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In the last quarter of the twentieth century 
the real quadratic family

fc : R→ R, fc : x 7→ x2 + c (c ∈ R)

was recognized as a very interesting and repre-
sentative model of chaotic dynamics. It contains
regular and stochastic maps intertwined in an in-
tricate manner. It also has remarkable universal-
ity properties. Complexification of this family leads
to a beautiful interplay between real and complex
dynamics, supplying us with powerful geometric
tools. By now we have a complete picture of the
basic dynamical features in this family, which will
be described below.

To put the quadratic family into perspective, we
begin in the first two sections with a brief discus-
sion of the philosophy and conceptual background
of the field of “chaotic dynamics”. Then we pass
to the main themes of this article: the Basic Di-
chotomy, which can be regarded as a complete
qualitative description of dynamics in the real qua-
dratic family; an outline of ideas from holomorphic
dynamics that yield one half of the final picture;
and renormalization theory, which completes the
picture.

Philosophy of “Chaotic Dynamics”
Three-Body Problem
According to V. Arnol’d,1 Newton’s fundamental
discovery was that “It is useful to solve differen-
tial equations.” Unfortunately, at the same time it
is hard to solve differential equations: Two cen-

turies after the successful explanation of Kepler’s
laws of motion of the Earth around the Sun (ne-
glecting the gravitational field of other planets), all
attempts to integrate analytically the three-body
problem (the motion of the Earth around the Sun
taking into account the gravitation of, say, Jupiter)
had failed. An attempt to solve this problem led
Poincaré to a radical change of viewpoint: Instead
of finding explicit analytic solutions of differential
equations, one can try to describe qualitative be-
havior of these solutions.

The simplest kind of motion is “no motion”, rep-
resented by stationary solutions. A little more
complicated are periodic oscillations represented
by closed orbits. Next are solutions that are for-
ward or backward asymptotic to the stationary or
periodic ones. The next ones would be the solutions
that are asymptotically stationary or periodic in
both forward and backward times (“homoclinic”
trajectories). Poincaré first believed that homo-
clinic solutions in the three-body problem fill some
smooth submanifold in the phase space. Discov-
ery that this might be wrong2 led Poincaré to a pic-
ture described by him in the following famous
words:

One is struck by the complexity of this
figure that I am not even attempting to
draw. Nothing can give us a better idea
of the complexity of the three body
problem and of all the problems of dy-
namics in general.

Mikhail Lyubich is professor of mathematics at State Uni-
versity of New York, Stony Brook. His e-mail address is
mlyubich@math.sunysb.edu.
1In the first paragraph of his book Geometric Methods
in the Theory of Ordinary Differential Equations.

2This was one of the most productive mistakes in the his-
tory of science; see the book Poincaré and the Three Body
Problem by J. Barrow-Green for a very interesting account
of this story.
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(See Figure 1.) Basic features of this complexity are
the presence of many recurrent (i.e., returning ar-
bitrarily close to the initial position) trajectories,
their instability, and the co-existence of many qual-
itatively different types of behavior. Attempts to
understand phenomena of this kind led to cre-
ation of the “theory of chaos”.

Goals
Instead of dealing with continuous trajectories of
a differential equation, the theory of dynamical sys-
tems often prefers to consider their discrete ana-
logues {f nz}∞n=0 , where f n are the n-fold iterates
of a single map f : M →M of the phase space M .
A simple way to pass from a continuous flow
Ft : M →M, t ≥ 0, to a discrete system is to spe-
cialize t to the multiples of some real r and to take
f = Fr. Another natural and useful way is to take
the “first return map” to some Poincaré section (i.e.,
a transversal to the flow) if such a map exists. Of
course, there are many other sources of dynami-
cal systems with discrete time.

When dealing with “chaotic” dynamical systems
(depending on some parameters), there is little
chance to describe, even qualitatively, all trajec-
tories of every single system in the class. So one
should try to look for typical phenomena within
this class. Poincaré’s Recurrence Theorem and
Boltzmann’s Ergodic Hypothesis originated this
approach.

This immediately raises a question: What should
be considered typical? Since the beginning of the
twentieth century there have been two competing
approaches to this issue, from the measure-
theoretic (or rather, probabilistic) viewpoint and
from the viewpoint of Baire category. In his address
to the International Congress of Mathematicians
in Amsterdam in 1954, Kolmogorov compared
these two approaches:

Approach from the categorical side is
interesting more as a tool of proving 
existence results…, while an approach
from the measure-theoretic side 
seems to be physically reasonable and
natural….”3

This viewpoint is generally accepted nowadays.
Though dynamics is a highly nonhomogeneous
field with many different branches and viewpoints,
there seems to be general agreement on its main
destination:

Main Goal of Dynamics: Study asymptotic be-
havior of almost all orbits for almost any parameter

value in representative finite-parameter families of
dynamical systems.

This formulation raises several questions: “Al-
most all” with respect to which measure? In what
terms can the asymptotic behavior of orbits be de-
scribed? What families of dynamical systems are
“representative”?

