maps 

satisfying the secondary limbs condition. 

Here are some examples of maps of class SL: 

�9 Maps which are at most finitely renormalizable and do not have non-repelling 

periodic points (Yoccoz class). 
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�9 Infinitely renormalizable maps of bounded type ("bounded type" means that  there 

are only finitely many different Mandelbrot copies in the string T={M0, M1, ...}). 

�9 Real maps which do not have non-repelling periodic points. 

�9 Select a finite family of (non-truncated) limbs Lj of order 3 (see w If 

c(R'~f) e[_JLj, m = 0 ,  1,..., 

then f E $ s  Unlike the 8s  assumption which involves truncation, this property is com- 

binatorial. 

All the above combinatorial notions are readily extended to quadratic-like maps via 

the straightening. A quadratic-like map f is said to have a priori bounds if there is 

an s > 0  such that  mod(R'~f)~>s>0 for all the renormalizations (note that  maps of the 

Yoccoz class satisfy this condition by logic). 

2.6. Yoccoz puzzle  

Let f :  U ' ~ U  be a quadratic-like map with both fixed points a and 3 repelling. As usual, 

denotes the dividing fixed point with rotation number O(a)=q/p, p > l .  Let E be an 

equipotential sufficiently close to K( f )  (so that  both E and f E  are closed curves). Let 

7~a denote the union of external rays landing at a. These rays cut the domain bounded 

by E into p closed topological disks Yi (~ i=O, . . . ,p - l ,  called puzzle pieces of zero depth 

(Figure 3). The main property of this partition is that  fOY (~ is outside of [_J int y(O). 

Let us now define puzzle pieces y(n) of depth n as the closures of the connected 

components of f - n  int y(0). They form a finite partition of the neighborhood of K( f )  

bounded by f-WE. If the critical orbit does not land at a,  then for every depth there is 

a single puzzle piece containing the critical point. It is called critical and is labeled as 
y(n) ~_ yo(n). 

Let y f  denote the family of all puzzle pieces of f of all levels. It is Markov in the 

following sense: 

(i) Any two puzzle pieces are either nested or have disjoint interiors. In the former 

case the puzzle piece of bigger depth is contained in the one of smaller depth. 

(ii) The image of any puzzle piece Yi (n) of depth n > 0  is a puzzle piece Yk (~-1) of 

the previous depth. Moreover, f :  Yi (n)--~Y(n-1) is a two-to-one branched covering or a 

conformal isomorphism depending on whether Y~(~) is critical or not. 

We say that  fk]Yi(n) l-to-one covers a union of pieces II . y(m) if fk l in t  Y~('~) is an 

/-to-one covering map onto its image, and 

fkl(Y~(~) n J(f))  = [_J r (m) N J(f) .  
r ~ 3  
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In this case U YS m) is obtained from fk]y(~) by cutting with appropriate equipotential 

arcs. 

On depth 1 we have 2p-1 puzzle pieces: one central y(1), p-i non-central y/(1) 

attached to the fixed point c~ (cuts of y/(0) by the equipotential f-iE), and p-i sym- 

metric ones Z~ attached to ~'. Moreover, f]y(1) two-to-one covers Y1 (1), flY/(I) uni- 
~lv(1) y(1) i=1 .... , p -2 ,  and Jl-p-1 univalently covers Y(1)uUiZ}I). Thus valently covers i+1, , 

fpy(z) truncated by f - l E  is the union of y(1) and Z} 1) (Figure 3). 

THEOREM 2.6 (Yoccoz, 1990). Assume that both fixed points of a polynomial-like 

map f are repelling, and that f is DH non-renormalizable. Then the following divergence 

property holds: 
o o  

mod(V(n) \y (n+l ) )  = 
n = 0  

Hence diamY(n)--~0 as n--~oo. 

COROLLARY 2.7. Under the circumstances of the above theorem the Julia set J( f )  

is locally connected. 

The reader can consult [Hu], [L3], [Mil] for a proof (or go to Theorem II of this 

paper). 

The Yoccoz puzzle provides us with a Markov family of puzzle pieces to play with. 

Two original ways of playing this game were by means of the Branner-Hubbard tableaux 

[BH] and by means of the Yoccoz T-function (unpublished). Our way based on the idea 

of generalized renormalization is quite different. 

2.7. E x p a n d i n g  sets  

Let us consider Yoccoz puzzle pieces Yi (x) of depth N, and let y(N) denote the family 

of puzzle pieces y(N+Z) such that 

fkYj(N+I)Ny(N)=z,  k=0 ,  ..., l--1. 

Let K (N) = { z : f k z ~ Y ( y ) ,  k=0, 1, ...}. Recall that an invariant set K is called expanding 

if there exist constants C>0  and pE(0, 1) such that 

IDfk(z)l>~C~ k, z C K ,  k=O, 1,.... 
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LEMMA 2.8. For a given N, diamy(N+0--~0 as Y(N +t) E y(  N) and 1--*co. Moreover, 

the set K (g) is expanding. 

Proof. Let us consider thickened puzzle pieces ~(N) as in Milnor [Mi2] or w 

Then i n t ( f ~  (N)) contains ~(N) whenever fYi  (N) ~y(N) (recall that  the ~(N) are closed). 

Hence the inverse map f -  1: ~(N) ___~(Y) is contracting by a factor A < 1 in the hyperbolic 

metrics of the pieces under consideration. 

Let y(N+O cy/(N). It follows that  the hyperbolic diameter of ~(Y+0 in ~/(Y) is at 

most A t, and the statement follows. [] 

3. Principal nest and generalized renormalization 

In the rest of the paper we will assume, unless otherwise is stated, that both fixed points 

of the quadratic-like maps under consideration are repelling. Up to w quadratic-like 

maps and renormalization are understood in the sense of Douady and Hubbard. 

3.1. Principal nest 

Given a set W=cl ( in t  W) and a point z such that  f l zE in t  W, let us define the pull-back 

of W along the orbz z as the chain of sets W0=W, W - l ~ f n - l z ,  ..., W - l ~ z  such that  

W-k is the closure of the component of f - k ( i n t  W) containing f l -kz .  In particular if 

zEint  W and l>0  is the moment of first return of orb z back to int W we will refer to the 

pull-backs corresponding to the first return of orb z to int W. 

Let us consider the puzzle pieces of depth 1 as described above: y(1), y/(1) a n d  Z} 1), 

i=1,  .. . ,p--1 (Figure 3). If z E Y  (1) then fPz is either in y(1) or in one of Z} 1). Hence 

either fPkOcy(1) for all k=0,  1, ..., or there is a smallest t > 0  and a u such that  ftpoEz(1). 

Thus either f is immediately DH renormalizable, or the critical point escapes through 

one of the non-critical pieces attached to a ~. 

In the immediately renormalizable case the principal nest of puzzle pieces consists 

of just the single puzzle piece y(0) (which is not very informative). In the escaping case 

we will construct the principal nest 

y(0) D V ~ ~ V ~ D ... (3.1) 

in the following way. Let V~ be the pull-back of Z O) along orbtp 0. Further, let us 

define V n+a as the pull-back of V n corresponding to the first return of the critical point 

0 back to int V '~. Of course it may happen that  the critical point never returns back to 

int V n. Then we stop, and the principal nest turns out to be finite. This case is called 



202 M. LYUBICH 

combinatorially non-recurrent. If the critical point is recurrent in the usual sense, that  

is, w(0)20, it is also combinatorially recurrent, and the principal nest is infinite. 

Let l=l(n) be the first return time of the critical point back to int V n-1. Then 

the map g~=fl(n):V'--~V'~-i is a two-to-one branched covering. Indeed, by the 

Markov property of the puzzle, f k V ' ~ N i n t V n - l = ~  for k = l ,  . . . , l - l ,  so that the maps 

f: fkV*~--~fk+lV~ are univalent for those k's. 

Let us call a return to level n - 1  central if g~OEV n. In other words l (n)=l(n+l) .  

Let us say that  a sequence n, n + l ,  ..., n + N - 1  (with N~> 1) of levels (or corresponding 

puzzle pieces) of the principal nest form a (central) cascade if the returns to all levels 

n, n +  1,_., n + N - 2  are central, while the return to level n + N -  1 is non-central (see 

Figure 4). In this case 

gn+klV n+k =gn+llV n+k, k = 1,...,N, 

and gn+10cV n + N - 1  \ V  n+N. Thus all the maps gn+l,..., gn+N are the same quadratic- 

like maps with shrinking domains of definition (see the conventions in w We call the 

number N of levels in the cascade its length. Note that  a cascade of length 1 consists of 

a single non-central level. Let us call the cascade maximal if the return to level n - 1  is 

non-central. Clearly the whole principal nest, except the first element y(0), is the union 

of disjoint maximal cascades. The number of such cascades is called the height x ( f )  of f .  

In other words, x( f )  is the number of different quadratic-like maps among the gn's. (If f 

is immediately renormalizable set ;g(f)=0.)  

The annuli An=V'~ - I \V  n and their moduli # ~=m o d (A  n) will also be called 

principal. 

Remark 1. The notion of the principal nest admits some useful modifications. First, 

there is a flexibility in the choice of the puzzle piece V ~ (compare w Second, one can 

modify the nest after passing through a long central cascade (see w The latter mod- 

ification is useful, e.g., for studying the Hausdorff dimension of Julia sets (see Przytycki 

[Prz], Prado [Pral]). 

Remark 2. Given a quadratic polynomial f :  z H z  2 +c, the principal nest determines 

a specific way to approximate c by superattracting parameter values. Namely, one should 

perturb c in such a way that  the critical point becomes fixed under gn, while the com- 

binatorics on the preceding levels keeps unchanged, see [L8]. The number of points in 

this approximating sequence is equal to the height x(f) .  This resembles the "internal 

addresses" of Lau and Schleicher [LS], but turns out to be different. 
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Fig. 3. Initial  t i l ing 

3.2. Init ial  Markov t i l ing 

Let Pi be a finite or countable family of topological discs with disjoint interiors, and 

g: [.JP~--+C be a map such that  the restrictions glPi are branched coverings onto their 

images. This map is called Markov if gP~ D Pj whenever int gPiN int Pj # ;a. Let us call it 

an unbranched Markov map if all the restrictions glPi are one-to-one onto their images. 

A Markov map is called Bernoulli if there is a topological disc D such that  gPi D 
DD[.JPj for all i. Any such D will be called a range of g. Similarly we can define an 

unbranched Bernoulli map. 

We know that  fPlY (1) two-to-one covers y(1) and the puzzle pieces Z~ 1) attached 

to a ' .  If fPOEY (1) (central return) then the pull-back of y(1) by this map is the critical 

piece y(l+p), while each Z~ 1) has two univalent pull-backs Z~ I+p) (we label them by j in 

an arbitrary way) (see Figure 3). 

Now, fPlY (I+p) two-to-one covers all these puzzle pieces. If we again have a central 

return, that  is, fPOcY (I+p), then the pull-back will give us one critical piece y(l+2p), and 

4 ( p - 1 )  off-critical Z~ 1+ 2p). 

Repeating this procedure t times (where ftPOEZ(1)), we obtain the initial central 

nest 

y(1) D y(l+p) D ... D y(l+(t-1)p), (3.2) 
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and a family of off-critical puzzle pieces z !  I+~p) O~s<~t-1. Moreover, 

fPO �9 Z (l+(t-1)p) , (3.3) 

where f(t-1)pz;l+(t-1)P)-~Z;1). 

Let us say that  a set D is tiled into pieces Wi rel F(f) if the int Wi are disjoint, and 

DNJ(f)=UW~nJ(I) .  
Thus we have tiled y(0) rel F(f) into the pieces Z} l+Sp), O~s~t-1 ,  and y(l+(t-1)p). 

Let us look closer at this last piece. I ts  image under fP two-to-one covers all the above 

puzzle pieces of depth 1 + ( t - 1 ) p .  The pull-back of Z b+(t-1)p) from (3.3) gives us exactly 

V ~  the first puzzle piece in the principal nest (3.1). The pull-backs of the other 

pieces ZJ l§ provide some off-critical pieces Z} l+tp). Finally, we have two univalent 

pull-backs Q1 and Q2 of y(l+(t-1)p). Altogether these pieces tile the piece y(l+(t-1)p) 
rel F(f). 

To understand how the critical point returns back to V ~ we need to tile Q1uQ2 

further. To this end let us iterate the unbranched Bernoulli map fPlQ1uQ2 with range 

Q 1 u Q2 u V ~ u ZJ 1 +tp). So take a point z �9 Q 1 u Q2 and consider its fP-orbit  until it escapes 

QIUQ2 (or iterate forever if it never escapes). It  can escape through the piece V ~ or 

through a piece ZJ l+tp). In any case pull the corresponding piece back to this point. In 

such a way we will obtain a tiling 

QIuQ2= U UXi ku U UZJ '+kp)UR rel F(f), 
k>O i k>t j 

where X~ denote the pull-backs of V ~ under fkp Z~+kp denote the pull-backs of the 

Z~ l+tp) under f(k-t)p, and R denotes the residual set of non-escaping points. 

Altogether we have constructed the initial Markov tiling: 

r ( ~  R~- VOU U UX/ku U U z J  l+kp) rel F ( f ) .  
k>O i k~O j 

(3.4) 

It  is convenient (in order to reduce the number of iterates in what  follows) to consider 

a Markov map 

c: v~ U U c (3.5) 
k,i k,j 

fspz(1Wsp) defined as follows. Observe that  for any j there is an i such t h a t ,  ~y univalently 

p- i  (1) y(0) Let us set G]Z~+SP-f pS+(p-i) covers Z~ 1). Moreover, f Z~ univalently covers . . . .  

The image of each piece Z~ I+sp) under this map univalently covers y(0). Similarly let 

us set G[V~ tp+p-', so that  the image of this piece two-to-one covers y(0). Finally 

GtX~ =fkp so that  these pieces are univalently mapped  onto V ~ 
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3.3. A non-degenerate  annulus  

Yoccoz has shown that  if f is non-renormalizable then in the nest y (0)Dy(1) . . ,  there 

is a non-degenerate annulus y(n) \ y ( n + l ) .  However, the modulus of this annulus is not 

under control. We will construct a different non-degenerate annulus whose modulus we 

can control. 

PROPOSITION 3.1. Let f be a quadratic-like map which is not immediately tenor- 

realizable. Then all the principal annuli A n = v ' - I \  V n are non-degenerate. 

Proof. Observe first that  V ~ is strictly inside y ( 0 )  that  is, the annulus Y ( ~ 1 7 6  is 

non-degenerate. Indeed, V ~ is the pull-back of Z (1) which is strictly inside y(0). As the 

iterates of 0Y(~ stay outside int y (0)  V 0 may not touch OY (~ 

For the same reason all other pieces Z~ l+kp) and X~ of the initial Markov tiling (3.4) 

are strictly inside y(0) as well. 

Let us consider the orbit of the criticM point 0 under iterates of the map G (see 

(3.5)) until it returns back to V ~ It  first goes through the Z-pieces of the initial Markov 

tiling, then at some moment  l~> 1 it lands at either V ~ or some X~. In the latter case, 

it lands at V ~ at the next moment.  

Since the map  G: V ~ U Z~I+kP)---~ C is Bernoulli with range y(0), there is a topological 

disc P c V  ~ such that  GZlP two-to-one covers y(0). Clearly V 1 is the pull-back of either 

V ~ or X~ by Gt: p__,y(O). Since both V ~ and X~ are strictly inside y(0), we conclude 

that  V ~ P .  

Now it is easy to see tha t  all the annuli A n are non-degenerate as well. Indeed, 

it follows that  the orbit of OV 1 stays away from V 1. Hence V 2 cannot touch OV 1, for 

otherwise there would be a point on cgV 1 which returns back to V 1. So A 2 is non- 

degenerate. Now we can proceed inductively. [] 

3.4. Renormal i za t ion  and central  cascades 

PROPOSITION 3.2. A quadratic-like map is renormalizable if and only if it is either im- 

mediately renormalizable, or the principal nest V ~ D V 1 D... ends with an infinite cascade 

of central returns. Thus the height x ( f )  is finite if and only if f is either renormalizable 

or combinatorially non-recurrent. 

Proof. Let the principle nest end with an infinite central cascade V ' ~ - I D V ' ~ D  .... 

Then the return times stabilize, 1,~=l,~+l . . . .  - l ,  and gn I Vn=gm IVn, n>~rn. Moreover, by 

Proposition 3.1, V m ~ V  "~-1, and hence g=--gm=-gl: V'~---~V m-1 is a quadratic-like map. 

We conclude that  N Vk consists of all points which never escape V "~ under iterates of g, 

that  is, A V k = K ( g )  �9 Since OCNV k, K(g)  is connected. 
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Take now the non-dividing fixed point b of g. Let us show that  b is dividing for 

the big Julia set K(f). To this end let us consider the configuration of the full external 

rays whose segments bound V'h They divide the plane into the central component f~n 

containing V n, and a family 8~={S~'},  iES[ n, of disjoint sectors each bounded by two 

external rays. Since the critical puzzle pieces V n are symmetric (with respect to the 

involution z~z '  such that  fz '=fz) ,  the families S'~ are symmetric as well. It follows 

that  every sector has external angle less than 7r. 

Observe that  C \ ( V ~ U  [Ji S~) does not intersect the big Julia set J(f). Hence every 

Cn+] of the next level. Moreover, since rays are sector S~ is contained in some sector - ( i )  

mapped to rays, g(OS~+~)=OS2(o. (Warning: however, ~n+l gDi does not necessarily 

coincide with S:(i) but can be the whole complex plane. This makes the argument below 

somewhat involved.) So we have two families of maps T:iZ-'~-*:I -'~+1 and x:In+I--<Z -~ 

(hopefully skipping label n in the notation of these maps will not lead to confusion). 

Let us show that  these two maps commute. Indeed, by definition S~CS~ +1. Let 

us consider a domain D=S~+lnV n. Then y-D-S n -  ~(~-i)"-'vn-l" Since OD contains an 
K'n -~ S n -  1 arc of OS n, O(gD) contains an arc of g(OS~)=OS:~. Hence ~(~i)-~ ~(i), so that  

Let a=vox :Zn- -~Z  n, n>~m. This map commutes with T. Let ACI  m be a set of 

r indices which are cyclically permuted by a : Z ' ~ : 2  m. By the commutation property, 

the set 7-kAcJ[ rn+k is cyclically permuted by O':~m+k---->~ rn+k as well. Thus for iEA we 

have: Z(T~i)=o~i=i. Applying ~_(I-1)~ to this equation and taking into account the 

commutation law we conclude that  

Z(Tz~')i='r(Z-])~i, l ~  1. (3.6) 

Let i E A ,  l> O. Then and by (3.6) 

gr ( ) = -1 (3.7) 

Let us consider the union of these sectors, Ti- [J~ T[. Clearly all the sectors Ti and the 

symmetric sectors T~ have pairwise disjoint interiors. Moreover, by (3.7), the boundary 

of each Ti is gr-invariant and consists of two external rays (limits of the external rays 

which bound T~) and a piece of the Julia set J(f). 
By [DH1] these boundary rays land at some periodic points. Actually, they land 

at the same point. Indeed, otherwise the piece of the Julia set J(f) contained in the 

OT~ would correspond to an invariant arc of the ideal boundary T of C \ K ( f )  (T  is the 

boundary of the unit disc uniformizing C \ K ( f ) ) .  This arc would not coincide with the 

whole circle T since the boundary of Ti cannot contain the whole Julia set J(f) (as one 
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of the symmetric sectors int T~ contains a piece of the Julia set). But such arcs do not 

exist. 

Thus each Ti is bounded by two gr-invariant rays landing at the same periodic point. 

Observe finally that the period r of this point must be equal to 1, so that it actually 

coincides with the fixed point b. Indeed, by construction all the sectors Ti and the 

symmetric sectors T~ have pairwise disjoint interiors. If r~l then this situation would 

contradict Proposition 2.2 (ii). 

So the periodic point b is dividing for J( f ) .  Let f l ' c l 2  be the corresponding domains 

constructed in w Recall that  ft is bounded by the rays landing at b and b ~ and two 

equipotential arcs, and ~ '  is the connected component of ( f / l~)  -1 attached to b. Then 

K ( g ) C f l  since the external rays landing at b and b' do not cut through K(g). Since K(g) 

is connected, ~ D K ( g ) ,  and hence tY30. It follows that  g: ~ ' -* t2  is a double covering. 

Moreover, gnOEK(g)C~',  n=0 ,  1, .... Thus f is renormalizable. 

Vice versa, assume that  f is renormalizable. Let R f  = fl: fl'--* t2 be the corresponding 

double covering. 

Then the fixed point a may not lie in int f/', for otherwise int f f t '  would intersect 

int ~ .  Hence a does not cut the filled Julia set K ( R f ) .  But then the preimages of a 

do not cut K ( R f )  either. Hence given a puzzle piece Yi (n), either K ( R f )  is contained 

in Y~(n), or K ( R f ) N i n t  Yi (n) = 0 .  In particular V m D K ( R f ) .  But then f lOEVm for all m, 

so that  the first return times to V m are uniformly bounded. Hence this nest must end 

up with a central cascade. [] 

The above discussion shows that there is a well-defined first renormalization Rf 

with the biggest Julia set, and it can be constructed in the following way. If f is im- 

mediately renormalizable, then Rf is obtained by thickening yO)_~y(O). Otherwise 

the principal nest ends up with the infinite central cascade V m-1 D VmD .... Then 

R f  =gm: V ~n --. V m-1. 

The internal class c(Rf)  of the first renormalization belongs to a maximal copy M0 

of the Mandelbrot set. 

3.5.  R e t u r n  m a p s  a nd  K o e b e  space  

Let f be a quadratic-like map, and let V E y f  be a puzzle piece. 

LEMMA 3.3. Let z be a point whose orbit passes through int V. Let l be the first 

positive moment of time for which f l zE in t  V. Let U~z  be the puzzle piece mapped onto 

V by f t .  Then ft: U--*V is either a univalent map or a two-to-one branched covering 

depending on whether U is off-critical or otherwise. 
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Proof. Let Uk=fkU, k=0,  1, ..., I. Since fkz~in t  V for 0 < k < l ,  by the Markov prop- 

erty of the puzzle, U k N i n t V = ~  for those k's. Hence f:Uk--~Uk+l is univalent for 

k = l ,  ..., l - 1 ,  and the conclusion follows. [] 

Let zEint  V be a point which returns back to int V, and let l>0  be the first return 

time. Then there is a puzzle piece V ( z ) C V  containing z such that  fZV(z )=V.  It follows 

that  the first return map A v f  to int V is defined on the union of disjoint open puzzle 

pieces int Vi. Moreover, if 

fmOVMV = O, m = 1, 2, ..., (3.8) 

then it is easy to see that  the closed pieces Vi are pairwise disjoint and are contained 

in int V. Indeed, otherwise there would be a boundary point ~EOV whose orbit would 

return back to V, despite (3.8). 

Somewhat loosely, we will call the map 

A v f : U V i  --~ V (3.9) 

the first return map to V. (Warning: it may happen that  a point zEOV returns back 

to V but does not belong to U vi; it may also happen that  a point zEOV~ returns to V 

earlier than prescribed by the map Af.) 

Let V0 denote the critical ("central") puzzle piece (provided the critical point returns 

back to V). Now Lemma 3.3 immediately yields 

LEMMA 3.4. The first return map Av  univalently maps all the off-critical pieces Vi 

onto V, and maps the critical piece Vo onto V as a double-branched covering. 

Thus the first return map A v f  is Bernoulli, and is unbranched on Ui#oVi. 

Let us now state an important  improvement of Lemma 3.3 which will provide us 

later on with a "Koebe space" and distortion control. 

LEMMA 3.5. Let z be a point whose orbit passes through the central domain int V0 

of the first return map (3.9), and l>~O be the first moment when flzEVo. Then there is 

a puzzle piece ft ~ z mapped univalently by fz onto V. 

Proof. Let s be the first moment when f s z E V .  Then f Z z = ( A v f ) k ( f f z )  for some 

k~>0. Moreover, ( A v f ) r ( f f z ) ~ V o  for r<k.  

Since the return map is unbranched Bernoulli outside of the central piece, there is 

a piece X c V  containing fSz which is univalently mapped by ( A v f )  k onto V. On the 

other hand, by Lemma 3.3 there is a domain D ~ z  which is univalently mapped by f f  

onto V. Hence the domain ( f [ D ) - s X  is univalently mapped by f t  onto V. [] 
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Let us now consider the principal nest (3.1) of f .  Let 

gn:UYin--+ Y n-1 (3.10) 

be the first return map to V "-1, where V ~ - V n 3 0 .  We will call it a principal return 

map. We will also let go=f.  

COROLLARY 3.6. For n>~2 the pieces V~ n are pairwise disjoint, and the annuli 

vn--l  \ Vi ~ are non-degenerate. Moreover, the map gnlV~ n can be decomposed as hn,i~ 

where hn,i is a univalent map with range V n-2. 

Proof. As V n-1 ~ V  '~-2 (Proposition 3.1) and 

f '~(OVn-1)Nint  V n-2 = ~, m = 1, 2, ..., 

condition (3.8) is satisfied for V = V  n - l ,  and the first statement follows. 

Take a piece V~ n, and let gn[Vin=f I. By Lemma 3.5 the map fz - l :  fVin_+Vn-1 can 

be extended to a univalent map with range V "-2,  and the second statement follows as 

well. [] 

Let ~: z H z  2 be the quadratic map. Since f :  U'--~U is a double covering with the 

critical point at 0, it can be decomposed as (I)oh where h: U'--+C is a univalent map. Let 

U " = f - I U .  If m o d ( U ' \ U ) > r  then by the Koebe Theorem, h[U" has an L(c)-bounded 

distortion. Thus f is "quadratic up to bounded distortion". Moreover, once we know 

that  the mod(A n) are bounded away from 0 (see Theorem II below), we can conclude by 

Corollary 3.6 that  all the maps gn are quadratic up to bounded distortion. 

3.6. So la r  s y s t e m :  B e r n o u l l i  s c h e m e  a s s o c i a t e d  t o  a centra l  ca s cade  

In the case of a central cascade we need a more precise analysis of the Koebe space. Let 

us consider a central cascade C=--cm+N: 

Y m ~ V m+l ~ ... ~ V m+N-1 ~ Y re+N, (3.11) 

where gm+IOEVm+N-I\vm+N. Set g=g,~+llV m+l. Then g:Vk--+V k-1 is a double- 

branched covering, k = m +  1, ..., m + N .  

Let us consider the first return map gin+l: U V~m+I-+v m, see (3.10). Let us pull 

the pieces Vi m+l back to the annuli Ak=Vk-I\V k by iterates of g, k = m + l ,  . . . ,m+N.  

We obtain a family W ( C ) - W  "~+N of pieces W~. By construction, W k c A  k and gk-m-1 

univalently maps each Wy onto some V~ m+l - W ~  +1. 
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Fig. 4. Solar s y s t e m  

Let us define an unbranched Bernoulli map 

G=_Gm+N: ~J W3k. -~ v m  (3.12) 
w(c) 

as follows: G[Wf=gm+log k- '~-I  (see Figure 4). 

LEMMA 3.7. Let us consider the central cascade (3.11). Let z be a point whose orbit 

passes through V m+N and 1 be the first moment for which f l zEym+N. Then there is a 

piece f~Sz which is univalently mapped by fz onto V m. 

