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LIST OF BASIC NOTATION

C, the complex plane;
C =  C U {00}, the Riemann sphere;
C* =  C \ {0} , the punctured plane (cylinder)
U r =  {ζ: Ι ζ I < r) , U β U 1 ; a disc;
U* =  U \ {0) , the punctured disc;
Η =  {ζ: Im ζ > 0} the upper half plane;
A(r0, rj =  {z: r0 < | ζ | < ΓΧ) , an annulus;
T r =  {z: | 2 | =  r ) , T e T i . a circle;
Τ 2 , the two dimensional torus;
R, the real line;
Z, the ring of integers;
Ν =  {0, 1, . . .}, the natural numbers;
SLs(fr), the unimodular group over a ring fc;
PSL2(fc) =  SL2(fc)/ {± / }, the projective unimodular group;
ρ = pc, the spherical metric;
Pc the Euclidean metric;
py, the hyperbolic metric on a hyperbolic Riemann surface V;
σ γ (or simply σ) the standard conformal structure on a Riemann surface V;
f, a transform (rational as a rule);
/ " , the n th iterate of a transform / ;
d, the degree of a transform / ;
Df, the differential of/ ;
ω(ζ), the limit set of the orbit {f z}"= 0;
iuf(<ju'f), the union of the limit set w(c) of the orbits of critical points (lying in / ( / ) ) ;

00

∆ (α), the attracting region of a cycle α; ∆0(α) =  ∆ (α ) \ υ / "a;
n= 0

O(a) , the immediate attracting region of a cycle a;
D{ah), the component of the immediate attracting region containing the point ak;
Sid , the manifold of rational functions of degree d;
3Ji , a complex analytic submanifold of Dij;
Σ , the set of / stable functions in 5W;
Cr =  {(/, c) G SB? X C: Df{c) =  0};
qc( / ) , the set of rational functions that are quasi conformally conjugate to / ;
S(f), the Riemann surface of a function / ;
T(f), the Teichmiiller space of a function / ;
G(f), the group of quasi conformal homeomorphisms of the sphere that commute

with / ;
M od(/ ), the modular group of a function / ;
M, the Mandelbrot set.

Introduction
In Comptes Rendus for 1906 a note by Fatou was published in which a

surprising discovery was made: iterations of a very simple function
/ (z) =  z2l(z2+ 2) lead naturally to the appearance of a Cantor set, which was
considered then as a very exotic object. Later Fatou and Julia undertook a
thorough study of the dynamics of rational transforms, the results of which
were presented in extensive memoirs that appeared in 1918 1920.
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Let /  : C ) be a rational transform (an endomorphism) of the Riemann
sphere, and / " =  /c . . . o/  its « iterate. A decisive step made by F atou and
Julia is the decomposition of the sphere into two invariant subsets: an open
set on which the family of iterates {/"} is a normal Montel family (that is,
locally equicontinuous in the spherical metric), and a perfect set coinciding
with the closure of the set of repelling periodic points of / . We call the first
of them the F atou set (or normality set) and denote it by F(f), and the
second the Julia set / ( / ) . The orbits of points ζ G  F(f) are Lyapunov
stable. On the contrary, the dynamics on / ( / ) is of unstable chaotic
character. Even in the simplest cases the Julia set has unexpectedly intricate
structure. The Julia set of the function z2  3 is a Cantor set. The Julia set
of the function z2 +  ε for small ε Φ 0 is a simple closed curve, but this
curve does not have a tangent at any point. And the Julia set of the
function ζ2  \  is a curve that decomposes the plane into countably many
components.

The study of the dynamics on the set F(f) was carried out to a great
extent by the classicists with the help of the local theory developed by
Schroder, Koenigs, Leau, and Bottcher in the 19th century and the very
beginning of the 20th century. The latter essential progress is related to the
results of Siegel (1942) that an analytic transform reduces to a rotation in a
neighbourhood of a fixed point.

The creation of the theory of hyperbolic dynamical systems in the 60's
and early 70's in the papers by Anosov, Smale, Sinai, and Bowen led to the
fact that the intricate dynamics of rational endomorphisms ceased to be
considered as something strange related to irreversibility. The papers by
Yakobson and G uckenheimer, where the iterates of rational functions are
studied by the methods of symbolic dynamics, date back to that time.

Recently the study of the dynamics of rational endomorphisms has
become very popular. G reat enthusiasm was caused by numerical experiments
carried out by Mandelbrot in 1980, which resulted in the appearance of
deep conjectures and beautiful pictures visually demonstrating the fact that
the situation is non trivial [75] . Soon papers by Douady and H ubbard,
Sullivan, and Thurston appeared, which related the dynamics of rational
endomorphisms to the theory of Kleinian groups and Teichmuller spaces.
These relations cast a new light on the whole field and provided a key to
many problems. In particular, Sullivan completed the description of the
dynamics on the set F{f).

The only exposition in Russian of the classical results of F atou and Julia
is a chapter of the book by Montel (1936). The results of the development
of this field up to 1965 were presented in a survey by Brolin [45] . Recently
a survey by Blanchard [43] has appeared, which can be used as a brief and
refined introduction to the topic. Finally, a number of recent results are
stated in a section of a survey by Yakobson [35] , which has just appeared.
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The present survey was first conceived as a complete exposition of the
basic results of the theory of iterates of one dimensional analytic transforms.
However, this field is being developed so rapidly that it soon became clear
that such an aim can never be attained. Therefore, we had to restrict
ourselves to only topological properties of the dynamics of rational transforms.
But even under such a limitation a number of essential results were omitted
or mentioned casually.

The topic of the survey can naturally be divided into two parts, which
correspond to the first and the second chapters of the survey: 1) the
dynamics of an individual endomorphism, and 2) the character of the
dependence of the dynamics on parameters. The contents of the first
chapter are concentrated around the problem of the classification of periodic
points, the description of the dynamics on the F atou set F{f) and, the
clarification of the structure of the Julia set / ( / ) . The basic problem of the
second chapter is a topological classification of rational endomorphisms.
Here a clue is the famous F atou conjecture (still unproved), which in
modern terms sounds like this: a generic rational endomorphism satisfies
Smale's Axiom A. We present recent essential progress in this direction:
1) a theorem on the structural stability of a generic rational endomorphism,
and 2) the theory of quasi conformal deformations of rational endomorphisms.
This problem is meaningful and difficult even for the simplest quadratic
family / u :: ζ > »•  ζ2 +  w considered in the concluding section.

We mention a number of topics closely related to the contents of the
survey but not touched on in it.

1. The solution of natural functional equations in the class of rational
functions, in particular, the description of commuting rational functions.
This topic is considered in the classical papers by Julia [66] , Fatou [62] ,
and Ritt [84] (see also Baker [38] , [39]) .

2. The ergodic theory of rational endomorphisms. The first results in
this direction were obtained by Brolin [45] ; however, systematic research
has been started only recently. To guide the interested reader we mention
several papers [41] , [73] , [82] , [83] , [85] , [91] .

3. Iterates of entire functions. The rational endomorphisms exhaust all
the analytic transforms of the unique elliptic Riemann surface, namely the
Riemann sphere. N aturally, the problem arises of describing the dynamics
of analytic transforms /  : V ) of other Riemann surfaces. If V is a hyperbolic
Riemann surface, then there are no chaotic phenomena and the situation is
quite simple. It is presented in §1.2. The examination of a parabolic
surface leads to iterates of entire functions. This has interesting specific
features (and additional analytic difficulties), which become apparent even
for the simplest function ez. Having no opportunity of dwelling on this
subject in more detail, we only mention some recent papers [13] , [39] ,
[52] , [78] .
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The body of the survey contains some historical comments which,
however, do not claim to be complete. The references are also far from
complete. When stating a theorem we usually indicate the author of the
corresponding result, but not of the proof. As a rule, the proofs differ
essentially from the original.

The author considers it his pleasant duty to express his gratitude to
D.V. Anosov, N.V. Ivanov, Yu.I. Lyubich, and M.L. Sodin, who familiarized
themselves with the manuscript and made a number of useful remarks. The
author is especially grateful to A.E. Eremenko and M.V. Yakobson with
whom he constantly discussed the contents of the manuscript. Section 1.15
is written jointly with Eremenko, and §§1.16, 1.17, and 2.7 jointly with
Yakobson. The author is also grateful to A. Douady, F. Przytycki, and
D.P. Sullivan who kindly sent preprints, which have been used in the
preparation of the present survey. The author is sincerely grateful to
G.Ya. Bomash and A.Ya. Zolotarev, who made the pictures on a computer.

CHAPTER I

THE DYNAMICS OF AN INDIVIDUAL ENDOMORPHISM

We present briefly the contents of this chapter. In §1.2 we describe the
dynamics of analytic transforms of hyperbolic Riemann surfaces. In §§1.3,
1.4, and 1.6 we define the Fatou set F(f) and the Julia set / ( / ) of a
rational endomorphism, study their simplest properties, and give the first
examples. In §§1.8-1.12 we describe five types of periodic components of
the set F(f). The first four of them are generated by non-repelling periodic
points. We thus also classify such points. The components bear the names
of the authors who studied the corresponding local problem (Schroder,
Leau, Bottcher, Siegel). The fact that a rational endomorphism may have
components of the 5th type (periodic doubly-connected domains) has been
obtained recently by Herman. The results of §1.2 and Theorem 1.10
(§1.11) show that the five types mentioned above exhaust all the possibilities.
Sullivan's theorem on the absence of wandering domains (§1.15) completes
the description of the dynamics on the Fatou set F(f). In §§1.13, 1.14
we prove theorems on the density of repelling periodic points and inverse
images in the Julia set / ( / ) . Sections 1.16-1.18 are concerned with special
classes of endomorphisms: 1) satisfying Axiom A; 2) polynomial; 3) those
whose orbits of critical points are absorbed by cycles (in this case / ( / ) = C).
In § 1.19 we give a sufficient condition under which the Lebesgue measure
o f / ( / ) is zero. In the concluding section §1.20 Newton's iteration process
of locating the roots of a polynomial is considered from the point of view
of the theory developed. In §§1.1 , 1.5, and 1.7 for the convenience of the
reader we outline the necessary supply of preliminaries from the theory of
Riemann surfaces and quasi-conformal maps.
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§1.1. The hyperbolic metric
1. A central fact of classical complex analysis is the Koebe Riemann
uniformization theorem, which claims that any simply connected Riemann
surface is conformally equivalent either to the complex plane C, or the
Riemann sphere C = C \ j {oo}, or the unit disc U =  {ζ: | ζ | < 1}. In the
latter case it is often convenient to use the upper half plane Η ==  {ζ: Im ζ > 0}
instead of the disc. The plane C, the punctured plane C* =  C \ {0}, and the
two dimensional torus T 2 are called parabolic Riemann surfaces: their
universal covering space is conformally equivalent to the plane C. The
sphere C is called an elliptic Riemann surface. The universal covering space
of the other Riemann surfaces are conformally equivalent to the disc U.
These surfaces are called hyperbolic.

We denote by SL2(/ c) the group of (2 χ 2) matrices over the ring k with
determinant equal to 1. The cases k — C, R, or Ζ are of importance for us.
The quotient group of SL2(/ 0 over the subgroup {± 7} is denoted by
PSL2(C). The group of conformal diffeomorphisms'1( ζ > *•  (az +  b)/ (cz + d)
of the Riemann sphere C onto itself is naturally isomorphic to PSL2(C).
The group of conformal diffeomorphisms of the plane C is the affine group
Aff(C) of the transforms ζ > *  az *  b. F inally, the group of conformal
diffeomorphisms of the half plane Η is isomorphic to PSL2(R). Consequently,
any hyperbolic Riemann surface is the quotient space of the half plane Η
modulo the action of some discrete subgroup G C PSL2(R).

2. We consider the Poincare metric p H on Η with linear element
Φ Η =  I dz |/ Im z. The half plane endowed with the Poincare metric is a
model of the Lobachevskii plane. The group of motions of the Lobachevskii
plane coincides with the group of conformal diffeomorphisms of the half
plane. Hence, the Poincare metric can be transferred from Η to any
hyperbolic Riemann surface V. The resulting metric pv is called the
hyperbolic metric on V.

Conformally invariant Schwarz lemma (see [10] , [69]) . Let f: V > W be
an analytic map of hyperbolic Riemann surfaces. Then the following
alternative holds: either a) f is strictly contractive in the hyperbolic metric,
that is, \ \Df(z)\ \  < 1 (z G  V), or b) f is a covering.

3. We now consider a hyperbolic domain V on the sphere C. The
hyperbolicity of V is equivalent to the fact that C\V contains more than

two points. We denote by ρ the spherical metric ,· * , on the sphere C

and by Pv(z) the coefficient of proportionality relating the linear elements
of the hyperbolic and spherical metrics: dpv(z) = pv(z)dp(z) (z G  V).

(1)We assume (without mentioning it specially) that conformal (quasi conformal)
homeomorphisms preserve orientation.
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Lemma 1.1. pv (z) * oo (z > dV).

Proof. Otherwise there is a sequence zk >•  a £ dV such that pv(zk) < C.
We choose two more points b, c e dV and consider the domain
W =  C \  {a, b, c}. By the Schwarz lemma pv(z) > pw{z) (ζ Ε V).

Without loss of generality we can assume that (a, b, c) =  (0, 1, °°). The
universal covering of W  is the modular function λ : Η > W. It admits a
representation λ(ζ) =  cp(e<Jt£), where φ(1ι) =  16/? +  ... is holomorphic in U
(see [4], §23). From this with the help of direct calculations, using the
explicit form of the Poincare metric, it follows that
pw(z)~ 2 (| z | log(i/1 z|))"J v oo( \ z I * 0), which contradicts our assumptions.

§1.2. Analytic transforms of hyperbolic Riemann surfaces
1. Let/  : V5 be an analytic transform (an endomorphism) of a Riemann
surface V, and <x a fixed point of it: fa — <x. The multiplier λ of α is the
derivative o f / a t th is poin t (which does n o t depen d on the choice of a local
param eter) . The poin t a is called attracting if 0 < ίλΙ < 1, superattracting
if λ =  0, neutral if ΙλΙ =  1, and repelling if ΙλΙ > 1. Two transform s / : Γ )
and g: W) are called topologically (conformally) conjugate if there is a
(conformal) homeomorphism h : V >•  W  such that h°f =  #oA. We denote by
fm the m th iterate of/ . The set {/ mz}̂ =0 is called the w&/f (or trajectory)
off.

The simplest transforms of hyperbolic Riemann surfaces are the motions

of the Lobachevskii plane/ : z > +^± , where Af =(a J ) € SL2(R). The
cz-\- a \c a I v

transform / i s called hyperbolic if Itr Af\ > 2, parabolic if Itr Λ̂ Ι =  2, and
elliptic if Itr /4̂ l < 2. In the first case/ is conformally conjugate to the
transform ζ >—> λζ (0 < λ < 1), in the second case to the translation
2H »j f 1. Finally, in the last case /  is conformally conjugate to the
rotation rh: ζ > *•  AS (Ι λ I =  1) of the disc U. If λ =  e2nie, where θ is
irrational, then rA is called an irrational rotation.
2. We introduce the notation U* =  U \ {0} for the punctured disc, and
A (r0, r) — {z: r0 < | ζ | < rj for an annulus.

Theorem 1.1. Let j : V ) be an analytic transform of a hyperbolic Riemann
surface V. Then we have one of the following possibilities:

a) /  has an attracting or superattracting fixed point a E V to which all
the orbits {/™ζ}"=ο (ζ e V) converge;

b) all the orbits {fmz} tend to infinity, that is, pv(a, fmz) *•  °° (m >•  <»)
for every α ε V\

c) f is conformally conjugate to an irrational rotation of (i) the disc U.
(ii) the punctured disc U*. (iii) the annulus Mr, 1), where 0 < r < 1;

d) the transform f is a conformal homeomorphism of finite order:
fp =  id for some p.
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Proof. The hyperbolic Riemann surface V is the quotient of the Lobachevskii
plane Η modulo some group G of motions. We denote by π : Η *•  V the
corresponding covering. The transform /  can be lifted to an analytic
endomorphism .A: H 5, η ° Α =  /  ° π . By the Schwarz lemma we have one
of two possibilities: 1) A is strictly contractive in the Poincare metric p H ;
2) A is a motion of the Lobachevskii plane.

Let us consider the first case. Suppose that an orbit {Amz}m>~a does not
tend to infinity. Then there is a number k Ε (0, 1) such that
PH (i4m"+ 1z, Am'z)^ fcpH (Am*z, A™*'1 z) for some subsequence {me}. Hence,
PH (4m + iz, Amz) + 0 (m > °°). It follows that any limit point of the orbit
{̂ 4mz}"=o is a fixed point. Since the transform A is strictly contractive, it
can have only one fixed point a. Therefore, Amz »•  a(m > °°). But any
other orbit {Αηζ}Ζ=ο also does not tend to infinity, since p H (Amz, Αιηξ) < C.
Everything said above can be applied to {̂ 4™ζ}̂ =0, and therefore, AmK, >· α
(m *•  oo). F inally, since A is strictly contractive, a is either an attracting or
superattracting fixed point. Thus, in the first case one of the possibilities
a) or b) holds.

In the second case we consider the group Γ of motions of the Lobachevskii
plane, which is obtained by joining A to G. Suppose that Γ is discrete and
/  has infinite order. For every a Ε Η we have

p v (Γζ, πα) =  inf PH (AWZ, Ba) = p H (Β£Αηζ. a)
BiG

for a suitable Bm G  G. Since the transforms B'^A"1 ξ Γ are pairwise disjoint,
it follows that p H {B^Amz, a) *  oo (m *  oo).

Finally, suppose that Γ is not discrete. We then consider the Lie group Γ.
Let Γο be the connected component of the unit in the group Γ. Since
AGA 1 cr G, it follows that r n G I Vc : G. But since G is discrete and Γο is
continuous, we have Γ^Γ~ ι s=  g. Thus, Γο and G commute. But the
centralizer of any element h G  PSL2(R) different from the unit is a one
parameter subgroup passing through h. It follows that G is contained in a
one parameter group. Now G — {gm}m= oo  since G is discrete. If g = id,
then V  U; if g is a parabolic transform, then V =  U*; if g is a hyperbolic
transform, then V =  A(r, 1). It follows from the property AgA 1 =  g* that
/  is conjugate either to a rotation of the corresponding domain, or to the
transform z • *•  z* of the punctured disc U*, or to the transform z* *~rlz of
the annulus A(r, 1). This yields c), d), e), respectively.

Corollary. Let V be a hyperbolic Riemann surface, and j : V ) an analytic
transform of infinite order. Then f has at most one fixed point. If a is a
fixed point, then it is attracting, superattracting, or neutral. In the first two
cases fmz * α (m *• «») for every ζ G  V. In the third case f is conformally
conjugate to an irrational rotation of the disc U.

We observe that transforms of finite order may have several fixed points. For example, on the
hyperelliptic Riemann surface of genus g there is an involution with 2g+2 fixed points.
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3. Theorem 1.2. Let V be a hyperbolic domain on the sphere, and f : V )
an analytic transform continuous up to the boundary. Suppose that the set
of fixed points of f on dV is totally disconnected. Then in the case b) of
Theorem 1.1 there is a fixed point a E dV such that fmz *•  a (m *•  °°) for
every ζ & V.

Proof. In case b) of Theorem 1.1 all the orbits {/ ""zj^otend uniformly to
dV. We consider a smooth curve I in V connecting two points ζ, ξ & V.
The non Euclidean length of the curve lm =  fml does not increase. In view
of Lemma 1.1 the spherical length of the curve lm tends to zero.
Consequently, p(fmz, / m f) > 0 (m *•  °°). that is, the asymptotic behaviour
of all the orbits in V is the same. In addition, for ξ = fz we see that the
limit points of the curve L  U / m are fixed points. Since the set co(L) of
limit points of L  is connected, and the set of fixed points of the transform
f:dV) is totally disconnected, co(L) consists of only one point a S dV. It
follows that fmz *•  a (m »•  °°).

In the above theorem the condition that the set of fixed points is totally disconnected is essential.
Consider, for example, the shaded spiral domain W  in the disc U (Fig. 1). It has a unique non single
point prime end £. I ts support is the circle Τ =  dV. Consider a conformal diffeomorphism φ '•  W * Η
that maps the prime end ξ to <*>. We put g: ζ ι—+ ζ +  1, /  =  φ ^ ο φ : W ) . Then the limit set
of any orbit {/ ""ζ} is the whole circle T. N ext, consider the invariant domain
V =  {z e W: l m φ(ζ) > 1}. We have pw(z. fz) < 1 for ζ e V. By Lemma 1.1 p(z. fz) ~>_0 as ζ
tends to T, remaining in V. Therefore, p u t t in g/ I T =  id, we obtain a continuous transform V ^ .

Fig. 1.

If V — U, a disc, then no additional assumptions on the boundary
properties o f/ a r e required.

Theorem of Denjoy and Wolff (see [7] , §43). / /  / : U ) is an analytic
transform of the disc, then we have one of the following possibilities:

a) there is a point α ε U  such that fmz *•  a (m >· °°) for every z £ l ) ;
b) /  is conformally conjugate to a rotation of the disc.

An a n a lo go u s r e su l t h o ld s fo r a d o m a i n F C C b o u n d e d b y fin i t e ly m a n y
J o r d a n c u rves.
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The results of this section in general were known to the classicists (see
[7] , where there are historical comments). In our exposition we have
followed Sullivan ( [90] , Part III). The reader interested in a more detailed
investigation of analytic transforms of the disc can turn his attention to
[40] . [50] .

§1.3. Montel's theorem. The Fatou set and the Julia set
1. In the classical papers by Julia and F atou the key role was played by the
notion of a normal family of meromorphic functions, which had been
introduced by Montel at the beginning of the century. A meromorphic
function in a domain D is an analytic map D > C. We introduce the
spherical metric on the Riemann sphere, and in the space of all analytic
maps O > C we consider the topology of uniform convergence on compact
subsets of D.

A family {/ t} of analytic maps D *•  C is called normal if it is precompact
in the above topology. Equivalently, {/i} is normal if it is equicontinuous
on every compact subset of D. The basic criterion of normality is as follows.