Conceptual Background
Hyperbolicity
A central dynamical idea that was developed in the
1960s and 1970s (by Smale, Anosov, Sinai, and
many others) was the idea of hyperbolicity. Roughly
speaking, it means that over a recurrent part of the
phase space there exist two transverse invariant
foliations, stable and unstable, that are (respec-
tively) uniformly exponentially contracted and ex-
panded by the dynamics. This implies that all re-
current trajectories are exponentially unstable,
either in forward or in backward time. Despite
this instability, the global dynamics of uniformly
hyperbolic systems turned out to be tractable. At
the same time, it turned out that these systems are
quite scarce, not dense in the space of dynamical
systems on a given manifold (except for the one-
dimensional case, as we will see below). For in-
stance, Newhouse (1979) discovered that infinitely
many attracting cycles can coexist for a locally
generic (in the Baire sense) set of dynamical sys-
tems on a compact manifold M (while uniformly
hyperbolic systems on M can have only finitely
many attracting cycles).

This development indicated that the purely
topological viewpoint should be replaced by a mea-
sure-theoretic one and stimulated a search for

3What Kolmogorov announced in his address was the
biggest breakthrough in dynamical systems theory since
Poincaré: persistence of most (in the measure-theoretic
sense) invariant tori under a perturbation of an inte-
grable system of classical mechanics. The theory that
grew out of this discovery is now called KAM theory after
Kolmogorov, Arnol’d, and Moser.

Figure 1. This is the kind of picture Poincaré would have seen if
he had had access to the public-domain program dstool
described in Notices 39 (1992), 303–309. Such phase portraits
are typical for Poincaré return maps of nonintegrable systems
of classical mechanics with two degrees of freedom. This
particular picture is produced by iterating a model map
(x, y) 7→ (x + y − ε sin(2πx), y − ε sin(2πx)) with ε = 0.154 . . . .
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some less restrictive notions of hyperbolicity.
Oseledets-Pesin theory (mid 1970s) developed a
very general form of “hyperbolicity” of an invari-
ant measure µ. Roughly speaking, this kind of hy-
perbolicity means existence of transverse stable
and unstable manifolds for µ-typical points, which
are exponentially contracted and expanded by the
dynamics but perhaps in a nonuniform way. It in
particular yields positivity of the leading charac-
teristic exponent

(1) χ(µ) = lim
n→∞

1
n

log ‖Dfn(x)‖ > 0

of almost all orbits of µ, i.e., exponential instabil-
ity of µ-almost all trajectories.

But a chaotic dynamical system usually has a
wealth of invariant measures. What would be the
best choice?

SRB Measures
Consider a dynamical system generated by a
smooth map f : M →M on a smooth Riemannian
manifold M. This manifold is endowed with the Rie-
mannian measure λ, which is of course physically
most natural. According to the above discussion,
we wish to describe the asymptotic behavior of
λ-almost all orbits {f nx}∞n=0. The idea is that this
asymptotic behavior should be governed by some
invariant measure. Assume that there exists a com-
pactly supported invariant measure µ such that:

• For a set of initial points x ∈M of positive Rie-
mannian measure, the Birkhoff averages weakly
converge4 to µ:

1
n

n−1∑
k=0

δfkx → µ as n →∞,

where δy is the delta measure supported at the
point y ∈M;

• µ has positive entropy.5

Then µ is called an SRB measure of f, after Sinai,
Ruelle, and Bowen, who proved that a uniformly
hyperbolic dynamical system on a compact space
has finitely many such measures that jointly 
govern—together with finitely many attracting 
cycles—the behavior of λ-almost all orbits.

The first property in the definition of SRB mea-
sure is tied to the Birkhoff Ergodic Theorem. If an
invariant probability measure µ is absolutely con-
tinuous with respect to λ (such a measure will be
abbreviated as “a.c.i.m.”) and if µ is ergodic in the
sense that all measurable invariant sets have µ-mea-
sure 0 or 1, then the theorem implies that the first
property is satisfied.

If the first property in the above definition is
satisfied for λ-a.e. x ∈M, then µ will be called a
global SRB measure. A map f with a global SRB mea-
sure will be called stochastic.

Low-Dimensional Phenomenon
The next question is, which families of dynamical
systems are “representative”? A democratic an-
swer would be “the most popular.” A natural sci-
ence answer would be “those that model important
phenomena in nature.” A purely mathematical an-
swer would be either “simplest nontrivial fami-
lies” or “generic families.” In the course of the ar-
ticle we will see that all these approaches actually
point in the same direction.

One of the most stimulating discoveries in con-
temporary dynamics was the discovery of the
“Lorenz attractor” (1963). It appeared in an
innocent-looking system of three ordinary differ-
ential equations approximating equations of gas
dynamics. Computer experiments showed that for
some parameter values the trajectories of this sys-
tem converge to an attractor with an intricate
structure. It demonstrated that high-dimensional

4The space of measures is regarded as the dual of the
space of compactly supported continuous functions.

5Entropy measures how chaotic the invariant measure is.
The notion of SRB measure has not been canonized yet,
and the reader can find in the literature slightly differ-
ent versions of it.

Figure 2. Lorenz butterfly and Hénon swallow.
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phase spaces are not needed in order to encounter
chaos.

