
Theorem 9 as in the proof of Theorem 2. The case in p(~) = O {in ~(~)} is handled by means 
of Lemma 4. 

Remark 3. The conditions (4) in Theorem 1 are essential. The first of them guarantees, 
by a theorem of Zygmund [i], the (R, p, ~)-summability almost everywhere on series (i). 
The second condition is also essential: If the function X(~) is such that p(w) in in p(~) = 
O {X(m)}, then Lemmas 3 and 5 and condition (2) imply the existence almost everywhere on 
[a, b] of a finite limit of the function p(~)[f(x) - R~(x)] as ~ ~ ~ and the inequality 

p(~) A~(x) ~ F(x) �9 L 2 [a, b], and it is impossible to strengthen this result (see [4, pp. 
59-60] and [6, p. 15]). 

Note also that in the proof of definitiveness of the estimates the choice of the system 
{~(x)} and the coefficients of series (I) depends essentially on the functions v(~), l(~), 
and p(w). 
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MEASURE OF SOLENOIDAL ATTRACTORS OF UNIMODAL MAPS OF THE SEGMENT 

A. M. Blokh and M. Yu. Lyubich 

i. Introduction. We consider the class 61 of Ca-smooth maps f: [0, i] ~ [0, i] of 
the segment, possessing the following properties: 

UI) f has a unique critical point c �9 (0, i) and this point is an extremum; 

U2) in the neighborhood of the point c we have the inequalities 

B1 I x - - c  In< II' (x) I < B ~  I x - - c  I~; 

U3) outside the extremum, f has a negative Schwarzian: 

S / =  1"7/ '  - -  (3/2) (f"/1')' < 0. 

The maps of class ~I present great interest from the point of view of the theory of 
dynamical systems (see [i]). 

By a solenoidal attractor (or, simply, a solenoid) of the transformation f we mean 
a totally disconnected, invariant, compact S c [0, i], having the structure 

S = N.%=1 ~ p , ~ - i / k i ~  ' k ~ 0  
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where 11 c 12 c ... 3 c, Pm ~ =, the segments fkI m for k = 0, 1 ..... Pm - 1 are pairwise 

disjoint, and fPmI m c I m (i.e., I m is a periodic segment with minimal period Pm). We men- 

tion that Pm+1 is divisible by Pm, the restriction flS is a homeomorphism, and S = w(c) 3 
c, where w(c), as usually, denotes the limit set of the orbit {fmc}m=0 =. For more details 
on solenoids, see [2]. 

With the aid of the kneading theory [3] one can show that already in the family x 
a (x - i) one finds solenoids with arbitrary sequences of periods {Pm}m=1 = (for which Pm+1 

is divisible by Pm)" Binary solenoids S(for which Pm+i/Pm = 2, Pl = 2, m = i, 2 .... ) are 
usually called Feigenbaum attractors~ A vast literature, connected with the renormalization- 
group, has been devoted to them (see [4]). Non-binary solenoids have been investigated 
in a significantly more deficient manner. 

Let ~ be the Lebesgue measure on [0, i]. With the aid of Feigenbaum's universal law, 
it is easy to show that A(S) = 0 for a binary solenoid S (moreover, one can estimate its 
Hausdorff [4, 5]). Guckenheimer has proved a result on the measure of a binary solenoid 
without using the Feigenbaum universality [6]. The purpose of this paper is the proof of 
an analogous result for arbitrary solenoids. 

THEOREM. Let S be a solenoidal attractor of a transformation f ~ el. Then A(S) = 0. 

Remark i. In the case when sup(pn+i/pn) < =, the theorem can be refined: the Haus- 
dorff dimension of a corresponding solenoid is less than I. 

Remark 2. The theorem can be generalized also in the following manner. We assume 
that the invariant set A is nowhere dense, while flA is injective. Then %(A) = 0. 

2. Notations. By ['a, b] we denote the (closed) interval with endpoints a, b, without 
assuming that a < b. For a point x we set x n = fnx (similarly an, c n, ...). In particular, 
x0-----x. In the neighborhood of the extremum c we define an involution T: x ~ x' in the follow- 
ing manner: f(x') = f(x). By virtue of property U2, T satisfies a Lipschitz condition 
with some constant L. We shall say that the point a is situated closer to the extremum 
than b if a e (b, T(b)). We shall write A c B, if A c B or ~(A) c B. 

By Hn(x) we denote the maximal monotonicity interval of the function fn, containing 
the point x. The endpoints of such an interval are points of the set Uk=0 n-1 f-k c U 
{0, i}. 