Proof. Let s be the first moment for which f s z E V  m. Then f l z=Gk( fS z ) ,  where G 

is the Bernoulli map (3.12). Now repeat the argument of Lemma 3.5 just using G instead 

of the first return map. [] 

COROLLARY 3.8. Let us consider the central cascade (3.11). Then the map 

gm+N+l: ymTN+l ~ ym+N 

can be represented as hm+g+lof where hm+N+ 1 iS a univalent map with range V m. 

Proof. Repeat the proof of Corollary 3.6 using Lemma 3.7 instead of Lemma 3.5. [] 
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Remark. The modification of the principal nest after passing a long central cascade 

mentioned in Remark 1 of w is the following. Let gm+lOEW~ +N. Define ~,~+N+I as 

the pull-back of Wf ~+N by gin+l: vm+N--~V re+N-1. Then continue the nest by the first 

return pull-backs beginning with ~m+N+l modifying it each time after passing a long 

cascade. Note that  the construction of the first piece V ~ described in w is similar to 

this modification after passing the initial degenerate central cascade (3.2). 

3.7. Generalized polynomial- l ike maps and renormalization 

Let {U~} be a finite or countable family of topological discs with disjoint interiors strictly 

contained in a topological disk U. We call a map g: [.J U~-~ U a (generalized) polynomial- 
like map if g: Ui~U is a branched covering of finite degree which is univalent on all but 

finitely many Ui. 

Let us say that  a polynomial-like map g is of finite type if its domain consists of 

finitely many disks U~. In this case we define the filled Julia set K(g) as the set of all 

non-escaping points, and the Julia set J(g) as its boundary. The DH polynomial-like 

maps correspond to the case of a single disk U0. 

GENERALIZED STRAIGHTENING THEOREM. Any generalized polynomial-like map of 
finite type is qc conjugate to a polynomial with the same number of non-escaping critical 
points. 

Proof. For the case of two discs U0, U1 the proof is given in [LM]. In general let us 

proceed inductively in the number of the discs. Enclose two of the discs by a figure eight, 

and make a qc surgery which creates a new escaping critical point at the singularity of 

the figure eight, see [LM]. This surgery decreases by one the number of the discs. [] 

Let us call a generalized polynomial-like map generalized quadratic-like if it has a 

single (and non-degenerate) critical point. In such a case we will assume, unless otherwise 

is stated, that  0 is the critical point, and label the discs Ui in such a way that  U0~0. In 

what follows we will deal exclusively with quadratic-like maps, namely with the principal 

sequence gn of the first return maps (3.10). 

Given a Vj n+l, n/>l ,  let l be its first return time back to V ~ under iterates of g~, 

that  is, g,~+l[Vjn+l=g~. Then 

gkVj~§ k:O,l , . . . , l ,  

with i ( 0 ) : i ( l )=0 .  Moreover, gkVj �9 for k<l. The sequence 0=i(0), i(1), ..., i(1)=0 
is called the itinerary of Vj n+l through the domains of the previous level. A piece V] ~+1 

is called precritical if gnVj~+l :V0 n, so that  it has the shortest possible itinerary: l : 1 .  
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Let us define the n-fold generalized renormalization Tn f  of f as the first return 

map gn restricted to the union of puzzle pieces V/n meeting the critical set w(0), and 

considered up to rescaling. In the most interesting situations these maps are of finite 

type: 

LEMMA 3.9. If  f is a DH renormalizable quadratic-like map, then all the maps T'~f 

are of finite type. 

Proof. In the tail of the principal nest the maps Tn f  are DH quadratic-like, and 

their domains consist of just one component. So we should take care only of the initial 

piece of the cascade. 

Let us take the renormalization R f = f t :  V t+l --,V t with t>~n. Since 0 is non-escaping 

under iterates of R f ,  we have the following property: the first landing time of any point 

fko back to V t+l is at most I. All the more, the landing time to the bigger domain 

V ~ -1DV t is bounded by l. Hence the components of f - tVn -1 ,  t=O, 1, ..., l - l ,  cover the 

whole postcritical set. For sure, there are only finitely many of these components. But 

the domain of Tnf  consists of the pull-backs of these components by f l V  n-1. [] 

3.8.  R e t u r n  g r a p h  

Let /7 '~ be the family of puzzle pieces V~ ~ intersecting w(0), that  is, the pieces in the 

domain of the generalized renormalization 

Tnf: [J V~ ~ --~ VnU 1" 
ZN 

Let us consider a graded graph T /  whose vertices of level n are the pieces VjnE~ -'~, 

n=O, 1, ..., where Vj ~ stand for the pieces of the initial tiling (3.4). Let us take a vertex 

Vj n+l E2 -'~+1, and let i(1), ..., i ( t )=0  be its itinerary through the pieces of the previous 

level under the iterates of gn. Then join Vj n+l with V~ ~ by k edges, provided the symbol 

i appears in the above itinerary k times. This means that  the piece Vf  +1 under iterates 

of g~ passes through Vi ~ k times before the first return back to V s. Let us order the 

edges joining two vertices Vj ~+1 and V~ n so that  the first edge represents the first return 

of Vj ~+1 to V/n, the second one represents the second return, etc. 

Note that  for any vertex Vj n+l there is exactly one edge joining it to the critical 

vertex V0 ~ of the previous level. Note also that  by Lemma 3.9 in the DH renormalizable 

case the number of vertices on a given level is finite. In any case there are clearly only 

finitely many edges leading from a Vj n+l to the previous level n. Let ~-(Vj ~+1) denote the 

number of such edges, which is equal to the first return time of Vj n+l back to V ~ under 

iterates of gn. 
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By a path in the graded graph T f  we mean a sequence of consecutively adjacent 

vertices 

Vi~n) , n = l , l + l ,  ...,l+k, 

up to reversing the order. So we do not endow a path with orientation, and can go along 

it either strictly upwards or strictly downwards. 

Diverse combinatorial data  can be easily read off this graph. For example, given 

n>~m, the number of paths joining Vj n+l to V/m is equal to the number of times which 

the gin-orbit of Vj n+l passes through Vi m before the first return back to V n. Hence the 

return time of Vj ~+1 back to V ~ under iterates of g,~ is equal to the total  number of 

paths in T f  leading from Vj n+l up to level m. For m = 0  we obtain the return time under 

iterates of the original map f=go. 

Assume now that  the map f is DH renormalizable, and let s be a renormalization 

level in the principal nest, that  is, gs+l:V~+l--*V s is a quadratic-like map with non- 

escaping critical point. Then there is a single vertex V s+l at level s + l ,  and below it 

the return graph is just the "vertical path" through the critical vertices. By the above 

discussion, the total  number of paths in the graph T f  joining the top level to the bot tom 

vertex V ~+1 is equal to the renormalization period per ( f )  (i.e., the return time of V ~+1 

back to V ~ under iterates of f ) .  

It follows that  pe r ( f )  is bounded if and only if the DH level s is bounded, and all 

the return times ~-(Vi re+l) are bounded for l~m<~s and any i. For instance, the "if" 

statement means: If s~<~ and T(Y/m+l)~'~ for all vertices V/m+l, then per(f)~<p($,~). 

Indeed, the total number of paths in the graph is bounded by T ~. 

Note that  central cascades correspond to the vertical paths through the critical 

vertices. We say that  a path 7 passes through a central cascade (3.11) if 7~Vj ~ with 

n e [ m + l , m + N ] .  

Let us now define one more combinatorial notion, the rank (compare [L4, w Let 

D n c V  ~-1 be a puzzle piece of the full Markov family y /  (see w containing at least 

one piece Vi ~ of level n. Let us consider the shortest path 7 leading from D n (i.e., from 

one of the pieces V~ ~ c D  n) down to a critical piece V ~+~. The number of central cascades 

this 7 passes through will be called the rank of D ~. 

This notion is motivated by the following consideration. Let us consider two ad- 

jacent puzzle pieces vinCD n and Vj ~+1, and an edge 7 joining them. Let t be the 

return time represented by 7, i.e., _t V~+I C v n  The piece D ~+1DVj ~+1 in V n such that  Y n  j i " 

gtnDn+l =D n will be called the pull-back of D ~ along the edge 7. More generally, let us 

define the pull-back of D n along a path 7 leading from D '~ downwards by composing the 

pull-backs along the edges. 
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LEMMA 3.10. Let V be the shortest path leading f rom D ~ down to a critical piece V~  +~, 

and let D n+s be the pull-back of  D n along this path. Then 

V n+s C D n+s C V n+s-1, 

and the map D n+~ --*D '~ is a double-branched covering. 

Proof. Follows easily from the definitions. [] 

3.9. Full  p r i n c i p a l  nes t  

Let f be a non-immediately DH renormalizable quadratic-like map. Then its principal 

nest 

y(O,O) D V ~176 D V ~ D ... D V ~176 D V ~176 D ... 

ends up with an infinite cascade of central returns (we call this nest "short" and label 

it by two indices for the reason which will become clear in a moment). Let us select a 

level t(0) of this cascade, so that the return map Rf=go,t(o)+l:  V ~176176176 is DH 

quadratic-like. We will call such a level DH. (The particular choice of DH levels in what 

follows will depend on the geometry.) 

If R f  is non-immediately renormalizable, let us cut the puzzle piece V ~176 by the 

external rays, and construct its short principal nest: 

y(1,o) D V 1'~ D V 1'1 D ... D V ~'t(1) D V ~'t(~)+l D .... 

If R f  is DH renormalizable, then this nest also ends up with an infinite central cascade. 

Then select a DH level t ( 1 )+ l ,  and pass to the next short nest. 

If f is infinitely DH renormalizable but none of the renormalizations are immediate, 

then in such a way we construct the full  principal nest  

y(0,0) D V 0'0 D V 0'1 D ... D V 0't(0) D V 0'~(0)+1 

D y(1,o) D V 1'~ D V 1'1 D ... D V 1't(1) D V 1't(1)+1 D 

~  

D y(m,O) D V m'0 D V m'l D ... D Y m't(m) ~ Y m't(m)+l 

(3.13) 

Here y(m,O) is the first critical Yoccoz puzzle piece for the m-fold DH renormaliza- 

tion R m f ,  while the pieces V m'n form the corresponding short principal nest. More- 

over, for m > l ,  y(,~,0) is obtained by cutting V m- l ' t (m-1)+l  with the external rays of 
R m f :  v m - l , t ( m - 1 ) +  1 __+vm-l,t(m-1). 

The annuli A m , n = v m , n - l \ v m , n  will be called the principal annuli. 
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3.10. Big type: special families of Mandelbrot copies 

Assume that  we associated to any quadratic-like map a "combinatorial parameter" T(f)  

which depends only on the hybrid class c(f)  and is constant over any maximal copy of 

the Mandelbrot set. (Keep in mind the height function x ( f )  or the period per(f ) . )  Thus 

we can use the notation T(M'). 
Let S C A4 be a family of maximal copies of the Mandelbrot set. Let us call it T- 

special if it satisfies the following property: for any truncated secondary limb L there is a 

~-L such that  S contains all maximal copies M t c  L of the Mandelbrot set with T(M ~) ~/q-L. 
Let f be an infinitely renormalizable quadratic-like map. Let us say that  it is of 

S- type if all the internal classes c(R'~f) belong to copies M ~ from S. 

4. In i t i a l  geometry 

The goal of this section is to give a bound on the first principal modulus depending only 

on the choice of the secondary limbs and mod(f ) :  

THEOREM I. Let f be a quadratic-like map with internal class c(f)  ranging over a 

truncated secondary limb Ltb ~. If  mod(f)~>#>0 then 

mod(A 1) ~> C(#)v(Ltb ~) > O, 

where C ( # ) > 0  and C ( # ) S 1  as p/c<). 

4.1. G e o m e t r y  o f  r ays  

Let us consider a parameter region D. Assuming that  the rays 7~ '(e'r) (see w do 

not bounce off the critical point for cED, let us consider their natural parametrization 

r (0, r ) - ~  '(~'r). Continuous/smooth/real-analytic dependence of the ray on cED is 

defined as the corresponding property of the function (t, c)~-~r The same definitions 

are applied to equipotentials. 

Let B(a, 5)={z: Iz-al  <5}. 

LEMMA 4.1. (i) Assume that a ray T~ and an equipotential E~ do not hit the critical 

point, cCD. Then 7~ and EQc depend real-analytically on c; 

(ii) Let ac be a repelling periodic point of Pc continuously depending on cED. Let 

the ray T~ land at ac. Then the closure of this ray, -o  T~c, depends continuously on c. 

Proof. (i) The first statement follows from the fact that  the BStcher function ana- 

lytically depends on c, which is clear from the explicit formula (2.1). 
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(ii) Let us check continuity at some dcD. By (i), we only need to check that  for 

r > 0  sufficiently small, the arc 7~ '[~ is uniformly close to ad. Indeed, for any ~>0 there 

exist 5 > 0 and r > 0 such that  

�9 for Ic-d I <6, Pc univalently maps Bc-B(ac ,  5) onto a strictly bigger disc; 

�9 7~ '[r'2~] c B c  (this follows from (i)). 

Pulling back the arc T~c ~ by Pc]Be, we conclude that  7~ '[~ cBc .  [] 

Given a configuration go of finitely many parametrized curves and points in C, let 

us consider the space QC(C0) of all configurations qc equivalent to go. There is a natural 

Teichmiiller (pseudo-)distance on this space: 

distT (C1, C2) = inf log Dil(h), 

where h runs over all qc equivalences h: (C, gl)--*(C, C2). 

We say that  configurations of a certain family have bounded geometry if they stay at 

bounded Teichmiiller distance from a reference configuration C0 whose curves are smooth 

and intersect transversally. 

LEMMA 4.2. Let ac, eED, be a repelling periodic point as in Lemma 4.1. Let us 

consider a configuration T~(ac) of finitely many rays T~c ~ landing at ac, caD. Then T~(ac) 

has bounded geometry when c ranges over any compact subset of D. 

Proof. Take a dED. For any nearby cEB(d, 5), let us truncate the configuration T~c 

with an equipotential E~, where Q is selected big enough so that  E~ is a Jordan curve. 

We obtain an inner configuration T~ and an outer one T~. The latter one has bounded 

geometry over B(d, 5), as it is conformally equivalent to the configuration consisting of 

the circle of radius ~ and radial rays of angles 0i. 

Take a small ~>0. Lemma 4.1 implies that  for cEB(d, 5) with a small 5, there exists 

a smooth parametrized Jordan curve v c B ( a c ,  ~)=Bc enclosing ac which transversally 

intersects every ray of 7~c at a single point. It truncates T~ into the inner configuration 

7~ and the outer one ~o.  The latter one has bounded geometry over B(d, 5) since by 

Lemma 4.1 it smoothly depends on c. 

Let us consider ~ .  The parametrized curves "~/_N=(flBc)-g~ also intersect every 

ray of T~c at a single point. Moreover, for sufficiently big N (locally uniform), V-N lies 

strictly inside V with a definite space in between. 

Let us consider a configuration Cc consisting of the annulus bounded by V and *Y-N 

with the arcs of the rays T~ e~ in between (with the natural parametrization). Since this 

configuration smoothly depends on c (by Lemma 4.1), it has bounded geometry near d. 

Thus gc stays at bounded Teichmiiller distance from a standard configuration Co, the 

round annulus A(�89 1) with p equally spaced radial intervals inside. 
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So for c near d, there is a K-qc map h:Cc---~Co with locally uniform dilatation K,  

which conjugates f to z~-~2z on the inner boundaries of the configurations. Pulling this 

map back by the dynamics, we obtain a K-qc equivalence between the configuration T~ 

and a standard configuration 2? consisting of the unit circle and p equally spaced radial 

intervals emanating from 0. 

Since the dilatation K is locally uniform, it is uniform over any compact set. [] 

Let the a-fixed point of f have rotation number q/p. Then there is a single periodic 

point ~/Eint y(X) of period p. Let C(f) stand for the configuration of the rays landing at 

a, ~ and the symmetric points cd, ~ .  

COROLLARY 4.3. The configuration C(Pc) has a bounded geometry while c ranges 

over a truncated secondary limb L~ r. 

4.2. Fundamenta l  domain  near the  fixed point  

The goal of this subsection is to construct a combinatorially defined fundamental domain 

with bounded geometry near the fixed point a. It is where the secondary limbs condition 

comes into the scene. 

Let 7 and ~ be the periodic and co-periodic points defined prior to Corollary 4.3. 

Consider the family ~(~/') of rays landing at 7'. Let D=Dy be the component of 

Y(1)\T~(~/') attached to the fixed point ~ (see Figure 5). Then fP univalently maps 

D onto a domain containing the component of y(0)\T~(-y) attached to c~. Note that  

ODNO(fPD) is contained in the union of two rays landing at ~. 

Hence there is a univalent branch of f - P  which fixes ~ and maps D inside itself. It 

is now easy to see that  f - p n D  shrink to c~ as n-~cc.  So we can select Q = Q y = D \ f - P D  

as a fundamental domain for fP near ~: any trajectory which starts near c~ must pass 

through Q=Qy. Now Corollary 4.3 yields 

LEMMA 4.4. Geometry of the fundamental domain Qy is bounded if c(f)  ranges 

over a truncated secondary limb and f has a definite modulus. 

4.3. M o d u l u s  of  the  first annulus  

LEMMA 4.5. Let Pc be a quadratic polynomial with c outside the main cardioid but not 

immediately renormalizable. I f  c ranges over a truncated secondary limb Ltb r, then all 

the pieces W of the initial Markov tiling (3.4) are well inside y(0): 

mod(Y (~ \ W )  > v(L~ r) > 0. 
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Fig. 5. The fundamental domain near a 

Proof. Let y(0) be bounded by the equipotential E - E  1 of level 1 (together with 

two rays). Let UrD J(f) be the domain bounded by the equipotential E r. 

Take a little ~>0. Then there exist N and 5>0  such that  the distance from 

U1/2~\B(a,~) to cOY (~ is at least 5 (for all ceLtbr). 
The statement is obviously true for all the pieces W of depth ~ N .  

Any other piece W is contained in U 1/2N. Then dist(W, OY(~ if dist(W, a )>~ .  

As diam W is uniformly bounded, we conclude that  W is well inside y(0). 

Assume now that  d is t (W,a)<E.  Then W intersects the domain D=D/. Since 

CODACOW=O, WcD. Let us consider the iterates fPkW, k=O, 1, ..., until the last moment 

l such that  fPzWCD. At this moment fPlW must intersect the fundamental domain Q. 

Since their boundaries do not intersect, we conclude that  fP~WcQ. 
Let us consider the domain Q*=QAU 1/2p cQ obtained by truncating Q with the 

equipotential f -PE-E 1/2p. This domain has a bounded geometry since the fundamental 

domain Q does (Lemma 4.4). Hence Q* is well inside fPD. Moreover, fPIWcQ* since 

all the puzzle pieces of (3.4) which belong to D are enclosed by the equipotential f-PE 
(see Figure 5). Hence fPtW is well inside fPD as well. 

We conclude that  there is always a definite space around fPtW in fPD. Pulling this 

space back by iterates of the univalent branch f-P: fPD--~D, we obtain a definite space 

around W in D. [] 

We are now ready to prove the theorem stated in the beginning of this section: 
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Proof of Theorem I. Assume first that  f=Pc  is a polynomial. Let us go through 

the proof of Proposition 3.1. We found an l and a puzzle piece P c V  ~ such that  GlP 

two-to-one covers y(0), where G is the Markov map (3.5). Moreover, G~OcW where 

W = V  ~ or W=X.~. Then V 1 is the pull-back of W by G~IP. But by Lemma 4.5 W is 

well inside y(0). Hence V 1 is well inside V ~ 

If f is quadratic-like then its straightening yields the desired estimate by Proposi- 

tion 2.5. The constant C(#) can certainly be selected so that  it is monotone in #. [] 

5. B o u n d s  o n  t h e  m o d u l i  a n d  d i s t o r t i o n  

In this section we introduce the asymmetric moduli and prove that  they do not decrease 

under the generalized renormalization. This yields a priori bounds on the principal mod- 

uli and distortion. The precise formulation (Theorem II) is given at the end of the section. 

Note that  already this result yields the Yoccoz divergence property (Theorem 2.6). 

5.1. F i r s t  e s t i m a t e s  

Let ];nC y f  stand for the family of all pieces V/'~ of level n. 

Let us start with a lemma which partly explains the importance of the principal nest: 

the principal moduli control the distortion of the first return maps (see the appendix for 

the definition of distortion). Let us consider the decomposition: 

g,~lY~=hnof, (5.1) 

where h~ is a diffeomorphism of f V  n onto V n-1. 

LEMMA 5.1. Let DE:))] be a puzzle piece such that f z D = V  n, while f k D A V ~ = O ,  

k=0,  ..., l - 1 .  / f  #n~># then the distortion of f l  on D is O(exp(-#n-1))  with a constant 

depending only on ft. Hence the distortion of h,~ is O(exp(-#n-2)) .  

Proof. This follows from Lemma 3.5, Corollary 3.6 and the Koebe Theorem. [] 

Let us fix a level n>0 ,  denote V ~ - I = A ,  Vi=V~ n, g=g~, A=A'~=A\Vo, #=#n, and 

mark the objects of the next level n + l  with a prime. Thus A'=_V--Vo and g': U Vi '~A ' .  

(We restore the index n whenever we need it.) 

LEMMA 5.2. Let D ' c A '  be a puzzle piece such that gkDIcVi(k), k=l, . . . ,1,  with 

i(k)r for O<k<l. Then 

l 

mod(A ' \D ' )  ~> �89 E mod(A\Vi(k)). 
k = l  
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Proof. Let us consider the following nest of topological disks: 

A t  ~ W1 ~ ... ~ Wl  ~ Wl+l  DD' ,  

where Wk+l is defined inductively as the pull-back of V~(k) under gk: Wk___+/k k = l ,  ..., I. 

Since deg(gk: Wk--~ A) =2, 

mod(Wk\Wk+l) = �89 mod(A\V/(k)) (1 < k ~< l). 

But  by the GrStzsch inequality 

l 

m o d ( A ' \ D ' )  ~> ~ mod(Wk\Wk+l),  
k = l  

and the desired estimate follows. [] 

COROLLARY 5.3. Given a puzzle piece Vj', we have 

�89 

Moreover, if the return to level n is non-central, that is, gOEVi with an i~O, then 

mod(A' \Vj ' )  ~> �89 

So, a definite principal modulus on some level produces a definite space around all 

the puzzle pieces of the next level. 

5.3. Isles and asymmetric  moduli  

Let {V i }~ezCV ~ be a finite family of disjoint puzzle pieces consisting of at least two 

pieces (that is, 12-1 ~>2) and containing a critical puzzle piece V0. Let us call such a family 

admissible. We will freely identify the label set 2- with the family itself. 

Given a puzzle piece D, let 2-1D denote the family of puzzle pieces of 2- contained 

in D. Let D be a puzzle piece containing at least two pieces of family 2-. For V / c D  let 

t~=--R~(2-[D)cD\ U vj 
j 6 I I D  

be an annulus of maximal modulus enclosing V/ but not enclosing other pieces of the 

family 2-. Such an annulus exists by the Montel Theorem (see Figure 6). We will briefly 

call it the maximal annulus enclosing V/in D (rel the family 2-). 
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Fig. 6. Annulus  Ra 

Let us define the asymmetric modulus of the family Z in D as 

1 
a(ZID) = E ~ m~ 

~E2 

where ~ji is the Kronecker symbol. So the critical modulus is supplied with weight 1, 

1 (if D is off-critical then all the while the off-critical moduli are supplied with weights 

weights are actually �89 

For D=V n-l, let a~(Z)--a(ZtVn-1). The asymmetric modulus of level n is defined 

as follows: 

where Z runs over all admissible subfamilies of Y~. 

The principal moduli #~ and the asymmetric moduli a~ are the main geometric 

parameters of the renormalized maps gn. Again, in what follows the label n will be 

suppressed as long as the level is not changed. 

Let {V~I}~Ez, be an admissible subfamily of V I. Let us organize the pieces of this 

family in isles in the following way. A puzzle piece D ~ c A  t is called an island (for the 

family Y) if 

�9 D ~ contains at least two puzzle pieces of family Z~; 

�9 there is a t~>l such that  gkDrcV~(k), k = l ,  ..., t - l ,  with i(k)~O, while gtD=A. 

Given an island D I, let CD' =gt: Dt__~A. This map is either a double covering or a 

biholomorphic isomorphism depending on whether D ~ is critical or not. In the former 

case, D ~ D V~ (for otherwise D~CV~ contradicting the first part of the definition of isles). 
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We call a puzzle piece V j c D '  CD,-precritical if  CD,(Yj)--Y0. There axe at most two 

precritical pieces in any D ~. If there are actually two of them, then they are off-critical 

and symmetric with respect to the critical point 0. In this case D' must also contain the 

critical puzzle piece Vg. 

Let TY=I)(Z t) be the family of isles associated with Z ~. Let us consider the asym- 

metric moduli a(Z~ID ') as a function on this family. This function is clearly monotone: 

and superadditive: 

a(27'lD') /> a(271[D~) if D' D D~, (5.2) 

a(27'[D 1) >1 a(Z'[D'~) +a(Z'[D'2), 

provided D~ are disjoint subisles in D'. 
Let us call an island D' innermost if it does not contain any other isles of the 

family/)(Z~). As this family is finite, innermost isles exist. 

5.2. Non-decreasing of  the modul i  

LEMMA 5.4. Let Z' be an admissible family of puzzle pieces. Let D' be an innermost 
island associated to the family Z ~, and let J'-=-Z~ID. For j E J ' ,  let us define i(j) by the 
property CD,(Vj)cVi(j), and let Z={i( j ) : jEJ'}U{O}.  Then {V/}iez is an admissible 
family of puzzle pieces, and 

a(Z'[D')>~I( ([J ' [ -s )#+sm~176 E mod(Ri(j))) ,  (5.3) 
jEJ' ,  i(j)•O 

where s - - ~ ( j : i ( j ) = 0 }  is the number of CD,-precritical pieces, and Ri are the maximal 
annuli enclosing Vi in A tel Z. 

Proof. Let r162 Let us show first that  the family Z is admissible. This family is 

finite since or ~ is finite. The critical puzzle piece belongs to 27 by definition. So the 

only property to check is that  IZ[~>2. But otherwise gY t would consist of two precritical 

puzzle pieces. But then D ~ would be critical, and thus should also have contained the 

critical piece Vg, which is a contradiction. 

Let us observe next that  

mod(V/(j)\r ~> # if i(j) # O. (5.4) 

Indeed, in this case gm(r for some m>0.  Let WcV/(j) be the pull-back of A 

under gin. Then the annulus W \ r  is univalently mapped by gm onto the annulus 

A\V0. Hence mod(W\r  and (5.4) follows. 



DYNAMICS OF QUADRATIC POLYNOMIALS, I II 223 

Given an i E I, let us consider a topological disk Qi = R4 U Vi c A ("filled annulus Ri"). 

By the Grbtzsch inequality and (5.4), 

mod(Q~(j)\r ~> mod(R~(D)+ (1-60,i(j))#. (5.5) 

For a jEJ' ,  let us consider an annulus BjCD', the component of r enclos- 

ing V]. This annulus does not enclose any other pieces V~Efl', k#j .  Indeed, otherwise 

the inner component of C \ B j  would be an island contained in D', despite the assumption 
that D' is innermost. 