The next step was made by Hénon (1976), who
suggested a very simple discrete two-dimensional
model

(x, y) 7→ (x2 + c + by, x), (x, y) ∈ R2,

for a Poincaré section of the Lorenz attractor.6

Again, computer experiments showed that for
some parameter values (e.g., c = −1.4, b = 0.3) the
orbits of this system converge to a “strange at-
tractor”. Much later, it was proven by Benedicks,
Carleson, Lai-Sang Young, and Viana (1990s) that
there is a positive measure set of parameters (c, b)
with a tiny b for which the attractor indeed exists
and supports a global SRB measure.

If we now let b → 0, the Hénon family will de-
generate to the one-dimensional quadratic family
fc : x 7→ x2 + c . These reductions suggested that
the quadratic family can give some clues to a qual-
itative understanding of the nature of turbulence.
At the same time R. May (1976) suggested the qua-
dratic family as a model for population dynamics,
and this work ignited a great interest in this fam-
ily.7

At this point we have to stop in our search for
the simplest model for chaotic dynamics: the qua-
dratic family cannot be simplified any further.
Still, it turns out that this family exhibits extremely
rich properties and sends important messages to
the bigger world.

Real Quadratic Family
Works of Sharkovsky (mid-1960s); Milnor,
Thurston, and Misiurewicz (mid-1970s); and other
people demonstrated how rich one-dimensional dy-
namical systems can be from the topological and
combinatorial points of view. Soon afterwards peo-
ple started to explore the measure-theoretic pic-
ture.
Regular and Stochastic Behavior
First, let us restrict ourselves to the parameter
values c ∈ [−2,1/4], for which the quadratic map
fc has a nontrivial invariant interval Ic .8 The pa-
rameter interval and the dynamical intervals are
all endowed with the Lebesgue measure λ. For the
above parameter values two types of measure-
theoretic behavior can be described:

Regular maps. There exists an open set R of pa-
rameter values c, which are called regular values,
such that fc has an attracting cycle ᾱc = {f kαc}p−1

k=0
(as an example, for c ∈ (−3/4,1/4), fc has an at-
tracting fixed point). Consider the attracting basin
of this cycle:

D(ᾱc ) = {x ∈ Ic : f nc x→ ᾱc}.
It turns out that it has full Lebesgue measure in Ic
(Guckenheimer, 1979) and, moreover, that fc is
uniformly exponentially repelling on the comple-
ment to the basin. The last property shows that reg-
ular maps are uniformly hyperbolic in the sense
of Smale.

Stochastic maps. There exists a positive measure
set S of parameter values c, which are called sto-
chastic values, such that the map fc has an ab-
solutely continuous (with respect to λ) invariant
measure µ (a.c.i.m.). This result was proven in
works of Jakobson (1981) and Benedicks and Car-
leson (1985).9 It turns out that in this setting any

9There had been many previous works constructing an
a.c.i.m. for particular parameter values. One of the ear-
liest was the work of Bunimovich (1970) concerned with
the sine family, which already contained such key ideas
as relation to the Renyi expanding map, recovery from
the contraction near the critical point due to expansion
near a repellor, and distortion bounds.

6An actual Poincaré section of the Lorenz attractor looks
quite different.
7Another motivation for studying one-dimensional dy-
namics came from KAM theory through the works of
Arnol’d and Herman on circle dynamics.
8For c > 1/4, all real orbits of fc escape to ∞ . For
c ≤ 1/4, both fixed points αc ≤ βc of  fc are real. More-
over, for c ∈ [−2,1/4] , c ≥ −βc and the interval
Ic ≡ [−βc, βc ] is fc -invariant. For c < −2, the critical
point 0 escapes to ∞. One can show that in this case all
points except a zero measure Cantor set escape to ∞ as
well.

Figure 3. Real quadratic family as a model of chaos. This picture
presents how the limit set of the orbit {f nc (0)}∞n=0 bifurcates as
the parameter c changes from 1/4 on the right to −2 on the left.
Two types of regimes are intertwined in an intricate way. The
gaps correspond to the regular regimes. The black regions cor-
respond to the stochastic regimes (though of course there are
infinitely many narrow invisible gaps therein). In the beginning
(on the right) one sees the cascade of doubling bifurcations. This
picture became symbolic for one-dimensional dynamics.
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a.c.i.m. is automatically a global SRB measure
(Blokh and Lyubich, 1991). Moreover, the charac-
teristic exponent (1) is positive, so that stochastic
maps are nonuniformly hyperbolic in the sense of
Oseledets and Pesin.

The absolutely continuous invariant measure of
a stochastic map fc is supported on a cycle of in-
tervals with disjoint interiors,

(2) J0 →
f
J1 →

f
. . .→

f
Jp−1 →

f
J0,

with the convention that 0 is in J0. If one selects
a λ-typical point x ∈ Ic, then its orbit eventually
lands in this cycle and its Birkhoff averages will con-
verge to µ.

Thus both regular and stochastic10 phenom-
ena cannot be neglected in the real quadratic fam-
ily. The immediate question is whether these two
phenomena exhaust everything observable.

Basic Dichotomy [L4] .  For almost every
c ∈ [−2,1/4] , the quadratic map fc : x 7→ x2 + c is
either regular or stochastic.

This result can be regarded as a complete qual-
itative description of the nature of chaos in the real
quadratic family, in the sense of the Main Goal of
Dynamics stated earlier.