By Guckenheimer's theorem on the absence of homtervals [7], if f has a solenoid, then 

max ~ (H, (~) -~ 0 (n -~ oo). ( 1 ) 
~'E[O, I] 

We set Mn(x) = fnHn(x). By Mn• we denote the intervals into which the ~oint x n divides 
Mn(x), while by Hn• the corresponding intervals in Hn(x), fnHn• = Mn-(X). Moreover, 

if x n is near to c, then by Mn+(X) we shall denote the interv~l which is farther from c 

than x. 

The notation ~: [ a0, a I ..... ak] ~ [b0, bl ..... b k] will be used in the case when 

the sequence {aL}i=0 k is monotone, the restriction ~I[ a0, a~] is monotone, and ~(a i) = 

bi (i = 0 ..... k). 

If the set A c [0, l] is measurable, I = [a, b] is an interval, then 

pa  ( I )  - -  Pa ([a,  b]) = g (A A I)/~ (I) 

will denote the density of the set A in the interval I. 

3. Lemmas on Distortion. 

LEMMA 1 (on distortion). Let f: [0, i] ~ [0, i] be a C3-smooth transformation with 
a finite number of critical points, in the neighborhood of which property U2 holds. Let 
I, J be two abutting closed intervals, not containing critical points. If %(I) ~ %(J), 
then 

~, ( I I )  . ~, ( I )  
~, (is) "77"5- <-4(1)" 
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.f. 

Fig. 1 

The proof of this elementary fact is left to the reader. 

We consider now that class ~0 of C3-smooth surjective maps 9: [0, i] ~ [0, I] with 
a negative Schwarzian, having no critical points. The following important result, due to 
Guckenheimer, is analogous to Koebe's well-known distortion theorem for univalent func- 
tions (see [8]). 

Koebe's Property [6]. Let f E 60, 6 > 0. If 9(x), 9(Y) e [6, 1 - 6], then 

I 9'(x)I/l 9'(Y) I ~ B(6), where B(6) does not depend on 9. 

From Koebe's property one derives easily the following two lemmas. 

LEMMA 2 (on distortion). Let 9~0, let [0, I] = H- O K U H + be a partition of the 

segment [0, i] into a union of three intervals. There exists a function 7: R+ ~ R+, inde- 
pendent on 9, such that 

~(~ H• __~ ~(H• 

~l~) ~ = ~  ~-YU~7 -~v(=)" 

LEMMA 3 (on distortion). Let 9~0, let [0, i] = H U K be a partition of the segment 

[0, I] into a union of two intervals, and let A be a measurable subset of [0, I]; then 

l(gH)/%(gK) ~ ~ > 0, @~A (~K) ~ e~PA(K) ~ 8(~, ~), where the function ~(q, ~) does not 

depend on 9. 

4. Fundamental Lemmas. In this section we shall assume that the transformation 

f ~ 61 does not have limit cycles (i.e., attracting some interval). In particular, this 
assumption holds if f has a solenoid. 

LEMMA I (see Fig. I). Suppose that the point a is such that fnl[ a, c] is monotone and 

an = c. We assume that there exists a point x e ( a, c) such that x n is situated closer to 

c than the point x itself and than all points c m (m = I, 2 ..... n). Then IXn - Cnl/X n - 
c I e q(f) > 0. 

Proof. For the sake of definiteness, we shall assume that a < c < c n. We assume, rea- 
soning by contradiction, that 

I x~ - -c .  l t lx~- -c  l <  q, (2 )  

where the value of q will be defined below. 

We start the proof with the inductive construction of a certain sequence of indices 
0 = k(0) < k(1) < ... < k(j) < n. Assume that k(i) has been already defined in such a manner 

that fn-k(i)l[ak(i) , c] is monotone. If n - k(i) ~ 3, then we set j = i and we conclude the 

construction; otherwise we consider the interval [ak(i)+3 , c 3] and we imbed it into the max- 

imal interval [ak(i)+a , di+1], terminating at ak(i)+a, on which the mapping fn-k(i)-a is 

monotone. We mention that the selection of the point c 3 is connected with the fact that, 
obviously, it is not an endpoint of the segment [0, i]. 