Let us now consider a topological disk Pj obtained by filling the annulus Bj. Then 

mod(R}) ~> mod(Pj \Vj'), (5.6) 

where R~jcD ' is the maximal annulus enclosing V] rel :7'. Moreover, r is 

univalent or a double covering depending on whether j # 0  or j=0 .  Hence 

mod(P{\V 0 ~>-~1 mod(Qi(j)\r (5.7) 
3 3 2OJo 

Inequalities (5.5)-(5.7) yield 

1 
mod(R}) ~> ~ (mod(Ri(j)) + (1 - 6o#(j))#). (5.8) 

Summing up the estimates (5.8) over fl '  with weights 1/21-ej~ we obtain the desired 

inequality. [] 

COROLLARY 5.5. For any island D' of the family Z)' the following estimates hold: 

~# and ~(2"ID') ~>a(2") >la. 

Proof. By monotonicity (5.2), it is enough to check the case of an innermost is- 

land D'. Let us use the notations of the previous lemma. Since the family 2" is admissible, 

it contains an off-critical piece. Hence IJ'l  is always strictly greater than the number s 

of precritical pieces in D', and (5.3) implies the first of the above inequalities. 

Furthermore, as #~>mod(R0) and IJ'l~>2, the right-hand side in (5.3)is bounded 
from below by 

1 (  [ J ' lm~176  E mod(P~)))a(2-) .  
iEZ, i:fi0 

(Note that a(Z) makes sense since 2" is admissible.) Finally a(2")>~a, and the second 

inequality follows. [] 

Let us fix a "big" integer quantifier N. >0. We say that a level n is in the "tail of a 

cascade" if all levels n - l ,  n - N .  belong to a cascade (note that level n - 1  itself may be 

non-central). Cascades of length at least N. we call "long". 
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THEOREM II. Given a generalized quadratic-like map gl, we have the following 

bounds of the geometric parameters within its principal nest: 

�9 The asymmetric moduli an grow monotonically and hence stay away from 0 on all 

levels: an ~>~'>0. 

�9 The principal moduli #n stay away from 0 (that is, #,~>p>0)  everywhere except 

for the case when n - 1  is in the tail of a long cascade (the bound # depends on the choice 

o/N,). 
�9 The off-critical puzzle pieces Vi~ are well inside V n-1 (that is, mod(V n-1 \vin) ~> 

fit > O) except for the case when Vi a is precritical and n -  2 is the last level of a long cascade. 

�9 The distortion of hn from (5.1) is uniformly bounded on all levels by a constant K .  

All the bounds depend only on the first principal modulus #1 and (as fit is concerned) 

on the choice of N . .  

Proof. The first assertion follows from the second inequality of Corollary 5.5. 

Together with Corollary 5.3 it implies the second one (note that  the second inequal- 

ity of this corollary implies that  #~> �89 in the non-central case). One more application 

of Corollary 5.3 yields the next assertion. 

Let us check the last statement. If n - 2  is not in the tail of a central cascade, then 

#n-1 ~># by the second statement, and the desired result follows from Lemma 5.1. 

Let n - 2  be in the tail of a central cascade v m ~ . . . ~ v n - 2 D  . . . .  If this is not the last 

level of this cascade then gn[Vn-~gm+2[V n, so that  hn is just a restriction of the map 

hm+2 with bounded distortion. 

Finally, if n - 2  is the last level of a central cascade, then by Corollary 3.8 hn can 

be extended to a univalent map with range V m, and the Koebe Theorem implies the 

distortion bound. [] 

Theorems I and II imply 

COROLLARY 5.6. Let f be a renormalizable quadratic-like map whose internal class 

c( f)  belongs to a truncated secondary limb L. Then 

m o d (Rf )  ~> ~L(mod(f))  > 0. 

Remark. Though we believe that  Theorem II is still true for higher degree complex 

unimodal polynomials zHzd+c ,  c c C ,  the above argument does not work. However, it 

is worthwhile to notice that  the following estimate is still valid: ~tn(k)+2>~r 

where n(k) is the subsequence of non-central levels and r  is a function depending only 

on d (which can be easily written down explicitly). In particular, in the renormalizable 
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case~ 

mod(Rf) >~ v(mod(f), x(f))  > 0, 

where the function v depends on d and the choice of truncated secondary limbs. 

6. Linear g ro w th  of  th e  modul i  

In this section we will prove the central result of the paper: 

THEOREM III. Let n(k) counts the non-central levels in the principal nest { vn} .  

Then 

mod(A n(k)+2) >~ Bk,  

where the constant B depends only on the first modulus #l=mod(A1). 

6.1. P r o o f  of  T h e o r e m  III 

This proof will occupy the rest of this section. Our goal is to prove that a ' ~ a + a  with a 

definite a>0 (that is, dependent only on mod(A0)) at least on every other level, except 

for the tails of long cascades and a couple of the following levels. (Theorem II shows the 

reason why these tails play a special role: In the tails the principal moduli become tiny 

which slows down the growth rate of asymmetric moduli.) 

Clearly it is enough to show that for any innermost island D ~ 

a(Z'lD' ) >1 a +a (6.1) 

with a definite a>0. The analysis will be split into a tree of cases. 

6.2. Let D'  conta in  at least three  puzz le  pieces 

PROPOSITION 6.1. I f  an innermost island D' contains at least three puzzle pieces Vj', 

j C j i ,  then 
a (J ' lD '  ) >~ a ( I )+  l #. 

Proof. Let us split off 1# in (5.3) and estimate all other #'s by mod(R0). This 

estimates the right-hand side by 

�89189 mod(Ro)+�89 ~ mod(Ri), 
iEZ,i~O 

which immediately yields what is claimed. [] 

Hence under the circumstances of Proposition 6.1 we observe a definite growth of 

the asymmetric modulus provided level n -  1 is not in the tail of a long cascade. Indeed, 

then by Theorem II # is bounded away from 0, and (6.1) follows. 
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6.3.  Let  D ~ c o n t a i n  t w o  p u z z l e  p ieces  

The further analysis needs some preparation in the geometric function theory summarized 

in Appendix A. 

Assume that  the island D' contains two puzzle pieces Vj, j E J (  Let r162 and let 

r  with i=i( j) .  Fix a quantifier L.  >0. When we say that  something is "big", this 

means that  it is at least C(L.)  where C ( L . ) ~ o c  as L . ~ o c .  Similarly "small" means 

an upper bound by e(L.)--*0 as L.---~cxD. The sign ~ will mean an equality up to a small 

(in the above sense) error, while the sign ~- will mean the inequality up to a small error. 

Case (i). Assume that there is a non-critical puzzle piece Vi(j) whose Poincard dis- 

tance in A from the critical point is less than L. .  Then by Lemma A.1 

# ~> mod(Ro) + a  (6.2) 

with a definite a = a ( L . ) > 0 .  But observe that  when we passed from Lemma 5.4 to 

Corollary 5.5 we estimated # by mod(Ro). Using the better estimate (6.2), we obtain a 

definite increase of a. 

Case (ii). Assume now that the hyperbolic distance in A from any non-critical puzzle 

piece Vi(D to the critical point is at least L. .  Assume also that  levels kE [n-3 ,  n] do not 

belong to the tail of a long cascade (for the sake of linear growth it is enough to prove 

definite growth on such levels). Then V0 may not belong to any non-trivial island together 

with some off-critical piece V/(j). Indeed, by Theorem II all puzzle pieces of level n -  1 are 

well inside V ~-2. But then by Lemma 5.2 all non-trivial isles of level n are well inside 

of V ~-I-=A. (The quantifier L.  should be chosen bigger than the a priori bound on the 

hyperbolic diameters of the isles.) 

Subcase (ii-a). Assume that both Vi(j) are non-critical. Then by Corollary 5.5 

a ( J ' ] D ' )  is estimated by an(2") where the family 2" consists of three puzzle pieces: two 

pieces V/(j) and the central puzzle piece V0. 

If the puzzle pieces Vi(j), j E J ' ,  do not belong to the same non-trivial island, then 

by Proposition 6.1 a(2")>~an_l+a with a definite a>0,  and we are done. 

Otherwise the puzzle pieces Vi(j) belong to an island W. Since by Lemma 5.2 W is 

well inside of A, it stays on the big Poincar~ distance from the critical point (namely, on 

distance L . - O ( 1 ) ) .  Hence mod(Ro)~p  and 

a ( I ) />  a(:r]W) +mod(Ro) ~- a,~-i +# ,  

where ~t---~t n is bounded away from 0, since level n -  1 is not in the tail of a long cascade. 

So we have gained some extra growth, and can pass to the next case. 
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141 ~ 

V~-2 

V ~-1 (rescaled) 

Fig. 7. Fibonacci scheme 

Below we will restore labels n and n + l  since many  levels will be involved in the 

consideration. 

Subcase (ii-b). Let one of the puzzle pieces Viii) be critical. So we have the family 

Z ~ of two puzzle pieces V0 ~ and V~. Remember  that  we also assume that  the hyperbolic 

distance between these pieces is at least L,.  Hence, V n-x is the only island containing 

both of them, so that  gn-1 V0 n and g~- i  V1 ~ belong to different puzzle pieces of level n - 1 .  

For the same reason we can assume tha t  one of these puzzle pieces is critical. Denote 

them by V0 '~-1 and V~ -1. Thus one of the following two possibilities on level n - 2  can 

o c c u r :  

(1) Fibonacci return when gn_l V~cV1 n-1 and gn_l V~=Vo "~-1 (see Figure 7); 

(2) Central return when gn_IV~=V~ -1 and gn_IV~CV~ -1. 

We can assume that  one of these schemes occurs on several previous levels n - 3 ,  

n - 4 ,  ... as well (otherwise we gain an extra  growth by the previous considerations). To 

fix the idea, let us first consider the following particular case, which plays the key role 

for the whole theorem. 
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6.4.  F i b o n a c c i  c a s c a d e s  

Assume that  on both levels n - 2  and n - 3  the Fibonacci returns occur. Let us look more 

carefully at the estimates of Lemma 5.4. In the Fibonacci case we just have: 

mod(R~)/> mod(R~-l ) ,  

mod(R~)/> �89 mod(Q~ -l \g,~_lV~),  

(6.3) 
(6.4) 

n n n where Qi =V/ UR i . Applying g,~-2 we see that  

mod(Q~ -1 \ g n - - 1  V0 n ) / )  mod(Q~ -2 \VOn- 1) �9 

But since V1 ~-2 is hyperbolically far away from the critical point (the assumption of 

Case (ii) is still effective), 

mod(Q~-2\Vo n - l )  ~ mod(Von-3 \VOW- 1). 

By the Gr6tzsch inequality there is an a ~> 0 such that  

rood (VOW-3 \Vo ~-1) ---- ~ n - 1  "[-]~n--2-'[- a .  (6.5) 

Clearly 

#n-1 ~> mod(R~-l) .  

Furthermore, let p~-i  cVn-2 be the pull-back of Q~-2 by g,~-2. Since OP~ -1 is hyper- 

bolically far away from V~ -1, we have 

/1n--2 /)  mod(R~ -2) -- mod(P~ -1 \V1 n - 1  ) ~ mod(V n-2 \V1 n - ' )  ~ mod(R~-l ) .  (6.6) 

Combining estimates (6.4) through (6.6) we get 

mod(R~) ~- �89 (mod(R~ -1) +mod(R~- l )  +a).  (6.7) 

We see from (6.3) and (6.7) that  we need to check that  the constant a in (6.5) is def- 

initely positive. Assume that  this is not the case, that  is, for any 5>0 we can find a level 

n in the Fibonacci cascade as above such that  a<6.  Set Fn=OV n. Then by the definite 

GrStzsch inequality (see Appendix A), the width(Fn_2) in the annulus T=V~-3\V n-1 
is at most ~(6) with ~(6)~0  as 6 4 0 .  Since Fn-2 is well inside of T, we conclude by the 

Koebe Distortion Theorem that  Fn-2 is contained in a narrow neighborhood of a curve 

V with a bounded geometry. Hence there is a k=k(6)----~O as 6--*0 and r162 k)>0 such 

that  the curve Fn-2 is not (k, r 
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On the other hand, the hyperbolic distance from the puzzle piece gl  n-1  to  the critical 

point 0 in V ~-2 is at least L, .  Hence by Lemma A.4 it must be located in the Euclidean 

sense very close to Fn-2 relative to the Euclidean distance to the critical point (that is, 

the relative distance is at most/3(6)-+0 as 5-+0). Hence the critical value 9n-10 is also 

very close to F,._2 relative to the distance to the critical point, that  is, 

dist (g,~ 0, Pn - 2) 

dist (gn0, 0) 
~ ( L . ) ,  

where ~(L.)--~0 as L.--+c~. 

By the last statement of Theorem II, gn-1 is a quadratic map up to a bounded 

distortion. Hence the curve Fn-x which is the pull-back of l~n-2 by gn--1 must have a 

huge eccentricity around the critical point. But then by Lemma A.2 the width of Fn-1 

in V n-2 \V  ~ is also big, which by the above considerations gives a definite linear growth 

on the next level. 

Remark. The actual shape of a deep level puzzle piece for the Fibonacci cascade 

is shown on Figure 8. There is a good reason why it resembles the filled Julia set for 

z~--~z2-1 (see [L5]). As the geodesic in V0 ~-1 joining the puzzle pieces Vo ~ and V~ goes 

through the pinched region, the Poincar~ distance between these puzzle pieces is, in fact, 

big. 

It is time now to look closer at central cascades. 

6.5. Central  cascades 

Let N~>2, n=m+N,  and let us consider a nest C m+N of puzzle pieces 

V m ~ V m +l  ~ ... ~ V r e + N - 1  ~ V m + N  ~ D m + N  (6.s) 

satisfying the following properties (see Figure 9): 

�9 The return on level m - 1  is non-central: g,~O~V~n; 

�9 Central returns occur on levels m, r e + l ,  ..., m + N - 2 ,  that  is, g m + l O E V m + N - 1 ;  

�9 D m+N is  an island with a family Z re+N+1 of two puzzle pieces inside, V~ '~+N+l 

and V~ +N+I. Let us denote by r162162 the corresponding double covering 
D m + N  __~ y m + N - 1  ; 

�9 One of the puzzle pieces ~gm+gYy +N+l, ~)m+gYy +g+l is critical. 

We would like to analyze when 

a(Tm+N+I[D m+g) ~ am+X +a (6.9) 
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Fig. 8, Fibonacei puzzle piece (below) vs the Julia set of z*---*z2-1 (above) 

with a definite a > 0 .  To this end we need to pass from level m+N all way up to level m. 

Let V m+N+l  CD m+N be a non-precritical piece of the family Z m+N+l, and 

CV, ~+N+I  c v~ m+~ c W ~  +N 

for some i#0 .  Then the return map gm+g+l: V. m+lv+l~Vm+g can be decomposed as 

G l or for an appropriate  l ~> 1, where G: I,.J W~--~ V m is the Bernoulli map  (3.12) associated 

with the central cascade. Since G has range V "~, 

mod(W~n+N\r m+N+l) >~ mod(Vm\vm+N). (6.10) 

Let Fk=OV k and 

Wk = width(Fk [ V k-  1 \vk+l). 
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For kE[m+l,m+N] let V~ denote the puzzle piece of level k which contains 

g m+N-k,~Vm+N+l and Z k denote the family of two puzzle pieces: V0 k and V1 k. Moreover, r a + l  ~, v .  

let k k-1 R i C V denote an annulus of maximal modulus going around If/k but not going 

around the other piece of family Z k, i=0, 1. 

By the definite Gr6tzsch inequality and the second part of Theorem II, there is an 

a=a(Wm+l) such that 

m + N  

m~ E m~ 
k = m + l  

N--1 

= E ~ mod(Am+l)+a ~ (2-- 
k=0 

1 ) mod(R~n+l)+a" 
2 N - 1  

(6.11) 

Let S~ +N and Sp  +N denote the pull-backs of the annuli R~ +1 and R~ +1 by the 
N-1 Vm+N-I__,V,L Then m a p  g m + l  : 

1 
mod(S~ n+N) ~> ~ mod(R~ n+l) and mod(S~ n+N)/> mod(R~+l). (6.12) 

Note that the inner boundary of Sp  +N coincides with the outer boundary of 
m+N m+N+l Qr~+N W~ \r ~ . Let denote the union of these two annuli. This annulus 

goes around eV, re+N+1 but not around V~ n+N. Now estimates (6.10), (6.11), (6.12) yield 

mod(S~ +g) + mod(Q~ +N) ~> 2 mod(R~ n+l ) +mod(R~ +1 ) +a  ~> 2a(Z ~+1 ) +a. 

Finally, pulling S~ n+N and Q~n+N back by r162 to the island D m+N we obtain 

1 (mod(S~+N)+mod(Q~+N)) ~> ry(~rn+l)_}_ l a .  a(Z ~+N+I I Din+N) >~ ~ 

So we come up with the following statement: 

STATEMENT 6.2. There is an increasing function a:R+--~R+, a(0)=0, such that 

for the cascade C m+N estimate (6.9) holds with a=a(wm+l), where 

w,~+l = width(pm+l IVm \Vm+2). 

Let us fix a quantifier w, which distinguishes "small width" w from a "definite" one. 

For further analysis let us go several levels up. Let m - l ' l  be the highest non-central 

level preceding m - l ,  l~>l. We are going to study when 

~r(zm+N+IlDm+N) ~ ~m-L +a (6.13) 
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v m + N - 1  

Cm+ N 
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Fig. 9. Central cascade (with Fibonacci returns on the top and the bottom) 
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with a definite a>0 .  We cannot now assume that  l is bounded, so we face a possibility 

of a long cascade Cm-l:  Vm-tD.. .DV m-1. Set g=g,~-z+l;  then gOEV m-1. 

- -  Assume first that m - 2  is not the last level of a long cascade (in particular, this 

is the case when the central return occurs on level m - 2 ,  that  is, /~>2). Then by the 

third part of Theorem II all non-central pieces of level m are well inside vm-l:  

mod(Vm-l \vjm)) f t ,  j#O.  

Hence gmV~ +1 and gmV~ n+l belong to different pieces of level m. Indeed, otherwise 

the hyperbolic distance between V0 ~+1 and V ~  +1 in V m would be bounded by a con- 

stant L(#). But according to our assumption this distance is at least L. .  So this situation 

is impossible if L.  was a priori selected bigger than L(#). 

For the same reason the pieces gkogmVi re+l, i=0 ,  1, also belong to different pieces 

Vj m-k for O~k<~l-3. Indeed, assume that  they belong to the same piece Vj m-k. Clearly 

this piece is non-central, that  is, j # 0 .  Then it is contained in a piece W3 m-k of the 

Bernoulli family W(C m- l )  associated to the central cascade C m-1. Hence gmV~ +1 and 

gmV~ n+l belong to Wj m, the pull-back of Wj m-k by gk. As mod(W~n\gmV~m+l)>/fz, the 

hyperbolic distance between V0 m+l and V1 ~+1 in V m is at most L(#) contradicting our 

assumptions. 

Let us show now that  (6.13) holds if both gmVi m+l are non-central. Indeed let us 

then consider the family Z *~ of three pieces: two pieces of level m containing gmVi m+l 

and the central piece V m. Let Zm-k denote the family of puzzle pieces of level m - k  
containing the pieces of gkZm. By the previous two paragraphs, Z m-k consists of three 

puzzle pieces. Then by Corollary 5.5 and Proposition 6.1, 

. . .  cr(2"~-~+1/+ 1#, ~(s~+ l )  >/~(z~)  >/ > /~(~-~+2) />  , , 2 

and we are done. 

Thus let us assume that  the Fibonacci return occurs on level m - 1 .  In this case let 

Z m-k denote the family of two puzzle pieces V0 m-k and V ~  -k containing gkogmVi m+l, 
i=1,  2, k<~l-1. 

Note that  in order to have (6.13) it is enough to have a definite increase of the 

a (Z  m-k) in the beginning of the cascade C m-1. By Statement 6.2 applied to this cas- 

cade this is the case if width(Fm-Z+llVm-~\vm-l+2 ) ~w..  So assume that  the opposite 

inequality holds. Similarly, we can assume that  the hyperbolic distance from V1 m-l+2 to 

0 in V m-z+l is at least L .  (for otherwise we are fine: see Case (i) above). 

It follows from Lemma A.4 from Appendix A that  the piece V ~  -1+2 stays at Eu- 

clidean distance at most c d i a m F  m-t+l  from F m-l+l  where e=ep(w. ,  L.)--*0 as w.--*0, 
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L.--+oc (for a fixed 12>0). Hence the Euclidean distance from V1 m-l+2 to F m-l+1 is rel- 

atively small as compared with its distance to F m-t and F m-l+2. More precisely, there 

is a 5=hp(w.,  L.)  with the same properties as E above such that  for any z6V1 m-t+2, 

dist (z, F m-l+1) ~< 5 dist (z, O(Y m-l  \ym-l+2)).  (6.14) 

Take z o E V ~  -1, and let r=dist(z0, O(V'n- l \Vm-l+2)) .  Note that  the disk B(z0, r) 

can be univalently pulled by gl-3 to the annulus V m-3 \ V  m-1. By the Koebe Distortion 

Theorem and (6.14), for any ~eV1 m-3, 

dist(~, F m-2) < 66 dist (~, o ( v m - 3 \ y m - 1 ) )  < C5 dist(~, 0) 

with an absolute constant C. All the more, 

dist (~, F m-2) ~ C5 diam V m-2, 

so that  F m-2 has a big eccentricity about Vim -2 (that is, this eccentricity is at least 

e(w., L.) ,  where e(w.,  L . ) ~ c ~  as w.  4 0 ,  L . ~ o o ) .  

Pulling F m-2 back by gm+l ~176 we conclude that  F m+l has a big eccentricity 

about 0. Hence it has big width in the annulus Vrn\V m+2, and Statement 6.2 yields the 

desired result. 

Let us summarize the information which will be useful in what follows: 

STATEMENT 6.3. I f  the width win-l+1 is at most w.  and the Poincard distance from 

V1 m-l+2 to 0 in V m-Z+1 is at least L . ,  then the eccentricity F m about the origin is at 

least e(w., L.) ,  where e(w.,  L.)--~oo as w.--~O and L.---~oo. 

- -  Let us assume now that m - 2  is the last level of a long cascade Era-2: 

V m-2-t  ~ ... ~ V m-2, t >1 N. .  

Then the non-central return occurs on level rn -2 .  We will show that  

aC Tm+N+I ]D m+N) >/am-2-t  +a (6.15) 

with a definite a>0.  

Let D m C v  m be an island containing V0 ~+1 and V1 m+l, and era: Dm---*V m-1 be the 

corresponding two-to-one map. Note that  in the case under consideration this island may 

be non-trivial and still the Poincar4 distance between V0 m+l and V1 m+l be big (since the 

precritical puzzle pieces in V m-1 are not well inside Vm-1). Moreover, the map Cm is not 

necessarily a bounded perturbation of the quadratic map. These are the circumstances 

which make this case special. 
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As m - 2  is a non-central level, #m+l ~ ,  and by the previous considerations we are 

done unless 

�9 the return on level m - 1  is Fibonacci, that  is, CmV~+I=v~ n and Cm V 0 ~+icv ~  

for some puzzle piece Vim; 

�9 the hyperbolic distance between the puzzle pieces V0 ~ and V1 m is at least L,;  

�9 the return on level m - 2  is also Fibonacci: gm_iV~=V~ -1 and gm_iV~=V~ - i  

for some puzzle piece V1 m-i .  

Let V0 k and V k be the pieces containing the corresponding push forwards of V0 m - i  

and Vim -1 along the cascade C m-2, m - l ~ k ~ m - t - 1 .  Then (6.15) follows unless 

�9 the width win-t-3 is at most w,, and the distance between V~ -t-a and U~ n-t-4 
in V m-t-3 is at least L, .  

But then by Statement 6.3 applied to the cascade C m-2 the eccentricity of F m- i  

about 0 is at least e=e(w,, L,). As gm is a bounded perturbation of the quadratic map, 

by Lemma A.5 the curve F m is (0.1, r where E=r as e--~c~. (Note that  

the pinched region is not necessarily around V1 ~, since Cm may differ from gin.) Applying 

Lemma A.5 again, we conclude that  the curve F "~+1 is ( (10C) - i ,Cv~) -p inched .  By 

Lemma A.3, F m+i has a definite width inside Vm\V  m+2. Now Statement 6.2 yields 

(6.15). Theorem III is proven. 

7. Big type yields big space 

Below we will analyze a variety of combinatorial factors (like height, return time, length 

of a central cascade) which yield a big modulus of the renormalized map. Altogether 

they are quite close to a "big renormalization period", except that  "parabolic or Siegel 

cascades" may interfere. This is summarized in Theorem IV' stated at the end of the 

section which loosely says that  if the periods of Rnf are sufficiently big and there are no 

"parabolic" or "Siegel cascades" in the principal nests then there are a priori bounds. 

7.1. Big  he igh t  y ie lds  b ig  m o d u l u s  

Let us start  with a quick consequence of Theorem III. We refer to w for the termi- 

nology used below. 

THEOREM IV. For any Q, there is a X-special family ,~ of the Mandelbrot copies 

with the following property. Let f be an infinitely renormalizable quadratic of S-type. 
Then mod(R'~f)>~Q, re=O, 1, .... 

Proof. Let us fix a Q>0.  Take a truncated secondary limb L-Ltb r, and find q= 

C(Q)v(L) from Theorem I. Note that  q~�89 for sufficiently big Q (independently 
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of L). Let us now select all copies M' of the Mandelbrot set with the height x ( M ' ) ~ Q / B ,  

where B=B(q)  is the constant from Theorem III. Taking the union of all these copies 

over all truncated limbs, we obtain a special family S. 

Let us now consider an infinitely renormalizable quadratic-like map f of S-type with 

mod(f)~>Q (to start, take a quadratic polynomial). Then by Theorem I, mod(A1)~>q. 

Hence by Theorem III, mod(Rf) 7> BX( f )  ~ Q. 

By induction, m o d ( R n f ) ~ Q  for all n. [] 

7.2. Big return time implies big modulus 

The simplest possible way to create a big modulus is the following. By Lemma 2.8, if 

the return time l of the critical point to a puzzle piece y(k) of a given depth k is big 

then the pull-back y(k+t) of y(k) along orbz(0) has a small diameter (uniformly over a 

truncated primary limb), so that mod(Y (k) \y(k+0) is big. We can now start a principal 

nest from y(k). By Theorem II (w we will observe big moduli on all levels down except 

those in the tails of cascades. In particular, mod(Rf) is also big if f is renormalizable. 

Below we describe more involved situations creating a big modulus. We will rely 

on the combinatorial considerations of w Let :/:nC)2~ stand for the family of puz- 

zle pieces V~ n intersecting ~(0). Consider an edge 7 n+l of the return graph with ver- 

tices at Vj~+IC:/:n+I and Vi~E:Y n, and let t be the corresponding landing time, so that 
gt T z n + l  nvj cV~ ~. Then we will use the notation mod(v) for mod(Vin\gtVjn+l). If i~0  then 

mod(~ '~) ~>#~. 

LEMMA 7.1. Let D n C v  n-1 be a puzzle piece containing at least one piece of I n. 

Let F be a path leading from D n down to some critical piece V n+t, and let D n+t be the 

pull-back of D n along this path. Then 

mod( D,~+t\ vn+t) >1 1# rank(D~). 

Proof. Let {V n+l, ..., 7n+t} be the edges of F. By Lemma 3.10, all these edges except 

the last one represent univalent maps, and the last one represents a double covering. 

