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Preface

In the last quarter of XXth century the complex and real quadratic family

fc : z 7→ z2 + c

was recognized as a very rich and representative model of chaotic dynamics. In
the complex plane it exhibits fractal sets of amazing beauty. On the real line,
it contains regular and stochastic maps intertwined in an intricate fashion. It
also has remarkable universality properties: you can see small pieces that look
exactly the same as the whole family. This Universality is related to a profound
Renormalization idea originated in the particle and statistical physics. Interplay
between real and complex worlds provides us with deep insights into both. These
ideas eventually led to a complete picture of dynamics in the real quadratic family
and a nearly complete picture in the complex family.

In this series of books we attempt to present this picture beginning from scratch
and supplying all needed background (beyond the basic graduate education). We
hope to fit it into four volumes dedicated to the following themes:

I: Background in Conformal and Quasiconformal Geometry;

II: Basic Holomorphic Dynamics;

III: Complete Picture in the Real Quadratic Family;

IV: Advances in the MLC;

Several prominent ideas that will be highlighted throughout the book are rigid-
ity, puzzle, combinatorial models, topological & measure-theoretic attractors, geo-
metric bounds, and renormalization. Let us overview them in more detail.

Conformal and quasiconformal geometry. Volume I of the book contains a nec-
essary background in conformal and quasiconformal geometry. Main analytical
and topological tools of Holomorphic Dynamics are collected here in the form suit-
able for dynamical applications. Classical themes include principles of hyperbolic
metric and extremal length, the classical Uniformization Theorem, Measurable Rie-
mann Mapping Theorem (including holomorphic dependence on parameters), and
the Carathéodory boundary theory. More contemporary themes include a general
(non-dynamical) introduction to the theory of geodesic laminations, puzzles, thin-
thick decomposition for bordered Riemann surfaces, holomorphic motions (which
probably provides the biggest feedback from the contemporary Holomorphic Dy-
namics to Analysis), and elements of Teichmüller theory.

Dynamics. Volume II is dedicated to the Basic Holomorphic Dynamics de-
veloped from the mid-XIXth century through the early 1990s (adapted for the
quadratic family).

Dynamical plane I: basic objects. Chapter 3 covers most of the classical lo-
cal theory and Fatou-Julia global theory: basic properties of the Fatou and Julia
sets, classification of periodic motions and the associated remarkable functional
equations. (These equations were one of the original motivations for the classical
theory). It is completed with a more contemporary material on the landing proper-
ties of rational external rays (preparing a foundation for the combinatorial theory
of Julia sets) and the Yoccoz Inequality for the multipliers of periodic points.
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Figure 0.1. Mandelbrot set M. It encodes in one picture all
beauty and subtlety of the complex quadratic family. Every point
c ∈M represents some Julia set J (fc). A handful of popular ones
is depicted.

Dynamical plane II: fine structures and models. Chapter 4 covers good part of
the dynamical theory developed in the 1980s. Central themes here are:

• Global dynamics of important special classes of maps: hyperbolic, parabolic, and
postcritically non-recurrent.

• Problem of local connectivity of Julia sets (“JLC Problem”) and building of their
precise topological models (Douady & Hubbard and Thurston).

• Idea of quadratic-like maps and their renormalizations. This theory was designed
by Douady & Hubbard as a tool of explaining presence of baby Mandelbrot copies
inside the Mandelbrot set. It became foundational for the Complex Renormalization
Theory which will be a central theme in the upcoming volumes.

• Sullivan’s No Wandering Domains Theorem, which completed description of the
dynamics on the Fatou set. The proof is based on the method of quasiconformal
deformations adapted by Sullivan from the Ahlfors-Bers Deformation Theory for
Kleinian groups. It supplied the first line in Sullivan’s Dictionary between the dy-
namics of rational maps and Kleinian groups, which was largely responsible (along
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Figure 0.2. Blow-ups of the Mandelbrot set.

with appearance of beautiful computer images of Julia sets and the Mandelbrot set)
for the spectacular revival of Holomorphic Dynamics after 60 years of stagnation.

• Topological structure of real quadratic maps. The topological exploration of
interval maps originated in the work of Sharkovskii in the 1960s. In the 1970s a
great interest to this area was sparked by the Milnor-Thurston Kneading Theory.
The topological/combinatorial theory was completed in the 1980s, due to the effort
of many researchers. Guchenheimer’s No Wandering Intervals Theorem and real
a priori bounds for solenoidal maps (due to Guckenheimer, Blokh-Lyubich and
Sullivan) are key geometric ingredients needed for this picture.

• Combinatorial theory of Yoccoz Puzzle, a powerful tool of contemporary Holo-
morphic Dynamics, followed by a discussion of various combinatorial models for
Julia sets.

Parameter plane. In Chapter 5 we pass to the parameter plane, introducing
the Mandelbrot setM which encodes in one picture the whole richness of the qua-
dratic family. After analyzing elementary properties ofM, we prove first two break-
through results about it from the early 1980s: the Connectivity and the Multiplier
Theorems (due to Douady and Hubbard). A new remarkable tool, Quasiconformal
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Surgery, was introduced to the field along the lines. Then we proceed with the
following themes:

• Structural Stability Theory (by Mañé-Sad-Sullivan and the author) and a quasi-
conformal classification of quadratic polynomials.

• Limb Decomposition of the Mandelbrot set. (Limbs are the pieces ofM attached
to the main cardioid (clearly visible on the pictures) and to other hyperbolic com-
ponents ofM.) It implies, in particular, that any abstract superattracting Hubbard
tree (which encodes certain combinatorial data) is realizable by some superattract-
ing parameter.

• Proof of the Milnor-Thurston Entropy Monotonicity Conjecture that gives the
first illustration of the power of complex methods in real dynamics.

• Discussion of central conjectures in this area and the interplay between them.
Most famous conjecture is known as MLC (local connectivity of the Mandelbrot
set). It is equivalent to the Combinatorial Rigidity Conjecture, which is very similar
in spirit to the Mostow-Thurston Rigidity Phenomenon in 3D hyperbolic geome-
try. In turn, these conjectures imply the Fatou Conjecture asserting that the set
of hyperbolic maps is dense in the quadratic family (which sounds particularly
prominent for the dynamics community). The real counterparts of these conjec-
tures were established in the 1990s: they are formulated in this section, but the
proofs are postponed until Vol III (except that we give a proof of Rigidity for real
Feigenbaum maps).

• A fundamental Thurston’s Realization Theorem (in the context of superattracting
quadratic polynomials). It allows one to realize (in an appropriate sense) any
topological self-map of S2 that “looks like a superattracting quadratic polynomial”
as an actual quadratic polynomial. (An equivalent version of this result, in terms
of Hubbard trees, was mentioned above.)

Straightening, puzzle geometry, and attractors. Let us pass to Chapter 6, the
final chapter of the second volume.

One of the most fascinating features of the Mandelbrot set, clearly observed on
computer pictures, is the presence of the little copies of itself (“baby M -sets”), which
look almost identical to the original set (except for possible absence of the main
cusp). The complex renormalization theory is designed to explain this phenome-
non. We present the Douady-Hubbard theory of quadratic-like maps and complex
renormalization that justifies presence of the baby M -sets, and classify them. (The
geometric theory that explains why these babies have a universal shape will be de-
veloped in the forthcoming volumes.) Note that though this theory is widely known
and used, it has never appeared in a complete form (to the best of our knowledge).

Other themes covered in this chapter are:

• A proof of Yoccoz’s Theorem on local connectivity of the Julia sets for at most
finitely renormalizable maps with all periodic points repelling. A proof that these
Julia sets have zero area (due to Shishikura and the author).

• Measurable Dynamics of real quadratic polynomials developed by Blokh and the
author in the mid-1980s. The main outcome is that such a map has a unique
measure-theoretic attractor that attracts almost all orbits, and this attractor can
be of four possible types: an attracting or parabolic cycle, a cycle of intervals, a
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Figure 0.3. Baby M-set.

solenoid, or a wild Cantor attractor. (The problem of existence of the latter will
be discussed in the third volume).

In conclusion, we discuss properties of stochastic maps (i.e., maps that have an
absolutely continuous invariant measure (acim)), and give Misiurewicz’s condition
for stochasticity.

• Combinatorial Parapuzzle Theory. It provides us with a hierarchical structure
of the Mandelbrot set, leading to the partition of it into hyperbolic components
(accompanied with their boundaries), Yoccoz parameters, and infinitely renormal-
izable parameters. This sets the stage for further advances in the MLC Conjecture
(in the forthcoming volumes).

• We conclude this chapter by completing a proof of local connectivity of M at
the boundaries of hyperbolic components and describing a topological model forM
(which is homeomorphic to M as long as the latter is locally connected – this was
the original motivation for formulating the MLC Conjecture ).

This roughly constitutes the first two volumes of the series.

Projected volumes. In the third volume we plan to prove the Feigenbaum-
Coullet-Tresser Renormalization Conjecture (by Sullivan [S3], McMullen [McM2],
and the author [L12]), Density of Hyperbolic Maps in the real quadratic family
[L10, GS]), and the Regular and Stochastic Theorem [L11, L13] asserting that
almost any real quadratic map is either regular (i.e., has an attracting cycle that
attracts almost all orbits) or stochastic (i.e., it has an acim that governs behavior of
almost all orbits). These results were obtained in 1990’s, but more recent insights,
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Figure 0.4. Real quadratic family fc : x 7→ x2 + c as a model
of chaos. This picture presents how the limit set of the orbit
{fnc (0)}∞n=0 bifurcates as the parameter c changes from 1/4 on
the right to −2 on the left. Two types of regimes are intertwined
in an intricate way. The gaps correspond to the regular regimes.
The black regions correspond to the stochastic regimes (though of
course there are many narrow invisible gaps therein). In the begin-
ning (on the right) you can see the cascade of doubling bifurcations.
This picture became symbolic for one-dimensional dynamics.

particularly by Avila, Kahn, Moreira, and Shen deepened and further advanced our
understanding of the phenomena (see [AKLS, AL1, ALS, AM1, AM2]).

We plan to dedicate the fourth volume to recent advances in the MLC Conjec-
ture, mostly based on the work of Kahn and the author [K, KL1]–[KL3].

Interplay between Complex and Real worlds. Throughout this book, Real Dy-
namics is largely treated as a special R-symmetric case of Complex Dynamics.
While this gives an elegant view for the initial real theory (collected in vol II),
most of it can still be developed by purely real methods. This will not be the case
anymore for more advanced real theory that will be developed in vol III: most of it
will rely on complex methods in a crucial way.

Missing themes. Let us mention several important themes of Quadratic Dy-
namics that are not covered by this project.
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• Advanced topics of Neutral Dynamics: structure of Siegel and Cremer maps,
Parabolic and Siegel Renormalization Theories, see section “Neutral Phenomenon”
in the bibliography.

• Holomorphic Ergodic Theory: see selected references in the corresponding section
of bibliography, in particular, the book [PrU].

• Problem of Hausdorff dimension and Lebesgue measure of Julia sets and the
Mandelbrot set, see [Sh2, BC, AL3].

However, our project may eventually expand in one of these directions...

Remarks on more general theories. Dynamics of quadratic polynomials is quin-
tessential for the one-dimensional dynamics, both complex and real. With luxury
of being globally holomorphic, it raises in the simplest (albeit, already highly non-
trivial) combinatorial setting, some of the deepest geometric problems. Much of the
further theory is modeled on this setting, though new very interesting phenomena
eventually emerge. Let us mention some of these developments (see Notes in the
main bulk of the book for further leads):

Much of the dynamical theory developed in Chapters 3–4 can be generalized
to polynomials of higher degree. In fact, some of it is needed even in the quadratic
case, as the iterates of f are higher degree polynomials. We formulate relevant
pieces of the theory as exercises.

Note, however, that the basic parameter theory (Chapter 5) is less amenable to
generalizations, since the parameter spaces of higher degree polynomials are higher
dimensional.

Even more generally, good part of the basic theory can be generalized to rational
maps, though the combinatorial theory is much less developed in this generality.
We touch on this theme only briefly (for instance, we need Blaschke products).
There is a plenty of contemporary introductory sources to this area: [Be1, Bl,
CG, EL1, L1, M2, St] (with Milnor’s book [M2] being particularly popular).

Going further, one can study the dynamics of transcendental maps, but it
becomes technically very difficult quite fast. Nevertheless, it is a flourishing research
area, with an important feedback to the polynomial dynamics (see [EL1, Ber] for
introductory surveys and section “Transcendental Dynamics” in the bibliography
for further references).

In a different direction, one can also generalize much of the real theory to
smooth maps. In fact, we develop the theory for a class of real analytic maps which
is needed for the quadratic dynamics, but otherwise we do not pursue this direction
in depth. An interested reader can consult text books by Collet & Eckmann [CE]
and de Melo & van Strien [MvS].

Let us finally mention that various deep geometric issues (including local con-
nectivity and area problems, existence of wild attractors, density of hyperbolicity,
and regular or stochastic dichotomy) are degree-sensitive even in the unicritical case
z 7→ zd + c. However, our exposition in vol III is planned so that it can be easily
adapted for the general unicritical setting.

A major development in the general multimodal case was a proof in the 2000s
of Density of Hyperbolicity by Kozlovski, Shen and van Strien [KSS]. However,
the multimodal generalization of Regular or Stochastic Dichotomy still remains
unsettled.
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How the book can be used. This book is being designed as an “educational
monograph” in contemporary analytic one-dimensional dynamics, so it can be used
in many ways:

• As the first introduction to the analytic one-dimensional dynamics, complex and
real. Then the reader should begin with Chapter 3 consulting the background
material from vol I as needed.

• As an introduction to advanced themes of contemporary one-dimensional dynam-
ics for the reader who knows basics and intends to do research in this field. Such
a reader can go through selected pieces of Chapter 3 proceeding fairly fast to more
advanced topics.

• For a graduate class in topics of conformal and quasiconformal geometry illus-
trated with dynamical examples. This would cover vol I with selected pieces from
vol II.

• Of course, the book can also be used for reference.

As we have already mentioned, we have made an effort to collect all necessary
background in the user-friendly form. What we assume from the reader is just the
basic knowledge of real & complex analysis, and topology & geometry, roughly cor-
responding to the core graduate curriculum at a US University. For instance, the
following collection of text books covers most of the needed background: Munkres
[Mu1] (Topology), Shabat [Shab] (Complex Analysis), Do Carmo [DoC] (Differ-
ential Geometry), Halmos [Ha1] (Measure Theory), Kolmogorov and Fomin [KolF]
(Real Functional Analysis), and Spivak [Spiv, vol. 1] (Global Analysis).

Various remarks. a) The text is supplied with many “Exercises” and “Projects”.
Mostly, they constitute an intrinsic part of the discussion, an invitation to the
reader to think through some technical details or to develop a piece of the theory
him/herself (in the spirit of the book by I.M. Glazman and Yu.I. Lyubich [GL]
that develops an advanced theory as a carefully organized series of not so difficult
problems). More challenging exercises are called “Problems”. Open problems and
conjectures are marked as such.

e) There are very few references in the main bulk of the text. However, each
chapter (and some sections) are concluded with Notes supplying historical back-
ground, references, generalizations, and leads for further reading.

f) For the reader’s convenience, a list of notations (as well as some basic def-
initions) is provided at the end. Most of these notations and definitions are also
introduced in the main bulk of the book, but there are some exceptions.

g) The bibliography is roughly classified according to the topics: “Real One-
Dimensional Dynamics”, “General Holomorphic Dynamics”, etc., so it may take a
few extra seconds to scroll through several sections in order to find a desired refer-
ence. We hope this inconvenience would be compensated by an extra orientation
that such classification provides.

h) The numeration of the chapters and sections is uniform throughout the series
of volumes.

Acknowledgement. This project has been gradually developed since the
European Lecture Series I gave in Copenhagen–St Petersburg–Barcelona in 1999.
Besides these lectures, it is based upon my graduate classes in Stony Brook and
Toronto since the early 1990s, as well as mini-courses in Trieste, Kyoto, and Cullera
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in the 2000s. Over all these years, I have received invaluable feedback from my col-
leagues, postdocs and students, and more recently, from anonymous referees. Some
specific acknowledgments are spread over the Notes throughout the book, but of
course, they are far from being complete. Special thanks a due to Sergei Gelfand
for his patient but persistent encouragement over the years.

I am grateful to Joshua Bowman and especially to Sabyasachi Mukherjee for
their help with computer pictures. I also thank the NSF and NSERC, as well as the
Sloan and Guggenheim Fellowships, for their support over various periods during
this time.

An abbreviated version of the book, available as “Six Lectures on dynamics of
quadratic polynomials ” [L3], reflects the status of the area through the 1990s. It is
summarized in the survey “The quadratic family as a qualitatively solvable model of
chaos” [L2]. Recent surveys “Forty years of unimodal dynamics: on the occasion of
Artur Avila winning the Brin prize ” [L4] and “Analytic low dimensional dynamics:
from dimension one to two” [L5] give an updated overview of the area.

1. Preliminaries: Topological background

In this section we collect some preliminary material, mostly topological. It can
be reviewed briefly and then consulted as the corresponding objects and results
appear in the text.

In what follows, all topological spaces (except Banach spaces L∞(X)) are as-
sumed to satisfy the Second Countability Axiom, i.e., they have a countable basis
of open sets. We also assume that all topological spaces in question are metrizable,
unless otherwise is explicitly said. Recall that a compact space is metrizable iff it
satisfies the Second Countability Axiom (and iff it is separable), so in the compact
case our two conventions exactly match. We will also follow a convention that
compactness includes being Hausdorff.

1.1. First encounter with “wild” creatures.

1.1.1. Cantor set. The (1/3)-Cantor set was perhaps the first example of a
“wild fractal” object. This famous construction goes as follows. By removing from
the unit interval I ≡ I0 the middle open 1/3-subinterval, we are left with the union
of two closed intervals, I10 = [0, 1/3] and I11 = [1/3, 1]. By removing from each of
them the middle (1/3)-interval, we are left with the union of four closed intervals
I200 = [0, 1/9], I101 = [2/9, 1/3], I210 = [2/3, 5/9], and I211 = [8/9, 1]. Repeating
this procedure over and over again, we obtain a hierarchy of 2n intervals Inε1...εn ,
εn ∈ {0, 1}, of level n, naturally labeled by dyadic sequences of length n. Let

In :=
⋃

ε1...εn

Inε1...εn and K1/3 :=

∞⋂

n=1

In.

Exercise 1.1. The (1/3)-Cantor set is a perfect totally disconnected set of zero
length.

This prompts an intrinsic definition of a Cantor set as a totally disconnected
perfect set.

Exercise 1.2. All Cantor sets are homeomorphic.
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I11

I0

I10

I210 I211I200 I201

I3000 I3010 I3110I3100

Figure 1.1. Hierarchy of intervals generating the (1/3)-Cantor
set.

One can generalize the classical Cantor construction in the following obvious
way. Consider a rooted tree T with the root v0 and vertices of level n ≥ 1 labeled
as vnε1...εn , where each index εn runs through a finite set, and any two vertices
vnε1...εn & vn+1

ε1...εnεn+1
are connected by and edge.

Remark 1.3. For n = 0, this statement should be read as “v0 is connected to
v1ε1 ”. Such a convention will be assumed without mentioning under similar circum-
stances throughout the book.

Let us associate to T a hierarchical family of closed intervals Inε1...εn ⊂ I0 such
that the intervals of the same level are disjoint, while Inε1,...,εn ⊃ Inε1,...,εn,εn+1

. It is
also convenient to put an order on the range of each index εn, and to assume that
for given (ε1 . . . εn−1), the correspondence εn 7→ Inε1...εn is monotonic.

Assume that

diam Inε1,...,εn → 0 as n→∞
along any infinite branch (ε1ε2ε3 . . . ) of the tree. Then

K :=
∞⋂

n=0

⋃

ε1...εn

Inε1...εn

Exercise 1.4. Show that under the above circumstances, K is a Cantor set.

The tree T encodes the combinatorics of this Cantors set K.1 We say that K
has an N−bounded combinatorics if the number of branches emanating from any
vertex of T to the next level is bounded by N .

Exercise 1.5. Any two Cantor sets K, K̃ ⊂ R with the same combinatorics
T are topologically equivalent by a homeomorphism h : (R,K)→ (R, K̃) respecting
the combinatorics, i.e., inducing id on the tree T .

1Of course, a given Cantor set K can be encoded by various trees. but in practice K appears
together with the coding tree.
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Figure 1.2. Devil staircase.

We say thatK has a C-bounded geometry if any interval Inε1...εn is C−comparable
with all the intervals Inε1...εnεn+1

of the next leves and with all the gaps in between.2

For instance, the 1/3−Cantor set has a 2−bounded combinatorics and 3−bounded
geometry.

Clearly, a Cantor set with a bounded geomerty has a bounded combinatorics,
but not necessarily the other way around. Interplay between combinatorics and
geometry for various fractal sets will be one of the main themes of this book.

1.1.2. Devil’s Staircase. Let K ⊂ J be a compact subset of a closed topological
interval J . Connected components Lj of JrK are called gaps in K, or complemen-
tary intervals of K. If any two gaps have disjoint closures (i.e. K does not have
isolated points) then we can consider the equivalence relation ∼ on J by declaring
the closures L̄j to be equivalence classes, while other classes to be singletons. Then
the quotient J/ ∼ is a topological interval as well, as the Devil ’s Staircase con-
struction shows.3 This is a continuous monotone function h : J → I onto another
interval I whose fibers are the above equivalence classes (so, h is constant on the
gaps Lj , while h(x) 6= h(y) if x 6∼ y).

The inverse construction is called blow-up of points. Given any countable set
{xj} ⊂ int I and a summable series ε̄ :=

∑
εj <∞ with εj > 0, one can “blow-up”

points xj to closed intervals L̄j of length εj to obtain a new interval J of length
1 + ε̄. The natural projection π : J → I is a Devil Staircase. Let Î := J r

⋃
Lj .

Then the projection π : Î → I is one-to-one over all points except the xj , where it
is two-to-one.

Exercise 1.6. Work out details of the Devil’s Staircase and blow-up construc-
tions.

Exercise 1.7. For the (1/3)-Cantor set K ≡ K1/3,

2To avoid dependence on a particular choice of the hierarchy of intervals, we should allow
adjustments of the intervals Inε1...εn without changing their slices by K.

3This term usually applies to the case when K is nowhere dense, i.e., it is a Cantor set.
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a) The devil’s staircase can be constructed by means of the map

K → I,
∑ εn

3n
7→
∑ εn

2n
, where εn ∈ {0, 1}.

b) Its graph is affinely self-similar, namely, it is invariant under the transformation

I2 → I2, quad(x, y) 7→ (3x, 2x) mod 1.

This devil’s staircase provides the standard example of a monotone function
whose derivative vanishes almost everywhere (so the Newton-Leibniz Formula fails
— no absolute continuity).

The above discussion applies as well to a topological circle in place of an interval.
Moreover, it can be also extended to a disk:

Exercise 1.8. Let L̄j be a family of disjoint closed arcs on the unit circle T.
Consider an equivalence relation ∼ on the unit disk D̄ whose classes are L̄j and
singletons. Then the quotient D̄/ ∼ is a topological disk.

1.2. Local connectivity. Notion of local connectivity is crucial for Holomor-
phic Dynamics: it makes even fractal objects fairly “tame”.

1.2.1. Paths and arcs. A path and a curve in a topological space X mean the
same: a continuous map γ of an interval (of any type) or a circle to X. In the latter
case we also refer to it as a closed curve or a loop. Abusing terminology, we often
refer to the image of γ as a path/curve as well.

An arc is an embedding of an interval into X. A simple closed curve is the
embedding of the circle into X.

Exercise 1.9. Any path parametrized by a closed interval contains an arc with
the same endpoints.

Thus, path connectivity of a space X is equivalent to its arcwise connectivity.

1.2.2. Definition and basic properties. A topological space X is called locally
connected (“lc”) at a point x ∈ X if x has a local basis of connected neighborhoods.4

A space X is called locally connected if it is locally connected at every point.

Exercise 1.10. A space X is locally connected iff connected components of any
open subset U ⊂ X are open.

There is a convenient weaker notion: A space X is called weakly locally con-
nected at a point x ∈ X if any neighborhood U ∋ x contains a connected set P such
that x ∈ intP . (Such spaces are also called connected im kleinen.) There is a subtle
difference between local connectivity and weak local connectivity at an individual
point, but fortunately it disappears globally:

Exercise 1.11. If a space is weakly locally connected (at every point) then it is
locally connected. However, a space can be weakly locally connected at some point
x without being locally connected at this point (see Figure 1.4).

For a metric space X, a lc modulus at x ∈ X is a function ω : R+ → R+,
ω(ε) → 0 as ε → 0, such that if d(x, y) < ε then there exists a connected set Y
containing both x and y such that diamY < ω(ε). If ω works for all points x ∈ X
then it is called lc modulus for X.

4According to our convention, these neighborhoods are open. Sometimes “local connectivity”
is defined in terms of closed neighborhoods, which corresponds to the notion of weak lc below.
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Figure 1.3. A topological comb is a typical cause for non-local-
connectivity. To establish non-local-connectivity of a subset set in
R2, chercher le peigne. Notice that this comb is path connected
and is locally connected at the corner point.

Figure 1.4. A witch’s broom is weakly locally connected, but not
locally connected, at the tip.

Exercise 1.12. Show that a metric space X is weakly lc at some point x iff it
has an lc modulus at this point. Conclude that a compact metric space X is locally
connected iff it has an lc modulus.

Exercise 1.13. a) Show that curves are locally connected.
b) More generally, the image of an lc continuum is an lc continuum.

Problem 1.14. An lc continuum K ⊂ Rn is arcwise connected.

A space X is called a path/arcwise locally connected at a point x ∈ X if there
exists a path/arcwise lc modulus ω(ε) such that any point y ∈ X which is ε-close
to x can be connected to x with a path/arc of diameter less than ω(ε). As usual,
path/arcwise lc of the whole space means path/arcwise lc at every point.

Exercise 1.15. For the whole space, properties of being arcwise lc, path lc, and
locally connected are all equivalent.

Exercise 1.16. Let K be a compact subset of Rn, and let J = ∂K. If J is
locally connected then so is K.

Quite remarkably, local connectivity gives a characterization of curves:

Theorem 1.17 (Hahn-Mazurkevich). Let X be a compact space. Then X is a
lc continuum iff there is a space-filling curve γ : [0, 1]→ X (“Peano curve”).

Problem 1.18. Prove this theorem.

1.3. Plane topology. A plane domain is a domain in C̄.

1.3.1. Hulls and their cellular approximations. A Jordan curve γ is a simple
closed curve in the 2-sphere S2. It is called polygonal if it is contained in R2 and
composed of finitely many straight intervals.
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Lemma 1.19 (Polygonal Jordan Theorem). A polygonal Jordan curve bounds
a domain P whose closure (the “polygon” P̄ ) is homeomorphic to D̄.

Proof. Take a line L that does not pass through any vertex of γ and is not
parallel to any edge of γ. Components of γ r L admit a checkerboard coloring,
depending on which side of L they lie. Since γ ≈ T, there is an even number of
intersection points between γ and L. Hence Lr γ admits a checkerboard coloring
such that both unbounded components are colored white. (This can be also done,
with an appropriate adjustment of the notion of checkerboard coloring, in the case
when L is allowed to pass through a vertex.)

Take now the foliation of all lines parallel to L and declare P to be the set of
black points of this foliation.

To see that P̄ is a topological disk, triangulate it and carry induction in the
number of triangles. �

A compact subset K in R2 is called full or non-separating if R2rK is connected.
(Intuitively, K “does not have holes”). A full non-trivial continuum is called a hull.

A point z ∈ ∂K is called peripheral if it belongs to the boundary of some
component of intK.

A subset K ′ of a hull K is called a subhull if it is a hull such that intK ′ is the
union of some components of intK.

A compact setK ⊂ R2 is called cellular if there exists a nest of closed topological
disks D̄i (where Di = int D̄i) shrinking to K:

(1.1) D1 ⋑ D2 ⋑ · · · ⋑ K;
⋂
Di = K.

Proposition 1.20. Any hull K ⊂ R2 is cellular.

Proof. For any ε-neighborhood U of K, we can construct a polygonal Jordan
curve γ ⊂ U rK that bounds a polygon P containing K (for instance, by covering
K with a union of small grid boxes). We can then organize the corresponding
polygons into a nest P1 ⋑ P2 ⋑ . . . , and take their intersection P∞. It is a compact
set containing K.

Let us show that P∞ ⊂ K. Take some a ∈ R2rK. Since K is a hull, there is a
path δ in R2 rK connecting a to ∞. It stays some positive distance away from K
and hence does not intersect the curves ∂Pn for n sufficiently big. It follows that δ
does not intersect the polygons P̄n either, and in particular, a 6∈ P∞. �

Corollary 1.21. If K ⊂ R2 is a hull then there exists a continuous map
h : (R2,K) → (R2, 0) whose restriction to R2 r K is a homeomorphism onto
R2 r {0}.

Proof. Consider a cellular approximation (1.1) of K. Let Ai := D̄irDi+1 and
Ãi := A[2−(i+1), 2−i]. Construct consecutively homeomorphisms Ai → Ãi matching
on the common boundaries. We obtain a homeomorphism
D̄0 rK → D̄ r {0} that extends continuously to a desired map. �

Thus, the space obtained by collapsing a hull K ⊂ R2 to a single point5 is a
topological plane R2. Of course, we can also interpret this result on the sphere S2,
where a “hull” K ⊂ S2 should be understood as a continuum with connected (and

5i.e., taking the quotient by the equivalence relation that identifies all points of K to a single
point.
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non-empty) complement S2rK. We see that the space obtained by collapsing such
a K to a point is a topological sphere S2.

Doing it inductively, we conclude:

Proposition 1.22. Let Ki ⊂ S2 be a finite family of disjoint hulls. The space
obtained by collapsing each Ki to a single point is a topological sphere S2.

1.3.2. Jordan Theorem. The following result gives an intrinsic characterization
of hulls in R2 in terms of vanishing Alexander cohomology:

Theorem 1.23. A continuum K ⊂ R2 is a hull iff H1
A(K) = 0.

Proof. It is enough to show that for r sufficiently small, any two r-chains C
and C ′ in K are discretely homotopic in K rel the endpoints. By Proposition 1.20,
any neighborhood of K contains a Jordan disk D ⊃ K. By Example 1.124, C and
C ′ are discretely homotopic in D. The chains that appear in the course of this
homotopy can be projected to K with a small error, providing us with the desired
homotopy in K.

Vice versa, assume R2rK contains a bounded component D. Then for a point
a ∈ D, the interaction

φa(z, ζ) := arg(z/ζ), z, ζ ∈ K, |z − ζ| < dist(a,K),

defines a non-trivial 1-cocycle on K (compare Example 1.125). �

Thus, being a hull is an intrinsic property of K, independent of the embedding
of K into the plane.

Corollary 1.24 (Jordan Theorem: weaker version). Any Jordan curve γ ⊂
R2 separates the plane.

Proof. Otherwise γ would be a hull. Then H1
A(γ) = 0 contradicting Example

1.125. �

Problem 1.25. For a continuum K ⊂ R2, the rank of H1
A(K) is equal to the

number of bounded components of R2 rK.

Putting this together with Example 1.125, we obtain:

Jordan Theorem. The complement of a Jordan curve γ consists of two com-
ponents D1 and D2 with the common boundary γ.

These components are called (open) Jordan disks. Their closures D̄i = Di ∪ γ
are called closed Jordan disks.

A closed curve γ on a manifold S is called trivial if it is nul-homotopic, i.e.,
there is a continuous family of closed curves γt, 0 ≤ t ≤ 1, such that γ0 = γ while
γ1 is a single point x. A connected manifold S is called simply connected if any
closed curve on S is nul-homotopic. In other words, its fundamental group π1(S, x)
is trivial (which is independent of the choice of the base point x).

Exercise 1.26. Show that any open Jordan disk is simply connected.

When S2 is realized as one-point compactification of R2, S2 = R2 ∪ {∞}, and
a Jordan curve γ lies in R2, then one of the corresponding Jordan disks is bounded
in R2, while another contains ∞. They are called the inner and outer Jordan disks
respectively. If a point z belongs to the inner Jordan disk, we say that “γ goes
around z” or “γ surrounds z”.
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1.3.3. Embedded trees. Let us orient the plane R2, and let X be a planar space
(i.e., X can be embedded into R2). Two embeddings, ij : X → R2, j = 1, 2,
are called ambient equivalent if there is an orientation preserving homeomorphism
h : R2 → R2 such that h ◦ i1 = i2.

An (abstract) closed star S of valence q is q copies of the interval [0, 1] glued
at 0. (In other words, it is a tree with q edges that have a common root of valence
q.) Similarly, we can consider an (abstract) open star S◦ by taking q rays [0,+∞)
and gluing them at 0.