The point d i+~ is either an endpoint of the segment [0, i] or the fm-preimage of the 
extremum c for some m e [0, n - k(i) - 3). The point c 3 does not have any of these two 
properties. Consequently, d i+l ~ c 3. If d i+I is the fm-preimage of the point c and, moreover, 
m > 0, then we set 

k ( i  + l ) = k ( O  + 3 + m .  
(3) 

M o r e o v e r ,  [ a k ( i + z ) ,  c]  = f m [ a k ( i ) + a  , d i + l ]  and ,  c o n s e q u e n t l y ,  t h e  mapp ing  f n - k ( i + l )  i s  mono- 

t o n e  on [ a k ( i + l ) ,  c ] .  F i n a l l y ,  i f  d i+z ~ {0, 1},  t h e n  we s e t  j = i and we c o n c l u d e  t h e  
construction. Since in this case fn-k(J)l[ca, b] is monotone for some b e {0, i}, it follows 
that the exponents n - k(j) are uniformly bounded. Thus, 
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' I ~ -~ ( j )  - c I ~ • (~  > O, ( 4 )  

where ~ depends only on f. 

We describe the mutual disposition of the various points, occurring in this construc- 
tion (see Fig. 2). We have 

[x~, c~_~(~)] = M~_~(~) (x~(~)) 

Consequently, we have the property 

PI) x n < c n < Cn_k(1) < ... < Cn_k(j). 

Now we set (i) = k(i) - k(i - i) and we verify 

P2) cs e (ak(i) ' c). 

Indeed, (ak(i), c) = f (i)-a(ak(i-1)+a, d i) c f (i)-3 (ak(i_l)+3 , Ca] = (ak(i) , c (i)]" 

P3) ak(i) lies closer to c than Cn_k(i). Indeed, fn-k(i) maps monotonically the seg- 
ment [ak(i), c] onto [c, Cn_k(i)]. If [c, Cn_k(i)] c [ak(i) , c], then one of the segments 

[ak(i), c] or T[ak(i), c] is periodic. But then this segment would contain a limit cycle, 
in spite of the assumption. 

Remark. Applying similar considerations to the mapping 

f(~): [a~(i_l),c]--~[ak(1),cz(i)]C[ak(~),c], 

we can see that the following property holds. 

P4) [ak(i_l), c] c [ak(i) , c] (i.e., the points ak(i) move off from c with the increase 
of i). 

Finally, according to the assumption of the lemma, we have 

P5) the point x and all r lie farther from c than x n. 

Now we prove, by induction on i = 0, l, .... j, the inequalities 

assuming that Cn_k(_z)~-Xn. We assume that (5 m) holds for m = 0 ..... i - i, while (5i) 
does not hold. We consider (taking into account PI) the monotone mapping 

/,,-r [a~(i)+3, c/(i)~a ' C::,d(+~]_..[C,C,_k((_,),C,_~(i),Cn_k(~+,) ]. 

From the validity of (5i_ z) and the violation of (5 i) there follows the premise of the second 
distortion lemma for e = 1/2. Consequently, 

I a~(i)+3 - -  cl(=)+a l ~ V 0 / 2 )  I cl(i)+a - -  ca I. ( 6 )  

Now we consider the monotone mapping 

]3: [a~O),c~(1),c]._~[a~(i)+a, ez(~)+a, ca]. 

The f i r s t  d i s t o r t i o n  lemma, t a k i n g  i n t o  a c c o u n t  ( 6 ) ,  i m p l i e s  

] a~(~) - -  cl(~) ] 1/-~ A - ~ ?  ( t / 2 )  t c~r - -  c l, ( 7 )  

where  A i s  some c o n s t a n t ,  d epend ing  o n l y  on f .  

fn-k(1) 

ak( 0 x c~( 0 c ~z, % ' ' "  Cn-k#-Och-~,(~*O 

Fig. 2 
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On the other hand, 

Consequently, 

from P2, P3, P5 there follows the inclusion 

[a~(i), c~(i)] C [xn, cn-k(~ ~ 

1%(o - -  cz(O I < L =  [ = =  - -  c . _ ~ (  o I 
I c z ( o  - -  ~ I I x,= - -  c t (8) 

It remains to estimate the right-hand side of (8). 
0, 1 ..... i - i, and (2) there follows 

Ic._~(~)--c~_~(~_~)l<2-~.lx.--c~ l<q .2 - " lx . - -c l  
(m = O , i  . . . .  , O. 

The summation of (9 m) gives 

From (8), (I0) we conclude 

For this we note that from (5m), m = 

I cn-~(O - - x n  I -~< 2q ] xn - -  c I- 

I a~(~)  - -  c.o) < 2 q L  2 I c m )  - -  c ]. 

But this inequality contradicts (7) for 

q < q (/) --= L - 2 . ?  (1/2)/2A. 

(9 m) 

(loi) 

Thus, in order to prove (5), it remains to verify the induction base (i = 0). With 
the aid of considerations, entirely similar to those applied to f3: [ a, x, c] ~ [ aa, x3, 
c 3] and fn-~: [a3, xs, Ca, dZ] ~ [c, x n, c n, Cn_k(1)], we obtain that I a- x I ~ A-IT(I/2) 
Ix - c I (this is the analogue of formula (7)) and [a, x] c [Xn, Cn] (this is the analogue 

of the inclusion [ak(i) , cs c [Xn, Cn_k(i)]). For q < L-27(I/2)/2A this implies a 
contradiction, proving the induction base. 