Montel's theorem. A family f,, : D *•  C of meromorphic functions omitting
three values ex, β, γ Ε C is normal.

Proof. We consider the hyperbolic metrics pD and pw on D and
W  = C \ { a , β, γ}. The analytic transforms /,•  : D > W  are contractive with
respect to these metrics. But the spherical metric ρ is subordinate to pw

(Lemma 1.1) and is equivalent to pD on every compact set Κ C D. It
follows that the family /,  : Κ * C is equicontinuous in the spherical metric.

In what follows we shall occasionally use the following simple fact:

Lemma 1.2. If a family {fi} of meromorphic functions is normal in a
neighbourhood o / e £ C and I ft(a)I < L, then Ι / / (ά)I < M.

2. We now consider an analytic transform / : C5 of the Riemann sphere. It
is given by a rational function ζ κ»  P(z)IQ(z). We denote by d the degree of
the transform f which is equal to max(deg P, deg Q). Every point of the
sphere, except for a finite number, has d inverse images.

If d = 1. then f: ζ * + ^ ± τ , where' cz \ d

If tr Af Ε R, then /  is conformally conjugate to a transform g with
Ag Ε SL2(R)· Such transforms have been classified in the preceding section.
Otherwise /  is called loxodromic and is conformally conjugate to the
transform ζ > *•  λζ with ΙλΙ < I.

In what follows we assume, unless otherwise specified, that f is a rational
endomorphism of the sphere C of degree d > I.
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3. The Fatou set F(f) (or normality set) of the transform / i s the maximal
subset on which the family of iterates fm is normal. A set X is called
invariant if fX C X, and completely invariant if f~lX = X. It follows
directly from the definitions that the F atou set is open and completely
invariant. If ζ € F(f), then the family {/m}m=o is equicontinuous in a
neighbourhood of z. It follows that the orbit of ζ is Lyapunov stable: for
all ε > 0 there exists δ > 0: p(z, ζ ) < δ =*  ρ(/™ζ, / ""ζ) < ε (m =  0, 1, ...)·
In what follows we show (Corollary 3 of Theorem 1.15) that conversely, the
stability of the orbit of z implies that z £  F(f). \ ϊ D is an invariant
hyperbolic domain on the sphere C, then Montel's theorem yields D C F(f).

The complement of the F atou set is called the Julia set(l) / ( / )  C\F{f).
The Julia set is closed and completely invariant. We mention the three
simplest examples.
4. Example 1.1. / : ζ > *•  ζ**. The disc U is invariant un der / an d consequently,
U C F(f). All the orbits in U converge to zero. Similarly, C \ U C F(f)
and fmz * °° (m »· °°) for \ z I > 1. In a neighbourhood of the unit circle Τ
some orbits converge to 0, while others converge to °°. Consequently,
Τ =  / ( / ) . We note that the dynamics on Τ is of complicated stochastic
character. This is related to the fact that /  preserves Lebesgue measure on Τ
and is mixing (see [29]) .
5. A perfect (that is without isolated points) totally disconnected compact
metric space is called a Cantor set.
Example 1.2. / : z> +2z — \ / z (Fig. 2). The upper and lower half planes
and the exterior of the unit disc are invariant under/ . Hence, / ( / ) C [ 1, 1 ] .

Fig. 2. The transform ζ

term "Julia set" and n o tat ion / ( / ) are commonly used in recent papers. This
cannot be said of the term "F atou set" and notation F(f), which we have borrowed
from the survey by Blanchard [43].
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We now consider the interval J o =  (—1/ !!,
 1lt). We have

/ /o =  {* 6 R : I x I > 1 }· It follows that 70
 c F(f). Let Κλ =  I—1, — V,l,

^2 =  [Vj, 1]. Then / ( / ) C ^ U X2 and /  maps the Kt monotonically onto
[ 1, 1 ] . Therefore, there is an interval /,•  C /C, such that //,· =  / 0  If we cut
off the interval /,· from Ku we obtain two intervals Kiu K ti. They satisfy
J(f)c: U  Kjj and / m a p s Α"υ· monotonically onto Kj. If we continue this

construction, we obtain a family Ki()i . .. im_i (ι, =  1, 2) of 2 m intervals such
that ./  (/) c : U Ki .. •  * _ =  ^ m a n d /  maps K\  ... im_ monotonically on to
'Ti ... im j  Since l / ' ( x) l > 3 on [ 1, 1] , we see that the lengths of the
intervals Kio... ! m do not exceed 2/ 3m . Therefore, Κ" = η Km is a Cantor
set.

The Julia set / ( / ) is contained in K". Conversely, if χ € K°°, then
l / ' " x l < 1 and \{fm)\x)\ > 3 m . By Lemma 1.2, χ £ . / ( / ) . T h u s, / ( / ) =  K~
is a Cantor set in [—1, 1 ] .

6. Example 1.3. The Ulam von Neumann transform^  / : ζ > * 2z~ — 1. The
interval 7 =  [ 1, 1] is completely invariant. As in Example 1.1 it follows
that / ( / ) =  / . All the orbits converge to °o on the normality set C \ / . To
study the dynamics on the Julia set we note t h a t / is a Chebyshev polynomial:

(1.1) cos26 =  / (cosB).

This formula can be interpreted as follows. We consider the homeomorphism
cos: [—π, Ο] *•  I. In view of (1.1), cos is a conjugation o f/ a n d the saw
tooth transform g: [—π, 0] }

2Θ (
—2π 2θ ( — π < θ < — π/ 2).

The transform g preserves Lebesgue measure άθ and is mixing. Hence, /
preserves the absolutely continuous measure dxiy 1 — x" on /  and is also
mixing. This explains the stochastic character of the behaviour of almost all
orbits on the Julia set, the phenomenon discovered by Ulam and
von N eumann in 1947 with the help of one of the first computers [94] .

The reader should not be misled by the above examples. They are good
models of the dynamics on the Julia set / ( / ) rather than its topological
structure. As a rule, / ( / ) does not lie on a smooth curve and has extremely
complicated structure. The corresponding examples will be presented below.

( 1 )The Ulam von Neumann transform is often presented in the form ζ —» 4z(l — z) or
ζ —•  ζ2 — 2, which reduces t o n * 2z2 — 1 by an affine conjugation.



The dynamics of rational transforms: the topological picture 55

§1.4. The simplest properties of the Julia set

1. Proposition 1.1. The Julia set is non empty.
Proof. Suppose that the family {f1} is normal on the whole sphere C. Then
there is a sequence mk *•  °° and a rational function g such that fmk + g
uniformly on C. The latter is impossible, since deg / m * +  <».
Proposition 1.2. The set / ( / ) is nowhere dense or it coincides with the
whole sphere.

Proof. Suppose that / ( / ) contains a domain D. Then by Montel's theorem
U  f™D is the whole sphere except perhaps for two exceptional points.

But / ( / )= > U  fmD =  C.

2. A point a Ε C is called periodic if fpa = <x for some p. The number ρ
is called the period of the periodic point α and {/"a}n=o is called a cycle.
The smallest of the periods is called the order of a periodic point (cycle).
The multiplier λ of a periodic point a (of its cycle) is the multiplier
of the point a considered as a fixed point of the transform fp, where ρ is
the order. This definition does not depend on the choice of a point of the
cycle. Depending on the value of ΙλΙ we define attracting, superattracting,
neutral, and repelling periodic points {of their cycles) (see § 1.2).

The attracting and superattracting cycles {aft}hij are contained in the
Fatou set F(f). Indeed, if D is a sufficiently small disc centered at a0, then

p i
fpD CD. Therefore, the set (J f D is invariant and is consequently

contained in F(f). We note at once that any polynomial / : ζ > +•  aoz* +
+  . . . + ad has the superattracting fixed point °°.
3. Let a Ε / ( / ) . A point a is called exceptional (for the point a) if the
family {/*"} does not take the value α in a neighbourhood of a. F or every
a Ε / ( / ) there are at most two exceptional points a,·. The existence of
exceptional points imposes essential restrictions on the rational function / .

Suppose that α is a unique exceptional point for some a E / ( / ) . Then it
is obvious that j~ra = {a}. It follows that α is a superattracting fixed point
and so α Ε F(f). Consequently, α is an exceptional point for any b Ε / ( / ) .
We now show that the transform /  is conformally conjugate to a polynomial
transform. F or if φ: ζ > *•  Μ (ζ — α), then the rational function g =  φ»/ · φ 1

has no poles in C.
Similarly, if a l 5 <x2 are two exceptional points for some a E / ( / ) , then the

a.j are either superattracting fixed points or form a superattracting cycle of
the second order, a,· € F(f). In addition, the a,- are exceptional for every
α Ε / ( / ) . If ζ * (ζ — a1)/ (z — α 2) , t h en (φ ο / ο φ"1) (ζ) =  cz± d.

We see that the notion of exceptional point in fact does not depend on
the choice of α £ / ( / ) . Therefore, in what follows we shall not mention
this dependence.



56 M.Yu. Lyubich

4. Proposition 1.3. The Julia set is perfect.

Proof. Let a £ / ( / ) · Suppose that a is not a periodic point. We consider a
neighbourhood D of a. Since ap is not an exceptional point, there are
numbers m > 0, ξ G  D such that / m f =  a. Since α is not a periodic point,
we have ξ Φ a. F inally, since the Julia set is completely invariant, we
have ξ G  / ( / ) .

Now let a G  / ( / ) be a periodic point of order p. Then the multiplier λ is
non zero, and so a is a simple root of the equation fpz = a. Therefore,
there is a number b Φ a that also satisfies this equation. The desired
assertion now follows from the fact that the set of isolated points in / ( / ) is
completely invariant.

§1.5. Ramified coverings. The Riemann Hurwitz formula
1. Let V and W  be two dimensional surfaces. A map / : V * W  is called a
d sheeted ramified covering (1 < d < °°) if every a £  W  has a neighbourhood
D such that

d

1) txiP, a) — U  (Bt, bt), where the Bt are mutually disjoint
7 = 1

neighbourhoods of the bf,
2) there are homeomorphisms φ£·. (Bt, bj) > (U, 0), %: (D, o) v (U, 0)

such that (ψίο/ οφΐ 1) (ζ) =  zhi.
If kj > 1 for some /, then bj is called a branch point of / , kj is called its

branch index, and a is called the projection of the branch point.

2. The following properties of ramified coverings can easily be verified:
(i) The inverse image of any point y G  W consists of d points, taking

account of multiplicities.
(ii) Suppose that the surface W is connected, and that V =  U  V( is a

decomposition of V into connected components. Then f: F,· *•  W is a
ramified covering. In particular, f \  F, is onto.

(iii) Let D be a domain in W. Then / : j'W *  D is a ramified covering.
Properties (ii) and (iii) imply the next property.

(iv) Let D be a simply connected domain in W, and Β a connected
component of the inverse image f ^D. If Β has no branch points, then
f: Β * D is a homeomorphism.

3. We denote by χγ the Euler characteristic of a surface y.

The Riemann Hurwitz formula (see [28] , Ch. VI). Let f: V > W be a
d sheeted ramified covering of V over W, d < °°. Suppose that f has finitely
many branch points c,, ..., q with branch indices ku ..., k/ , respectively.
Then

ι
Xv = dxw — 2 (fcj — 1).

t = l
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Corollary. Suppose that a domain F C C admits a finite sheeted ramified
covering j : V ) with branch points. Then V is either simply connected or
infinitely connected.

4. Lemma 1.3. Let f': V *•  W be an analytic map of Riemann surfaces.
a) For f to be a finite sheeted ramified covering it is necessary and

sufficient that f is proper (that is, the inverse images of compact sets are
compact).

b) Suppose that V and W are domains on the sphere C and that f is
continuous on V. Then f is a finite sheeted ramified covering if and only if
f(dV) C dW.

Lemma 1.3 shows that a rational endomorphism / o f degree d is a
d sheeted analytic ramified covering C ). The branch points of this covering
are critical points of /  (a point c is called critical if Df{c) =  0). The
projections of the branch points are critical values. In this case the

Riemann H urwitz formula yields 2 =  2d — ^](kt~ 1). But Σ ( *ι — 1) is the
number of critical points of / , taking account of multiplicities. Thus, a
rational function of degree d has 2d~ 2 critical points, taking account of
multiplicities.

We now suppose that the hyperbolic Riemann surfaces V and W  are
simply connected. Then χν =  χ^ =  1. By the Riemann H urwitz formula
the c/ sheeted ramified covering/ : V >· W  has d~ 1 critical points, taking
account of multiplicities.

Example 1.4. Any d sheeted ramified covering U 5 is determined by a finite
d

B l a s c h k e p r o d u c t 1: ζ » *•  λ Π *~~_g< ( Ι α , · | < 1 , Ι λ Ι =  1 ) . I n a d d i t i o n ,
Γ ι 1 °' ζ

/ : C \ U J is also a rf sheeted ramified covering. Consequently, both U and
C \ U contain d— 1 critical points, while there are no critical points on T.
Fatou called such transforms rational functions with fundamental disc and
he dedicated to them the whole of Chapter III of the first memoir [59] . In
particular, F atou showed that either / ( / ) =  Τ or / ( / ) is a Cantor subset of
Τ (see Examples 1.1, 1.2, and also 1.7, 1.8 of §1.10).

5. Let D be a domain on the sphere C, and Bj the connected components
of the inverse image f W. Then /  is a ramified covering of the domain Bt

over D. I f/ i s univalent on /?,·, then the inverse map fil : D *~ Bt is
defined, and is called a (single valued) branch of the inverse function.

Suppose now that D is simply connected. If 5, has no critical points of/ ,
then / : Bj >· D is a homeomorphism. Thus, a branch / 71 of the inverse
function is well defined. If in addition D has no critical values of / , then /
is univalent on all the components 2?/, and so there are d branches in D of
the inverse function f~l.
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Let {c4 }i= i be critical points of/ . It follows from the chain rule that
i p l
U U  1 ci is the set of critical points of fp. The critical values of fp are

j= l ;h= 0
the points of the orbits {/ "CJ}!UI. Suppose that these orbits do not go into
a simply connected domain D. Then dn branches of the inverse function f~n

(n — \ , 2, ..., p) are defined in D. In view of this, the behaviour of the
orbits of critical points plays an essential role in the investigation of the
dynamics of rational endomorphisms.

§1.6. Components of the Fatou set
1. Let D be a connected component of the Fatou set F(f). First we note
that the domain D is hyperbolic, since its complement C\D contains the
continual Julia set.

Next, since F(f) is invariant, we see that fD is contained in a component
V of the set F(f). The fact that / ( / ) is invariant yields f(dD) C dV. In
view of Lemma 1.3, / : D >· V is a ramified covering. Consequently, /  maps
D onto V.

We now consider the inverse image j~*D. Let Β be a component of F(f)
intersecting f~xD. Then obviously, fBCD and consequently, fB =  D. This
shows that j'W  is the union of a finite number (not exceeding d) of
components of F(f).

Proposition 1.4. Suppose that the Fatou set F(f) has a completely invariant
component D. Then

a) the other components of F(f) are simply connected;
b) / ( / ) is the boundary of D.

Proof We show that a domain V not intersecting dD is contained in F(f).
For either V C D or V C C\D. There is nothing to prove in the first case.
In the second case the / "Mnvariance of D implies that fmV C C\D
(m = 0, 1,2, ...). By Montel's theorem, V C F(f). Thus, / ( / ) C dD. The
opposite inclusion is obvious and b) is now proved.

Next, let Β be a component of F{f), y a simple Jordan curve contained
in B, and V\ , V2 the components of C \ 7. Then one of these components
(say Vi) does not intersect D. In view of what has just been proved, we
have Vx C F(f). But then Vx C B, as required.

2. We denote by 3t the family of components of F(f). The transform /
induces a map /  of 9i onto VI.

Proposition 1.5. Let S c 9i be a family of components of F(f) completely
invariant under f Then consists of either one, or two, or countably many
components.

Proof. Suppose that | £ | < oo. Then /  is an bijection, and so fp = id for
some p. Thus, all the components D ξ. S are completely invariant under
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g =  fp. Suppose that \  & | > 1. Then in view of Proposition 1.4 all the
components D ζ S are simply connected. Since g: D } is an TV sheeted
ramified covering (TV =  dp), the Riemann H urwitz formula shows that D
contains TV  1 critical points of g. Since g has 2(TV  1) critical points, we
obtain | 2 | =  2. The assertion is now proved.

Corollary. If the Fatou set is non empty, then it consists of either one, or
two, or countably many components.

In the examples considered above the set F(f) consists of one or two
components. In §1.9 we present an example in which F(f) consists of
countably many components. In fact, it is this situation that is typical.

Our immediate goal is a detailed description of the dynamics on an
invariant component D (§§1.8 1.12) . Theorems 1.1 and 1.2 give a certain
impression of it. Moreover, the case d) of Theorem 1.1 obviously cannot
occur for a rational endomorphism of degree d > 1. The case D — U* is
also impossible, since the Julia set is perfect. The remaining cases occur.

§1.7. Quasi conformal maps. The measurable Riemann theorem

1. Let V be a Riemann surface, and ω be a measurable Riemann metric
on V. The metric ω can be reduced locally to the form (ζ)\άζ + β(ζ)άζ\ 2,
where γ and β are measurable functions, y(z) > 0, and l|3(z)l < 1 almost
everywhere. Moreover, β(ζ) =  k(z) exp 2/ 0(z), where (1 + k(z))/ (\   k(z)) =
=  K(z) is the ratio of the axes of the infinitesimal ellipse \dz + β(ζ)άζ\  = 1,
and θ(ζ) is the direction of its major axis. The function k(z) is defined
globally on V and is called a dilatation of the metric ω. If ll/ r(z)IL < 1
(or equivalently II A^(z)IL < °°), then we say that ω has bounded dilatation.
Then \ \ k(z)\ \oo is called the maximal dilatation of the metric ω.

With the metric ω one can associate the Beltrami differential, a
(—1, l) form which can be represented locally as β{ζ)άζ/άζ. The Beltrami
differentials of two metrics coincide if and only if the metrics are
proportional, that is, there is a measurable function γ(ζ) such that ω 2 — τωι ·
A class of proportional Riemann metrics with bounded dilatation is called a
conformal structure on V. The standard conformal structure (with zero
Beltrami differential) on a Riemann surface V is denoted by ov (or simply a
when this does not lead to ambiguity).

2. The reader can become acquainted with the theory of quasi conformal
maps in [2] , [5] , [16] . We restrict ourselves to a brief exposition of the
necessary information. Let ψ: V >•  W  be a quasi conformal homeomorphism
of Riemann surfaces.

(i) The homeomorphism φ is differentiable almost everywhere. It follows
that φ acts naturally on measurable Riemann metrics: ω > *•  φ # (ω).

(ii) If a metric ω has bounded dilatation, then so does the metric <
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Hence, φ acts on conformal structures: µ > » φ#µ. If φ is a conformal
homeomorphism, then the maximal dilatations of the structures µ and φ*µ
are equal.

(iii) If φ,,σγ =  aw, then ψ is a conformal homeomorphism.
(iv) For every conformal structure µ on V there is a Riemann surface W

and a quasi conformal homeomorphism φ: V * W such that φ*µ =  Oyj
(Morrey [79]) .

The last theorem is especially important for us in the case V = C. Then
it follows from the Koebe Riemann theorem that W = C and we obtain the
following fact.

The measurable Riemann theorem (see Ahlfors and Bers [37]) . For every
conformal structure µ on the sphere C (the disc U) there is a quasi conformal
homeomorphism φ =  φ»1: C 5 (U  J)such that^ φ,µ ~ a.

Moreover, the homeomorphism φ: C) is uniquely determined by the
following normalization: 0, 1, °° are fixed points of φ (0, 1 in the case of
U). A conformal structure µ on the sphere C can be considered as a point
of the unit ball in L°° (under the identification of µ with the function β(ζ)).
In the space of homeomorphisms of C) we introduce the uniform topology.

(v) The homeomorphism ψ1 depends continuously on µ. Moreover, if µ is
a smooth function of its parameters, then so is γ?*1.

§1.8. Attracting cycles. Schroder domains
1. We now prove a theorem which is the origin of the theory of iterates of
analytic transforms.

Theorem 1.3 (Schroder [86] , Koenigs [70]) . Let / : ζ *•  λζ +  6ζ2 +  . . . be
an analytic transform of a neighbourhood of the origin, 0 < ΙλΙ < 1. Then
there is a conformal map φ: ζ < *  ζ \  cz* \  . . . of a neighbourhood of the
origin onto the disc 13 that satisfies the Schroder equation φ{fz) — λφ(ζ).

Proof. If ε is small, then the disc U e is / invariant and so the set V = υ ε \ / υ Β

is diffeomorphic to the annulus A[s, 1] (for every s € (0, 1)). We consider
a homeomorphism hQ such that Λ0(/ ζ) =  sho(z) for ζ £ dU e. It extends to a
homeomorphism h: U e >  U by the relation h(fmz) =  smh\ (z) (z € V).
Moreover, h(fz) = sh{z) (ζ ζ U e ) . Since /  is a conformal transform, it
follows that the metric h,p has bounded dilatation, and the corresponding
conformal structure µ0 is invariant under the transform gt: ζ > *•  sz. Therefore,
the structure \ im = (£7"%µ0 extends the structure µ0 to the disc Uj m. Since
the maximal dilatations of all structures µ,κ are equal, the structure µ0

extends to a structure µ on the whole sphere C. By the measurable

case V =  U can be obtained from that of V =  C by a symmetric reflection of the
structure.
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Riemann theorem ( 1 ) there is a quasi conformal homeomorphism ·ψ:6 ), with
fixed points 0, 1, °° such that ψ,µ =  σ. We consider a quasi conformal
homeomorphism g — ty ° gs ο ψ"1: C ) . Since (gr)jLi =  µ, it follows that
gta = a and so g is a conformal transform. Since g leaves the points 0, °°
invariant, we see that g: ζ ι * qz. We put φ  ψ°Η. Then φ,σ = σ, that is,
ψ is conformal in U e · Finally, φ(/ζ) =  ^φ(ζ), which yields q = λ.