We will see that what is hidden behind this brief
statement is intricate small-scale properties of the
“Julia sets” and the “Mandelbrot set”, “Mostow-like
rigidity phenomena”, as well as a general version
of the “Feigenbaum Universality Conjecture”.
Renormalization
Renormalization is a central concept in contem-
porary dynamics. The idea is to study the small-
scale structure of a class of dynamical systems by
means of a renormalization operator R acting on
the systems in this class. This operator is con-
structed as a rescaled return map, where the spe-
cific definition depends essentially on the class of
systems.

The quadratic family is naturally embedded in
the space U of C2 -smooth unimodal interval
maps11 with nondegenerate critical point, consid-
ered up to rescaling of their intervals of definition.
In this setting the definition of renormalization is
very simple: a unimodal map f is called renor-
malizable if it has a cycle of intervals like (2). Then
the restriction of f p to the central interval J0 is
again a unimodal map. If p is the smallest period
of periodic intervals of f, then the map

(3) Rf = f p|J0

considered up to rescaling of J0 is called the 
renormalization of f. This map can possibly be

renormalizable itself. In this case f is called twice
renormalizable, and we can consider its second
renormalization R2f , and so on.

In this way we can classify all quadratic maps
fc (and the corresponding parameter values
c ∈ [−2,1/4]) as at most finitely or infinitely renor-
malizable. Let F stand for the set of nonregular
parameter values that are at most finitely renor-
malizable, while I stands for the set of infinitely
renormalizable parameter values. It turns out that
the set S of stochastic parameter values is strictly
contained in F. Thus we arrive at the following clas-
sification of the real quadratic maps:

[−2, 1/4] = R ∪ F ∪ I,
∪
S

with the sets R, F, and I disjoint by definition. With
this decomposition the Basic Dichotomy amounts
to the following two statements:

Theorem A. Almost every c ∈ F is stochastic:
λ(F r S) = 0.

Theorem B. Infinitely renormalizable parameter
values are neglectable: λ(I) = 0.

Theorem A was proven jointly by the author with
Marco Martens and Tomasz Nowicki in [L2], [MN],
while Theorem B was proven by the author in [L4].
These results are formulated in purely real terms.
However, the tools for their proofs came from the
quite different world of holomorphic dynamics.

Puzzles, Rigidity, and Invariant
Measures
Holomorphic dynamics (iteration theory of holo-
morphic maps in the complex plane) was founded
by P. Fatou and G. Julia in the late 1910s. For a long
time the subject had been isolated from the rest
of mathematics and almost forgotten. The situa-
tion changed radically by the end of the century.

In the 1930s classical complex analysis was en-
riched with the theory of quasi-conformal maps
(Grötzsch, Lavrentiev, Morrey, …). These maps
found profound applications to the theory of de-
formations of Riemann surfaces, the theory of
Fuchsian and Kleinian groups (Teichmüller, Ahlfors
and Bers, …), and hyperbolic geometry (Mostow,
Thurston, …). In the early 1980s D. Sullivan’s in-
sight on the intimate connection between these de-
velopments and the Fatou-Julia theory led to the
revival of holomorphic dynamics. Since then, ideas
of rigidity and quasi-conformal deformations have
played a prominent role in the field, and the field
itself has become an intrinsic part of the theory
of dynamical systems, analysis, and geometry.
Julia Sets and the Mandelbrot Set
Complex quadratic maps have a much richer topo-
logical and geometric structure than their real

10The above description of the behavior of typical orbits
implies that a quadratic map cannot be simultaneously
regular and stochastic: R∩S =∅.
11A smooth map of an interval to itself is unimodal if it
has a unique critical point.
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traces. To see this, just compare the real interval
with the complex Julia sets depicted in Figure 4.
Despite the intricate structure of these sets, they
have a very short definition.

Near infinity all orbits of any complex quadratic
map f ≡ fc : z 7→ z2 + c , c ∈ C , escape to ∞. De-
fine the basin of infinity as the set of all escaping
orbits:

Df (∞) = {z : f nz →∞ as n →∞}.
The complementary compact set is called the filled
Julia set, K(f ) = CrDf (∞) , and its boundary is
called the Julia set J(f ) = ∂K(f ). It is classically
known that for a quadratic polynomial, the Julia
set and the filled Julia set are either Cantor or
connected depending on whether the critical point
0 escapes to infinity or not. The parameter values
c for which the Julia set J(fc ) is connected form
the Mandelbrot set M in the parameter plane (see
Figure 7). For instance, for c ∈ [−2,1/4], the crit-
ical orbit does not escape the interval Ic , so that
the Julia set J(fc ) is connected. In fact,
[−2,1/4] =M ∩R .

If the filled Julia set is connected, then by the
Riemann Mapping Theorem its complement can be
conformally uniformized by the complement of the
unit disk,

(Cr D̄,∞) → (CrK(f ),∞).

The images of radial rays and concentric circles
under this Riemann map are called respectively ex-
ternal rays and equipotentials. They form two f-in-
variant foliations of CrK(f ) .