Recall from §50.2 that e(θ) ≡ e2πiθ.
Exercise 1.27. (i) Any properly embedded open star of valence q is ambient

equivalent to the standard open star

S◦st :=
q−1⋃

k=0

e(k/q) · [0,+∞).

(ii) Any ambient self-homeomorphism h : (R2, S◦st)→ (R2, S◦st) of the standard
open star is the composition of a rotation by p/q, p ∈ Z/qZ, and a homeomorphism
h : (R2, Sst)→ (R2, Sst) preserving all the rays.

In particular, the rays of a properly embedded star are cyclicly ordered and
any ambient orientation preserving self-homeomorphism induces a rotation on this
ordered set. (See Appendix 1.11 on the notion of cyclic order.) Moreover, a proper
embedding of an open star is determined (up to ambient equivalence) by a cyclic
order on its rays. Note also that if the rays have distinct asymptotic slopes θi ∈ R/Z
at the root of S or at∞, the cyclic order of the rays coincides with the cyclic order
of the angles θi (induced from R/Z).

Similarly,

Sst :=

q−1⋃

k=0

e(k/q) · [0, 1].

provides a standard embedded model for closed stars. It provides us with a local
version of the above conclusion: the rays of an embedded star are cyclically ordered,
and any ambient orientation preserving local self-homeomorphism (near the start
vertex) induces a rotation of this ordered set. An embedded star is determined (up
to local ambient equivalence) by a cyclic order on the edges.

More generally, we can consider an abstract tree T abs, and its embeddings into
the oriented plane R2 up to the ambient equivalence. Any vertex v of T abs is the
root of the attached local star Sabs

v (comprising the edges e such that v ∈ ∂e).
Exercise 1.28. An embedding i : T abs → R2 is determined, up to ambient

equivalence, by a cyclic order on all the local stars Sabs
v .

1.3.4. Finer structure of hulls.

Exercise 1.29. (i) If K is a hull, then any component of intK is simply
connected.

(ii) Let J be a compact subset of R2, and let Ui be the bounded components of R2rJ .
Then K := J ∪⋃Ui is a hull.

This procedure is called filling-in the holes of J .
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Lemma 1.30. Let K ⊂ R2 be a lc hull, and let U be a component of intK.
Take a z ∈ K r Ū and connect it with an arc α ⊂ K to some point in Ū . Let
πα(z) ≡ πU,α(z) be the the first point of intersection of α with Ū . Then πα(z) is
independent of α.

Proof. Assume we have two arcs α1 and α2 in K connecting z to Ū such that
ζ1 := πα1

(z) 6= πα2
(z) =: ζ2. Without loss of generality we can assume that the αi

end at ζi. Let (u, ζ1] be the maximal subarc of α1 that contains ζ1 and does not
cross α2, and let α′i = [u, ζi] be the closed subarcs of the αi bounded by u and ζi
(i = 1, 2). Then u is the only common point of the latter arcs. Moreover, u 6∈ Ū .

Let us take some points w1, w2 ∈ U that are ε-close to ζ1, ζ2 respectively. By
Lemma 1.9 and Exercise 1.12, wi can be connected to the respective point ζi by
an arc γi ⊂ K with diam γi < ω(ε). So, for ε small enough, γ1 is disjoint from
δ′2 := α′2 ∪ γ2 and γ2 is disjoint from δ′1 := α′1 ∪ γ1.

Applying Lemma 1.9 again, we can straighten the curves δ′i to arcs δi ⊂ δ′i
connecting u to wi. Then u is the only one common point of these arcs as well.

Let us now connect w1 to w2 with an arc σ ⊂ U disjoint from δ1 ∪ δ2 (except
for the endpoints).

The union of three arcs, δ1, δ2 and σ, form a Jordan curve in K. Let D be
the open Jordan disk bounded by this curve. Since K is full, D ⊂ K. Moreover,
D intersects U , and hence U ∪D is contained in a component of intK, so D ⊂ U .
Hence u ∈ Ū – contradiction. �

So, under the above circumstances we have a well defined projection:

(1.2) πU : K → Ū .

Exercise 1.31. The projection πU is continuous and locally constant on KrŪ .

Together with Exercise 1.13 b), this implies:

Corollary 1.32. If K ⊂ R2 is a lc hull and U is a component of intK then
Ū is a hull as well.

Exercise 1.33. Let K be a lc hull in R2 whose complement has infinitely many
components Di. Then diamDi → 0.

An external neighborhood of a hull K ⊂ C is a set U rK where U is a neigh-
borhood of K.

Further study of plane hulls will require analytic methods (see §9.2).

Let us conclude with a useful criterion that ensures that a piecewise homeo-
morphism is actually a homeomorphism.

Exercise 1.34. Let K and K̃ be two compact subsets of C, and let Di, D̃i be
the components of their interior. Assume diamDi → 0 and diam D̃i → 0 (which
holds automatically when K and K̃ are lc hulls). Let h : K → K̃ be a bijection
that restricts to homeomorphisms ∂K → ∂K̃ and clDi → cl D̃i. Then h is a
homeomorphism. Show by example that the shrinking condition for Di and D̃i

cannot be dropped.

A nowhere dense lc hull is called a dendrite.
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1.3.5. Accessibility. Let D ⊂ Ĉ be a simply connected domain whose boundary
contains more than one point. Let γ : [0, 1) → D be a curve. We say that γ lands
at some point ζ ∈ ∂D if γ(t) → ζ as t → 1. A boundary point ζ ∈ ∂D is called
accessible from D if there is a curve γ landing at ζ.

Exercise 1.35. The set of accessible points is dense in ∂D.

Let γ0 and γ1 be two curves in D landing at ζ. We say that γ0 and γ1 represent
the same access to ζ if they are homotopic in D rel ζ (i.e., there is a family of curves
γτ : [0, 1)→ D, τ ∈ [0, 1], deforming γ0 to γ1, all landing at ζ). Thus, an access at
ζ is a class of homotopic curves in D landing at ζ.

Note that there exist q accesses to a vertex of valence q of an embedded graph.

1.3.6. Disk isotopies rel boundary. The following basic topological fact shows
that in the disk isotopy classes rel boundary are determined by the boundary values.

Alexander Trick. Any two homeomorphisms φ and ψ of the closed unit disk
D that coincide on T = ∂D are isotopic rel T. The same is true for the punctured
disk D∗.

Proof. Let us first consider the case ψ = id, and hence φ|T = id.

Exercise 1.36. Show that φ is isotopic rel T to a map fixing 0.

In what follows we assume that φ(0) = 0. Let φ0 = id, while for t ∈ (0, 1], let
us define a homeomorphism φt : D̄→ D̄ as follows

φt(z) = t φ(z/t) for z ∈ D̄t = {z : |z| ≤ t}, φt(z) = z otherwise.

This is the desired isotopy.

The general case is reduced to ψ = id by replacing φ with ψ−1 ◦ φ. �

Exercise 1.37. Let K ⊂ T be a closed subset of the circle. Then two home-
omorphisms φ and ψ of the closed unit disk D that coincide on K are isotopic
rel K.

1.3.7. Annulus (cylinder) twists. Next, we will classify homeomorphisms of the
cylinder Cyl = (R/Z) × I up to homotopy rel the boundary. Let us consider the
standard twist

τ : (θ, x) 7→ (θ + x, x).

Notices that it pointwise fixes the boundary and it maps the vetrical interval {0}×I
to the spiral {x = θ}.

Exercise 1.38. (i)The twists τn, n ∈ Z, represent distinct homotopy classes
of cylinder homeomorphisms rel ∂ Cyl fixing the boundary pointwise.

(ii) Any cylinder homeomorphism which fixes the boundary pointwise is homo-
topic rel ∂ Cyl to some twist τn, n ∈ Z.

Of course, this discussion can be immediately transported to any (compact)
topological annulus. We will use the same name and notation for the corresponding
topological twists.
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Figure 1.5. On the left-hand side picture, one equivalence class
is disconnected (consists of two points), on the right-hand side one,
it is not full (a circle).

1.3.8. Quotients of the sphere.

Moore’s Theorem. Let P be a partition of the sphere S2, and let X be the
corresponding quotient space. Then X is a topological sphere if and only if P is
closed and every non-singleton class of P is a hull.

See [Tim] for a proof.
This is a deep topological result. However, its conclusion can be verified directly

in all occasions that we will encounter in this book. Figure 1.5 illustrates what can
go wrong if the conditions of the theorem are violated.

1.4. Zoo of wild creatures.

1.4.1. Koch snowflake. Let us consider an equilateral triangle ∆ (viewed as a
polygonal curve). Divide each of its sides Lj into three sub-interval and attach
an equilateral triangle to each of the three middle intervals Ij ; then erase the Ij .
We obtain an 12-gon (the first level approximation to the snowflake). Again, divide
each of its sides into three sub-interval and attach an equilateral triangles to each of
the twelve middle intervals, erasing those intervals afterwards. We obtain a 48-gon
(the second level approximation to the snowflake). Proceed inductively and pass to
a limit (in the Hausdorff topology on the space of sets). The limiting set is called
the Koch snowflake S.

Exercise 1.39. (i) Justify existence of the limit. Parameterizing the approxi-
mating polygons in a piecewise linear way, show that the convergence holds in the
uniform topology on the space of curves.

(ii) Show that S is self-similar: Each piece Sj attached to the intervals Ij can be
affinely amplified to the piece of S attached ∆r Lj.
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Figure 1.6. The Koch snowflake (on the right) and the 2nd order
approximation to it (on the left).

(iii) Show that the Koch snowflake is a nowhere differentiable Jordan curve (it does
not admit tangent lines anywhere).

1.4.2. Jordan curve of positive area. Take a sequence of numbers εn > 0, n =
1, 2, . . . , with

∑
εn < ∞. Start with a standard annulus A0. Inscribe into it a

narrow oscillating annulus A1 such that areaA1 ≥ (1− ε1) areaA0. Then inscribe
into A1 a much more narrow annulus A2 with much higher oscillating frequency rel
A1 such that areaA2 ≥ (1− ε2) areaA1; etc.

Exercise 1.40. Show that this construction can be arranged so that in the end
we obtain a Jordan curve Γ :=

⋂
An of positive area.

1.4.3. Knaster continuum. Let us consider the standard (1/3)-Cantor set K ⊂
[0, 1]. It is the union of two “Cantor intervals” J := K∩[0, 1/3] and I := K∩[2/3, 1],
permuted by the reflection σ : x 7→ 1− x with respect to 1/2. Let us connect each
pair of symmetric points x and σ(x) (x ∈ J) with the upper half-circle arc (see
Figure 1.8) .

Let us now decompose the Cantor interval I into the union of two Cantor
intervals of the next level, I = L1∪R1, where L1 := K∩[2/3, 7/9], R1 := K∩[8/9, 1].
These intervals are permuted by the reflection σ0 : I0 → I0 with respect to the
middle of I0 ≡ I. Connect each pair of symmetric points x and σ0(x) (x ∈ L1)
with the lower half-circle arc.

Let us now consider the rescaled Cantor intervals

In := 3−n · I0, Ln+1 := 3−n · L1, Rn+1 := 3−n ·R1, n = 0, 1, 2, . . . .

Then

K = {0} ∪
∞⋃

n=0

In, In = Ln+1 ∪Rn+1.

The intervals Ln+1 and Rn+1 are permuted by the reflection σn : In → In with
respect to the middle-point of In. Connect each pair of symmetric points x and
σn(x), x ∈ Ln+1, with the lower half-circle arc. The union of all these arcs constitute
the Knaster continuum.

A continuum is called indecomposable if it cannot be represented as the union
of two proper subcontinua.

Exercise 1.41. (i) The Knaster continuum K is connected but not path con-
nected. All path connected components of K, except one, are densely immersed real
lines (the exceptional component, through 0, is a densely immersed ray [0,+∞)).
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Figure 1.7. A thin oscillating annulus occupying substantial area
(a local picture).

(ii) The Knaster continuum is indecomposable.

1.4.4. Pseudo-arcs. A continuum X is called hereditary indecomposable if any
subcontinuum of X is indecomposable. So, it does not contain any arcs.

A chain inX is a covering ofX by a sequence of open sets, C = (C0, C1, . . . , Cn),
in such a way that Ci ∩ Cj 6= ∅ iff |i − j| ≤ 1. If moreover, diamCi < ε for all
i = 0, . . . n, then C is called an ε-chain. A continuum X is called chainable if it
admits an ε-chain for any ε > 0.

A pseudo-arc is a chainable hereditary indecomposable continuum.
Let us briefly outline a construction of a pseudo-arc. A chain D refines C if

the closure D̄i of any element of D is contained in some element Cm of C. Under
these circumstances, a chain D is crooked in C if for any elements Cm, Cn of C
with m < n − 2, and any elements Di, Dj of D such that Di ∩ Cm 6= ∅ and
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Figure 1.8. Knaster continuum.

Dj ∩Cn 6= ∅, there exist elements Dk ⊂ Cn−1 and Dl ⊂ Cm+1, where i < k < l < j
or i > k > l > j. So, D oscillates in all scales associated with C.

We say that a plane chain R2 “begins” at a ∈ R2 and “ends”at b ∈ R2 if the
first element of C contains a while the last element contains b.

Exercise 1.42. (i) Let εk → 0 and let Ck be a sequence of plane εk-chains
beginning at 0 and ending at 1 such that Ck+1 is crooked inside Ck. Then

⋂ Ck is
a pseudo-arc.

(ii) Construct a pseudo-arc.

(iii) Show that a pseudo-arc is a nowhere dense hull.

Similarly, one can define and construct a pseudo-circle by using cyclic chains
C = (Ci)i∈Z/nZ in place of chains.

Exercise 1.43. Prove that a pseudo-circle divides the plane into two compo-
nents.

1.4.5. Lakes of Wada. Lakes of Wada is the union of three (or more) disjoint
topological disks in R2 that share a common boundary. To construct such domains,
select a sequence εn → 0 and start with three open topological disks D0

i , i = 1, 2, 3,
in D, with disjoint closures. Then select an ε1-net X1 in D r

⋃
D̄0
i , and dig out

fjords from the D0
i that pass ε1-close to each point of X1. Call these new disks

D1
i ⊃ D0

i . Take now an ε2-net X2 in D r
⋃
D̄1
i and and dig out fjords out of the

D1
i that pass ε2-close to each point of X2. Proceed inductively.

Exercise 1.44. Go through details of the above construction. Show that simi-
larly one can construct arbitrary many (including countably many) lakes of Wada.

1.4.6. Cantor bouquet. Let us consider a compact subset K ⊂ R2 which is
the union of straight intervals Tθ = [0, tθ] e(θ), θ ∈ R/Z (some of which may be
degenerate), with the following properties:

• the set Θ := {θ : tθ > 0} is dense in R/Z (the corresponding points tθ e(θ) are
called tips of K);
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Figure 1.9. A partly crooked chain. It is crooked in the union of
any four consecutive rectangles. (The rectangles should be slightly
enlarged to form a chain.)

• for any θ ∈ Θ there exist sequences αn ր θ and βn ց θ such that tαn
e(αn) →

tθ e(θ) and tβn
e(βn)→ tθ e(θ).

Let T := {tθ e(θ)}θ∈Θ be the set of tips.

Exercise 1.45. (i) Construct a Cantor bouquet K;

(ii) Show that K is path connected but not locally connected;

(iii) Show that T is connected while T ∗ := T r {0} is totally disconnected.

The last property makes 0 an explosion point for T .

1.5. Group actions and foliations.
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Figure 1.10. A Cantor bouquet generated by dynamics of z 7→
λ sin z (courtesy of Lasse Rempe-Gillen).

1.5.1. Groups actions. Let us consider a general action of a group G on a space
X (denoted G y X). A point α ∈ X is called fixed for the action if it is fixed
by some non-trivial element γ ∈ G, i.e., there exists γ 6= id such that γ(α) = α.
An action is called free if it does not have fixed points, i.e., all points are moved
under non-trivial elements of G, The space X is called homogeneous for G if G acts
transitively on X.

An action of a discrete group Γ on a locally compact space X is said to be
properly discontinuous if any two points x, y ∈ X have neighborhoods U ∋ x, V ∋ y
such that γ(U) ∩ V = ∅ for all but finitely many γ ∈ Γ.

Exercise 1.46. (i) The orbits of a properly discontinuous action are discrete.

(ii) The quotient of X by a properly discontinuous group action is a Hausdorff
locally compact space.

(iii) Vice versa, if the quotient X/G is Hausdorff then the action is properly dis-
continuous.

(iv) Consider the Z-action on the punctured plans (R2)∗ generated by the linear
hyperbolic transformation f : (x, y) 7→ (2x, y/2). Show that it is not properly dis-
continuous, albeit all its orbits are discrete in (R2)∗.

The stabilizer (or, the isotropy group) Stab(Y ) of a subset Y ⊂ X is the sub-
group {γ ∈ Γ : γ(Y ) = Y }. A set Y called completely invariant under some
subgroup G ⊂ Γ if G = Stab(Y ) and γ(Y ) ∩ Y = ∅ for any γ ∈ ΓrG.

Exercise 1.47. For a properly discontinuous action, the stabilizer of any point
(or, more generally: of any compact subset) is finite.

A group element γ is called primitive if it generates a maximal cyclic group.
Isometries of a metric space are also called motions (e.g., Euclidean motions,

hyperbolic motions, etc.).
Let us consider two group actions, G y X and G̃ y X̃. A map h : X → Y

is called equivariant (with respect to these actions) if there is a homomorphism
A : G→ G̃ (induced by h) such that

h ◦ γ = A(γ) ◦ h ∀γ ∈ G.
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An equivariant homeomorphism h : X → X̃ inducing an isomorphism A : G → G̃
is also called a conjugacy between the actions.

A connected set ∆ ⊂ X is called a fundamental domain for a group action
Gy X if

• ∆ is closed6 and int∆ is dense in ∆;

• γ(int∆) ∩∆ = ∅ for any γ ∈ G;

•
⋃

γ∈G
γ(∆) = X.

Proposition 1.48. For any properly discontinuous group action, there is a
fundamental domain.

The idea is to take a base boint x◦ ∈ X, to consider its orbit O := orbx◦ under
G, and to let

(1.3) ∆ := {y ∈ X : dist(y, x◦) = dist(y,O) ≡ min
x∈O

dist(y, x).}

Norice that since the orbits of a properly discontinuous action are discrete, dist(y,O)
is attained at finitely many points of O.

Exercise 1.49. Check that the set ∆ (1.3) is indeed a fundamental domain.

A fundamental domain constructed in this way is called Dirichlet.

A fundamental domain gives a concrete idea of the quotient spaceX/G. Indeed,
X/G is obtained from ∆ by identifying boundary points x, x′ ∈ ∂∆ related by the
group action: x′ = γx for some γ ∈ Γ.

1.5.2. Foliations. A (topological) k-dimensional foliation F of an n-dimensional
manifoldM is a partition ofM into immersed k-dimenional subminafolds Lα (called
the (global) leaves of F) such any point x ∈ M has a neighborghood U with the
following property:

There is a homeomorphism φ from U onto Dk×Dn−k such that for any t ∈ Dn−k

the pullback φ−1(Dk × {t}) is a component of Lα ∩ U for some leaf Lα.

Under these circumstances, U is called a flow box, φ is the corresponding foliated
local chart, Lα ∩ U is a local leaf or a plague.

A graph of a continuous function φ : Dn−k → Dk is called a transversal in our
flow box. More genrally, a transversal to a foliation is a curve which is locally (near
any point x ∈ T ) is a transversal in some flow box.

If all the manifolds and the local charts involved are smooth/holomorphic, etc.,
then the foliation inherits the corresponding name. In the smooth setting, transver-
sals are assumed (with out saying) to be smooth and also transverse to the leaves
(in the usual smooth sense).

For instance, the fibers of a smooth map φ : Mn → Nn−k between two mani-
folds form a smooth foliation k-dimensional away from the critical points of φ (by
the IFT). Trajectories of a differential equation x′ = v(x) on a manifold M form a
smooth 1D foliation away from zertos (also called “singular points”) of the vector
field v (by the Straightening Theorem for ODE). On a 2D manifold M , we can also
consider a smooth 1D foliation whose leaves are tangent to a line field given by an

6So, ∆ is not a “domain" in the usual sense, but this traditional abuse of terminology is
commonly accepted.
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equation ω(x) = 0, where ω = u du+v dv is a 1-form (the line field and the foliation
live away from zeros of ω).

In the above examples, if we keep critical/singular points or zeros of the corre-
sponding objects (functions/vector fields or differential forms) then we can still talk
about corresponding singular foliations (e.g., a foliation on “the whole M ” given by
a smooth function φ :M → N has singularities at the critical points of φ).

All of the above notes remain valid in the holomorphic category as well.

Exercise 1.50. Decsribe two singular foliations Re zm = 0 and Im zm = 0 on
C, m ≥ 1. The same question for foliations Re dzl = 0 and Im dzl = 0, l ≥ 2.

Given two transversals, T1 and T2, in some flow box, we can consider a home-
omorphism h : T1 → T2 by sliding along the local leaves of the foliation. Such a
homeomorphism is called a holonomy. Given two transversals, T1 and T2, and a
path γ lying in some leaf L and connecting a point x1 ∈ T1 to x2 ∈ T2, we can
develop a local holonomy (T1, x1) 99K (T2.x2) along γ.

A transversal T is called global if it intersects each leaf of the foliation. Some-
times the self-holonomy to T can be represented by a nice transformation (called
the monodromy map):

Exercise 1.51. For α ∈ RrQ, sonsider the foliation of the torus T2 = R2/Z2

be the lines y = αx + c with slope α. Show thar all the leaves of this foliation are
dense in the torus.

1.6. Coverings.

1.6.1. Definition and first observations. In this section we summarize for reader’s
convenience necessary background in the theory of covering spaces.

Let E and B be topological manifolds (possibly with boundary), where B is
connected. A continuous map p : E → B is called a covering of degree d ∈ Z+∪{∞}
(with base B and covering space E) if any point b ∈ B has a neighborhood V such
that

p−1(V ) =

d⊔

i=1

Ui,

where each Ui is mapped homeomorphically onto V . The preimages p−1(b) are
called fibers of the covering. The inverse maps p−1i : V → Ui are called the local
branches of p−1. Let us make a couple of simple observations:

• A covering of degree one is a homeomorphism;

• Restriction of a covering p : E → B to any connected component of E is also a
covering.

• If V is a domain in B, U = p−1(V ) then the restriction p : U → V is also a
covering.

Coverings p : E → B and p′ : E′ → B′ are called equivalent if there exist
homeomorphisms H : E → E′ and h : B → B′ such that h ◦ p = p′ ◦ H, i.e., the
following diagram

(1.4)

E
H−→ E′

p ↓ ↓ p′

B −→
h

B′
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is commutative.

1.6.2. Lifting. Given two coverings, p : E → B and p′ : E′ → B′, and a
continuous map h : B → B′, a continuous map H : E → E′ is called a lift of h (via
p and p′) if H makes diagram (3.2) commutative, i.e., h ◦ p = p′ ◦H. Under these
circumstances, h is called liftable via p and p′, or just (p, p′)−liftable. (In case when
E = B and p = id, the lift of h : B → B′ to E′ means a map H : B → E′ such
that p′ ◦H = h.) Similarly, one defines a lift of a homotopy.

Theory of covering spaces is based on the following fundamental property:

Path Lifting Property. Let γ be a path in B that begins at b ∈ B, and let
e ∈ p−1(b). Then there is a unique lift γ̃ of γ (i.e., p ◦ γ̃ = γ) that begins at e. If γ
is homotopic to γ′ (rel the endpoints) then the corresponding lifts γ̃ and γ̃′ are also
homotopic rel the endpoints.

It implies, in particular, that the induced homomorphism

p∗ : π1(E, e)→ π1(B, b)

is injective; let G ≡ Gp ⊂ π1(B, b) be its image. If E is connected then replacing
e with another point in the fiber p−1(b) replaces G with a conjugate subgroup. In
this way, to any covering p : E → B (with connected E) and a base point b ∈ B,
we associate a subgroup of the fundamental group π1(B, b), up to conjugacy.

The Path Lifting Property implies a general

Lifting Criterion. A continuous map h : (B, b) → (B′, b′) admits a lift
H : (E, e)→ (E′, e′), where e ∈ p−1(b)) and e′ ∈ p−1(b′), if and only if

h∗ ◦ p∗(π1(E, e)) ⊂ p′∗(π1(E′, e′)).
In particular, if E is simply connected, then all maps h : B → B′ are liftable.

Exercise 1.52. Prove the Lifting Criterion.

In what follows we assume that E is connected.

1.6.3. Universal covering and monodromy. A covering is called Galois or reg-
ular if there is a group G acting freely and properly discontinuously on E whose
orbits are fibers of the covering. In this case B ≈ E/G. The group G is called the
group of deck transformations, or the covering group for p.

Vice versa, if a group G acts freely and properly discontinuous on a manifold
E then the quotient B := E/G is a manifold, and the natural projection p : E → B
is a covering.

Exercise 1.53. Let π : X → X ′ be a regular covering with a group Γ of
deck transformations. Let Y ′ ⊂ X ′ be connected, and let Y ⊂ X be a connected
component of π−1(Y ′). Then Y is completely invariant under the action of Γ.

A covering u : U → B is called Universal if the space U is connected and simply
connected. This covering is Galois, with the fundamental group π1(T ) acting by
deck transformations. Any manifold has a unique Universal Covering up to covering
equivalence.

Remark 1.54. We suppress the base point in the notation for the fundamental
group, unless it can lead to confusion. (On most occasions, our statements are
invariant under conjugacies (inner automorphisms) in the fundamental group, and
hence are base point independent.)
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The Universal Covering allows us to recover any covering p from the a subgroup
Γ ⊂ π1(B) as p : U/Γ → B. Moreover, the universal covering factors through p
since p ◦ q = u, where q : U → U/Γ. This provides us with a natural one-to-
one correspondence between classes of conjugate subgroups of π1(B) and classes of
equivalent coverings p : E → B. Moreover, the covering p is Galois if and only if the
corresponding subgroup Γ is normal. In this case, the group of deck transformations
of p is π1(B)/Γ.

In particular, a simply connected manifold B does not admit any non-trivial cov-
erings: any covering p : E → B with connected E is a homeomorphism. Putting
this together with the above observations, we obtain the following important state-
ment:

Monodromy Theorem. If p : E → B is a covering and V ⊂ B is a simply
connected domain, then p−1(V ) is a disjoint union of domains Ui, i = 1, . . . , d,
such that each restriction p : Ui → V is a homeomorphism. Thus, on any simply
connected domain there exist d well defined inverse branches p−1i : V → Ui.

Given a base point b ∈ B, there exists a natural monodromy action of the
fundamental group Γ := π1(B, b) on the fiber F := π−1(b). Namely, let an element
A ∈ Γ is represented by a loop α in B based at b. Lift α to a path α̃ in E based
at some e ∈ F . Then A(e) is defined as the endpoint of α̃. The stabilizer of this
action is the subgroup Ge ⊂ Γ corresponding to p (well defined up to conjugacy),
which gives yet another viewpoint on the relation between coverings over B and
subgroups of π1(B).

Remark 1.55. We see that the coverings over B are classified purely alge-
braicly, so the list depends only on the homotopy type of B.

Exercise 1.56. (i) For any d ∈ Z+ ∪ {∞} there is a unique covering pd :
Ed → S1 of degree d over the topological circle S1. The pd constitute the full list of
coverings (up to covering equivalence) over S1. Moreover, Ed ≈ S1 for any finite
d, while E∞ ≈ R (which is the universal covering). All these coverings are Galois.

(ii) Any homeomorphism h : S1 → S1 admits d lifts to a homeomorphism H : Ed →
Ed. The lift is determined by the value H(e) (selected arbitrary in the appropriate
fiber) at any point e ∈ Ed.

Exercise 1.57. Let f : S1 → S1 be a continuous map of degree d ∈ Z (i.e., f
induces the π1-endomorphism n 7→ d · n). Let e : R→ S1 be the universal covering
for which the lattice Z ⊂ R serves as the group of deck transformations. By the
Lifting Criterion, f admits a lift F : R→ R. Then the action of F is Z-equivariant:

F (x+ 1) = F (x) + d, x ∈ R.

Exercise 1.58. Let p : E → B be a covering of degree d. Then there exists a
Galois covering q : L→ B of degree at most d! that factors through p, i.e., q = p◦ r
(where r : L→ E is also (automatically) a Galois covering).

1.6.4. Essential submanifolds. One says that a connected submanifold V ⊂
B (possibly with boundary) is essential in B if the induced (by the embedding)
homomorphism π1(V ) → π1(B) is injective. In other words, any non-trivial loop
in V remains non-trivial in B.
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Proposition 1.59. Let u : U → B be the universal covering. If V ⊂ B is an
essential submanifold then any component V̂ of u−1(V ) is simply connected. More-
over, the stabilizer Γ of V̂ in the group G of deck transformations is the covering
group for the restriction p : V̂ → V (and thus, Γ is isomorphic to π1(V )).

Proof. By the above observations, restriction u : V̂ → V is a covering. If V̂
was not simply connected, then there would be a non-trivial loop α̃ in V̂ . Then
the loop α = p∗(α̃) would be non-trivial in V (since p∗ is injective) but trivial in B
(since α̃ is trivial in U).

Since p−1(V ) is invariant under G, each deck transformation γ : U → U per-
mutes the components of p−1(V ). Hence for any γ ∈ G, V̂ is either invariant under
γ or else γ(V̂ )∩ V̂ = ∅. It follows that the stabilizer Γ of V̂ acts transitively on the
fibers of p| V̂ , and the conclusion follows. �

Corollary 1.60. Let γ be an essential simple closed curve in B. Then each
lift γ̃ to the universal covering U is a topological line whose stabilizer is an infinite
cyclic group. Different lifts have conjugate stabilizers.

Thus, to each (oriented) simple closed curve in B we can associate a conjugacy
class in the fundamental group π1(B) (the generators of the above stabilizers).

Exercise 1.61. There is a natural one-to-one correspondence between classes
of freely homotopic (oriented) closed curves (not necessarily simple) and conjugacy
classes in G = π1(B).

Lemma 1.62. Let V be an essential submanifold in B. Then there is a covering
q : E → B with π1(E) = π1(V ) and such that one of the components U of q−1(V )
projects homeomorphically onto V .

Proof. In the notation of Lemma 1.59, let E = U/Γ, U = V̂ /Γ. �

Informally speaking, we unwind all the loops in B except those that are essen-
tially confined to V .

Corollary 1.63. Let γ ⊂ B be a non-trivial simple closed curve. Then there is
a covering space E with π1(E) ≈ Z containing a simple closed curve γ̂ that projects
homeomorphically onto γ.

1.7. Topological surfaces.

1.7.1. Definitions and examples.

Definition 1.64. A (topological) surface S (without boundary) is a
two-dimensional topological manifold with countable base. It means that S is a
topological space with a countable base such that any z ∈ S has a neighborhood
U ∋ z homeomorphic to an open subset V of R2. The corresponding homeomor-
phism φ : U → V is called a (topological) local chart on S. Such a local chart assigns
to any point z ∈ U its local coordinates (x, y) = φ(z) ∈ R2.

A family of local charts whose domains cover S is called a topological atlas on
S. Given two local charts φ1 : U1 → V1 and φ2 : U2 → V2, the composition

φ2 ◦ φ−11 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2)

is called the transition map from one chart to the other.
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S

R2R2

φ1

U2

φ2

U1

Figure 1.11. A transition map between two local charts.

A surface is called orientable if it admits an atlas with orientation preserving
transition maps. Such a surface can be oriented in exactly two ways. In what
follows we will only deal with orientable (and naturally oriented) surfaces.

Unless otherwise is explicitly said, we will assume that the surfaces under con-
sideration are connected. The simplest (and most important for us) surfaces are:

• The whole plane R2; it is homeomorphic to the open unit disk D ⊂ R2.

• The unit sphere S2 in R3 (homeomorphic via the stereographic projection to the
one-point compactification of the plane); it is also called a “closed surface of genus
0” (in this context “closed” means “compact without boundary”).

• A cylinder or topological annulus Cyl = S1 × (0, 1). It can also be represented
as the quotient of the strip S = R × (0, 1) modulo the cyclic group of translations
z 7→ z + n, n ∈ Z. It is homeomorphic to any annulus A(r,R), as well as to the
punctured disk D∗ and to the punctured plane C∗.

• The torus T2 = T × T, also called a “closed surface of genus 1”. It can also
be represented as the quotient of R2 modulo the action of a rank 2 abelian group
z 7→ z + αm+ βn, (m,n) ∈ Z2, where {α, β} is an arbitrary basis in R2.

If we have a certain standard surface S (say, the unit disk or the unit sphere), a
topological S (say, a “topological disk” or a “topological sphere”) refers to a surface
homeomorphic to the standard one.

One can also consider bordered surfaces, or surfaces with boundary. The local
model for such a surface near a boundary point is given by a relative neighborhood
of a point (x, 0) in the closed upper half-plane H̄. The orientation of a surface natu-
rally induces an orientation of its boundary (locally corresponding to the positively
oriented real line).