Hence 
$ 

1 1 ~ ~tn+ k' mod(Dn+t \Y n+~)/> ~ ~ mod(7 n+k)/> 
k = l  

and Theorem II (together with the definition of the rank) completes the proof. [] 
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LEMMA 7.2. Assume that n - 2  is not in the tail of a long central cascade. Assume 

that for a puzzle piece Vj~+IEzn+I, r-T(Vj~+I)>~R. Then there is a level m such that 

#m>~L(R), where L(R)--*cc as R--~oc. 

Proof. Let M > 0 .  We need to find a level m with # ,~>M,  provided r is sufficiently 

big. If rank(Vjn+l)>N-2M/#,  then Lemma 7.1 yields the desired. So let us assume 

that  

rank(Vj n+l) ~< g .  

Let 0=i(0),  i(1), ..., i(r)--0 be the itinerary of Vj n+l through the pieces of the previous 

level. Let us consider a nest of puzzle pieces 

vn-u  (7.1) 

where -r-kU __ , r n  Then yn k - vi(r_k). 

!# ,  k = 0 , . . . , r - 1 .  (7.2) U k + l \ V k  ~ 2 

Let us pull the pieces Uk, k<r, down along a path F joining Vj n+l with a critical 

vertex V n+t. Denote the corresponding pull-backs by U~ +s. If these pull-backs turn out 

to be double-branched then by (7.2) 

#n+t ~> �89 mod(Ur-l \U0)/> �88 

which is greater than M for sufficiently big r. Otherwise let us consider the first level 

n+s where un+I~ hits the critical point. Let us find such an l that  OeU[~+8\U~ +~. 

If r - l - l > N  then by (7.2) #n+8>~M, and we are done. Otherwise 

mod(Uz~_+s\U~ +s) ~> � 8 9  

Then let us repeat the same procedure with U~ + s  instead of Ur-1. Note that  

rank(U~+S)<rank(Ur_l), since the pull-back of Ur-1 through the top central cascade 

is univalent. Hence this procedure can be repeated at most N times, and the principal 

modulus at the end will be at least M, provided � 89  [] 

7.3. Parabolic and Siegel cascades 

We will show that  we usually observe a big principal modulus after just one long central 

cascade. Let us consider a central cascade (3.11): The double covering gm+l:Vm+l-"~ V m 

can be viewed as a small perturbation of a quadratic-like map g, with a definite modulus 

and with non-escaping critical point. 
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To make this precise, let us consider the space Q of quadratic-like maps modulo 

affine conjugacy supplied with the Carathdodory topology (see [Me2]). Convergence in 

this topology means Carath6odory convergence of the domains and uniform convergence 

of the maps on compact subsets. Given a #>0 ,  let Q(#) denote the set of quadratic-like 

maps g E Q with mod(g)~>#. By Theorem II, the return maps gm+l:V m+l--*V m of the 

principal nest belong to Q(#). 

COMPACTNESS LEMMA (see [Me2]). The set Q(#) is Carathdodory compact. 

Let QN (or QN(#)) denote the space of quadratic-like maps g: U ' ~ U  from Q (or 

Q(#)) such that  g'~OEU, n=0 ,  1, ..., N. 

As NN QN(#)=Q~(#) ,  for any neighborhood L/DQ~(#) ,  there is an N such that  

QN(/t) C U. In this sense any double map g E QN (#) is close to some quadratic-like map 

g. with connected Julia set. In particular, this concerns the return map gm+l generating 

a cascade (3.11) of big length N. Moreover, since gm+l has an escaping fixed point, the 

neighborhood of g. containing gm+l also contains a quadratic-like map with hybrid class 

c(g,)EOM. 

If we have a sequence of maps fn E QN converging to a map g, E Q~ ,  we also say 

that  the fn-central cascades converge to g,. 

Let us say that  the principal nest is minor-modified if a piece V m is replaced by a 

piece v n c v n  such that  el Vin+lcVn for all pieces v / n + l E ~ ' n + l .  

LEMMA 7.3. Let g, be a quadratic-like map with c(g,)EOM which does not have 

neither parabolic points, nor Siegel disks. Let gm+l be the return map of the principal 

nest generating cascade (3.11). Take an arbitrary big M > 0 .  If  g,~+l is sufficiently close 

to g, (depending on the a priori bound # from Theorem II) then the principal nest can 

be minor-modified in such a way that f~n>>.M for some n > m + N .  

Pro@ Take a big nmnber e > 0. 

By the above assumptions, the Julia set J(g,) has empty interior. If gm+l is suf- 

ficiently close to g, then Fm+N-I=OV re+N-1 is close in the Hausdorff metric to the 

Julia set J(g,). Hence F "~+N-1 has an eccentricity at least e with respect to any point 
zEV re+N-1. 

As the gm are purely quadratic up to bounded distortion (Theorem II), the curves 

Fro+N, Fro+N+1 and Fro+N+2 also have big eccentricity with respect to any enclosed 

point. Moreover, by the same theorem, there is a definite space in between these two 

curves. Hence by Lemma A.2, mod(V m+N+l \V  re+N+3) is at least M(e) where M(e)--+cc 

as  e---+ co. 

Let us assume that  the non-central return occurs on level m + N + l :  gm+N+20E 

Vi "~+N+2 with i r  As the map g,~+N+2: V~ m+N+~---'V~+N+I is quadratic up to bounded 
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distortion, the c u r v e  Fm+N+2=cQVi m+N+2 has a big eccentricity e' about any enclosed 

point (that is, e' can be made arbitrary big by a sufficiently big choice of e, depending 

on the a priori bound #). By Lemma A.2, 

m o d ( V  m+N+l \gin+N+2 V m + y + 3 )  ~ M(e), 

where M(e)--~c~ as e--*c~. Hence mod(Am+N+3)~> 1M(e),  and we are done. 

Let the central return occur on level m +  N + 1 but this is not yet a DH-renormalizable 

level. Then the corresponding central cascade is finite. Let m + N + T  be the last level 

of this cascade. Then by Lemma A.2 and Statement 6.2, ttm+N+T+2~M(e), where 

M ( e ) - ~  as e - - * ~ .  

Assume finally that  r e + N + 1  is a DH-renormalizable level. Then let us take a 

horizontal curve F C A re+N+2 which divides this annulus into two subannuli of moduli at 
1 - F I C A re+N+3 least ~#. Let be its pull-back by gin+N+2, and -~ be the annulus bounded 

by F and F'. Then by Lemma A.2 mod(fi,)~>M(e) with M(e) as above. As this is a 

minor modification of the nest, we are done. [] 

7.4. V a r i a t i o n  

Let us now improve Theorem IV by taking into account not only the height but also the 

other factors yielding big space. 

THEOREM IV'.  Let f c $ s  be an infinitely renormalizable quadratic polynomial, and 

let Pro: Z~--~Z2 +Cm be the straightened Rmf. Assume that 

�9 the set ,AC Q of accumulation points of the central cascades of Pm (of lengths 

growing to oo) does not contain parabolic or Siegel maps; 

�9 per(Rmf)>~p. 

Then lim infn--,~ mod(Rnf)>~Q(R), where the function Q(p) depends on the choice of the 

limbs and the accumulation set A, and Q(p)--*c~ as p-~c~. 

Proof. By Theorem II the top modulus of the central cascades of Pm is bounded 

from below by some #. Hence the set AC Q(#) is compact. By Lemma 7.3, for any Q 

there is a ne ighborhood/ /D.A such that: If f E / / i s  renormalizable then rood(R f ) > Q .  

As .A is the accumulation set for the central cascades of the Pro, there is an N 

such that  all but  finitely many of these cascades of length ~>N belong to //. Hence if 

the principal nest of Pm contains a cascade of length ~>N then mod(R(Pm))>~Q (for 

sufficiently big m). 

Further, by Theorems I and III, there is a X such that  if the height x(P,~)>~ X then 

mod(R(Pm)) >~Q. Let us also find a T such that  if for some cascade the return time from 

Lemma 7.2 is at least T, then mod(R(P,~))>~Q. 
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It is easy to see that  there is a p such that: If per(Pm)~>p then either Pm has a 

central cascade of length at least N, or X(Pm)>~X, or one of the above return times is at 

least T. In any case mod(R(Pm))P~Q. 
Now the same argument as for Theorem IV yields a priori bounds. [] 

8. Geometry of  quasi-quadratic maps 

In this section we discuss real unimodal maps of Epstein class. We introduce a notion of 

essential period, and prove that  m o d (Rf )  is big if and only if the corresponding essential 

period is big. This discussion naturally continues [L4]. 

We assume that  the reader is familiar with some basics of one-dimensional dynamics 

including the real Koebe principle (see the book of de Melo and van Strien [MS] for the 

reference). 

8.1. Essential period 

Below we will adjust the combinatorial discussion of w to the real line (see [L4] for 

details). Let YCI  be two nested intervals. A map f :  (Y,9I')--~(I, OI) is called quasi- 
quadratic if it is S-unimodal and has quadratic-like critical point 0Eint I ' .  

Let us also consider a more general class .4 of maps g: U Ji --~J defined on a finite 

union of disjoint intervals J~ strictly contained in an interval J .  Moreover, glJi is a 

diffeomorphism onto J for i 50 ,  while glJo is unimodal with g(OJo)COJ. We also assume 

that  the critical point 0E J0 is quadratic-like, and that  Sg<O. Maps of class .4 are real 

counterparts of generalized quadratic-like maps of finite type. To simplify the exposition, 

let us also assume that  glJo is symmetric, i.e., g(x)=g(-x). Then glJo=ho~, where 

�9 (x)=x 2 and h is a diffeomorphism of an appropriate interval K D r  onto J.  By 

definition, this map belongs to Epstein class g (see [E], [$2], [L4]) if the inverse branches 

f - 1 :  j._~ Ji for i 5 0  and h-1: j__. K admit the analytic extension to the slit complex plane 

C \  ( R \  J)  (such functions are called Herglotz). 

Let I ~ = [a, a'] be the interval between the dividing fixed point a and the symmetric 

one. Let y - - y / d e n o t e  the full Markov family of pull-backs of the interval I ~ Given a 

critical interval JEA/t (that is, J~0 ) ,  we can define a (generalized) renormalization Tj f  
on J as the first return map to J restricted to the components of its domain meeting 

the post-critical w(0). If f admits a unimodal renormalization Rf=Tgf  for some J,  

then there are only finitely many such components, so that  we have a map of class .4. 

Moreover, if f is a map of Epstein class or a quadratic-like map, the renormalizations 

Tj f  inherit the corresponding property. 
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Let I ~ DI1D...  D I  t+l be the real principal nest of intervals until the next quadratic- 

like level (that is, I n+l is the pull-back of I n corresponding to the first return of the 

critical point). Let us use the same notation gn: U Iy  --+In-1 for the real generalized 

renormalizations as we used for the complex ones. 

For aE(0,  1), let C~ stand for the space of quasi-quadratic maps f :  I':-~I of Epstein 

class with [I'l<.a]I ]. In this section we will assume that  fEE~. All the bounds below 

depend on a but  become absolute after skipping the first k(a) central cascades. 

THEOREM 8.1 (Martens [Mar]). The following real bounds hold: 

�9 I '~+1 is well inside I "~ unless I m is in the tail of a long central cascade; 

�9 the return maps gin: I m-~ Im -1  can be decomposed as hmoq} where hm: Lm--+I m-1 

is a diffeomorphism of an interval Lm onto I m-1 with bounded distortion. 

(See also Guckenheimer and Johnson [GJ] for related earlier results on bounds and 

distortion.) 

Let us look closer at real cascades of central returns. The return to level n - 1  is 

called high or low if gnI n DI  n or g n l n A I n = ~  correspondingly. Let us classify a central 

cascade C ~ C  m'b N, 

I m D ... D I re+N, gm+10  E I re+N-1 \ I  re+N, (8.1) 

as Ulam-Neumann or saddle-node according as the return to the level m + N - 1  is high 

or low. In the former case the map gm+l:Im+l--~I "~ is combinatorially close to the 

Ulam-Neumann map z~--+z2-2, while in the latter it is close to the saddle-node map 

z~-~z2+ �88 There is a fundamental difference between these two types of cascades. 

Remark. Unlike the complex situation, on the real line we observe only two types of 

cascades. The reason is that  there are only two boundary points in the "real Mandelbrot 

set" [ -2 ,  �88 (compare w 

Consider the return graph T (see w Let T ( I  n) stand for the part  of this graph 

growing up from the vertex I n (i.e., restrict T to the set of vertices I] ,  k<~n, which can 

be joined with In).  

Let us consider the orbit J k - - f k I  n, k=O,. . . , l (n) ,  of I n until its first return to 

I n - l ,  i.e., fZ(n)InCIn-1.  Let us watch how this orbit passes through a saddle-node 

cascade (8.1). Let us say that  a level m + s  of the cascade is "branched" if for some in- 

terval J k c I ' ~ \ I  m+l we have: g m + l J k c I ' ~ + s - l \ I  m+s (note that  this can be expressed 

in terms of branching of the graph T(In) ) .  

Let us eliminate from each saddle-node cascade of the graph T ( I  n) the maximal 

string of levels re+d, ..., m + N - d  which do not contain branched vertices of the graph. 
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Call the remaining graph T~(In).  Let us define the essential return time l~(I n) as the 

number of paths in T~(I  n) joining I n with the top level. The essential period pere( f )  

of a renormalizable map f is defined as the essential return time of an interval I n of the 

renormalizable level. 

Let us define the scaling factors 
IInL 

IIn-lf" 
Let us call the geometry of f essentially K-bounded until the next renormaliza- 

tion level if the scaling factors An bounded below by K -1, while the configurations 

( In - l \ In ,  IX) have K-bounded geometry (that is, all the intervals IS, j ~ 0 ,  and all the 

components of I n-1 \ [ J  I~ ("gaps") are K-commensurable).  Note that  the scaling factors 

)~n are allowed to be close to 1. 

8.2. C o m p l e x  b o u n d s  

THEOREM V. Assume that f admits a unimodal renormalization. Then: 

�9 If  pere(f)  is sufficiently big then the unimodal reno~nalization R f  admits a 

quadratic-like extension to the complex plane. Moreover, mod( R f ) >~ #(pere ( f ) ) , where 

~(p)-~cc as p-*c~. 

�9 The real geometry of f is essentially K-bounded until the next renormalization 

level, with K=K(pere( f )  ). 

In [LY] complex bounds have been proven for infinitely renormalizable maps with 

essentially bounded combinatorics (which means that  the essential periods per~(Rmf) 

are uniformly bounded). This yields the Complex Bounds Theorem stated in the Intro- 

duction. 

Remark. To get a bound for mod(Rmf)  we never go beyond level m, so that  our 

bounds are still valid for m times renormalizable maps. 

Given an interval I,  let III denote its length, and let D(I) denote the Euclidean disk 

based upon I as a diameter. 

The rest of the section will be occupied with the proof of Theorem V. It relies on 

the following geometric fact: 

SCHWARZ LEMMA. Let I and J be two real intervals. Let r C \ ( R \ I ) - ~ C \ ( I : t \ J )  

be an analytic map which maps I to J. Then r  

Proof. Just notice that  D(I) is the hyperbolic r-neighborhood of I in the slit plane 

C \ ( R \ I )  (with r independent of I) .  Since analytic maps are hyperbolic contractions, 

the statement follows. [] 
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LEMMA 8.2. I f  a scaling factor ~,~ is sufficiently small then the generalized renor- 

realization g ~ + l : U I ~ + l - * I  n admits a (generalized) polynomial-like extension to the 

complex plane, gn+l: U Vj Moreover, mod(Vn\V as a-*0. 

Proof. Let us select V n as the Euclidean disc D=_D(In). Let us pull it back by the 

inverse branches of g~+l. We obtain domains Vj ~+1 based on the intervals i~+1. More- 

over, g~+l: Vj ~+1 --*D is a double.branched covering for j = 0  and is univalent otherwise. 

By the Schwarz Lemma, Vj~+ICD(I~+I )~D for j r  

Let us estimate the size of V0 ~+1. Let t be the first return time of the critical point 

back to I n under iterates of g~. Let J~gn(O) be the interval which is monotonically 

mapped onto I n under t-1 g,~ . Then by the real Koebe principle, 

IJl/dist(J,  0 I  ~-1) = O(A~). (8.2) 

Let us consider the decomposition 

gn+l [I n+l = gtn-l~176 

where h: (K, L)--~(I ~-1, J) is a diffeomorphism of an appropriate interval K onto I n-1. 

Using the real Koebe principle once more, we derive from (8.2) that  

ILI/ dist( L, OK) = O( An). (s.a) 

By the Schwarz Lemma, the pull-back U of D by the inverse branch of gt-10 h: L ~ I n 

is contained in D(L).  Hence gn+lc~-lD(L) and by (8.3), 

diam Vn+ l /lI~l = O ( v / -~  ) . 

It follows that  V ~+1 lies well inside D = D ( I ~ ) ,  and we have a generalized polynomial-like 

map with the desired properties. [] 

In the following two lemmas we analyze the geometry of long central cascades. Let 

us call a unimodal map saddle.node or Ulam-Neumann if it is topologically conjugate to 

z~-* z 2 + �88 or z~--~ z 2 -  2 correspondingly. 

LEMMA 8.3. Let us consider an Ulam-Neumann cascade (8.1). I f  it is sufficiently 

long then the generalized renormalization gin+N+1 admits a polynomial-like extension to 

the complex plane with a definite modulus. Moreover, mod(gm+N+l)--*oc as N--*c~. 

Proof. Take the Euclidean disk D = D ( I  m+N) and pull it back by the inverse branches 

of gin+N+1. We obtain domains Vj "~+N+I based upon the intervals I ~  +N+I. By the 
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Schwarz Lemma, all the off-critical domains Vj rn§247 j~O, are contained in the round 

discs D(I?+N+I), and hence are strictly contained in D. 

Let us estimate the size of the central domain V - V ~  +y+l. By Theorem 8.1, im+l  

is well inside Im. If the scaling factor Am+l is small then the statement follows from 

Lemma 8.2 and Theorem II. So we can assume that  I m+l is commensurable with Im. By 

a compactness argument, if the cascade is long enough then the map g-gm+l : I  m+l --~I m, 

with the domain rescaled to unit size, is Cl-close to an Ula~-Neumann  map. It follows 

that  [Im+k\Im+N I decrease with k at a uniformly exponential rate. Hence for a suffi- 

ciently long cascade, I re+N-1 \ I  m+g is e-tiny as compared with I m+g. 

Let g(O)EI--I~ +g, j~O. Let U be the pull-back of D(I  re+N-l) by the inverse 

branch of -1 " I  m+N-1--*I gin+N" extended to the complex plane. By the Schwarz Lemma, 

UcD(I ) .  

Furthermore, by Theorem 8.1, there is an interval L D (~(I m+N) such that  g II re+N= 

ho~, where h: L--~I re+N-1 is a diffeomorphism of bounded distortion. Hence the image 

r  m+g occupies at least a (1--O(~))-portion of L. 

It follows that  h _ l U C D ( h - l I )  is of size O(~) as compared with ILl. Hence VC 

O - l D ( h - l I )  is of size O ( v ~ )  as compared with [Img-Y[, and the lemma follows. [] 

LEMMA 8.4. All saddle-node patterns (8.1) of the same length with commensurable 
I m and I m+l are x-qs equivalent, with an absolute x.  

Proof. Let g: I p--* [0, 1] be a quasi-quadratic map of Epstein class (and perhaps escap- 

ing critical point): dES. By definition, g=hoO with a diffeomorphism h whose inverse 

admits the analytic extension to C\[0,  1]. Let us supply this space with the Montel 

topology on the h-1.  

Take a 6E (0, �89 The set of maps g E C with 6 <[I '[  ~< 1 - 6  is compact. Hence given a 

long saddle-node cascade (8.1), the map G obtained from gm+l : I  m+l--*I "~ by rescaling 

I m to the unit size must be close to a saddle-node quasi-quadratic map. Hence we can 

reduce G to a form z H z + r 1 6 2  where r  is uniformly comparable with z 2 (here 

the fixed point of the nearby saddle-node map is selected as the origin). Moreover, we 

will see in a moment that  c is determined, up to a bounded error, by the length of the 

cascade. 

Take a big a>0.  When [ z i < a v ~  , the step G ( z ) - z  is of order E. Otherwise r  

dominates over ~, and in the chart ~ = l / z  the step is of order 1. It follows that  the qs 

class of the cascade is determined by c, which in turn is related to the length of the 

cascade by N • I /v~ .  [] 

The following lemma refines Lemma 7.2 in the case of real cascades. 
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LEMMA 8.5. Let us consider a cascade (8.1). Let t~-tm+N be the maximal return 

time of the intervals gm+N+lI re+N+1CI m+N-1 back to I m+N under iterates of the Ber- 

nouUi map G,~+N, see (3.12). Then there exists a level 1 such that At~),(t) where )~(t)--*O 

as t--*oc. 

Proof. If some interval I ~  +1 is not well inside I m then by Theorem 8.1 and Lem- 

ma 8.4, the level m follows a long Ulam-Neumann cascade. Then the scaling factor Am+l 

is small. It follows that  Am+N+1 is small as well (see [L4, w for the estimate of Am+N+1 

via /~m+l). 
If all the intervals i~+1 are well inside of I "~ then repeat the argument of Lemma 7.2 

on the real line using the negative Schwarzian in place of conformality and the Bernoulli 

map Gm+N in place of gn. [] 

Let x(m) stand for the height of I m, that  is, the number of central cascades preced- 

ing it. 

LEMMA 8.6. If  the height x( f )  is sufficiently big then there is an interval JEA/I 

such that the generalized renormalization T j  f admits a polynomial-like extension to the 

complex plane with a definite principle modulus #. Moreover, J lies on a bounded height, 

i.e., J D I  m with a bounded x(m) .  

Proof. Take small s>0  and 6>0, and consider the inequality 

> (8.4) 

If (8.4) fails to happen on the first s = l o g E / l o g ( 1 - 6 ) + l  levels then we come up 

with an e-small scaling factor, and Lemma 8.2 yields the desired statement, provided s 

is small enough. 

Otherwise a desired interval J exists by [L4, w (provided 6 is small enough). [] 

LEMMA 8.7. Assume that f is renormalizable. I f  pete(f)  is sufficiently high, then 

the renormalization R f is polynomial-like. Moreover, mod( R f ) > #(pere ( f  ) ), where 

#(p)--~c~ as p--*oc . 

Proof. Big essential period amounts to one of the following circumstances: 

(i) the height of x ( f )  is big; or 

(ii) for some cascade (8.1) (maybe of length 1) the return time tm+N of Lemma 8.5 

is big; or 

(iii) there is a long Ulam-Neumann cascade; or 

(iv) there is a saddle-node cascade (8.1) and an interval I ~  +1 which lands deep 

inside the cascade under one iterate of gin. 
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Assume that  (i) occurs. Then the statement follows from Lemma 8.6 and Theo- 

rem III. 

If (ii) happens then by Lemma 8.5 we observe a small scaling factor on some level, 

and Lemma 8.2 yields the statement. 

If (iii) occurs then the desired statement follows from Lemma 8.3 and Theorem II. 

Assume finally that  (iv) happens. Let J - I~  ~+1. Then gm+lJCIm+i\I m+i+l for 

d<~i<~N-d, with big d. Then by Lemma 8.4, Im+i\I m+i+l is tiny in I m. It follows that  

J is tiny as compared with the dist(J, OIm). By [L4], this produces a small scaling factor 

several levels down (if rank(J)  is big, use Lemma 3.6 of [L4]; otherwise use Lemma 2.12 

of that  paper). Now Lemma 8.2 and Theorem II complete the proof. [] 

LEMMA 8.8. If perk(f)  is bounded, then the geometry of f is essentially bounded 

until the next renormalization level. 

Proof. Assume that  the geometry is bounded on level n - 1 ,  and let us see what 

happens on the next level. Given an xEw(c)A(In-l\In),  let J(x) denote the pull-back 

of I n corresponding to the first landing of orb(x) at I n. As the landing time under 

iterates of gn is bounded, J(x) is commensurable with I n-1. 
To create the intervals iy+l ,  we should pull all intervals J(x) back by gn: I n~In-1.  

As gn is a quasi-quadratic map, all non-central intervals Iy  +1 and the gaps in between 

are commensurable with I n. 

The only possible problem is that  the central interval in+l  may be tiny in I n. This 

may happen only if the critical value gnOEJ(x) is very close to OJ(x). Let 1 be such 

that  g$J(x)=I% Since gt: j(x)__~I n is qs, gn+10=g$ +1 turns out to be very close to OI n 

("very low return").  But then gn+10 belongs to some non-central interval Iy  +1 whose 

Poincar~ length in I n is definite (as we have shown above). This is a contradiction. 

So when we pass from one level to the next, the geometric bounds change gradually. 

But the same is also true when we pass through a saddle-node cascade (8.1). Let us 

consider the Bernoulli map G: [J K~+i-~ I m associated with this cascade (see w where 

the K ~  +i C I m+i-1 \ I  m+i are the pull-back of the I ~  +2. 

Observe that  for i<N the transit maps 

g i - 2  . r m + i - l  \ T m + i  ~ T ~ + I  \ T m + 2  
r e + l "  ~ \ 1  ----- z \ ~  

have bounded distortion, as its Koebe space spreads over the appropriate components 

of I m \ I  m+3. Moreover, the passages from the level m to m §  and from r e §  to 

m + N - 1  have bounded distortion by Theorem 8.1 and Lemma 8.4. 

Hence if the geometry of the configuration (Ira\ I m+l, {i~+2}) on level m is bounded, 

then the geometry of the configuration (Im+N-l\Im+g,g? +N) is bounded as well. 
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Moreover, by Lemma 8.4, [m+N is commensurable with [m+N-l\Im+N. Thus the con- 

figuration (I re+N-l, {K~"+N}) of level re+N-1 has bounded geometry. 

Let us now define the intervals J(x), xCw(c)NI re+N-l, as the pull-backs of I m+N 
corresponding to the first landing of orb(x) at I m+N. Then it follows from the bounded 

geometry on level re+N-1 together with the bounded return G-times and the landing 

depths that the configuration of the intervals J(x) has bounded geometry in I re+N-1. 
Let us now pull these intervals back to the next level m+N. Then the same argu- 

ment as in the beginning of the proof shows that the geometry on level m+N is still 

bounded. [] 

Now Theorem V follows from the last two lemmas. 

Remark. Theorem V is still valid for higher degree real unimodal polynomials z~--~ 

zd+c, cER, except for the growing of #(p). The same proof works, with the following 

adjustment of logic. The proof of Lemma 8.6 shows that generalized quadratic-like 

maps with a definite modulus can be created on a sequence of levels mi with bounded 

x(m~+l)-X(m~). Together with the remark at the end of w this implies that all the 

generalized renormalizations Tn(k)+lf have a definite principal modulus (where n(k) 
counts the non-central levels). In particular, rood(R f) is definite. 

Pa r t  II. Rigidity and local connect iv i ty  

9. Space be tween Jul ia  bouque ts  

In this section we will prove local connectivity of the Julia sets satisfying the secondary 

limbs condition with a priori bounds (Theorem VI). 

9.1. Space and unbranching 

Let J ~  denote the little Julia sets of level m, that is, Jm=-J~=J(Rmf) and J~=f~J'~, 
i=0, ..., r ,~-1.  They are organized in the pairwise disjoint bouquets B~=B~(f )  of the 

Julia sets touching at the same periodic point. Namely, if level m - 1  is immediately 

renormalizable with period l then each B~ n consists of l little Julia sets J ~  touching 

at their/3-fixed points. Otherwise the bouquets B~ just coincide with the little Julia 

sets J~.  By B m ~-B~ n we will denote the critical bouquet containing the critical point 0. 