A conformal solution of the Schroder equation is called a Koenigs
function. A Koenigs function conjugates the transform /  with a linear
transform ζ*~* %ζ\η a neighbourhood of the origin. These model transforms
are pairwise conformally non conjugate. Thus, Theorem 1.3 gives a
conformal classification of the germs of analytic transforms in a
neighbourhood of a fixed attracting point. On the other hand, we have proved
in fact that all such transforms are pairwise quasi conformally conjugate. We
finally note that the classicists constructed the Koenigs function in the form
lim λ""' (f'z) (see [7] , §37), or tried to find its Taylor expansion.

771 » OO

2. Again let /  be a rational endomorphism, and α =  {aft}?Io a n attracting
cycle of order p. The set ∆ία) of points whose orbits converge to oc is
called the attracting region of the cycle. An attracting region is open but is
not connected in general (that is, it is not a domain in the usual sense). It
is easy to show that ∆(α) is the union of some components of the F atou
set F(f).

In view of Proposition 1.5, ∆(α) consists of either one, or two, or
countably many components. The components D{a.k) of ∆(α) (or, what is
the same, of the F atou set F(f)) containing the points a^ are called
Schroder domains. In view of the Corollary of Theorem 1.1, the Schroder

p l
domains D(oc/ c) are pairwise disjoint. The set Z>(a)=  U  D(ah) is called the

, . . ft= o
immediate attracting region.

Suppose now that α is a fixed point. The Schroder domain D{a) can be
obtained as follows. We consider a small disc Uo centered at a. Let U\  be
the component of Z " 1 ^ containing Uo, U2 the component of j^Ui

1 m·c o n t a in in g ϋγ, a n d so o n . T h e n D(<x) =  (J Un
771= 0

Suppose that the Koenigs function is defined in Uo. Then it can be
extended analytically to Ux by the Schroder equation <p(z) =  l \ (jz)
(z € £/]). Next, φ extends analytically to U2, U3, ... and, consequently, to
the whole domain D{ct). It is easy to check that in addition φ is a countably
sheeted ramified covering of C by the Schroder domain D(a). The branch
points of the covering ψ are the critical points of /  and their inverse images
of all orders. We note that the Koenigs function cannot be continuously
extended to any boundary point of D(a) (see 17]).

"'Under more accurate considerations the structure µ is generated by a smooth metric in
C Lifid t h e m e i ' u i r a b l e R i e m a n n i h e o r e n 1 r e d u c e , ' o ' js^ i i :.! :e< ;:jis«
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3. We say that the orbit of c is absorbed by a cycle a if fmc € α for some m.

Theorem 1.4 (Julia [65], Fatou [60], §30). The immediate attracting
region D(ot) of an attracting cycle a contains a critical point c of the
function f whose orbit is not absorbed by a.
Proof. Suppose first that α is a fixed point.
Method 1. We put D0{a) =  D (a)\  U / """a. If Do has no critical points of

/ , then the Koenigs function φ is an unramified covering of C* by D0(<x).
This is impossible, since D 0(a) is a hyperbolic domain.
Method 2. Here we prove only the first part of the theorem. If D{a) has
no critical points, then / : D(a) ) is an unramified covering. Consequently,
/ is locally isometric in the hyperbolic metric of D(a). On the other hand,
Ιΐ£>/(α)ΙΙ =  Ι λΚ 1.

If now α =  {afc}?= ois an attracting cycle, then D(ct0) contains a critical
point of fp, that is, the inverse image of order k of a critical point c of/ ,
where 0 < /c < p  1. It follows that D(oik) contains c. The theorem is now
proved.
Corollary 1. A rational endomorphism f :C) of degree d has at most 2d~2
attracting cycles. A polynomial endomorphism /  : C ) has at most Id— 2
attracting cycles.

Conjecture 1.1. There is a rational endomorphism of degree d with 2d 2
attracting cycles.

From the Riemann Hurwitz formula we obtain the following result.

Corollary 2. Schroder domains are either simply connected or infinitely
connected.
4. Let c. be an attracting cycle of order p, and φ the Koenigs function of
the transform f: D(a0)). We extend φ to the whole attracting region ∆(α)
as follows. Let V be a component of ∆(α) such that fm V =  D(ct0) and
fkV Φ £>(α0) for k < m. We put φ(ζ) = ^ ( / m z) (z e V). Then φ : ∆(α) + C
is a ramified covering. Its fibres are the classes of the following equivalence:
ζ ~ f if fmz = / m f for some m > 0. We consider also the equivalence:
ζ « ζ if fmz = / "f for some m, η > 0. The equivalence classes of «ί are
called the large orbits of / . In ∆(α) we have z κ. ζ if and only if
φ{ζ) — \™φ(ξ) for some m € Z.

We consider the torus T\, the quotient of C* modulo the action of the
group z ι»  Kmz (m Ε Ζ), π : C* *· T£ being the natural projection. We put

oo

∆0(α) =  ∆(α)ν \ J j~ma. In view of what we said above, we can define a
ramified covering Φ =  ?οιρ: ∆0(α) *•  T\ . Its fibres are large orbits of the
transform / : ∆0(α) 5· Consequently, T\  can naturally be identified with the
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space of large orbits of the transform under consideration. We mark points
d0, . . ., dh ! on χ that correspond to large orbits of the critical points in
∆ 0(α) . Thus, with every cycle of Schroder domains we associate a torus
with marked points. I ts construction is completely similar to that of the
Riemann surface corresponding to a Kleinian group. Below we associate
with every cycle of components of F(f) a Riemann surface with marked
points. The importance of these surfaces for iteration theory was discovered
by Sullivan (see §2.5).

We consider finally a doubly connected set V =  U\ f'U, where U is a
small disc centred at a0. Every large orbit in ∆ 0(α) has one or two points in
common with V, and in the latter case both points lie on dV. By analogy
with the terminology of Kleinian groups, V is called the fundamental
domain of the transform / : ∆ 0(α) ) . The torus Τχ can be obtained from the
fundamental domain by identification of the components of the boundary
(see Fig. 3).

Fig. 3. The Schroder domain

§1.9. Superattracting cycles. Bottcher domains
1. Theorem 1.5 ( B o t t c h e r [ 4 4 ] ) . Let f: ζ > * i z * +  d z *+ 1 + . . . be an
analytic transform in a neighbourhood of the origin, k > 2, b Φ 0. Then
there is a conformal map φ: ζ ι *· ζ +  cz* f  . . . of a neighbourhood of the
origin onto the disc U  satisfying the Bottcher equation φ(.ίζ) =  ip(z)k.

Proof. We consider a small disc U e and denote by W  the connected

component of / "J U e containing the origin. We put V =  VP \ U e . Let
r € (0, 1). We consider a diffeomorphism hQ: V -> A[rk, r] such that
ho(fz) = ho(z)k (z G dW). The diffeomorphism h0 extends to a quasi-
eonformal homeomorphism h : W -*• \Jr satisfying h(fz) = h(z)k (z G W).
Next, the conformal structure hto extends naturally to a conformal structure
µ on the disc U invariant under the transform G: ζ >»•  ζ* in a neighbourhood
of any non zero point. By the measurable Riemann theorem there is a
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quasi conformal homeomorphism ψ: U  ) such that ψ(0) =  0, ψ(1) =  1, and
ψ «µ =  σ. Then the transform g = ψ ο Go ψ"1 is locally conformal outside
the origin and is a ^ sheeted covering U * J . Consequently, g: ζ * +•  ζ*.

A conformal solution of the Bottcher equation is called a Bottcher
function. It conjugates /  in a neighbourhood of a superattracting fixed
point with the transform ζ * *•  zh. The classicists constructed a Bottcher
function in the form lim ^/ψζ (see [7] , §40).

2. Now let α ==  {ajjf^g be a superattracting cycle of a rational endomorphism
/ . This means that one of the points of the cycle is critical. Just as in the
case of an attracting cycle, we define the attracting region ∆(α) and the
immediate attracting region D(a). The components / )(«,) of the immediate
attracting region of a superattracting cycle are called Bottcher domains.

p l

Theorem 1.6. Let D(a)=  (J Z)(a,·) be a cycle of Bottcher domains. Then
we have the following alternatives:

a) the transform fp: D{a{) 5 is conformally conjugate to the transform
ζ κ *· zh of the disc U;

b) one of the domains D{a.i) contains a critical point whose orbit is not
absorbed by the cycle a.
Lemma 1.4. Let f: V »•  W be a k sheeted covering of hyperbolic domains
of the sphere, where W is simply connected, k < °°. Suppose that all the
branch points of f lie in one fibre / 1a . Then f xa consists of one point β
and there are conformal maps φ: (V, β) > (U, 0) and ψ : (W, a) >•  (U , 0)
such that ψ»ί» φ"1: ζ < *•  zh.

Proof. The map ν \ / " χ α > TV\ {a} is an unramified covering. Therefore,
the Euler characteristic of ν \ / 1 α is zero. This is possible only if the domain
V is simply connected and / "'a consists of one point. The rest is obvious.

Proof of Theorem 1.6. Suppose that b) does not hold. We consider a disc
{/0 centered at α Ξ <χ;· and not containing critical values of/ " different from a.
We put g = fp and consider the component Un of the inverse image g~nU
containing a. All the branch points of the covering g" : Un * U lie over a.
By Lemma 1.4 the domain Un is simply connected and contains the unique

critical point a. But then the Bdttcher domain D(a) =  (j Un has the

same properties. We now consider the Riemann conformal map of D(a)
onto U. U nder a suitable normalization it conjugates the transforms g and

3. The Bottcher domains, like the Schroder domains, are either simply
connected or infinitely connected. The total number of cycles of the
Schroder and Bottcher domains does not exceed 2d  2 (d+ 1 in the case of
polynomials). However, the topological pictures of the dynamics in the
Schroder and Bottcher domains are essentially different.
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We consider the foliation φ " 1 ! in a neighbourhood of a0, ψ being the Bottcher function, and ξ
the foliation of concentric circles in a neighbourhood of the origin. By means of f~m this foliation
extends to a foliation η on the whole attracting region ∆(α). The foliation η has singularities at the
critical points lying in ∆ 0(α) =  A(a) \ {/ "m a}™_ 0 and their inverse images of all orders. Every
large orbit in ∆ο(α) densely fills out countably many fibres of the foliation η.

Sullivan ([90], Part III) has associated with every cycle of Bottcher domains a Riemann surface S
with marked points as follows (Fig. 4). Suppose that ∆ο(α) contains a critical point c. We consider
the points d0 • •  <p(fmc), d1 =  φί / 7"*1^ , where m is chosen so that fmc lies in a univalence domain
of the Bottcher function φ. In the annulus A [ I d01, I rfj IJ we mark the points {dt} {—0

 s u c n t n a t t l i e

9 1<ijlie on the orbits of critical points. We fix in addition the action of the rotation gro u p ' 1 ,
ζ ·—*•  ze (θ ζ R )on the annulus. We obtain the required Riemann surface S. But if
∆ο(α) has no critical points, then 5 is the punctured disc U* on which the rotation group acts.

Fig. 4. A Bottcher domain

4. The presence of a superattracting cycle is a degenerate situation in the
class of rational endomorphisms. However, it is very important, since °° is a
superattracting fixed point of any polynomial transform.

Proposition 1.6. Let f: z > *•  boz
d \ . . . \ bdbe a polynomial. Then the

immediate attracting region D(°°) is completely invariant^ andJ(f) — bD{°°).
All bounded components of the Fatou set F(f) are simply connected.

Proof. Let / IZ)(oo) =  D(oo) (j Bt, where the Bj are some components of

F(f) different from Z>(°°). Then/ 5,  =  Z)(oo), despite the fact t h a t / "1 !0 0 ) =  {°°}.
Consequently, D(°°) is completely invariant. The remaining assertions follow
from Proposition 1.4.

Example 1.5. / : ζ > >· z! — 1. The points 0, 1 form a superattracting cycle
of the second order. The immediate attracting region of this cycle consists
of two components D(0) and D ( l) . The t ran sform / m apsD( \ ) univalently
onto D(0). Consequently, there is a component D Φ D( \ ) of F(f) that is
also mapped onto D(0) univalently. The component D also has two inverse

( 1 )The rotation group arises because a zfe invariant conformal structure on the disc Ur is
invariant under rotations (see §2.5).

d, consequently, coincides with the attracting region ∆(°°).
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images, the components Z)t and D2, and so on. Thus, the attracting region
of the cycle consists of countably many components (Fig. 5).

Fig. 5. The transform ζ ι * ζ" — 1

§1.10. Neutral rational cycles. The Leau flower

1. A neutral cycle a =  {ah}h= o is called rational if its multiplier λ is a root
of 1 and irrational otherwise. In this section we describe a local picture of
the dynamics in a neighbourhood of rational cycles. Most of the results
presented below are contained in the papers by Leau [72] and Fatou ( [59] ,
Ch. 2).

Suppose that /  is a function analytic in a neighbourhood of the fixed
point α =  0 with multiplier λ =  l , / :z i »z +  « s +  First we consider
the non degenerate case α Φ 0. The conjugation by means of the conformal
transform ζ ι * Az~x with suitable A brings /  in a neighbourhood of °° to the
form

(1 2) g:

We consider the half plane Ρ =  {ζ: ϊ\ βζ > Μ). If M is sufficiently large,
then Re(gC) > Re ζ f 1 — ε in P. Consequently, Ρ is g invariant and
R e(gn ^)_ ^ f oo (m > °°) for ξ G  P. Conversely, suppose that \gmt;I + °°
(m » oo). Then in view of (1.2), Re(gT n + ^) > Re {gmQ f 1 — ε for
sufficiently large m, and so gm f £  Ρ beginning from some m.

The set ∆ (α ) =  {ζ: fz *  a (m > oo)} \  υ / ~ma is called the attracting

region of a neutral rational fixed point. For a function g of the form (1.2)
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we have established the following facts:
(i) the transform g maps Ρ into itself univalently;

oo

(ii) the attracting region ∆(°°) coincides with U  g m Ρ and so it is open.
m=0

We consider a curvilinear strip Q =  P\gP. This strip is a fundamental
domain for g:A(oo)"). Every large orbit from ∆(°°) has either one or two
points in common with Q. In the latter case both points lie on different
components of the boundary of the strip. The space of large orbits
∆(οο)/  « can be obtained by identification of the sides of the strip Q and so
it is homeomorphic to a cylinder.

2. Theorem 1.7 (Leau [72] , Fatou [59] , Ch. 2). There is a univalent
analytic function φ in the half plane that satisfies the Abel equation

 φ(ζ)+ 1. Moreover, [j (q(P) — m) — C.
771=0

Thus the transform g: P) is conformally conjugate to the translation
ζ >—  ζ +  1. The conjugating transform ψ is called the Abel function.

Proof. We consider the rectilinear strip Π — {ζ: 0< ; Ι Ι β ζ ^ 1}. It follows
easily from (1.2) that there is a quasi conformal diffeomorphism h0: Q *•  Π
such that ho(g£) =  / zo(?)+  1 i f f e ^P. By the Abel equation the
diffeomorphism hQ can be extended to a quasi conformal homeomorphism
h: P + Po =  {ζ: Re ζ > 0} of the half planes.

We now consider the conformal structure µ0 =  hta on Po. Since gta =  σ,
we have G ju0 =  µ0, where G: ζ > ». ζ f 1. It follows that µ0 extends to a
G invariant conformal structure µ on the whole plane C. By the measurable
Riemann theorem there is a quasi conformal homeomorphism ψ: C)· such
that ψ,µ = σ. Hence, Τ < = ψ«(?ο ψ 1 is a conformal transform of C
without fixed points, that is, Τ: ζ * *•  ζ f  α. Under a suitable normalization
of φ we have a — 1. The transform φ =  ψ ο h is the Abel function.

Finally, U  (<p(P) — m) =  ψ Jj (Po — m) = C.
m—0 m— 0

F atou constructed the Abel function by studying the asymptotics of the orbits {ξτηζ} in the
half plane P. I t turns out that for g of the form (1.2) we have g"1^  =  m +  b log m +  ̂ (f) +  o ( l )
(m > ») , where ^ is the Abel function. In addition, F atou obtained the asymptotics
^>(?) =  f +  O(log If I) (f e P, If I •  °°). This implies that the intersections of the domain φ(Ρ) with
the horizontal lines are rays. The orbits of ζ ι—*· ζ f  1 lie on these rays. Consequently, the orbits
{gmt} lie °n analytic curves going to °° under a zero angle.

3. We note that everything said above remains valid in the case of a many
valued function g for which °° is an algebraic singularity and

(1.3) g: ζ — ζ +  1 +  O(| ζ Ι ν) (Ι ζ |_ * oo), y > 0.

The following stipulations are to be made: a) a sequence {ζτη} is called the
orbit of g if gtm =  ζη+ι for some choice of the branch of£ ; b) Theorem 1.7
holds for any univalent branch of g in the half plane P.
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This remark enables us to study the degenerate case / : ζ * * z \
+ azp+l +  . . . (α Φ 0). We consider the transform yp: ζ < *•  Az~p and the
many valued function g =  ψ » /  ° ψ 1 in a neighbourhood of oo. With suitable
A the function g is of the form (1.3). Thus, the picture described above
takes place for g, and we obtain the following information about / .

We consider the inverse image L  =  φ ^ Ρ of P, the Leau flower. I t
consists of ρ components Z,1( ..., Lp called the Leau petals. The petal Lk is
obtained by rotating Lx through an angle 2π(&— 1)/ρ. The petal Lk is
bounded by a simple curve analytic except for the origin and having a break
with angle π/ρ at the origin.

The g invariance of Ρ implies the / invariance of the flower L. Since
/ (ζ) ~ ζ as Izl *•  0, in fact all the petals Lk are / invariant. If fmz > 0
(m * oo), then the orbit {fmz} is absorbed by one of the petals Lk  The
transform / : Lrf is conformally conjugate to the translation ζ > > ζ +  1.
The conjugating map coincides with (pj,(z) =  φ(ζ 1/ ρ) , where φ is the Abel

oo

function for g in P; [} (<pj,(Lh) — m) — C. The orbit {fz}, as it tends to zero,

lies on an analytic curve that enters the origin along the bisector of the petal.
All the transforms of the form ζ ι—*· ζ +  αζΡ+ 1 +  . . . (ο φ 0) are pairwise topologically

conjugate [47] in a neighbourhood of the origin. The formal normal form of such a transform is
ζ >—*•  ζ — zP + 1 \  µζ*Ρ+ 1, where µ is a unique module. However, unlike the case of an attracting
fixed point, µ is not a unique module of analytic equivalence (in a whole neighbourhood of a fixed
point). For every µ there is a functional module that can be constructed with the help of the
solutions of the Abel equation [8].

4. N ext, let α be a rational fixed point whose multiplier is a q th root of 1.
Then a is the centre of a flower with sq petals, s being a natural number.
The transform /  rearranges these petals, splitting them into cycles of order q.
All the properties of this flower follow easily from the case λ =  1 already
considered.

We return to the case of a rational function. Let {ajjSlobe a rational
cycle with multiplier λ that is a q th root of 1. Then I — qs Leau petals
Lrn, . . ., Ln cling to a,·. The transform /  permutes these petals L^ *  I / t+ u
(where /  =  / (/ , k), Lpt e=  Lot), splitting them into cycles of order pq.

We consider the components Dlh of F(f) containing L lk. I t is easy to see
that these components are pairwise distinct. The transform /  also permutes
them, creating cycles of order pq. These components are called the Leau
domains and their union is called the immediate attracting region of a
rational cycle {aj}.

5. Just like Koenigs' function, the Abel function for fq: L ih) can be
extended analytically to the Leau domain D i h wi t h the help of the Abel

oo

equation. In addition, q>(Dih) =  [) (q>(Lih) — m) =  C and φ is a ramified
tn=0

covering of the Leau domain over C. The branch points of the covering φ
are the critical points of /  and their inverse images of all orders.
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Theorem 1.8 (F atou [60] , §30). Every cycle of Leau domains contains a
critical point of f.

Proof. Otherwise the Abel function ψ would be a conformal homeomorphism
of the Leau domain onto C. This is impossible, since the Leau domain is
hyperbolic.

Corollary 1. The total number of cycles of the Schroder, the Bottcher, and
the Leau domain does not exceed 2d  2. The total number of attracting,
superattracting, and neutral rational cycles does not exceed 2d~ 2.

Corollary 2.
connected.

Leau domains are either simply connected or infinitely

The Abel function φ can be extended naturally to the whole large orbit V
of the Leau domain. The large orbits of the transform / a r e the fibres of
the ramified covering π =  εχρ(2π/ ι/ ?): V * C*. Thus, π is a quotient map
onto the space of large orbits V/ ^, which is therefore conformally equivalent
to C*. We mark on C* the projections d0, . . ., dk_1 (k > 1) of the branch
points of π, that is, the images of the large orbits of critical points. We
obtain a Riemann surface with marked points related to a cycle of the Leau
domains (Fig. 6).

Fig. 6. The Leau flower

6. Example 1.6. j : ζ > *•  ζ {•  \  . This is a transform with fundamental
disc: the upper and lower half planes are / invariant. The Julia set / ( / ) is a
Cantor set on the circle R containing °°. The F atou set F{f) coincides with
the Leau domain of the fixed point °°. Thus, we have an example of an
infinitely connected Leau domain.
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Example 1.7. / : ζ ι*  ζ . This is also a transform with fundamental

disc. However, in this case / ( / ) =  R, and F(f) consists of two half planes,
which are the Leau domains for <».

§1.11. Neutral irrational cycles. Siegel discs

1. We consider an analytic transform / : 2 »»•  λζ f  az* +· · · · in a
neighbourhood of the neutral fixed point α =  0, ΙλΙ =  1. A central
problem relating to such transforms is the question of conformal conjugacy
to the rotation ζ > *•  λζ, that is, the question of solubility of the Schroder
equation φ(/ζ) =  λ«̂ (ζ). This problem is important both for theory and for
applications, in particular, in celestial mechanics. It is intimately related to
the problem of the stability of an equilibrium state.