For instance, we can consider cylinders with boundary: S1 × [0, 1] or S1 ×
[0, 1). They will be still called “cylinders” or “topological annuli”. Cylinders without
boundary will be also called “open”, while cylinders of other type will be called
“closed” and “semi-closed” respectively. We will use the same notation, Cyl, for a
topological cylinder of any type.
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More generally, non-compact surfaces without boundary are called open. Com-
pact surfaces without boundary are called closed.

Remark 1.65. We are bound to live with inconsistency in using the notion of
“open” and “closed”, reflecting different traditions of point-set and algebraic topol-
ogy. Hopefully, it will not lead to confusion.

1.7.2. New surfaces from old ones. There are two basic ways of building new
surfaces out of old ones: making holes and gluing their boundaries. Of course, any
open subset of a surface is also a surface. In particular, one can make a (closed)
hole in a surface, that is, remove a closed Jordan disk. A topologically equivalent
operation is to make a puncture in a surface. By removing an open Jordan disk (an
open hole) we obtain a surface with boundary.

If we have two open holes (on a single surface or on two different surfaces Si)
bounded by Jordan curves γi, we can glue (or: paste) these boundaries together by
means of an orientation reversing homeomorphism h : γ1 → γ2 (where orientation
of the γi is induced from Si). We denote this operation by S1 ⊔h S2. For instance,
by gluing together two closed disks we obtain a topological sphere: D ⊔h D ≈ S2.

Exercise 1.66. Justify the last assertion.

Combining the above operations, we obtain operations of taking connected sums
and attaching a handle. To take a connected sum of two surfaces S1 and S2, make
an open hole in each of them and glue together the boundaries of these holes. To
attach a handle to a surface S, make two open holes in it and glue together their
boundaries.

If we attach a handle to a sphere, we obtain a topological torus. If we attach
g handles to a sphere, we obtain a closed surface of genus g.

Fundamental Theorem of 2D Topology. Any orientable closed surface
S is homeomorphic to a surface of genus g. Moreover, the genus is a complete
topological invariant of a such a surface.

See e.g., [Mu1] for a proof. Note that there are several ways to see that that
g is a topological invariant of a closed surface:

• Identify it with b1/2, where b1 = rkH1(S) is the first Betti number of S.

• Characterize it as the maximal cardinality of a family of disjoint simple closed
curves γi on S with the property that by cutting S along these curves we obtain
a topological sphere with several holes. (Such a family can be obtained by taking
simple closed curves “going across (or along) the handles”.)

Topological surfaces are very flexible: one can move points around at will:

Exercise 1.67. (i) Let S be a (connected) topological surface with two config-
urations of N points marked in intS: xi and yi, i = 1, . . . , N . Then there exists a
homeomorphism h : S → S that moves xi to yi.

(ii) Make a similar assertion for boundary components of a bordered surface.

(iii) Let S be bordered, and let h be a homeomorphism of some boundary circles to
themselves. Then h extends to a homeomorphism of S.

We are now ready to classify all compact surfaces (closed or bordered):



36 CONTENTS

Corollary 1.68. Any orientable compact surface S with boundary is homeo-
morphic to a closed surface of genus g with N open holes removed. Moreover, the
pair (g,N) is a complete topological invariant of a such a surface.

Proof. Let S has N boundary components γi. Each of them is a topological
circle. By attaching disks Di to the γi (“caps”), we obtain a closed orientable surface
S.

If two compact surfaces with boundary, S and S′, are homeomorphic, then
they have the same number N of boundary components, and the corresponding
closed surfaces S and S′ are also homeomorphic. Hence the pair (g,N) is a topo-
logical invariant of compact surfaces. Exercise 1.67(ii) implies that this invariant is
complete. �

Note that the first Betti number of a surface of genus g with N > 0 holes is
equal to 2g +N − 1.

Corollary 1.69. The closed topological disk is the only simply connected sur-
face with boundary. The closed topological cylinder is the only orientable compact
surface with π1(S) ≈ Z.

One says that a surface S (with or without boundary) has a finite topological
type if its fundamental group π1(S) is finitely generated (e.g., any compact surface
is of finite type). We will see later (Theorem 1.87) that it is equivalent to saying
that S is tame, i.e., is homeomorphic to a closed surface with finitely many open
or closed holes. Clearly such a surface admits a decomposition

S = C ∪
⊔

Cyli ,

where C is a compact surface and the Cyli are cylinders attached to some boundary
components of C. The set C ≡ CS is called the compact core of S. Note that it is
obviously a deformation retract for S. The cylinders Cyli represent “tame ends” of
S. If a cylinder Cyli is not closed, we can add the outer boundary to it. Doing this
to all such cylinders, we obtain the ideal circle compactification Ŝ of S. (Compare
with §1.7.8 below.)

1.7.3. Triangulations. Recall that triangulation of a surface S is a tiling of S
by topological triangles (i.e., by closed topological disks with three marked points
on the boundary) such that any two triangles are either disjoint or share exactly one
vertex, or share exactly one side. In case of a bordered surface, a similar requirement
is imposed on any triangle ∆ and any boundary circle γ: if the intersection ∆ ∩ γ
is non-empty, then it is equal to an edge or to a vertex of ∆.

A triangulation is finite if and only if S is compact.

Theorem 1.70. Any surface (with countable base) can be triangulated.

See [Mu2] for a proof. In fact, all surfaces that appear in Conformal Dynamics
(at least, in this book) are plane domains or their (branched) coverings, or a sphere
or a torus, when the Triangulation Theorem is a simple exercise. Note also that
the Triangulation Theorem is easy for smooth surfaces, in particular, for Riemann
surfaces (see Proposition 2.2 below).

Given a triangulation on S, a closed subset K ⊂ S is called simplicial if it is
composed of triangles.
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1.7.4. Euler characteristic. Let S be a compact surface (with or without bound-
ary). Its Euler characteristic is defined as

χ(S) = f − e+ v,

where f , e and v are respectively the numbers of faces, edges and vertices in any
triangulation of S. It is a topological invariant equal to the alternating sum of the
Betti numbers, so for a closed surface of genus g, we have: χ(S) = 2− 2g.

The Euler characteristic is obviously additive for connected sums:

χ(S1 ⊔h S2) = χ(S1) + χ(S2).

Since the cylinder T× [0, 1] has zero Euler characteristic, χ(Ŝ) = χ(CS) for a tame
surface. (Recall from §1.7.2 that Ŝ is the ideal circle compactification of S and CS
is the compact core of S). We can use this as a definition of χ(S) in this case.

Making a hole in a surface drops its Euler characteristic by one; attaching a
handle does not change it. Hence χ(S) = 2− 2g −N for a surface of genus g with
N holes (which also follows from the basic algebraic topology).

Note that the above list of simple surfaces is the full list of orientable surfaces
of finite type without boundary with non-negative Euler characteristic:

χ(R2) = 1, χ(S2) = 2, χ(Cyl) = χ(T2) = 0.

1.7.5. Topological ends and compactification. A non-compact domain F ⊂ S
bounded by a simple closed curve γ in S is called a fjord. A nest of fjords, F0 ⊃
F1 ⊃ . . . , is subordinated to a fjord F if Fn ⊂ F for some n. A nest of fjords Fn is
subordinated to another nest of fjords F ′m if (Fn) is subordinated to any F ′m. Two
nests are equivalent if each of them is subordinated to the other.

A nest (Fn) is called escaping if

(1.5)
⋂
Fn = ∅

A (topological) end E of S is a class of equivalent escaping nests of fjords.

Lemma 1.71. Any non-compact Riemann surface S has at least one end.

Proof. Let us triangulate S and exhaust it by an increasing nest of compact
simplicial subsets K0 ⊂ K1 ⊂ . . . ,

⋃
Kn = S. One of the components of S rK0 is

unbounded; call it U0. The boundary of U0 is a polygonal curve contained in ∂K0.
Approximate it with a simple closed curve σ0 contained in U0, and let F0 ≡ Fn0

be
the unbounded component of S r σ0 contained in U0.

Since the sets Kn exhaust S, there is a set Kn containing σ0. Then one of its
complementary components, Un, is contained in F0. Approximating ∂Un with a
simple closed curve σn ⊂ Un, we construct a new fjord Fn ≡ Fn1

⊂ F0.
Proceeding this way, we construct an escaping nest of fjords

Fn0
⊃ Fn1

⊃ . . .
representing an end of S. �

Corollary 1.72. Any non-compact domain U ⊂ S with compact boundary ∂U
contains an escaping nest of fjords, F0 ⊃ F1 ⊃ . . . , representing an end of S.

We let ∂TS be the set of ends of S and clT S = S ⊔ ∂TS. We call them
the topological end boundary and the topological end compactification respectively.
Endow clT S with the following topology. For a fjord F , let U(F ) be the union of
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F and the set of ends E represented by nests of fjords (Fn) that are subordinated
to F . The family of sets U(F ), together with the family of open sets of S, form a
base of neighborhoods of clT (S).

Exercise 1.73. Show that:

(i) This is indeed a base of topology.

(ii) clT S is compact and metrizable.

(iii) The boundary ∂TS is totally disconnected.

(iv) The end compactification is topologically natural: any homeomorphism h : S →
S′ extends to a homeomorphism hT : clT S → clT S′.

We say that a map f : S → S′ properly maps an end E of S to an end E′ of S′

if f(z) → E′ as z → E. In other words, f extends continuously to E by mapping
it to E′.

Exercise 1.74. Any proper map f : S → S′ extends continuously to a map
fT : clE S → clE S′.

1.7.6. Remark on a general framework for the notion of end. The above notion
of end can be embedded in a quite general framework as follows. Let S be a locally
compact topological space, and let F be a family of open non-precompact subsets
called fjords satisfying the following properties:

• The intersection of any two fjords is either precompact or contains a fjord;

• For any compact subset Q ⊂ S, there is a finite family of fjords Fj such that
S r

⋃
Fj is a compact set containing Q.

For nests of fjords, define escaping, subordination, and equivalence as in §1.7.5.

Then we define an end E of F as a class of equivalent escaping nests of fjords.
We let ∂FS be the set of ends of S and clF S = S ⊔ ∂FS. It is endowed with

a natural topology as above, which provides us with the F-end compactification of
S (associated with the family F).

Exercise 1.75. Check that clF S is a compact topological space.

If S is a domain in some manifold Ŝ, then there can be a good relation between
clF S and the closure S̄ of S in Ŝ. A relevant notion is the impression I(E) of an
end E,

I(E) =
⋂
F̄n,

where (Fn) is any nest of fjords representing E (the outcome is obviously indepen-
dent of the choice of the nest),

Exercise 1.76. (i) If all the end impressions I(e) are pairwise disjoint, then
there is a natural continuous projection π : S̄ → clF S extending the identical map
S → S. Fibers of π over y ∈ ∂FS are end impressions.

(ii) Under the above circumstances, if all the end impressions I(e) are singletons
then π is a homeomorphism.

The simplest application of this scheme is the construction of one-point com-
pactification for a locally compact space S, where fjords are defined as arbitrary
non-precompact open subsets. Note also that the topological end compactification
described in §1.7.5 can be generalized to arbitrary manifolds S, using as fjords
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non-precompact domains whose topological boundaries in S are compact mani-
folds. In this book, we will encounter two more important occasions: prime end
(Carath’eodory) and puzzle end compactifications.

1.7.7. Simply connected surfaces.

Lemma 1.77. Let S be an open simply connected surface. Then:

(i) S has one end;

(ii) Any simple closed curve σ on S is dividing;

(iii) Any proper arc γ on S is dividing.

Proof. (i) Being open, S must have at least one end (by Lemma 1.71). Assume
it has two different ends, E0 and E1. Let F0 and F1 be fjords with disjoint closures
representing the corresponding ends, and let σi := ∂Fi. Construct a proper arc
γ : (0, 1)→ S landing at E0 as t→ 0 and landing at E1 as t→ 1, and crossing each
curve σi at a single point. Since the intersection number between closed curves and
proper arcs is invariant under proper homotopy, the curves σi cannot be trivial –
contradiction.

(ii) The proof is similar: If σ were non-dividing then there would be a proper
arc γ on S crossing σ at a single point (with both ends of γ landing at the end of
S). This would imply that σ were non-trivial.

(iii) Similarly: if a proper arc γ was non-dividing then there would exist a
simple closed curve σ crossing γ at a single point. �

We can define a hull in S as in the case of R2, as a continuum with connected
complement.

Lemma 1.78. Any simplicial continuum J ⊂ S can be filled-in to a simplicial
hull K, which is the smallest hull containing J .

Proof. Since S has only one end, all but one components of SrJ are bounded
(by Corollary 1.72) . Call the unbounded component U . Its boundary σ := ∂U is
a polygonal curve that can be approximated by a simple closed curve σ ⊂ U . For
the same reason, there is only one unbounded complementary component of σ; call
it F . For the same reason, the complement of F̄ is bounded, so it comprises only
finitely many triangles. Adding all these triangles to J , we obtain the desired hull
K. �

Lemma 1.79. For a given triangulation of S, any simplicial hull K ⊂ S is
simply connected.

Proof. Any simplicial hull is composed of finitely many triangles, so let us do
induction in the number of triangles. The statement is obvious for one triangle. To
pass from ≤ n to n+ 1, let us consider two cases:

Case 1. Assume there is a cut-point in K, i.e., a vertex a ∈ K whose removal
disconnects K. Then there are at least two accesses from SrK to a. Since SrK is
connected, there are two proper topological rays R± : R± → SrK landing at a as
t→ 0 and landing at ∞ as t→ ±∞ (respectively). The union γ := R− ∪R+ ∪{a}
is a proper arc. By Lemma 1.77 (iii), Srγ consists of two components, U1 and U2.

Let L∗i := K ∩Ui and Li := L̄i (i = 1, 2). Since γ cuts through K at a, the sets
L∗i are non-empty. Hence each Li is a simplicial hull composed of ≤ n triangles.
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By induction assumption, each of them is simply connected. Then so is the whole
hull K.

Case 2. Assume K does not have cut-points. Take any boundary triangle
∆ ⊂ K, and let K ′ := cl(K r ∆). The latter is a simplicial hull composed of n
triangles. Moreover, by the no-cut-points assumption, I := ∆ ∩K ′ is the union of
one or two edges of ∆. In either case, I is a deformation retract for ∆, and hence
K ′ is a deformation retract for K. The conclusion follows. �

Lemma 1.80. An open simply connected surface S can be exhausted by topo-
logical disks, i.e., there exist an increasing nest of closed topological disks D̄n ⊂ Sn
such that Dn ⋐ Dn+1 and

⋃
Dn = S.

Proof. Let us triangulate S and select a base triangle ∆0. Let us define ∆n+1

inductively as the union of ∆n with all triangles attached to it. In this way, we
exhaust S with an increasing nest of simplicial continua.

By Lemma 1.78, ∆n can be filled-in to a simplicial hull Kn := ∆̂n. The
Kn provide us with an increasing nest of hulls exhausting S. The unbounded
components Un of S rKn form an escaping nest of domains in S.

Let σn ⊂ Un be a simple closed curve approximating ∂Un, and let Fn ⊂ Un
be the unbounded component of S r σn. They form an escaping family of fjords.
Selecting a converging subsequence if needed, we turn the Fn into a decreasing nest.

The complement D̄n := S rFn is a compact surface with boundary σn (where
Dn = int D̄n) . Moreover, D̄n can be retracted onto Kn, so it is simply connected
by Lemma 1.79. By the Fundamental Theorem of 2D Topology (Corollary 1.69),
D̄n is a closed topological disk. �

Corollary 1.81. An open simply connected surface is a topological disk.

Applying the Fundamental Theorem of 2D Topology once again, we conclude:

Theorem 1.82. There are only two simply connected topological surfaces with-
out boundary: a topological disk and a topological sphere.

1.7.8. Tame ends. An end E is called tame if eventually all the fjords Fn (in
some and hence in any nest (Fn) representing E) are cylinders. Any of these
cylinders uniquely determines the corresponding end.

A tame end compactification results in completion each of the cylinders Fn to
a topological disk Dn = Fn ∪ {E}. Thus, clT S is a topological surface near E.
Under these circumstances, E is referred to as a puncture at infinity for S.

A tame end can also be compactified in a different way by attaching a topolog-
ical circle at infinity called the ideal circle (at infinity) (compare §1.7.2). However,
this compactification is not topologically or smoothly natural:

Exercise 1.83. Construct a diffeomorphism f : D → D that does not extend
continuously to any point of T = ∂D.

Remark 1.84. In the conformal category, compactifying an end with an ideal
circle is a natural operation, and in fact, a conformal end knows exactly what should
be attached to it: see Theorem 2.59 and §§2.6.1, 5.6. below.
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1.7.9. Open surfaces of finite type.

Lemma 1.85. For a surface S of finite type, the boundary ∂TS is finite.

Proof. Assume ∂TS is infinite. Since it is totally disconnected and compact,
for an arbitrary big N ∈ Z+ there is a family of N disjoint fjords Fn whose closures
in clT S cover ∂TS. Then the complement S r

⋃
Fn is a compact surface with

boundary
⊔
∂Fn comprising N simple closed curves. The first Betti number of

such a surface is at least N − 1. On the other hand, it is bounded by b1(S), which
is finite by assumption – contradiction. �

Lemma 1.86. For an open surface S of finite type, any end is tame.

Proof. Let F0 ⋑ F1 ⋑ . . . be a nest of fjords representing an end E ∈ ∂TS.
Since E is isolated in ∂TS, eventually the F̄n do not have any other ends, so we
can assume this holds already for F0. Then the bordered surfaces An := F̄nrFn+1

are compact. If infinitely many of them had positive genus, the genus of compact
bordered surfaces F̄nrF0 would grow to ∞, contradicting to boundedness of their
first Betti number. Hence eventually the An have zero genus. As they have two
ends, these An are topological cylinders (Corollary 1.69 from the Fundamental

Theorem of 2D Topology). Hence the fjords F̄n =
⋃

m≥n
Am are topological cylinders

as well. �

Now the Fundamental Theorem of 2D Topology and its Corollary 1.68 for
compact surfaces can be refined for general surfaces of finite type:

Theorem 1.87. Any surface S of finite type (with or without boundary) is
homeomorphic to a compact surface with finitely many punctures.

Proof. Indeed, the compactification clT S amounts to adding to S finitely
many tame ends (punctures at infinity), resulting in a compact surface. �

Let us conclude with characterization of open topological annuli (compare with
Corollary 1.69):

Corollary 1.88. An orientable open surface S is a topological annulus iff

π1(S) ≈ Z.

1.7.10. Multicurves and pair of pants decompositions. Note that a simple closed
curve γ on a surface S7 is trivial iff one of the components of X r γ is a topological
disk.

A simple closed curve on intS is called peripheral if it is either trivial or dividing
in such a way that one of the components (call it F ) of Srγ is a topological cylinder.
This cylinder can be open or semi-closed. In the former case, F is a fjord of a tame
end. In the latter case, γ is homotopic to a boundary component of S (which is the
boundary component of F ).

For instance, if S = S2 r {xi} is a sphere with finitely many punctures then γ
is non-peripheral iff each component of S2 r γ contains at least two punctures.

7For purposes of this section, any simple closed curve γ : T → S can be assumed extendable
to an embedding A(r−1, r) → S, r > 1. It ensures, without using the Schönflies Theorem, that γ
can be attached as a boundary circle to any complementary component.
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Exercise 1.89. If S contains a non-peripheral curve γ, then χ(S) < 0. More-
over, each component of S r γ has negative Euler characteristic as well.

A pair of pants is a surface S homeomorphic to the disk with two holes. We
can consider open, closed, and semi-closed pairs of pants. For instance, an open
one is modeled on S ≈ D r (D̄(a, r) ∪ D̄(−a, r)), where e.g., a = 1/2, r = 1/4,
while a closed pair of pants is obtained by adding the boundary (three circles) to
it. Notice that the Euler characteristic of a pair of paints is equal to −1.

Lemma 1.90. Let S be a surface of finite type with negative Euler characteristic.
If S is not a topological pair of pants, then it contains a non-peripheral curve γ.

Proof. Completing the ends of S with circles, we obtain a compact Riemann
surface. Then

S ≈ Sr

N⊔

i=1

Di,

where S is a closed surface of genus g and Di are open topological disks with disjoint
closures. Let σi := ∂Di.

If S has a positive genus, then we can let γ be a non-dividing curve on S going
along a handle avoiding the D̄i. So, assume S has zero genus, i.e., S ≈ S2. Then
N ≥ 4 since χ(S) < 0. Consider two of the holes, say D1 and D2, and connect
them with an arc α ⊂ S. We obtain a graph Γ ⊂ S comprising α and two circles,
σ1 and σ2. Thicken this graph slightly to obtain a Jordan disk ∆. It is bounded
by a desired non-peripheral curve γ. �

A multicurve G =
⊔
γi is a collection of pairwise disjoint non-peripheral simple

closed curves γi on S.

Theorem 1.91. Let us S be a surface of finite type (g,N) with negative Euler
characteristic: χ < 0. Then any multicurve on S has at most

l := (3|χ| −N)/2 = 3g − 3 +N

components. Moreover, any multicurve is contained in a maximal one comprising
exactly l components. They divide S into |χ| pairs of pants.

Proof. By Lemma 1.90, if S is not a pair of pants, then it contains a non-
peripheral curve γ. Let S′ be a component of S r γ. If γ is non-dividing then

g(S′) = g(S)− 1, χ(S′) = χ(S).

Otherwise
g(S′) ≤ g(S), |χ(S′)| < |χ(S)|,

where the second inequality follows from the additivity of the Euler characteristic
and Exercise 1.89. In either case,

(1.6) g(S′) + |χ(S′)| < g(S) + |χ(S)|.
If S′ is not a pair of pants, then we can apply to it the same cutting procedure,

and so on. Proceeding this way, we construct an increasing sequence of multicurves
Gn that cut S into pieces Sni such that g(Sni ) + |χ(Sni )| decays with n. Hence this
process must stop in finite time, producing a maximal multicurve G ≡ Gm. At this
final moment, all the components of S r G must be pairs of pants.

Of course, we can turn on this procedure starting with any given multicurve
G0. It produces a maximal multicurve G containing G0.
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By additivity of the Euler characteristic, the maximal multicurve G divides S
in exactly |χ| pairs of pants. Their disjoint union has 3|χ| boundary components.
Out of them, 3|χ|−N are glued in pairs, producing (3|χ|−N)/2 curves comprising
G. �

Corollary 1.92. Let S ≈ S2 rZ where Z is a set of N ≥ 3 punctures. Then
any multicurve on S has at most N − 3 components. Moreover, any multicurve is
contained in a maximal one comprising exactly N − 3 components.

We can reverse the above cutting procedure. Take a finite family of pairs of
pants, and paste together some pairs of their boundary components. We obtain a
surface of finite type with negative Euler characteristic. Theorem 1.91 shows that
in this way we can obtain an arbitrary such a surface.

In fact, it can be generalized to surfaces of infinite type:

Theorem 1.93. Any surface S with negative Euler characteristic can be ob-
tained by pasting together some family (finite or countable) of pairs of pants.

This result applies to a surface of any type: closed, open, or bordered, as long
as we make use of pairs of pants of various types.

Proof. Since ∂TS is compact and totally disconnected, there is a nest of
neighborhoods U0 ⊃ U1 ⊃ · · · ⊃ ∂TS such that

⋂
Un = ∂TS and each Un r ∂TS

is a finite union of fjords. Then compact bordered surfaces Sn := S r Un form an
increasing nest exhausting S. Decomposing S0 and each Sn+1 r Sn into pairs of
pants (by Theorem 1.91), we obtain a desired decomposition for S. �

Note in conclusion that we will also need more general pants defined as topo-
logical disks with finitely many (more than one) holes.

1.7.11. Arc diagrams. A similar theory can be developed for proper arcs instead
of simple closed curves. Let us first assume that S is an open surface of finite type.
According to general definitions, a proper arc on S is an embedding α : (−∞,∞)→
S such that α(t) → ∂TS as |t| → ∞. More generally, we can talk about proper
curves on S. Both ends of a proper curve land at some points of the ideal boundary
∂TS, so a proper curve “connects” points at infinity.

Two proper arcs/curves on S are called properly homotopic if they are homo-
topic through a family of proper curves. A proper arc/curve is called trivial if it is
homotopic to an arc contained in an arbitrary small neighborhood of some point
at infinitely.

A multi-arc on a surface S is a family of disjoint non-trivial proper arcs rep-
resenting different proper homotopy classes. The corresponding family of proper
homotopic classes in called an arc diagram on S.

In case of a bordered surface S of finite type, we will slightly modify this notion.
A proper arc/curve α : I → S will mean not only that α : I → S is a proper map,
but also that α(int I) ⊂ intS and α| int I is a proper arc/curve in intS (in the
above sense); in particular, f(∂I) ⊂ ∂S.8 A proper homotopy is then understood
as a homotopy through proper curves, (so the endpoint of the curve can slide along
the boundary of S).

Similarly to Theorem 1.91, we have:

8Here int I and ∂I are understood in the intrinsic way, e.g., ∂(0, 1] = {1}.
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Figure 1.12. Pair of pants decomposition for a disk with a Cantor
set removed.

Proposition 1.94. Let S be a bordered surface of finite type with negative
Euler characteristic: χ < 0. Then any multi-arc on S contains at most 3|χ| arcs.
In particular, for a disk with N ≥ 2 holes we obtain at most 3(N − 1) arcs.

Proof. Topologically, intS is a closed surface S with k > 0 punctures. The
canonical arc diagram A can be realized as a net of disjoint edges on S connecting
the punctures. This net can be completed to a triangulation of S whose only vertices
are punctures. Let t and e ≥ |A| be respectively the number of triangles and edges
of this triangulation. Then 3t = 2e, and by the Euler Formula,

−1

3
e = t− e = χ(S)− k = χ(S).

�
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1.7.12. Plane domains. A plane domain U is a domain in the sphere S2 which
is different from the whole sphere. Realizing S2 as the one-point compactification
of R2, we can place U inside R2.

Lemma 1.95. For a plane domain U , there is a natural one-to-one corre-
spondence between the ends of U and connected components of the complement
K := S2rU . Moreover, if Q is the component corresponding to an end E then ∂Q
is equal to the impression I((E).

Proof. Let (Fn) be a nest of fjords of U representing some end E ∈ ∂TU ,
and let σn := ∂Fn. Each σn is a Jordan curve, so it bounds a Jordan disk Dn

containing Fn. Moreover, these disks are strictly nested: D0 ⋑ D1 ⋑ . . . , so
Q :=

⋂
Dn =

⋂
D̄n is a hull or a singleton. We have

Q ∩ U =
⋂

(Dn ∩ U) =
⋂
Fn = ∅,

so Q is contained in K. Since any point of K r Q is separated from Q by some
curve σn ⊂ U , Q is a connected component of K.

Vice versa, any connected component Q of K is a hull or a singleton, so it is
cellular by Proposition 1.20. Hence there is a sequence of Jordan curves σn ⊂ U
that bound a nest of Jordan disks shrinking to K. Fjords Fn := Dn ∩U represent
the end E of U corresponding to Q.

We let the reader to verify the last assertion. �

In particular, a bounded topological annulus A ⊂ R2 has two complementary
components, the unbounded component Ko called outer, and the bounded com-
ponent Ki called inner. Respectively, it has two boundary components, the outer
boundary ∂0A ⊂ Ko, and the inner boundary ∂iA ⊂ Ki.

The following statement shows that the end compactification of a plane domain
is a sphere obtained by collapsing all the complementary components to singletons
(compare Exercise 1.76):

Proposition 1.96. For any plane domain U ⊂ S2, there is a continuous sur-
jection h : S2 → S2 that restricts to a homeomorphism h : U → h(U) and maps the
complement K := S2 r U onto a totally disconnected set h(K) so that the fibers of
h : K → h(K) are connected components of K.

Proof. Consider a pair of pants decomposition (Pni ) for U . Construct a pair
of pants family (∆n

i ) with the same combinatorics, where the ∆n
i are bounded by

circles or points (with the points corresponding to tame ends of the Pni ). Moreover,
the construction can be arranged so that diam∆n

i → 0 as n→∞. Then the pairs
of pants ∆n

i tile a plane domain V whose complement is totally disconnected.
Construct now a homeomorphism h : U → V that maps Pni to the correspond-

ing ∆n
i , tile by tile. It induces a homeomorphism ĥ between the end compactifi-

cations of U and V . By Lemma 1.95, each end e of U corresponds to a connected
component Qe of S2 r U . The corresponding end ĥ(e) corresponds to a connected
component of S2 r V , which is a singleton ze. Extends h to the whole sphere by
collapsing each Qe to the corresponding point ze. This provides us with a desired
map. �

Corollary 1.97. For a plane domain U , the end compactification clT U is a
topological sphere S2.
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Corollary 1.98. Let U and Ũ be two plane domains with totally disconnected
complements. Then any homeomorphism h : U → Ũ extends to a homeomorphism
ĥ : S2 → S2.

Exercise 1.99. Let U = DrK where K ⊂ D is a Cantor set. Show that there
is a homeomorphism h : D→ D that maps K to the standard triadic Cantor set.

1.7.13. Surface coverings. Specializing Lemma 1.62 and its Corollary to the
surface case, we obtain:

• To any essential domain V ⊂ S corresponds a surface covering q : Ŝ → S such that
π1(Ŝ) = π1(V ) and one of the components V̂ of q−1(V ) projects homeomorphically
onto V .

• If S is orientable, then to any non-trivial simple closed curve γ ⊂ S corresponds an
annulus covering q : Aγ → S containing a non-trivial simple closed curve γ̂ ⊂ Aγ (an
“equator”) that projects homeomorphically onto γ. (We make use of Corollary 1.88.)

Exercise 1.100. (i) Let Sd → Cyl be a covering of finite degree d ∈ Z+ over a
topological cylinder Cyl. Then Sd is a topological cylinder as well. For each degree
d ∈ Z+, there is only one such a covering (up to covering equivalence). Write down
a model for each of these coverings.

(ii) There is only one infinite degree covering S∞ → Cyl over Cyl, which is the
Universal covering. Here S∞ ≈ S ≡ {0 < Im z < 1} is a topological strip. Write
down a model for this covering.

(iii) The above coverings constitute the full list of coverings over Cyl (up to covering
equivalence). All of them are Galois.

(iv) For a finite degree d ∈ Z+, any homeomorphism h : Cyl → Cyl admits d
lifts to a homeomorphism H : Sd → Sd. The lift is determined by the value H(e)
(selected arbitrary in the appropriate fiber) at any point e ∈ Sd. Similarly, for the
Universal covering there are infinitely many lifts.

1.7.14. Surface branched coverings. Topological proper maps are defined in
§50.3.2.

Exercise 1.101. Assume that S and T are precompact domains in some am-
bient surfaces and that f : S → T admits a continuous extension to the closure S̄.
Then f is proper if and only if f(∂S) ⊂ ∂T .

Exercise 1.102. Let V ⊂ T be a domain and U ⊂ S be a component of f−1V .
If f : S → T is proper, then the restriction f : U → V is proper as well.

Let now S and T be topological surfaces, and f be a topologically holomorphic
map. The latter means that for any point a ∈ S, there exist local charts φ :
(U, a) → (C, 0) and ψ : (V, f(a)) → (C, 0) such that ψ ◦ f ◦ φ−1(z) = zd, where
d ∈ N. The number d ≡ dega f is called the (local) degree of f at a. If dega f > 1,
then a is called a branched or critical point of f , and f(a) is called a branched or
critical value of f . We also say that d is the multiplicity of a as a preimage of
b = f(a).

Exercise 1.103. Show that a continuous map f : (D, 0)→ (D, 0) that restricts
to a covering D∗ → D∗ is topologically holomorphic.
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A basic property of topologically holomorphic proper maps is that they have a
global degree:

Proposition 1.104. Let f : S → T be a topologically holomorphic proper map
between two surfaces. Assume that T is connected. Then all points b ∈ T have
the same (finite) number of preimages counted with multiplicities. This number is
called the degree of f , deg f .

Proof. Since the fibers of a topologically holomorphic map are discrete, they
are finite. Take some point b ∈ T , and consider the fiber over it, f−1b = {ai}li=1.
Let di = degai f . Then there exists a neighborhood V of b and neighborhood Ui
of ai such that any point z ∈ V , z 6= b, has exactly di preimages in Ui, and all of
them are unbranched.

Let us show that if V is sufficiently small then all preimages of z ∈ V belong
to
⋃
Ui. Otherwise there would exist sequences zn → b and ζn ∈ S r

⋃
Ui such

that f(ζn) = zn. Since f is proper, the sequence {ζn} would have a limit point
ζ ∈ Sr

⋃
Ui. Then f(ζ) = b while ζ would be different from the ai – contradiction.