Douady and Hubbard (Orsay Notes, 1984–85)
suggested analyzing Julia sets by means of cutting
them into pieces by external rays. An efficient cut-
ting procedure was then explored by Yoccoz (1990,
unpublished). Assume that both fixed points of
f ≡ fc , c ∈M, are repelling (for real c this hap-
pens when c ∈ [−2,−3/4)). It turns out that one

of these points, called α, is the landing point of
more than one external ray. Cut the Julia set by the
rays landing at α ≡ αc, and truncate these rays by
some equipotential. We obtain a partition of a
neighborhood of the filled Julia set into several
pieces. Then take pull-backs of this partition by the
iterates of f. We obtain finer and finer partitions
of shrinking neighborhoods of the Julia set into
pieces (see Figure 4). They form a kind of jigsaw
puzzle of the Julia picture, and consequently the
whole procedure became known as the Yoccoz
puzzle. If we can estimate the sizes and shapes of
these puzzle pieces, we can get good control of the
geometry of the Julia set.
Puzzle Geometry
The key information is contained in a principal nest
of puzzle pieces, V0 ⊃ V1 ⊃ V2 ⊃ · · · 3 0 , which
comes together with branched double coverings
gn = f ln : Vn → Vn−1, where ln is the first return
time of the critical orbit to Vn−1. The principal nest
keeps track of the recurrence of the critical orbit.

The critical value gn0 can land anywhere in
Vn−1. It is important to distinguish two combina-
torial situations, according to whether the critical
value lands in the topological annulus Vn−1 r Vn
(“noncentral return”) or immediately lands in the
next puzzle piece Vn (“central return”); see 
Figure 5. The central return indicates a fast re-
currence of the critical orbit, which makes the dy-
namics less tractable. Let {nk} denote the sequence
of levels on which the return is noncentral:
gn(k)(0) ∈ Vnk−1 r Vnk .

The geometry of the principal nest can be effi-
ciently controlled by the conformal moduli12 of the

Figure 4. The Julia set of the “Fibonacci map” fc : z 7→ z2 + c , c = −1.870 . . . (see Lyubich and Milnor, 1993) with
several initial levels of the puzzle. Highlighted are three principal puzzle pieces.

12Any topological annulus A ⊂ C whose boundary com-
ponents are not singletons can be conformally uniformized
by a round annulus {z : 1 < |z| < r} . Then by defini-
tion mod(A) = log r . It is the only conformal invariant
of the annulus.
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topological annuli Vn−1 r Vn . A problematic sce-
nario is when these moduli shrink to zero: then we
lose geometric control of the puzzle. A very nice
situation is when the moduli grow to ∞: then the
double coverings gn : Vn → Vn−1 (which are high
iterates of a quadratic map) become purely qua-
dratic up to a small distortion. It turns out that the
latter scenario actually takes place on the levels just
following noncentral returns:

Theorem 1 ([L1], I). There exists a constant C > 0
such that

mod(Vnk r Vnk+1) ≥ Ck.
The constant C depends only on finite combinato-
rial data, and it is, in particular, uniform for all real
parameter values c ∈ [−2,−3/4).13

This result, which may sound a little technical,
will find numerous applications in what follows.
Rigidity Phenomenon and Density of Hyperbolic
Maps
As we have mentioned before, regular quadratic
maps can be viewed as uniformly hyperbolic in the
sense of Smale.

Theorem 2 ([L1], II). The set R of uniformly hy-
perbolic maps is dense in the parameter interval
[−2,1/4] .

There is a deep rigidity phenomenon behind
this statement intimately related to rigidity phe-
nomena in geometry. The Mostow Rigidity Theo-
rem tells us that two topologically equivalent com-
pact hyperbolic manifolds of dimension > 2 must
actually be isometric. It was conjectured that a
similar phenomenon takes place in dynamics: Two
nonhyperbolic complex quadratic polynomials fc
and fc′ that are combinatorially equivalent14 must
actually coincide. This Combinatorial Rigidity Con-
jecture is equivalent to the famous MLC Conjecture,
formulated by Douady and Hubbard in their Orsay
Notes, asserting that the Mandelbrot set is locally
connected. In both real and complex settings the

Combinatorial Rigidity Con-
jecture would imply density
of hyperbolic maps.

It had been observed by Sul-
livan that to prove the Com-
binatorial Rigidity Conjecture,
it would be enough to show
that any two combinatorially
equivalent quadratic polyno-
mials are quasi-conformally
conjugate (which nicely fits
the spirit of the proof of
Mostow rigidity). That is what

is proven in [L1, II] for real parameter values. The-
orem 1 is what allows one to control the quasi-
conformal dilatation of a conjugacy between two
quadratic maps.
Absolutely Continuous Invariant Measures
Existence of an absolutely continuous invariant
measure is related to the rate of expansion along
the critical orbit, that is, the rate of growth of the
derivatives |Dfn(c)| . It was shown by Collet and
Eckmann (1983) that the a.c.i.m. does exist if the
rate is exponential. This criterion was improved by
Nowicki and van Strien (1988), who replaced the
exponential rate with the summability condition

(4)
∑
|Dfn(c)|−1/2 <∞.