Proposition 1.7 (Siegel [ 14]) . Let j : ζ > *•  kz + az2 + . . . be an analytic
transform of a neighbourhood V of the origin (onto another neighbourhood),
ΙλΙ =  1. The following properties are equivalent:

a) fis conformally conjugate to a rotation in a neighbourhood of the origin;
b) f is topologically conjugate to a rotation in a neighbourhood of the

origin;
c) the origin is a Lyapunov stable position of equilibrium;

00

d) there is a neighbourhood W  C V such that (J f'Wzz V.
m= 0

Proof, d) => a) is the only non trivial implication. We consider the invariant
oo

domain D =  U f"Wc=  V. We consider a universal covering π : U > D with

π(0) =  0. The transform / : D) can be lifted to an analytic transform g: V)
such that g(0) =  0. Consequently, lg'(0)l =  ΙλΙ =  1. By the Schwarz
lemma, g(z) =  λζ. We now consider a disc Β C U centered at the origin on
which π is univalent. Then π : Β *•  π(Β) conformally conjugates / : n(B)) to
a rotation of B.

Corollary 1. Let a be a neutral periodic point of order ρ of a rational
endomorphism f For fp to be conjugate to a rotation in a neighbourhood
of α it is necessary and sufficient that a E F(f).

Proof. If a E F(f), then α is a Lyapunov stable position of equilibrium.

Corollary 2. Neutral rational cycles lie on the Julia set.

Proof. We suppose the contrary. Then, in view of Corollary 1, /  is a
transform of finite order, which contradicts our assumption deg /  > 1.

2. If a neutral periodic point a. lies on the F atou set, then it (as well as its
cycle) is called Siegel. A component D of F(f) containing a Siegel point a
is called a Siegel disc. The corollary of Theorem 1.1 immediately yields the
following result.
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Proposition 1.8. A Siegel disc D is simply connected. The transform ]*: D)
is conformally conjugate to a rational rotation ζ * * %.zof the disc U.

Following Sullivan ([90], Part III) we associate with the cycle {fD }^ J of a Siegel disc a
Riemann surface S with boundary and marked points as follows (Fig. 7).

Fig. 7. A Siegel disc

Let c j, ..., c/ ( be critical points whose orbits fall into the punctured disc D\{a) and are pairwise
disjoint; aj =  fncj is the first point of the orbit that lies in D. Let ys: Z) >· U be a conformal
homeomorphism. We put S =  U* υ Τ and mark the points d, — φ(α{) (i =  1, ..., k) in S, as well as
some point d^  s T. Finally, we fix an additional structure on S: the action of the rotation group.

3. The following classical theorem shows that rational endomorphisms may
have Siegel discs.

Theorem 1.9 (Siegel [87] , [ 14]). Let f: ζ »+. eZni*z + ozz + . . . be an
analytic transform in a neighbourhood of the origin. Suppose that there are
constants C and e such that for all integers m and I

Then f is conformally conjugate to a rotation in a neighbourhood of the
origin.

See [3] for a transparent proof of Siegel's theorem. The condition (1.4)
holds for almost every multiplier λ =  e2nie with respect to Lebesgue measure
on the circle T. Thus, neutral irrational cycles can be contained in the
Fatou set, and this situation is typical from the metric point of view. It
turns out that from the category point of view the opposite situation is
typical.
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Proposition 1.9. We consider a one parameter family / λ: ζ > *•  λζ +  S(z)
(λ =  e 2 l l i e 6 Τ) of transforms in a neighbourhood of the origin. Suppose
that all the / λ have infinite order. Then the set Λ of λ G  Τ for which / λ w
nor conjugate to a rotation is a dense G6 set.

For example, if / λ is a family of non linear entire functions, then the
condition of Proposition 1.9 is valid. The simplest family of this type is
/ λ : ζ > *•  λζ \  ζ 2 .

Proof. Let / λ be defined in an ε neighbourhood of the origin. We consider
the set Χ,η(λ) =  {ζ: 3k £ [0, τη] \  f%z \  > ε} and the function pm(X), which is
the distance from Xm(X) to the origin. The function pm is obviously upper
semi continuous. Consequently, ρ =  inf p m is also upper semi continuous.

m
Hence, the set of zeros of ρ is of G 6 type.

We now note that in view of Proposition 1.7 / λ is not conjugate to a
rotation if and only if λ G  Λ. But if λ is a root of 1, then the transform / λ

is not conjugate to a rotation, since it is of infinite order. It follows that Λ
is dense in T.

The first example of non stable irrational fixed points was given by Pfeiffer [81] in 1917. Cremer
[63] constructed such examples for an arbitrary multiplier λ satisfying lim | λη — 1 I1/™ =  0. The
proof presented here is taken from [21] [23], [68].

4. Theorem 1.10 (F atou [61] , 241). We consider an analytic transform
j : z < >•  λζ \  bz2 \  . . An a neighbourhood of the origin such that \ \ \— 1,
λ Φ 1. Suppose that a domain V satisfies fV η V Φ φ. Then the orbit
{f"V}m=o cannot converge uniformly to zero.

Proof. If λ is a root of 1, λ Φ 1, then it follows from the examination of
the Leau flower that the condition fVC\  V =  0 cannot hold. Consequently,

ĵ arg λ is irrational. Let ξ £  V. We consider a sequence cpm(z) =  jmzl jmt,

of holomorphic functions in V. Since the cpm are univalent, do not vanish,
and φτη(ζ) — 1, we see that the family {q>m} is normal (Koebe's distortion
theorem [10]) . We show that the limit functions of the sequence {<pm}
differ from a constant. For otherwise some domains / mfcV could be seen
from the origin at a small angle and the domain / m h + 1 F « Kif1^) would
not intersect fmhV, which contradicts our assumption. Consequently, all the
domains fmV are seen from the origin at an angle not less than some θ > 0,
and have "th ickness" of order of the distance to the origin. Then the
density of the orbits of the rotation z* * Xz on the circle Τ implies that for
some Ν and sufficiently large m the domains fmV, / m+ 1V, . . ., / m + T form a

closed chain. H ence, the invariant domain {0} U f V is a neighbourhood

of the origin. Consequently, the origin is a stable position of equilibrium.
In view of Proposition 1.7, / reduces to a rotation in a neighbourhood of
the origin. But then fmVy^ 0 (m *•  °°), and we obtain a contradiction.
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Corollary. Let D be an invariant component of the normality set of a
rational endomorphism f. Suppose that fmz *•  a G  D (m > °°) in D. Then
a is a neutral fixed point with multiplier λ =  1. Thus, if case b) of
Theorem 1.1 holds in an invariant component D of the normality set, then
D is a Leau domain.

Conjecture 1.2. If oc is a neutral irrational fixed point of an analytic
transform f then {f"V} cannot converge to a (without the assumption
fV Π V Φ φ). For rational functions and a certain class of entire functions
this assertion does hold ( [89] , [13] , [39]) .

5. To conclude this section we prove that a rational endomorphism has a
finite number of neutral cycles. A scheme of proof suggested by F atou is
the following. If a function / 0 has /  neutral cycles, then it can be perturbed

in such a way that the new function /  has at least • —  attracting cycles

and deg f = d. In view of Corollary 1 of Theorem 1.4, we have /  < 2(2d— 2).

Lemma 1.5. Let \ x{w), ..., λ/ (νν) be non constant holomorphic functions in
a neighbourhood of the origin, Ιλ,(0)Ι =  1 (/  =  1, ..., / ). Then there is an
arbitrarily small w0 such that Ιλ;·(ιν0)Ι < 1 for at least (i+ l)/ 2 functions λ,.

We present a proof of this lemma based on an idea of Drinfel'd. Let
li(w) =  λι(0) + btw

ht + . . . (bi Φ 0). Then to a first approximation the
set {w : I Xi(w) 1 =  1} is the union of 2kt rays coming from the origin at

2Π

equal angles. It follows that \  Ei(reie)dQ +0 as r * 0, where £i(w) =
ο 2π ,

=  sign log | λ t(w) | . Consequently, f 2 ti(reid)dQ » 0 (r » 0). Since 2 ε,
/  ο

is an integer valued function, 2 ε«( Γ β ' θ) ^ 0 o n some arc {re'e: θ1 < θ < θ2}

for sufficiently small r. This yields the required assertion.
We now consider the set 9?d of rational functions of degree d. It can be

embedded naturally in the complex projective space C j 0 2 ^ 1 as a domain.
This embedding induces the structure of a complex analytic manifold on SRd.
We consider a many valued analytic function a: $Kd >  C satisfying the
algebraic equation fp(oc(f)) =  «( / ) with fixed p. Since the sphere C is
compact, it follows that a can have only algebraic singular points.
Consequently, any periodic point of a given / 0 6 3id can be converted into a
periodic point of any other function /  6 9?d by analytic continuation along a
suitable path.

We now consider the multiplier λ( / ) of a periodic point «( / ) as a
function on the manifold 9}̂ . It follows from what we have said that every
branch of λ is a many valued function ^d *  C, which has only algebraic
singularities on 9id. The branches of λ are not constant. For in the family
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fw(z) =  zd + w (w £ C) we have λ(νν) *· °° (w *•  °°) for every finite periodic
point. In the family zdj{\  +wzd) a perturbation of the fixed point at
infinity has a non zero multiplier.
Theorem 1.11 (Fatou [60], §30). A rational endomorphism of degree d
has at most Ad  4 neutral cycles. Consequently, f has at most 4c?  4 cycles
of Lean and Siegel domains.
Proof. Let a l 5 ..., at be neutral cycles of a function / 0. Since the
corresponding branches of the multipliers λ;·(/ ) are not constant on SR<i, it
follows that /  can be immersed in a one parameter family fw in which the
multipliers λ, (νν) Ξ X, (/w) are not constant. Since the functions λ, can have
at most algebraic singularities at the origin, we see that for some Ν the
functions M, (U) =  \ (uN) are single valued in a neighbourhood of the origin.

By Lemma 1.5 there is a function fw that has at least ! ^ j attracting cycles.

Conjecture 1.3. The total number of neutral cycles of a rational
endomorphism of degree d does not exceed Id  2.

§1.12. Arnol'd Herman rings
The Schroder, Bottcher, Leau, and Siegel domains correspond to the cases

a), b), and c) (i) of Theorem 1.1. The only possibility that this theorem
leaves for an endomorphism f : D ), where D is a periodic component of
the Fatou set, is the case c) (iii), where the transform f: D) is conformally
conjugate to an irrational rotation of the annulus A(r, 1) (0 < r < 1). Such
a domain is called an Arnol'd Herman ring. In view of Proposition 1.6,
polynomial transforms have no Arnol'd Herman rings.
Example 1.8 (Herman [67]). / : m e2*iez2(l — άζ)/(ζ — α). The circle Τ is
/ invariant and the restriction /  : T^ is a diffeomorphism. It follows from
Arnol'd's theorem ([3], §12) that for suitable θ and a there is an invariant
neighbourhood V of Τ on which / : V$ is conformally conjugate to a rotation
of an annulus. Let D be a component of the Fatou set containing V. It is
obvious that D is neither a Schroder, nor Bottcher, nor Leau domain. The
component D cannot also be a Siegel disc, since I) contains the pole a, while
the complement C\ U contains the zero a 1. Consequently, D is an Arnol'd
Herman ring.
Theorem 1.12 (Sullivan [90], Part III). The total number of cycles of
Schroder domains and Arnol'd Herman rings does not exceed Id  2.

We prove this theorem in §2.5. Now we summarize the results of the last
five sections.
Theorem 1.13. Every periodic component D of the Fatou set F(f) of a
rational endomorphism f: C) is either a Schroder, or Bottcher, or Leau
domain, or a Siegel disc, or an Arnol'd Herman ring. The endomorphism f
has a finite number of periodic components.
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Conjecture 1.4. A rational endomorphism of degree d has at most 2d 2
cycles of components of the Fatou set.

With every cycle {pD }J £ Q of Arnol'd Herman rings we associate a Riemann surface with
boundary and marked points. We define the points <z;  e D (i = 2, ..., k+ 1) by analogy with the case
of a Siegel disc (§1.11, subsection 2). We consider a conformal homeomorphism φ .D^  A(l, r) and
put 5 =  A[l, r], dj =  φ{α{) (i = 2, ..., k+ 1). In addition, we mark the points d0, d\  on the
components of the boundary of the annulus S. Finally, we recall that the rotation group acts on S.

§1.13. The density of repelling cycles in J(f)

The density theorem rests on the following modification of Montel's
theorem.

Lemma 1.6. We consider a family {ft} of meromorphic functions in a
domain D. Suppose that there are 3 meromorphic functions gj (/  =  0, 1,2)
in D with the following property: the equations fj(z) = gj(z), g/ c(z) = gj(z)
have no roots in D. Then the family {ft} is normal.

This lemma reduces to Montel's theorem for the family P'~gl isilL·]

which has 3 exceptional values 0, 1, °°.

Theorem 1.14 (Julia [65] , F atou [60] , §27). The Julia set / ( / ) is the
closure of the set of repelling periodic points of f

Proof. Let α be a repelling periodic point of order p. Without loss of
generality we may assume that α Φ °°. Then (/ '""/ (α) =  λ"1 *· oo,
| fpma | =  | a | < oo. In view of Lemma 1.2, the family {Ζ1""}^ is not
normal in a neighbourhood of a. Thus, repelling cycles lie on the Julia set.

N ext, let a € / ( / ) . We want to approximate a by repelling periodic
points. Since / ( / ) is a perfect set, we may assume that a is not periodic
and is not a critical value of / . Consequently, a has two different inverse
images alt a2, where α, Φ a, and in a neighbourhood D of a there are
univalent branches gx, g2 of f'1 such that gj(a) = a,·. In addition,
gxD Π g2D  Φ. We put go(z) =  z. If D is a sufficiently small neighbourhood,
then gjD Π g0D = Φ (/  =  1, 2). Consequently, the equations g/ c(z) =  gj(z)
(k Φ j) have no roots in D.

We now consider an arbitrary neighbourhood V C D of a. By Lemma 1.6,
in V there is a root a of some equation fpz = g/ (z). The point a is periodic
(with period ρ for/  =  0 and p+\  for /  =  1, 2). F inally, since there are
only finitely many attracting and neutral periodic points, we see that a is
repelling provided that the neighbourhood V is sufficiently small. The
theorem is now proved.

Corollary. J(fm) =  J(f) (m = 2, 3, . . .) .
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§1.14. Further properties of / : J(f) 5: the density of inverse images, mixing

1. Theorem 1.15 (Julia [65] , F atou [60] , §27). Let a Ε J(f), let V be a
neighbourhood of a, and let Κ be a compact set without exceptional points.
Then there is an integer Ν such that fmV D  Κ for m > N.

Proof. By Theorem 1.14 the neighbourhood V contains a repelling periodic
point a of order p. There is a neighbourhood W  C V of α such that
fpW D  W. On the other hand, the set of exceptional points is not attracting,
and so there is a compact set L  D  Κ not containing exceptional points such
that fL  D  L. It follows from Montel's theorem that there is an /  such that

fp'W  =  J f lW  ID L. Then fmV D Κ for m > pi.

Corollary 1. Let b be a non exceptional point, and ε > 0. Then there is an
integer Ν such that for m > Ν the inverse image f~m b is an ε net of / ( / ) .

A continuous transform Γ of a compact set X is called topologically
mixing if for any two neighbourhoods V, W  C X there is an Ν such that
T~m W  Π V φ 0 for m > N. It follows from category arguments that a
topologically mixing transform has a dense orbit {Γ™α}"=ο·

Corollary 2. A rational endomorphism is topologically mixing on the Julia set.

Corollary 3. Let f: C) be a rational endomorphism, and a E C. The
following conditions are equivalent: a) α Ε / ( / ) ; b) the orbit {/ ""a}",^ is
not Lyapunov stable.

2. Proposition 1.10. Let {f\ m}m%i be a family of single valued analytic
branches of the inverse functions in a domain V. Then: a) the family {f1m}
is normal; b) if V Π / ( / ) Φ φ, then \ \  Dtim(z) II *  0 (m >  oo) uniformly on
compact subsets of V. Here II Dg(z) II is the spherical norm of the differential.

Proof, a) We consider a cycle {α^Ζ̂  of order greater than two and not
contained in V (if necessary we make V smaller, which is possible, since
normality is a local property). Then the a,· are exceptional values for the
family {/Γ} in V.

b) We suppose the contrary. Then, in view of a), for some sequence
ik) we have / ift

 h +•  y(mk + oo) uniformly on compact subsets of F ,
j hwhere φ Φ const. Then j {

 hV ra W, where W  is a neighbourhood of some
point o f/ ( / ) . It follows that jm* Wa V, which contradicts Theorem 1.15.

3. As we know, the attracting region of an attracting or neutral rational
cycle contains a critical point. The following fact is a weakened form of
this result for neutral irrational cycles. We denote by ω(ζ) the limit set of
the orbit {/m z) ; let c, be the critical points of an endomorphism / :
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Proposition 1.11. a) Let a. be a non Siegel neutral irrational periodic point.
Then a 6 u(c)\  {/ TOc}̂ =0 for some critical point c G  / ( / ) .

b) Let D be either a Siegel disc, or an Arnol'd Herman ring. Then

dDcz ω}.

Proof, a) We may assume that α is a fixed point. Suppose that there is a
neighbourhood V of a not containing points fmc different from a, where c
is a critical point and m > 0. We consider the component Vm of the inverse
image / ~ m F that contains a. By Lemma \A fm : Vm *•  V is a univalent map.
We consider the family of inverse maps tn  V *· Vm. We have ||Z?/ m(a) \ \  = 1,
which contradicts Proposition 1.1. The inclusion c E / ( / ) follows from the
description of the dynamics on F(f) (Theorems 1.13 and 1.16).

b) Let β S dD\ajf. Then in a neighbourhood V of β we can define
branches /~m such that j wy £  D, where y £  V Π D. We have || Df~m(y) || >
^ c > 0. This contradiction shows that dD C co^. Now the description of
the dynamics on F(f) yields dD C co}.

Conjecture 1.5. a) If a is a non Siegel neutral fixed point, then the orbit of
some critical point converges to a.

b) If D is either an invariant Siegel disc or an Arnol'd Herman ring, then
every component of the boundary dD contains a critical point of f.

Herman [68] proved this conjecture for f: ζ * +•  tf1 )  w under the
assumption that the multiplier of a neutral periodic point satisfies the
estimate (1.4) in §1.11.

§1.15. The absence of wandering components of the Fatou set
In § § 1.8 1.12 we have described the behaviour of the orbits on periodic

components of the Fatou set F(f). The following result by Sullivan shows
that every orbit in F(f) is absorbed by some cycle of periodic components.
This result completes the description of the dynamics of a rational
endjmorphism on the set F(f).

A set D is called wandering if fmD Π f"D = φ for all natural numbers
m >  η >  0.

Theorem 1.16 (Sullivan [89] , [90] , Part I). The Fatou set F(f) of a
rational endomorphism has no wandering components.

This theorem is similar to the "finiteness theorem" of Ahlfors for
Kleinian groups [30] .

We need some information on prime ends [10] . Let D be a simply
connected domain. A slit is a simple curve in D whose ends lie on dD. We
fix a point z 0 € D. A sequence of slits {yn} is called a chain if yt Π γ;· =  0
(i Φ j), every slit yn separates z 0 in D from 7n + i, and diam yn > 0. Two
chains are regarded as equivalent if one can choose infinite subsets of slits in
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them that together form a chain. The classes of equivalent chains are called
prime ends. If α is a prime end represented by a chain {γη}, and j n *•  x,
then χ is called a principal point of the prime end. Let I(a) be the set of
principal points of a. The basic theorem on the correspondence between
boundaries under conformal maps says that a conformal isomorphism of
simply connected domains extends to a one to one correspondence of the
prime ends (Caratheodory; see [10] , Ch. II , §3). In particular, if we are
given a conformal isomorphism U  *•  D, then the prime ends of D are in
one to one correspondence with the points of T. This correspondence
determines a topology of the set of prime ends.

Lemma 1.7. The set of prime ends with common set of principal points is
totally disconnected.

Everything said above can be extended to the case of finitely connected
domains. We consider the group GJW  of homeomorphisms of / ( / ) that
commute with / .

Lemma 1.8. The group GJ(f) is totally disconnected.

Proof Let Γ be a connected component of id of the group Gjyy. Since the
finite set P er fc( / ) is invariant under Gjy), we see that all the points in
P erfc( / ) are fixed by Γ. Since the periodic points are dense in / ( / ) , we
obtain Γ =  id.

Proof of Theorem 1.16. Let Do be a wandering component of F(f), and
Dn =  f"DQ (n > 0). We may assume that every Dn does not contain critical
points of/ , since the set of such points is finite. Then / : !>„—»  # n + i is an
unramified covering.

The first case. The domains Dn are finitely connected and the maps
/ : Dn~*  Z?n+ i are univalent for η > n0. We may assume that n0 =  0. To
make our exposition simpler, suppose that the domains Dn are simply
connected. We consider a conformal isomorphism g: U >•  Do. We construct
a family of diffeomorphisms ψ4: TJ} depending continuously on t Ε HN

(where Ν > 4d+2) and possessing the following property: all the maps
• φ!1 ο ψ, are not conformal on Τ =  9U, that is, their restrictions to Τ differ
from the transforms ζ ι * λ (ζ — α)/ (1 — όζ)(ΙλΙ =  1, \α\< 1, \ζ\  = 1). We

consider in Do the family of conformal structures µ4 =  (^οψ, ^συ. We
extend these structures to the large orbit of Do with the help of / . This can
be done because Do is a wandering domain and all the maps / : Dn + D n + i
are univalent. To the remaining part of the sphere the structures obtained
can be extended as standard. We obtain an ^ parameter family of conformal
structures µί on C. By the measurable Riemann theorem there is a
continuous family of quasi conformal homeomorphisms φ^ C5 such that

=  σ · The transforms /< =  φ< ° /  ° φΤ' are continuous and are locally
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conformal everywhere except for a finite number of points. By the theorem
on removable singularities ft is a rational function of degree d.