Thus, all points close to b have the same number of preimages (counted with
multiplicities) as b, so that this number is locally constant. Since T is connected,
this number is globally constant. �

Corollary 1.105. Topologically holomorphic proper maps are surjective.

The above picture for proper maps suggests the following generalization. A
topologically holomorphic map f : S → T between two surfaces is called a branched
covering of degree d ∈ N ∪ {∞} if any point b ∈ T has a neighborhood V with
the following property. Let Ui be the components of f−1V . Then each Ui contains
a single preimage ai of b and and there exist maps φi : (Ui, ai) → (C, 0) and
ψ : (V, b)→ (C, 0) such that ψ ◦ f ◦φ−1i (z) = zdi . Moreover,

∑
di = d. (A branched

covering of degree 2 will be also called a double branched covering.)
We see that a topologically holomorphic map is proper if and only if it is a

branched covering of finite degree. All terminology developed above for proper
maps immediately extends to arbitrary branched coverings.

Note that if V ⊂ T is a domain which does not contain any critical values,
then the map f is unbranched over V , i.e., its restriction f−1V → V is a covering
map. In particular, if V is simply connected, then f−1V is the union of d disjoint
domains Ui each of which homeomorphically projects onto V . In this case we have
d well-defined branches f−1i : V → Ui of the inverse map. (When it does not lead
to confusion, we will often use notation f−1 for the inverse branches.)

Exercise 1.106. Let f : (U, a) → (V, b) be a branched covering of local degree
d at a. Assume U is connected and V is simply connected. If deg f > d then f has
a critical value v 6= b.

Remark 1.107. We will follow the following terminological convention. Given
a map f : S → T and two open subsets U ⊂ S, V ⊂ T , we say that f(U) covers V
with degree d if the map

(1.7) f : U ∩ f−1(V )→ V

is a degree d branched covering. In particular, if d = 2 the “f(U) double (or, two-
to-one) covers V ”; if d = 1 then “f(U) univalently covers V ”. If U ∩ f−1(V ) does
not have critical points, then we say that “ f(U) covers V without branching”. If
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U and V are compact (e.g., closed Jordan disks), we will also say that f(U) covers
V with degree d.

Similarly to the unbranched situation (see §1.6.1), a branched covering f : S →
T is called Galois or regular if there is a discrete group Γ of deck transformations
faithfully acting on S such that the fibers of f coincide with the orbits of Γ. A
point c ∈ S is branched for f iff it is fixed for some non-trivial deck transformation
γ ∈ Γ. Moreover, the local degree at c is equal to the order of Stab(c).

Exercise 1.108. Show that Γ acts on S properly discontinuous and that Stab(x)
is cyclic for any x ∈ S. Vice versa, if Γ is a discrete group acting properly discon-
tinuously on S then the natural projection S → S/Γ is a Galois branched covering.

As in the unbranched case, Γ is called the covering group.

1.7.15. Marking. A surface S can be marked with an extra topological data. It
can be either several marked points ai ∈ S, or several closed curves γi ⊂ S up to
homotopy (usually but not always they form a basis of π1(S)), or a parametrization
of several boundary components γi ⊂ ∂S, φi : T→ γi.

The marked objects may or may not be distinguished (for instance, two marked
points or the generators of π1 may be differently “colored”). Accordingly, the mark-
ing is called colored or uncolored.

A homeomorphism h : S → S̃ between marked surfaces should respect the
marked data: marked points should go to the corresponding points (h(ai) = ãi),
marked curves γi should go to the corresponding curves γ̃i up to homotopy (h(γi) ≃
γ̃i), and the boundary parametrizations should be naturally related (h ◦ φi = φ̃i).

1.8. Orbifolds.

1.8.1. General notion. This notion accounts to varieties with simple singular-
ities represented as local quotients of manifolds by finite group actions. More
precisely, an n-dimensional orbifold O is a topological space M covered with a base
U of neighborhoods Ui such that:

(i) The atlas U is closed under finite intersections;

(ii) For each Ui, there exists a homeomorphism φi : Ui → Ûi/Gi, where Ûi is a
neighborhood in Rn and Gi is a finite group of homeomorphisms acting on Ûi;

(iii) If Ui ⊂ Uj then the group Gi embeds into Gj so that there is an equivariant
embedding φij : Ûi → Ûj , called a transit map, that induces the natural embedding
Ui ⊂ Uj .

The space M is called the underlying space, the groups Gi are called the (local)
orbifold groups, while the natural projections πi : Ûi → Ui are called the (inverse)
local charts of O. Sometimes, we will informally refer to neighborhoods Ûi them-
selves (endowed with the orbifold group actions) as “local charts”. The singular set
S ⊂M is the union of πi(Ŝi), where Ŝi is the set of fixed points of the Gi-action.

A basic example is a global quotient M̂/G of a manifold M̂ by a global properly
discontinuous group action, but not all orbifolds are obtained this way.

A morphism O → O′ between orbifolds is a continuous map f : M → M ′

between the corresponding underlying spaces that locally lifts to an equivariant
continuous map Ûi → Ûj between local charts. The notion of an orbifold home-
omorphism naturally follows. Note that an orbifold homeomorphism induces a
homeomorphism between the singular sets that locally lifts to a conjugacy between
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the orbifold group actions. In particular, the local degrees of the singular points
are preserved under orbifold homeomorphisms.

Note also that for any neighborhood U ⊂M , there is a natural orbifold restric-
tion O|U .

An orbifold morphism O → O′ is called a covering of degree d ∈ Z+ ∪ {∞} if
any point y ∈M ′ has a neighborhood (V, y) whose full preimage is a disjoint union
of neighborhoods (Ui, xi) such that each restriction f : (Ui, xi)→ (V, y) induces an
orbifold homeomorphism O|Ui → O′|V such that

∑
[Gi : Γ] = d,

where Gi are the orbifold groups for Ûi and Γ is the orbifold group for V̂ . In this
case, the Ûi and V̂ can be identified (by some homeomorphisms) and the groups
Gi can be embedded into Γ so that the map Ûi/Gi → V̂ /Γ induced by f becomes
the natural projection Ûi/Gi → Ûi/Γ. The index [Γ : Gi] is called the local degree
degxi

f . For instance, if O is a manifold, then a covering f : O → O′ locally

looks like the quotient Û → Û/G with the local degree equal to the order of G. A
Universal orbifold covering p : U → O is an orbifold covering such that any other
orbifold covering π : W → O with the same base is a factor of p, i.e., there exists
an orbifold covering q : U → W such that p = π ◦ q.

Theorem 1.109. Any orbifold admits the canonical9 Universal covering.

Below we will supply a construction in dimension two.
If the universal covering of an orbifold O coincides with itsels, we will refer to

it as universal.

Exercise 1.110. The underlying space of a universal orbifold is simply con-
nected.

An orbifold is called good if its Universal covering is a manifold. It is exactly
the case of a global quotient of a manifold by a group action.

An orbifold is called oriented if the neighborhoods Ûi are oriented and the
groups Gi as well as the transit maps φij are orientation preserving.

1.8.2. 2D orbifolds. If O is an oriented 2D orbifold then its local charts can
be selected as the disk D endowed with cyclic rotations groups Gi, z 7→ e(m/qi) z,
m ∈ Z/qiZ. As the quotients D/Gi are homeomorphic to D, the underlying space
M is an (oriented) topological surface as well. So, in this case, we can think of O
in a simply minded way, as an oriented surface M with a set X of isolated points
xi endowed with “ramification indices” qi ∈ Z+, qi ≥ 2, i = 1, . . . , n. The data
(M ; {q1, . . . , qn}) is called the signature of O. We can also let q(x) = 1 for any
regular point x ∈ M , so we make the ramification function q : M → Z+ defined
everywhere.

Remark 1.111. If O is a smooth 2D Riemannian orbifold, then the above pic-
ture becomes too simplistic, as the underlying space M develops conic singularities
with angles 2π/qi at points xi. See §2.1.4.

9Meaning “unique up to equivalence between coverings”.



50 CONTENTS

Exercise 1.112. Let Oq be the orbifold with the underlying space U = D, and
the local chart Û = D endowed with the cyclic rotation group G,

z 7→ e(m/q)z, m ∈ Z/qZ

(so that all other charts are obtained by restricting this one). Let

fn : D→ D, z 7→ zn.

(i) The map fn induces a morphism Oq → Op if and only if nq is a multiple of p.
If so, this morphism is an orbifold covering of degree d = nq/p. In particular, fp
induces the universal covering D→ Op (where D is identified with O1).

(ii) If nq divides p then the multi-valued inverse map f−1n lifts to the orbifold uni-
versal covering f̂−1n : Ôp → Ôq. In the D-model for the universal coverings, it
becomes z 7→ zk with k = p/(nq).

Exercise 1.113. A morphism f : O → O′ between two 2D orbifolds is a
covering of degree d iff it induces a Galois branched covering f :M →M ′ of degree
d between the underlying surfaces such that q(fx) = degx f · q(x) for any x ∈M

Construction of the Universal covering in 2D. Let us puncture out
the singular points xi from M , setting M∗ = M r X, and let p∗ : U → M∗

be its universal covering. Let Vi be small disk neigborhoods of the xi, and let
V ∗i := Vi r {xi}. For each xi, let us select a component V̂ ∗i of p−1(V ∗i ). By
Proposition 1.59, each restriction p∗ : V̂ ∗i → V ∗i is a universal covering, so it is
equivalent to the exponential map e : H→ D∗.

Let Γi be the stabilizer of V̂ ∗i in the group G of deck transformations, and let
Γ be the subgroup of G generated by the Γi. LetW∗ := U/Γ and let π :W∗ →M∗

be the corresponding covering. Then each restriction p∗i : V̂
∗
i /Γi → V ∗i is equivalent

to the covering fi : D∗ → D∗, z 7→ zri , with some ri dividing qi. Hence, by adding
one ideal point x̂i to each V̂ ∗i , we can extend p∗i to a branched covering equivalent
to fi : D → D. It provides us with an extension of p∗ to a branched covering
p :W →M , which can be interpreted as an orbifold covering.

Exercise 1.114. Verify that this orbifold covering is universal (and canonical).

Example 1.115. Let us consider the orbifold O with signature (S2; {2, 3}). Let
us realize it as the Riemann sphere Ĉ with the singular set X = {0,∞}. According to
the above construction, its universal covering U is obtained by taking the exponential
coivering e : C → C∗ and quotening it by the translation group generated by T2 :
z 7→ z + 2 and T3 : z 7→ z + 3. This group generates the whole group Z of deck
transformations for e, so we get O back as its own universal covering. We see that
this orbifold is bad.

Exercise 1.116. Describe the Universal covering of the orbifolds with signa-
tures (S2; p) and (S2; {p, q}),

The Euler characteristic of a 2D orbifold O with signature (M ; {qi}) is defined
as

(1.8) χ(O) = χ(M)−
∑

(1− 1

qi
).

This definition secures the standard behavior of the Euler characteristic under cov-
ering and connected sum operations. Indeed, since the orbifold Oq is covered with
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degree q by the disk D, we want χ(Oq) = 1/q. If O has n singular points xi, then
the underlying space of O is obtained by gluing n orbifolds Oq into Mr

⊔
Ui, where

the Ui are Jordan disk neighborhoods of the qi (with disjoint closures). Then the
desired additivity of the Euler characteristic requires

χ(O) = χ(M r
⊔
Ui) +

∑
χ(Oqi

) = χ(M)− n+
∑ 1

qi
,

yielding (1.8).

Exercise 1.117. Let O and O′ be two 2D orbifolds.

(i) Show that if f : O → O′ is a degree d covering then χ(O) = dχ(O′).
(ii) If O ∪h O′ is obtained from O and O′ by gluing the underlying surfaces along
boundary Jordan curves, then χ(O ⊔h O′) = χ(O) + χ(O′).

One says that a 2D orbifold O is of finite topological type if its underlying
surface M is of finite type and it has only finitely many singular points.

Exercise 1.118. A 2D orbifold is of finite topological type iff it has a finite
Euler characteristic.

It is convenient to consider a puncture in a surface as an orbifold point of infinite
index (modeled on the Z-action of H generated by the translation z 7→ z+1). With
this convention, an orbifold of finite type has a compact underlying surface with
finitely many singular points (including punctures).

Exercise 1.119. Check that the above discussion carries through with this more
general interpretation of 2D orbifolds.

It turns out that in dimension two almost all orbifolds are good: the only bad
once are (S2; p) and (S2; {p, q}), with p 6= q. See §2.8.2.

1.9. Appendix 1: Hausdorff metric. Let Z be a compact metric space,
and let S(Z) be the space of its closed subsets. The Hausdorff distance between
two subsets X,Y ∈ S(Z) is defined as follows:

(1.9) distH(X,Y ) = max{sup
x∈X

dist(x, Y ), sup
y∈Y

dist(X, y)}

(where dist(x, Y ) is defined in §50.3.4). Note that distH(X,Y ) < ε means that X
is contained in the ε-neighborhood of Y and the other way around.

Exercise 1.120. For a compact metric space, we have:

(i) distH defines a metric on S(Z) (called “Hausdorff”).

(ii) Xn → X iff all limits points limxk, xnk
∈ Xnk

, nk → ∞, belong to X, and
for any point x ∈ X there is a sequence xn ∈ Xn converging to x.

(iii) S(Z) is compact.

• Given a sequence of sets Xn ⊂ Z, we let:

• lim sup
n→∞

Xn be the set consisting of all limits limxk, where xk ∈ Xnk
for some

subsequence nk →∞.

• lim inf
n→∞

Xn be the set consisting of all limits limxn, where xn ∈ Xn.
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As Exercise 1.120 shows, Xn → X in the Hausdorff metric iff

lim supXn = lim infXn = X.

If we have a closed set Xλ ⊂ Z depending on some parameter λ ∈ Λ, we
say that it depends upper semicontinuously on λ at λ◦ if lim supXλn

⊂ Xλ◦ for
any λn → λ◦. In other words, ∀ ε > 0 ∃ δ > 0 such that if |λ − λ◦| < δ then
Xλ is contained in the ε-neighborhood of Xλ◦ (i.e., Xλ◦ cannot “blow-up” under
perturbations).

Exercise 1.121. Let Z be compact, and let φ : Z → Λ be a continuous map.
Then the fibers Xλ := φ−1(λ) depend upper semicontinuously on λ ∈ Λ.

Similarly, lower semicontinuity means that lim infXλn
⊃ Xλ◦ for any λn → λ◦

(so Xλ◦ cannot “collapse” under perturbations). Thus, we have the usual property:
Xλ depends continuously on λ with respect to the Hausdorff distance iff it depends
simultaneously upper and lower semicontinuously.

1.10. Appendix 2: Alexander cohomology. This is a very general theory
that can be applied to fractal sets (unlike the homotopy theory). In particular, it
allows us to characterize hulls in R2 (which are intuitively “simply connected”) in
terms of vanishing cohomology. We will not try to develop this theory in a regular
way but will rather give a quick account (for the first cohomology only) suitable for
our purposes. To make it more intuitive, we will use the physical language.

Let K be a compact metric space whose points are viewed as “particles”. An
interaction energy is a continuous function φ(x, y) defined for all pairs x, y ∈ X
with dist(x, y) < r (for some r > 0) such that

• φ(x, x) = 0;

• φ(x, y) = −φ(y, x);
• Chain Rule: φ(x, z) = φ(x, y)+φ(y, z) (as long as all three distances are bounded
by r).

Such a function is also called 1-cocycle.

We can extend the interaction to the pairs of particles connected by an r-chain,
i.e., a sequence of points C = (x = x0, x1, . . . , xn = y) such that d(xi, xi+1) < r.
Namely, let

φC(x, y) =
n−1∑

i=0

φ(xi, xi+1).

Of course, the result may depend on the chain.

Exercise 1.122. Show that φC′(x, y) = φC(x, y) if C ′ is a small perturbation
of C with the same endpoints.

The interaction is called potential if there exists a continuous function u : X →
R such that φ(x, y) = u(y)− u(x). In this case, the cocycle φ is called trivial.

Exercise 1.123. (i) An interaction is potential if and only if φC(x, y) is in-
dependent of the choice of the chain C.

(ii) Any interaction is locally potential.
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Let us first define vanishing cohomology:

H1
A(K) ≡ H1

A(K,R) = 0

if all interactions with sufficiently small r > 0 are potential.

Example 1.124. H1
AK(D̄) = 0. To see it, notice that any two r-chains C

and C ′ connecting x to y are discretely homotopic rel the endpoints.10 It means
that for any ε > 0 there is a sequence of r-chains C = C0, C1, . . . , Ck = C ′

with the same endpoints such that dist(Ci, Ci+1) < ε. The latter means that the
chains in question can be concatenated into the same number of subchains Cik, C

i+1
k

(k = 1, . . . ,m) with diameter < r/2 and distH(C
i
k, C

i+1
k ) < ε (where distH stands

for the Hausdorff distance, see Appendix 1 below). Since the energy of a chain is
homotopy invariant, it depends only on the endpoints. Hence it is potential.

Example 1.125. H1
A(T) 6= 0. For points z and ζ which are not antipodal on T,

we have a well defined interaction energy φ(z, ζ) = arg(ζ/z) ∈ (−π, π). It satisfies
the Chain Rule for any three points that lie on the same side of some diameter.
However, it is not potential since the energy of a closed chain that goes around the
circle is equal to 2π.

In general, the first Alexander cohomology group, H1
A(K) ≡ H1

A(K,R), is de-
fined as the space of 1-cocycles modulo trivial ones.

Exercise 1.126. Show that H1
A(T) ≈ R.

1.11. Appendix 3: Cyclic order. A cyclic order on a finite set Θ with q

elements can be defined in one of the following equivalent ways:

(i) A cyclic permutation σ : Θ→ Θ;

(ii) A bijection o : Θ→ Z/qZ, up to translation o(θ) + k, k ∈ Z/qZ;

(iii) An oriented graph Γ supported on Θ (as the set of vertices) which is a single
cycle;

(iv) An assignment to any point θ ∈ Θ the next one, σ(θ), so that the corresponding
oriented graph is a single cycle.

Any subset Θ′ ⊂ Θ naturally inherits a cyclic order from Θ (whose cycle Γ′ is
obtained from Γ by concatenating arrows of Γ through vertices of ΘrΘ′).

Note that a 2-point set has only one cyclic order, while a 3-point set supports
exactly two different cyclic orders.

Exercise 1.127. Let Θ ≈ Z/qZ be a finite cyclically ordered set, and let g :
Θ→ Θ be an order preserving permutation (i.e., if θ′ is next to θ then g(θ′) is next
to g(θ)). Then g is conjugate to a translation n 7→ n + p on Z/qZ. In particular,
all points of Θ have the same period.

Such a permutation g is called a rotation of Θ, with rotation number p/q. If q
and p are mutually co-prime, then g is called a cyclic rotation.

Any finite subset Θ of an oriented topological circle S1 is endowed with a
natural cyclic order corresponding to the positive motion around the circle. So, a
point θ′ ∈ Θ is next to θ ∈ Θ if the interval (θ, θ′) ∈ S1 (whose orientation from θ
to θ′ is positive in S1) does not contain points of Θ.

10[In fact, it can even be done continuously by projecting the chains in question orthogonally
to the interval connecting x and y.
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More generally, an infinite set Θ is called cyclically ordered if any its finite
subset is, and these orders are compatible: If Θ0 ⊂ Θ1 then the cyclic order of Θ0

is induced from Θ1.

Any subset of a cyclically ordered set Θ naturally inherits a cyclic order. We
say that a triple (θ1, θ2, θ3) ∈ Θ3 is positively ordered if its natural cyclic order
coincides with the one induced from Θ.

Also, selecting any two points θ1, θ2 ∈ Θ, the set of points θ ∈ Θ such that the
triple (θ1, θ, θ2) is positively ordered forms a linearly ordered “interval” (θ1, θ2) (so
for any two distinct points θ, θ′ in this interval, we have θ < θ′ or the other way
around). Of course, we can add endpoints to (θ1, θ2) to obtain a “closed interval”
[θ1, θ2] or “semi-closed intervals” [θ1, θ2) and (θ1, θ2].

Notes. The text book by Munkres [Mu1] serves well as a basic reference in
topology. Orsay Notes by Douady and Hubbard [DH2] and Milnor’s book [M2]
can also serve as an efficient introduction to the topology of plane continua.

Various takes on the Jordan Theorem can be found in [Mu1, KaC], [Hat,
§2.B] The most general approach goes through the Alexander Duality (see [Hat,
Thm.3.44]). A general treatment of the Alexander cohomology can be found in
[Spen]. Note that it was independently introduced by A.N. Kolmorogov [Ko].

Nadler’s book [Na] goes in depth into the topological structure of continua.
(See also [Lew] for a discussion of pseudo-arcs.) All wild creatures that one can
imagine appear naturally in dynamics, albeit not necessarily for polynomials, see
[De3, He3, KY, Mayer, Re3].

The Triangulation Theorem for 2D manifolds was proven by Rado in the 1920s
[Rado]. Moore’s Theorem appeared in 1925 [Moo].

The notion and a basic theory of orbifolds is due to Thurston, see [Sc].

Acknowledgment. The author thanks Oleg Viro for reading this chapter of
the manuscript and making helpful comments, and Lasse Rempe-Gillen for useful
comments on wild creatures.



Part 1

Conformal and quasiconformal

geometry





CHAPTER 1

Conformal geometry

2. Riemann surfaces

2.1. Analytic and geometric structures on surfaces.
2.1.1. Smooth surfaces. Rough topological structure can be refined by requiring

that the transition maps belong to a certain “structural pseudo-group”, which often
means: “have certain regularity”. For example, a smooth structure on S is given
by a family of local charts φi : Ui → R2 such that all the transition maps are
smooth (with a prescribed order of smoothness). A surface endowed with a smooth
structure is naturally called a smooth surface. A local chart φ : U → V smoothly
related to the charts φi (i.e., with smooth transition maps) is referred to as a
“smooth local chart”. A family of smooth local charts covering S is called a smooth
atlas on S. A smooth structure comes together with affiliated notions of smooth
functions, maps and diffeomorphisms.

There is a smooth version of the connected sum operation in which the bound-
ary curves are assumed to be smooth and the boundary gluing map h is assumed
to be an orientation reversing diffeomorphism. To get a feel for it, we suggest the
reader to do the following exercise:

Exercise 2.1. Consider two copies D1 and D2 of the closed unit disk D ⊂ R2.
Glue them together by means of an orientation reversing diffeomorphism h : ∂D1 →
∂D2 of the boundary circles. You obtain a topological sphere S2. Show that it can
be endowed with a unique smooth structure compatible with the smooth structures
on D1 and D2 (that is, such that the tautological embeddings Di → S2 are smooth).
The boundary circles ∂Di become smooth Jordan curves on this smooth sphere.
Show that this sphere is diffeomorphic to the standard “round sphere” in R3.

Using a partition of unity, any smooth surface can be endowed with a Rie-
mannian metric. This makes the Triangulation Theorem (1.70) easy in the smooth
category:

Proposition 2.2. Any smooth surface S can be triangulated.

Proof. Take a fine net of points on S (including ∂S) in a general position, and
connect each of them with nearby points by geodesic arcs. We obtain a tessellation
of S by geodesic polygons. Triangulating these polygons, we obtain the desired. �

Real analytic structures would be the next natural refinement of smooth struc-
tures.

57
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2.1.2. Riemann surfaces. If R2 is considered as the complex plane C with z =
x + iy, then we can talk about complex analytic ≡ holomorphic transition maps
and corresponding complex analytic structures and surfaces. Such surfaces are
known under a special name of Riemann surfaces. A holomorphic diffeomorphism
between two Riemann surfaces is often called an (biholomorphic) isomorphism.
Accordingly a holomorphic diffeomorphism of a Riemann surface onto itself is called
its (biholomorphic) automorphism.

For instance, the one-point compactification Ĉ = C∪{∞} of C is a topological
sphere endowed with the natural complex structure, with two local charts, id : C→
C and φ : Ĉ r {0} → C, φ(z) = 1/z. This Riemann surface is called the Riemann
sphere.

Connected sum operation still works in the category of Riemann surfaces. In
its simplest version the boundary curves and the gluing diffeomorphism should be
taken real analytic. Here is a representative statement:

Exercise 2.3. Assume in Exercise 2.1 that R2 ≡ C and that the gluing diffeo-
morphism h is real analytic. Then S2 can be supplied with a unique complex analytic
structure compatible with the complex analytic structure on the disks Di ⊂ C. The
boundary circles ∂Di become real analytic Jordan curves on this Riemann sphere.

More generally, we can attach handles to the sphere by means of real analytic
boundary map, and obtain an example of a Riemann surface of genus g. It is
remarkable that, in fact, it can be done with only smooth gluing maps, or even
with singular maps of a certain class. This operation (with singular gluing maps)
has important applications in Teichmüller theory, theory of Kleinian groups, and
Dynamics.

If R2 is supplied with the standard Euclidean metric, then we can consider
conformal transition maps, i.e., diffeomorphisms preserving angles between curves.
The first thing students usually learn in complex analysis is that the class of orienta-
tion preserving conformal maps coincides (in dimension 2!) with the class of invert-
ible complex analytic maps. Thus the notion of a conformal structure on an oriented
surface is equivalent to the notion of a complex analytic structure≡holomorphic
(though it is worthwhile to keep in mind a conceptual difference between them:
one comes from geometry, the other comes from analysis).

We say that a Riemann surface S is a conformal disk/annulus etc if it is iso-
morphic to the standard disk D, a round annulus A(r,R) etc. A conformal sphere
naturally bears the same name as a holomorphic one: the Riemann sphere.

2.1.3. Fine geometric structures and rough structures. One can go further to
projective, affine, Euclidean/flat or hyperbolic structures. We will refine this dis-
cussion momentarily.

One can also go in the opposite direction and consider rough structures on a
topological surface whose structural pseudo-group is bigger then the pseudo-group
of diffeomorphisms, e.g., bi-Lipschitz structures. Even rougher, quasiconformal,
structures will play an important role in our discussion.

Let h : S → S′ be a surface homeomorphism. Then any structure µ′ of T can be
obviously pulled back to a structure h∗µ′ of the same kind on S, and any structure
µ on S can be pushed forward to a structure h∗µ on S′. In fact, the pullback h∗µ
is well defined as long as h is a covering map. Namely, for any µ′-local chart φ|U ′
and any neighborhood U ⊂ S such that h : U → S′ is an embedding into U ′, the
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composition φ ◦ h|U is declared to be a local chart on S. (Note that the transition
maps for µ′ and h∗µ′ are the same.)

To comfort a rigorously-minded reader, let us finish this brief excursion with a
definition of a pseudo-group on R2 (in the generality adequate to the above discus-
sion). It is a family of local homeomorphisms f : U → V between open subsets of
R2 (where the subsets depend on f) which is closed under taking inverse maps and
taking compositions (on the appropriately restricted domains). The above struc-
tures are related to the pseudo-groups of all local (orientation preserving) home-
omorphisms, local diffeomorphisms, locally biholomorphic maps, local isometries
(Euclidean or hyperbolic) etc.

The uniformization of a Riemann surface S is a holomorphic parametrization
φ : S◦ → S of S by some model Riemann surface S◦, e.g., by the complex plane,
the Riemann sphere, or the hyperbolic plane. These three models lead to three
geometries that will be discussed below.

2.1.4. Geometric structures on orbifolds. Let us now refine the discussion from
§1.8.

An orbifold O is called smooth if the local group elements, as well as the transit
maps are diffeomorphisms. (Of course, the underlying space M of a smooth orbifold
still has singularities.)

A smooth orbifold morphism O → O′ (between smooth orbifolds) is a contin-
uous map f : M → M ′ between the underlying spaces which is smooth in local
charts, (i.e., it locally lifts to equivariant smooth maps fij : Ûi → Ûj) between local
charts). The notions of an orbifold diffeomorphism naturally follows.

The orbifold is called Riemannian if all the Ui are endowed with the Riemannian
metrics ds2i that turn all the group elements and the transit maps into isometries.
The notion of an orbifold isometry naturally follows.

Similarly, we can define a general notion of orbifold geometric structure (con-
formal ≡ Riemann, Euclidean, spherical, hyperbolic, etc.) and associated (iso-
)morphisms.

For 2D orientable manifolds, the local orbifold groups are cyclic, Z/qZ. In
the Riemannian case, the local quotients are cones with angle 2π/q, q ∈ Z+ (with
singular points corresponding to q ≥ 2). Obviously, there is no way to turn the
underlying surface near cone singularities into a smooth Riemannian one (compare
with Remark 1.111.)

2.2. Flat (Euclidean) and affine geometries. Consider the complex plane
C. Holomorphic automorphisms of C are complex affine maps A : z 7→ az + b,
a ∈ C∗, b ∈ C. They form a group Aff(C) acting freely bi-transitively on the
plane: any pair of points can be moved in a unique way to any other pair of points.
Moreover, it acts freely transitively on the tangent bundle of C.

Thus the complex plane C is endowed with the affine structure canonically
affiliated with its complex analytic structure. Of course, the plane can be also
endowed with a Euclidean metric |z|2. However, this metric can be multiplied by
any scalar t > 0, and there is no way to normalize it in terms of the complex
structure only. All these Euclidean structures have the same group Euc(C) of
(orientation preserving) Euclidean motions A : z 7→ az+ b with |a| = 1. This group
acts transitively on the plane with the group of rotations z 7→ e(θ) z, θ ∈ R/Z,
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stabilizing the origin. Moreover, it acts freely transitively on the unit tangent
bundle of C (corresponding to any Euclidean structure).

The group Aff has very few discrete subgroups acting freely on C: rank 1
lattice z 7→ z + an, n ∈ Z, where a ∈ C∗, and rank 2 lattice z 7→ an + bm,
(m,n) ∈ Z2, where (a, b) is an arbitrary basis in C over R. All rank 1 lattices are
conjugate by affine transformations, so that the quotients modulo their actions are
all isomorphic. Taking a = 1 we realize these quotients as the bi-infinite cylinder
C/Z. It is isomorphic to the punctured plane C∗ by means of the exponential
map e : C/Z → C∗. The rank 2 quotients are all topological tori. However,
they generically represent different Riemann surfaces. Indeed, by a complex affine
transformation, any rank 2 lattice can be brought to t he form

L ≡ Lτ := {m+ nτ : ((m,n) ∈ Z2, Im τ > 0},
so we obtain a complex one-prameter family of tori T2 ≡ T2

τ := C/L, τ ∈ H.
However, not all of these tori are conformally distinct, and in fact, the space of
various complex tori is the quotient of H by some discrete group (see §2.6.3 below).

Note that the above discrete groups preserve the Euclidean structures on C.
Hence these structures can be pushed down to the quotient Riemann surfaces.
Moreover, now they can be canonically normalized: in the case of the cylinder we
can normalize the length of the simple closed geodesic to be 1. In the case of the
torus we can normalize its total area. Thus, the complex tori and the bi-infinite
cylinder are endowed with the canonical Euclidean structures.

By the Geometric Uniformization Theorem (see Appendix 2), we have ex-
hausted the list of complete Euclidean surfaces:

Theorem 2.4. Any complete Euclidean surface is isometric to either the Eu-
cliuidean plane R2, or to the flat cylinder T× R, or to the torus T2.

Exercise 2.5. Let us consider a torus T2 ≡ T2
τ := C/Lτ , τ ∈ H.

(i) Any holomorphic endomorphism f of T2 is affine, i.e., it is induced by an affine
map f̂ : z 7→ ρz + b of C (such that ρ · L ⊂ L). In particular, we can take

(2.1) f̂ = An : z 7→ nz with n ∈ Z.

(ii) deg f = |ρ|2; so f is an automorphism iff |ρ| = 1. In particular, any torus
admits a holomorphic involution σ unduced by A−1 : z 7→ −z. This involution has
four fixed points in T2.

(iii) The involution σ is the only (up to conjugacy by translations) non-trivial au-
tomorphism of any torus, except two special ones corresponding to extra symmetric
lattices, Li and Le(1/6). Describve the group of symmetries for these two.

(iv) If T2
τ admits an endomorphism z 7→ ρz + b with non-integer ρ, then ρ and τ

are quadratic irrationals. So, there are only countably many such endomorphisms.
They are called “complex multiplications”.

By taking quotients of C by non-free actions of discrete subgroups Γ of Euc(C),
we obtain 2D Euclidean orbifolds (also called flat or parabolic).

Exercise 2.6. (i) Make a list of such Euclidean orbifolds and the corresponding
branched coverings C→M of their underlying spaces.

(ii) Note that all of them have zero Euler characteristic.
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(iii) Pay attention to three special ones related to a checker-board tesselation T of
C by white and black triangles with angles π/p, π/q, π/r, where

1

p
+

1

q
+

1

r
= 1, p, q, r ∈ {2, 3, . . . }.

Each of these triangles is as fundamental domain for the full group of symmetries
Γ̂ ⊃ Γ of T (including reflections), which is the index two extension of Γ.