Let Jm=Jm(f)=U~ Jm=Uj B~ n. Finally let K ~  be little filled Julia sets. 

We will use the notation F,~ for the quadratic-like map fr~ near any little Julia 

set J ~  (it should be clear from the context which one is considered). In particular, 

Fm : R ~ f  near the critical Julia set J'~ 20. 
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Recall that  Q(#) stands for the space of quadratic-like maps f with mod(f )~>#>0 

supplied with the Carathdodory topology (w Take a little copy M ~ c M  of the Man- 

delbrot set t runcated at the root. Let Q(#, M')  denote the subspace of Q(#) consisting 

of renormalizable quadratic-like maps f whose hybrid class belongs to M ~. 

Let us have a family ~ of sets Xa C C depending on some parameter a ranging over a 

topological space T. This dependence is said to be (sequentially) upper semi-continuous 

if for any a( i )~a,  the Hausdorff limit of Xa(o is contained in Xa. For example it is 

easy to see that  the filled Julia set K ( f )  of a quadratic-like map f depends upper semi- 

continuously on f .  Let us say that  a family 9 r of sets X f  C C is (upper) semi-compact 

if any sequence Xn of these sets contains a subsequence Xn(i) converging in Hausdorff 

topology to a subset of some XE~-. 

LEMMA 9.1. The little filled Julia sets K~ (f) form a semi-compact family of sets as 

f ranges over the space Q(#, M'). 

Proof. By the Compactness Lemma (see w the space Q(#, M') is compact. More- 

over, the quadratic-like map F1 depends continuously on f E  Q(#, M ~) near any K 1. In 

turn, the little filled Julia sets K~ depend upper semi-continuously on F1. [] 

LEMMA 9.2. Let f be a quadratic-like map of class S s  with complex a priori bounds. 

Then there is a definite space in between its bouquets B~. 

Proof. Let us take a bouquet Bm. Let Z m stand for the set of indices j such that  

B ?  +1CB m. We will show first that  there is a definite annulus 

T m C c \  U B? +1, 
j E Z  rn 

which goes around B "~+1 but does not go around other bouquets B ?  +1, jE:[ m. 

If Rmf  is not immediately renormaiizable, then this follows from Theorem II (ii). So 

assume that  Rmf  is immediately renormalizable. 

If B m = J  m, then it is nothing to prove as there is only one bouquet B '~+1 inside Bm. 

Otherwise there are only finitely many renormalization types producing the bouquet B 'n 

(which correspond to the little Mandelbrot sets attached to the main cardioid and be- 

longing to the selected secondary limbs). By Lemma 9.1, the bouquets B ~  +1 contained 

in H m belong to a compact family of sets. As they do not touch each other, there is a 

definite space in between them. 

Let N(L, e) denote an (e diam L)-neighborhood of a set L (that is, the set of points 

on distance at most e d i a m L  from L). We have shown that  there is an e > 0  such that  

the neighborhood N ( B  re+l, e) does not intersect other bouquets B~ '+1 contained in the 
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same Bm. In particular, N(B 1, ~) does not intersect any other B)  (as all of them are 

contained in B ~ - J (f)) .  

Let us show by induction that  

N ( B ' ~ , s ) n B ~ = o ,  k#O. (9.1) 

Assuming this for rn, we should show that  

N(Bm+I,e)NB'~+I=o, j#O.  (9.2) 

~m+l  ~-~m k # 0 ,  while As we already know (9.2) for j E I  "~, let j 6 I  m. Then ~ j  ~-~k for some 

g(Bm+l,e)Cg(Bm, e), and (9.2) follows from (9.1). 

What  is left, is to show that  there is a definite space around any bouquet B ~  +1 

(not only around the critical one). But there is an iterate f l  which univalently maps 

B ~  +1 onto B "~+1. Pulling back the space around B "~+1 we obtain the desired space 

about B ~  +1. [] 

An infinitely renormalizable map f is said to satisfy an unbranched a priori bounds 

condition (see [Mc3]) if for infinitely many levels m, there is a definite space in between 

j m  and the rest of the postcritical set, w(O)\J m. 

LEMMA 9.3. A map f ESs with a priori bounds satisfies an unbranched a priori 
bounds condition. 

Proof. We will show that  the unbranched condition can fail only if the level m 

is not immediately renormalizable, while m - 1  is immediately renormalizable. As the 

complimentary sequence of levels is infinite, the lemma will follow. 

If R m - l f  is not immediately renormalizable then the bouquet B "~ coincides with the 

little Julia set jm. By Lemma 9.2, there is a definite space in between J '~ and j ~ \ j m .  

As w(0)\  J ' ~ c  jm  \ j m ,  the unbranched condition holds on level m. 

Assume now that  both levels m - 1  and m are immediately renormalizable. Then 

we will show that  there is a definite space in between J'~ and/3  "~+l--[.jjr B ~  +1" 

By Lemma 9.2, there is a definite space in between B'~DJ m and 13m+l\B m. So 

we should check that  there is a definite space in between jm and Bm+INB m (that is, 

the union of non-critical bouquets B ~  +1 contained in B'~). But jm does not touch any 

such B ~  +1. Indeed, the only point where they can touch could be the/3-fixed point/3m 

of jm. But one can easily see that  the little Julia sets of level m + l  never contain/3m. 

By Lemma 9.1 there is a desired space. 

Finally, as w(O)\JmCB m+l, the statement follows. [] 

Remark. If R'~f is not immediately renormalizable, while R'~- l f  is immediately 

renormalizable, then the unbranched condition can fail. Indeed in this case there are 



250 M. LYUBICH 

several Julia sets j m  which touch at the common fixed point ~3m E jm. But the postcritical 

set w(0)MJ m can come arbitrarily close to t3m (when Rmf is a small perturbation of a 

map whose critical orbit eventually lands at t3m). 

9.2. Local connect iv i ty  of  Julia sets 

Using Sullivan's a priori bounds Hu and Jiang [HJ] proved that  the Feigenbaum quadratic 

polynomial has locally connected Julia set. Then a more general result of this kind 

was worked out: Any infinitely renormalizable quadratic map with unbranched a priori 

bounds has locally connected Julia set (see [J], [Mc3]). Together with Lemma 9.3 this 

yields 

THEOREM VI. Let f ESs be an infinitely renormalizable quadratic polynomial with 
a priori bounds. Then the Julia set J(f)  is locally connected. In particular, all maps 

from Theorems IV and IV ~ of w have locally connected Julia sets. 

Proof. I learned the argument given below from J. Kahn (Durham 93). 

A priori bounds imply that  the "little" Julia sets j m  shrink down to the critical point. 

Indeed let fm=__Rmf-frm: U~m---~U,~ where mod(Um\U~m)>~c>O, with an ~ independent 

of m. Clearly Um does not cover the whole Julia set. 

Let FmC Um\U~m be a horizontal curve in the annulus Um\U~ which divides it into 

two subannuli of modulus at least �89 and let F~mCU~n be its pull-back by fm. By 

the Koebe Theorem, these curves have a bounded eccentricity about 0 (with a bound 

depending on ~). Since the inner radius of curve F ~  about 0 tends to 0 as m--*oc 

(it follows from the fact that  the sufficiently high iterates of any disk intersecting J(f)  
cover the whole J ( f ) ) ,  the diamr~n--*0 as well. All the more, diam(Jm)--*0 as m---~oc. 

Let us take a 5>0,  and find an m such that  Jm is contained in the D~. 

Let us now inscribe into D~ a domain bounded by equipotentials and external rays 

of the original map f .  Let ~3m denote the non-dividing fixed point of the Julia set jm, 
and/~m=-/~m be the symmetric point. Let us consider a puzzle piece pm,O 20 bounded 

by any equipotential and four external rays of the original map f landing at ~3,,~ and ~3~. 

This is a "degenerate" domain of the renormalized map Fm (see w By definition of 

the renormalized Julia set, the preimages pm'k--Fmkpm'O shrink down to jm. Hence 

there is a puzzle piece pm,l contained in the D~. As J(f)MP m'z is clearly connected, the 

Julia set J(f) is locally connected at the critical point. 

Let us now prove local connectivity at any other point zEJ(f) .  This is done by 

a standard spreading of the local information near the critical point around the whole 

dynamical plane. Let us consider two cases. 
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Case (i). Let the orbit of z accumulate on all Julia sets jm. Let m be an un- 

branched level. Then there is an l=l(m) such that  the puzzle piece pm,~ is well inside 

C \ ( w ( 0 ) \ J m ) .  

Take now the first moment k=k(m)>~O such that  fkzEPm'~. Let us consider the 

pull-backs Q'~'Z~z of pm,l along the orbit orbk(z). By Lemma 3.3, this pull-back is 

univalent. Moreover, it allows a univalent extension to a definitely bigger domain. 

By the Koebe Theorem, Q,~,z has a bounded eccentricity about z. Since the inner 

radius of this domain about z tends to 0 as ra--*c~, diam Qm,Z--~0 as well. As Qmj A J ( f )  

are connected, the Julia set is locally connected at z. 

Case (ii). Assume now that  the orbit of z does not accumulate on some J'~. Hence 

it accumulates on some point a~w(O). Let us consider the puzzle associated with the 

periodic point ~,~ (so that  the initial configuration consists of a certain equipotential 

and the external rays landing at ~-0- Since the critical puzzle pieces shrink to j m  the 

puzzle pieces Y~(t) of sufficiently big depth I containing a are disjoint from w(0) (there 

are several such pieces if a is a preimage of ~m). Take such an l, and let X be the union 

of these puzzle pieces. It is a closed topological disk disjoint from w(0) whose interior 

contains a. 

Consider now the moments k~--~c~ when the orbit of z lands at in tX,  and pull X 

back to z. By the same Koebe argument as in Case (i) we conclude that  these pull-backs 

shrink to z. It follows that  J ( f )  is locally connected at z. [] 

9.3. S t a n d a r d  n e i g h b o r h o o d s  

In this section we will construct some special fundamental domains near little Julia 

bouquets. Let us consider first the non-immediately renormalizable case when the con- 

struction can be done in a particularly nice geometric way. 

LEMMA 9.4. Let f be an m times renormalizable quadratic map. Assume that the 

space in between the little Julia sets J~  is at least # >0 .  Then there are disjoint funda- 

mental annuli A m around little Julia sets Jm~ , with mod(A~)~>v(#)>0.  

Proof. Let us consider the Riemann surfaces S = C \ J  m and S ' = C \ f - I J m c S .  Then 

f: S~--~S is a double covering. Let us uniformize S, that  is, represent it as the quotient 

7-/2/F of the hyperbolic plane modulo the action of a Fuchsian group. In this confor- 

mal representation S admits a compactification SUOS to a bordered Riemann surface, 

with the components OS~ of the "ideal boundary" OS corresponding to the little Julia 

sets J~ .  
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Let S=SUOSUS be the double of S, that is, (C\A(F))/F,  where A(F)cS  1 is t h e  

limit set of F. The boundary components OS~ are geodesics in S. Moreover, these 

geodesics have hyperbolic length bounded by a constant L=L(#) independent of m. 

Let a: S--*S be the natural anti-holomorphic involution of S. Let S'=aS' and 
S'=S~UOSUS'CS be the double of S' inside S. Then f admits an extension to a 

holomorphic double covering ]: S'--~S commuting with the involution a. Its restriction 

]IOS~--~OS~ is a double covering, while the restrictions to the other boundary compo- 

nents osm--*OS~+ I are diffeomorphisms. 

Let C~ (r) D OS~ stand for the hyperbolic r-neighborhood of the geodesic OS m. By 

the Collar Lemma (see [Ab]), there is an r=r(L) (independent of the particular Riemann 

surface and geodesics) such that the collars C m - C ~  (r) are pairwise disjoint. Moreover, 

mod(C~) ~>#(n) >0. 

Let us now take such a collar C=C~, and let 7=0S m. Let C'cS'NC be the 

component o f / - P C  containing "y (where p is the period of the little Julia sets). Then 

]P: C'--*C is a double covering preserving 7- As we have in the hyperbolic metric of S 

that 

f IIDffll = 2/(7), 

there is a point zq7 such that IIO]P(z)ll>~2. This easily implies that IID]-p(r 
q(a) < 1 if the hyperbolic distance between ]Vz and ~ does not exceed a. In particular, 

IfOf-Pll(C)<<.q=q(L,r)<l for all r 

It follows that C' is contained in the hyperbolic (r/q)-neighborhood of 7, and hence 

mod(C\C')>~o(r, q)=0(#). Let now A'~=(C\C')NS. [] 

Note that in the above lemma we do not assume a priori bounds but just a def- 

inite space between the Julia sets (which thus implies a priori bounds). Assuming a 

priori bounds, let us now give a different construction which works in the immediately 

renormalizable case as well. 

Let us consider a bouquet B~ =Ui J ~  of level m, where J ~  touch at point am-1. Let 

b'~EJ[ ~ be the points Fro-symmetric to am-l, that is, Fmb'~=am-1 ("co-fixed points"). 

Let us consider the domain T~ bounded by the pairs of rays landing at these points 

(defined via a straightening of Fro-l), and Pm arcs of equipotentials. Let us then thicken 

this domain near the points b m as described in w (that is, replace the rays landing at 

b~ by nearby rays and little circle arcs around b~). Denote the thickened domains by U~ 

(see Figure 10). We also require that these domains are naturally related by dynamics 
m _ _  m m m so that I T j  - T  k and fU~ =U~ whenever fB~n=S'~ and B'~ is non-critical. Let us 

call U~ n a standard neighborhood of the bouquet B~ n. Let Urn= U u ~ .  
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% 

Fig. 10. Standard neighborhood of a Julia bouquet 

LEMMA 9.5. Let f be an m times renormalizable quadratic map of class Sf~ with a 

priori bounds. Then there exist disjoint standard neighborhoods U~ of B ~  with bounded 

geometry, and such that the annuli m o d ( U ~ \ B ~ )  have a definite modulus. 

Proof. By the Straightening Theorem, the renormalization Rm-l f :  j ~ - l __~ j~ - I  

is K-qc conjugate to a quadratic polynomial Pc:z~-+z2+c, with K dependent only on 

a priori bounds. 

Let BcJ(Pc)  be the critical bouquet of little Julia sets of RPc. Let ~(e) be its 

neighborhood bounded by arcs of equipotentials of level l - e ,  circle arcs of radius ~, 

and rays with arguments 0i+t(e)  (see w Here 0i are the arguments of the rays 

landing at the co-fixed points, and t ( e ) E ( - g , c )  is selected in such a way that  ~(c) is a 

renormalization domain for any Pc from selected truncated secondary limbs. 

The geometry of these domains depends only on the selected limbs and e. Also, the 

Hausdorff distance de(e) of 0~(e)  to B tends to 0 as c-~0 uniformly over c belonging to 
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the selected truncated limbs. Indeed, this is clearly true for a given parameter value c. 

Take a little 5>0, and find an c=~c such that dc(~)<5. Then for all b sufficiently close 

to c, db(ee)<25. Compactness of the truncated limbs completes the argument. 

It follows that for all sufficiently small e (depending only on the selected limbs and 

a priori bounds), ~(c) belongs to the range of the straightening map. Hence these neigh- 

borhoods can be transferred to the dynamical f-plane. We obtain neighborhoods U m (~) 

of the corresponding bouquet B m with bounded geometry (depending on parameter c). 

Moreover, as quasi-conformal maps are quasi-symmetric (see Appendix A), the Haus- 

dorff distance from OU m (c) to the bouquet B m is at most ~(~).dia.m B m, where Q(E)--*0 

as e--*0. Hence for all sufficiently small e, the neighborhood U(e) is well inside the 

domain C\[.Jj# 0 B~.  

Let us now pull this neighborhood back by dynamics to obtain standard neigh- 

borhoods U~(e) of other bouquets B~.  Since Urn(e) is well inside C\[J j#0  B~,  these 

pull-backs have a bounded distortion. Hence the Hausdorff distance from OUr(c)  to the 

bouquet B ~  is at most Q(~).diamB m, where ~(~)--~0 as e-~0. 

Since by Lemma 9.2 there is a definite space between the bouquets, there is also 

a definite space between the neighborhoods U~n(E), for all cE(0, c.] (with ~. depending 

only on the selected limbs and a priori bounds). Also, the moduli of U~(r n depend 

only on the limbs, a priori bounds and r So they are definite, for instance in the range 

e~ (0.01e., ~.]. [] 

We keep using the notations B~,  T~,  etc., introduced before Lemma 9.5, and we 

also assume that the standard neighborhoods U~ satisfy the conclusions of Lemma 9.5. 

We will define a special qc map 

Sin: (U~ \B '~)  --* A(1,4), (9.3) 

with bounded dilatation. This map will be called a standard straightening or a standard 

local chart near the bouquet B~.  

It follows from the a priori bounds assumption that for any Julia set J~ there exist 

Jordan disks ~ D H~ D J~ such that Fz: H ~ - ~  is a quadratic-like map, and there exists 

a qc map 

~l,i: ( ~  \ J[, H~ \ J~) --* (A(1, 4), A(1, 2)) (9.4) 

with bounded dilatation conjugating Fz: H~-~fl~ and P0: h(1,  2)-~A(1, 4), P0: z~-*z 2. 

If J ~  does not touch other Julia sets of level m (that is, Fm-1 is not immediately 

renormalizable) then one can select the standard neighborhood U m as 12~ n. In this case 

let us define the standard straightening (9.3) as ~m,i. 
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If Era-1 is immediately renormalizable, then let us consider a family of little Julia 

sets and bouquets: 

U J ~  = B~ n C j ~ - l .  (9.5) 
$ 

Let us cut T~  by the rays landing at the fixed point a,~-i  into components EmDJ m. 

Since the hybrid class of Fro-1 may belong to a bounded number of little Mandelbrot 

sets (attached to the main cardioid and intersecting the selected secondary limbs), the 

domains ~m have a bounded geometry. Hence the maps Sm can be selected in such a 

way that they have bounded dilatation and 

i 

Thus they glue together into a single qc map (9.3). 

By the rays and equipotentials near the bouquet we will mean the S,~-preimages 

of the vertical intervals and horizontal circles in the cylinder A(1, 4). This will be also 

referred to as the standard coordinate system near B~. 

Let us show in conclusion that the little Julia bouquets and the corresponding stan- 

dard neighborhoods exponentially decay. Let diam(X) stand for the Euclidean diameter 

of a set X. 

LEMMA 9.6. Let SE,_,cE. be a quadratic-like map with a priori bounds. Then there 

exist constants ~ < 1 and lo >0 depending on the choice of limbs and a priori bounds such 

that for any two Julia bouquets B ~  +t C B m, 

diam B~ +~ ~< A z diam jm, l ~> 10. 

Proof. Let us straighten the renormalization Rmf near jm to a quadratic polyno- 

inial Pc. The dilatation K of the straightening depends only on the a priori bounds, and 

K-qc maps are HSlder continuous with exponent 1/K (see [Ah]). Hence it is enough to 

show that for the quadratic map Pc, there exist constants A<I and 10>0 depending on 

the choice of limbs and a priori bounds such that 

diamB} ~< Az, l )  10. (9.6) 

(Now B~', jm, etc., stand for the objects associated to Pc.) 

Note that J(Pc)cD2. Let ~z be the hyperbolic metric on D3\J  I. Let ~/m, m<<.l, be 

the hyperbolic geodesic in D3\J  l homotopic to a curve F m C c \ J  m going once around 

B~ but not going around other Julia bouquets B~', kr  

By Lemma 9.2, there are annuli AmCD3\J  z in the homotopy class of F m with a 

definite modulus, mod(Am)>/~>0. Let us pick F m as the hyperbolic geodesic in Am. 
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Then the hyperbolic length of this geodesic in A m is at most Ir/u. All the more, the 

hyperbolic length of ~/~ in D3\J  Z is bounded by the same constant. 

By the Collar Lemma (see [Ab]), there exist disjoint annuli AmCD3\J  t in the ho- 

motopy class of ~ with mod(A~)~>~=~?(v)>0. By the Gr6tzsch inequality we have 

mod(D3\B}) ~>l~?. Hence there is an absolute constant C such that diam B} ~Ce -iv (see 

Appendix A), and (9.6) follows. [] 

COROLLARY 9.7. Under the assumptions of Lemma 9.6, there exist constants A<I 

and lo>0 such that for the standard neighborhoods U~'+Z c U  m the following estimates 

hold: 

diam U~ '+z ~< ,~z diam U m, 1 ~> lo. 

Proof. Indeed, the standard neighborhoods U~ are commensurable with the corre- 

sponding Julia sets jm. [] 

9.4. Removabi l i ty  of  cer ta in  dynamica l  sets 

The reader is referred to Appendix A for the definition and a discussion of removability. 

LEMMA 9.8 ([Mc3]). Under the assumptions of Lemma 9.6, the post-critical set w(O) 

is a removable Cantor set coinciding with A j m .  

Proof. It was shown in the proof of Lemma 9.6 that for any zEw(0)CAJ m, there 

is a nest of disjoint annuli around z with a definite modulus. Thus the first statement 

follows from the removability criterion (see Appendix A). 

Clearly, w ( O ) c N J m c N u  m. Vice versa, by Lemma 9.6, ~ j m  is covered by the 

uniformly shrinking bouquets B~. As every B~ contains a postcritical point, orb0 is 

dense in ~ jm. [] 

Let us finish this section with stating a standard fact on removability of expanding 

Cantor sets. Let {Ui} be a finite family of closed topological disks with disjoint clo- 

sures. Let us consider a Markov map g: U Ui---*C satisfying the following property: If 

int(gUiNUj)~O then gUiDUj. As usual, let 

K ( g ) = { z : g n z e U U i ,  n=O, 1,...} 

stand for the Julia set of g. 

LEMMA 9.9. For a Markov map as above, the Julia set K(g) is removable. 
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Proof. Let us select a family of annuli AjcgUj\UU~ homotopic to O(gU~) in 

U-~ gUj\U Ui. Let consider cylinder sets i(0),i(1) ..... i(m-1) defined by the following prop- 

erty: 

k m m - l r r r n  
g U~(o),iO) ..... i(m-1) CUi(k), k=O, 1, . . . ,m-2;  g u~(o),i(1),...,i(~_l) =Ui(m-1). 

The pull-back of the annulus Ai(m_l) to 

u:(%)#(1 ) ..... i(m--1 ) \  ''y U~0~-,1, (1) ..... i (m-1 ),i 

by the univalent map gin: U~(m0),i(1) ..... i(m-1)-'-~gUi(m-1) has the same modulus as Ai(,,-1). 

This provides us with a nest of disjoint annuli with definite moduli about any zEK(g). 
The removability criterion concludes the proof. [] 

10. Rigidity: beginning of  the proof 

This and the next sections will be occupied with the proof of the Rigidity Theorem stated 

in the Introduction. 

10.1. Reductions 

In this section we begin to prove the Rigidity Theorem stated in the Introduction. Since 

quadratic polynomials label hybrid classes of quadratic-like maps, this theorem can be 

stated in the following way: 

RIGIDITY THEOREM (equivalent statement). Let f, ]EL be two quadratic-like maps 
with a priori bounds. If f and ] are combinatorially equivalent then they are hybrid 
equivalent. 

The proof is split into three steps: 

Step 1. f and ] are topologically equivalent; 

Step 2. f and ] are qc equivalent; 

Step 3. f and ] are hybrid equivalent. 

The first step (passage from combinatorial to topological equivalence) follows from 

the local connectivity of the Julia sets (Theorem VI). Indeed, a locally connected Julia set 

is homeomorphic to its combinatorial model (see [D2]). Since the combinatorial model 

is the same over the combinatorial class, the conclusion follows. 

The last step (passage from qc to hybrid equivalence) is taken care of by McMullen's 

Rigidity Theorem [Mc2]. Indeed, it asserts that an infinitely renormalizable quadratic- 

like map with a priori bounds does not have invariant line fields on the Julia set. It 
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follows that  if h is a qc conjugacy between f and ] then 0h--0  almost everywhere on the 

Julia set. Thus h is a hybrid conjugacy between f and ] .  

So, our task is to take care of Step 2: 

THEOREM VII.  Let f ,  ] E s  be two quadratic-like maps with a priori bounds. If  f 

and ] are topologically equivalent then they are qc equivalent. 

In what follows we will mark with tilde the objects for ] corresponding to those 

for f .  When we introduce some objects for f ,  we assume that  the corresponding tilde 

objects are automatically introduced as well. 

Remark. The proof of the Rigidity Theorem given below comes through for higher 

degree maps z~-*zd+c, cEC,  of bounded type with a priori bounds. The geometric 

preparation needed for this is the weak form of Theorem II (see the remark at the end 

of w 

10.2. Thurston's equivalence 

Let f :  U ' ~ U  and ] :  U ' ~ U  be two topologically equivalent quadratic-like maps. Let 

us say that  f and ] are Thurston equivalent if for appropriate choice of domains U, 

U', U, U', there is a qc map h:(U,U',w(O))---~(U,U',w(O)) which is homotopic to a 

conjugacy r (U, U', 0a(0))---~(V, U', w(0)) relative (OU, OU', 0a(0)). Note that  h conjugates 

f:w(O)UOU'---~w(O)UOU and ]:ca(O)UOU'---~oa(O)UOU. A qc map h as above will be 

called a Thurston conjugacy. 

Remark. It is enough to assume that  h is homotopic to ~b rel postcritical sets. Then 

one can extend it to a qc map U--~U which is homotopic to a conjugacy rel the bigger 

set as required above. 

The following result comes from the work of Thurston (see [DH3], [Mcl]) and Sullivan 

(see [MS], [$2]). It originates the "pull-back method" in holomorphic dynamics. 

LEMMA 10.1. If  two quadratic-like maps are Thurston equivalent then they are qc 

equivalent. 

Proof. We will use the notations for the domains and maps preceding the statement 

of the lemma. Let U n be the preimages of U under the iterates of f ,  and let c - - f (0) .  

Let h have dilatation K.  

Since h(c)=5, we can lift h to a K-qc map hi: u i - -*U i which is homotopic to ~b rel 

(OU i, OU2,w(O)). (Note that  the dilatation of hi is the same as the dilatation of h, since 

the lift is analytic.) Hence hi = h  on OU i, and we can extend hi to U \ U  i as h (keeping 

the same notation hi).  By the Gluing Lemma from Appendix A this extension has the 
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same dilatation K.  Moreover, this map is homotopic to r rel (w(O), U~<k~<20Uk) �9 Also, 

it conjugates f :  w(0) U (U i \ U 2) ---*w(0) U (U ~ \ U i) to the corresponding tilde map (notice 

that  hi is a conjugacy on a bigger set than h). 

Let us now replace h with hi and repeat the procedure. We will construct a 

K-qc map h2: U--~U which is homotopic to r rel (w(0),Ui~<k~<30U k) and conjugates 

f: w(O)U(UI\U3)-*w(O)U(U\U 2) to the corresponding tilde map. 

Proceeding in this way we construct a sequence of K-qc maps hn homotopic to 

r rel (w(o),Ui<<.k<~n+ i OU k) and conjugating f:w(O)U(UI\Un+i)----+w(O)U(U\U n) to  the 

corresponding tilde map. By the Compactness Lemma from Appendix A, we can select 

a converging subsequence hn(1)~h. The limit map h is a desired qc conjugacy. [] 

The method used in the above proof is called "the pull-back argument". The idea 

is to start with a qc map respecting some dynamical data, and then pull it back so that  

it will respect some new data on each step. At the end it becomes (with some luck) a qc 

conjugacy. 

