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We consider the class ~ of piecewise monotone transformations f: [0, i] + [0, i] having 
the following properties: 

i) inside the intervals of monotonicity, a) f e C 3, b) f has no critical points, and c) 
f has a negative Schwartzian 

~I  = I " ' / I ' - -  L~ . ( I " / I ' )  ~ < o, 

in  the neighborhood of extrema c i ,  I f ' ( x ) l  × Ix - c i l  n i ,  where ni  > O. 
n ~ Let ~ be Lebesgue measure on [0, i], let ~(x) be the limit set of the trajectory {f X}n=0 , 

and let rl (A) = {x: ~(x) c A} be the region of attraction of the set A c [0, i]. 

We call a closed invariant set A c [0, i] such that i) A(rl (A)) > 0; 2) %(rl (A) \ 
rl(A')) > 0 for every closed invariant subset A' c A an attractor in the sense of Milnor or 
a metric attractor [i]. We call an attractor indecomposable if it is not the union of two 
smaller attractors. 

In [2] and [3] it is shown that almost every f-trajectory approaches some indecomposable 
attractor A, and one of the following three possibilities holds: i) A is a limit cycle; 2) 
A is a cycle of a periodic interval; 3) A = ~(c) 9 c, where c is a critical point. 

A transformation f: X ~ X of a space with quasiinvariant measure % is said to be ergodic 
if there exists no completely invariant subset Y c X (i.e., f-iy = y) such that I(Y) > 0, 
X(X \ Y) > 0. 

THEOREM i. Let A be an indecomposable attractor of the transformation f ~ ~ which is 
not a limit cycle. Then f/rl(A) is ergodic. 

For unimodal f e ~ having transitive periodic intervals, this result is established in 
[2] (for the proof, see Ukr. Mat. Zh., 41 (1989)). 

- -  

COROLLARY i. The indecomposable attractors of a transformation f ~ ~ are minimal. Al- 
most every trajectory of f ~ ~ approaches some minimal attractor. 

A set X is said to be wandering if fnx ~ X = ~ (n = i, 2, ...), and it is said to be 
strongly wandering if fnx ~ fmx = ~ (n > m ~ 0). We put Bf = [0, I] \ U rl (Zi), where the 
Z i are all possible limit cycles of f. The set Bf does not contain strongly wandering inter- 
vals (M. Y. Lyubich (1987); this result was obtained for unimodal f e ~ by Guckenheimer 
[4]).* Theorem 1 implies a measurable analogue of this proposition (cf. Sullivan [5], Theo- 
rem 2): 

COROLLA/~Y 2. There exists no strongly wandering set X ~ Bf of positive measure for 
which fn/x is injective (n ~ 0). 

Let d be the number of critical points in Bf. 

COROLLARY 3. A transformation f ~ $ has no more than d absolutely continuous invariant 
ergodic measures. 

A transformation f: X ~ X of a space of quasiinvariant measure is said to be conservative 
if f has no wandering sets of positive measure. 

*We note that, as is shown by the authors (1987), a theorem concerning the absence of strongly 
wandering intervals holds also for CS-smooth transformations with nonsingular critical points 
(in the unimodal case, this was proved by de Melo and van Strien (1986)). 

Republican Information-Computing Center of Ministry of Public Health of RSFSR. All- 
Union Scientific-Research Institute for Design of Medical Laboratory Equipment. Translated 
from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 23, No. i, pp. 59-60, January-March, 1989. 
Original article submitted November 26, 1987. 

48 0016-2663/89/2301-0048512.50 © 1989 Plenum Publishing Corporation 



THEOREM 2. Let A be an attractor of the transformation f e 6. Then f/A is conserva- 

tive. 

We state a fundamental lemma from which Theorems 1 and 2 follow immediately. For this, 
we define a local involution T: x + x' in the neighborhood of extrema by means of the follow- 
ing property: f(x) = f(x'). 

LEMMA. Let c be some extremum, and let X c {x: m(x) m c} be a measurable invariant sub- 
set, %(X) > 0. Then: i) c is an accumulation point of the set X U T(X); 2) the set X has 
positive upper density at every point x ~ m(c). 

The following result strengthens Corollary 2. 

THEOREM 3. If f e ~ and A is an attractor, then there exist no strongly wandering sets 
X c rl (A), k(X) > 0 (here A does not contain limit cycles or solenoids). 

It is possible to define a topological attractor analogously to the metric attractor: in- 
stead of positiveness of measure, one requires that the corresponding sets be of second Baire 
category. A complete description of topological attractors T for a transformation f e ® (and 
also for smooth transformations with nonsingular critical points) follows from the absence 
of wandering intervals and from results in [6] and [7]. In fact, one of three possibilities 

~ P~ 
holds: i) T is a limit cycle; 2) T is a cycle of a periodic interval; 3) T =~ U/~fn , 

n ~ i  k=0 
where 11 ~ I~ ~ ... is a sequence of periodic intervals of order Pn ~ ~, and infi T = ~ (such 
an attractor is said to be a solenoid). 

In the real case, metric attractors clearly coincide with topological attractors. This 
important fact follows from the following two hypotheses. 

HYPOTHESIS i. Let f \ [0, i] be topologically transitive. Then ~(x) = [0, I] for al- 
most all x. 

Remark. We note that the property "~(x) = [0, i] for almost all x" is equivalent to f 
being conservative [3]. We note also that from the above results it follows that, for topo- 
logically transitive f, either ~(x) = [0, i] for almost all x or there exist a finite number 
of minimal attractors A k = ~(Ck) 9 c k (k = i, 2 .... ) and ~(x) = Ak(x) for almost all x. In 
addition, the entire interval [0, I] is the only topological attractor (since topological 
transitivity implies that ~(x) = [0, i] for a Baire massive set of points x). 

HYPOTHESIS 2. If R is a topological repeller, then k(R) = 0. 

In conclusion, we deal with the question of the measure of a solenoid. If S is a dy- 
adic solenoid of the unimodal transformation f e ~ , then k(S) = 0 ([8]). We have obtained 
an analogous result for arbitrary (not only dyadic) solenoids: 

THEOREM 4. Let S be a solenoid of the transformation f e ~ . Then k(S) = 0. 

Remark Added in Proof. All of our results can be generalized to the smooth polynomial 
case. 
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