Notice that these properties are (naturally) in agreement with the Gauss-
Bonnet Formula (see Appendix 2 below). For instance, orbifolds in (iii) are en-
dowed with flat metric with three cone singularities. By (2.33) these singularities
support curvatures 2π(−1/p), 2π(1− 1/q), and 2π(1− 1/r), so the total curvature
of this metric is equal to

2π

(
3−

(
1

p
+

1

q
+

1

r

))
= 4π = 2π · χ(S2).

2.3. Projective and spherical geometries.

2.3.1. Möbius group. Consider now the Riemann sphere Ĉ. Its biholomorphic
automorphisms are Möbius transformations

φ : z 7→ az + b

cz + d
; det

(
a b
c d

)
6= 0.

We will denote this Möbius group by Möb(Ĉ). It acts freely triply transitive on
the sphere: any (ordered) triple of points (a, b, c) on the sphere can be moved by a
unique Möbius transformation to any other triple (a′, b′, c′).

Note that the Riemann sphere is isomorphic to the complex projective line
CP

1. For this reason Möbius transformations are also called projective. Alge-
braicly, the Möbius group is isomorphic to the linear projective group PSL(2,C) =
SL(2,C)/{±I} of 2× 2 matrices A with detA = 1 modulo reflection A 7→ −A.

2.3.2. Classification of Möbius transformations. Any Möbius transformation
A has a fixed point α ∈ Ĉ, i.e. A(α) = α. Hence there are no Riemann surfaces
whose universal covering is Ĉ (except Ĉ itself). In fact, any non-identical Möbius
transformations has either one or two fixed points, and can be classified depending
on their nature.

To this end, let us bring a Möbius transformation to a simplest normal form
by means of a conjugacy φ−1 ◦ f ◦ φ by some φ ∈ Möb(Ĉ). Since Möb(Ĉ) acts
double transitively, we can find some φ which sends one fixed point of f to ∞ and
the other (if exists) to 0. This leads to the following classification:

(i) A hyperbolic Möbius transformation A has an attracting and repelling fixed
points, α+ and α−, with multipliers1 ρ and ρ−1 respectively, where 0 < |ρ| < 1. Its
normal form is a global linear contraction A : z → ρz (with possible spiralling if ρ
is unreal). These fixed points are called hyperbolic as well.

Hyperbolic Möbius transformations with unreal ρ are also called loxodromic.

(ii) An elliptic Möbius transformation has two fixed points α± with multipliers
ρ and ρ−1 where ρ = e(θ), θ ∈ R/Z. Its normal form is the rotation z → e(θ)z.

1The multiplier of a fixed point α is the derivative A′(α) calculated in any local chart around
α, compare §§19.5, 21.1.
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(iii) A parabolic Möbius transformation has a single fixed point α with multiplier
1. Its normal form is a translation z 7→ z + 1.

Exercise 2.7. (i) Verify those of the above statements that look new to you.

(ii) Show that dilations z 7→ ρz, 0 < ρ < 1, rotations z 7→ e(θ) z, θ ∈ R/Z, and
translations z 7→ z + a, a ∈ [0, 1), generate the whole group Aff(C).

(iii) Show that Aff(C) together with the involution z 7→ 1/z, generate the whole
group Möb(Ĉ).

Exercise 2.8. Classify Möbius transformations in terms of the representing
matrices A ∈ SL(2,R). Namely, A is elliptic, parabolic (including A = id), or
hyperbolic according to whether trA ∈ (−2, 2), |trA| = 2, or trA ∈ C r [−2, 2],
respectively. Moreover, A is loxodromic iff trA is unreal.

2.3.3. Dynamics. Using the above normal forms, it is easy to describe the dy-
namics of Möbius transformations:

(i) If A is hyperbolic then its forward orbits {Anz}n∈N converge to the attracting
fixed point α+, while backward orbits {A−nz}n∈N converge to the repelling fixed
point α−. Moreover, A preserves the foliation of circular arcs (“separatrices”)
passing through α+ and α−.

(ii) If A is parabolic then both forward and backward orbits converge to the
α-fixed point. Moreover, A preserves a foliation of circles (“ horocycles”) passing
through α, all tangent to one line.

(iii) If A is elliptic, then it acts as a rotation by θ around points α±. Moreover,
it preserves a foliation of circles separating these two points.

Exercise 2.9. Justify the above description.

2.3.4. Compactness and degeneration.

Exercise 2.10. Show that topology of PSL(2,C) and topology of uniform con-
vergence on the sphere coincide. Given an ε > 0, let us consider the set K(ε) of
Möbius transformations φ such that the triple (φ−1(0, 1,∞) is ε-separated in the
spherical metric (i.e., the three points stay at least distance ε apart). Show that
K(ε) is compact in Möb(Ĉ).

Let us now describe the way how Möbius maps can degenerate:

Proposition 2.11. If a family F of Möbius maps is not precompact in Möb(Ĉ)
then it contains a sequence {An} such that An(z)→ a uniformly on compact subsets
of Ĉ r {b}, while A−1n (z)→ b uniformly on compact subsets of Ĉ r {a} (for some
points a, b ∈ Ĉ depending on the sequence).

Proof. Without loss of generality we can assume that F is a sequence escaping
to infinity in PSL(2,C).

For any two points a, b ∈ Ĉ we can select a subsequence {Mn} from F such
that the limits α = limMn(a) and β = limMn(b) exist. Assume first it can be done
so that α 6= β. Then the family of Möbius maps

φn(z) =
z −Mn(a)

z −Mn(b)
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is precompact, so it is enough to verify the statement for the family

fn = φn ◦Mn ◦ ψ, where ψ(z) =
(b− a)z
z + 1

+ a

But fn(0) = 0, fn(∞) =∞, so fn(z) = ρnz for some ρn ∈ C∗.
Since this sequence escapes to infinity in PSL(2,C), it contains a subsequence

with ρn → 0 or ρn →∞. In either case the conclusion is obvious.
Assume now that α = β for any choice of two points a, b and any subsequence

{Mn} as above. It implies that Mn(a) → α pointwise along the whole sequence
F . Without loss of generality we can assume that α = ∞. Similarly to the above
argument, we can make a change of variable fn = φn ◦Mn such that fn(∞) =∞,
so fn(z) = ρnz + cn, and φn → id uniformly on Ĉ.

Note that cn = fn(0)→∞. If ρn = o(cn) then fn →∞ uniformly on compact
subsets of C. Otherwise, fn(z) = ρn(z − bn) with ρn → ∞, bn = O(1) along a
subsequence. These affine maps have fixed points

αn =
ρnbn
ρn − 1

= O(1).

Hence the translations ψn : z 7→ z − αn form a precompact family. Moreover, they
conjugate the fn to complex rescalings gn : z 7→ ρnz for which the conclusion is
obvious. �

2.3.5. Uniqueness of the sphere. By the Geometric Uniformization Theorem
(see Appendix 2), the standard sphere is the only Riemann surface endowed with
spherical structure:

Theorem 2.12. The only (up to isometry) Riemann surface emdowed with a
complete spherical structure is the standard sphere S2 ⊂ R3.

2.3.6. Platonic orbifolds. By taking quotients of the unit sphere S2 ⊂ R3 by
actions of finite groups of rotation, we obtain 2D spherical orbifolds (also called
elliptic). The full list is provided by the serious of orbifolds with signatures (S2, q, q),
q = 2, 3, . . . (corresponding to the cyclic groups of rotations), and three Platonic
orbifolds corresponding to the five Platonic bodies.2 Projecting each of these bodies
B to the sphere, we obtain a spherical polygonal tiling T ≡ TB. Let

Sym ≡ Sym(B) ⊂ SO(3)

be the group of rotations preserving T , and let

Ŝym ≡ Ŝym(B) ⊂ O(3)

be the full group of symmetries of T (including reflections), so Sym is the index
two normal subgroup of Ŝym. Each tiling T can be further refined to a a checker-
board tessellation of S2 by black and white triangles (see Figure ) ), so that the full
symmetry group Ŝym acts freely and transitively on the family of triangles, which
makes each of these triagles fundamental for Ŝym. The fundamental domain for
the subgroup Sym is a spherical rectangle composed of two triangles, black and
white. This description makes the groups Sym ⊂ Ŝym examples of (spherical)
triangle groups.

2The orbifolds corresponding to the dual bodies are the same.
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Exercise 2.13. For each Platonic body B,

(i) Justify the above tessellation picture.

(ii) Identify the corresponding symmetry groups, Sym ⊂ Ŝym ⊂ O(3).

(iii) Show that the Platonic orbifold O ≡ OB corresponding to the group Sym has
signature (S2; {p, q, r}) with

(2.2)
1

p
+

1

q
+

1

r
> 1.

(iv) Show that

(2.3) χ(O) = 2

|Sym| > 0, while area(O) = 4π

|Sym| = 2π χ(O).

(v) Conclude that the spherical area of the fundamental triangle ∆ is equal to

(2.4) area(∆) = π ·
(
1

p
+

1

q
+

1

r
− 1

)
.

(vi) Show that all signatures (S2; {p, q, r}) satisfying (2.2) are realized by Platonic
orbifolds.

Formula (2.4) is a special case of the dollowing result:

Gauss-Bonnet Formula (for spherical triangles). For a spherical tri-
angle ∆ with angles α, β, γ we have:

area(∆) = α+ β + γ − π.
Exercise 2.14. Verify this formula.

2.4. Hyperbolic geometry.

2.4.1. Conformal disk and its automorphisms. Let us consider a conformal disk
S. It is a Riemann surface S conformally equivalent to the unit disk D, or equiva-
lently, to the upper half plane H, or equivalently, to the strip S. Using the isomor-
phism S ≈ D, it can be naturally compactified by adding to it the ideal boundary
∂IS ≈ T also called the ideal circle or the absolute (compare §1.7.8).

The group Aut(S) of conformal automorphisms of S in the the upper half-plane
model consists of Möbius transformations with real coefficients:

M : z 7→ az + b

cz + d
,

(
a b
c d

)
∈ SL(2,R).

Hence Aut(S) ≈ SL(2,R)/{±I} = PSL(2,R). In the unit disk model, it is realized
as the group PSL#(2,R):

M : z 7→ αz + β

β̄z + ᾱ
= λ

z − a
1− āz ,

(
α β
β̄ ᾱ

)
∈ PSL#(2,R),

where λ = α/ᾱ ∈ T, a = −β/α ∈ D (see §50.8).

The above classification of Möbius transformations (see §2.3.2) has a clear
meaning in terms of their action on S:

(i) A hyperbolic transformation A ∈ PSL(2,R) has two fixed points on the
absolute ∂IS (and does not have fixed points in S). Its normal form in the H-
model is a dilation z 7→ λz (0 < λ < 1), and is a translation z 7→ z + a in the
S-model, where a = log λ.
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(ii) A parabolic transformation has a single fixed point on ∂IS (and does not
have fixed points in S). Its normal form in the H-model is the translation z 7→ z+1.

(iii) An elliptic transformation A 6= id has a single fixed point a ∈ S (and
does not have fixed points on ∂IS). Its normal form in the D-model is a rotation
z 7→ e(θ)z, θ ∈ R/Z.

Exercise 2.15. (i) Verify those of the above statements that look new to you.

(ii) Show that dilations z 7→ ρz, 0 < ρ < 1, translations z 7→ z+a, a ∈ [0, 1] (in the
H-model), and rotations z 7→ e(θ) z, θ ∈ R/Z (in the D-model) generate the whole
group Aff(R).

(iii) Show that Aff(R) and the involution z 7→ −1/z generate the whole group Aut(S)
of S ≈ H.

2.4.2. Hyperbolic metric. A remarkable discovery by Poincaré is that a confor-
mal disk S is endowed with the intrinsic hyperbolic structure, that is, there exists
a Riemannian metric ρS on S of constant curvature −1 invariant with respect
PSL(2,R)-action. In the H-, D- and S-models, the length element of ρS is given
respectively by the following expressions:

(2.5) dρD =
2|dz|

1− |z|2 , dρH =
|dz|
y
, dρS =

|dz|
sin y

,

where z = x+ iy. This metric is called hyperbolic .

Remark 2.16. Yet another useful model for the hyperbolic plane, the slit plane,
will appear in §2.4.5.

Exercise 2.17. Verify that the above three expressions correspond to the same
metric on S, which has curvature −1 and is invariant under PSL(2,R). Show that
the group of orientation preserving hyperbolic motions of S is equal to Aut(S) ≈
PSL(2,R).

A conformal disk S endowed with the hyperbolic metric is called the hyperbolic
plane.

2.4.3. H as a symmetric space. In this way, PSL(2,R) assumes the meaning of
the group of (orientation preserving) hyperbolic motions of the hyperbolic plane.
It acts freely transitively on the unit tangent bundle of H, so the latter can be
identified with PSL(2,R). The isotropy group of i ∈ H coincides with the group
PSO(2) of hyperbolic rotations

z 7→ z cos θ − sin θ

z sin θ + cos θ
, θ ∈ R/πZ.

Thus, the hyperbolic plane gets identified with the symmetric space

(2.6) PSL(2,R)/PSO(2) ≈ H.

Remark 2.18. The symmetricity of H is reflected by the properties that it is
homogeneous for the group pf motions, and for any pointed geodesic (γ, z) there is
an isometric involuion M : (H, γ, z)→ (H, γ, z) flipping γ around z (e.g., z 7→ −1/z
flips i ·R+ around i, or in the D-model: rotations by π flip the geodesics around 0).
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From the Lie Theory point of view, the hyperbolic metric on H can be inter-
preted as follows. Let us consider the Lie algebra sl(2,R) of trace free 2 × 2 real
matrices. It is endowed with the inner product < a, b >= 2 tr ab (the Killing form)
which is invariant under the adjoint action

a 7→ gag−1, a ∈ sl(2,R), g ∈ SL(2,R),

of SL(2,R) on sl(2,R).
Viewed as the linear space, sl(2,R) is the tangent space to SL(2,R) at the

identity. By the left action of SL(2,R) on itself, the Killing form can be promoted
to a left-invariant Riemannian metric on SL(2,R). Moreover, it descends to a metric
on the symmetric space SL(2,R)/SO(2) invariant under SL(2,R)-action.

Exercise 2.19. Verify that this metric coincides (via the identification (2.6))
with the hyperbolic metric on H (subject of appopriate normalizations).

Remark 2.20. The Lie Theory discussion can be extended further to pro-
vide a general underlying principle for the hyperbolicty of the symmetric space
SL(2,R)/SO(2) (without a priori familiarity with the hyperbolic plane H). Namely,
any irreducible non-compact symmetric space H of dimenion ≥ 2 is hyperbolic in
the sense that the curvature is negative at any point in all two-dimensional direc-
tions (see [W, Cor, 8.4.6]). Since SL(2,R)/SO(2) is two-dimensional, there is only
one direction at any point, so the curvature is constant by homegenuity.

2.4.4. Hyperbolic geodesics and horocycles. Hyperbolic geodesics in the D-model
of the hyperbolic plane are arcs of Euclidean circles orthogonal to the absolute T. If
we want to emphasize that we consider the full geodesic rather than a geodesic arc,
we sometimes call it complete. For any hyperbolic unit tangent vector v ∈ TD, there
exists a unique oriented complete hyperbolic geodesic tangent to v. For any two
points x and y on the absolute, there exists a unique complete hyperbolic geodesic
γ = γxy with endpoints x and y.

Exercise 2.21. Let G+ ≡ G+(D) be the space of oriented complete hyperbolic
geodesics in D endowed with the Hausdorff metric (associated with the Euclidean
metric on D). Show that:

(i) The space G+ is homeomorphic to (T×T)rdiag, where diag = {(x, x) ∈ T×T}.
(ii) The space G ≡ G(D) of non-oriented geodesics is the quotient of T× Tr diag
modulo the involution (x, y) 7→ (y, x).

(iii) The space Gp+ of pointed oriented geodesics (γ, z), z ∈ γ, is homeomorphic
to G+ × R.

(iv) If (γn, zn) → (γ, z) in Gp+ then the naturally parametrized geodesics γn
C1-converge to the parametrized γ. Modify this statement appropriately for non-
oriented pointed geodesics.

The stabilizer Stab+(γ) of this geodesic preserving its orientation is the one-
parameter group of hyperbolic transformations with the endpoints x and y fixed.
(By normalizing x = 0 and y =∞ in H, we can bring it to the normal form

Stab+(γ) = {z 7→ λz : λ ∈ R+}.
Moreover, γ is called the axis of any A ∈ Stab+(γ). The group PSL(2,R) acts
freely and transitively on the space of pointed oriented hyperbolic geodesics.
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Figure 2.1. Slit plane model for the hyperbolic plane and the
dipole electric field.

Exercise 2.22. (i) Verify the above assertions if they are not familiar to you.

(ii) Show that a hyperbolic R-neighborhood of the vertical axis i · R+ in H is the
sector {| arg z − π/2| < θ} with θ = θ(R) ∈ (0, π/2).

(iii) Show that for M ∈ Stab+(γ) and for any ζ ∈ γ, we have

(2.7) ∆M := inf
z∈H+

disthyp(z,M(z)) = disthyp(ζ,M(ζ)).

The quantity ∆M (2.7) is called the displacement of M . A sector described in
(ii) is called a Stolz sector centered at 0 ∈ H. In general, a Stolz sector centered at
a ∈ ∂H is an R-hyperbolic neighborhood of a hyperbolic geodesic landing at a.

A horocycle in D centered at x ∈ T is a Euclidean circle γ ⊂ D tangent to T at x.
A horodisk D ⊂ D is the disk bounded by the horocycle. In purely geometric terms,
horocycles centered at x form a foliations orthogonal to the foliation of geodesics
landing at x. The stabilizer of any horocycle (and the corresponding horoball) is
the parabolic group fixing its center.

In fact, the H-model fits better for describing horocycles: in this model the
horocycles centered at x = ∞ are horizontal lines Lh ≡ Lh(∞) = {Im z = h},
the corresponding horoballs are the upper half-planes Hh ≡ Hh(∞) = {Im z > h},
which are stabilized by the one-parameter group of parabolic translations z 7→ z+t,
t ∈ R. Similarly we let

Lr(a) := {z : |z − (a+ ir/2)| = r/2}, Lr(a) := {z : |z − (a+ ir/2)| < r/2}
be horocycles and horoballs centered at a ∈ R.

2.4.5. Slit plane. There is one more model of the hyperbolic plane which is
useful in the real dynamics. Namely, let us consider an open interval L ⊂ R and
the corresponding slit plane

(2.8) C(L) := Cr (Rr L)

(slit along two real rays).
For an angle θ ∈ [0, π), we let3 Dθ(L) be the R-symmetric domain intersecting

R along L whose upper half D+
θ (L) := Dθ(L) ∩H+ is bounded by a circle arc that

meets the real line at angle θ, together with the interval L. Note that D0(L) ≡ C(L),
while Dπ/2(L) is the Euclidean disk D(L) based upon L as a diameter.

Exercise 2.23. (i) Write down an explicit conformal map φ : C(L)→ H.

(ii) Show that the interval L is a hyperbolic geodesic in C(L).

(iii) Show that Dθ(L) is a hyperbolic R(θ)-neighborhood of L.

Exercise 2.24. The above circle arcs represent the flow lines of the electrostatic
field generated by the dipole of two opposite charges placed at ∂L.

3A slight notational ambiguity (Dr vs Dθ(L)) hopefully will not cause confusion.
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2.4.6. Hyperbolic convexity. A subset Q ⊂ D is called (hyperbolically) convex if
for any two points x, y ∈ X, the hyperbolic geodesic arc connecting x and y is also
contained in Q. The boundary of Q in D consists of two disjoint parts: the relative
boundary ∂relQ in D and the ideal boundary ∂IQ in T. We say that Q has a totally
geodesic boundary if ∂relQ is the union of complete geodesics (in other words, there
are no corners in ∂relQ). Such sets appear naturally as follows.

The hyperbolic convex hull X̂ of a subset X ⊂ D is the smallest convex set
containing X. For instance, let X be a closed subset of T, and let Ij ⊂ T be the
complementary intervals (“gaps”) of X. Let us consider open (in D) hyperbolic
half-planes Hj ⊃ Ij based on the Ij (they are bounded the hyperbolic geodesics Γj
that share the endpoints with Ij). Then

(2.9) X̂ = Dr
⋃
Hj .

Note that X̂ is closed in D and X̂ ∩ T = X. In fact, we have:

Lemma 2.25. For a closed non-singleton X ⊂ T, the convex hull X̂ is a closed
Jordan disc.

Proof. The boundary of X̂ can be homeomorphically retracted onto T by
projecting the boundary geodesics Γj onto the ideal intervals Ij . To be definite,
one can take the orthogonal projection along geodesics orthogonal to Γj . (To see
it explicitly, move Γj by a Möbius automorphism to a diameter of D.) �

Corollary 2.26. Let x ∈ X̂ and y ∈ T rX. Then any path connecting x to
y crosses some boundary geodesic Γj.

Exercise 2.27. Let Q be a hyperbolically convex subset of D which is a closure
of its interior. Then Q has a totally geodesic boundary iff Q = X̂ for some closed
subset X ⊂ T. Moreover, under these circumstances, X = ∂IQ.

Exercise 2.28. Let Xn be a sequence of closed subsets of T converging in the
Hausdorff metric to a set X (i.e., in the space S(T)). Then X̂n → X̂ in the space
S(D).

2.4.7. Hyperbolic triangles. Let us consider three points A,B,C in the hyper-
bolic plane D or on the absolute T. Connecting them with arcs of hyperbolic
geodesics, we obtain a hyperbolic triangle ∆ with vertices A,B,C. Its boundary in-
herits the orientation from the complex plane, giving the cyclic order to the vertices.
Relabeling the vertices if necessary, we can assume that the cyclic order (A,B,C)
is positive. Let α, β, γ be the angles at the vertices A,B,C. Notice that an angle,
say α, vanishes iff the corresponding vertex A is ideal: A ∈ T.

In a striking contrast with Euclidean geometry, the vertices determine the tri-
angle:

Theorem 2.29. For any cyclically ordered set (α, β, γ) of non-negative angles
satisfying

1

α
+

1

β
+

1

γ
< 1,

there exists a unique, up to a hyperbolic motion, oriented hyperbolic triangle ∆ ≡
∆(α, β, γ) with these angles.
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Figure 2.2. The left hand-side shows an ideal triangle with angles
(α, β, 0). The right-hand one illustrates how it can be deformed to
a triangle with with arbitrary admissible angles (α, β, γ).

Figure 2.3. Representation of an arbitrary triangle as a difference
of two ideal triangles.

Proof. A realization of the triangle ∆(α, β, 0) with one ideal vertex is shown
on the left-hand side of Figure 2.2. It can be then deformed to the triangle ∆(α, β, γ)
with arbitrary γ ∈ [0, π−α−β), see the right-hand side of that figure. One can also
readily see that any triangle with given angles can be moved to a form depicted on
the figure. We leave the reader to fill in details. �

As the angles determine the triangle up to a hyperbolic motion, they should
determine its area, too. This leads to the following remarkable relation:

Gauss-Bonnet Formula (for hyperbolic triangles). The area of the
hyperbolic triangle ∆ with angles (α, β, γ) is equal to the “angle defficiency”:

area∆ = π − (α+ β + γ).

Proof. For the ideal triangle ∆(α, β, 0) depicted on Figure 2.2, it can be
checked by a direct calculation. The general case follows by representing an arbi-
trary triangle as a difference of two ideal ones, as shown on Figure 2.3. �

Of course, the angles should determine the lengths of the edges of the trinagle
as well. It follows from the following Sine Theorem (combined with the Gauss-
Bonnet):

Hyperbolic Sine Theorem. The lengths a, b, c of the edges of the triangle
∆(α, β, γ) are related to its angles as follows:

sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
.

Project 2.30. Study a proof of the Hyperbolic Sine Theorem, as well as other
basic aspects of the Hyperbolic Trigonometry, see [Be1, §7].

Similarly, we can consider hyperbolic polygons P . As for triangles, we allow
some of their vertices to be ideal, representing cusps of P . In fact, will also need to
consider more general ideal polygones with ideal sides (i.e., arcs of T).

Exercise 2.31. Show that if P is a hyperbolic n-gon without ideal sides then

areaP = π(n− 2)−
∑

αi,

where αi are its angles.

An important feature of the hyperbolic geometry is that projections to geodesics
are exponentially contracting:

Exercise 2.32. (i) For any geodesic γ in H and any point z ∈ H, there is a
unique point πγ(z) ∈ γ which is closest to z on γ. Moreover, the geodesic connscting
z to πγ(z) is orthogonal to γ.
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(ii) For any two points z, ζ ∈ H on distance ≥ R from γ, we have:

disthyp(πγ(z), πγ(ζ)) ≤ e−R disthyp(z, ζ).

2.4.8. Fuchsian groups: dynamical structure. A Fuchsian group Γ is a discrete
subgroup of PSL(2,R) acting on the hyperbolic plane. Let us start with a structural
theorem for these actions.

Theorem 2.33. Let Γ be a Fuchsian group acting on (Ĉ,D,T). Then there is
a closed Γ-invariant set Λ = Λ(Γ) ⊂ T with the following properties:

(i) Λ is the limit set of any orb(z), z ∈ Ĉ. In prticular, the action of Γ on Λ is
minimal: any orbit is dense in Λ.

(ii) The action of Γ on the complementary set, Ω(Γ) := Ĉ r Λ(Γ), is properly
discontinuous.

(iii) Λ is the closure of hyperbolic fixed points.

(iv) If Γ contains a parabolic map, then Λ is the closure of parabolic fixed points.

(v) If Γ contains an elliptic map then it has finite order, it has a unique fixed point
α in D, and this point belongs to D (in particular, it does not belong to Λ).

(vi) Λ is either the whole circle T, or a Cantor set, or esle |Λ| ≤ 2. In the latter
case, there are four options:

a) Γ is a finite cyclic group of elliptic rotations around a fixed point α ∈ D, and
Λ = ∅. The normal form for Γ is z 7→ e(k/q) z, k ∈ Z/qZ.

b) Γ is an infinite cyclic group of parabolic translations with a common fixed point
α ∈ T, and Λ = {α}. The H-normal form4 for Γ is

z 7→ z + n, n ∈ Z.

c) Γ is an infinite cyclic group of hyperbolic maps with common fixed points α, β ∈ T,
and Λ = {α, β}. The H-normal form for Γ is

(2.10) Γρ = {z 7→ ρnz, n ∈ Z} for some ρ ∈ (0, 1).

d) Γ is an infinite diahedral group5 that has an orbit {α, β} ⊂ T of size two. More-
over, Λ = {α, β}. The H-normal form for Γ is generated by the above cyclic group
Γρ (for some ρ ∈ (0, 1)) and the involution z 7→ −1/z.

Proof. Assume first that Γ is infinite and that there are no points fixed under
the whole group. Since Γ is discrete, it is countable, G = {gn}n∈N where g0 = id,
and moreover gn → ∞ in PSL(2,R) (meaning that the gn eventually escape any
compact subset of PSL(2,R)).

Let ω(z) stand for the limit set of orb z (i.e., it consists of the limits of all
convergent subsequences (gn(k)z) as nk → ∞). It is a non-empty closed subset of

Ĉ. By Proposition 2.11, if a ∈ ω(z) then a ∈ ω(ζ) for all points ζ ∈ Ĉ except at most
one point b. But if b is exceptional then so is gb for any g ∈ Γ (since ω(gb) = ω(b)),
implying that the exceptional point must be fixed under the whole group. As we
assume that such fixed points do not exist, there are no exceptional points either,
so a ∈ ω(z) for any z ∈ Ĉ. Consequently, the limit set ω(z) is independent of z,
and we can call it Λ ≡ Λ(Γ).

4i.e., the normal form in the upper-half plane model H for the hyperbolic plane.
5i.e., the semidirect product of Z and Z/2Z, with the latter acting on Z by reflection: n 7→ −n.
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We can also make the following conclusions:

• Λ is c Γ-invariant (since for any z ∈ Ĉ, we have: g(Λ) = ω(gz) = ω(z) = Λ).

• Λ ⊂ T (since ω(z) ⊂ T for z ∈ T).

This confirms (i) (under our current assumptions).

Proposition 2.11 also implies that any sequence of distinct elements gn ⊂ Γ
contains a sunbsequence gnk

such that for some points a, b ∈ Λ, we have: gnk
z → a

and g−1nk
z → b uniformly on compact subsets of Ω = Ĉ r Λ.6 This implies that the

action of Γ on Ω is properly discontinuous, confirming (ii).
Let Fix(Γ) be the union of the sets of fixed points of all maps g ∈ Γ, g 6= id.

Notice that if α is a fixed point for some f ∈ Γ and g ∈ Γ then gα is a fixed point
for g ◦ f ◦ g−1. It follows that Fix(Γ is Γ-invariant, and moreover, the action of Γ
on Fix(Γ) preserves type of points (hyperbolic/parabolic/eilliptic).

By minimality of the action, if Λ contains one fixed point of certain type then
fixed points of that type are dense in Λ. Obviously, any hyperbolic or parabolic
fixed point (if exists) belongs to Λ. This confirms (iv). To complete the proof of
(iii), we need to show that hyperbolic points always exist (under our assumptions).
It follows from the following assertion[:

Exercise 2.34. Let A and B be two elements of PSL(2,R) that do not share
fixed points. If both of them are parabolic, or else if one of them is elliptic, then the
commutator {A,B} := ABA−1B−1 is hyperbolic.

Remark 2.35. Another approach to this issue is to find a non-peripheral closed
geodesic (not necessarily simple) on the quotient Riemann surface S = D/Γ (or
rather, on the quotient orbifold). Its lift to D is an axis for a hyperbolic deck
transformation (compare Prop. 2.53 below).

We leave to the reader to verify (v), and pass to (vi). If Λ has non-empty interior
in T, then by (iii), int Λ contains a fixed point α of some hyperbolic transformation

g ∈ Γ. But then the orbit
⋃

n∈Z
gn(Λ) can omit at most one point on T. Since Λ is

invariant and closed, it must coincide with the whole circle T.
Thus, if Λ 6= T then it is nowhere dense. Let us show that it is perfect. Notice

that if g ∈ Γ is a hyperbolic map with fixed points α and β, then {α, β} ⊂ ω(z) for
any z ∈ T r {α, β}. It follows that if |Λ| > 2 then hyperbolic fixed points are not
isolated in Λ. Now (iii) implies that there are no isolated points in Λ.

Let us now deal with the remaining special cases.

Case 1) Assume there is a point α fixed under the whole group. If α ∈ D then
Γ is a group of elliptic rotations around α. Since it is discrete, it must be finite,
leading to the option (vi-a)

Let now α lie on the absolute T. Let us pass to the upper half-plane model
H putting α at infinity. Then Γ becomes a subgroup of affine transformations
z 7→ ρz + c with ρ ∈ R∗, c ∈ R. If ρ = 1 for all g ∈ Γ then Γ is a discrete subgroup
of the one-parameter parabolic group z 7→ z + t. It follows that Γ is cyclic and
Λ = {α}, yielding option (vi-b).

6Compare with the notion of normality and the Montel Theorems below (§4).
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Otherwise Γ contains a hyperbolic element g, which can be brought to the form
g : z 7→ ρz. If there is some h ∈ Γ that does not fix 0 then h(z) = λz+ c with c 6= 0,
and gn ◦ h ◦ g−n is equal to z 7→ λz + µnc, n ∈ Z, which is not discrete.

It follows that G is a discrete subgroup of the one-parameter hyperbolic group
z 7→ ρz, ρ ∈ R∗. Hence G is cyclic again, and Λ = {0,∞} (in the normal form),
which amounts to case (vi-c)

Case 2) Assume |Λ| ≤ 2.

Assume Λ = ∅, which is equivalent for Γ to be finite. Then all elments of Γ
must have finite order, so they must be elliptic. Then by Exercise 2.34, they must
share a fixed point, bringing us back to Case 1).

If |Λ| = 1 then Λ = {α}, where α is fixed under the whole Γ, bringing us back
to Case 1) again.

If |Λ| = 2 then we can normalize it so that Λ = {0,∞}. Then Γ contains a
normal subgroup Γρ (2.10) fixing these points, so [Γ : Γρ] ≤ 2. Thus, either Γ = Γρ,
bringing us back to Case 1) once again, or Γ is a semidirect product of Γρ and
an involution permuting 0 and ∞. Such an involution has a form z 7→ −λ/z with
λ > 0, which is conjugate to ζ 7→ −1/ζ by rescaling z =

√
λ ζ. We arrive at case

(vi-d). �

The set Λ(Γ) is naturally called the limit set of Γ, while the complementary
set Ω(Γ) is called the set of discontinuity. One says that Γ is a Fuchsian group of
first kind if Λ(Γ) = T. If Λ(Γ) is a Cantor set then Γ is called a Fuchsian group of
second kind. The special groups listed in item (vi) are called elementary. We see
that |Λ| ≤ 2 for such a group, while Λ is uncountable for all others.