Thus, we have constructed a continuous map t < *•  ft from R^ to the
manifold SR<f of rational functions of degree d. Since dim JR^ =  Ad +  2 < N,
by a well known topological theorem ( [11] , Chapter IV, §4) there is a non
empty connected set Μ C R^ such that ft = fs for t, s £  M. We fix s and
obtain the result that all the homeomorphisms ht = φ7' ο q>t commute with / .
By Lemma 1.8, ht = id on / ( / ) (t Ε Μ).

It is easy to see that Do is invariant under ht (t G  M). Consequently, ht

is a homeomorphism of the closure Do and so it acts on the space of prime
ends of Do. It follows that the homeomorphisms Ht =  g"1 ° ht o g : U )
extend to homeomorphisms of U. We show that Ht IT =  id. Let α be a
prime end of Do. It is easy to see that the map t v *  ht(a) is continuous. In
addition, ht(I(a)) =  I(a), since ht\ J(f) =  id. It follows from Lemma 1.7
that ht(a) ~ a (t  M), as required. Thus, the map ψ7ι ο ψ, on Τ coincides
with ψΐ1 ο Hto\pt(t e Λ0. But the latter map is conformal in U. We obtain
a contradiction.

The second case. The domains Dn are finitely connected and the maps
f: !>„ >  Dn+iare non univalent for infinitely many n. It follows from the
Riemann H urwitz formula that all the domains are doubly connected. We
consider conformal maps gn : A(rn, pn) > Dn normalized so that rn < 1 < pn

an d gn + 1 ( l) =  f(gn(i)). Then g~l
+l ο /  o gn : ζ >*•  zln . We consider the simple

closed curves Tn =  gnT  C Dn. The maps / " : Γο *•  Tn are <in sheeted
coverings and dn *•  °°. It follows from the normality of {/"} in Do that

.„  \dn =  f || D/ n(z) || d s< C, where ΐΓη I is the spherical length of Tn.
To

Consequently, ΙΓΠ i >· 0. But then diam En >· 0, where £"„ is a component
of the complement of Yn. In view of the fact t h a t / i s uniformly continuous
on C we have jEn =  En+1 (n > TV). Consequently, {/"} is normal in EN.
We obtain a contradiction.
The third case. All the domains Dn are infinitely connected.

Lemma 1.9. Let Do +•  Dx ~> D2—>  . . . be a sequence of analytic coverings
/ο η

of hyperbolic Riemann surfaces. Then there is a Riemann surface Dx and a
sequence of analytic coverings π η ο Dn +  D «, such that πη =  π η + 1 ο / „ . / /
the Riemann surfaces Dn are of infinite type, then £)<*, is also of infinite
type(1\

Applying this lemma to the sequence Do^  D^  > . . ., we consider an
/  1

Λ' parameter family of con form al st ructures µί on th e R iem an n surface
(I )We say that a Riemann surface V is of infinite (topological) type if its fundamental
group is not finitely generated. This is equivalent to the fact that there is an infinite
parameter family on V of non equivalent conformal structures.



80 M.Yu. Lyubich

Da*, (N > 4d+ 2). We lift the µ, to / invariant conformal structures on the
large orbit of Do, and then extend them to the whole sphere by the standard
structure. We obtain an iV parameter family of structures ωί on C. Let
(ft: C 5 and ((ft)* ω« =  σ. Then φ (ο / « φ7' is an N parameter family of
rational functions of degree d. We obtain a contradiction.

§1.16. Rational endomorphisms satisfying Axiom A
1. This section is devoted to the most important and well studied class of
rational endomorphisms.

We endow the sphere with a smooth Riemann metric ω proportional to
the spherical metric. We consider a closed / invariant subset X C C. An
endomorphism /  is called dilating on a set X if there are constants a > 0,
7 > 1 for which

ΙΙ£>Γ(2)ΙΙ>ανη ( 2ex, Λ 0 , l, . . . ) ,
where II · II denotes the norm in the metric ω. This definition is invariant
under the choice of a Riemann metric in a neighbourhood of X. If a = 1,
then ω is called a Lyapunov metric.
2. Theorem 1.17 (Fatou [60], §31). The following properties of a rational
endomorphism f are equivalent:

(i) /  is dilating on the Julia set / ( / ) ;
(ii) the orbits of its critical points converge to attracting or superattracting

cycles.
In addition, the orbits of all points of the Fatou set F(f) converge to

attracting or superattracting cycles.

Proof, (ii) => (i). We delete from the sphere the orbits {f Ci}£Li of critical
points and invariant neighbourhoods of attracting cycles. The resulting
domain S is hyperbolic and / "^invariant. Let π : U * S be the universal
covering. Then f'1 can be lifted to a single valued function on U. Applying
the Schwarz lemma, we obtain II Df(z) II > 1 (z S S) in the hyperbolic metric
ps. Consequently, llD/(z)ll > γ > 1 (ζ € / ( / ) ) that is, the hyperbolic metric
is Lyapunov.

(i) =*· (ii). All critical points of the endomorphism / lie in the Fatou set.
Consequently,/has no Siegel discs or Arnol'd-Herman rings (Proposition 1.1).
According to Corollary 2 of Proposition 1.7,/has no Leau domains either.
It follows from the description of the dynamics on the Fatou set
(Theorems 1.13, 1.16) that the orbits of all points of the Fatou set (and so,
all critical points) converge to attracting and superattracting cycles.

By analogy with Smale's well-known definition for diffeomorphisms [26]
we shall say that an endomorphism f satisfies Axiom A if properties (i) and
(ii) of the theorem hold.
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3. Symbolic dynamics on the Julia set (Fig. 8).
We denote by 2J the space of one sided sequences (i^  ...) of d symbols
endowed with the weak topology. The unilateral {topological) Bernoulli
shift is the transform β: (i^  . . . )> »  (iJ3 . . .) of the space Σ%. The
unilateral Bernoulli shift provides an adequate model for the dynamics of a
rational endomorphism on the Julia set [ 30] [ 33] , [64] .

Fig. 8. The Julia set of the transform s + z* — 0.65* is a quasi circle.

Suppose that an endomorphism /  satisfies Axiom A. Then an appropriate
point ζ can be joined to its inverse images zu ..., zd by smooth curves
/ 1( ..., ld so that, for all n, single valued branches of / » are defined in a

d

neighbourhood of (J lt. Then the inverse image pH} consists of d curves
t = i

Zi/ starting at zu respectively. We denote the endpoint of / „ by zu. Suppose
that the points of the inverse image f ^Vz are numbered by J nary
sequences The inverse image consists of dk x curves
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hi . . .ih_xik starting at z(l., . lfc · We denote the endpoint of £{,...ifc by
zh...tk € Γ"ζ· It follows from Axiom A that p(Zj,...ifc, / (/ )) >•  0 (fc > «>), and
the lengths of the curves i|,...i decay exponentially. Therefore,
Urn z,,.. . =  φ ^ ^ . . .) ζ / (/ ) exists. We have defined a map φ: Σ5 »  J(f).

It follows from the exponential decay of the lengths of the curves ltl.,.t

that φ is continuous, and from Corollary 1 of Theorem 1.16 that φ is on to.
Obviously, φ ο β =  /  ο φ. We have thus proved the following result.

Proposition 1.12. If an endomorphism / satisfies Axiom A, then f: J(j)) is a
quotient of a unilateral Bernoulli shift.

Using methods of the theory of Markov partitions, one can show that
there is a number c such that for any ζ £ / ( / ) we have cardtp ^  ̂c [33] .

4. The case when F{ f) is connected.
In this case the symbolic dynamics is especially good. It was actually
familiar to F atou ( [59] , 252).

Theorem 1.18. Suppose that an endomorphism f satisfies Axiom A, and the
Fatou set F(f) consists of a single component. Then the Julia set / ( / ) is a
Cantor set and / : J{f)) is topologically conjugate to the unilateral Bernoulli
shift β: 25V

Proof. In our case all critical points ct lie in the domain D =  F(f), and all
their orbits converge to an attracting fixed point ocGD. Suppose additionally
that these orbits are disjoint ( 1\  Then it is easy to construct an invariant
simply connected neighbourhood Κ of α with smooth boundary such that
the first moment Ν when the orbit {/ "cj}*.^ falls into V does not depend
on i. Let Vn be the connected component of J~nV containing a. Then
Vjv j contains all critical values fct, but does not contain critical points c,·.
We put ∆ = C \ V' Ar_ 1 . Then / 1∆ consists of d components ∆,· such that
∆,· Π ∆;· =  0 (i Φ / ) , ∆,· C ∆ , and / : ∆,· *•  ∆ is univalent. The inverse image
/ »∆ consists of d" components ∆ ^ . . . , ^ =  ∆1# Π f~x^u Π · · · Π / "( η~ 1 )∆ ίη_ ,
with analogous properties. It follows from Axiom A that diam ∆(,...ι <C

oo

< <τγ η *  Ο (η >•  ο»), and so J(J) =  Π / ""∆ is a Cantor set. We associate

with i = 0 Ϊ! ...) the point xt =  f) &t,n...i a n d obtain the desired

conjugation of the Bernoulli shift β and / :

We have given above two examples (1.2 and 1.6) of a rational endomorphism such that / ( / ) is a
Cantor set. The first of them satisfies Axiom A, while the second does not. Fatou conjectured
([60], 84) that if / ( / ) is a Cantor set, then all critical points lie in F ( / ) . This conjecture has been
disproved by Brolin ([45], 136).

(' ^The particular case when the orbits of critical points intersect can be reduced to the
general case by a perturbation of the endomorphism.
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5. The case when F(f) consists of two components.
A quasi circle is by definition a Jordan curve that is a quasi conformal image
of the circle T.

Theorem 1.19 ( [59] , [34]) . Suppose that an endomorphism / satisfies
Axiom A and that F{f) consists of two invariant components Dx, D2  Then
J(f) is a quasi circle and f: / ( / ) ) is topologically conjugate to the transform
ζ > *•  z? of the circle T.

Proof. Since the Dt are simply connected (Proposition 1.4), it follows that
/ ( / ) can be enclosed in an annulus A bounded by smooth curves yt C Dh

not containing critical points, and such that f~xA cz A. We denote the
interior of / ^ΞΞβί by V( C D{. We construct diffeomorphisms
ht : Vi > U, (0 < r < 1) such that Λ,·(/ζ) =  h^zf for ζ Ε ft·. We now
define a transform g: C ) as follows: (z 6 f lA) and gz = hj'(hi(z)d) (z € F,).
We define on C a g-invariant conformal structure µ. In the component Dt

the structure µ is a g invariant extension of the structure (Η\ ι)^σ from Vt.
The structure µ is standard on / ( / ) . It follows from the measurable
Riemann theorem that g is quasi conformally conjugate to the transform
ζ ι»  ζ4* of the whole sphere.

6. We consider the transform / : ζ > * ζ2 f ε, where | ε | is small. It satisfies
the assumptions of Theorem 1.19. However, the situation is not as simple
as it may appear at first sight: for ε # 0 the set / ( / ) , being a Jordan curve,
has no tangent at any point. This follows from a general theorem of F atou.

Theorem 1.20 ( [61] , 208 240). Let a be either an attracting or a
superattracting fixed point. Suppose that dD(a) Π ojf =  φ. Then we have
the following alternatives: a) dD(a) is a circle; b) dD(a) has no tangent at
any point.

We clarify the nature of non smoothness for the transform / : ζ >»•  ζ2 +  ε
in the case when ε is not real. Then /  has a repelling fixed point a with
non real multiplier λ ==  1 +  ]/ 1—4ε. Consequently, the curve 7 in a
neighbourhood of α looks like a logarithmic spiral and so has no tangent at a.
But 7 has a similar nature at all inverse images / "a, which densely fill 7.

§1.17. Iterates of polynomials

1. The study of the dynamics of polynomials is simplified by the existence
of a completely invariant component of the F atou set, namely the attracting
region of °°, which we denote by D(°°). It has been shown earlier that / ( / )
coincides with the boundary of D{°°), and every bounded component of
F{f) is simply connected (Proposition 1.6). It follows from the Riemann
Hurwitz formula that D{°°) is simply connected or infinitely connected. The
first case is equivalent to the fact that the Julia set / ( / ) is connected.
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Theorem 1.21 ([61 ] , [65]) . The Julia set J(f)ofa polynomial f is
connected if and only if the orbits of all finite critical points do not tend to °°.

Corollary. If the Julia set is connected, then / : £ (oo)J is conformally
conjugate to the transform ζ * +•  2? of the disc U.

Proof, a) If D(°°) is simply connected, then according to the Riemann
Hurwitz formula there are d— 1 critical points, taking account of multiplicities.
But °° is itself a critical point of multiplicity d— 1.

b) Let Vo be a small invariant neighbourhood of °o. Since / xoo =  {oo},
it follows that F x =  / J V0 is a domain. If Vx contains no finite critical
points, then by the Riemann H urwitz formula Vx is simply connected.
Similarly, all domains Vn — j'nV0 are simply connected. Consequently,

oo

D(oo) =  U  Vn is also simply connected.
71 = 0

2. (Fig. 9). In the case of a connected Julia set the question of its local
connectedness is very interesting and non trivial. This question is investigated
with the help of the following classical criterion.

Fig. 9. The transform ζ <  ζ2 +  c for c =  (1.04+ 0.34/ )· Near this value of c a
bifurcation from the connected Julia set to a Cantor set takes place.

Caratheodory's theorem [48] . Let D be a simply connected domain, and
φ:  * D a conformal map. The boundary bD is locally connected^ if and
only if φ is continuous up to the boundary of the disc U.

The following example was announced in [43] as a result of Douady and
Sullivan. It has been found independently by the author.

''^Therefore, dD is locally connected if and only if it is a Jordan curve, that is, a
continuous image of the circle.
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Example 1.9. / λ: ζ > *•  λζ + ζ2. Suppose that ΙλΙ =  1 and that fx is not
conjugate to a rotation in a neighbourhood of the origin. Then / ( / χ) is not
locally connected.

For otherwise the conformal map φ : U >· D(°°) is continuous up to the
boundary. We put X =  (p KJc: T. Then the functions p(z) =  distitp^z, X)
and Izl are equivalent in D(°°) (that is, j ζ | <C δ <=i> p(z) < ε) . Let / 1 be
a branch of the inverse function for which / *() =  0. Then p(/ "m z) =

=  | /  φ~ χζ— j / ζ I »  0(m »•  °°), where ζ ζ Ζ, j /  is an appropriate
branch of the root. Therefore, if z € /?(<») and Iz I < δ, then | f~m ζ | < ε.
Thus, 0 is a Lyapunov stable position of equilibrium. We obtain a
contradiction.

3. On the other hand, with the help of symbolic dynamics the following
fact can be established:

Theorem 1.22 [61 ] . Let f be a rational endornorphism, and D a simply
connected component of F{f). Suppose that f \3D is a dilating transform.
Then 3D is a Jordan curve.
Corollary 1. Under the assumptions of Theorem 1.22 all points of 3D are
attainable from D.
Corollary 2. Suppose that a polynomial f satisfies Axiom A and that / ( / ) is
connected. Then a) • / (/ ) is a Jordan curve; b) if D is a bounded connected
component of F(f), then dD is a simple Jordan curve.

Under the assumptions of Theorem 1.22, 3D in general is not a simple
Jordan curve, as the example D = D(°°) for a polynomial shows. Another
example is given in [33] .

In conclusion we mention the following fact: //, under the assumptions
of Theorem 1.22, dD is a simple Jordan curve, then 3D is a quasi circle. It
can be proved in the same way as Theorem 1.19 or with the help of the
symbolic dynamics [34] .

4. For polynomials Conjecture 1.3 has been proved by D ouady and H ubbard:

Theorem 1.23 ( [53] , [57]) . A polynomial of degree d has at most d~ 1
non repelling cycles on the plane.

We introduce the following notion. Let V and V' be simply connected
domains with V C V, and g: V' >•  V an analytic d sheeted ramified
covering. Then g is called a polynomially similar map of degree d. We
denote by K(g) the set {z: gnz 6 V (re =  0, 1, 2, . . .)}.

Lemma 1.10. Let g be a polynomially similar map of degree d. Then there
is a polynomial h of degree d, a neighbourhood V(g) of K(g), and a
neighbourhood V(h) of the Julia set J(f) such that g\V(g) and h I V(h) are
quasi conformally conjugate. The conjugating homeomorphism
ψ '•  V{g) >•  V(h) is conformal on K(g).
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Proof. We consider a domain W  such that Kig) C W  C V', W  is diffeomorphic

to the disc, and g^WNW is homeomorphic to the annulus. Arguing as in
Theorem 1.19, we extend g\ g~xW to a map g:C) which on CVg 1W is
quasi conformally conjugate to the map ζ ι * £ of Wr (0 < r < 1). It
follows from the measurable Riemann theorem that g is quasi conformally
conjugate to a polynomial.
Proof of Theorem 1.23. Let Ν be the set of non repelling cycles of a
polynomial /  of degree d. There is a polynomial h (of high degree) such
that h(z) =  0 and Ι(/ +Λ)'(ζ)Ι < 1 for any ζ EN. Then for ε £ (0, 1) the
points ζ Ε TV will be attracting periodic points for the polynomial
f, =  /  f f i But for small ε, gt is a polynomially similar map of degree d
in a neighbourhood of C\Df(°°) and int /v(ge) =D N. The required estimate
now follows from the preceding lemma and Theorem 1.4.

§1.18. Endomorphisms whose critical point orbits are absorbed by cycles
1. As we know (Proposition 1.2) the Julia set is either nowhere dense or
coincides with the whole sphere. In all the examples considered above the
first possibility has occurred. In particular, if /  is a polynomial, then
/ ( / )  C, since <=o e F(f). We now present a classical example of a rational
endomorphism for which / ( / ) =  C.
Example 1.10 (Lattes [71]). We consider the Weierstrass elliptic function
^ wi t h periods {1, τ} (Im τ > 0). It satisfies the duplication formula
£\ (2z) =  / ιί^τί2)), where fT is a rational function of degree 4 (see [19]).
This formula can be interpreted as the commutativity of the following diagram:

C—,
Ι π τ «t
\  A, 1
rps jy αν

i..  I
if τ (πτ being a quotient map over the lattice

{m + ητ: (m, n)€Z*}).

-C - i C-
The points π τ ί γ ^r ) a r e periodic for the transform AT. Since they are
dense on the torus T?, the periodic points of fT are dense on C. Consequently,
J(fr) =  C.

The function fT has three critical values, which coincide with the finite
critical values of the Weierstrass function:

Moreover, fx: et(x) > *•  oo. I t turns out that this property itself implies that
= c.
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2. Theorem 1.24. Suppose that the orbits of all critical points of a rational
endomorphism f are absorbed by cycles but are not cycles themselves. Then
/ ( / ) =  C. Furthermore, all cycles of f are repelling.

See [ 2 0 ] ( 1 ) for a proof not using Sullivan's theorem on the absence of
wandering components. We shall reap the fruits of the theory developed.
Suppose that / ( / ) Φ C. Then the F atou set F(f) contains a periodic
component D. If D is a Schroder or Leau domain, then it contains a critical
point whose orbit is not absorbed by a cycle. If D is a Bottcher domain,
then it contains a critical point whose orbit is a cycle. Finally, if D is a

Siegel disc or Arnold H erman ring, then dD α \ }(ύ(θι). Therefore, all cases
contradict the assumptions of the theorem. The fact that all cycles o f/ a r e
repelling follows from Proposition 1.11.

3. In the Lattes example the endomorphism fT is a quotient of the dilating
endomorphism ζ > *•  2z of C. The fibres of the function !Ρτ that accomplishes
this factorization are orbits of the group Γτ, which is obtained from the
group {z > + ζ +  m + ητ: (m, n) 6 Z 2} by adjoining the transform ζ > * —ζ.
Γτ preserves the Euclidean metric p. Consequently, the metric γτ =  (# \ )*p
with singularities at e,(r), °° is well defined on C. This metric is good in the
sense that fT becomes dilating in it: yT(fTx, fTy) > tyT(x, y), where t > 1
(in spite of the fact that fT has critical points). Thurston has shown that a
similar metric can be constructed for all rational endomorphisms whose
orbits of critical points are absorbed by cycles but are not cycles themselves.
The key point of Thurston's construction is the following classical fact:

Lemma 1.11. Let us mark on C a finite number of points xt endowed with
weights nij €= IM, m{ > 2. Suppose that

η

(1.5) Σ ~< » 2

Then there is a compact Riemann surface S and a ramified covering ρ : S »•  C
such that 1) ρ is not ramified over C\{xi}^i; 2) if p(y) =  xit then y is a
branch point of index w,·. If equality is attained in (1.5), then S — T2, the
torus; otherwise S is a hyperbolic Riemann surface. The fibres of the
covering ρ are orbits of a finite group of motions of S {in the metric ps).

We return now to a rational endomorphism /  whose orbits of all critical
points are absorbed by cycles but are not cycles themselves. We mark
points of these orbits {/ "c/ }̂ . The weight m(x) is assigned to a point χ as
follows. We con sider/ " as a ramified covering C). Let mn(x) be the least
common multiple of branch indices of all the points y for which f"y = x.

possessed all the information needed for the proof of Theorem 1.24 ([60],
60 61), but he did not state it anywhere.
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Then m{x) is the least common multiple of the mn(x). It is easy to see that
m(x) < oo. We shall call the m(x) the Thurston numbers. I t is convenient
to suppose that weights m(x) =  1 correspond to unmarked points.

Lemma 1.12. The Thurston numbers m,· satisfy (1.5). Equality in (1.5) is
equivalent to m(fx) = m(x) d egx/  for all x.

Proof. Since m{x) deg^./ divides m(fx), we have

( W  0 ^
Summing over all χ ε C, we obtain

Hence, (1.5) follows. If m(fx) =  m(x) degx/  for allx, the above inequalities
turn into equalities. The converse is also obvious.

Theorem 1.25 (Thurston [93]) . Suppose that the orbits of all critical points
of a rational endomorphism f are absorbed by cycles but are not cycles
themselves. Then there is a ramified covering &: V + C, where V = C or
U, and an analytic endomorphism g: V) such that the following diagram is
commutative:

V* V

(1.6) >̂J Jj».

The fibres of the covering if are orbits of a certain group of motions Γ of
the Riemann surface V.