Since the strongest contraction occurs near the crit-
ical point 0, one should expect that the rate of ex-
pansion along the critical point is related to the rate
of recurrence of the critical orbit. Here is a nice re-
sult of this kind:

Theorem 3 (Martens and Nowicki [MN]). Let
c ∈ [−2,−3/4). If all the returns to the principal nest
are eventually noncentral, then fc is stochastic.

In fact, it is shown in [MN] that the assumption
of the above theorem (together with Theorem 1)
implies the summability condition (4).

Parapuzzle Geometry

To prove Theorem A, we wish to show that the cri-
terion of Martens and Nowicki is satisfied for al-
most all c ∈ F. Let us restrict ourselves to the set
N ⊂ [−2,−3/4] of nonrenormalizable parameter
values. The heuristic argument goes as follows.
Imagine a one-parameter family of return maps
gn,c : Tnc → Tn−1

c , c ∈ L, where Tnc = Vnc ∩R are
real traces of the puzzle pieces. Imagine that when
the parameter c runs over the interval L, the crit-
ical value gn,c (0) runs through Tn−1

c with a more
or less uniform speed (see Figure 6). Then the
probability that gn,c (0) lands at Tnc (i.e., the prob-
ability of the central return) is comparable with
|Tnc |/|Tn−1

c | . But Theorem 1 tells us that the lat-
ter is exponentially small, provided that the pre-
vious level was not central. By the Borel-Cantelli
Lemma the probability of infinitely many central
returns is equal to zero.

x

gn

V
n-1

Vn

0x

gn

V
n-1

Vn

0

Figure 5. Central and noncentral returns.

13For real maps a related result was independently ob-
tained in [GS].
14Combinatorial equivalence can be naturally defined in
terms of landing properties of external rays. Topological
conjugacy implies combinatorial equivalence.

fea-lyubich.qxp  10/19/00  1:55 PM  Page 1048



OCTOBER 2000 NOTICES OF THE AMS 1049

There is one big assumption in this heuristic ar-
gument, namely, that the critical value moves with
uniform speed through the interval Tn−1

c (which
is also moving with c). To justify this assumption,
one needs to prove uniform transversality of the
two motions involved. With real methods only,
this would be a desperate problem. However, one
of the miracles of the complex world is that trans-
versality can be obtained for purely topological rea-
sons (the Argument Principle). That is how this
problem is dealt with in [L2].

There is a remarkable similarity between the dy-
namical pictures of different quadratic maps (Julia
sets) and the parameter picture of the whole qua-
dratic family (the Mandelbrot set). As Adrien
Douady put it: “You first plow in the dynamical
plane and then harvest in the parameter plane.”
What is actually done in [L2] is the transfer of the
dynamical Theorem 1 to the parameter plane.
Namely, for any k , one partitions the parameter
plane into “parapuzzle pieces” of level k and shows
that the conformal moduli between consecutive
“principal” pieces grow linearly (see Figure 7). This
gives the desired geometric control of the para-
meter interval.

Universality
Discovery
In the mid-1970s a truly remarkable discovery was
made by Feigenbaum and independently by Coul-
let and Tresser. Consider the real quadratic fam-
ily x 7→ x2 + c, and let c decrease from 1/4 to −2.
In the beginning we observe an attracting fixed
point, which then bifurcates into an attracting
cycle of period 2, which then bifurcates into an at-
tracting cycle of period 4, etc. (see Figure 3). Thus
we observe a sequence15 of doubling bifurcations
cn converging to a limit parameter value
c∗ = −1.401 . . . called the Feigenbaum point. With
the help of a calculator Feigenbaum observed that
this convergence is exponential: cn − c∗ ∼ Cρ−n,
where ρ = 4.669 · · ·. This observation was curi-
ous, but what was really surprising is that if we take
a similar family of unimodal maps, say x 7→ b sinx
on [0, π ] , then we observe a similar sequence of
doubling bifurcations bn exponentially converging
to a limit point b∗ with the same rate :
|b∗ − bn| ∼ C′ρ−n , where ρ = 4.669 · · ·. In other
words, the rate of convergence appears to be uni-
versal, independent of the particular family of uni-
modal maps under consideration.
Renormalization Conjecture
Motivated by the renorm-group method in statis-
tical mechanics, Feigenbaum and Coullet-Tresser
formulated a beautiful conjecture that would com-
pletely explain the above universality. Imagine an
infinite-dimensional space U of unimodal maps,
and consider the doubling renormalization oper-

ator R in this space (see (3) and Figure 8). The con-

jecture, now a theorem for a suitably defined U,

asserts that:

• R has a unique fixed point f∗ , i.e., a unique

solution of the Feigenbaum-Cvitanović equation

f (z) = µ−1f ◦ f (µz) with an appropriate scaling fac-

tor µ.

•R is hyperbolic at this fixed point; that is, there

exist two transverse R-invariant manifolds Ws and

Wu through f∗ such that the orbits {Rnf} , f ∈ Ws,

exponentially converge to f∗ , while the orbits

{Rnf} , f ∈ Wu, are exponentially repelled from

f∗ .

• dimWu = 1.15This sequence was first observed by Myrberg (1962).

n
c

n-1
c

gnc

central return

T T

Figure 6. How the critical value gn,c (0) moves through the
moving interval Tn−1

c .