2.4.9. Hyperbolic Riemann surfaces. Since Γ acts properly discontinuous on Ω,
the quotient space S := D/Γ is Hausdorff. Moreover, if Γ acts freely on D, then the
complex structure and the hyperbolic metric naturally descend from D to S, and
we obtain a hyperbolic Riemann surface.

Under the above circumstances, one says that S is uniformized by a Fuchsian
group. The Geometric Uniformization Theorem (see Appendix 2 below) yields:

Theorem 2.36. Any complete hyperbolic7 Riemann surface can be uniformized
by a Fuchsian group.

2.4.10. Cusp and annulus. Let us take a look at elementary Fuchsian groups
listed in items (vi-b) and (vi-c) of Theorem 2.33. Let us start with parabolic cyclic
groups, Case (vi-b).

The quotient of a horoball Hh by a discrete cyclic group of parabolic transfor-
mations Z =< z 7→ z + n > is called a cusp. Conformally it is the punctured disk
D∗, hyperbolically it is the pseudosphere. Simple closed curves Lt/Z ⊂ Hh/Z, t > h
(see §2.4.4) are also called horocycles (in the cusp).

Exercise 2.37. Any cusp Hh/Z has infinite hyperbolic diameter but a finite
hyperbolic area. The hyperbolic length of the horocycle Lt/Z goes to zero as t→∞.

7In this statement, S is assumed to be endowed with a metric of constant negative curvature,
while the general Uniformization Theorem does not assume this. (A similar remark applies to
Theorems 2.4 and 2.12 above.)
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Lt

Figure 2.4. The hyperbolic cusp (on the left) vs the flat half-
infinite cylider (on the right). Metrically they are quite different,
though conformally they are equivalent.

Exercise 2.38. Write down explicitly the universal covering H→ D∗ and show

that the hyperbolic metric on D∗ is equal to ds =
|dz|

|z log |z| | .

Exercise 2.39. Let S be a Riemann surface, and let f : S → D∗ be a holomor-
phic covering. If deg f <∞ then S is isomorphic to D∗; otherwise S is isomorphic
to H.

Let us now pass to the hyperbolic cyclic groups: Case (vi-c) of Theorem 2.33.

Exercise 2.40. (i) The quotient H/Γρ is conformally equivalent to an annulus
A := A(1, R) with some R > 1 (which one?).

(ii) The circle γA := T√R is a simple closed hyperbolic geodesic in A. Calculate its
hyperbolic length.

(iii) There is an anti-holomorphic involution σ : A→ A such that γA = Fix(σ).

This hyperbolic geodesic γA is called the equator of A.

Let us now consider any conformal annulus A. By definition, it is conformally
equivalent to a round annulus A(r,R) with some 0 < r < R < ∞. (Of course, it
can be normalized so that r = 1 as above.) Such annuli can be easily conformally
classified:

Exercise 2.41. Two round annuli are conformally equivalent if and only if
R/r = R′/r′. The only conformal isomorphisms A(r,R) → A(r′, R′) are complex
rescaling

z 7→ λ e(θ), λ =
R′

r′
:
R

r
, θ ∈ R/Z.

Hence the modulus of A,

modA :=
1

2π
log

R

r
∈ (0,∞),

is well defined and is the complete conformal invariant of A.
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Remark 2.42. In §6.3.1 we will give an intrinsic definition of the modulus, in
terms of the extremal length of some path family, which is one of the main tools in
Holomorphic Dynamics.

Moreover, Exercise 2.40(ii) implies that any conformal annulus A has an equator
(a simpe closed hyperbolic geodesic whose homotopy class generates π1(A)) and
yields the following expression for its hyperbolic length:

(2.11) lhyp(γA) =
π

modA
.

(Note that in the round model A ≡ A(r,R), The equator becomes the “geometric
mean circle”, γA = {|z| =

√
Rr}.)

Remark 2.43. Later on we will: a) see that the equator is the only simple closed
geodesic in a conformal annulus (see §2.4.16); b) discuss another useful model for
a conformal annulus, a flat cylinder (see §2.6.1).

If A is a conformal annulus with boundary then modA is defined as the modulus
of intA.

The punctured disk D∗ ≈ H/Z can be viewed as the annulus A(0, 1), so it is
natural to let modD∗ = ∞. Similarly, C∗ can be viewed as the annulus A(0,∞).
All the more, we let modC∗ =∞.

Exercise 2.44. Show that:

(i) D∗ is not conformally equivalent to any annulus A(r,R), 0 < r < R <∞;

(ii) C∗ is not conformally equivalent to any of the above surfaces.

We see that a Riemann surface under considerarion “knows” wherther it has a
puncture or an ideal circle at infinity of its end, which contrasts with the topological
situation discussed above (see §1.7.8).

Remark 2.45. Later on (§5) we will see that any Riemann surface which is
a topological annulus is conformally equivalent to one of the models from the last
exercise. Moreover, the type of an embedded annulus for A ⊂ Ĉ can be recognized
by checking whether the components of ĈrA are singletons or continua (see §6.3.3).

2.4.11. Hyperbolic orbifolds. Assume now the action of a Fuchsian group Γ on
D is not free, so it has fixed points zi ∈ D. Since the action of Γ on D is properly
discontinuous,

• these points are isolated, and so, there are at most countably many of them;

• each Stab(zi) is finite, and hence is a cyclic group Z/qiZ.

Each zi projects to a singular point αi of the quotient S := D/Γ. Thus, we
obtain an orbifol O with signature (S; {qi)}. Moreover, the hyperbolic metric on D

descends to a hyperbolic metric on S with cone singularities of angles 2π/qi at the
αi.

Elementary Fuchsian groups of this kind are covered by Cases (vi-a) and (vi-d)
of Theorem 2.33. In the former case, we obtain the cone with angle 2π/q (which
has signature (D; q)).

Exercise 2.46. Describe the orbifold that appears in Case (vi-d).
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2.4.12. Modular group, surface, and function J . The modular group is the
group Γ := PSL(2,Z) naturally acting on the closed upper half-plane clH+ =
H+ ∪ R by Möbius transformations.

Exercise 2.47. (i) The modular group Γ is generated by the parabolic map
γ : z 7→ z + 1 and the order two elliptic map δ : z 7→ −1/z.
(ii) Letting Π+ := {z ∈ H+ : |Re z| ≤ 1}, the set ∆ := Π+ r D is a fundamental
donain for Γ.

(iii) The fundamental domain ∆ contains three fixed points (on its boundary), i =
e(1/4) is the order two fixed point (for δ) while e(1/6), e(1/3) are order three fixed
points (for δγ−1 and δγ respectively).

(iv) The quotient H/Γ is a hyperbolic orbifold M supported on C with one cusp (at
infinity of C) and two cone points, of order two and three.

(v) The limit set for Γ is the whole circle R̂ ≡ R∪ {∞}. (So Γ is a Fuchsian group
of the first kind.)

(v) The modular group is isomorphic to the free product of two cyclic groups:

Γ ≈ (Z/2Z) ∗ (Z/3Z).
The quotient M := H/Γ is called the modular surface and the corresponding

projection J : H→M ≈ C is called the modular function.

Exercise 2.48. Let ∆̂ := ∆ ∩ {Re z ≥ 0}. It is a hyperbolic triangle with
vertices i, e(1/6),∞. Consider the group Γ̂ generated by reflections with respect to
the sides of ∆̂.

(i) Show that the translations of ∆̂ under Γ̂ tessellate H.

(ii) Show that the modular group Γ is the unique index two normal subgoup of Γ̂.

The modular group will naturally appear in the discussion of the moduli space
of complex tori and four-times-punctured spheres (see §§2.6.3, 2.6.4).

2.4.13. Thrice-punctured sphere, ideal triangle group, and modular function λ.
Let us now consider the thrice-punctured sphere8 Cr{0, 1}. For this domain, there
is a simple explicit construction of its uniformization by a Fuchsian group. Namely,
let us consider an ideal triangle ∆ in the hyperbolic plane, that is, the geodesic
triangle with vertices on the absolute9 (see Figure 2.4.13). By the Riemann Mapping
Theorem, it can be conformally mapped onto the upper half-plane H+ so that its
vertices go to the points 0, 1 and ∞. By the Schwarz Reflection Principle, this
conformal map can be extended to the three symmetric ideal triangles obtained by
reflection of ∆ in its edges. Each of these symmetric rectangles will be mapped onto
the lower half-plane H−. Then we can extend this map further to the six symmetric
rectangles each of which will be mapped onto H+ again, etc. Proceeding in this
way, we obtain the desired universal covering λ : D→ U called a modular function.

Exercise 2.49. Verify the following properties:

(i) The union of the above triangles tile the whole disk D;

(ii) The modular function λ provides us with the Universal covering D→ Cr{0, 1};
8Note that all thrice-punctured spheres are equivalent under the action of the Möbius group

Möb(Ĉ).
9Note that all these triangles are equivalent under the action of PSL(2,R).
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Figure 2.5. Modular group, surface, and function J .

(iii)) Its group of deck transformations is the index 6 normal subgroup of the modular
group PSL(2,Z) consisting of matrices congruent to I mod 2

(iv) There is a natural Galois orbifold covering C r {0, 1} → M ofr degree 6.
Describe its group of deck transformations.

The above Fuchsian group is called the congruent group Γ2, or the ideal triangle
group.

Pushing the hyperbolic metric down by λ from D to C r {0, 1}, we endow
C r {0, 1} with a complete hyperbolic metric (with three cusps corresponding to
0, 1,∞).

2.4.14. Hyperbolic triangle groups. We have seen above a short list of exam-
ples of spherical and parabolic orbifolds with three singular points corresponding
to chess-board triangle tessellations of S2 and R2 (see Exercises 2.13, 2.6). We
have also seen examples of the modular groups corresponding to the chess-board
tessellations of the hyperbolic plane H by triangles with angles {0, π/3, π/2} and by
ideal triangles with all angles 0 (respectively). It turns out that there exists a plenty
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Figure 2.6. Modular function λ as the universal covering over
the thrice-punctured sphere, which is presented in the flat and
hyperbolic models.

of such hyperbolic examples. Indeed, by Theorem 2.29, for any triple {p, q, r} of

numbers in {2, 3, . . . } ∪ {∞} with
1

p
+

1

q
+

1

r
< 1 there exists a hyperbolic triangle

∆ with angles π/p, π/q, and π/r. Let σp, σq, and σr be the reflections with respect
to the edges of these triangles, and let Γ̂ be a group generated by these reflections.

Problem 2.50. (i) Γ̂ is a discrete group generating a checker-board tesselleta-
tion of H by the transformations of ∆, with ∆ serving as a fundamental domain.

(ii) Γ̂ contains the index two subgroup Γ ⊂ PSL(2,R) whose fundamental domain
is a rectangle consisting of the union of two triangles, black and white.
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(iii) The orbifold O ≡ O{p,q,r} corresponding to Γ has signature (S2; {p, q, r}) and
Euler characteristic

χ(O) = 1

p
+

1

q
+

1

r
− 1 < 0.

2.4.15. Fundamental domain. For a finitely generated Fuchsian group Γ, let us
consider its Dirichlet fundamental domain ∆ (see §1.5.1). Its construction implies
that it is a hyperbolic polygon, possibly ideal. Its ideal vertices correspond to the
cusps of the quotient Riemann surface S := H/Γ, while ideal sides correspond to
the ideal boundary components for S. Moreover, the sides of ∆ are paired: for
any side e, there is an element γe ∈ Γ such that γe(e) is a side e′ of ∆, so γ(∆) is
attached to ∆ along e′. So, § is obtained from ∆ by gluing e to e′ by means of γe.

It may also happen that for a vertex v ∈ H of ∆, there is a composition γv of
some γe’s that fixes v. If v is non-ideal, then γv is elliptic with a rational rotation
number 1/q; it produces an orbifold singularity on S of index q. Otherwise, γv is
parabolic producing a cusp for S.

Vice versa, according to the Poinaré Theorem, any hyperboplic polygon with
above properties generates a Fuchsian group.

Project 2.51. Work out details of the above description.

2.4.16. Simple closed curves on Riemann surfaces. Let us now consider a Fuch-
sian group Γ and the corresponding hyperbolic Riemann surface S = D/Γ. Hyper-
bolic geodesics on S are (obviously) projections of the hyperbolic geodesics on D;
horocycles on S are (by definition) projections of the horocycles on D. (A simple
horocycle is a horocycle without self-intersections.)

Let γ be a non-trivial simple closed curve on S, and let [γ] be the class of simple
closed curves freely homotopic to γ. To this class corresponds a conjugacy class
A(γ) of deck transformations (see Corollary 1.60 and Exercise 1.61).

Exercise 2.52. Show that elements δ ∈ A(γ) are primitive.

Since deck transformations cannot be elliptic, the elements of A(γ) are either
all hyperbolic or all parabolic. Accordingly, we say that the class [γ] itself is either
hyperbolic or parabolic.

Proposition 2.53. (i) If the class [γ] is hyperbolic then it is represented by a
unique closed hyperbolic geodesic δ ∈ [γ]. This geodesic minimizes the hyperbolic
length of the closed curves in [γ].

(ii) If the class [γ] is parabolic then S contains a neighborhood U isometric to a
cusp, and [γ] is represented by any horocycle in it. In this case, the class contains
arbitrary short curves.

Proof. Let us consider a lift γ̃ of γ, and let G =< φn >n∈Z be its stabilizer.

(i) If φ is hyperbolic then it has two fixed points, x− and x+, on the absolute,
and then the closure of γ̃ in D is a topological interval with endpoints x1 and x+.
Let us consider the hyperbolic geodesic δ̃ in D with endpoints x±. It is invariant
under the action of the cyclic group G. In fact, it is completely invariant. Indeed,
if ψ(δ̃) ∩ δ̃ 6= ∅ for some ψ ∈ ΓrG, then ψ(γ̃) ∩ γ̃ 6= ∅ as well, which is impossible
since γ does not have self-intersections. Hence the projection of δ̃ to S is equal to
δ̃/G, which is the desired simple closed geodesic representing [γ].
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Figure 2.7. Tightening of a loop to a geodesic or a horocycle.

(ii) If φ is parabolic then it has a single fixed point x on the absolute, and the
closure of γ̃ in D is a topological circle touching T at x (a “topological horocycle
centered at x”).

Let Ũ be the corresponding topological horoball bounded by γ̃. Let us show
that it is completely invariant under G. Indeed, for ψ ∈ ΓrG, ψ(Ũ) is a topological
horoball centered at β(x) 6= x. But since γ is a simple curve, ψ(γ̃) ∩ γ̃ = ∅ for any
β ∈ Γ r G. Since two topological horoballs with disjoint boundaries are disjoint,
ψ(Ũ) ∩ Ũ = ∅.

It follows that Ũ/G is is isometrically embedded into D/Γ = S. But Ũ/G is
a conformal punctured disk containing some standard cusp Hh/Z. Thus, this cusp
isometrically embeds into S as well, and its horocycles give us desired representa-
tives of [γ]. �

In case (i) of the above statement we say that the class [γ] (or, the curve γ
itself) is represented by a geodesic. In case (ii) it is represented by a horocycle.

A free homotopy of a simple loop to a representing geodesic or a horocycle will
be called tightening. It can be done without increasing the length:

Exercise 2.54. A simple closed ε-loop can be tightened to a simple closed
geodesic or a simple closed horocycle through a family of ε-loops. (An ε-loop is a
loop of length at most ε.)

2.4.17. Ideal boundary. Let us now consider a tame end E of S, and let F ⊂ S
be a topological cylinder representing E. It is bounded by a peripheral curve γ.

If γ is trivial then S is simply connected, and hence S = D. In this case, the
ideal compactification of S is naturally defined as the closed disk, clI D = D, with
the absolute being its ideal boundary, ∂ID = T.

Otherwise, γ is either parabolic or hyperbolic, so it is represented either by a
horocycle or by a geodesic ( Proposition 2.53).

Lemma 2.55. If γ is parabolic, then two options can occur:

(i) The end E is a cusp; it can be completed by adding one point, ∞E, and the
completed surface has a natural conformal structure;

(ii) S ≈ D∗ and the end E corresponds to annuli A(r, 1) ⊂ D∗, r ∈ (0, 1); it can be
completed by adding T to D∗.

In the latter case, we let ∂ID∗ ≡ ∂IE = T and clI D∗ = D∗ ∪ ∂ID∗ = Dr {0}.
Proof. By Proposition 2.53, γ is homotopic to a horocycle in a cusp U ⊂ S,

which is conformally isomorphic to D∗. The isomorphism φ : U → D∗ provides us
with an embedding of U into D. By glueing S and D by means of φ, we obtain a
desired Riemann surface

clIE S := S ∪φ D.
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completing S at infinity by adding one ideal point.
If the cusp U represents the same end as F , we are in case (i). If U and F

represent different ends of S, then γ partitions S into two topological cylinders, so
S is a topological cylinder as well, with the fundamental group generated by [γ].
Then S ≈ H/ < A >= D∗, where A : z 7→ z+1 is the parabolic deck transformation
(appropriately normalized) corresponding to [γ]. �

Let us now assume that a peripheral curve γ on S is hyperbolic, so it is repre-
sented by a geodesic δ.

Lemma 2.56. The cylinder F lifts to a topological bigon F̃ on the universal
covering D bounded by a lift γ̃ of γ and an interval I ⊂ T. The stabilizer of F
and of I in the covering Fuchsian group Γ is the cyclic group G =< A > generated
by a hyperbolic transformation A corresponding to γ. The quotient I/G is a circle
completing the cylinder F at infinity. The geodesic δ lifts to a geodesic δ̃ sharing
endpoints with γ̃. The bigon ∆ = ∆I bounded by δ̃ and Ī covers a cylinder ∆/G in
S representing the same end E.

The circle I/G is called the ideal boundary of the end E. We denote it ∂IE ≡
∂IF , and we let clIE S := S ∪ ∂IE.

Proof. Since π1(F ) is the cyclic group generated by [γ], the cylinder F lifts to
a domain F̃ ⊂ D with a cyclic stabilizerG =< A > generated by the hyperbolic deck
transformation A. Moreover, F is completely invariant under G. Since ∂F = γ, the
boundary of F in D is equal to γ̃, so F̃ is one of the two components of Dr γ̃. In D,
this component is bounded by γ̃ ∪ Ī, where I is an open arc of T sharing the end-
points with γ̃. It follows that I is also completely invariant under the cyclic group
G. Since G acts on I totally discontinuously, we have I ⊂ TrΛ. As ∂I = ∂γ̃ ⊂ Λ,
we conclude that I is a gap in Λ.

The quotient (F̃ ∪ I)/G is a semi-closed cylinder with the circle I/G attached
to the open cylinder F . So, it provides a completion of F at infinity.

Let us check that the bigon ∆ is completely invariant underG. Indeed, A(∆I) =
∆A(I) = ∆I for any A ∈ G. On the other hand, if A ∈ Γ r G then A(I) ∩ I = ∅.
Hence

A(∆I) ∩∆I = ∆A(I) ∩∆I = ∅.
We conclude that F ′ := ∆/G is a cylinder in S bounded by δ. Moreover, F ′∩F

contains a cylinder Ũ/G, where Ũ ⊂ D is a small G-invariant neighborhood of I.
It follows that F ′ and F represent the same end of S. �

For surfaces of finite topological type, the above assertion can be reversed: any
gap in Λ corresponds to some ideal boundary circle of S:

Proposition 2.57. Assume that Γ is finitely generated, but not a parabolic
cyclic group. Let us consider a gap I in Λ. Then the stabilizer of I in Γ is a cyclic
group G generated by a hyperbolic transformation A. The quotient I/G is an ideal
boundary circle of S completing some non-cuspidal end.

Proof. Let us consider a curve σ̃ : [0, 1)→ D landing at some point b ∈ I, i.e.,
σ̃(t)→ b as t→ 1. It projects to a curve σ on S converging to some end E. Since
all the ends of S are tame, σ is eventually trapped in a cylinder F representing E.
Let F̃ be its lift to D that contains a tail of σ̃.
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If E were cusp then the closure of F̃ would touch T at a single parabolic point,
so b is this point. But this is impossible since parabolic points belong to Λ.

Thus, E is a non-cuspidal end. If γ were parabolic then by Lemma 2.55 (ii), S ≈
D∗, and Γ would be a cyclic parabolic group, which is ruled out by the assumption.

Hence γ is hyperbolic, and as such, is represented by a geodesic. Then the
boundary of F̃ on the absolute is a gap Ĩ ⊂ TrΛ corresponding to the end E (see
Lemma 2.56). Since the gaps I and Ĩ overlap, they coincide. So, I is stabilized by
the cyclic group G generated by A. We are done. �

Thus, the simultaneous ideal completion of all non-cuspidal ends of S can be
obtained by taking the quotient of D r Λ by the action of the Fuchsian group Γ.
We call it clI S, while the full ideal boundary will be called ∂IS.

Remark 2.58. Note that the above result shows that a finitely generated Fuch-
sian group Γ does not have wandering intervals , i.e., there are no gaps I in Λ such
that A(I) ∩ I = ∅ for all A ∈ Γr {id}.

Let us summarize our discussion:

Theorem 2.59. Let Γ be a finitely generated Fuchsian group, and let S be the
corresponding hyperbolic Riemann surface H/Γ. Any cuspidal end E of S can be
completed by an ideal puncture ∞E, with complex structure extended through ∞E.
Any non-cuspidal end E can be completed by an ideal circle ∂IE at infinity.

This completion produces a compact Riemann surface S, the full ideal com-
pactification of S . This compactification is conformally natural:

Proposition 2.60. Any conformal isomorphism φ : S → S′ between hyperbolic
Riemann surfaces extends to a conformal isomorphism Φ : S → S′ between their
ideal compactifications.

Proof. The isomorphism φ lifts to an equivariant isomorphism φ̂ : D → D

between the universal coverings. Being Möbius, it extends to D. Being equivariant,
φmaps the limit set Λ for S to the limit set Λ′ for S′. On the complement, we obtain
an equivariant isomorphism D r Λ → D r Λ, which descends to an isomorphism
Φ : ∂IS → ∂IS′. By the Removability of isolated singularities, Φ extends through
the ideal punctures to a conformal isomorphism Φ : S→ S′. �

More generally, we have:

Exercise 2.61. Any holomorphic covering f : S → S′ of finite degree between
hyperbolic Riemann surfaces extends continuously to a covering f : S→ S′ between
their ideal compactifications (holomorphic on intS).

2.4.18. Convex core. Let Λ = Λ(Γ) be the limit set of a Fuchsian group Γ of
second kind, and let π : D → S be the projection onto the quotient Riemann
surface. Since Λ is invariant under Γ, the convex hull Λ̂ is Γ-invariant as well.
Hence it covers a Riemann surface C = CS with boundary called the convex core
of S.

Proposition 2.62. The natural embedding C → S is a homotopy equivalence.

Proposition 2.63. The group Γ is convex co-compact if and only if the convex
core C is compact.
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Figure 2.8. This picture illustrates a geometric difference be-
tween two types of tame hyperbolic ends: a cusp associated with
a horocycle and and an “open end” associated with a peripheral
geodesic.

2.4.19. Linking. Let us consider a configuration of two pairs of points on a
topological circle S1, X = {x1, x2} and Y = {y1, y2}, where all four points are
assumed to be distinct. There are two possible relative positions of these pairs:
they can be linked or unlinked. Linking means that the points alternate when one
goes around the circle, i.e., both intervals with endpoints x1, x2 contain a y-point.
Otherwise, Y is contained in one of these intervals. These properties are intrinsic for
S1, but in case when S1 is the boundary of a 2-disk, they can be nicely recognized
from the inside:

Exercise 2.64. For two pairs of points X and Y on the unit circle T = ∂D,
the following properties are equivalent:

(i) X and Y are linked;
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(ii) The hyperbolic geodesics [x1, x2] and [y1, y2] cross in D;

(iii) Any continua X ′ and Y ′ in D such that X ⊂ X ′ ⊂ DrY and Y ⊂ Y ′ ⊂ DrX
intersect.

More generally, let X and Y be two disjoint closed non-singleton subsets of a
topological circle S1. We say that X and Y are unlinked if any two pairs of distinct
points, {x1, x2} ⊂ X and {y1, y2} ⊂ Y , are unlinked. The previous Exercise yields:

Exercise 2.65. For sets X and Y as above the following properties are equiv-
alent:

(i) X and Y are unlinked;

(ii) X is contained in a single gap of Y (and the other way around);

(iii The hyperbolic convex hulls X̂ and Ŷ are disjoint;

Two closed curves γ1 and γ2 on a surface S intersect (or “cross”) essentially if
any two curves γ′1 and γ′2, respectively homotopic to γ1 and γ2, intersect (so, the
intersection cannot be removed by deforming the curves).

Exercise 2.66. Let S be a hyperbolic Riemann surface and let π : D → S be
its universal covering. Two closed curves, γ1 and γ2, on S intersect essentially iff
they admit lifts, γ̃1 and γ̃2, to D that converge to linked pairs of points, {a1, b1} and
{a2, b2}, in T.

2.5. Geodesic laminations.

2.5.1. Glossary. A geodesic lamination L in D is a closed subset of D (called
suppL) partitioned into complete hyperbolic geodesics (leaves of L). In other words,
there is a complete geodesic γz ⊂ suppL passing through any point z ∈ suppL, and
these geodesics are either equal or disjoint. The leaves of the geodesic lamination
vary uniformly continuously, together with derivatives, in the following sense:

Exercise 2.67. Let (γn, zn) be a sequence of disjoint pointed geodesics in D

such that zn → z ∈ D. Then the naturally parametrized γ̄n converge to a geodesic
γ̄ through z in the C1-topology on the space of paths [−∞,+∞]→ D.

A gap Q in the geodesic lamination is a component of Dr suppL.

Exercise 2.68. Show that any gap Q in L is hyperbolically convex. Moreover,
the closure Q is the convex hull of its ideal boundary ∂IQ ⊂ T.

In particular, if ∂IQ is finite then Q is a hyperbolic polygon. More generally,
we say that a gap Q of a geodesic lamination is of countable type if ∂IQ is countable.

We say that a geodesic lamination is clean if no two gaps of countable type
share an edge. Any geodesic lamination can be cleaned by removing common edges
of gaps of countable type.

Given a clean lamination, let us blacken all gaps of countable type and possibly
some other gaps observing the condition that no two black gaps are adjacent (i.e.,
they do not share a leaf of the lamination). We call such a lamination colored.

Three disjoint geodesics in D can be in two combinatorial positions: one of
them can separate the other two, or not. In the non-separating case, the geodesics
“bound” an m-gon in D with 3 ≤ m ≤ 6 (with m− 3 ideal sides and 6−m cuspidal
vertices). More generally, if we have n ≥ 3 disjoint non-separating geodesics (i.e.,
none of them separates any other two) then they “bound” an m-gon in D with
n ≤ m ≤ 2n.
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Figure 2.9. Examples of unclean laminations: a rectangle and an
∞-gon with a diagonal.

Exercise 2.69. Let L be a geodesic lamination, and let {γi}ni=1 be a non-
separating family of n ≥ 3 leaves of L. Then the polygon bounded by the γi contains
a gap of L.

A simple example of a geodesic lamination is the one with geodesics

(e(θ, e(−θ))#, θ ∈ (0, 1/2),

connecting R-symmetric points of T.10 Its support is the whole disk D (so it is
actually a foliation). We will refer to it as the Chebyshev lamination (or foliation)
LЧ (for the reason that will become clear later, §32.5.1).

Exercise 2.70. (i) Assume that suppL contains a domain Π. Then there exist
two disjoint (open) ideal intervals I, J ⊂ T and an orientation reversing homeomor-
phism h : I → J such that

Π =
⋃

x∈I
(x, h(x))#.

(ii) If suppL = D then the lamination is topologically equivalent to the Chebyshev
foliation.

In case (i), we refer to L as a vertical geodesic foliation in the rectangle Π. A
particular case of this situation is when the intervals I and J share an endpoint a.
Then the rectangle Π degenerates to a topological sector based on the ideal interval
I ∪ {a} ∪ J . Moreover, the foliation L is not topologically transverse to T at a,
so we call the latter an ideal singular point for L. For instance, the Chebyshev
foliation has two ideal singular points, ±1.

2.5.2. Geodesic laminations, equivalence relations, and lc hulls. We say that a
geodesic lamination L is polygonal if all the gaps in L are polygons. Notice that if
a polygonal lamination is clean then it is maximal among clean laminations.

Geodesic laminations provide us with a visualization of equivalence relations ∼
of T. Such an equivalence relation is called unlinked if all the equivalence classes
are pairwise unlinked.

10Recall from §50.2 that (a, b)# stands for the interval with endpoints a and b disregarding
their order.
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To any closed unlinked equivalence relation ∼ on T we can associate a colored
geodesic lamination L(∼) in D as follows:

1) Take the hyperbolic convex hull H(X) of each equivalence class X;

2) Consider the boundary components (in D) of these convex hulls as the leaves of
L(∼).
3) Blacken all the gaps of type H(X).

Exercise 2.71. Check that L(∼) is indeed a colored (and in particularly, clean)
geodesic lamination.

Let us define an equivalence relation ≈ on C by declaring that its equivalence
classes are the above convex hulls H(X) or singletons.

Proposition 2.72. For any colored lamination L(∼), we have: (i) The quo-
tients K := D/ ≈ is a lc compact space;

(ii) The quotient C/ ≈ is a topological plane R2;

(iii) K is a hull in R2.

Proof. (ii) Though we could use Moore’s Theorem, let us sketch a direct
argument.

Let π : D → K be the natural projection. The lamination L has two types of
gaps: a gap of first kind represents a single equivalence class (which collapses to a
point under π), while a gap of second kind is partitioned into singletons (so, π is
injective on such a gap G). In the latter case, we say that π(G) is a “component
of interior” of K (which is just a term at the moment).

Let us start with a couple of special cases:

a) In case of a finite lamination, the quotient (C,D)/ ≈ is homeomorphic to (R2,K),
where K is a tree T of bubbles Di (i.e. piecewise smooth closed Jordan disks)
attached one to another. Let us realize T as an actual tree embedded into K (e.g.,
by marking a “center” ai in each bubble Di and connecting them through K by
piecewise smooth arcs).

b) If L consists of boundary leaves Li of some gap G of first kind, then K is a
point x = π(G) with countably many bubbles Di attached to it (corresponding to
the components of Dr Li disjoint from G).

c) If L consists of boundary leaves Li of some gap G of second type, then K is a
closed Jordan disk D = π(G) (see Exercise 1.8) with countably many bubbles Di

attached to it at points π(Li).

In general, let us consider a sequence of finite laminations Ln converging to
L such that Ln+1 is obtained from Ln by adding either a single leave or all the
peripheral leaves bounding one gap G. Moreover, assume any peripheral leaf
belongs to some Ln. Let us construct inductively the corresponding sequence of
quotient bubble trees (R2,Kn =

⋃
D
n

i , T
n) so that Kn+1 ⊂ Kn, ∂Kn ∩ ∂Kn+1 is

a finite set of points of Tn, and Tn+1 ⊃ Tn. Let X =
⋂
Kn.

For a bubble D
n

i centered at ani , the set Tni := Tn ∩Dn

i is a star rooted at ani .
For the sake of this discussion, let us call its edges the internal radii of Dn

i .
If Ln+1 is obtained from Ln by adding a single leaf L, then Kn+1 is obtained

from Kn by a simple pinching of some bubble D
n

i producing two new bubbles D
n+1

j

and D
n+1

j+1 touching at the point x = π(L). This procedure can be realized in R2
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Figure 2.10. Adding a rectangular gap to a lamination amounts
to tuning one of the bubbles by a flower with four petals (shad-
owed).

by putting x at the middle (with respect to the arc length) of the appropriate

internal radius and putting the bubbles D
n+1

j , D
n+1

j+1 into narrow neighborhoods of
the corresponding half-radii.

If Ln+1 is obtained from Ln by adding boundary leaves of a gap G of first
kind, then the construction is similar. Again, we can put the point x = π(G) at the
middle of the appropriate internal radius, add to Tni several new short edges sticking
out of x, and attach to x a bouquet of bubbles contained in small neighborhoods
of the corresponding half-radii and new edges. In the course of this procedure, the
bubble Dn

i is replaced with a smaller bubble, while all other bubbles Dn
k remain

untouched, see Figure 2.10.
Finally, if Ln+1 is obtained from Ln by adding boundary leaves of a gap G of

second kind, then we realize π(G) as a small Jordan disk centered in the middle of
the appropriate inner radius of Dn

i , with attached bubbles which are contained in
small neighborhoods of the corresponding half-radii or new short edges.

In this way we ensure that the diameters of the bubbles and interior components
(that appear in the above construction) go to 0 as n → ∞, which implies that X
is a hull. Moreover, there is a natural homeomorphism (C,K)→ (R2, X).

Exercise 2.73. Supply missing pieces and details of the proof.

�
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Figure 2.11. Fat and thin hedgehogs.