Proof. We consider the ramified covering ρ : S »•  C from Lemma 1.11. Let
π : V *•  S be the universal covering of the Riemann surface S. Since
m(x) degx/  divides m(fx), the lifting g of the many valued function f~x to
the Riemann surface V is a locally single valued function. Since V is simply
connected, g is globally single valued.

Proposition 1.13. The following properties are equivalent: a) V =  C;
b) equality is attained in (1.5); c) g is invertible. Moreover g: ζ > >  kz f I,
where I k  I < 1.

Proof, a) <* b) by Lemma 1.11. By Lemma 1.12, b)*>m(fx) =  m(x) degx/ .
The latter is equivalent to the fact that g"1 is locally (and so globally) single
valued. Therefore, b) ·**•  c). N ext, the invertible transform g of C is affine:
ζ > + kz + I. F inally, deg /  =  Ar2, from which it follows that \ k\< 1.

Corollary  Under the assumptions of Theorem 1.25 there is a Riemann
metric y on C (having singularities at marked points) with respect to which
f is dilating.
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Proof. Since the fibres of the ramified covering $> in the diagram (1.6) are
orbits of the group of motions Γ, the metric γ =  ίΡ*ρν is well defined. If
V =  U, then g is not invertible and consequently it is a uniform compression
on the fundamental domain of Γ, since the latter is compact. If V = C,
then g: ζ ι »  kz f I (\k\  < 1) is also a uniform compression. In both cases
/  is a dilating transform in y.

The second proof of Theorem 1.24 (due to Thurston). Since / i s dilating in
γ, all its trajectories are Lyapunov unstable.

4. Thurston has given a classification of transforms whose orbits of critical
points are absorbed by cycles ( [93] , [56]) . We treat only the simplest case
when V = C (in the notation of Theorem 1.25). In this case the following
commutative diagram holds:

where A is an affine endomorphism of the torus T?, and ρ is the quotient
map over a finite group of motions G. We can assume that G has a fixed
point (otherwise the torus can be replaced by a quotient torus). Therefore,
the problem splits into two problems: 1) the description of groups of
motions of the torus having a fixed point, and 2) the description of
algebraic endomorphisms of the torus. The solution of the first problem is
elementary: (i) on any torus there acts the group Z 2 , which is generated by
the involution ζ • »•  —ζ; (ii) on the torus Tf there acts the group Z 4 , which
is generated by the rotation ζ ν *  iz; (iii) on the torus T 2

j n / 3 there acts the
group Z 6 , which is generated by the rotation ζ t >  c'"/ 3z. Considering in the
last case the subgroup Z 3, we obtain case (iv). Let us emphasize that in (i) we
have a one parameter family of tori, while the cases (ii), (iii), (iv) are isolated.

On any torus T? there is an algebriac endomorphism AniX generated by
the transform ζ >»  nz of C (n € Ν, η > 2). Lowering it to C in the case (i),
we obtain a one parameter family of rational endomorphisms (the Lattes
example for η =  2). In the cases (ii), (iii), (iv) we obtain countably many
more examples (up to a conformal conjugation). F or some isolated values
of r the torus T? admits algebraic endomorphisms different from An,  τ .
They are generated by the complex multiplications ζ > *•  az (a tfz R). The
enumeration of complex multiplications is a deep problem, which lies
beyond the scope of the present survey (see [19]) .

In each of the cases (i) (iv) it is easy to write down explicitly an example
of the corresponding rational transform. N amely, the transform

/ : ζ * +[ ——) corresponds to the endomorphism A: ζ > + \ / ~2iz of T?

(case (ii)).
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In the examples of this section the property J{f) =  C was connected with
the fact that the orbits of critical points are absorbed by cycles. In §2.4
we give essentially more complicated examples, in which / ( / ) =  C.

§1.19. On the measure of the Julia set
Problem. Is it true that if the Julia set J(f) is nowhere dense, then
mes / ( / ) =  0?

This is one of the crucial open questions in the theory of iterations of
rational functions(1). The first remarks concerning this problem were made
by Fatou ([59], 260). In 1965 Brolin [45] proved that m es/ ( / ) =  0
under the assumptions of Theorem 1.18. We shall give more general
conditions under which mes / ( / ) =  0. The main technical tool for us is the
following theorem.

Koebe's distortion theorem (see [10], Ch. II, §4). Let φ : U r > C be a
univalent function, and q Ε (0, 1). Then there is a constant Κ = K(q) not
depending on φ and r such that

for any xu xt 6 U ,P.
We denote by β ιχ\  — iy. ρ(χ, y) <Z. ε} the disc in the spherical metric.

Proposition 1.14 [20]. Suppose that / ( / ) is nowhere dense. Then
ω(ζ) C oi'f for almost all ζ Ξ / ( / ) .

Proof. For brevity we shall write /  =  / ( / ) . We consider the set
Ae =  {z € / : Hm p(/™2, ©>) > 2ε}. For ζ 6 Ae we have p(f*z, ω,) > 2ε

fn »oo

for some subsequence {m*}. Therefore, there is a neighbou Z?e,ki of ζ
such that f* maps D6th univalently onto Ββ(/"»·ζ) (δ < 2ε). By Koebe's
theorem

Μ 71 m ea( D , . f c \ / ) ^ η mes {Bt {fmkx)\J)

where C does not depend on k. The expression on the right in (1.7) is
separated from zero by a constant not depending on k. By Koebe's theorem
Dr.», is an oval with a bounded distortion and so diamD t.k ^ 0 (k *•  °°)
(Theorem 1.15). Therefore, the lower density(2) of /  at ζ is less than 1. By
Lebesgue's theorem on density points we have mes Λε =  0. This proves
that ω(ζ) C ω/  for almost all ζ G J.

his question has an unsolved analogue in the theory of Kleinian groups: the well
known Ahlfors problem [36].
( 2 )That is,

m ea ( / n gr (z))
J^o meeBr( t) '
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N ext, it follows from the description of the dynamics on F(f) that
u>f Π /  =  u'f U a,·, where the a,· are neutral rational cycles. Consequently,
if ζ G  /  and ω(ζ) C ω^·\ω}, then the orbit of ζ converges to a neutral
rational cycle. But the description of the Leau flower (§1.10) shows that
in this case ζ Ε F(f).

Proposition 1.14 immediately yields the following result.

Theorem 1.26 ( [20] , [55] , Part I ). Suppose that the orbits of all critical
points converge to attracting, repelling, or neutral rational cycles {can be
absorbed by them). Then we have the following alternatives: a) / ( / ) =  C;
b) mes / (/ ) =  0.

Corollary. If an endomorphism f satisfies Axiom A, then mes / ( / ) =  0.

(This fact is standard in the general theory of dynamical systems [6].)
We note that analogous results are valid for the linear measure o f / ( / ) if

it lies on a circle or a line. In particular, in Example 1.6 the linear measure
of / ( / ) is zero.

§1.20. The Newton iterative process

Let p{z) =  z"1 +  a,^ 1 +  · · · +  ad be a complex polynomial, where
d > 1. The N ewton iterative process is one of the numerical methods for
finding the roots of p(z). The sequence of approximations zm constructed
by this method is an orbit of the rational endomorphism / : ζ * + ζ — p(z)/ p'(z).
Suppose that the roots {ai}f= i of p(z) are simple. Then deg f — d and the
(Xj are superattracting fixed points of / . Moreover, /  has a repelling fixed
point ε». The critical points o f/ a r e the a,· and the roots of p"{z).

If the initial approximation z0 is sufficiently close to a,·, then the N ewton
process converges to ott superexponentially. We consider the question of the
global convergence of the N ewton process. It is clear at once that not every
initial approximation is satisfactory from this point of view. F or example,
if z0 G  / ( / ) , then obviously there is no convergence to a root. Therefore, it
is natural to be interested in convergence almost everywhere. F irst we dwell
on the elementary case of a quadratic polynomial.

Proposition 1.15. Suppose that p{z) has two simple roots ax, a2. Let L be
the straight line perpendicular to the interval [<xx, a2] and passing through its
midpoint, and Px, P2 the open half planes into which L divides the plane,
<xt G  Ρ/ . Then if z0 G  Pit the Newton process {zm} converges to a, .

Proof. The endomorphism / i s conformally conjugate to ζ > *•  ζ2 with the
help of the transform φ: ζ > +•  (ζ — aj)/ (z — α 2 ) . Moreover, L — φ"1 !1 .

Suppose now that d > 3 and p(z) has real coefficients. The connected
component / (a) of {x € R: fmx -*· a} containing a. will be called the interval
of immediate attraction of a..
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Lemma 1.13. Let α £  R be a simple root of a real polynomial p(z). If the
interval / (a) is bounded, then it contains a root of p"(z).

Proof. Let / (a) =  (β, γ) . Then β = β or β = y. But the first possibility is
excluded, since finite fixed points o f/ a r e superattracting( 1'. Therefore,
β = y and similarly fy = β. If / (a) contains no roots of p"(z), then f(x)
monotonically decreases on (j3, a) and increases on (α, γ) (or vice versa).
Consequently, fy > fa = a > β (or β < γ) . We obtain a contradiction.

Theorem 1.27 [24] . Suppose that the roots of p(z) are simple and real.
Then a) for almost all z0 ε C the Newton process {zm} converges to one of
the roots; b) for almost all z0 € R (with respect to the linear measure) the
Newton process converges to one of the roots.

Proof, a) Let OLX < a2 < ... < ad. Then the intervals I(ak) (2 < k < d- 1)
are bounded and by Lemma 1.13 contain at least one root of p"(z). Since
there are d—2 such intervals, all the roots of p"(z) must be used. Therefore,
/satisfies Axiom A. It remains to apply Theorems 1.17 and 1.26. The
assertion b) can be proved in a similar way with the help of the theory of
one dimensional (real) dynamical systems.

Example 1.11. We consider the Newton process /: ζ * *• • —• { (d — l)z f ^

for finding the roots of the equat ion ( 2 ) zd = a. The only critical point of/
different from the roots dy/ a is the point c = 0. We have / : c >*•  005. By
Theorem 1.26 almost all orbits converge to roots. Recently many beautiful
computer pictures of the Julia set of this process have been made [51] .

Example 1.12. p(z) = z3 z + b. If b =  1/^2, then {0,ίΙγΤ} is a
superattracting cycle of / . Consequently, an open set of orbits of the
N ewton process "cycles" (converges to this cycle). Perturbing b, we obtain
a similar picture. The parameter b can be chosen so that /  has an attracting
cycle of arbitrarily large period and the process is perceived as chaotic ( 3) .

CHAPTER II

HOLOMORPHIC FAM ILIES OF RATIONAL ENDOMORPHISMS

The main subject of the present chapter is the description of quasi
conformal deformations of rational endomorphisms with the help of suitable

multiple roots of p(z) are simply attracting.
( 2 ) I t is curious that Fatou considered this example for d = 3 ([60], 89) (without
mentioning the convergence almost everywhere of orbits).
(3^A recent survey of Smale ([88], Ch. 2, §1) contains a very similar exposition of these
questions with additional references. In that survey a modified version of the Newton
process is proposed, which leads to success with probability 1/6.
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Teichmiiller spaces (§2.5) . Such an approach, traditional in the theory of
Kleinian groups, has quite recently entered the theory of iterates of rational
functions. It has not only made it possible to obtain strong concrete results,
but has also shed light on the field in general. In §§2.1 2.2 we present a
theorem on the structural stability of a rational function of general position.
In §§2.3 2.4 we investigate bifurcations in the behaviour of the orbits of
critical points. Although the first four sections are closely related to §2.5,
they use more traditional techniques, in the first place, the theory of normal
families (true, the functions depend on several variables or even on a point
of an analytic set). §2.6 contains the most advanced progress in the F atou
problem mentioned in the introduction (a rational function of general
position satisfies Smale's Axiom A). In the final section §2.7 we consider
the quadratic family / „ : ζ ι »· ζ2 +  w. The exposition is carried out from
the point of view of the results of §2.5, which give a unified approach to two
theorems of D ouady and Hubbard which at first sight have little in common.

§2.1. The λ lemma and ^ stability
Let X be an analytic set (see [9]) , and φα: X >•  C a family of analytic

maps. As in the case when X is a domain in C, the family {φα} is called
normal if it is precompact in the compact open topology. Moreover, the
main test for normality, namely Montel's theorem on three exceptional
values or functions, remains valid (see [69]) .

The rational endomorphisms of degree d form a 2d+ 1 dimensional
complex analytic manifold 3id. Let sJSt cz jRd be an arbitrary complex
submanifold. One of the most important special cases is 9ft =  <Pd, the space
of polynomials of degree d.

A rational endomorphism / 0 6 9Jt is called J stable (in the family iOl) if for
all /  6 9Λ sufficiently close to ^ the transforms / „ : J(f0)) and / : J(f)) are
topologically conjugate, and the conjugating homeomorphism hf : / ( / 0 ) *• / (/ )
depends continuously on / ( t h e space of maps J(f0) + C is endowed with the
uniform topology).

Theorem 2.1. The set of J stable endomorphisms is open and dense in Oil.

Thus, in any holomorphic family SCR a rational endomorphism in general
position is J stable. The main tool in the proof of Theorem 2.1 is the
possibility of extending the conjugating homeomorphism from a dense set to
its closure.

Lemma 2.1 (the λ lemma). Let ψζ: C* »· C be a family of analytic functions
in a domain W CCk that depend parametrically on a point ζ of a set X C C;
φζ(ίί?0) ε=  ζ. Suppose that for zx Φ z2 (z,· G  X) we have ψΖί(ιν) Φ φΖΐ (w) for
all w. Then there is a family of quasi conformal homeomorphisms hw

(w EL W) of X onto the image such that hw(z) = φζ(\ν) for ζ Ε X. Moreover,
hw{z) is analytic in w for every ζ Ε X.
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The quasi conformality of a map defined not in a domain is understood in
the sense of Pesin (see [5] , Ch. I, §4).

Proof. The family of functions ?I =  {cpz}2ex is normal. For if we delete
from it three arbitrary functions φ,·, then the remaining family satisfies the
assumptions of the generalized Montel theorem with exceptional functions
(£,·. Therefore, the family SH is compact. F urthermore, if ψ and ψ are
different functions in 3 , then φ(χν) Φ ψ(\ν) for any w € W. For suppose
the contrary. There are sequences φι »•  φ and ψ,· * ψ, where yh ψϊ £ 21
By the H urwitz theorem we have ^,(w,·) =  ψ,Ον,·) for some wt G  W and
sufficiently large /. By hypothesis, <#  =  ψ,· and so φ =  ψ. We obtain a
contradiction. _ _

We consider the map £tu,: $ * C , φι * q>(u>). By what we have proved,
ITW is one to one. Since ?[ is compact, 7rw is a homeomorphism on to its
image. We now put hw — nw°aZf. All the properties of hw are obvious,

except for quasi conformality. We denote by [ζχζ̂ ζζζλ = Ζ 3 ~ Ζ ι · " 4 ~ Ζ 2 the
2 4 Z l Z3 Z2

cross ratio of a quadruple of points. I t is sufficient to show that if
< C, then

), hw(z3), hw(z,)]\  < A' =  X(u;, C).

But the last cross ratio is a holomorphic function of w that does not take
the values 0, 1, °°. Now the required assertion follows from Schottki's
theorem (see [10] , Ch. 8, §2), taking account of the fact that hu.O (:;) = z ; .
The λ lemma is now proved.

We now consider a many valued analytic function ap: {Dt *  C satisfying
the algebraic equation fpz = z. As we mentioned in § 1.10, this function has
only algebraic singularities. We denote by Np the set of its singularities. It
is a proper analytic subset of 9JI. We put Λτ =  U  Np, Σ =  531 \ .V. We

ΚΡ< °° d f v

denote by λρ ( / ) the analytic function on ift defined by λρ{/ ) =  — (α;,(/ )),
where u is a local parameter on C in a neighbourhood of α ρ ( / ) ( λρ ( / ) is the
multiplier of the periodic point ap(f) or some power of it). It follows from
the implicit function theorem that if f E. Np, then λρ ( / ) =  1 for some
branch of λρ.

Proof of Theorem 2.1. Let us show that if /„ 6 Σ, then /  is / stable. We
consider a simply connected neighbourhood P c Σ of f0. Then all branches
ap,i of a.p are single valued in U. F urthermore, if aP i i( / ) =  aqj(f), then
ap,t as <xq,j. F or otherwise /  is a singular point of apq. Therefore, {aPii}pt

satisfies the assumptions of the λ lemma. The homeomorphism hf constructed
in the λ lemma conjugates / 0: Per j0) and / : Per f), where Per /  is the set
of periodic points of / . Since Per /  is the union of / ( / ) and a finite number
of isolated points, it follows that hf transforms J(f0) into / ( / ) .
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Let us show that Σ is dense in 9ft. We consider those values of ρ for
which some branch of λρ is identically equal to 1. There are at most 2d~ 2
such values of ρ (corollary of Theorem 1.8). Let pQ be the largest of them.
Since the set (J Np is nowhere dense in 9Ji, we can assume that all the

Kp<Po
functions considered below lie outside it.

We denote by s(f) the number of attracting cycles of/ . Let f0 Ε Ν,
ε > 0. Then there is an /*€E Np such that dist (/„, /) < ε. We have
hp,i(f) — Ifor a suitable branch of Xp, and λΡιί φ 1 by the agreement
adopted above. Therefore, there is a point fx such that Ιλ(/ ι)Ι < 1,
dist (/, /j) < ε. Since attracting cycles are stable under perturbations, it
follows that s{fo > s(f0) for sufficiently small ε. If fx € N, the process can
be repeated and the number of attracting cycles increases. By the corollary
of Theorem 1.4 the process breaks off no later than at the (2d~ 2)-th step.
As a result we obtain a function / ζ Σ close to / 0. The theorem is now
proved.

Remark, It is easy to show conversely that if/ 0 is / stable, then f0 ζ Σ.
The results of this section were obtained independently by the author

[21], [23] (except for the quasi conformality of the conjugating
homeomorphism) and Mane, Sad, and Sullivan [77].

§2.2. Structural stability is a generic property
A rational endomorphism /„ £  Μ is called structurally stable (in 9JI) if for

every /  £  3ft, close enough to / 0, the transforms / 0: C) and / : CJ are
topologically conjugate, and the conjugating homeomorphism depends
continuously on /
Theorem 2.2. The set of structurally stable endomorphisms is open and
dense in JJl. The conjugating homeomorphisms can be chosen to be quasi
conformal.
Proof. We consider a connected component W  of the set 2 of / stable
endomorphisms; f0 Ε W. Let hf :/ ( / 0) *· / ( / ) be a homeomorphism that
/ conjugates f0 and /  G  W. The problem is to extend hf to the components
of the normality set F(f) (under the condition that / 0 and / are in general
position in W). This extension has been carried out by Mane, Sad, and
Sullivan ([77], [90], Part I I I ) ( I ) . Moreover, hf(z) depends analytically on / ,
and the λ lemma automatically ensures that these extensions are joined
together continuously and that hf is quasi conformal.

We restrict ourselves to a description of the construction in the case when
all periodic components of N(f0) are Schroder domains.

an extension to Siegel discs and Arnol'd Herman rings a stronger version of the
λ lemma was needed, which was proved by Sullivan and Thurston [92] (see also [42]).
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To simplify the notation we shall assume that / 0 G  W  has a unique
Schroder domain connected with an attracting fixed point a(/ 0)· A function
/ sufficiently close to / 0 has an attracting fixed point a(f). The critical
points c, (/ ) can be numbered so that they depend continuously on /  (each
point being counted with its multiplicity). We suppose that the first r
critical points of/ 0 lie in the attracting domain of a(/ 0), while the others lie
in the Julia set / ( / 0) . Then it follows from / stability that the same
properties hold for any close function / . We also suppose that for some
m, l> 0, /, /  G  [1, r]

(2.1) rciif) =  fcjif),

where this relation breaks down under a perturbation of / . We denote the
set of such /  by Λ. Suppose that the preceding considerations are valid in a
neighbourhood Wo of / 0. Let us show that Λ Π Wo is closed and nowhere
dense in Wo. We denote by Ζ the set of functions / G  Wo for which the
multiplier λ( / ) of the fixed point a ( / ) vanishes. Ζ is a proper analytic
subset of Wo. Therefore, it is sufficient to show that Λ is closed and
nowhere dense in a neighbourhood W^ of fx G  W0\Z.

Let Wx C  W0\Z. Then there is an ε > 0 such that any transform /  €E W±
univalently maps {ζ: | ζ — α(/ ) | <C ε} into itself. On the other hand, there
is a k  such that | fcai) — «(/ ) Κ ε for m > k (/  G  Wu i = 1, ..., r).
Consequently, if / £  WY Π Λ, then / satisfies some equality (2.1) with /  =  k.

We now consider the set X of / G  W  such that / fe(c, (/ )) =  «( / ) for some
/, where this equality breaks down under a small perturbation of / . For the
same reasons as above, it is sufficient to show that Λ is closed and nowhere
dense in a neighbourhood W2 such that W2 C W^X. But

inf {|/ *(c,(/ )) a(/ ) |: /  6 W2, 1 < i < r} > 0,
and fm(Ci(f)) >· a{f) (m > «>) uniformly in W2. Therefore, the equations
(2.1) for /  =  k  and large m have no solutions in W2  It follows that Λ Π W2

is a proper analytic subset of W2.
We now show that an endomorphism / G  Wo\ \  is structurally stable. If

/ Ε Η \Λ, then the multiplier λ( / ) of the fixed point a ( / ) is non zero. We
denote by φ^: ζ * *•  ζ f  β(/ )ζ2 f· . . . the normalized Koenigs function for / .
It is univalent in a neighbourhood Vf of a ( / ) and satisfies there the
Schroder equation <p/(/z) =  λ(/ )φ^(ζ). Each construction of the Koenigs
function shows that </y(z) is analytic in all variables. We diminish the
neighbourhood (J Vi (without changing the notation) so that wAVA =

/ EW,
=  U e =  {z: | ζ | < ε} and the orbits {fVji/) }%=0 are disjoint with bVf. Let
α,·(/ ) be the first point of {rci(/ )}"= o that falls into Vf (i =  1, ..., r). Then
«,·(/ ) depends analytically on /  and we have the following alternatives:
flf(/ ) = a,{f) or α,·(/ ) #  a,(/ ) for any /  G  Κ \Λ. We now put

0" =  !' ' r; / e
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It is easy to construct (in some neighbourhood Ω C Wo) a family of
quasi conformal homeomorphisms gf: U c5such that (i)gy(X(/ 0)z) = X(f)gf(z);
(ii) gf: bj(f0) * bi(f); (iii) gf depends analytically on /  for any z;
(iv) gfc(z) ==  z. We now put h{ =  <r7'e£/°<jf/0  Then hf: Vu +  Vf is a quasi
conformal homeomorphism conjugating / 0 and /  locally and depending
analytically on / .