Remark. For infinitely renormalizable maps of bounded type with a priori bounds, 

McMullen proved that  the postcritical set w(0) has bounded geometry [Mc3]. It easily 

follows that  there is a qc map h: (C,wi(O))---~(C,w](O)) conjugating f to / o n  their 

postcritical sets. This is close to being a Thurston conjugacy but not the same, as h may 

be in a wrong homotopy class. 

10.3. A p p r o x i m a t i n g  sequence  o f  h o m e o m o r p h i s m s  

So we need to construct a Thurston conjugacy. We will construct it as a limit of an 

appropriate sequence of maps. Take a sufficiently small s>0,  and consider the corre- 

sponding sequence of standard neighborhoods u m = U ~  U ~ [ . J ~  U~(~) (see w By 

Corollary 9.7 there is an 1 such that  U m is well inside U "~-z. Moreover, by Lemma 9.8, 

We will consecutively construct a sequence of homeomorphisms 

hm: (C, U m, jm)  --, (C, U m, jm)  (10.1) 

such that  

(i) h0 is a topological conjugacy; 

(ii) hm is homotopic to hm-1 rel ( J 'h2(C\Um-Z)) .  In particular h,~lJ'~=hm-llJ "~ 
and hml(C\Vm-1)=hm_ll(C\Vm-z)~ 

(iii) the hm are K,-qc on u m - ~ \ J  m, with dilatation K ,  depending only on the 

choice of limbs and a priori bounds; 

(iv) Dil(hmlU "~-z \ jm)<4K,4  Dil(hm-11U m-z \ j m- 1 ) .  
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Such a sequence will do the job: 

LEMMA 10.2. A sequence hm satisfying the above three properties uniformly con- 

verges to a Thurston conjugacy. 

Proof. By the second property, this sequence eventually stabilizes outside N jm, 

and thus it pointwise converges to a homeomorphism h: C \ N  Jm--*C\N ] m  By the last 

two properties, the dilatation of hm on v m - l \ J  m is uniformly bounded. Hence h is 

quasi-conformal on C \ N J  m. But by Lemma 9.8, N Jm=w(0) is a removable Cantor set. 

Hence h admits a qc extension across w(0). 

Further, h is homotopic to h0 rel w(0). Indeed, let h t, 1 - 2 - m ~ t < ~ l - 2  -(re+l), 

be a homotopy between hm and hm+l given by (ii). Let r diamU m. As the 

U m shrink to a Cantor set, era--*0. As h ( U ~ - l ) = h t ( U ~ - t ) = U  m-l ,  1 - 2 - m ~ t < l ,  the 

uniform distance between h and h t is at most em-Z. It follows that the h t uniformly 

converge to h as t--~l. Hence h is homotopic to h0 rel w(0). 

Since h0 is a topological conjugacy by (i), h is a Thurston conjugacy. [] 

10.4. Construct ion of  ho 

Let us supply the exterior C \ c l D  of the unit disk with the hyperbolic metric g. The 

hyperbolic length of a curve 7 will be denoted by le(~), while its Euclidean length will 

be denoted by 171. 

LEMMA 10.3. Let A and A be two (open) annuli whose inner boundaries are the 

circle T.  Let w: A--~ A be a homeomorphism commuting with P0: z ~-* z2 near T.  Then w 

admits a continuous extension to a map AUT--*AUT identical on the circle. 

Proof. Given a set X c A ,  let )( denote its image by w. Let us take a configuration 

consisting of a round annulus L ~ =Air,  r 2] contained in A, and an interval I0 = [r, r2]. Let 

L n = P o n L  ~ and I x denote the components of PonI  ~ k=O, 1, . . . ,2n-1. The intervals 

I x subdivide the annulus L n into 2 n "Carleson boxes" Q~. 

Since the (multi-valued) square root map Po 1 is infinitesimally contracting in the 

hyperbolic metric, the hyperbolic diameters of the boxes Q~ are uniformly bounded by 

a constant C. 

Let us now show that w is a hyperbolic quasi-isometry near the circle, that is, there 

exist ~>0 and A, B>0  such that 

A-1Q(z, r  <~ 0(5, ~) <. Ao(z, r  (10.2) 

provided z, CEA(1, l+e) ,  [z-r <c. 
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Let ~/be the arc of the hyperbolic geodesic joining z and r Clearly it is contained 

in the annulus A(1,r), provided c is sufficiently small. Let t > l  be the radius of the 

circle Tt centered at 0 and tangent to 7. Let us replace 7 with a combinatorial geodesic 

F going radially up from z to the intersection with Tt, then going along this circle, and 

then radially down to (. Let N be the number of the Carteson boxes intersected by F. 

Then one can easily see that 

Q(z, 0 = 1~(7) • l~(r) • N, 

provided Q(z, ~) >/10 log(l/r) (here log(l/r) is the hyperbolic size of the boxes Q~). 

On the other hand 

so that 0(5, ~) <~C1Q(z, ~), and (10.2) follows. 

But quasi-isometries of the hyperbolic plane admit continuous extensions to T (see, 

e.g., [Th]). Finally, it is an easy exercise to show that the only homeomorphism of the 

circle commuting with P0 is identical. [] 

LEMMA 10.4. Let f be a quadratic-like map. Let A and A be two (open) annuli 

whose inner boundaries are J ( f ) .  Let w: A--*~I be a homeomorphism commuting with f 

near J ( f ) .  Then w admits a continuous extension to a map ALAJ(f)--~ALAJ(f) identical 
on the Julia set. 

Proof. By the Straightening Theorem, we can assume without loss of generality that 

f=Pc:z~-*z2+c is a quadratic polynomial. Let R: C \ K ( f ) - - * C \ c l D  be the Riemann 

mapping normalized by R ( z ) ~ z  near infinity. It conjugates Pc to P0: z~--~z 2. 

Let w # = R o ~ o R - l :  C\clD--~C\clD.  Then w # commutes with P0 in an open an- 

nulus attached to the circle T. By Lemma 10.3, w # continuously extends to T as id. 

Hence for any ~>0 there is an r > l  such that [w#(z)-z[<~ for z6A(1,r) .  

Let us show that the hyperbolic distance Q(~#(z), z) is bounded if Iz]<2. Clearly 

Q(w#(z),z)<<.C(r), provided l<r~<lzl<2. Let rl/2<<.lzi<~r , ~=w#(z). Let us consider 

the hyperbolic geodesic 7 joining Poz and Por Clearly JT]--O(c). Then P0-17 consists 

of two symmetric curves a and - a  of Euclidean length O(~). One of these curves, say a, 

joins z with a preimage u of P0(~). Then I z + u l > 2 - O ( e ) > c ,  so that - u # ~ .  Thus u = f .  

As the square root map Po I is infinitesimally contracting in the hyperbolic metric, 

Q(z, r <<. le(a ) <. I~(7) = p( Po(z), Po(()) <~ C(r). 

Take now any point z in the annulus Air 1/4, rl/2]. Using the same argument we 

conclude that e(z,w#(z))<~C(r) (with the same C(r)). By induction, the same bound 

holds for all z. 
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Now we can complete the proof. Since the Riemann mapping R is a hyperbolic isom- 

etry, the hyperbolic distance between w(z) and z in C\J (Pc)  is also bounded near J(Pc). 

Hence the Euclidean distance I z -w(z) l  goes to 0 as z--* J( f ) .  It follows that the extension 

of w as the identity on the Julia set is continuous. [] 

COROLLARY 10.5. Let f and ] be two topologically equivalent quadratic-like maps, 

and let r be a topological conjugacy between them. Let A and A be two open annuli whose 

inner boundaries are J( f )  and J(]) respectively. Let h: A--~A be a homeomorphism 

conjugating f and ] on these annuli. Then h matches with r on the Julia set, that is, 

h admits a continuous extension to a map AUJ(f)--*flUJ(])  coinciding with r on the 

Julia set. 

Proof. Apply Lemma 10.4 to the homeomorphism w = r  -1 oh commuting with f .  [] 

LEMMA 10.6 ([DH2]). / f  two quadratic-like maps f and ] are topologically conjugate 

then there is a conjugacy ho which is quasi-conformal outside the Julia sets. 

Proof. Given an annulus R, let OoR and OiR stand for its outer and inner boundary 

components. Let us select a closed fundamental annulus R for f with smooth boundary, 

and let Rn=f- '~R.  Let R and ~n be similar objects for ]. Then there is a diffeomorphism 

r R-*R such that 

r  =] ( r  z E OiR. 

This diffeomorphism can be lifted to a diffeomorphism r R 1 __~1 with the same 

qc dilatation and such that 

r162 ZEOoR 1, and r 1 6 2  zEOiR 1. 

In turn, r can be lifted to a diffeomorphism r R 2--*R2 with the same dilatation, which 

matches with r on OoR 2 and respects dynamics on OiR 2, etc. 

By the Gluing Lemma from the appendix, these diffeomorphisms glue together into a 

single quasi-conformal map h0: A \ J ( f ) ~ A \ J ( ] )  conjugating f and ], where A= U Rn. 

On the other hand, let r be a topological conjugacy between f and ] near the Julia 

sets. Then by Corollary 10.5, h0 matches with r on J( f ) .  [] 

10.5. A d j u s t m e n t  of  h,~ 

Recall that r,~ is the period of the little Julia sets J~,  and Fm =frm is the corresponding 

quadratic-like map near J~. Let Urn= U U~ be a standard neighborhood of the little 

Julia orbit j , n =  U B ~ =  U J~,  with a definite space in between the Uj m and definite 

annuli U ~ \ B ~ ,  and let Sm: U~nkJ~--*A(I, 4) be the standard straightenings (9.3). Its 
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dilatation is bounded by a constant K,  depending only on the choice of secondary limbs 

and a priori bounds. Let UF(t )=SmlA(1 , t )  (note that U~-U~(4) ) .  The notation 

Urn(t) is self-evident. 

We say that a homeomorphism r U~(2) \B?--+U~(2) \B~ is standard near the 

bouquet B~ if it is identical in the standard coordinates on UF(2), that is, 

Smor (2) =Sin. (10.3) 

The dilatation of such a map is bounded by K.  2. Note also that by Corollary 10.5, the 

standard map admits a homeomorphic extension across the Julia bouquet. 

We will now adjust the map hm so that it will become standard near jm. 

LEMMA 10.7. Take an 1 as in w Let a homeomorphism hm: (c ,  Jm)--*(C,J m) 

be a conjugacy on J'~ and be K,~-qc on U m-l \ j m .  Then there is a homeomorphism 

s (c, u m, (c, 0 m, 3m), 

homotopic to hm rel (J'~U(C\U'~-z)), such that Dil(]~ml(u'~-l\Jm))<<.4KI,'Km, and 

hm: U'~(2)\J'~--+Um(2)\J "~ is standard. 

Proof. In what follows we skip the subscript m. Let us consider a retraction ~ :  

Uj(4)\Bj-+Uj(4)\Uj( t )  which is the affine vertical contraction in the standard coor- 

dinates. Its dilation is bounded by 2K, 2. Let us extend the Ct to a homeomorphism 

Ct: C \ J - ~ C \ U ( t )  by identity on C\U(4). By the Gluing aemma from the appendix, 

Ct is also 2K,2-qc. 

Let us now define a homeomorphism ht: (C, U(t), J)--* (C, OCt), J) as follows: 

htl(C\U(t))  = ~toho(r 

while ht:U(t)--+U(t) is standard. Then h 1 is a desired adjusted map (homotopic to 

h~ via the {ht}). [] 

In what follows we will assume that hm is adjusted as in Lemma 10.7, and will skip 

the "hat" in the notation for the adjusted map. 

10.6. Beginning of t h e  c o n s t r u c t i o n  of hm+l 

We keep using the notations of w 

Let p,~ denote the number of rays landing at the (~-fixed of the Julia sets j~n. 

Consider the configurations T ~  of Pm rays landing at the a-fixed points of the J~.  Let 
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flm'~ stand for the components o f - - ~ \ R ~ ,  and let fl~,l  C ~  be the corresponding 

components of F(nPmgt~, so that  

G - pyre. ore,1 __, 12~ 00.4) 

is a double-branched covering. The boundaries of these domains are naturally marked 

with the standard coordinates. (Marking of a curve means its preferred parametrization.) 

As the map 

a m a ~ ' i  J ~ )  ~ (C, U~, . .~ ,--8 ,~, , h m : ( c , u ? ,  8 ,  , 

is standard on the U~, it respects this marking. 

Since the configurations ([.J T~ m, (.J 0 f l~  'i) have bounded geometry (see w there is 

a qc map with a bounded dilatation 

Tim om Ore, i) (10.5) 

coinciding with hm on C\LJs f~m and respecting the boundary marking (in particular, 

it conjugates Fm:aY~sm'l--*cOf~ and Fm:0~m'i-~0~sm).  Moreover, ~m is homotopic to 

hm rel ( ( C \ U  m) U0f~s m U af~m,i), since all regions complementary to this set axe simply- 

connected Jordan domains. 

Note however that  unlike hm, the map ~m does not respect dynamics on the little 

Julia sets. We need to pay temporarily this price in order to make ~m globally quasi- 

conformal. 

10.7. Construct ion of  hm+l in the immediate ly  renormalizable case  

Let us consider the double covering (10.4). In the immediately renormalizable case, 

n m , Z  Gm0Efl8 , n = 0 , 1 , 2 , . . . .  

Moreover, there is a nest of topological disks 

~ , 0  ~ ~ , 1  ~ ~ , 2  ~ ... 

shrinking to the little Julia set jm+l  and such that  G " ~m,n_..~m,n--1 is a branched 
$ , m "  8 8 

double covering. The complement O r e ' n -  flmm- 1 \ ~m,n consists of 2 '~ quadrilaterals. 
~ r  - -  8 "~ - - 8  

As Gm:(gm,n-~O re,n-1 is an unbranched covering, the map q2m:Qs m,1 -~8 can 

be lifted to a qc map 
�9 m , n  ~ m , n  Vm,n. Q8 ~Q8 
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with the same dilatation homotopic to hm rel the boundary. Hence all these maps glue 

together in a single qc map with the same dilatation 

hm+ l : ~ \ j,~+ l ~ ~m \ j y +  l (10.6) 

m,n equivariantly homotopic to hm rel ~J~0~  . 

Let r be the corresponding homotopy, and let p be the hyperbolic metric in 

~ m \ j m + l .  T h e n  by equivariancy Q(Ot(z),hm(z))•C. Hence IOt(z)-hm(z)]--~O as 

z -+J m+l uniformly in t. It follows that the homotopy Ct extends across the little Julia 

set j~+ l .  Thus the map (10.6) extends across j ~ + l  to a homeomorphism homotopic to 

h,~ rel (O~t~UJ~+l). 

Outside the [.J~ ~m let hm+l coincide with hm. This provides us with the desired 

map hm+l. 

11. Through the principal nest 

In what follows we will assume that Rmf--Fm is not immediately renormalizable. 

11.1. Teichmfiller distance between the configurations of  puzzle pieces 

Let us make a choice of a standard neighborhood U m of the Julia bouquet B m and 

the corresponding standard straightening S,~, see (9.3). When Fm-1 is not immediately 

renormalizable, this provides us with a family y of puzzle pieces y(k), see w 

As the puzzle pieces y(k) are bounded by equipotentials and rays, they bear the 

standard boundary marking, i.e., the parametrization S~ 1 by the corresponding straight 

intervals or circle arcs. 

Since h,~: U'~--*U "~ is the standard conjugacy (see (10.3)), it maps the pieces Yi (k) 

to the corresponding tilde pieces ~(k) respecting the boundary marking. Given some 

family of puzzle pieces Pi EY contained in some YEY, let us say that a homeomorphism 

r (Y, U (#, U 

is a pseudo-conjugacy if it is homotopic to h,~ rel the boundary (OY, U OPt). Note that if 

f1: Pi--*Y (or fz: Pi-~Pj) for some iterate of f and some puzzle pieces of our family, then 

the pseudo-conjugacy r is a true conjugacy between the boundary maps fz: OPi---~OY 

and f110/5i__~0:~ (or OPj instead of OY). 

In particular, the above terminology will be applied to the principal nest of puzzle 

pieces (see w 

y(m,0) D V m'~ D V m'l D ..., Vo n'n =~ vm'n, N vm'n = jm+l, (11.1) 
n 
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and the corresponding generalized renormalizations g,~,n: [-Ji Vi m''~--+Vm'n-l" 

The Teichmiiller distance distT between (V m''~-l, V/m'n) and (~m,n-1, ~m,n) is 

defined as infr162 as r runs over all qc pseudo-conjugacies (V m,~-l, UiVim'~)--~ 
(ym,n-l, UiYim'n). 

MAIN LEMMA. The configurations (V re'n-l, Vi m'n) and (~m,n-*, ~m,n) stay bounded 

Teichmiiller distance apart (independently of m and n). 

The rest of this section, except the two final subsections, will be occupied with the 

proof of this lemma. As the level m is fixed, we skip in what follows the label m in 

the notations of V(~'n-Vi "~, g,~,n==_g~, hm-h ,  etc. (unless it may lead to a confusion). 

In what follows, by referring to a qc-map we will mean that  it has a definite dilatation 

(depending only on the selected limbs and a priori bounds). 

11.2. A point set topology l emma 

In the statement below, the objects involved need not have any dynamical meaning. 

LEMMA 11.1. Let Pi be a family of closed Jordan discs with disjoint interiors con- 

tained in a domain Y,  such that diamPi-*0.  Let Pi, Y be another family of discs with 

the same properties. 

�9 Let h: (Y, UPi)-~(Y,  UPi) be a one-to-one map which is a homeomorphism on 

UPi and on x=_Y\ (Uin t  Pi). Then h is a homeomorphism. 

�9 Let hi: (Y, [.JPi)--+(?, (.J/bi), j = 0 ,  1, be two homeomorphisms which coincide on 

Y \ ( U i n t P i ) .  Then the hJ are homotopic rel Y \ ( U i n t P i ) .  

Proof. Given an ~>0, there exists an N such that  diam(~bn)<~ for n>N.  Let 

T=Ul<i<~NP i. Note that  h is continuous on XUT.  

Given a point zEY,  let us show that  h is continuous at it. This is certainly true if 

zEUintPi ,  so let zEXo We will show that  

Ih(z)-h(;)l < (11.2) 

for any nearby point ~EY. Indeed, if ~EXUT it follows from the above remark. Other- 

wise ~EPj for some j > N ,  and there is a point uE [z, ~]NOPj. Then 

I h ( z ) -  h(r < I h(z)-h(u)l+lh(u )-h(~)l.  

If ~ is sufficiently close to z then the first term is at most e by continuity of hlX. As the 

second term is bounded by d iam(Pj)<s ,  (11.2) follows. 
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Let us now prove the second statement. As each P~ is simply-connected, h~ is 

homotopic to hllPi rel 0P.~. Let ht: LJ Pi--~/5~ be a corresponding homotopy. Extend it 

to the whole domain Y as h ~ We should check that  this extension ht(z): (Y, [.J P~)-+ 
(Y, U P~) is continuous in two variables. 

Note first that  for z~Ul<<.i<~N P~-T, 

Iht(z)-h~ <~. (11.3) 

Given a pair (z,t), we will show that  Iht(z)-h~(~)I<3c as (~,T) is sufficiently close 

to (z, t). To this end let us consider a few cases: 

�9 If zEint [.J Pi, it is true since htiPi is a homotopy. 

�9 If z, ~ET, it is true since htlT is a homotopy. 

�9 If zEOT but r  then for ~ sufficiently close to z, 

Iht(z)-M (~)l = Ih~ (~)l <~ Ih~176162 (~)-h~ < 2~ 

by continuity of h ~ and (11.3). 

�9 Let z~T. Then sufficiently close points r do not belong to T either. Hence by 

(11.3) and continuity of h ~ 

Iht(z)-h~(~)l <<. Ih~176162176162176 < 3~. [] 

11.3. First landing maps 

Let us have a family of puzzle pieces Pi with disjoint interiors contained in a puzzle 

piece X, where as usual P0~0 stands for the critical puzzle piece. Let us also have a 

Markov map G: [_JP~--~X which is univalent on all non-critical pieces P i , / 5 0 ,  and the 

double-branched covering on the critical one, P0- The Markov property means that  if 

int(GPiNPj)r then GPiDPj. Let A be the corresponding Markov matrix: Aij=l  if 

int (GPi A Pj ) ~ ~ ,  and Aij = 0 otherwise. 

Let P - p O .  A string of labels ~-- (i (0), ..., i(1 - 1)) is called admissible if Ai(k),i(k+l) = 1 
for k = 0, ..., l - 2 ,  and i(k)~0 for k < l - 1 .  The length 1 of the string will be denoted by ]~1. 

To any admissible string corresponds a cylinder of rank l defined by 

GkP~ cPi(k),  k = 0 , . . . , l - 2 ;  GI-1P~ =Pi(l-1).  (11.4) 

Note that  G 1-1 univalently maps P] onto Pi(z-1). 

Let us denote by ft~_=P~ t the cylinders mapped onto the critical puzzle piece (so that  

i(1-1) =0). The first landing map 

T: U a~ - ,  P0 (n .5)  

is defined as follows: Tz=GZ-lz for z E ~ ,  I~]=l. This map is univalent on all pieces ~ 

(identical on the critical piece ~t0). 
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LEMMA 11.2. Let us have a K-qc pseudo-conjugacy H: ( X,  UPi)--+()(, U/Si) be- 

tween G and G. Then there is a K-qe pseudo-conjugacy r (X, [.J ~j)--*()(, U ~ j )  which 

conjugates the first landing maps T and T. 

Proof. Let us pull H back to the pieces Pi, i#0, that is, let us consider the map 

H,: (Pi, U P/j) ~ (P,, U.P~.~) 
J 3 

such that GoHIlPi=hoGIPi. Since H is a pseudo.conjugacy, H1 matches with H on 

Ui#o OPi. Hence these maps glue together into a single K-qc map equal to H1 on U Pi, 

and equal to H outside of it. We will keep the notation H1 for this map. 

Let us do the same pull-back with H1. We will obtain a K-qc pseudo-conjugacy 

u H2: (P, p1 u 

Repeating this procedure over again, we obtain a sequence of K-qc pseudo.conjugacies 

H , :U  U P~l--~ U U P#. 

By the Compactness Lemma from Appendix A we can pass to a limit K-qc map 

l,~ l,~ 

By Lemma 11.1 this map is homotopic to h rel (OX U Of~j), and hence is a desired pseudo- 

conjugacy. [] 

Let us now do a bit more (assuming a bit more). Consider the first return map 

g: U Vj--~Po, and let b=g(O)=GtO be its critical value. 

LEMMA 11.3. Let us have two K-qc pseudo-conjugacies H0: (X, UP/)--~(X, UPi) 

and Hi: ( Po, b ) -~ ( Po, b ) . Then there exists a K-qc pseudo-conjugacy ~: ( Po, U Vi ) --* 

(P0, U~)  between g and ~. 

Proof. As H0 and H1 match on OPo, they glue together into a singe K-qc pseudo- 

conjugacy H: (X, U Pi, b)---~(X, U Pi, b) coinciding with H1 on P0 and coinciding with 

H0 on X \ P o  (see the Gluing Lemma in Appendix A). By Lemma 11.2, there is a K-qc 

map r (X, U ~ j ) ~ ( P ( ,  U ~ j )  homotopic to h rel (OXUOflj), and conjugating the first 

landing maps. As H: b~-~b, we have: r Gk0~-+Gk0, k= l ,  ...,t. In particular, r respects 

the G-critical values: G(0) F-eG(0). 

Recall that the domains Vi are the pull-backs of the ~tj by G: Po--eX, that is, the 

components of (GIPo)-I~j. It follows that r can be lifted to a K-qc map r (Po, UVi) --~ 

(~b0, U ~ )  homotopic to h rel (OPo UOVi). (This lift is uniquely determined by the diagram 

Gor162 and the homotopy condition.) 

This map r is the desired pseudo-conjugacy. [] 
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11.4.  In i t i a l  c o n s t r u c t i o n s  

Now the reader should consult w of this paper where the initial Markov tiling (3.4) of 

the Yoccoz puzzle piece y(0) is constructed. We will apply it to the renormalized map F. 

Let us recall some notations. The first piece of the partition, y=y(O), is bounded by the 

external rays landing at the fixed point c~, and the equipotential E. The central piece of 

this partition, V ~ is the first piece of the principal nest. It is obtained by pulling back a 

puzzle piece Z (1) attached to the co-fixed point c~ ~. There is a double-branched covering 

F 8: V~ Z (1) . All the puzzle pieces of the initial partition intersecting the Julia set J(F) 
are univalent pull-backs of either Y or V ~ Let us denote the pieces of this partition by 

P~, in such a way that  Po-V  ~ Pi-Z~ 1), i=1,  . . . , p -  1, where p is the number of external 

rays of F landing and a. With these notations, 

YNJ(F) = U(PinJ(F))UK, (11.6) 

where K is the residual Cantor set (of the points whose orbits never land at [-J0<~i<p-1 Pi)" 

LEMMA 11.4. In the decomposition (11.6), diamPi--*0 and the set K is a removable 
Cantor set. 

Proof. The first statement follows from Lemma 2.8. To prove removability of K,  let 

us consider the domains Q1 and Q2 defined in w Then FPQi covers QluQ2, and K is 

the set of points which never escape Q1uQ2. By a little thickening of these domains, we 

obtain a Bernoulli map FP: Qll..JQ2-----~C (so that  int(FP~)i) contains ~)i). By Lemma 9.9, 

the Julia set K of this map is removable. All the more, K c K  is removable (one can 

actually see that  K = K ) .  [] 

Let us now go back to w where the fundamental domain Q near the fixed point 

a is constructed. Recall that  ~/EY (1) is the periodic point of period p, 7 1 = - ~  is 

the "co-periodic" point, and T~(V I) is the family of rays landing at V ~. Also, let X= 
Y(1)UUl<i<p_l Pi. This domain is bounded by the rays landing at c~ and the equipo- 

tential F-1E. 

Furthermore, D is the connected component of Y(1)\T~(V~) attached to c~, F-P: 
D--~F-PD is the branch of the inverse map fixing (~, and Q=D\F-PD. 

Let us also consider quadrilaterals D* =DAY (I+p) and Q*=QNY (l+p) obtained by 

cutting D and Q with the equipotential F-p-IE.  Note that  D\D*=Q\Q* consists of 

two quadrilaterals which do not contain points of the Julia set J(F). Let Q*k =F-PkQ *, 
k = - l , 0 ,  1, ..., and Q*__2=X\FPD* (see Figure 5). Note that  J(F)NX is tiled into the 

pieces Q ' k ,  k = - 2 , - 1 ,  .... 



270 M. LYUBICH 

LEMMA 11.5. The hyperbolic diameter of the domains Q*-k, k = - 2 , - 1 , 0 , . . . ,  in Y 

is bounded. Moreover, if [ k - j [ > l  then there is a definite space in between Q-k and Q_j 

in Y.  

Proof. By the secondary limbs and a priori bounds assumptions, the geometry of 

the configuration (Y, y(1), yO+p), ~(.y), T~('/')) is bounded (see w Hence Q*-2 and 

Q~ have a bounded hyperbolic diameter in Y. For the same reason, Q* has a bounded 

hyperbolic diameter in FPD *. As F-P:FPD*-*FPD * is a hyperbolic contraction, the 

diameters of Q*k in FPD are bounded by the same constant. All the more, they are 

bounded in a bigger domain Y. 