Figure 7. The Mandelbrot set with three principal parapuzzle
pieces around the Fibonacci parameter value c = −1.870 . . . (the
pieces shrink very fast).
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• Wu transversally intersects the doubling bi-
furcation locus B1, where an attracting fixed point
bifurcates into an attracting cycle of period 2.

Since the doubling bifurcations loci Bn of higher
periods (from 2n to 2n+1) are obtained by taking
preimages of B1 under Rn, one can readily see that
any one-parameter family of unimodal maps (i.e.,
a curve in U) that is transverse to Ws intersects
the Bn at the points bn exponentially converging
to a limit point b∗ ∈ Ws , where the rate of con-
vergence, ρ, is just the unstable eigenvalue of
DR(f∗). Thus, it is independent of the particular
family under consideration.

Renormalization Fixed Points
The first, computer-assisted, proof of the Renor-
malization Conjecture for the period doublings
was given by O. Lanford in 1982. The idea was to
find numerically an approximation to the solution
of the Feigenbaum-Cvitanović equation and then
to prove rigorously that there exists a true hyper-
bolic solution nearby. In this way the original con-
jecture was formally checked, at least locally, near
the fixed point f∗ .16

Still, the nature of the universality phenomenon
remained mysterious. Also, computer-assisted
proofs can conceivably handle only a few small
renormalization periods, while the renormalization
operator is well defined for arbitrary periods
(triplings, quadruplings, etc.), not to mention ar-
bitrary infinite strings of periods.17 So people kept

looking for a “conceptual”
proof of the Renormal-
ization Conjecture.

Such a proof was given
in the works of Sullivan
[S], McMullen [M], and the
author [L3], consecutively
dealing with different
parts of the conjecture.18

Namely, Sullivan and Mc-
Mullen proved existence
of the fixed point f∗ and
constructed its stable
manifold Ws (f∗) , while
the author proved hyper-
bolicity of R at the fixed
point and the transver-
sality results. The main
feature of this develop-
ment is that it is almost
completely based on

methods of holomorphic dynamics.
Let us discuss the main conceptual ingredients 

of this proof. Fix some combinatorial type, and 
consider the corresponding renormalization oper-
ator R defined by (3). Our first goal is to complexify
it:

• Quadratic-like maps, introduced by Douady
and Hubbard [DH], are complex analogues of uni-
modal maps. By definition a quadratic-like map is
a double branched covering f : U → U ′, where
U b U ′ are two topological disks. (The domain of
f is not invariant!) One can define a renormaliza-
tion operator acting on “renormalizable” quadratic-
like maps, which extends the renormalization (3)
of real maps. We will use the same notation R for
the extension. It is the operator for which the
Renormalization Conjecture has been proven in the
above-mentioned papers.

• Foliated structure of the space of quadratic-like
maps. Two quadratic-like maps are hybrid equiv-
alent if they are conjugate by a quasi-conformal
map that is conformal almost everywhere on the
filled Julia set. The space of quadratic-like maps
with connected Julia set is foliated by the hybrid
classes. One of these classes (defined without any
reference to the renormalization) will later serve
as the stable manifolds of R. The quadratic fam-
ily is a global transversal to this foliation [DH], [L3].

• A priori bounds give a bound from below for
mod(U ′n rUn), where U ′n rUn are the fundamen-
tal annuli of quadratic-like maps Rnf : Un → U ′n .
They imply compactness of the orbit {Rnf}∞n=0 of
an infinitely renormalizable map f. This is the only
part of the proof that relies on the assumption that
f is real [S].

• Teichmüller theory of Riemann surface lami-
nations. Sullivan’s approach to the fixed point

° f*

Ws

°

quadratic family

z 2 + c
*

W u

Figure 8. Hyperbolic fixed point of the renormalization operator.

16This was perhaps the first experience with rigorous
computer-assisted proofs, which nowadays have become
quite widespread.
17More precisely, one should talk about combinatorial
types of the renormalization rather than periods only. The
combinatorial type is determined by the ordering of the
intervals of (2) on the real line. 18See [L3] for a more detailed historical account.
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problem was to argue that the
renormalization operator
strictly contracts the “Teich-
müller metric” in an appro-
priate space of conformal ob-
jects associated with
quadratic-like maps [S].

• McMullen towers are geo-
metric limits of rescalings of
an infinitely renormalizable
quadratic-like map f with
a priori bounds. A tower is
called quasi-conformally rigid
if it does not admit nontrivial
quasi-conformal deforma-
tions. McMullen has proven a
result on quasi-conformal
rigidity of towers, which im-
plies that the orbit {Rnf}∞n=0
converges to a unique fixed
point f∗ of R, [M]. This gives
an alternative approach to the
fixed point problem.

In fact, rigidity and uni-
versality are two ways of look-
ing at the same phenomenon.

• Combinatorial rigidity.
The rigidity phenomenon in
holomorphic dynamics was
discussed above. The Rigidity
Theorem of [L1] can be applied to certain complex
maps as well. In this form the theorem implies, in
particular, that if a complex infinitely renormaliz-
able (under R) quadratic-like map f has a priori
bounds, then f belongs to the hybrid class H (f∗)
of the renormalization fixed point f∗ .