We extend hf to the whole attracting domain ∆ ( / ο) of the fixed point
oc(f0). Let ζ 6 fo'Vf,Wft and foz Φ α,·(/ο)· It follows from the implicit
function theorem that there is an analytic function φζ : Ω > C satisfying
Αψζ(ί)) = hf(foz)· Ψζ(ίο) ~  z  The family of these functions extends hf to
/ o'F / 0 with some punctures. Iterating, we extend hf to the attracting domain
∆ ( / ο) with punctured inverse images of the at{ / 0) of all orders. An application
of the λ lemma completes the proof of Theorem 2.2.

A remarkable example of / stable endomorphisms (in the whole manifold
Sid) is given by the endomorphisms satisfying Axiom A. Their structural
stability follows both from general arguments of the theory of smooth
dynamical systems (see [26], [32]) and from our considerations (see, for
example. Theorem 2.4 below).

Conjecture 2.1 (F atou ( [60] , 73)). In the family 8?^ of all rational
endomorphisms of degree d, J stability is equivalent to Axiom A.

§2.3. The behaviour of orbits of critical points
1. As we have repeatedly seen, the global dynamics of a rational
endomorphism depends essentially on the behaviour of the orbits of critical
points. Therefore, it is useful, leaving aside the other orbits for the time
being, to investigate the dependence of these orbits on parameters. This
approach has been used independently by Levin [17] (in the context of
one parameter families of polynomials) and by the author [21 ] [ 23 ] .

Suppose first that some critical point c(f) is a single valued analytic
function of/ . Then the orbit {f'c(j)}m=o of this point defines a sequence of
holomorphic functions of/ , which needs to be studied. However, critical
points in general are many valued functions having singularities. Therefore,
for a full description of the situation it is necessary to pass to the analytic
set Cr =  {(/ , c ) ( f X C : J)f(c) =  0}. We define on it a sequence of
analytic functions Fm : Cr > C as follows: Fm(f c)  fmc (m — 0, 1,2. ...) .
This sequence contains complete information on the dependence of the
orbits of critical points on / . Montel's theorem for families of functions on
an analytic set (see [69]) is a tool for investigating it.

We denote by Reg the set of points ( /  c) G  Cr in whose neighbourhoods
{Fm}Z^o is a normal family, and by Irr the complementary set Cr\ Reg. If
(/ o. c0) € Reg and (/, c) & Cr is close to (f0, c0), then the orbits {foco}™=Q

and {fc}m=o are uniformly close.
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Proposition 2.1 [17] . a) The set Reg is open and dense in Cr; b) the set
Irr is either perfect or empty.

In fact, Irr locally has a very complicated structure: if U is a neighbourhood
of a point χ Ε Irr, then Irr separates U into countably many components.
It follows, of course, that χ is not isolated. Moreover, if χ is a smoothness
point of Cr, then U Π Irr is not contained in any smooth submanifold.
Below we describe in more detail the structure of Irr for the quadratic
family / „ .: ζ · * ζ2 +  w (§2.7) .

We denote by F in the set of (/ , c) € Cr such that the orbit of a critical
point c is absorbed by some repelling cycle, but this property is unstable
under a perturbation of (/, c). The next assertion follows easily from
Montel's theorem.

Proposition 2.2. Fin is a dense subset of Irr.

2. A subset of a locally compact metric space X is called massive if it
contains a dense subset of type Gs (the intersection of a countable number
of open sets). Next, a property depending on a point χ Ε X will be called
typical if it is satisfied for a massive subset of X. Our proofs of typicalness
are based on the following remark: the set of zeros of a non negative upper
semi continuous function ρ : X * R is of type G6.

Theorem 2.3 ([21 ] [23] ) . For a typical point (f c) Ε Irr the orbit
{/™c}"=o is contained in the Julia set / ( / ) and is dense there.

Proof. We denote by pp(f, c) the spherical distance from the orbit { fc } ". ^
to the farthest repelling periodic point of/  of order p. Let us show that
PP(x) =  0 on a massive subset of Irr. The set N eu p of points χ =  (/ , c) £ Irr
such that /  has a neutral cycle of order ρ that can be made attracting under
a perturbation of /  is nowhere dense in Irr (in view of the complicated local
structure of Irr described above). Therefore, it is sufficient to check that in
some neighbourhood of any point x0 =  (/ 0, c0) € Irr\Neup the property
Pp(x) = 0 is typical. Let αΡι 1( / 0) , . . ., aP iJ( / 0) be repelling periodic points
of fQ of order p, and ζ =  a,,, f(/ )a parametrization of the curve fpz = ζ in
a neighbourhood U of ( i 0 , a M ( / 0 ) ) E S l x C ( i = l , ..., / ). If U η N eup =  φ,
then cLp,i(f) is the complete set of repelling periodic points of /  of order p.
The function p'™l(f, c) — dist ( fc , aP i i( / ) ) is continuous in U. Therefore,
p P i i =  inf p£V is upper semi continuous, and so the set LPii of its zeros is

of type G6. On the other hand, Lp > f contains points (/ , c) Ε U such that
f"c =  ap,;(/ ) for some m. But the set of such points (/ , c) is dense in
Irr Π U (a minor refinement of Proposition 2.2). Consequently, LvA is
massive in Irr Π U. Thus, the property pp(x) =  0 is satisfied on the massive
set Π Lp.i  Therefore, we have verified that the property pp(x) = 0 is

typical in Irr. But then the set of zeros of the function ρ =  sup p p is
K<
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also massive in Irr. It remains to observe that the equality p(x) =  0 means

that all repelling cycles o f/ are contained in {/ mc}m=o, that is, J(f) a {fmc}™=o
To prove that the opposite inclusion is typical we consider the function

r
P( f c), the distance from c to the closest repelling periodic point of /  of
order p. rp is upper semi continuous, since repelling cycles are stable
under perturbations. Therefore, the function dist (c, / (/ )) =  inf rT(j, c)

l ^ <

is also upper semi continuous, and so it vanishes on a set L  of type G& On
the other hand. Fin C L. By Proposition 2.2 L  is dense in Irr. The
theorem is now proved.

3. In conclusion we mention a result that relates / stability with the
stability (with respect to a parameter) of orbits of critical points.

Theorem 2.4 ([21 ]  [23]) . For a function /  ζ iJi to be J stable it is
necessary and sufficient that (f c,·) G  Reg for all critical points c\  of f

§2.4. The family fw: ζ * *•  1 f  wiT*

1. Our aim is to show that there are many functions in the family fw for
which J(fw) = C, the orbits of critical points of these functions having a
behaviour essentially different from that in the examples of §1.18. All
transforms fw (w G  C*) have two critical points 0 and °°. However, these
points lie in one large orbit, since / „,: 0 > *•  oo for all w G  C*. Therefore, it
is sufficient for us to follow the orbit of one of the critical points. The
choice of the family fw is connected precisely with this circumstance.

The analytic set Cr defined in the preceding section is parametrized by
two punctured planes Grt =  {{fw, 0): w 6 C *} and Gr2 =  {(/ „, oo): w ζ C*}.
Since fw: 0 > *· oo , the properties (fw, 0) G  Irr and (fw, °°) G  Irr are
equivalent. By Theorem 2.4 these properties hold if and only if fw is
/ unstable. The corresponding values of w will be called unstable, and we
preserve the notation Λ for the set of such w.

The set Λ is non empty. For example, for w0 =  —4/27 the function fUe

has fixed point a 0 =  2/3 with multiplier 1. For w =  —4/ 27 +  ε (ε > 0) the
point a0 gives rise to a pair of fixed points, one repelling and one attracting.
Therefore, /„,„ is / unstable (fWo ζ JVj in the notation of §2.1). Thus, Λ is a
non empty nowhere dense perfect subset of C*. We shall not describe its
structure in detail. This can be done as in the case of the family ζ * *•  ζ2 )  w,
which we discuss in detail in §2.7.

Proposition 2.3. For a typical unstable value of a parameter vv G Λ we
have: a) the Julia set J(fw) coincides with the whole sphere; b) the orbit
{fu,c}m**o °f the critical point c = °° is dense on the sphere.

Proof. We consider the set X =  {w 6 Λ: J(jw) — C}. Let us show that X
has type Gs (see Proposition 1.8 and Theorem 2.3). For let {ai},"i be a
countable dense set on C. and rPii(w) the distance from a,· to the closest



100 M.Yu. Lyubich

repelling periodic point of order p . Since r P i i is upper semi continuous, the
same is true for ri(w) ==  dist (a4, J(JW)) =  inf rp>t(u>). Therefore, rt vanishes

P. i
on a set of type G§. But X coincides with the set of common zeros of the rt.
Let us now show that X is dense in Λ. For by Theorem 1.24 if the orbit
{/J?°°}m=o is absorbed by a repelling cycle, then J(fw)  C. In other words,
Fin C X. By Proposition 2.2 Fin is dense in Λ and a) is proved. Now b)
follows directly from Theorem 2.3.

Sullivan's theorem shows that for w e Λ one of the following possibilities holds: (i) fw has a
neutral cycle; (ii) fw has a cycle of Arnol'd Herman rings; (iii) J(,fw) — C*·1·1. The possibility (i) is
realized on a countable union of piecewise analytic curves, and so on a subset of Λ of the first
category. From this point of view Proposition 2.3 shows that the possibility (ii) can also be realized
only on a subset of the first category. It is interesting to investigate the structure of the set of values
of the parameter w e C for which the possibility (ii) is realized (and whether there are such values).

Fig. 10. The transform ζ ι 4
27z2

2. We now illustrate on our example j w : ζ ·—*•  1 \  wz~2 how complicated
the bifurcations of the oribt of a critical point may be in a neighbourhood
of an unstable value of the parameter. We take for such a value our known
value w0 =  4/ 27 for which / 0 ε=  /„,„ has neutral point a0 — 2/ 3. There are
two points a < 0 < b such that / 0[0, b] = [ <», 0 ] , fo[a, 0] =  [ » b] (see
Fig. 10). F or χ S [a, 0) U (0, b ] we have I f'{x) I > y > 1. We consider
the invariant set

<?0 =  {χ: la, b] (m =  0, 1, 2, . . .)}·

As in Example 1.2 it can be shown that QQ is a Cantor set. With each point
χ G  Qo we can associate a sequence Ex = (ε0, ζχ, . . .) of ± 1 as follows:
e m =  sign (fx). The map Η topologically conjugates f0: Qo) and the one

possibilities (i) and (iii) are not alternatives: if fw has a neutral non Siegel cycle,
then J(fw) =  C. The possibilities (i) and (ii) are apparently alternatives, but a proof of
this is not known.
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sided topological Markov chain (TMC) σΑ: ΣΧ) with transition m at r ix( 1 )

A =  / . J. It follows that the periodic points of the transform f0: Qo) are

dense in Qo.
The Cantor set Qo is an invariant repelling set for/ 0. We use the general

theory of structural stability of hyperbolic sets of smooth dynamical
systems. For invertible systems it is presented, for example, in the appendix
to the book [26] , while our irreversible situation can be investigated in a
similar way with some simplifications. It follows from this theory that if w
is close to w0, then fw has an invariant repelling set Qw such that / 0: Qo)
and fw: Q,c5 are topologically conjugate. In addition, the conjugating
homeomorphism hw : Qo > Qw depends continuously on w.

We shall say that the f orbit of a point ζ copies the g orbit of ξ if the
natural map of the orbits gm^^>  f'"z (m =  0, 1, 2, ...) extends to a
homeomorphism of their closures. If for some /  > 0 the orbit of f'z copies
the orbit of ξ. we shall say that the orbit of z copies asymptotically the
orbit of ξ.

Proposition 2.4. For any point y £ ^arbitrarily close to vv0 =  4/ 27 there is a
value of the parameter w such that the orbit {f2,c }£ = 0 of the critical point
c =  oo copies asymptotically the orbit {σ™ί/ }̂ =0 of the TMC with matrixA a
Proof We consider a point z =  H'1]/  € Qo· If ζ is a periodic point of/ 0,
then hw(z) depends analytically on w. Since the periodic points are dense in
Qo, hw(z) depends analytically on w for any ζ £  Qo. Now it follows from
Montel's theorem that there is a w close to w0 and a natural number /  for
which f^c =  hw(z). This gives the required assertion.

Proposition 2.4 gives a huge variety in the asymptotic behaviour of the
orbit of a critical point, which is a most important topological invariant. In
particular, in any neighbourhood of w0 we obtain a continual supply of
different topological types of endomorphisms fw. Of course, in our
considerations the specific features of the family / „ .: z t *. i f wz~  are
illusory. But for this family we can claim additionally that all the functions
constructed in Proposition 2.4 have the property J(fw) = C (this follows, for
example, from the complete description of the dynamics on the F atou set
F(f)).

The results of the present section have been obtained by the author
[21] [23] . Another continual set of topologically non conjugate
endomorphisms for which / ( / ) =  C has been constructed by Herman [67] .

(1)We can become acquainted with the definition and properties of TMC in the survey of
Bowen [6].
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§2.5. Classes of quasi conformal conjugacy and Teichmuller spaces

1. We denote by qc(/ ) the set of rational endomorphisms quasi conformally
conjugate to /  modulo the action of the group PSL2(C). In this section we
describe a parametrization of qc(/ ) due to Sullivan with the help of a
suitable Teichmuller space.

The reader can become acquainted with the theory of Teichmuller spaces
in [1], [2]. For convenience we give the basic definition in a form slightly
different from that in those books. Let S be a Riemann surface of finite
topological type (that is, the fundamental group 7^(5) is finitely generated).
With the help of the uniformization theorem S can be embedded in a
compact Riemann surface with boundary S =  S U  dS, where dS is called the
ideal boundary of S (see [ 1 ], Ch. II). Any quasi conformal homeomorphism
5j *•  S2 extends to a homeomorphism Si * S2.

Suppose that some isolated points are marked on S. We denote by Zs the
space of conformal structures on S. Two structures µ, ν € Zs are called
isotopic if there is a continuous family of quasi-conformal homeomorphisms
q>t: S) identical on dS and at the marked points such that ψ0 =  id, (<ρι)(µ =  v.
The Teichmuller space Ts of a surface S with marked points is the space of
classes of isotopic conformal structures. We shall denote the element of Ts

corresponding to a conformal structure µ by µ. The space Ts can be
endowed with the structure of a complete metric space (the corresponding
metric is named after Teichmuller) and with the structure of a complex
analytic manifold (infinite dimensional in general).

Suppose that a group Γ of conformal transforms (not preserving the
marked points) acts on S. Then the equivariant Teichmuller space can be
defined naturally (it must be required in the above definition that the
conformal structures are invariant and the isotopies are equivariant, that is,
the homeomorphisms <pt commute with Γ). In this situation we preserve the
notation Zs and Ts, bearing in mind that the Riemann surface 5 remembers
the action of Γ (and equally the marked points). The appearence of
equivariant Teichmuller spaces is a curious nuance in the theory of
deformations of rational functions, which apparently has no prototypes.

2. In §§1.8 1.12 with each cycle of components of the Fatou set we
associate a Riemann surface with marked points and, perhaps, with the
action of the rotation group T. Let S{f) be the union of these surfaces,
and TS(f) the corresponding equivariant Teichmuller space.

We dwell in more detail on the spaces Tg connected with cycles of the components of the Fatou
set.

(i) The torus T2 with k > 1 marked points.
We realize it as the quotient of C over the group ∆ =  {mej +  ne2 : m, η 6 Ζ }, where Im (c2/ e j) > 0.
Suppose that the marked points correspond to d0, . . ., djj.j £ C, The conformal structure µ on the
torus is realized as a ∆ invariant conformal structure µ' on the plane. By the measurable Riemann
theorem there is a quasi conformal homeomorphism ft: C^ normalized by the conditions h(e^) =  1,
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h(do) =  0 for which Λ,,µ' =  a. We put τ =  h(e2), bt = h(d() (/  =  1, ..., k  1). We consider the map
η : Tg +  <f>s c Cfc, which associates with a class µ of isotopic structures the point
(τ, 6 l t . . ., i>/j_j). It is easy to verify that η is well defined and is an unramified covering over its
image &B. Therefore, η induces an analytic structure on Tg. Furthermore, (τ, 6j, . . ., fy,_i)are
local parameters (moduli) on Ts and dime ?S = k. In particular, we always have dime TS * 1· ' n

the case k =  1 the space Ts is identified with the upper half plane Η (with the help of the map η).

(ii) The punctured plane C* with k >  1 marked points.
In this case dim Tg — k  1. For k =  1 the space T$ is a single poin t.

(iii) The annulus A =  A( l, r) with k > 0 marked points dy, ..., dfc and the action of the rotation
group T.
To determine moduli of the equivariant Teichmuller space Tg we mark two more points rfg e T,
^fc+i £ T r on the components of the boundary of A. Let µ be a T invariant conformal structure on A.
Then there is a quasi conformal homeomorphism h : A +  A(l, R) commuting with the rotations such
that η^µ =  σ, hid^) =  1. The value of h at one point of the concentric circle T o determines ΛΙΤρ.
Therefore, it is sufficient to keep one marked point d j0 =  do,di,, . . ., <*JI+ 1

 = dh + i d ** 0) o n

each concentric circle. Then an = h(din\ (n = 1, ..., / +  1) are the moduli of 7^. Thus,
dim c Ts = l+\  > 1 •

(iv) The punctured disc U* with k > 0 marked points and the action of the rotation group.
This case is completely analogous to the preceding one, but here dimrj Tg = / , where /  is the number
of concentric circles with marked points. F'or k = 0 the space 7^ is a single point.

3. We now consider the Julia set / ( / ) . If mes / ( / ) > 0, then it is meaningful
to consider measurable conformal structures on / ( / ) . A structure µ is given
by a Beltrami differential k(z) exp 2i6(z)dl/ dz on / ( / ) (see §1.7). If µ is
non standard (that is, k(z) ψ 0), it determines a measurable field of directions
θ(ζ) on {z: k(z) φ 0), the support of θ(ζ) (of course, the support is defined
up to sets of zero measure). To an invariant conformal structure there
corresponds the invariant field of directions 0(fz) — θ(ζ) + arg f'(z) + nk.
Let Tj(f)be the space of invariant conformal structures whose support is
contained in / ( / ) .

We consider the partition Erg of the Julia set / ( / ) into the ergodic classes
of / . It is defined within the framework of the theory of measurable
partitions [27] as the measurable hull of the partition into large orbits.
Lemma 2.2. On the Julia set there are finitely many ergodic classes Xj of
positive measure and invariant measurable fields of directions Oj(z) whose
supports coincide with Xj (j =  1, ..., k) such that any invariant conformal

k
structure on / ( / ) is given by a Beltrami differential 2 λ,  exp (2iQj(z))dz/ dz,

where λ;· Ε U. Therefore, TJ(n is diffeomorphic to \ }k.

Proof. The space TJ(f) is finite dimensional. For otherwise we would obtain
an infinite parameter deformation of /  (our familiar construction, taking
account of Lemma 1.8).

Let V C / ( / ) be the support of some invariant field of directions 0(z). If
the quotient space F/Erg is infinite dimensional, then the space of invariant
measurable functions \ {z) on V is infinite dimensional. But each such
function generates an invariant Beltrami differential λ(ζ) exp (2id{z))dz/ dz.
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The ;ontradiction shows that V consists of finitely many ergodic classes of
posuive measure.

We consider all components Xj of positive measure that admit invariant
fields of directions 0;·(ζ) (1 < /  < k). They generate a A: dimensional family

h

of invariant Beltrami differentials 2 λ; exp (2ίθ̂ (ζ)) dz/ dz. Consequently,
j= i

k < oo. Finally, by what we proved above, the support of any structure
h

µ € Tjy) is contained in \^J X}, so µ is given by the Beltrami differential
i—i

mentioned above.
Corollary. On the Julia set there are no wandering sets X of positive
measure on which all iterates f" \X are one to one.
4. The Teichmuller space of a function / is by definition T(f) = 7 W ) χ Tj(f).
We consider the group G(f) of quasi conformal homeomorphisms of the
sphere commuting with / . The quotient group of G(f) modulo the
connected component of the unit is called the modular group Mod (/ ) of
the function f The group G(f) acts naturally on the space Z(f) of
/ invariant conformal structures: µ >»· h^ (h G  G(f), µ G  Z (/ )) . By
Lemma 1.8 this action induces an action of Mod /  on T(f). It can be
shown that the transforms of the modular group are isometric diffeomorphisms
of T(f). Let / ( / ) be the group of conformal transforms ζ > *•  (αζ f  b)!(cz f d)
of the sphere that commute with / , and g'E. qc(/ ) the class of endomorphisms
conformally conjugate to g.

Theorem 2.5. The group Mod(/ ) acts on T(f) in a properly discontinuous
way. The orbit space 7X/ )/ Mod(/ ) is identified naturally with qc(/ ). The
isotropy group of a point χ €Ξ T(f) is isomorphic to the group I(g), where
g' G  qc(/ ) corresponds to the orbit of x.