To prove the second statement, note that by bounded geometry of the initial ray- 

equipotential configurations, there is a definite annulus To CFPD * about Q~ which does 

not intersect Q'k ,  k=2, 3 .... Then T_i=F- ipTocFPD * is the annulus with the same 

modulus going around Q*-i and disjoint from Q*-k with [k-i[ > 1. [] 

Our first essential step towards the Main Lemma is 

LEMMA 11.6. The Teichmiiller distance between the configurations (Y, U Pi, U Q'k)  

and (Y, [.J/5i, U ~)*k) is bounded. 

Proof. Recall that F~(V~ and F(P~) univalently covers Y. Let us consider a 

point a=Fs+IoEx .  We will construct a qc map (Y, a)---*(Y, 5) respecting the boundary 

marking. 

By w the geometry of the configuration (Y, y(1), y(l+p)T~(7), 7~(-y')) (and the 

corresponding tilde one) is bounded, so that there is a qc pseudo-conjugacy 

r (y, y(1), y(l+p), T~("/), ~('y')) ~ (Y, p(1), y(l+p), ~(.3,), ~(.),,)). 

In particular, this map conjugates FP: Q*--~FpQ * to the corresponding tilde map. 

As F p univalently maps Q'k-1  onto Q 'k ,  r can be redefined on the Q 'k ,  k~>0, in 

such a way that it becomes the pseudo-conjugacy between the configurations 

r (y, y(1), U Q*-k) ""+ (Y, ?(1), U ~)*-k) (11.7) 

with the same dilatation. (Just let r162 for zEF-pkQ.) 

It follows that r and 5 belong to the same piece of the family {Q*k}k~__2. By 

Lemma 11.5 the hyperbolic distance between r and 5 in Y is bounded. 

By the Moving Lemma from Appendix A, there is a qc map r Y ~ Y  identical on 

the boundary and carrying r to 5. Hence r162 (Y,a)--~(Y,5) is a qc map (with 

a definite, though bigger, dilatation) respecting the boundary marking. 
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Consider now the double-branched covering Fs+l:  (V ~ 0)--+ (Y, a) with the critical 

point at 0, and the corresponding tilde map. As r (Y, a)--+(Y,5) respects the critical 

values for these maps, it can be lifted to a map r V~ ~ with the same dilatation 

respecting the boundary marking. 

Let us now construct a qc pseudo-conjugacy r between corresponding non-critical 

puzzle pieces P / a n d  ~5~. It is easy as any non-central puzzle piece Pi under some iterate 

F t~ is univalently mapped onto either Y or V ~ In the first case let r be the pull- 

back of r Y--+Y; in the second let it be the pull-back of r This pull-back preserves 

the dilatation and respects the boundary marking. This provides us with a qc map 

r [.J Pi--+(J Pi respecting the boundary marking of the puzzle pieces. 

The latter property means that  r matches with h on ~J cOPi. By the first part of 

Lemma 11.4 and Lemma 11.1, these maps glue together into a single homeomorphism 

coinciding with r on (J Pi and with h outside, homotopic to h rel OYUOPi (we will still 

denote it r 

By the Gluing Lemma from Appendix A, this homeomorphism is qc on Y \ K .  By the 

second part of Lemma 11.4, the residual set K is removable, and thus r is automatically 

quasi-conformal across it (with the same dilatation). [] 

The next step towards the Main Lemma is 

LEMMA 11.7. The configurations (V ~ [J Vi 1) and (~0, U ~ I )  stay bounded Teich- 
miiller distance apart. 

Proof. Let us consider the first return b=glO of the critical point back to V ~ We 

will construct a qc map 

H: (V ~ b) --~ (~0, ~) (11.8) 

respecting the boundary marking. 

Let u=FS+lbEX (where F s maps V ~ onto Pv). Let r be a pseudo-conjugacy given 

by Lemma 11.6. Then r and ~ belong to the same piece of the tiling XNJ(F)= 
[J_~<k<<.2(Q*kNJ(F)). By Lemma 11.5, the hyperbolic diameters of these pieces in Y 

(and the corresponding tilde pieces) are bounded by a constant ~) dependent only on the 

selected limbs and a priori bounds. Hence 09 (r fi)~< Q. 

Let a=FS+10, as in the proof of Lemma 11.6. Assume that  aEQk, uEQj. Let us 

consider two cases: 

�9 Let Ik- j[~l .  Then Qy(u, a)~2~. Hence there is an annulus C c Y  going around 

a and u with rood(C)~>#(~)>0. As F~+l: (V ~ 0, b)--* (Y, a, u) is a double-branched cov- 

ering with critical point at 0, the pull-back Co of this annulus to V0 has modulus at least 

�89 Hence mod(C(Co))>~K-l#(o), where K=Dil ( r  depends only on the selected 
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limbs and a priori bounds. Hence t)~o (r 0) is bounded. For the same reason, Qffo (b, 0) 

is bounded, and hence Q~0 (r {~) is bounded. 

By the Moving Lemma from the appendix, there is a qc map ~: (~0, r ~), 

identical on the boundary. Then H=r162  is a desired map (11.8). 

�9 Let now I k - j l > l .  Then by Lemma 11.5, there is a definite space in between Q~ 

and Q~ (and between the corresponding tilde sets). By the Moving Lemma, there is a 

qc map r (Y, r r 5, ~), identical on 0Y. This map lifts to a qc map (11.8) 

(with the same dilatation). 

So, we have constructed a qc map (11.8) which carries the critical value b=gl(O) to 

the critical value b=~l(0).  Lemma 11.3 completes the proof. [] 

11.5. Inductive step (non-central case) 

Let us now inductively estimate the Teichmfiller distance between the configurations 

(V n-l ,  UVi n) and ( v n - l , U ~ ) .  Let Tn stand for the maximum of this Teichmfiller 

distance and logDil(h), where as above, h stands for the conjugacy between F and F.  

Recall that  #,~=mod(Vn-l \V '~) denote the principal moduli. 

The following lemma is the main step of our construction. 

LEMMA 11.8. Let #n~>ft>0 and Tn <<. ~. Assume that gn(O)EV~ with k#O, that is, 

the return to level n - 1  is non-central. Then Tn+l<Tn+O(exp(--l#n)), with a constant 

depending only on ft. 

Remark 1. We actually do not need to assume that the maps are topologically equi- 

valent. As the proof below shows, it is enough to assume that the maps are combinatori- 

ally equivalent up to level n (that is, the configurations (Y n, [.J Vi "+1) and (~n, [.j ~n+l)  

are topologically pseudo-conjugate) and the critical values g~+10 and .~,~+10 belong to 

the corresponding pieces Vj ~+l and ~jn+l. 

Remark 2. We do not assume that the off-critical puzzle pieces V/n, i #0 ,  are well 

inside V n-l ,  since this is not the case on the levels which immediately follow long central 

cascades (see Theorem II). 

Proof. Let us skip n in the notations of the objects of level n, so that  Vin-----V/, g,~==-g, 

#~--#,  etc. Also, let V'~-I--A and g(0)=-cl. As above, the corresponding objects for ] 

are marked with tilde. Thus we have two generalized polynomial-like maps g: U Vi--~A 

and ~: 1.3 ~--*/~, which are pseudo-conjugate by a K=er-qc map 

r (A, U Vi) --~ (~., U ~). (11.9) 
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A s 
~ 

".. v0 vk ~o" vk / f f  "\ 

Fig. 11. Localization of the critical values 

The objects on the next level, n + l ,  will be marked with prime: V~+I-V p, g~-gn+l, etc. 

(where g' is not the derivative of g). So g': U Vj - .A ' ,  A'--V0. 

Let )~(~) be the maximal hyperbolic distance between the points in the hyperbolic 

plane enclosed by an annulus of modulus y. Note that A(L,)=O(e -")  as v--*oo (see 

Appendix A). Set A=/k(tt). 

Our goal is to lift r to a K(l+O(Al/4))-qc pseudo-conjugacy 

r (A,, U yT) -~ (A', U ~'). (11.10) 

The problem is that r need not respect the positions of the critical values: r 

Let us consider the first landing map T: Ufl j - - .v  ~ By Lemma 11.2, the pseudo- 

conjugacy r admits the pull-back to a K-qc pseudo-conjugacy 

r (~, Uaj )  -~ (5, USj).  (11.11) 

This localizes the positions of the critical values in the sense that r and Cl belong 

to the same domain ~=cVk (see Figure 11) and hence the hyperbolic distance between 

these points in Vk is at most A. 

By the Moving Lemma from Appendix A, we can find a (l+O(),))-qc map 

~2: (Yk, (~1 (Cl)) --~ (Yk, Cl), (11.12) 

identical outside Vk. Then the map 

r ~" t/)~162 (A, U V/, el ) ---+ (n ,  U V/,Cl) 

is a K(l+O(A))-qc pseudo-conjugacy respecting the critical values. 

Let {U~} be the family of the components of the {(glA')-lVi}. The map r can be 

lifted to a K(l+O(A))-qc pseudo-conjugacy 

H: (A', U~) --~ (/k', U~). (11.13) 
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However, U" are not the same as Vj' (the components of {(glA' ) - l~ i}) ,  so we have to 

do more: We will localize the positions of the critical values a=g'O and 8 in A', and 

construct a K ( l + 0 ( k ) ) - q c  map 

a) (s 5) (11.14) 

respecting the boundary marking. The argument depends on the position of these a- 

points. Let al=g(a)eVj. 

Case (i). Assume that Vj is off-critical and different from Vk. Let alEf~l. Then the 

annuli Vj \ ~tz C Vj and Vk \ ~s C Vk are disjoint (recall that cl E f~s). Hence by the Moving 

Lemma, there is a ( l+O(~)) -qc  map 

r (s r (c1), r (al)) (s <) 

identical outside (VkUVj) (where r is the map (11.11)). With this map instead of 

(11.12), the above construction leads to a map (11.13) which already respects the critical 

values: H ( a ) = 5 .  Then we can let r 

Case (ii). Assume that Vj=Vk. 
�9 Assume first that the hyperbolic diameter of the set of four points 

{cl ,a l , r162 

in Vk does not exceed v ~ .  Then the hyperbolic distance between the points 51 and 

H(al) in /x '  is O ( v ~ )  (where g is the map (11.13)). Hence there is a (l+O(A1/a))-qc 

map r (/~', H(al))--*(A', 5) identical on 0/X'. Define now the map (11.14) as Coll. 
�9 Otherwise the hyperbolic distance between the pairs (r 51) and (r cl) 

in Vk is greater than (rV~ (since there is an annulus of modulus # separating one pair 

from another). Then there are separating annuli Si about these pairs with mod(&)~>qv~ 

(where a > 0  and q>0  depend only on the choice of limbs and a priori bounds). By the 

Moving Lemma, we can simultaneously move these points to the right positions by a 

( l + O ( ~ ) ) - q c  map 

~22: (/Tk, Vk, (~(al), r ~ (/~, Yk, 51, Cl), 

identical on/X\Vk. Using this map instead of (11.12) we come up with a ( l+O(x /~) ) -qc  

map (11.13) respecting the critical values of g': H(a)=5. 

Case (iii). Let us finally assume that Vj=V0 is critical. Then a belongs to a pre- 

critical puzzle piece Vt 'cA' .  Since mod(A' \Vt '  ) ~> 1#, the hyperbolic distance between 
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H(a) and & in A' is O(v~)  (where H is the map (11.13)). By the Moving Lemma, there 

is a (l+O(x/~))-qc map 

r (s r -~ (5' ,  ~). 

~' o'. oH Let us now define a map (11.14) as follows: ~,0=~3 . 

So in all cases we have constructed a (1+O()~1/4))-qc map (11.14). Now Lemma 11.3 

completes the proof. [] 

11.6. Th rough  a central  cascade 

Let v m ~ v  m+l ~ . . . ~ V  m+N be a cascade of central returns, so that the critical value 

gin+z0 belongs to Vk, k = m + l ,  . . . ,m+N-1,  but escapes V m+N. 

LEMMA 11.9. Let #m+l~>#>0 and ~-,~+1~<~. Then for k<.N+l, 

Tm+k <~ Tm+l+O(exp(--�88 

with a constant depending only on fit. 

Proof. We will adjust the proof of Lemma 11.8 to this situation. Let g--g,~+l, 

#=mod(Vm\Vm+l), etc. By definition, there is a K=e*-qc pseudo-conjugacy 

r (v ~, U v~ ~+1 ) -~ (Y~, U ~+~) .  

Let us consider the first landing map T: U s2j---~v m+l corresponding to g, ft0=V "~+1. 

By Lemma 11.2, T and T are pseudo-conjugate by a K-qc map 

r (v m, U a j )  -~ (~m, Ufij).  

Let us take a family of puzzle pieces V/m+l CAm+I=vm\v  m+l and pull them back 

to the annuli A m+2, ..., A m+Jv. We obtain a family of puzzle pieces W~ +k, together with 

the Bernoulli map 

G: vm+Nu U W~ +k ~ ym (11.15) 
k,i 

(see w Similarly let f/~+k stand for the pull-backs of the fIj=--Q} n+l, j #0 ,  to the 

A "~+k, k=l, ...,N. If W~+kDfl~ +k then 

mod(W~ +k \ f iT  +k) >/p, 

so that the dynamically defined points are well localized by these puzzle pieces. 
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Let us now lift r to the annuli Am+k---~A re+k, k=2, ..., N. We obtain a K-qc map 

r (Vm\V m+N, II WP +k II o m+k~ --. ~ , U -~; ? v , , v-~t J (~m\~m+Y, U ~m+k am+k~ (11.16) 

respecting the boundary marking. 

Let cl--g(O)Ef~+NcV~ +N. By the Moving Lemma, there is a (l+O(e-U))-qc map 

r (y m, v~  +N, r (cl)) -~ (Y m, v~  +N, ~,), 

identical outside Vk ~+N. Then the map 

r162176162 (gin\ ym+N, U U w~+k,c,) 
l<.k<Y i•O (11.17) 

l ~k~N i#O 

is K(l+O(e-U))-qc, respects the boundary marking and positions of the critical values. 

Consider now the topological discs Qa and Q2 in V m+N univalently mapped by g 

onto V "~+g. The Bernoulli map g: QIUQ2--*V "~+~ produces a family of cylinders Q~, 

~= (i(0), i(1), ..., i(t-1)), such that 

gJQ~cQ~(j), j = 0 , . . . , t - 1 ;  gtQ~=Vm+N 

Let Qt=U~Q~,t QO=vm+N" Moreover, by Lemma 9.9, the residual set K =  N Qt is re- 

movable. 

The map r can be consecutively lifted to the maps 

~t:qt- l \qt- - ,Qt- l \Q t, t=l,2,.. . ,  

with the same dilatation respecting the boundary marking. By the Gluing Lemma, they 

are organized in a single qc map 

~: vm+N\K_~ ~ + N \ ~  

with the same dilatation. As K is removable, this map automatically extends across K: 

~ m + N + l  um+N+I Q1, Q2) ~ (~m+N, U i , Q1, Q2), (11.18) H: (Y m+N, U i 

where u~+N+IcVra+N axe the components of 9-1W? +u, U~n+N+I~Vo m+N+l. Note 

that mod(V m+N \ U~ n+N+') ) 1#. 

The maps (11.18) and (11.17) glue together into a single K(l+O(e-U))-qc map 

(v m, U U v,,,+-) U U 
l<~k~N i#O l<~k<~N i#O 
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Take now a family of cylinders W ~  +k of the Bernoulli map (11.15) (where { are finite 

strings of symbols). The map r is naturally lifted to a qc pseudo-conjugacy �9 with the 

same dilatation which respects this family of cylinders. Moreover, every W ~  +k contains 

a piece V~ "~+k such that  

GtV~ "~+k = V m+k-1, where l -- [{[, 

and all puzzle pieces Vj m+k are obtained in such a way. As r respects the Vm+k-l-pieces, 

k<<.N, the new map �9 respects the vim+k-pieces. Thus (I, is a K(l+O(e-~))-qc pseudo- 

conjugacy between gm+k and gin+k, so that  Tm+k ~<log K+O(e-~), k=l,  ..., m+N.  
Let us proceed with the estimate of ~'m+N+l. Take the first return a of the critical 

point back to V re+N, and construct a K(l+O(e-~/4))-qc map 

(v re+N, a) a). (11.19) 

To this end let us go through Cases (i), (ii), (iii) of the proof of Lemma 11.8 using the 

{ W / r e + N }  in  place of {V/} and V m+N in place of V m+l ~___A'. 

In the first two cases the argument is the same as above. However, the last case 

is different since the precritical puzzle pieces Q1 and Q2 are not necessarily well inside 

of V m+N. To take care of this problem let us consider the first "escaping moment" t 

when b-gta~QiuQ,2 . Then bEU re+N+1 for some U-domain from (11.18). Then there 

is a domain A c Q 1 u Q 2  containing a which is univalently mapped onto U~ +N+l by gt. 

Moreover, 

mod(Q\A)  ~> mod(Vm+N\ u ~  +N+I) >>. i#  
2 " 

By means of g: Q1uQ2---*V re+N, the map (11.18) can be turned into a qc map (with the 

same dilatation) 
HI: (V re+N, A) --+ (~m+N, ~) 

(coinciding with H outside Qlt2Q2). This gives us an appropriate localization of the 

a-points. The Moving Lemma turns HI into (11.19). 

Lemma 11.3 completes the proof. [] 

Remark. As the above proof shows, it is enough to assume that  the maps are com- 

binatorially equivalent up to level m + N  and the critical values gn+10 and ~n+10 belong 

to the corresponding pieces A and A. 

11.7.  P r o o f  o f  t h e  M a i n  L e m m a  

Let {i(k)} be the sequence of non-central levels in the principal nest V~ .... Let 
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i(n-1)+l<m<~i(n)+2. By Lemma 11.9, 

Tm ~< log K *  + O ( E  exp ( - I / 2 ' / ( k )  +2 " 
" k = O  

(11.20) 

But by Theorem III, the principal moduli/2i(k)+l grow at linear rate: /2i(k)+l >~Bk, where 

the constant B depends only on/21. Hence the sum (11.20) is bounded by log K.  +C(/21). 

In turn, by Theorem I the modulus/21 is bounded by a constant depending only on 

the selected limbs and a priori bounds. Hence T~<log K.  +A, where A depends only on 

the choice of limbs and a priori bounds. The Main Lemma is proved. [] 

11.8.  Las t  c a s c a d e  

If the map F=-Fm =Rmf is not renormalizable then the principal nest consists of infinitely 

many central cascades, and the Main Lemma gives a uniform bound on the Teichmiiller 

distance between the corresponding generalized renormalizations. 

Otherwise the principal nest ends up with an infinite central cascade V'~-ID VnD... 

shrinking to the little Julia set jm+l of the next renormalization gn=Fm+l-Rm+lf .  

Recall that the levels n - 1 ,  n, n + l ,  ... of this final cascade are called DH levels. 

LEMMA 11.10. Let n - 1  be a DH level and 

H: (V n-l, V n) ~ (~d n-l, ~n) 

be a K-qc pseudo-conjugacy between gn and gn. Then there is a homeomorphism 

r (vn-1, j m + l )  ~ (~n--1, jm+ l )  

homotopic to h tel (Jm+iUOVn-l), and K-qc on V n - l \ J  m+l. 

Proof. Recall that A n = V n - I \ V  n. The map H: An~ .4  ~ admits a lift to qc maps 

(with the same dilatation) Hk:An+k---*A n+k homotopic to h rel the annuli boundary. 

These maps match to a single qc map r V ~-1 \ jm+l __.~,~-1 \ j m + l  with the same dilata- 

tion conjugating F,~+I to F,n+l. By Corollary 10.5, this map (and the whole homotopy 

between it and h) matches with h on J(Fm+l). [] 

11.9. Spreading a round  

Let us consider the pieces Pj C Y-y(O) of the initial partition (11.6), and the Markov map 

G: UPi--~Y (see w Let us consider the first landing map to V~ To: U f~~ 
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By Lemmas 11.6 and 11.2, there is a qc pseudo-conjugacy r (Y, U ~t~ ( 2 ,  U 50) �9 Let 

us also consider the following maps: 

�9 the first landing maps to V n corresponding to the gn: U Vi '~--+Vn-l: 

T n : U ~ " ~ n - - > V  n ' ~'~n C v n - 1  ; 

�9 the first landing maps to V n corresponding to G: 

s, , :uon-- ,v n, o'~cY. 

Clearly 

So=To and Sn=TnoSn_l. (11.21) 

By the Main Lemma and Lemma 11.2, there is a sequence of qc pseudo-conjugacies 

~ ) n : ( v n - l , U ~ ' ~ n ) . - - > ( y n - 1  ' 5 n U i ) ,  n < N + l ,  

where N is the first DH level (if F is non-renormalizable then N= c c ) .  Let us turn it 

inductively into a sequence of pseudo-conjugacies 

H~: (Y, UO?) - ,  (2, UO?) (11.22) 

between Sn and Sn (with the same dilatation). Indeed, using (11.21), we can define it as 

H 0 n - l -  [ ~  ~'~n-l '~-lo/~" v n - l ~ o s  0 n - 1  
n i - -  [Dn--1 L] i } [~Un ) n--1 i �9 

c~O n - 1  As these maps match with H,~-I on the boundaries i , they glue together into single 

qc conjugacy (11.22) with the same dilatation. 

If F is non-renormalizable then we obtain an infinite sequence of qc pseudo- 

conjugacies Hn (with uniformly bounded dilatation). As the pieces V/n shrink as n--~co, 

there is the limit qc map 

H:(Y,J(F)NY)--~(Y,J(F)N2) (11.23) 

homotopic to h: J(F)NY---+J(F)NY rel OYUJ(F). 
Assume that  F is renormalizable, but not immediately renormalizable (we leave 

to the reader an adjustment of the argument to the immediate case). Let Z be the 

family of little Julia sets j ~ + l  contained in Y, jm+l-j~+l. Let us consider the last 

pseudo-conjugacy (11.22) on the DH level N. Let us replace it by the pseudo-conjugacy 

ely: (V N, jm+l) _._, (~g,  j-~+l) 
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constructed in Lemma 11.10. Spread it around by the landing map SN, that  is, set 

H I o N =  (~NION)--lO(r N, 

where O N D J ~  +1. As these maps match on the O 0  N with HN, they glue together into 

a homeomorphism 

H: ( r ,  U j~+l )__ .  (~, U j ~ + l ) ,  (11.24) 
iE2" iE~ 

quasi-conformal on Y \ U i e z  j~+l  (with dilatation depending only on the choice of limbs 

and a priori bounds), and homotopic to h rel 0 Y u U i e z  j ~ + l .  

Let us consider the backward orbit Y=-Yo,Y-1, ..., Y-r+1 of Y under f such that  

Y_kg f r -ko ,  where r is the first return time of the critical orbit to Y. The disks Y-k 

have disjoint interiors. Let us pull the map H back to these disks, that  is, set 

hm+l IY-k = (]k i~_k )-loHo fk  IY-k. 

As this map respects the boundary marking of the Y-k, it extends to the whole plane 

as hm, which provides the desired next approximation to the Thurston conjugacy (see 

w 

Theorem VI and hence the Rigidity Theorem are proved. [] 

12. Rigidity and deformations of  real maps 

12.1. MLC at real points wi th  big essential  periods 

Let us go back to the discussion of long central cascades in w and w Consider a map 

f E S s  and all its renormalizations Rmf (finite or infinite sequence). Let Pm stand for 

the straightenings of the Rmf. We refer to central cascades of the Pm as the cascades 

associated to f .  They are represented by a compact family of quadratic-like maps. 

LEMMA 12.1. Let f and ] be two combinatoriaUy equivalent quadratic-like maps of 

class SL.  Assume that a sequence of central cascades C n associated to f converges to a 
quadratic-like map g. Then all the limits ~ of the corresponding sequence ~n are hybrid 

equivalent to g. 

Proof. By the Main Lemma for the Rigidity Theorem, the cascades C n and ~'n 

are K-qc pseudo-conjugate, with a uniform K. Hence the limit maps g and 9 are qc 

conjugate. Let Pc and Pa be the straightened g and t~ respectively. These maps are also 

qc equivalent. But c and ~ lie on the boundary of the Mandelbrot set and are hence qc 

rigid (by the standard Beltrami deformation argument). Hence c=~. [] 
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In particular, for a map with real combinatorics (that is, combinatorially equivalent 

to a real map) the cascades can still be classified into two types: Ulam-Neumann and 

saddle-node. 

THEOREM VIII .  There exists a p with the following property. Let f=Pc be an 

infinitely renormalizable real quadratic polynomial. If the essential periods perc(Rnf) of 

all the renormalizations are greater than p then MLC holds at c. 

Proof. Let g=Pa be an infinitely renormalizable quadratic map with real combina- 

torics. If the essential period of Ring is big then at least one of the four parameters 

counted in the proof of Lemma 8.7 is big. This implies that  mod(Rm+lg) is big (Theo- 

rem IV ~ takes care of the first three parameters; the last one can be handled easily). By 

the Rigidity Theorem, a=c, and hence MLC holds at c (see w [] 

Remark. We have recently proven a stronger version of Theorem VIII, where the 

essential period Pe is replaced with the period p (in preparation). 

12.2. Teichmii l le r  space of  quasi -quadrat ic  maps 

Real rigidity of quadratic maps (see the Density Theorem stated in the Introduction) 

yields nice structure on the space of quasi-quadratic maps. 

COROLLARY 12.2. Any two quasi-quadratic maps of Epstein class with the same 

eombinatorics are quasi-symmetrically conjugate. 

Proof. If the map in question is at most finitely renormalizable then by [L4, w it 

admits a polynomial-like generalized renormalization. By the Generalized Straightening 

Theorem (see w this renormalization is qc conjugate to a polynomial with one non- 

escaping critical point. By the Branner-Hubbard-Yoccoz rigidity, such a polynomial is 

uniquely determined by its combinatorial type (compare [L4, Theorem 5.6]). 

If the maps are infinitely renormalizable then by the Complex Bounds Theorem they 

admit quadratic-like renormalizations, and the result follows from the Straightening and 

Density Theorems. [] 

Thus any combinatorial class of Epstein quasi-quadratic maps can be viewed as 

the space of qc deformations of a reference map. Similar to the quadratic-like situation 

(see w the above result allows one to endow this space with the Teichmfiller metric 

distT(f,  ] )  = inf Dil(h), 
h 

where h runs over all local qc extensions of real conjugacies [-~,  ~3] ~ [-/~, f~] between f 

and ] (where t3 stands for the fixed point with positive multiplier). 
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Let us finish with a few comments on the non-analytic version of Corollary 12.2: 

Any two quasi-quadratic maps with the same combinatorics are quasi-symmetrically con- 

jugate. Under certain combinatorial assumptions (sufficiently slow recurrence of the 

critical point) this statement was proven in [JS]. In [L5] it is proven for the Fibonacci 

combinatorics, which is, in a sense, the most recurrent. The general case can be treated 

as follows: 

�9 The key idea is to consider an asymptotically conformal extension of the maps 

under consideration [L5]. 

�9 If the type of the map is sufficiently big, create (by Lemma 8.6) a generalized quasi- 

quadratic-like map. Theorem III on the moduli growth is readily extended to this class 

of maps. (The proof is the same except that  all estimates are valid modulo exponentially 

decaying errors coming from the dilatation of the generalized renormalizations.) 