• Schwarz Lemma in Banach spaces. Using this
tool, one can detect for a topological reason that
R is exponentially contracting on H (f∗) [L3].

• Small Orbits Theorem. This is a tool allowing
one to prove that R is transversally expanding at
f∗ . Namely, the lack of expansion would imply ex-
istence of a “small orbit” {Rnf}∞n=0 arbitrarily close
to f∗ that would not belong to H (f∗). This would
contradict the combinatorial rigidity stated above.
This completes the proof of hyperbolicity of R at
the fixed point f∗ [L3].

• Argument Principle. As we have already 
mentioned, this phenomenon of the complex world
gives one a tool to prove diverse transversality 
results, in particular, the last part of the Renor-
malization Conjecture [L3].

Full Renormalization Horseshoe
Let us now consider the renormalization operator
R for all combinatorial types simultaneously. It can
be regarded as defined on infinitely many “hori-
zontal” strips of the space of real quadratic-like
maps, one strip for each combinatorial type (see
Figure 9). According to the previous discussion,
each of these strips contains a hyperbolic fixed

point. It turns out that these points are actually uni-
formly hyperbolic and, even more, that the renor-
malization operator has a global uniformly
hyperbolic structure.

Theorem 4 [L4]. The full renormalization opera-
tor R has a uniformly hyperbolic invariant subset
A whose points represent all possible two-sided
strings of combinatorial types.

This statement encodes diverse universality
properties of the bifurcation sets in one-parame-
ter families of unimodal maps. In this way uniform
hyperbolicity of an infinite-dimensional operator
sheds light on the dynamics of one-dimensional but
highly nonhyperbolic maps. In particular, it allows
one to complete the proof of the Basic Dichotomy.

The proof of Theorem 4 requires all the ma-
chinery described above (puzzle and parapuzzle
geometry, rigidity theorems, Schwarz Lemma,…)
plus several extra ingredients like uniform a priori
bounds for real infinitely renormalizable maps with
arbitrary combinatorics [LS], [LY], rigidity of towers
with “essentially bounded combinatorics”  (related
to the saddle-node bifurcation) [H], and a “Shadowing
Theorem” generalizing the Small Orbits Theorem to
arbitrary combinatorics [L4].

Theorem B is a simple corollary of Theorem 4.
Namely, using some standard hyperbolic machin-
ery, one shows that points f ∈A are not density
points in the unstable manifolds Wu(f ) . Then this

R

R

R

R

- 2

1/4

quadratic  family

           Space  of  unimodal  maps

Figure 9. Full renormalization operator. Highlighted are the “renormalization windows”
of renormalizable quadratic maps with the same combinatorics. Of course, there are
infinitely many windows and corresponding renormalization strips. The dots indicate
renormalization fixed points.
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property is transferred to the quadratic family by
means of the holonomy along the stable foliation.
By the Lebesgue Density Theorem, λ(I) = 0.

Perspective
Why is the quadratic family actually representative,
from the mathematical viewpoint, in one-dimen-
sional dynamics? The reason is that it is a global
transversal to the foliation of the space of (non-
regular) smooth unimodal maps into topological
classes.19 This gives a very good chance to extend
the above results from the quadratic family to
generic families of smooth unimodal maps. There
is a beautiful interplay between holomorphic and
smooth dynamics that can be efficiently exploited
to achieve this goal. Active work in this direction
is already under way. Let us mention the work of
O. Kozlovsky extending the result on density of 
hyperbolic maps from the quadratic family to 
the space of real analytic (and hence Cr -smooth)
unimodal maps, and the program carried out by
W. de Melo with his collaborators on the proof of
the Renormalization Conjecture for smooth uni-
modal maps. (A very different program based upon
purely real methods has been carried out by 
M. Martens.) Very recently the Basic Dichotomy
has been extended to arbitrary nontrivial families
of real analytic unimodal maps with nondegener-
ate critical point (joint work of the author with
Artur and Welington de Melos). These develop-
ments give good reason to believe that it will not
take long to bring one-dimensional dynamics to
completion.

There is a parallel program in holomorphic dy-
namics. Here the main problem is to prove the
MLC Conjecture (local connectivity of the Man-
delbrot set), which is equivalent to the Combina-
torial Rigidity Conjecture. This result would imply
density of hyperbolic maps in the complex qua-
dratic family.

In two-dimensional dynamics there is an in-
tense exploration of the dynamics in the Hénon
family, both the real one mentioned above and
the complex one (Hubbard, Siboni, Bedford and
Smillie, …). Unlike the one-dimensional realm, the
real and complex worlds have not yet merged in
dimension two. A principal reason is that confor-
mal and holomorphic are very different concepts
in higher dimensions. This is one of the most in-
teresting problems to be addressed.

The following strong conjecture was formu-
lated by Palis [P]:

Conjecture. For a typical (in the sense of
Kolmogorov) smooth dynamical system on a finite-
dimensional manifold, there exist finitely many 
attracting cycles and finitely many SRB measures
that govern behavior of almost all orbits.

Even for diffeomorphisms in dimension two this
looks like a project for the whole twenty-first cen-
tury. The future will show whether the “theory of
chaos” can give such a comprehensive answer to the
problems of dynamics.
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