In order to conclude the proof of Lemma 1 it remains to note that from (5 i) for i = 0, 
1 .... j there follows the inequality (10j), which, in turn, implies ICn_k(i) - c I ~ (2q + 
lila - c I. For a ~ c the last inequality contradicts (4). Lemma 1 is proves. 

LEMMA 2. Assume that the point x E [0, i] is such that x n is situated closer to c than 
all points c m (m = i, .... n), x r (r = 0 ..... n - I). 

Then: a) Mn-(X) c [~(Xn) , Xn] ; b) l(Mn+(X)) ~ d(f).Ix n - ~(Xn) I- 

Proof. Statement a) follows from the assumptions of the lemma since Mn-(X) = [Cm, Xn] 
for some m ~ [i, n]. 

b) We consider the moment t e [i, n) for which ftHn+(X)_ = [xt, c]. By virtue of a) 

there exists a point a ~ ft Hn-(X), for which fn-ta = c. Applying Lemma 1 to the mapping 

fn-t: [a, xt, c] ~ [c, Xn, Cn_t], we obtain the estimate X(Mn+(X)) ~ qlxn - c I. Making 

use of the Lipschitz property of the involution ~, we obtain the required estimate with 
d(f) = q(L + 1) -I . 

5. Proof of the Theorem. We can assume that the periodic segments Im, defining the 
solenoid (see Introduction) are symmetric with respect to c, i.e., ~(I m) = I m (otherwise, 

they can be symmetrized by considering I m U ~(Im)). 

We assume that X(S) > 0. We consider the density point x ~ S, for which x n # c m 

(n, m ~ N ). For any m e N there exists n < Pm such that x n ~ I m and, moreover, selecting 

a large m, we can assume that n # 0. Consequently, x n is situated closer to c than all the 
points cl (Z = 1 ..... Pm - I) and all the points x r (r = 0, 1 ..... n - i). Applying Lemma 

2b), we obtain l(Mn+(X)) ~ vlx n - T(Xn) i . By Lemma 2a there exists an interval Hn- c Hn-(X ) 

such that fnH n- = [T(Xn) , Xn]. Let p(I)----p[0,1]\S(I) denote the density of the set [0, I]\S 

in the interval I. Then for large n we have p[T(Xn) , Xn] e (i + L) -I since f is injective 

on [T(Xn), Xn] O S. Applying the third distortion lemma to the mapping fn: Hn- U Hn + 
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[T(Xn), x n] U Mn +, we obtain P(Hn-) e 8 (v, (L + 1) -I) > 0. But this inequality contradicts 
the fact that x is a density point for S. The theorem is proved. 
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CONSTRUCTION OF A FUCHSIAN EQUATION FROM A MONODROMY REPRESENTATION 

A. A. Bolibrukh 

It is known that for any homomorphism 

%: n~ (CP ~ ~ D, zo) --* GL (p; C) (1) 

of the fundamental group of the complement of a set D : { al ..... an} of points of the Rie- 
mann sphere CP I into the group of complex nondegenerate matrices of order p one can construct 
a Fuchsian equation 

y(p) + q~ (z) y(~') + ... + qp (z) y = 0 (2) 

with given monodromy (I), whose set D' of singular points coincides with D U {b I .... bm} 
(see [i]). The supplementary singular points bl, .... b m have no contribution to the mon- 
odromy and are referred to as "false" (or apparent) singular lYoints. For an irreducible 
representation (i) the number of such points can be estiamted as follows. 

Given the representation (i), one constructs in standard manner a vector bundle F' 
over CPI\D with structure group GL(p; C) [2]. Let F denote the Manin continuation (see 
[I, p. 95]) of this bundle to all of CP I (see also [3]). By the Birkhoff-Grothendieck 
theorem [4], 

F ~ O (--k~) |  @ O (--kp), 
(3) 

where k I e .o. ~ kp and O(-r) is the r-th power of the Hopf bundle O(-i) over CP I. Let 
denote the number 6f first equal numbers k I .... kp (k I = ... = kz ). 

THEOREM i. For any irreducible representation (i) there exists a Fuchsian equation 
(2) with given monodromy (i), the number m of false singular points of which satisfies the 
inequality 

m < [(n -- 2) p (p -- I)]12 -- Y, lP=I (kl -- kl) + 1 -- I (4) 
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