�9 Then construct a qc pseudo-conjugacy between these quasi-quadratic-like maps as 

in [L5, w and pull it back until the next renormalization level as in w 

�9 If the type is essentially bounded, construct the qc pseudo-conjugacy by means of 

the round discs using essentially bounded geometry (compare [MS, Chapter IV, Theo- 

rem 3.1]). 

�9 Passing to the next renormalization level, start the above construction over again 

interpolating (using complex bounds) between the old and the new maps. 

This argument will be elaborated elsewhere. 

13. A p p e n d i x  A: C o n f o r m a l  a n d  q u a s i - c o n f o r m a l  g e o m e t r y  

13.1. Poincar@ m e t r i c  a n d  d i s t o r t i o n  

A domain D C C is called hyperbolic if its universal covering space is conformally equiv- 

alent to the unit disc. This happens if and only if C \ D  consists of at least two points. 

Hyperbolic domains possess the hyperbolic (or Poincard) metric ~D of constant nega- 

tive curvature. This metric is obtained by pushing down the Poincar@ metric d•D:  

Idz/(1-z2)l from the unit disc D. 

In the case of a simply-connected hyperbolic domain D ("conformal disk"), dQD: 

pD(Z) Idzl is the pull-back of the ~o D by the Riemann mapping D--*D. In this case its 

density pD(Z) is comparable with 1/dist(z,  OD): 

! dist(z, OD) -1 <~pD(z) <. dist(z, OD) -1. 
4 

In the simply-connected case, a set K c D  has a bounded hyperbolic diameter 

diamD K if and only if there is an annulus A c D  of definite modulus surrounding K.  
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More precisely, let/groin(R) and/Zmax(R) denote the minimal and maximal possible mod- 

ulus of an annulus A c D  surrounding K,  where K runs over all subsets of hyperbolic 

diameter R. Then 0 <]s < ~rnax < (X) (all estimates are clearly independent of D). This 

can be readily seen by passing to the disk model and moving one point of K to the 

origin. The extremal moduli correspond to the cases of a pair of points and hyperbolic 

disk of radius R. Moreover, both minimal and maximal moduli behave as l og ( I /R)+O(1)  

(see [Ah, Chapter III]). 

Given a univalent holomorphic function f :  D--*C, the distortion of f on K is de- 

fined as 
sup log i f (z)  

~,r f ' (~)  " 

KOEBE DISTORTION THEOREM. Let D be a conformal disk, K C D ,  and r=d iamD K 

be the Poincar4 diameter of K in D. Then the distortion of any univalent function f on 

K is bounded by a constant Co(r)  independent of a particular choice of K.  Moreover, 

a s  r-->o. 

13.2. M o d u l i  de f ec t  a n d  c a p a c i t y  

Let D be a topological disk, F=OD, aED, and r (D, a)--~(D~, 0) be the Riemann map 

onto a round disk of radius r with r  Then r==_ra(F) is called the conformal radius 

of F about a. The capacity of F rel a is defined as 

c a p , ( r )  = logr~(P) .  

LEMMA A.1. Let DoDD1DK, where D~ are topological disks and K is a con- 

nected compact. Assume that the hyperbolic diameter of K in Do and the hyperbolic 

dist(K, OD1) are both bounded by an L. Then there is an c~(L)>0 such that 

m o d ( D l \ K )  ~< m o d ( D o \ K ) - a ( L ) .  

Proof. Let us take a point zEOD1 whose hyperbolic distance to K is at most L. 

Then there is an annulus of a definite modulus contained in Do and enclosing both K 

and z. 

Let us uniformize D0\ K by a round annulus Ar = {~ : r < I~1 < 1 }, and let ~ correspond 

to z under this uniformization. Then ~ stays at a definite Euclidean distance d from the 

unit circle. 

If R c A r  is any annulus enclosing the inner boundary of Ar but not enclosing ~ then 

by the normality argument mod(R)<mod(Ar) -a~(d)  with an a~(d)>0.  (Actually, the 

extremal annulus is just A~ slit along the radius from ~ to the unit circle.) 
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We have to check that at(d) is not vanishing as r--*0. Let us fix an outer boundary 

F of R (the unit circle plus the slit in the extremal case). We may certainly assume 

that the inner boundary coincides with the r-circle. Then the defect mod(R)-log(1/r) 

monotonically increases to cap0(F ). By normality this capacity is bounded above by a 

- a (d )<0 ,  and we are done. [] 

Let A be a standard cylinder of finite modulus, K c A .  Let us define wid th (K)-  

width(KIA ) as the modulus of the smallest concentric subcylinder A~cA containing K. 

DEFINITE GR(~TZSCH INEQUALITY. Let A1 and Au be homotopically non-trivial dis- 

joint topological annuli in A. Let K be the set of points in their complement which are 

separated by AIUA2 from the boundary of A. Then there is a function/3(x)>0 (x>0) 

such that 

mod(A) ~> mod(A1) +mod(A2) +13(width(K)). 

Proof. For a given cylinder this follows from the usual Gr6tzsch inequality and the 

normality argument. Let us fix a K, and let mod(A)---~oc. We can assume that Ai are 

lower and upper components of A \ K .  Then the modulus defect 

mod(A)-mod(A1)-mod(A2) 

decreases by the usual Grhtzsch inequality. At limit the cylinder becomes the punctured 

plane, and the modulus defect converges to -(cap 0 (K)+cap~ (K)). 

It follows from the area inequality that this sum of capacities is negative, un- 

less K is a circle centered at the origin. Moreover, the estimate depends only on 

width(K). Indeed, let Do and Doo be the components of C \ K  containing 0 and c~ 

respectively. Let r B(O, Ro)--+Do and r  C\B(O,R~)--*Doo be the Riemann map- 

pings normalized by r as z-*0, and r as z--+cc. Then caPoK--logRo 

and capo o K=log(1/Roo). 

As scaling does not change caP0 (K)+capoo (K), we can assume that R~ (g)---1. Let 

Then 

o o  

O (z) = z -  z a, - j .  
k = l  

o o  ) 
with equality only in the case when r  Hence area(D0)~<Tr with equality only in 

the case when K is the unit circle S 1. 
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As [r 2 is a subharmonic function, 

area(D0) 1 
1= Ir < < R0 

with equality only in the case when K = S  1. Hence cap0(K ) <0  unless K : S  1. Moreover, 

by a normality argument capo(K)<~c(width(K))<O. (Indeed, otherwise there would be 

a sequence of domains D ~  as above converging to a domain i2 different from the unit 

disk, with cap0(f~)=0. ) The lemma is proved. [] 

13.3. Eccentricity and pinching 

Let F be a Jordan curve surrounding a point a. Let da(F) and ra(F) be the Euclidean 

radii of the inscribed and circumscribed circles about F centered at a. Then let us define 

the eccentricity of F about a as 

to ( r )  
e (r) = log 

LEMMA A.2. Let A c C \ { 0 }  be an annulus homotopically non-trivially embedded in 

the punctured plane, F c A  be a homotopically non-trivial Jordan curve, and Ai be the 

components of A \ r .  Assume that mod(Ai)~>#>0. / f  e0(r)~>e then width(FIA)~w(e),  

where w(e)--~cc as e--~oc. 

Proof. Assume that  there is a sequence of annuli A n and curves Fro c A  m satisfying 

the assumptions of the lemma, such that  width(F m I A m) <~w, while e0 (F "~) ~ co. Let us 

consider the uniformization r Am---+Am of the A m by round annuli centered at 0. Let 

F'~=r m. Then ~m is contained in a round annulus ~,n of modulus ~<w concentric 

with .~m. Let R m : r  m. 

Let us normalize the annuli A m and .4"~ (by scaling and rotation) so that  the inner 

radii of R m and ~m are equal to 1, and r Passing to a subsequence (without 

change of notations) we can find concentric annuli R c A  such that  the inner radius of 

is equal to 1, mod(R)~w,  both components of . 4 \R  have moduli at least a (# ,w) ,  and 

RmCR,  AmDA. 

By the Koebe Theorem, the family of functions r is normal in A. Hence these func- 

tions are uniformly bounded on R contradicting the assumption that  the eccentricities 

of F m about 0 go to oc. [] 

"Pinching" of a Jordan curve means creation of a narrow region which in limit makes 

the curve non-simple. Below we will quantify this process. 
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Let us take a number 0 < k < l  called the "pinching parameter".  Let us define the 

k-pinching of a Jordan curve F as ~k(F)-- infdist(zl ,z2),  where the infimum is taken 

over all pairs of points z iEF such that  both components F1 and F2 of F \{z l , z2}  have 

diameter at least k diam F. 

We say that  a curve F is (k,E)-pinched if ~k(F)<c. Note that  if the curve is sym- 

metric about 0 and e0(F)~>e, then it is ( 0 . 5 - e  -1, e-1)-pinched. 

The following lemma shows that  a sufficiently pinched curve has a definite width: 

LEMMA A.3. Let F, A and A~ be the same objects as in Lemma A.2. Let also 

mod(Ai)~>#>0. I f  F is (k,e)-pinched, then there exists a w = w ( # , k ) > O  such that 

width(FIA)~>w>0 for all suI~iciently small ~>0. 

Proof. Otherwise we can find a sequence A "~ of annuli as above with 

width(F'~lA "~)--*0 as m--~ec,  

and F m is (k, 1/m)-pinched. As in the previous lemma, let Cm:Am--*A m be the uni- 

formizations by round annuli normalized in such a way that  F and ~'=r pass 

through 1. 

Then the curves F'~ should converge to the unit circle in the Hausdorff metric. 

Moreover, the family Cm is well-defined and normal on an appropriate concentric annu- 

lus .~. Hence any Hausdorff limit of the family of curves F m is an analytic Jordan curve. 

On the other hand, these curves should be (k, 0)-pinched (that is, they are non-simple). 

Contradiction. [] 

LEMMA A.4. Let F, A and Ai be the same objects as in Lemma A.2, and mod(Ai)/> 

#>0 .  Let D be a topological disk bounded by F, and bED. Then there is a function 

5(w,L)--*0 as w---~O, L--~oo such that 

width(F[A) < w and dist(b, 0F) ~< 5(w,L)  diamF, 

provided pD(0, b) ~>L. 

(Thus, if b is hyperbolically far away from 0 then it is close to OD in the Euclidean 

metric, in the scale of D.) 

Proof. Otherwise there is a sequence of the curves F m =OD m as above, and points 

b m ED m such that  diam D m = 1, 

width(Fm[g '~)-*  0, Ou~(0, bin) -* ~ ,  (13.1) 

and 

dist (b m, F m) ~> 5. (13.2) 
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Passing to a Carath6odory limit along some subsequence (without change of notations), 

we have (D m, O, b'~)--~(D, O, b), where D is a topological disk bounded by an analytic 

Jordan curve. But then QD,,~(0, bm)---+OD(O, b)<c~, contradicting (13.1). [] 

LEMMA A.5. Let F be a Jordan curve which does not pass through O. If it is (k, r 

pinched then its pull-back under the quadratic map ~: z~-~z 2 is (C- lk ,  Cv~)-pinched , 

where C> 1 is an absolute constant. 

Proof. Let zl and z2 be two points on F such that  dist(zl, z2)<r while d i amFi>k ,  

where F~ are complementary components of F \  {zl, z2 }. Let us mark the ~-preimages of 

the corresponding objects with tilde (select the closest preimages of the points zi). 

We can assume that  diam F =  1. If dist(F, 0)> �88 then the distortion of the quadratic 

map on F is bounded by an absolute constant, and the conclusion follows. Otherwise F is 

contained in the unit disk. Hence �89 >~ diam F ~> ~ and diam Fi/> �89 diam Fi ~> ~ k. Moreover, 

dist(51,52)=0(x/~),  and we are done. [] 

13.4. Quasi-conformal maps 

There are a few Russian and English sources on quasi-conformal maps: [Ah], [Bell, [Kr], 

[LV], [Vo]. We assume that the reader is familiar with the basics of the theory. Below 

we will quote only a couple of facts especially important for this paper, or whose search 

in the literature may need some effort. 

In what follows by a conformal structure we will mean a structure associated to a 

measurable Beltrami differential # with I1#11~<1. We will denote by a the standard 

structure corresponding to zero Beltrami differential. 

Two fundamental properties of qc maps exploited in this paper are: 

COMPACTNESS LEMMA. The space of K-qc maps h: C - ~ C  normalized by h(O)=O 

and h(1)--1 is compact in the uniform topology on the Riemann sphere. 

GLUING LEMMA. Let us have two disjoint domains D1 and 02 with a piecewise 

smooth arc ~/ of their common boundary. Let D=DIUD2U% If h: D---~C is a homeo- 

morphism such that hIDi is K-qc, then h is K-qc. 

Note that  the Gluing Lemma makes a difference between complex qc and real qs 

maps which is crucial for the pull-back argument. 

Let D be a simply-connected domain conformally equivalent to the hyperbolic 
S n plane H 2. Given a family of subsets { k}k=l in D, let us say that  a family of dis- 

joint annuli Ak cD~[_J Si is separating if Ak surrounds Sk but does not surround the Si, 

i~k .  The following lemma is used in the present paper uncountably many times: 



288 M. LYUBICH 

MOVING LEMMA. �9 Let a, bED be two points on hyperbolic distance Q ~ .  Then 

there is a diffeomorphism r (D, a) ~ ( D , b ) , identical near O D , with dilatation Dil(r = 

1+O(~),  where the constant depends only on ~. 

�9 Let {(ak, bk)}k=ln be a family of pairs of points which admits a family of sepa- 

rating annuli Ak with mod(Ak)>~#. Then there is a diffeomorphism r (D, al,...,an)--* 

(D, bl , ..., bn ) , identical near O D , with dilatation D i l ( r  

Proof. As the statement is conformally equivalent, we can work with the unit disk 

model of the hyperbolic plane, and can also assume that  a=O, b>0. Also, it is enough 

to prove the statement for sufficiently small 6. 

There is a smooth function r [0, 1]-~[b, 1] such that  •(x)=-b near 0, r  near 1, 

and r  with a constant depending only on ~. 

Let us define a smooth map r (D, 0 ) -*(D,  b) as z~-~z+r Then 

t Z (Izll N=o(o). (13.3/ 
ZJZl 

Thus 

Jac ( f )  = 10r l s -  Ic5r 12 = 1 +O(0) .  

Hence for sufficiently small 6>0,  f is a local orientation preserving diffeomorphism. As 

f :  0D---~0D, f is a proper map. Hence it is a diffeomorphism. 

Finally, (13.3) yields that  the Beltrami coefficient #f=O(Q), so that  the dilatation 

Dil( f )= l +O(Q). [] 

Let Q c  C, h: Q--~C be a homeomorphism onto its image. It is called quasi-symmetric 

(qs) if for any three points a, b, cEQ such that  q-1 ~< la_bl/ib_cl <q, we have: x(q) - 1 <  

Ih(a)-h(b) l / Ih(b)-h(c) l •x(q) .  It is called x-quasi-symmetric if x ( 1 ) < x .  It follows 

from the Compactness Lemma that  any K-qc map is x-quasi-symmetric, with a x de- 

pending only on K.  

13.5. Removability 

A compact set X c C  is called removable if for any neighborhood U D X ,  any conformal 

map h: U\X- -~C admits a conformal extension across X. 

Remark. A more common notion of removability includes the assumption that  the 

map h is continuous accross X. The above stronger notion better  suits our purposes. 

Let us show that  removability is quasi-conformally invariant. 
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LEMMA A.6. Let r  be a qc map. I f  the set X is removable then 

is removable as well. 

Proof. Let a be the standard conformal structure on C. Let U D X  be a neigh- 

borhood of -~, and let h: U \ X - ~ C  be a conformal map. Let us consider a conformal 

s t ructure/5 on C which is equal to (hor  on h ( U \ X ) ,  and is equal to a outside. 

By the Measurable Riemann Mapping Theorem, there is a qc map r C--*C such that  

~=r 
Let U = r  Then the function h = r 1 6 2  U \ X - - * C  is conformal. As X is 

removable, it admits a conformal extension across X. We will use the same notation h 

for the extended function. Then the formula h = r 1 6 2  -1 provides us with a conformal 

extension of h across )~. [] 

Let us now show that  removable sets are also qc-removable. 

LEMMA A.7. Let X be a removable set and U D X be its neighborhood. 

qc map h on U \ X  admits a qc extension across X .  

Proof. Let us consider a conformal structure # equal to h*(a) on U \ X ,  and equal 

to a on the rest of C. By the Measurable Riemann Mapping Theorem, there exists a 

qc map r C--~C such that  #- - r  (the solution of the Beltrami equation). Then the 

function h = h o r  -1 is univalent on U \ X - r 1 6 2  

By Lemma A.6, the set )~ is removable. Hence h admits a conformal extension 

across _~. Then the formula h = h o r  provides us with a qc extension of h across X. [] 

Let us finally state a useful criterion for removability (see, e.g., [SAN]): 

REMOVABILITY CRITERION. Let X be a Cantor set satisfying the following property. 

There is an 7]>0 such that for any point z E X  there is a nest of disjoint annuli A i ( z )C  

C \ X surrounding z with mod(A~(z))~>~. Then X is removable. 

Then any 

1 4 .  A p p e n d i x  B :  R e f e r e n c e  n o t e s  

- -  For recent surveys on renormalization, rigidity, puzzle and related topics see [L6], [L7], 

[Mc2], [Mc4], [Sh2]. 

- -  The first applications of the puzzle which appeared after Yoccoz' work were 

concerned with the problem of the Lebesgue measure of the quadratic Julia sets (Lyubich 

[L2], [L3] and Shishikura [Sh2]), and to its real counterpart,  Milnor's problem of attractors 

[LM], [L3], [L4]. 

- -  The results and main ideas of this paper were first presented at the Warwick and 

Durham Workshops on Hyperbolic Geometry and Holomorphic Dynamics in June-Ju ly  
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1993 (see the preprint IMS at Stony Brook, 1993/9). Since then they have been presented 

at many different meetings around the world including the ICM-94 in Ziirich [L6]. A more 

detailed account of the proof appeared in the preprint MSRI, 026-95 and the preprint 

IMS at Stony Brook, 1995/14. 

The only essential modification of the 1993 paper is that the Rigidity Theorem is 

now stated under the assumption of a priori bounds, while earlier it was stated under the 

assumption of big type yielding a priori bounds (see Corollary 1.1). In this formulation, 

the proof requires an adjustment of the fundamental annuli, which is done in w As 

the complex bounds have recently become available for all real maps, the new version 

is directly applied to the real maps (in the early version essentially bounded and high 

combinatorics were treated in a different manner, see [L7]). 

- -  The main geometric result of this paper, Theorem III, w is a complex analogue 

of Theorem II of [L4] on the exponential decay of the scaling factors of S-unimodal maps. 

The latter result, in turn, extends to arbitrary combinatorics the corresponding theorem 

for real Fibonacci maps, obtained jointly with Milnor [LM]. This development began in 

the fall of 1990 with Milnor's computer experiment which showed the exponential decay 

of the scaling factors for the Fibonacci map. 

The statement of Theorem II (w of this paper) is analogous to Martens' Theorem 8.1 

in real dynamics [Mar]. However, the proofs of these results are totally different (Martens 

exploits the "minimal interval argument" which is at present not available in the complex 

dynamics). It is crucial for our proof of Theorem II (and Theorem III as well) to have 

a geometric parameter which behaves monotonically under generalized renormalization. 

Such a parameter, "the asymmetric Poincar~ length", was defined in [L4] for real uni- 

modal maps. Its complex counterpart was suggested, for the Fibonacci combinatorics, 

by Jeremy Kahn (IHES, April 1992). The general definition of the asymmetric modulus 

involving admissible families and isles was given by the author. 

- -  The first advance in the problem of a priori bounds was achieved in the work of 

Sullivan (see [MS], [$2]) where it was resolved for real quadratics of bounded type. The 

idea to use hyperbolic neighborhoods in the slit planes came from that work. 

The gap between that result and our Theorem V of w consists of maps with 

essentially bounded but unbounded combinatorics. In a joint work with Yampolsky [LY] 

we gave an appropriate modification of Sullivan's method to cover essentially bounded 

combinatorics as well. This yields the Complex Bounds Theorem. 

This result was independently proven by Levin and van Strien [LvS]. The method 

of [LvS] is quite different: it does not need a detailed combinatoriM analysis but rather 

needs specific numerical estimates for real geometry. It does not tackle the phenomenon 

of big space. 
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Also, the gap between [$2] and Theorem V was independently filled by Graczyk 

and Swi~tek [GS2]. The method of the latter work is specifically adopted to essentially 

bounded but unbounded combinatorics. 

The creation of a generalized quadratic-like map by pulling back the Euclidean disc 

(see w is crucial for our treatment of real dynamics. The key estimate, for the Fibonacci 

combinatorics, appeared in [LM, Lemma 8.2]. It was extended in [L4, w onto arbitrary 

combinatorics of sufficiently big type. 

Theorems IV and IV ~ of w are the first advances in the problem of a priori bounds 

outside the real line (compare Rees [R]). 

- -  Local connectivity is a nice quality of a Julia set, since such a set admits an 

explicit topological model (see Douady [D2]). By now there is a large pool of quadratics 

whose Julia sets are known to be locally connected: 

�9 Parabolic and Misiurewicz points (Douady-Hubbard [DH1]); 

�9 At most finitely renormalizable points (Yoccoz, see [Hu], [Mi2]); 

�9 Diophantine Siegel disks (Petersen [Pe], see also Yampolsky [Yam]); 

�9 Real infinitely renormalizable maps of bounded type (Hu-Jiang [HJ]); 

�9 Maps of class 8 s  of sufficiently big type; in particular, real maps with essentially 

big combinatorics (this work); 

�9 All real maps (Levin-van Strien [LvS], Lyubich-Yampolsky [LY]). 

However, there are also counter-examples: Cremer and some infinitely renormaliz- 

able quadratics have non-locally connected Julia sets (see [L1], [Mi2]). 

- -  Prior to this work the MLC was established in  the following cases: 

�9 Parabolic points (Douady-Hubbard [DH1]); 

�9 Boundaries of the hyperbolic components (Yoccoz, see Hubbard [Hu]); 

�9 At most finitely renormalizable maps (Yoccoz, see Hubbard [Hu]). Then Kahn [Ka] 

proved a stronger result that  the Julia set of a quadratic map under consideration is 

removable. 

Note that  it is easy to construct some infinitely renormalizable parameter values of 

unbounded type where MLC holds (oral communications by A. Douady and J.-C. Yoccoz, 

Durham 93). For example, first find arbitrary small copies Ms of the Mandelbrot set 

near c = - 2 .  Then for an appropriate subsequence n(k), the tuned Mandelbrot copies 

Mn(1) .Mn(2) *...*Ms(l) shrink to a single point. 

Let us also note that  the MLC problem is closely related to the problem of landing 

of parameter rays at points cEOM. MLC certainly yields landing of all rays, but, on the 

other hand, landing of some special rays has been a basis for progress in the MLC problem. 

The first results in this direction (landing at parabolic and Misiurewicz points) were 

obtained by Douady and Hubbard (see [DH1], [Mi4], [Se2]). Recently Manning [Man] has 
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estimated the Hausdorff dimension of the set of rays landing at infinitely renormalizable 

points. 

- -  The origin of our approach to the rigidity problem can be traced back to the 

proof of Mostow rigidity: from topological to quasi-conformal equivalence, and then (by 

means of ergodic theory) to conformal equivalence. This set of ideas was brought to the 

iteration theory by Sullivan and Thurston. 

The passage from quasi-conformal to conformal equivalence in our setting is settled 

by McMullen's Rigidity Theorem [Mc2]. Our main task was to pass from topological to 

quasi-conformal equivalence. A way to do this, called "pull-back argument", is to start 

with a quasi-conformal map respecting some dynamical data, and to pull it back so that  

it will respect more and more data  on every step. At the end it will become (with some 

luck) a quasi-conformal conjugacy. This method was introduced by Thurston (see [DH3] 

and also [Mcl]) for postcritically finite maps, and exploited by Sullivan ([$2], [MS]) for 

real infinitely renormalizable maps of bounded type. These first applications dealt with 

maps with rather simple combinatorics. 

For more complicated combinatorics, a certain real version of this method based on 

the so called "inducing" was suggested by Jacobson and Swi~tek [JS]. (Roughly speaking, 

"inducing" means building out of f an expanding map with a definite range.) On the 

other hand, by means of a purely complex pull-back argument in the puzzle framework, 

Jeremy Kahn [Ka] proved his removability result. 

Our way is different from all the above, though it has some common features with 

them. We believe that  holomorphic dynamics is the right framework for the rigidity 

problem, and our method is purely complex. Rather than building an induced expand- 

ing map, we pass consecutively from bigger to smaller scales by means of generalized 

renormalization, and carry out the pull-back using growth of complex moduli and com- 

plex a priori bounds. 

Let us note that  there is a different approach to rigidity problems, by comparing 

the dynamical and parameter planes. This method was used by Branner and Hubbard 

[BH] and u to prove their rigidity results. In this spirit, we can give an alternative 

proof of Corollary 1.1. Namely, in [L8] we transfer the geometric result of Theorem III to 

the parameter plane. This yields disjoint definite collars around little Mandelbrot copies 

containing a point c satisfying the assumptions of Corollary 1.1. Hence these copies 

shrink to c. 

- -  Real rigidity of infinitely renormalizable maps of bounded type was proven by 

Sullivan (see [$2], [MS], [a7]). The proof is based upon real a priori bounds and the 

pull-back argument. 

Density of hyperbolic maps in the real quadratic family was first announced by 
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Swi~tek (see the preprint IMS at Stony Brook, 1992/10). That work did not have results 

on the moduli growth and complex a priori bounds, which play a key role in our argument. 

A later work of Graezyk and Swi~tek [GS1] announced at the Durham Workshop 

(July 1993) already contained a result on the growth of moduli (within a certain nest 

of domains different from the principal nest, for real quadratics). However, it was not 

incorporated in [GS1] into the pull-bark argument. Note also that both the combinatorial 

and analytic parts of [GS1] essentially rely on the real line. 

- -  The combinatorial analysis of w based on the nest of the first return maps 

is analogous to the corresponding study of S-unimodal maps (compare Lyubich [L4], 

Martens [Mar]). The return graph was suggested by Martens (in the abstract theory of 

minimal dynamical systems such a graph is known under the name "Bratteli-Vershik", 

see [Ve], [HPS]). The generalized renormalization was first introduced and exploited in 

[LM], [L2]. 

- -  In this paper we have concentrated on the quadratic case. The higher degree 

unimodal case z~-*zd+c has some essentially different features. The basic difference is 

that the geometric Theorem III is not true any more for d>2 (as the Fibonacci exam- 

ples show). However, there are many ingredients which are still valid (see the remarks 

throughout the paper). In particular, our proof of Theorem V (and hence the Complex 

Bounds Theorem) comes through for d>2 as well (see the remark at the end of w The 

author has noticed this after he received the paper [LvS], where the Complex Bounds 

Theorem was proven for all degrees in an essentially different manner. 

A geometric and measure-theoretic analysis of higher degree Fibonacci maps has 

been carried out by Bruin, Keller, Nowicki, van Strien [KN], [BKNS], [SN] and Buff [Bu]. 

The goal of these works is to prove existence of "wild" attractors and Julia sets of positive 

measure (in drastic contrast with the corresponding quadratic results discussed above). 

Numerically these phenomena had been studied by the author jointly with F. Tangerman 

and S. Sutherland (see [L6]). 

- -  For further applications of the results of this paper see [LB], [L9], [L10], [MN], 

[Pral], [Pra2], [Prz], [W], [Yar]. 
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