Proof, a) A construction of the projection 7iy : T(f) *•  qc(/ ). Let µ be a
T invariant conformal structure on the Riemann surface S(f), and r an
invariant conformal structure on the Julia set / ( / ) · The structure µ is lifted
to an / invariant conformal structure µ on the normality set F(f). The
structures µ and τ determine an / invariant conformal structure ν =  (µ, τ) on
the whole sphere C. By the measurable Riemann theorem there is a quasi
conformal homeomorphism 7ιµ,τ: C) such that (/ ιµ, τ)*ν =  o^•  Then
/µ,τ — ̂ µ.τ°/° µ!τ is a rational endomorphism of the Riemann sphere. Since
hu,x is defined up to a composition with a conformal transform of the
sphere, / µ_Τ is defined up to conformal conjugacy. Therefore, we associate
with each equivariant conformal structure (µ, τ) on S(f) U / ( / ) an element
/ µ, τ in
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Let us show that to equivariantly isotopic structures κ and µ there
correspond conformally conjugate transforms / κ τ and / µ, τ. In addition, we
can assume that the structures κ =  σ5 ( / ) and τ =  GJU) are standard, / «,τ =  / .
By Lemma 2.3, proved below, the structures κ and µ can be joined by an
equivariant isotopy Ht: S{f)} piecewise analytic in t. Then the family Ht is
lifted to a piecewise analytic family Ht of quasi conformal homeomorphisms
of the sphere commuting with / , HQ = id. The lifting construction is
described in §§2.1 2.2, but we now deal with the trivial family of
endomorphisms consisting of a single endomorphism ft = f. In particular,

we have Η\ λφΗχ — f. It follows that (H^aF{J) =  µ on F(f) (since
=  µ on S{f)). Moreover, Ht  id on the Julia set. Hence,

g v. It follows from the uniqueness in the measurable Riemann
theorem that φ =  h^oH,  ̂is a conformal transform of the sphere. But ψ
conjugates /  and / tt>T. Therefore, the map 7iy : T(f) + qc ( / ) is well defined.

b) The map 77y is onto. For if g =  hofoh'1, then the structure h~la^  is
/ invariant and so induces a T invariant conformal structure µ on S(f) and
an invariant conformal structure r on / ( / ) . It follows from the uniqueness
in the measurable Riemann theorem that g — / µ, τ.

c) The fibres of π/  are orbits of the modular group Mod(/ ),which can
be verified directly.

d) A description of the isotropy group of a point * G T(f). We can
assume that χ =  (os(i), aJif)). We consider the group / ( / ) of conformal
transforms of the sphere commuting with / . The natural homeomorphism
/  : / ( / ) >•  M od( / ) is an embedding. For if h E. G(f) is isotropic to id, then
h\J(f) = id (Lemma 1.8). Consequently, if in addition h is conformal, then
h = id. Therefore, Ker /  is trivial. We identify the group / ( / ) with its
image in M od(/ ) .

Obviously, / ( / ) is contained in the isotropy group of x. Conversely,
suppose that hrx — χ (h €. G(f)). This means that the structures osif) and
Hf.asw are isotopic, where the homeomorphism H: S(f)"} is induced by the
homeomorphism h: C). Again applying Lemma 2.3, we consider a piecewise
analytic isotopy Φ 4 : S(f)) joining as(i) and H+aB(f). As above we lift the
family Φ( to the family φ, of quasi conformal homeomorphisms of the
sphere commuting with /  such that ψ0 = id. Then (φ^^σ^ =  Λ,,σ^, since

(Φι)#σ5(/ ) =  Η^Οβφ. Therefore, the transform ff\ x°h is conformal. We now
consider the isotopy (ft1 oh. It joins h with a conformal homeomorphism.
This completes the proof of the fact that the isotropy group of χ is
isomorphic to / ( / ) .

e) The modular group Mod(/ ) acts on the Teichmuller space T(f) in a
properly discontinuous way. It is sufficient to verify this for some subgroup
of finite index. We denote by P er 9( / ) the set of periodic points of / wit h
period q. It is invariant under the group G(f). We consider a normal
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subgroup Gq{f) C G{f) of homeomorphisms h & G{f) such that
h\?erq(f) =  id. We choose the period q so that IP erq( / ) l > 3. Then
there are no non trivial conformal transforms in G(f). The image of
G( / ) in Mod( / ) under the natural homeomorphism is our desired
subgroup of finite index. We denote it by Modq(/ ). By d) Modq{f) is
embedded into the group of isometric diffeomorphisms of T{ f) endowed
with the Teichmuller metric. We denote the image under this embedding
by Γ, ( / ) .

Let ∆ be the group of all isometric diffeomorphisms of T(f)  It is a
Lie group (see [15], Ch. 1, §4). Let us show that Tq{f) is closed in ∆.
Let 7,  € Γ, ( / ) , 7,  »•  7 S ∆; χ =  (σΒ(/ ), σΙ(/ )) € T(f). Then there are
conformal structures µ,· and µ on S(f) U / ( / ) representing the points 7,0c
and yx of T(f) such that µ,· *•  µ. We consider liftings µ,·, µ of µ,·, µ to the
sphere C. Using the construction of lifting analytical deformations, which
we have applied repeatedly in the proof, we find quasi conformal
homeomorphisms h, Ε Gq{f) such that (h^^o  =  µ£. Furthermore, by the
measurable Riemann theorem there is a quasi conformal homeomorphism
h: C ) with three fixed points in ?&Tq(f) such that h^a^  =  µ. Since
/ i, lPerq(/ ) =  id, it follows that ht *•  h (the continuous dependence in the
measurable Riemann theorem). Therefore, h G  Gq(f) and an element 7 S ∆
corresponds to h under the natural homeomorphism Gq(f) > ∆. This shows
that 7 € Γ, ( / ) .

Therefore, Tq(f) is a Lie subgroup of ∆. Being totally disconnected,
Γ<,(/ ) is discrete. But any discrete group of isometric diffeomorphisms is
properly discontinuous ([15], Ch. I, §4). Theorem 2,5 is now proved
modulo the following lemma.
Lemma 2.3. Let S be a Riemann surface of one of the types listed in
subsection 2 {with marked points and perhaps with an action of the rotation
group), and let κ and µ be T invariant conformal structures on S. If κ and
µ are equivariantly isotopic, then they can be joined by a piecewise analytic
{in the parameter) equivariant isotopy.

Proof. It is sufficient to show that if the structures κ and µ are isotopic and
close enough, then they can be joined by an analytic isotopy. As usual, we
can assume that κ =  as. We consider the universal covering space S of S.
It is the plane in the case S = T 2 or S =  C*, and the upper half plane in the
case S — U*. When S = A, the annulus, it is convenient to realize 5" as a
horizontal strip. In all cases except the first, the covering S > S has the
form: ζ > *•  exp 2π£ζ. We mark on S the inverse images of the points
marked on S. Finally, the action of the rotation group on U* or A generates
the action of R on the half plane or the strip, ζ * *•  ζ \  t {z E. S, t & R).
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We lift µ to a conformal structure µ on S. Then there is a quasi
conformal homeomorphism id +  ψ: S1) close to id, identical on dS and on
the marked points, such that (id +  ·ψ)*σ» =  µ. In the case of the half plane

s
or the strip φ(ζ +1) =  φ(ζ) (t G  R). If φ is sufficiently small, then the
maps hw = ίά + \νψ (Iwl < 2) are quasi conformal homeomorphisms of S.
Obviously, the hw are identical on dS and on the marked points and are
equivariant. Lowering hw to S, we obtain the required isotopy.

Theorem 2.5 will be used repeatedly in what follows. We now state two
direct consequences of it.
Corollary 1. The total number of cycles of the Schroder domains and
Arnol'd Herman rings does not exceed Id 2.
Proof. Each of these cycles brings into qc ( / ) at least one complex
parameter.
Corollary 2. The space qc ( / ) is connected.
Remark. Theorem 1.16 on the absence of wandering domains is well
interpreted from the point of view of the theory developed above. For
example, the absence of simply connected wandering domains is connected
with the fact that the universal Teichmuller space Tv (where the disc U is
not endowed with the rotation group) is infinite dimensional.

§2.6. Α domains of the parameter space

Let W  be a connected component of the set Σ of / stable functions.
W  will be called an Α domain if the endomorphisms /  G W  satisfy Axiom A.
For this it is sufficient that some f0 in W  satisfies Axiom A. The Fatou
conjecture stated in §2.2 claims in this language that in the manifold 9id of
all rational functions of degree d any component W  of Σ is an A domain.
The following result is the most advanced achievement in this direction.

Theorem 2.6 (Mane, Sad, Sullivan [76] , [77]) . Suppose that an
endomorphism f is J stable in 5Rd and has no measurable invariant fields of
directions on the Julia set / ( / ) . Then f satisfies Axiom A.

Proof. By Theorem 2.2, perturbing/ , we can make it structurally stable.
We shall assume that this is so. Then /  cannot have Bottcher, Leau, or
Siegel domains that are destroyed by a small perturbation. It is shown in
[76] that the Arnol'd H erman rings are also unstable. Therefore, each
periodic component of F(f) is a Schroder domain. Moreover, there are no
invariant fields of directions on / ( / ) . Therefore, d im c T(f) is equal to the
number k of critical points in F(f) (in a general position the orbits of the
critical points are disjoint). By Theorem 2.5, d im c (qc( / ) ) =  k. On the
other hand, d im c (qc( / ) ) =  2d~2, sin ce/ is structurally stable. Thus,
k = 2d— 2, that is, all critical points lie in F(f). Therefore, the orbits of
all critical points converge to attractive cycles, which is equivalent to Axiom A.
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Corollary. If mes / ( / ) =  0 for a rational endomorphism in a general
position, then Conjecture 2.1 of Fatou is valid.

In conclusion we state an important result in the direction of topological
classification of endomorphisms satisfying Axiom A.

Theorem 2.7 (Sullivan [90] , Part I II). If endomorphisms f and g satisfying
Axiom A are topologically conjugate, then they are quasi conformally
conjugate.

The next assertion follows from Corollary 2 of Theorem 2.5.

Corollary. If endomorphisms f and g satisfying Axiom A are topologically
conjugate, then they lie in the same A domain.

§2.7. The Mandelbrot set

1. We consider the simplest one parameter family of polynomials
fw: ζ ι »· z  +  w (w £ C). For real w the fw have invariant circle R and
generate interesting and non trivial dynamics on it, which has been intensively
studied for the last 10 years (see [35] , [49]) . The bifurcation diagram for
complex values of the parameter has been considered in detail by Mandelbrot
[74] and independently by Levin [18] (see also [46]) . Use of the quasi
conformal technique has enabled Douady and Hubbard to establish some
remarkable properties of this diagram. In the same way, the problem of the
growth of topological entropy of / „ .: R} as w € R decreases has been solved
(Douady and Hubbard, Milnor, Sullivan, Thurston).

The transforms /„,: ζ > *•  ζ2 +  w are pairwise not conformally conjugate,
and each quadratic polynomial is conformally conjugate to an fw. Therefore,
the family fw is the quotient space of the space 5% of quadratic polynomials
modulo the action of the affine group ζ • ••  az 4  b by conjugations.

We consider the orbit 0 > *•  w* * w2 \  w* + u>4 f  2w3 f  w2 +  w> + . . . of
a critical point of fw. Here there arises the sequence of polynomials
Fm(w) =  / 5(0), cleg Fm =  2m~\  By Theorem 1.18, if lF m(w)l > °°, then the
Julia set J(fw) is a Cantor set. Otherwise J(fw) is connected. The set
Μ =  {w (;C: J(JW) is connected} is called the Mandelbrot set. Therefore,
C\M =  {w: | Fm(w) | *  oo (m »  oo)} =  {w: J{jw) is a Cantor set}.

Proposition 2.5. a) The Mandelbrot set is compact; b) its complement
C\M is connected; c) each connected component of its interior M° is
simply connected; d) the set of J unstable endomorphisms fw coincides with
the boundary dM of the Mandelbrot set.

Proof We put Am = {w: | Fm(w) j > 2}. It is easy to show that

C \ M =  U Am. Each set Am is a domain, since Fm: C 5 is a ramified

covering and F~f (ca) = {oo} (or from the maximum modulus principle).
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Consequently, C\M is a domain containing {w: | w | > 2}, which proves a)
and b). c) follows from the following general fact of spherical topology: if
V is a domain on the sphere, then the connected components of (C\  V)° are
simply connected (in our case V =  C W) .

Let us prove d). Let W  be a connected component of the interior of M°.
Since l F m ( w) K 2 on M, the family {Fm(w)}^0 is normal in W. By
Theorem 2.4, W cz Σ . In C\ M the sequence fF m(u;)} tends to °° uniformly
on compact sets. For the same reasons, C\ Af cz Σ. Therefore,
M° U (C \M) cz Σ. Conversely, let w G  dM. Then \Fm(w)\  < 2
(m = 0, 1, 2, .. .) , but lFm(w, )l * oo ( w ~* oo) for some sequence w,· »· w.
Again applying Theorem 2.4 we see that fw is / unstable.

2. For the quadratic family / „,: ζ »> ζ2 f w, as in the general case, it is not
known whether each connected component W  of M° is an Α domain. Let W
be an Α domain. This means that for w E. W  the function fw has an
attracting or superattracting cycle a(w) =  {ah(w)}fl=0. It follows from the
implicit function theorem and the fact that W  is simply connected that the
functions ζ =  ak(w) are single valued branches in W  of an algebraic function
given by the equation fj}(z) =  z. Consequently, the multiplier

p l
λ(ιζ;) =  2P JJ aft(u7) is also a single valued branch in W  of an algebraic

fe—O

function. When reaching the boundary dW  the cycle a(w) becomes neutral,
and so l\ (w)l =  1 on dW. Therefore, λ : W  >· U is a ramified covering. In
particular, λ necessarily has zeros in W. They are those values of w for
which <x{w) becomes superattracting. The following theorem shows that in
each Α domain there is exactly one such value of the parameter.

Theorem 2.8 (Douady and Hubbard [53] [55] ) . The multiplier λ : W >•  U
is a univalent conformal map of the Α domain W onto the disc U.

Proof. We consider the domain W* obtained from W  by puncturing the
zeros of λ. Let vv0 G  W*, /„ ===  / „„, λ0 ^ λ(^ 0) . By Theorem 2.2, W*
coincides with qc(/ 0) and so there is a natural projection π 0 : T(f0) *•  W*,
whose fibres are the orbits of Mod(/ 0) (Theorem 2.5( 1 ) ) .

The Riemann surface S(f0) is the union of the torus So with one marked
point and the punctured disc U* with the action of the rotation group. The
latter does not influence the space T(fQ) and we can forget about it. The
Julia set has zero measure (Corollary of Theorem 1.26) and so does not
influence T(f0) either. Therefore, T(f0) =  TSo is the upper half plane H.

Let Ιλο1 =  r0. With the help of the Koenigs function (see § 1.8) we
realize the torus So as the quotient space of the punctured plane C* modulo

functions fw (w Φ 0) do not commute with the non identical linear fractional
transforms of the sphere, since such transforms leave invariant the points 0, w, °°.
Therefore, Mod(/ 0) acts freely on T(f0) and the projection π 0 is an unramified covering.
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the cyclic group (ζ >—»•  λ$ζ: η ζ Ζ}· In this representation we define the

following homeomorphism (the Dehn twist map): φ: So) , r exp ίθ · »·

> * r exp ϊίθ f 2π j ^— ) (φ is identical on the interior boundary of the

fundamental annulus A[r0, 1] and twists the exterior boundary through an
angle 2n). Let y: Γ(/ ο)) be the transform of the Teichmuller space induced
by ψ (in the half plane model 7 reduces to the form τ· »· τ f 1). Let
w,· =  πο(τ,·) (/  =  1, 2). Clearly, X(vVi) =  λ(νν2) if and only if τχ and r 2 lie in
the same orbit of the cyclic group Γ =  {γ"}η Ζ· Therefore, to prove that λ

is univalent it needs to be shown that M od(/ 0) =  Γ (it is clear in advance
only that Mod(/ 0) C Γ). In other words, there must be a quasi conformal
homeomorphism h: C 5 that commutes with / 0 and induces on 5 0 a transform
isotopic to the Dehn twist φ.

To construct such a homeomorphism we map conformally the Schroder
domain Do of / 0 onto the unit disc ψ : Do » U. Under an appropriate

» 1
normalization we have g0 =  • ψο/Ροψ 1: ζ ι »· z J , where ρ is the order of

1 — λοϊ
the attracting fixed po in t ( 1 ) of/ 0. The space of large orbits of the transform
g0: U }is isomorphic to the torus 5"0. Using the measurable Riemann
theorem we construct a quasi conformal homeomorphism H: U } having the
following properties: 1) the map Η induced on 50 is isotopic to the Dehn

twist ψ\  2) the transform gx =  H<>g0oH~l also has the form ζ «»· ζ* "";_• * . It
1 — Xjz

follows from property 1) that g0 and gx have equal multipliers at the origin,
that is, λ0 =  \ x. Therefore, g0 =  gx and so Η commutes with g0. By
Theorem 1.19, golT is topologically conjugate to ζ > *•  ζ2. It can be shown
that there are no non identical homeomorphisms T) that preserve orientation
and commute with ζ ι *· ζ*. Therefore, Η\  =  id.

N ext, the boundary of the Schroder domain Do is a simple Jordan curve
(Corollary 2 of Theorem 1.22) and so the conformal map ψ extends to a
homeomorphism Do *· U. We consider a quasi conformal homeomorphism
h = ψ^οΐ/ οψ: Do). It commutes with / 0 and induces on So a transform
isotopic to the Dehn twist φ, and h\dD0 — id. Such a homeomorphism
extends easily to a quasi conformal homeomorphism h: C 5 of the whole
sphere commuting with / 0 (this extension satisfies h IZ)(°o) =  id). The
theorem is now proved.

We shall say that an Α domain W has period (order) ρ if for w Ε W  the
at t ract in g cycle a ( w) has period (o rder) p.

Ο A two sheeted ramified covering g: V) having a fixed point β G\J reduces by a
conformal conjugation to the form z t—*•  ζ =—, where λ =  g'(fi). Therefore, g :
uniquely (up to a conformal conjugation) restored from the multiplier λ.
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Corollary. The number of k domains with period ρ is equal to 2P~1.

Proof. By Theorem 2.8 each Α domain W  contains one root w0 of Fp(w).
Since deg Fp(w) =  2y~1, we have to show that the roots of Fp(w) are simple.
Again by Theorem 2.8, w0 is a simple zero of λ(νν). We have

Q

λ(ιυ) =  2' Π ah(w), where q is the order of the Α domain W. Therefore, vv0

is a simple zero of one of the functions ock(w), say Oi0(w) to be definite.
The function ζ =  ao(w) satisfies the equation cp(u;, z) =  / £(z) — ζ =  0, in

which Tr iwn, 0) Φ 0. But the solution of this equation has at w = vv0 a

root of the same order as the function φ(\ν, 0) =  Fp(w). Therefore, vv0 is a
simple root of Fp(w).

Remark. If we denote by lq the number of Α domains of order q, then TJ 29 =  2P~ 1. From
q I p

this lq can be found with the help of the Mobius inversion formula lq =  ^ µ^/ ί^ 5"1» where µ is

the Mobius function in number theory. '

Theorem 2.9 (Douady and Hubbard [53] [55] ) . The Mandelbrot set is
connected.

Proof. An equivalent statement is: the domain C\M is doubly connected.
This can be proved in the same way as it is proved in Theorem 2.8 that W*
is doubly connected, but the role of the Schroder domain is played here by
the Bottcher domain Z)o(°°) containing the critical point 0. Let w0 £  C\M,
U ==  / „„. Then C W =  qc(/ 0) . Therefore, C\ M =  r( / 0) / M od(/ 0) . Now we
have to check that T(f0) is isomorphic to H, and M od(/ 0) is cyclic and
generated by a parabolic element γ Ε. PSL2(R)· We leave the verification to
the reader.

Remark. We consider the Bottcher function <pw for fw in a neighbourhood
of oo, φ(οο) =  oo. It does not extend to the whole Bottcher domain / )w(°°)
but extends to an invariant domain Bw bounded by a curve of figure eight
type with self crossing at the origin, w EBW. Then the transform w > *•  <pw(w)
univalently maps C\M onto C\ U [54] . This assertion is a precise analogue of
Theorem 2.8.

Problem, a) Is it true that the Mandelbrot set is locally connected1}^  b) Is
it true that its boundary has positive measure?

3. We describe in more detail the structure of the Mandelbrot set (F ig. 11).
We consider the Α domain W1 — {w: fw has an attracting fixed point }. It is
bounded by the cardioid γχ with cusp Η  =  1/4. There is a unique point
w2 — ~3/ 4 on ji for which λ̂ ΐ̂Ρχ) =  —1 . At w2 duplication bifurcation

problem is discussed in detail by Douady and Hubbard [55].
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takes place: the attracting fixed point a.W(w) "gives birth t o " an attracting
cycle a(2)(">) of the second order ( 1 ) . Therefore, an Α domain W2 of the
second order adjoins the Α domain Wx. dW2 also has a unique point
w2 =  5/ 2 at which X<2>(u>2) =  —1 . At this point a bifurcation of the birth
of a cycle of order 4 takes place: a component W3 of order 4 clings to the
component W2, and so o n ( 2 ) . The components Wn accumulate to a limiting
point w,, which corresponds to the famous Feigenbaum map (see [35] , [49).

Fig. 11. The Mandelbrot set

Besides duplication bifurcations, on the boundary of any A domain
triplication bifurcations, quadriplication bifurcations (and so on) occur,
bifurcation of the s times enlargement of the period occurs at points

The

( 1 ) I n fact at w =  w, a confluence of the attracting fixed point af})(w) and the repelling
cycle aW(w) takes place. Then they split, but the cycle aW(w) becomes attracting.
' 2 'The sequence of duplication bifurcations first appeared in the paper of Myrberg [80].
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w Ε dW  for which X(w) =  exp 2mr/ s, where r and s are coprime. Since λ
maps dW  homeomorphically onto T, the bifurcation points are dense on dW.
Therefore, a tree of Α domains grows from Wx. A simple computation
(using Theorem 2.8, of course) shows that a countable number of such trees
go into the Mandelbrot set.

With the help of a computer one can see the microscopic structure of
details of the Mandelbrot set. The colour pictures of it are extremely
beautiful (see [12]) .
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Added in proof: Conjectures 1.1, 1.3, 1.4 have recently been proved by M. Shishikura.
M. Herman has found a counterexample to Conjecture 1.5 b).