Somewhat informally, we will also refer to K as the quotient of D mod the
colored lamination L, and will use notation Kmax = D/L for it. Similarly, we let
C/L be the corresponding quotient of the whole plane. Such a representation of a
hull K ⊂ C is called the pinched disk model for K.

The minimal way of coloring a clean lamination L is to blacken only gaps of
countable type. In this way we obtain the maximal quotient Kmax associated with
this lamination (as any other quotient K is the quotient of Kmax).

Example 2.74 (Fat and thin hedgehogs). Consider a Cantor set X ⊂ T and it
convex hull Q. Filling in every component of D r Q with a geodesic foliation, we
obtain a geodesic lamination L on D. The hull Kmax = D/L is a hedgehog (a closed
Jordan disk D with needles attached densely to its boundary). In this case, there
is also the minimal hull Kmin obtained from Kmax by collapsing D to a point It is
another version of a hedgehog whose needles are attached to a single point. We will
distinguish these hedgehogs as fat and thin respectively. See Figure 2.11.

Sometimes we will need to consider non-closed subsets X ⊂ D partitioned into
complete geodesics. We refer to these objects as geodesic pre-laminations supported
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on X. There is a natural partial order on the space of geodesic pre-laminations:
L′ ≻ L if L′ is an extension of L to a bigger support.

We say that two geodesic pre-laminations L and L′ are unlinked, L ‖ L′, if any
two leaves γ ∈ L and γ′ ∈ L′ either coincide or disjoint.

Exercise 2.75. (i) Any geodesic pre-lamination supported on X extends to a
geodesic lamination supported on X (we will refer to this extension as the closure
of L).
(ii) If two geodesic pre-laminations are unlinked then so are their closures.

2.6. Cylinders, rectangles, tori, and four-times-punctured-spheres.

2.6.1. Flat cylinder. Let us consider a flat cylinder Cyl ≡ Cylhl = Sh/(l · Z)
(obtained by taking the quotient of the strip of height h by the cylic translation
group with generator z 7→ z + l). Endow it with the flat metric ds = |dz| induced
from the strip. The exponential map

Sh → A ≡ A(1, exp(2πh/l)), z 7→ e(−z/l)
induces a conformal isomorphism between Cyl and the annulus A, so Cyl is a
conformal annulus with modulus

(2.12) modCyl = modA = h/l.

By (2.4.2) the hyperbolic metric on Cyllh is equal to

(2.13) dsρA =
π

h

|dz|
sin(πy/h)

.

In this model, the equator γ ≡ γCyl becomes the round circle on the middle height,
h/2. Its hyperbolic length is equal to

(2.14) lhyp(γ) =
πl

h

(which matches with (2.11)).

Let finally note that the punctured disk D∗ is conformally equivalent, via the
exponential map e : H → D∗, to the half-infinite (flat) cylinder T × R+ ≈ H/Z.
(Compare with the bi-infinite cylinder model for C∗, §2.2.)

2.6.2. Modulus of a rectangle. A flat rectangle Π is a standard Euclidean rec-
tangle in R2 (the one we learn at the elementary school), for instance, a standard
rectangle Πhl = [0, l]× [0, h]. A marking of a flat rectangle is a choice of two oppo-
site sides declared to be horizontal (while the other two are declared to be vertical);
of course, a standard rectangle Πhl is naturally marked. The modulus modΠ of a
marked rectangle is the ratio of the lengths of its vertical and horizontal sides, so
modΠhl = h/l. Change of marking replaces the modulus to the inverse one.

Two marked rectangles Π and Π′ are called affinely/conformally/etc equivalent
if there is an affine/conformal/etc isomorphism Π → Π′ that maps the horizontal
sides of Π to the horizontal sides of Π′. Obviously, marked Π and Π′ are affinely
equivalent if and only if modΠ = modΠ′. It is still true, albeit less obvious, for
conformal equivalence:

Exercise 2.76. Two marked flat rectangles Π and Π′ are conformally equiva-
lent if and only if modΠ = modΠ′.
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For three real points, a < b < c, let H(a, b, c) ≡ H(a, b, c,∞) be the upper half
plane with these points marked on its ideal boundary (and ∞ marked by default).
By an affine automorphism of H, two of these points can be normalized, e.g. the
triple can be brought to the form (a, 0, 1) with some a < 0.

Exercise 2.77. The elliptic integral

E(z) =

∫ z

1

dz√
z(z − 1)(z − a)

induces a conformal isomorphism between H and some standard rectangle Π(a) =
Π(l, h(a)). Moreover, modΠ(a) depends on a continuously and monotonically, and

modΠ(a)→ 0 as a→ −∞, modΠ(a)→∞ as a→ 0.

Thus, modΠ(a) assumes all possible values.

2.6.3. Modulus of the torus. Let us take a closer look at the actions of the
group Γ ≈ Z2 on the (oriented) affine plane P ≈ C by translations (see §2.2).
We would like to classify these actions up to affine conjugacy, i.e., two actions T
and S are considered to be equivalent if there is an (orientation preserving) affine
automorphism A : P → P and an algebraic automorphism i : Γ→ Γ such that for
any γ ∈ Γ the following diagram is commutative:

(2.15)

P −→
Tγ

P

A ↓ ↓ A

P −→
Si(γ)

P

This is equivalent to classifying the quotient tori P/TΓ up to conformal equiva-
lence (since a conformal isomorphism between the quotient tori lifts to an affine
isomorphism between the universal covering spaces conjugating the actions of the
covering groups).

The conjugacy A in the above definition will also be called equivariant with
respect to the corresponding group actions.

The problem becomes easier if to require first that i = id in (2.15). Fix an
uncolored pair of generators α and β of Γ. Since T acts by translations and since
P is affine, the ratio

τ = τ(T ) =
T β(z)− z
Tα(z)− z

makes sense and is independent of z ∈ P . Moreover, by switching the generators α
and β we replace τ with 1/τ . Thus, we can color the generators in such a way that
Im τ > 0. (With this choice, the basis of P corresponding to the generators {α, β}
is positively oriented.)

Exercise 2.78. Show that two actions T and S of Γ =< α, β > are affinely
equivalent with i = id if and only if τ(T ) = τ(T̃ ).

According to the discussion in §1.7.15, the choice of generators of Γ means
(uncolored) marking of the corresponding torus. Thus, the marked tori are classified
by a single complex modulus τ ∈ H.
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Forgetting the marking amounts to replacement one basis {α, β} in Γ by an-
other, {α̃, β̃}. If both bases are positively oriented then there exists a matrix

(
a b
c d

)
∈ SL(2,Z)

such that α̃ = aα+ b β, β̃ = c α+ d β. Hence

τ̃ =
aτ + b

cτ + d
.

Thus, the unmarked tori are parametrized by a point τ ∈ H modulo the action of
the modular group PSL(2,Z) on H (see §2.4.12).

Remark. Passing from SL(2,Z) to PSL(2,Z) has an underlying geometric rea-
son. All tori C/Γ have a conformal symmetry z 7→ −z. It change marking {α, β}
by −I{α, β}. Thus, remarking by −I acts trivially on the space of marked tori.

We also know from Exercise 2.47 that the modular surface M = H/PSL(2,Z)
is an orbifold supported by C with two cone points, of order two and three. Thus,
the unmarked tori are parametrized by a single modulus µ ∈M(T2) ≡M ≈ C.

Exercise 2.79. What is the special property of the tori corresponding to the
cone points?

In the dynamical context we will encounter tori T2
ρ obtained by taking the

quotients of C∗ by cyclic groups generated by complex scalings Lρ : z 7→ ρz, where
|ρ| 6= 1. Assume for definiteness that |ρ| < 1.

Note that T2
ρ can be explicitly “cooked” by taking a fundamental annulus

Aρ := {|ρ| ≤ |ζ| ≤ 1] and gluing its boundary components by the scaling relation
(identifying a point ζ ∈ T with ρ ζ ∈ T|ρ|).

This torus has a marked generator α ∈ Γ := π1(T
2) ≈ Z2 represented by the

equator in Aρ (which is the generator of the subgroup of Γ associated with the
covering C∗ → T2

ρ).
The second generator β of Γ is represented by a proper arc in the fundamental

annulus Aρ connecting two related boundary points, e.g., connecting 1 to ρ by an
arc of a logarithmic spiral given in the polar coordinates (r, θ) as

r = |ρ|t, θ = t arg ρ, 0 ≤ t ≤ 1.

The (2πi)-ambiguity in the choice of arg ρ corresponds to the “twist” ambiguity in
the choice of β, i.e., replacement of β with β + nα.

Let us consider the universal covering of C∗ explicitly given by exp : C → C∗.
Then the complementary generator β lifts to the deck translation z 7→ z + log ρ,
with the branch of log ρ corresponding to the above choice of arg ρ. For a given
choice of log ρ, the torus becomes fully marked, with the modulus

τ =
log ρ

2πi
∈ H.

Making different choices of log ρ amounts to taking the quotient of H by the cyclic
group τ 7→ τ + n, n ∈ Z. In this way, the moduli space of partially marked tori T2

ρ,
ρ ∈ D∗, gets naturally identified with H/Z, where H represents the moduli space of
the marked tori.
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2.6.4. Cross-ratios and four-times-punctured spheres. Let us mark a set of four
distinct points, {a, b, c, d}, on the Riemann sphere (or, equivalently, puncture these
points out of Ĉ). Then we can form six cross-ratios, obtained from the basic one

λ = [a, b, c, d] :=
(c− a)(d− b)
(b− a)(d− c)

by permuting the variables. The basic property of cross-ratios is that they are
preserved under the Möbious transformations,

[a, b, c, d] = [M(a),M(b),M(c),M(d)] for any M ∈ Möb(Ĉ),

and vice versa, if [a, b, c, d] = [ã, b̃, c̃, d̃] then there exist a Möbius transformation M
such that ã =M(a) etc.

Exercise 2.80. (i) Various cross ratios are obtained one from another by the
action of the cross-ratio group Γcr comprising six Möbius transformations

(2.16) λ 7→
{
λ; 1− λ, 1

λ
,

λ

λ− 1
;

λ− 1

λ
,

1

1− λ

}
,

which is isomorphic to the symmetric group S3.

(ii) Two four-times-punctures spheres, Ĉ r (a, b, c, d) and Ĉ r (ã, b̃, c̃, d̃), with col-
ored points, are conformally equivalent iff the corresponding cross-ratios are equal:
[a, b, c, d] = [ã, b̃, c̃, d̃].

(iii) Two four-times-punctures spheres, Ĉ r {a, b, c, d} and Ĉ r {ã, b̃, c̃, d̃}, with
uncolored points, are conformally equivalent iff the corresponding cross-ratios are
related by the gross-ratio group: [a, b, c, d] = γ([ã, b̃, c̃, d̃]) for some γ ∈ Γcr.

By moving the triple (a, b, d) to (0, 1,∞) by a Möbius transformation, we turn
the basic cross-ratio [a, b, c, d] into c ∈ C r {0, 1}. Thus, the space of colored four-
times-punctured spheres is isomorphic to the thrice-punctured sphere C r {0, 1}.
Its quotient by the Möbius action of the cross-ratio group, M(Ĉ r {a, b, c, d}) =
(C r {0, 1})/Γcr is the space of uncolored four-times-punctured spheres. From
Exercise 2.49 we know that this space is the modular surface M ≈ C (or rather:
the modular orbifold).

Exercise 2.81. Write down explicitely the covering Cr {0, 1} →M.

The reader has certainly noticed that the modular surface M has appeared
on two occasions: as the space of conformal tori and as the space of four-times-
punctures spheres. There is a good reason for this. Indeed, to any torus T2

µ = C/L,
µ ∈M(T2), we can associate a four–times-punctured sphere by taking its quotient
by the involution σ : z 7→ −z. Vice versa, giving a four-times-punctured sphere
Ĉ r X, where X = {a, b, c, d}, parametrized by the cross-ratio ν = [a, b, c, d] ∈
M(Ĉ r X), we can construct a double branched covering Tν → Ĉ r X (for some
ν ∈M(Ĉ rX)) branched over X, by gluing two copies of Ĉ along two slits pairing
the pucntures (which is in the most classical way of constructing Riemann surfaces).

Exercise 2.82. Show that two tori are conformally equivalent iff the corre-
sponding four-times-punctured spheres are.

Thus, we obtain an intrinsic isomorphism between M(T2) and M(Ĉ rX).

Let us note that the above construction requires the Uniformization Theorem
for the conformal tori Tν doubly covering the four-times-punctured sphere C r
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{0, 1, λ}. However, on this occasion we do not need its full power as it can be
explicitly constructed as follows:

• Realize the torus in question as the algebraic curve

Γ := {(z, w) ∈ C2 : w2 = z(z − 1)(z − ν)},
and let Γ̂ be its Universal covering.

• Consider the Abelian differential ω := dz/w on Γ.

• For any base point p◦ ∈ Γ̂, consider the Abelian integral

I : Γ̂→ C, p 7→
∫ p

p◦

ω, p ∈ Γ̂.

Let L be its lattice of periods, i.e. of the image of the fiber containing p◦.

• The map I descends to the desired uniformization Tν → C/L.

Project 2.83. Work out details of this construction.

2.7. Flat structures and geometry of quadratic differentials.

2.7.1. Flat structures with cone singularities and boundary corners. Recall that
a Euclidean, or flat, structure on a surface S is an atlas of local charts related
by Euclidean motions. However, for topological reasons, many surfaces do not
admit any flat structure: the Gauss-Bonnet Theorem bans such a structure on any
compact surface except the torus (see below). On the other hand, if we allow some
simple singularities, then these obstruction disappears.

Everybody is familiar with a Euclidean cone of angle α ∈ (0, 2π). To give a
formal definition, just take a standard Euclidean wedge of angle α and glue its
sides by the isometry. It is harder to define (and even harder to visualize) a cone
of angle α > 2π. One possible way is to partition α into several angles αi ∈ (0, 2π),
i = 0, 1, . . . n− 1, to take wedges Wi of angles αi, and paste Wi to Wi+1 by gluing
the sides isometrically (where i is taken mod n) ( and then to check, by taking a
“common subdivision”, that the result is independent of the particular choice of the
angles αi).

But there is a more natural way. Consider a smooth universal covering e :
H→ D∗ over the punctured disk, and endow H with the pullback of the Euclidean
metric, e−y|dz|. Let us define the wedge W =W (α) of angle α as the strip {z : 0 ≤
Re z ≤ α} completed with one point at Im z = +∞. If we isometrically glue the
sides of this wedge, we obtain the cone C = C(α) of angle α. (We can also define
C(α) as the one-point completion at +∞ of the quotient H/αZ.)

Exercise 2.84. Let γ be a little circle around a cone singularity of angle α.
Check that the tangent vector γ′ rotates by angle α as we go once around γ.

According to the discussion in Appendix 2.12.2, a cone singularity x with angle
α = α(x) carries curvature 2π − α.

Let us now consider a compact flat surface S with boundary. Assume that
the boundary is piecewise linear with corners. It means that near any boundary
point, S is isometric to a wedge W (α) with some α > 0. Points where α 6= π are
called corners of angle α (as the corners are isolated, there are only finitely many
of them). The rotation ρ(x) at a corner x ∈ ∂S of angle α = α(x) is defined as
π − α (see Appendix 2.12.2).
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2.7.2. Gauss-Bonnet Formula (for flat surfaces).

Theorem 2.85. If S is a compact flat surface with cone singularities and piece-
wise linear boundary with corners then

∑
K(x) +

∑
ρ(y) = 2πχ(S),

where the first sum is taken over the cone singularities while the second sum is
taken over the boundary corners.

This is certainly a particular case of the general Gauss-Bonnet formula (2.35)
from Appendix 2.12.2, but in our special case we will give a direct combinatorial
proof of it.

Proof. Let us triangulate S by Euclidean triangles in such a way that all cone
singularities and all boundary corners are contained in the set of vertices. Let αi
be the list of the angles of all triangles. Summing these angles over the triangles,
we obtain: ∑

αi = π(# triangles).

On the other hand, summation over the vertices gives:
∑

αi = 2π(# regular vertices) +
∑

cones

α(x) +
∑

corners

α(y)

= 2π (# vertices)−
∑

cones

K(x)−
∑

corners

ρ(y) + π(# corners).

Hence∑
K(x) +

∑
ρ(y) = π (2(# vertices) + (# corners)− (# triangles)) = 2πχ(S),

where the last equality follows from

3(# triangles) = 2(# edges) + (# corners).

�

2.7.3. Geodesics. Let S be a flat surface with cone singularities. A piecewise
smooth curve γ(t) in S is called a geodesic if it is locally shortest, i.e., for any
x = γ(t) there exists an ε > 0 such that for any t1, t2 ∈ [t− ε, t+ ε], γ : [t1, t2]→ S
is the shortest path connecting γ(t1) to γ(t2).

Obviously, any geodesic is piecewise linear: a concatenation of straight Eu-
clidean intervals meeting at cone points. Moreover, both angles between two con-
secutive intervals in a geodesic must be at least π (in particular, the intervals cannot
meet at a cone point with angle < 2π).

Exercise 2.86. Verify these assertions by exploring geodesics on a cone C(α).

Theorem 2.87. Let S be a closed flat surface with only negatively curved cone
singularities. Then for any path γ : [0, 1]→ S, there is a unique geodesic δ : [0, 1]→
S homotopic to γ rel the endpoints.

Proof. Existence. Let L be the infimum of the lengths of smooth paths ho-
motopic to γ rel the endpoints. We can select a minimizing sequence of piecewise
linear paths with the intervals of definite length. Such paths form a precompact
sequence in S, so we can select a subsequence converging to a path δ in S of length
L. Obviously, δ is a local minimizer, and hence is a geodesic.
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Uniqueness. Let γ and δ be two geodesics on S homotopic rel the endpoints.
They can be lifted to the universal covering Ŝ to geodesics γ̂ and δ̂ with common
endpoints. We can assume without loss of generality that the endpoints a and b are
the only intersection points of these geodesics (replacing them if needed by the arcs
γ̂′ and δ̂′ bounded by two consecutive intersection points). Then γ̂ and δ̂ bound a
polygon Π with vertices at a and b and some corner points xi. Let yj be the cone
points in intΠ. By the Gauss-Bonnet formula,

(π − ρ(a)) + (π − ρ(b)) +
∑

(π − ρ(xi)) +
∑

K(yj) = 2π.

But the first two terms in the left-hand side are less than π while the others are
negative – contradiction. �

2.7.4. Euc(2)- and Euc(1)-structures. Let S∗ stand for a flat surface S with its
cone singularities punctured out.

A parallel line field on S is a family of tangent lines l(z) ∈ TzS, z ∈ S∗, that
are parallel in any local chart of S.

Let j : Euc(C)→ U(2) be the natural projection that associates to a Euclidean
motion its rotational part. Let Euc(n) stand for the j-preimage of the cyclic group
of order n in U(2). In other words, motions A ∈ Euc(n) are compositions of
rotations by 2πk/n and translations. (So, the complex coordinate, they assume the
form A : z 7→ e(k/n)z + c.)

Lemma 2.88. A flat surface S admits a parallel line field if and only if its
Euclidean structure can be refined to a Euc(2)-structure.

Proof. Let S be Euc(2)-surface and let θ ∈ R/modπZ. Given a local chart,
we can consider the parallel line field in the θ-direction. Since the θ-direction is
preserved (modπ) by the group Euc(2), we obtain a well defined parallel line field
on S∗.

Vice versa, assume we have a parallel line field on S∗. Then we can rotate the
local charts so that this line field becomes horizontal. The transit maps for this
atlas are Euclidean motions preserving the horizontal direction, i.e., elements of
Euc(2). �

Lemma 2.89. S admits a parallel line field if and only if all cone angles are
multiples of π.

Proof. Any tangent line can be parallelly transported along any path in S∗.
Since S is flat, the result is independent of the choice of a path within a certain
homotopy class. S admits a parallel line field if and only if the holonomy of this
parallel transport around any cone singularity is trivial, i.e., it rotates the line by
a multiple of π. But the holonomy around a cone singularity of angle α rotates the
line by angle α. �

2.7.5. Abelian & quadratic differentials vs translation surfaces. Next, we will
relate flat geometry to complex geometry. Namely, any flat surface S is naturally
a Riemann surface. Indeed, since Euclidean motions are conformal, the flat struc-
ture induces complex structure on S∗. To extend it through cone singularities,
consider a conformal isomorphism φ : H/αZ → D∗, z 7→ e(z/α). It extend to a
homeomorphism C(α)→ D that serves as a local chart on the cone C(α).
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Exercise 2.90. Show that the extension of the conformal structures from S∗

to S is unique.

Proposition 2.91. Let S be a a smooth surface.

(i) Prescribing a Euc(1)-structure on S (with cone singularitires) is equivalent to
precribing an Abelian differential ω on a Riemann surface supported on S.

(ii) Prescribing a Euc(2)-structure on S (with cone singularitires) is equivalent to
precribing a quadratic differential q on a Riemann surface supported on S.

For instance, if we have a holomorphic function φ : S → C then we can pull
back the standard Euclidean structure on C to obtain a Euc(1)-structure on S with
cone singularities at zeros of φ. The corresponding Abelian differential is ω = dφ.

More generally, we can consider a holomorphic function on the Universal cov-
ering, Φ : Ŝ → C∗, which is transformed multiplicatively under the action of the
group Γ of deck transformations:

Φ(γz) = c(γ) · φ(z), γ ∈ Γ,

where c : Γ→ C∗ is a multiplicative homomorphism. The pullback of the standard
Euclidean structure on C to S by log Φ : Ŝ → C descends to a Euc(1)-structure
on S∗ := S r zeros of Φ. The correspomnding Abeliean differential is the log-
derivative of Φ, ω = dΦ/Φ.

2.8. More on orbifolds.

2.8.1. Triangle groups: summary. Putting together Exercises 2.13, 2.6, and
2.50, we obtain:

Theorem 2.92. For any triple {p, q, r} of numbers in {2, 3, . . . } ∪ {∞}, there
exists an orbifold O ≡ O{p,q,r} with signature (S2, {p, q, r}). It is uniformized by a
spherical, Euclidean, or hyperbolic triangle group, depending on whether the Euler
characteristic

χ(O) = 1

p
+

1

q
+

1

r
− 1

positive, zero, or negative.

2.8.2. Almost all 2D orbifolds are good.

Theorem 2.93. There only two bad (2D) orbifolds:11 (S2; p) and (S2; {p, q}),
with p 6= q.

Proof. Let U be the Universal covering of an orbifold O, and let M be its
underlying surface. Since M is a simply connected surface, it is the topological disk
or the topological sphere. Assume the singular set X ⊂M contains more than two
points. Then take a Jordan disk ∆ ⊂M containing three if these points. Adding a
“cup” to this disk, we obtain a topological sphere S2 with three singular points. By
Theorem 2.92, the corresponding orbifold can be uniformized by a triangle group.
It induces a non-trivial orbifold covering of U corresponding to the disk ∆ with
three singular points (as in §1.7.13). Hence U cannot be universal in this case.

So, we are reduced to the case of the disk or the sphere with at most two
singular points. The disk with two singular points is topologically equivalent to
the sphere with three singular points (one of which has infinite index), which is

11Notice that both of them have positive Euler characteristic.
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uniformized by a triangular group once again. The sphere with two two singular
points of the same index q can be realized as M = Ĉ with X = {0,∞}, which is
uniformized by the map fq : Ĉ→ hC, z 7→ zq. The remaining cases correspond to
the excdeptional bad orbifolds: see Example 1.115. �

2.8.3. Orbifolds of finite conformal type. We say that a Riemann orbifold O has
a finite conformal type if it has a compact underlying surface with finitely many
singular points (maybe, of infinite index). Such an orbifold has a finitely generated
fundamental group and a finite Euler characteristic. We have already encountered
a number of examples: Euclidean orbifolds listed in Exercise 2.6, spherical orbifolds
listed in Exercise 2.13, and hyperbolic orbifolds uniformized by finitely generated
Fuchsian groups of first kind. Remarkably, these examples exhaust the full list of
good orbifolds of finite conformal type! See Theorem 5.9 below.

2.9. Schwarzian derivative and projective structures.

2.9.1. Definition. The fastest way to define the Schwarzian derivative Sf is by
means of a mysterious formula:

(2.17) Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

However, there is a bit longer but better motivated approach.
Let us try to measure how a function f at a non-critical point z deviates from a

Möbius transformation. Möbius transformations depend on three complex param-
eters. So, one expects to find a unique Möbius transformation Az that coincides
with f to the second order. Then

f(ζ)−Az(ζ) ∼
b

6
(ζ − z)3

near z, and we let Sf(z) = b/f ′(z).

Remark 2.94. Division by f ′(z) ensures scaling invariance of the Schwarzian
derivative: S(λf) = Sf . Coefficient 1/6 provides a convenient normalization sug-
gested by the Taylor formula: it makes Sf(z) = f ′′′(z) for a normalized map
f(ζ) = ζ +O(|ζ − z|3).

Exercise 2.95. Show that by postcomposing with a Möbius transformation,
f 7→ A ◦ f , any univalent map f near z can be brought to the just mentioned
normal form (with the 2-jet equal to id).

The best Möbius approximation to f is easy to write down explicitly. Let
f(ζ) = a0 + a1(ζ − z) + a2(ζ − z)2 + . . . near z with a1 = f ′(z) 6= 0. Then

Az(ζ) = a0 +
a1(ζ − z)

1− β(ζ − z) with β =
a2
a1
,

the 3d Taylor coefficient of f −Az is (a3 − a22/a1), and (2.17) follows.
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2.9.2. Chain rule.

Lemma 2.96. Let f be a holomorphic function on a domain U . Then Sf ≡ 0
on U if and only if f is a restriction of a Möbius map to U .

Proof. Sufficiency is obvious from the definition: If f is a Möbius map then
Az = f at any point z, and Sf(z) = 0.

Vice versa, assume Sf ≡ 0 on U . Then f is a solution of a 3d order analytic
ODE

f ′′′ =
3

2

(f ′′)2

f ′
= 0

on U rCf , where Cf is the critical set of f . Such a solution is uniquely determined
by its 2-jet12 at any point z ∈ U r Cf . Hence f = Az. �

Similarly, one can prove:

Exercise 2.97. Let f and g be two holomorphic functions on a domain U .
Then Sf ≡ Sg on U if and only if f = A ◦ g for some Möbius map A.

Lemma 2.98 (Chain Rule).

(2.18) S(f ◦ g) = (Sf ◦ g) · (g′)2 + Sg.

Proof. Since the Schwarzian derivative is translationally invariant on both
sides (i.e., S(T1 ◦ f ◦ T2) = Sf for any translations T1 and T2), it is sufficient
to check (2.18) at the origin and to assume that g(0) = f(0) = 0. Furthermore,
by Exercise 2.97, postcomposition of f with a Möbius transformation would not
change either side of (2.18). In this way, we can bring f to a normalized form:

(2.19) f(ζ) = ζ +
Sf(0)

6
ζ3 + . . .

and then painlessly check (2.18) by composing (2.19) with the 3-get of g. �

In particular, for a Möbius transformation A, we have:

(2.20) S(f ◦A) = (Sf ◦A) · (A′)2,
which coincides with the transformation rule for quadratic differentials. It suggests
that the Schwarzian should be viewed not as a function but rather as a quadratic
differential Sf(z) dz2. This point of view is not quite right on Riemann surfaces,
but it becomes exactly correct on projective surfaces.

2.9.3. Projective surfaces. A projective structure on a Riemann surface S is an
atlas of holomorphic local charts with Möbius transit maps. A surface endowed
with a projective structure is called a projective surface. Projective morphisms are
defined naturally, so that we can refer to isomorphic projective surfaces.

Of course, the Riemann sphere Ĉ has a natural projective structure, and any
domain U ⊂ Ĉ inherits it. If we have a group Γ of Möbius transformations acting
properly discontinuously and freely on U then the quotient Riemann surface V =
U/Γ inherits a unique projective structure that makes the quotient map π : U → V
projective. In particular, any hyperbolic Riemann surface V is endowed with the
Fuchsian projective structure coming from the uniformization π : H→ V .

12Recall that a n-jet of a function f at z is its Taylor approximant of order n at z.
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Given a meromorphic function f on a projective surface V , the Chain Rule
(2.20) tells us that the local expressions Sf(z) dz2 determine a global quadratic
differential on V .

Exercise 2.99. Check carefully this assertion.

More generally, let us consider two projective structures f and g on a Rie-
mann surface V given by atlases {fα} and {gβ} respectively. Then the Chain
Rule (more specifically, Exercises 2.97 and 2.99) tell us that the local expressions
S(fα ◦ g−1β )(z) dz2 determine a global quadratic differential on V endowed with the
g-structure. This differential is denoted S{f, g}. It measures the distance between
f and g.

In particular, given a holomorphic map f : V → W between two projective
surfaces, we obtain a quadratic differential S{f∗(W ), V } on13 V . Writing f in pro-
jective local coordinates (ζ = f(z)), we obtain the familiar expression, Sf(z) dz2,
for this differential. It measures the deviation of f from being projective.

2.10. Appendix 0: Weierstrass P-functions. An meromorphic fuction f :
C → Ĉ is called periodic if f(z + w) = f(z) for some w ∈ C∗. Then the set of all
periods (with 0 added to them) form a lattice L ⊂ C, i.e., a discrete subgroup of C.
Such a lattice is either ismorphic to Z (rank 1 case) or to Z2 (rank 2 case).

2.10.1. Trigonometric functions. Let us say that an entire function f : C→ C

is triginometric if it is periodic with rank 1 group of periods:

f(z + an) = f(z), n ∈ Z.

After an affine change of variable, we can make a = 1. Familiar examples are
e(z) ≡ e2πiz and cos z. The former provides us with the universal covering C→ C∗,
while the latter provides us with a Galois branched covering C → C, branched
over {±1} (which can be also viewed as the universal covering of the orbifold with
signature (C, {2, 2, }). These coverings are nicely visualized by means of checker-
board tilings.

Exercise 2.100. Any trignomentric function (normalized so that a = 1) can
be expanded into a Fourier series

f(z) =

∞∑

n=−∞
ane(nz).

Exercise 2.101. (i) For any n ∈ Z there is a polynomial Чn such that

(2.21) cos(nz) = Чn(cos z).

For instance, Ч2(z) = 2z2 − 1.

(ii) All critical points of these polynomials are simple and lie on the interval
(−1, 1); the only critical values are ±1 (only 1 for n = 2).

These polynomials are called Chebyshev.

13Here we notationally identify surfaces with their projective structures
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2.10.2. Weierestrass P-function. A elliptic function is a doubly periodic mero-
morpohic function f : C → Ĉ. So, there is a rank two lattice14 L ⊂ C such that
f(z + w) = f(z) for any w ∈ L. Equivalently, it can be viewed as a holomorphic
branched covering from the torus C/L to the Riemann sphere Ĉ. This branched
covering has a degree d that we call the (associated) degree of f . (Note that
formally speaking, f itself has infinite degree).

Basic examples are provided by the Weierstrass P-functions of associated de-
gree two. Such a function can be explicitely represented by the following series:

(2.22) P(z) = 1

z2
+
∑

w∈L

[
1

(z − w)2 −
1

w2

]

Project 2.102. Justify that expression (2.22) represents indeed a degree two
elliptic function.

By a complex rescaling z 7→ λz, λ ∈ C∗, any lattice L ⊂ C can be brought to a
form {m + nτ}(m,n)∈Z2 with Im τ > 0. Considering Weierstrass P-functions up to
rescalings P(λz), we obtain a complex one parameter family of them, {Pτ (z)}τ∈H.

Exercise 2.103. (i) For any n ∈ Z there is a rational function Rn of degree
n2 such that

(2.23) P(nz) = Ln(Pn(z)).
(ii) All critical values of the Ln are contained in the 4 critical values of P.

(iii) A similar function Lρ is associiated to any complex multiplication z 7→ ρz
for a rank 2 lattice L.

These rational functions are called Lattès maps.

2.11. Appendix 1 : Tensor calculus in complex dimension one.

2.11.1. General notion. For (n,m) ∈ Z2, an (n,m)-tensor on a Riemann sur-
face S is an object τ that can be locally written as a differential form

(2.24) τ(z) dzndz̄m.

Formally speaking, to any local chart z = γ(x) on S corresponds a function τγ(z),
and this family of functions satisfy the transformation rule: if ζ = δ(x) is another
local chart and z = φ(ζ) is the transit map, then

(2.25) τδ(ζ) = τγ(φ(ζ))φ
′(ζ)nφ′(ζ)

m
.

The regularity of the tensor (e.g., τ can be measurable, smooth or holomorphic) is
determined by the regularity of all its local representative τγ .

Even when dealing with globally defined tensor, we will often use local notation
(2.24), and we will usually use the same notation for a tensor and the representing
local function.

Disregarding the regularity issue, tensors form a bigraded commutative semi-
group: if τ and τ ′ are respectively (m,n)- and (m′, n′)-tensors, then τ τ ′ is an
(m+m′, n+ n′)-tensor.

14i.e., a discrete subgroup generated by some basis w1, w2 ∈ R2
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A holomorphic (1, 0)-tensor ω(z)dz is called an Abelian differential; a holomor-
phic (2, 0)-tensor q(z)dz2 is called a quadratic differential. More generally, we can
consider meromorphic (n, 0)-tensors, e.g., meromorphic quadratic differentials.

A (−1, 1)-tensor µ(z)dz̄/dz is called a Beltrami differential. Notice that the ab-
solute value of a Beltrami differential, |µ|, is a global function on S. (In this book all
Beltrami differentials under consideration are assumed measurable and bounded.)

A (1, 1)-tensor ρ = ρ(z) dzdz̄ with ρ ≥ 0 is a conformal Riemannian metric
ρ(z)|dz|2 on S. Its area form

i

2
ρ(z) dz ∧ dz̄ = ρ(z) dx ∧ dy

is a tensor of the same type (both are transformed by the factor |φ′(ζ)|2). This
allows us to integrate (1, 1)-tensors:

∫
ρ =

i

2

∫
ρ(z) dz ∧ dz̄.

For instance, if q is a quadratic differential then |q| is a (1, 1)-form, so that
we can evaluate

∫
|q| (at least locally). If q is a quadratic differential and µ is a

Beltrami differential, then qµ is again a (1, 1)-form, so the local integral
∫
qµ makes

sense.

A (−1, 0)-tensor
v(z)

dz
has the same type as a vector field. Indeed, in this case

the tensor rule (2.25) assumes the form vγ(φ(ζ)) = φ′(ζ) vδ(ζ) that coincides with
the transformation rule for vector fields.

Exercise 2.104. (i) Let v = v(z)/dz be a C1-smooth vector field near ∞ on
Ĉ. Show that v(z) = az2 + bz +O(1). Moreover, v(∞) = 0 iff a = 0.

(ii) A vector field v(z)/dz is holomorphic on the whole sphere Ĉ iff

v(z) = az2 + bz + c.

Exercise 2.105. (i) Let q = q(z) dz2 be a meromorphic quadratic differential
near ∞ on Ĉ. If q(z) ≍ z−n, n ≤ 3, then q has a pole of order 4 − n at ∞. In
particular, q has at most a simple pole at ∞ iff q(z) vanishes to the third order at
∞, i.e., q(z) = O(|z|−3).
(ii) q ∈ Q1(Ĉ) iff q(z) is a rational function with simple poles in C that vanishes to
the third order at ∞.

(iii) # poles −# zeros of q is equal to 4.

2.11.2. ∂ and ∂̄. The differential of a function τ(z) can be expressed in (z, z̄)-
coordinates as follows:

dτ = ∂xτ dx+ ∂yτ dy = ∂zτ dz + ∂z̄τ dz̄,

where

(2.26) ∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y).

This suggests to introduce differential operators ∂ and ∂̄ (acting from functions to
(1, 0)- and (0, 1)-forms respectively):

∂τ = ∂zτ dz, ∂̄τ = ∂z̄τ dz̄, so d = ∂ + ∂̄.
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Exercise 2.106. Check that ∂τ and ∂̄τ are correctly defined (1, 0)- and (0, 1)-
forms respectively. .

We will sometimes use notation ∂ and ∂̄ for the partial derivatives (2.26) as
well, unless it can lead to a confusion.

Using the semigroup structure, we can extend these differential operators to
arbitrary tensors:

∂(τ dzndz̄m) = ∂τ dzndz̄m = ∂zτ dz
n+1dz̄m,

∂̄(τ dzndz̄m) = ∂̄τ dzndz̄m = ∂z̄τ dz
ndz̄m+1.

These operators increase the grading by (1, 0) and (0, 1) respectively.
For instance, if v is a vector field viewed as a (−1, 0) tensor, then ∂̄v is a

Beltrami differential.

Remark 2.107. The above commutative tensor operators should not be con-
fused with their anti-commutative exterior counterparts acting on differential forms.
For instance, if ω = ω(z) dz is a holomorphic (1, 0)-form then in the tensor sense
∂ω = ω′(z) dz2, while ∂ ω = 0 in the exterior sense .

2.11.3. Pullback and push-forward. Let f : S → T be a holomorphic map
between two Riemann surfaces. Then any (n,m)-form τ on T can be pulled back
to an (n,m)-form f∗τ on S, which in is given in local coordinates by the expression

f∗(τ(w) dwmdw̄m) = τ(f(z))f ′(z)nf̄ ′(z)m dzndz̄m.

Moreover, if τ is a holomorphic/meromorphic (n, 0)-form then so is f∗(τ).
If f is invertible then of course forms can be also pushed forward. For τ =

τ(z) dzndz̄m, it looks as follows:

f∗τ ≡ (f−1)∗(τ) =
τ(z)

f ′(z)nf̄ ′(z)m
dwndw̄m substituting z = f−1(w).

It is less standard that tensors can be also pushed forward by non-invertible maps
(at least, by branched coverings of finite degree) by summing up the local push-
forwards over the preimages:

f∗τ =
∑

(fi)∗(τ) =
∑

zi∈f−1(w)

τ(f(zi))

f ′(zi)nf̄ ′(zi)m
dwndw̄m substituting zi = f−1i (w).

where fi is the local branch of f near zi ∈ f−1(w). This expression is well defined
outside the set V of critical values of f .

Moreover, if τ is a meromorphic (n, 0)-form with the polar set P then f∗τ is also
meromorphic, with the polar set contained in f(P )∪ V . Indeed, outside f(P )∪ V ,
the push-forward f∗(τ) is a holomorphic (n, 0)-form with at most power growth
near f(P ) ∪ V .

This discussion applies directly to the case of meromorphic quadratic differen-
tials q = q(z) dz2, which will be the main case of our interest:

f∗q =
∑

(fi)∗q =
∑

zi∈f−1(w)

q(zi)

f ′(zi)2
.
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In the case of an area form ρ dz ∧ dz̄, the push-forward operation is actually
standard as it corresponds to the push-forward of the measure with density ρ:

f∗(ρ dz ∧ dz̄) =
∑

z∈f−1(w)

ρ(z)

|f ′(z)|2 .

Since the area is conserved under invertible changes of variable, we have:

(2.27)
∫
f∗ρ = d

∫
ρ,

∫
f∗ρ =

∫
ρ

(assuming ρ has a finite total mass).

2.11.4. Push-forward is a contraction in Q1. Integrability of a meromorphic
quadratic differential q on a Riemann surface S means integrability of the corre-
sponding area form |q|. Let Q1(S) stand for the space of integrable meromorphic
quadratic differential on S, and Q1

loc(S) stand for the space of locally integrable
ones. Note that q ∈ Q1

loc if and only if it has only simple poles.
For q ∈ Q1(S), transformation rules (2.27) (together with the triangle inequal-

ity) imply:

(2.28)
∫
|f∗q| ≤

∫
f∗|q| =

∫
|q|

Thus, the push-forward operator is contracting in the space of integrable holomorphic
quadratic differentials. This property plays a key role in the Thurston theory, see
§39.

Exercise 2.108. Consider a holomorphic quadratic differential q = q(z)dz2 on
the whole Riemann sphere Ĉ, so q(z) is a rational function.

(i) What is the condition that q has zero/pole at ∞. If so, what is its order?

(ii) q is integrable if and only if all its poles (including at ∞) are simple;

(iii) For f : z 7→ zd and q = zndz2, calculate f∗q and f∗q.

Lemma 2.109. Let f : S → T be a holomorphic covering of degree d, and let q
be an integrable quadratic differential on S. Then

(2.29)
∫
|f∗q| =

∫
|q|

if and only if f∗(f∗q) = d q.

Proof. Equality (2.29) is equivalent to attaining equality in (2.28). Since both
q and f∗q are continuous outside a finite set and |f∗q| ≤ f∗|q| everywhere, integral
equality in (2.28) is equivalent to pointwise equality |f∗q| = f∗|q|. But equality in
the triangle inequality is attained if and only if all the terms have the same phase,
so

f∗q = ci (fi)∗q, ci > 0.

Being positive and holomorphic in z, the factors ci must be constants. Applying
the pullback f∗i to the last equation, we obtain:

f∗(f∗q) = ci q near zi ∈ f−1z.
But the ratio f∗(f∗q)/q is a global meromorphic function: if it is locally constant,
it must be globally constant, so f∗(f∗q) = c q. Finally, by (2.27)∫

|f∗(f∗q)| = d

∫
|f∗q| = d

∫
|q|,
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so c = d. �

2.11.5. Duality.

Lemma 2.110. Let f : S → T be a holomorphic covering of degree d. Consider a
meromorphic quadratic differential q ∈ Q1(S) and a measurable essentially bounded
Beltrami differential µ on T . Then

∫

S

q · f∗µ =

∫

T

f∗q · µ.

Proof. It is sufficient to check that∫

U

q · f∗µ =

∫

V

f∗q · µ

for a base of neighborhoods V on T and U = f−1(V ). Since f is covering, we can
choose the V so that

U =

d⊔

i=1

Ui,

where the restrictions fi = (f : Ui → V ) are biholomorphic. Then
∫

U

q · f∗µ =
∑∫

Ui

q · f∗µ =
∑∫

Ui

f∗((fi)∗q · µ)

=
∑∫

Ui

(fi)
∗q · µ =

∫

U

(fi)
∗q · µ.

�

Remark 2.111. All the above statements concerning covering maps extend
immediately to maps f : S → T that are coverings over T rA where A is a discrete
subset. This includes branched coverings (see §3).

2.12. Appendix 2: Bits of 2D Riemannian geometry.

2.12.1. Classification of Riemannian surfaces of constant curvature. The no-
tion of Riemannian surface is not the same as of Riemann surface. The former is
a smooth surface endowed with a Riemannian metric

ds2 = E dx2 + 2F dx dy +Gdy2 (a local expression).

Our main models are homogeneous surfaces that have a constant curvature K:
the standard sphere S2 ⊂ R3 (K > 0), the Euclidean plane R2 (K = 0), and
the hyperbolic plane H (K < 0). For definiteness, we will always normalize the
curvature (by rescaling the metric) so that K ∈ {−1, 0,+1}.

Proposition 2.112. A Riemannian surface S of constant curvature K is en-
dowed with the associated geometric structure: spherical (for K > 0), flat (for
K = 0), or hyperbolic (for K < 0). Vice versa: such a geometric structure induces
a metric of constant curvature on S.

Proof. The latter assertion is obvious as the metric of constant curvature on
S can be obtained by pulling back the corresponding homogenious metric by the
local charts φi of the given geometric structture (spherical, flat, or hyperbolic).
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The direct assertion follows from the fact that any Riemannian surface of con-
stant curvature is locally isometric to one of three homogeneous surfaces. It can be
accomplished by analysing the Liouville equation

∆φ = K eφ

for the metric ds = e−φ |dz| of constant curvature K (see [DNF, §13, Thm 5]). �

Geometric Uniformization Theorem. Any simply connected complete Rie-
mannian surface of constant curvature K is either the standard sphere S2 ⊂ R3

(K > 0), or the Euclidean plane R2 (K = 0), or the hyperbolic plane H (K < 0).

Proof. Take a base point x ∈ S and consider a local isometry h : (U, x) →
(V, 0) to the model homogeneous surface S◦ (S2, R2 or H). Assume first K ≤
0. Then by the Hadamard Theorem (see [DoC, §5-6]), h extends to a global
diffeomorphism ĥ : S → S◦ which is isometric on the geodesic rays emanating from
x. Then the local isometries along any such ray R coinciding with ĥ on R glue
into an isometry near R. It is easy to see that they must match for nearby rays,
implying that ĥ is a global isometry.

This construction of promoting local isometries (or other geometric structures)
to a global one is called developing.

For K > 0, S must be compact (see [DoC, §5-9, Exercise 1]). By the Gauss-
Bonnet Formula, χ(S) > 0, so S must be a topological sphere. Let S◦ be the
standard sphere. Then the developing map S 7→ S◦ is a locally isometric covering.
As S0 is simply connected, it is a global isometry. �

By taking the Universal covering, we obtain the full classification of complete
Riemannian surfaces of constant curvature:

Corollary 2.113. Any complete Riemannian surface of constant curvature K
is isometric to one of the following surfaces:

(i) Spherical case: the standard sphere S2 ⊂ R3 (K > 0);

(ii) Flat case: the Eucliuidean plane R2, or the flat cylinder T×R, or the torus T2

(K = 0);

(iii) Hyperbolic case: The quotient of the hyperbolic plane H2 modulo a Fuchsian
group (K < 0).

2.12.2. Gauss-Bonnet formula for variable metrics. Formally speaking, we can
skip a discussion of this general version of the Gauss-Bonnet formula as we have
verified it directly in all special cases that we need. However, it does give a deeper
insight into the matter. The reader can consult, e.g., [DoC] for a proof.

Let S be a compact smooth Riemannian surface, maybe with boundary. Let
K(x) be the Gaussian curvature at x ∈ S, and let κ(x) be the geodesic curvature at
x ∈ ∂S. The Gauss-Bonnet formula related these geometric quantities to topology
of S:

(2.30)
∫

S

Kdσ +

∫

∂S

κds = 2πχ(S),

where dσ and ds are the area and length elements respectively.
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In particular, if S is closed then

(2.31)
∫

S

Kdσ = 2πχ(S),

which, in particular, implies that there are no flat structures on a closed surface of
genus g 6= 0. Also, for a surface S of constant curvature K ∈ {±1}, we obtain:

(2.32) areaS = ±2πχ(S).
The boundary term in (2.30) admits a nice interpretation. Let us parametrize a

closed boundary curve γ with the length parameter, so that γ′(t) is the unit tangent
vector to γ. Then for nearby points γ(t) and γ(τ), where τ = t+∆t > t, let v(t, τ)
be the tangent vector γ′(τ) parallelly transported from γ(τ) back to γ(t). Then let
θ(t, τ) be the angle between γ′(t) and v(t, τ) (taking with positive sign if v points
“into S”. Summing these angles up over a partition of γ into small intervals, we

obtain the rotation number of the tangent vector. It coincides with
∫

γ

κds.

Note that if ∂S consists of geodesics, the boundary term in (2.30) disappears,
and it assumes the same form (2.31) as in the closed case.

If we allow the Riemannian metric to have an isolated singularity at some point
x ∈ S then using the Gauss-Bonnet formula for a small disk around x, we can assign
the Gaussian curvature to x:

(2.33) K(x) = 2π − lim
γ→x

∫

γ

κds,

provided the limit exists. (Here γ is a small circle around x, and K(x) is assumed
to be integrable.)

In particular, if x is a cone singularity of angle θ ∈ (0,+∞), then it support
curvature

(2.34) K(x) = 2π − θ.
If we allow a corner of angle α ∈ (0,∞) at a boundary point y ∈ ∂S (see

§2.7.1), we can assign the rotation number ρ(y) = π − α ∈ (π,−∞) to it as the
angle between the incoming and outgoing tangent vectors.

Then the Gauss-Bonnet formula is still valid for surfaces with singularities and
boundary corners, assuming the following form:

(2.35)
∫

S

Kdσ +
∑

sing

K(x) +

∫

∂S

κds+
∑

corners

ρ(y) = 2πχ(S).

With these definitions, the Gauss-Bonnet Formula immediately extends to orb-
ifolds. For instance, let O be an orbifold of finite conformal type with signature
(S; {qi}), where S is a closed underlying surface. Endow it with an orbifold Rie-
mannian metric with curvature K(x) and the area form dσ. As the curvature form
K dσ of this metric is calculated in the orbifold local charts, it does not account to
the curvatures Ki of the cone singularities. By (2.35) and (2.33), we have:

2π χ(S) =

∫
K dσ +

∑
Ki =

∫
K dσ +

∑(
2π − 2π

qi

)
,

yielding

(2.36)
∫
K dσ = 2π χ(O).
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(So, the orbifold Euler characteristic amounts to the regular portion of the total
curvature.)

3. Holomorphic proper maps and branched coverings

3.1. First observations.

Exercise 3.1. Show than any non-constant holomorphic map between two Rie-
mann surfaces is topologically holomorphic.

The following assertion generalizes Exercise 2.61 to branched coverings:

Exercise 3.2. Any holomorphic branched covering f : S → S′ of finite degree
between hyperbolic Riemann surfaces extends continuously to a branched covering
f : S→ S′ between their ideal compactifications (holomorphic on intS).

Exercise 3.3. (i) A holomorphic branched covering f : D → D of degree d is
a Blaschke product

f(z) = λ

d∏

k=0

z − ak
1− ākz

, where |λ| = 1, ak ∈ D.

(ii) A holomorphic branched covering f : H+ → H+ of degree d with f(∞) = ∞
has a form

f(z) = λ0z + a0 −
d−1∑

k=1

λk
z − ak

, where λk > 0, ak ∈ R, k = 0, 1, . . . , d− 1.

3.2. Riemann-Hurwitz formula. This formula gives us a beautiful relation
between topology of the surfaces S and T , and branching properties of f .

Riemann - Hurwitz formula. Let f : S → T be a branched covering of
degree d between two topological surfaces of finite type. Let C be the set of branched
points of f . Then

χ(S) = d · χ(T )−
∑

a∈C
(dega f − 1).

Let us define the multiplicity of a ∈ C as a critical point to be equal to dega f−1
(in the holomorphic case it is the multiplicity of a as the root of the equation
f ′(a) = 0). Then the sum in the right-hand side of the Riemann-Hurwitz formula
is equal to the number of critical points of f counted with multiplicities.

Proof. Let us first assume that S and T are closed Riemann surfaces.
Let us consider a triangulation T of T such that all critical values of f are

vertices of T . By the Euler formula,

χ(T ) = v(T )− e(T ) + t(T ),
where v,e and t stand for the number of vertices, edges and faces (triangles) of T .
Let S be the lift of this triangulation to S. Then

t(S) = d · t(T ), e(S) = d · e(T ), v(S) = d · v(T )−
∑

a∈C
(dega f − 1),

and the conclusion follows.

To deal with non-closed case, consider the one-point-per-end compactifications
Ŝ and T̂ of our surfaces. If S and T are of finite type then these surfaces are
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closed. Since f is proper, it continuously extends to a map f̂ : Ŝ → T̂ . This map
is certainly proper. By Exercise 1.103, it is topologically holomorphic. Thus, it is
a branched covering (of the same degree d). As in the above calculation, we have

|E(S)| = d · |E(T )| −
∑

e∈E(S)
(dege f̂ − 1).

Putting this together with the Riemann-Hurwitz formula for f̂ implies the desired.
�

Remark 3.4. One could also define χ(S) for an open surface S using ideal
triangulations, with some vertices being at infinity, ∞e (see §1.7.5). Then the
proofs for closed and open cases become identical.

Remark 3.5. The formula also applies to surfaces with boundary, with the
same proof (or by removing the boundary, which does not change the Euler char-
acteristic). Or else, one can use triangulations of the bordered surfaces.

Corollary 3.6. Under the above circumstances, assume that T is a topological
disk. Then S is a topological disc as well if and only if there are d−1 critical points
in S (counted with multiplicities).

Proof. A surface S is a topological disk if and only if χ(S) = 1. �

3.3. Topological Argument Principle. Consider the punctured plane R2r

{b}. If γ : S1 → R2 r {b} is a smooth oriented Jordan curve then one can define
the winding number of γ around b as

wb(γ) =

∫

γ

d(arg(x− b)).

Since the 1-form d(arg(x− b)) is closed, the winding number is the same for homo-
topic curves. Hence we can define the winding number wb(γ) for any continuous
Jordan curve γ : S1 → R2 r {b} by approximating it with a smooth Jordan curves.

Furthermore, the winding number can be linearly extended to any simplicial
1-cycle in R2 r {b} with integer coefficients (i.e., a formal combination of oriented
Jordan curves in R2 r {b}) and then factored to the first homology group. It gives
an isomorphism

(3.1) w : H1(R
2 r {b})→ Z, [γ] 7→ wb(γ).

Exercise 3.7. Prove the last statement.

Proposition 3.8. Let D be a Jordan disc and let f : D̄ → R2 be a continuous
map that does not assume some value b ∈ R2 on ∂D. If wb(f | ∂D) 6= 0 then f
assumes the value b in D.

Proof. Obviously, the curve γ = (f : ∂D → R2) is contractible in f(D̄). If
b 6∈ f(D) then γ would be contractible in R2 r {b}, so it would have zero winding
number around b. �

Let x ∈ D be an isolated preimage of b = fx. Then one can define the indx(f)
as follows. Take a disk V ⊂ D around x that does not contain other preimages
of b = fx. Take a positively oriented Jordan loop γ ⊂ V r {x} around x whose
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image does not pass through b, and calculate the winding number of the curve
f : γ → R2 r {b} around b:

indx(f) = wfx(f ◦ γ).
Clearly it does not depend on the loop γ, since the curves corresponding to different
loops are homotopic without crossing b.

Proposition 3.9. Let D ⊂ R2 be a domain bounded by a Jordan curve Γ, and
let f : D̄ → R2 be a continuous map such that the curve f ◦Γ does not pass through
some point b ∈ R2. Assume that the preimage of this point f−1b is discrete in D.
Then ∑

x∈f−1b

indx(f) = wb(f ◦ Γ),

provided Γ is positively oriented.

Proof. Note first that since f−1b is a discrete subset of a compact set D̄,
f−1x is actually finite, so that the above sum makes sense.

Select now small Jordan loops γi around points xi ∈ f−1b, and orient them anti-
clockwise. Since Γ and these loops bound a 2-cell, [Γ] =

∑
[γi] in H1(D̄ r f−1b).

Hence f∗[Γ] =
∑
f∗[γi] in H1(R

2r{b}). Applying the isomorphism (3.1), we obtain
the desired formula. �

Exercise 3.10. Let f : D → R2 be a continuous map, and let a ∈ D be an
isolated point in the fiber f−1b, where b = f(a). Assume that inda(f) 6= 0. Then
f is locally surjective near a, i.e., for any ε > 0 there exists a δ > 0 such that
f(Dε(a)) ⊃ Dδ(b).

Hint: For a small ε-circle γ around a, the curve f ◦ γ stays some positive
distance δ from b. Then for any b′ ∈ Dδ(b) we have: indb(f ◦ γ) = indb(f ◦ γ) 6= 0.
But if b′ 6∈ f(Dε(a)) then the curve f ◦ γ could be shrunk to b without crossing b′.

3.3.1. Degree of proper maps.

3.4. Lifts.

Lemma 3.11. Let f : (S, a) → (T, b) and f̃ : (S̃, ã) → T̃ , b̃) be two double
branched between topological disks (with or without boundary) coverings branched
at points a and ã respectively. Then any homeomorphism h : (T, b)→ (T̃ , b̃) lifts to
a homeomorphism H : (S, a)→ (S̃, ã) which makes the diagram

(S, a)
H−→ (S̃, ã)

f ↓ ↓ f̃

(T, b) −→
h

(T̃ , b̃)

commutative. Moreover, the lift H is uniquely determined by its value at any un-
branched point z 6= a. Hence there exists exactly two lifts.

If the above surfaces are Riemann and the map h is holomorphic then then the
lifts H are holomorphic as well.

Proof. Puncturing all the surfaces at their preferred points, we obtain four
topological annuli. The maps f and f̃ restrict to the unbranched double coverings
between respective annuli, while h restricts to a homeomorphism. The image of the
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fundamental group π1(S r {a}) under f consist of homotopy classes of curves with
winding number 2 around b, and similar statement holds for f̃ . Since the winding
number is preserved under homeomorphisms,

(3.2) h∗(f∗(π1(S r {a})) = f̃∗(π1(S̃ r {ã})).
By the general theory of covering maps, h admits a lift

H : S r {a} → S̃ r {ã}
which makes the “punctured” diagram (3.2) commutative. Moreover, this lift is
uniquely determined by the value of H at any point z ∈ S r {a}.

Extend now H at the branched point by letting H(a) = ã. It is clear from the
local structure of branched coverings that this extension is continuous (as well as
the inverse one), so that it provides us with the desired lift.

If all the given maps are holomorphic then the lift H is also holomorphic on
the punctured disk S r {a}. Since isolated singularities are removable for bounded
holomorphic maps, the extension of H to the whole disk is also holomorphic. �

Exercise 3.12. Similar statement holds for branched coverings f and f̃ with
a single branched point (of any degree). Analyze the situation with two branched
points.

Exercise 3.13. Assume that all the topological disks in the above lemma are
R-symmetric and that all the maps commute with the reflection σ with respect to
R. Assume also that h(f(T ∩R)) = f̃(T̃ ∩R). Then both lifts H also commute with
σ (in particular, they preserve the real line).

3.5. Galois branched coverings.

Exercise 3.14. If a Galois branched covering f : S → T is holomorphic then
the deck transformations γ ∈ Γ are holomorphic automorphisms of S. Vice versa, if
in the previous Exercise the deck transformations are holomorphic automorphisms
then the natural projection S → S/Γ is holomorphic.

The following statement shows that any branched covering can be “symmetrized”
in a controlled way:

Proposition 3.15. Let f : S → T be a holomorphic branched cover of Riemann
surfaces of degree d. Then there is a Galois branched cover g : Σ→ T of degree at
most d! that factors as g = f ◦ h for some h : Σ→ S. Moreover, g is ramified only
over critical values of f .

Proof. . Let V be the set of critical values of f and let T ∗ = T r V. Let
C = f−1(V) and let S∗ = S r C. Then f : S∗ → T ∗ is an unbranched covering
of degree d. By Exercise 1.58, there is a Galois covering g : Σ∗ → T ∗ of degree at
most d! that factors through some covering h : Σ∗ → S∗. Moreover, we can endow
Σ∗ with the pullback complex structure to make both g and h holomorphic.

Let us now complete these coverings to obtain branched coverings. To this
end, it is enough to treat h. Let us take any c ∈ C and a little disk D around
it. Let D∗ = D r {c}, and let us consider a component U∗ of h−1(D∗) Then
f : U∗ → D∗ is a finite degree covering. Hence U∗ is isomorphic to a punctured
disk D∗ (see Exercise 2.39), so it represents a cusp end e of Σ∗. Let us complete
it to a conformal disk U = U∗ ∪ {∞e} ≈ D and extend h holomorphically to the
completion (see Proposition 2.59 and a remark after it).
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Doing this with all punctures c and all punctured disks U∗, we complete Σ∗ to a
Riemann surface Σ such that h admits a holomorphic extension Σ→ S. Obviously,
this extension is proper, so it is a branched covering. �

Note in conclusion that the notion of a holomorphic Galois branched cover-
ing is equivalent to the notion of a covering between Riemann orbifolds (compare
Exercise 1.113).

3.6. Telescope. For dynamical purposes, let us prepare a simple but very
useful lemma.

Telescoping Lemma. Let Ui ⊂ C, i = 0, 1, . . . , l, be a family of open topo-
logical disks, and let φi : Ui → C, i = 0, 1, . . . , l − 1, be a family univalent maps
such that φi(Ui) ⊃ Ui+1. Let Φ := φn−1 ◦ · · · ◦φ0. Then DomΦ is a topological disk
D ⊂ U0 univalently mapped onto Ul. Furthermore, if φi(Ui) ⋑ Ui+1 then D ⋐ U0.

Corollary 3.16. Under the above circumstances, there is a nest of topological
disks

D ≡ D0 ⊂ D1 ⊂ · · · ⊂ Dl ≡ U0

such that Dk is mapped univalently under Φk := φk ◦ · · · ◦φ0 onto Ul. Furthermore,
if φi(Ui) ⋑ Ui+1 then Dk ⋐ Dk+1, k = 0, 1, . . . , l − 1.

4. Riemann, Montel, Koebe

4.1. Little Montel Theorem.

Theorem 4.1 (Little Montel). Any bounded family of holomorphic functions
is normal.

Proof. It is because the derivative of a holomorphic function can be estimated
via the function itself. Indeed by the Cauchy formula

|φ′(z)| ≤ max ζ∈U |φ(ζ)|
dist(z, ∂U)2

.

Thus, if a family of holomorphic functions φn is uniformly bounded, their derivatives
are uniformly bounded on compact subsets of U . By the Arzela-Ascoli Criterion,
this family is precompact in the space C(U) of continuous functions. SinceM(U) is
closed in C(U), we see that the original family is precompact in the spaceM(U). �

4.2. Riemann Mapping Theorem. For dynamical applications, we will not
need the full strength of the Uniformization Theorem: only uniformization of plane
domains will be relevant. Let us start with the most classical case:

Riemann Mapping Theorem. Any simply connected domain D ⊂ Ĉ whose
complement contains more than one point is conformally equivalent to the unit disk
D. The conformal isomorphism φ : D→ D is unique up to pre-composition with a
Möbius transformation M ∈ Aut(D).15

15For instance, it is uniquely determined by its value at 0 and the image of the tangent vector
1 ∈ T0D under Dφ(0).
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Proof. The uniqueness part is obvious, so let us focus on the existence.
First, notice that D can be conformally mapped onto a bounded domain in

C. Indeed, since Ĉ rD contains more than one point and D is simply connected,
Ĉ r D is in fact a continuum. Let us take two points a1, a2 ∈ Ĉ r D, and move
them to 0,∞ by a Möbius transformation. This turns D into a domain in C∗.16

Since D is simply connected, the square root map Q : z 7→ √z has a single-valued
branch on D. Applying it, we obtain a domain whose complement has non-empty
interior (the image of the other branch of Q). Moving ∞ to this complement by a
Möbius transformation, we make D a bounded domain in C.

Let us now take a point a ∈ D, and consider the space C of conformal embed-
dings ψ : D → D normalized so that ψ(a) = 0. Note that C 6= ∅ since D can be
embedded into D by an affine map. By the Little Montel Theorem, C is normal.
Hence we can find a conformal map ψ0 ∈ C that maximizes the derivative |ψ′(a)|
over the class C.

We claim that ψ0 conformally maps D onto D. The only issue is surjectivity.
Assume there is a point a ∈ D r ψ0(D). Let B : (D, 0) → (D, 0) be a double
branched covering with critical point at a.

Exercise 4.2. Write down B explicitly.

Since ψ0(D) is simply connected, there is a single-valued branch B−1 : ψ0(D)→
D. By the Schwarz Lemma, |B′(0)| < 1, and hence the embedding B−1 ◦ ψ0 :
(D, a)→ (D, 0) has a bigger derivative at a than ψ – contradiction. �

In particular, if we mark a point a ∈ D, then the uniformization φ : (D, 0) →
(D, a) is unique up to rotations of D. Since rotations preserve the foliations D

by the radii and circles centered at 0, their images under φ are well defined. In
this way we obtain two orthogonal analytic foliations of D r {a}, by (Green) rays
Rθ := {φ(re(θ)) : r ∈ (0, 1)} and equipotential Er := {φ(re(θ)) : θ ∈ R/Z}.

Note that this definition is consistent with the one given in §10.9 since the
Green function Ga is equal to − log |φ−1(z)|.

4.3. Normal families and Big Montel Theorem. Let U be a Riemann
surface, and let M(U) be the space of meromorphic functions φ : U → C̄. Supply
the target Riemann sphere C̄ with the spherical metric ds and the space M(U)
with the topology of uniform convergence on compact subsets of U . Thus φn → φ
if for any compact subset K ⊂ U , ds(φn(z), φ(z)) → 0 uniformly on K. Since
locally uniform limits of holomorphic functions are holomorphic,M(U) is closed in
the space C(U) of continuous functions φ : U → C̄ (endowed with the topology of
uniform convergence on compact subsets of U).

Exercise 4.3. Endow M(U) with a metric compatible with the above conver-
gence that makes M(U) a complete metric space.

It is important to remember that the target should be supplied with the spher-
ical rather than Euclidean metric even if the original family consists of holomorphic
functions. In the limit we can still obtain a meromorphic function, though of a very
special kind:

16We will keep notation D for various domains conformally equivalent to D.
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Exercise 4.4. Let φn : U → C be a sequence of holomorphic functions con-
verging to a meromorphic function φ : U → C̄ such that φ(z) =∞ for some z ∈ U .
Then φ(z) ≡ ∞, and thus φn(z)→∞ uniformly on compact subsets of U .

A family of meromorphic functions on U is called normal if it is precompact in
M(U).

Exercise 4.5. Show that normality is the local property: If a family is normal
near each point z ∈ U , then it is normal on U .

Exercise 4.6. If a domain U ⊂ C is supplied with the Euclidean metric |dz|
while the target C̄ is supplied with the spherical metric |dz|/(1 + |z|2), then the
corresponding “ES norm” of the differential Dφ(z) is equal to |φ′(z)|/(1 + |φ(z)|2),
z ∈ U . Show that a family of meromorphic functions φn : U → C̄ is normal if and
only if the ES norms ‖Dφn(z)‖ are uniformly bounded on compact subsets of U .

Exercise 4.7. A sequence of holomorphic functions is normal if and only if
one can extract from any subsequence a further subsequence which is either locally
bounded or divergent (locally uniformly) to ∞.

Theorem 4.8 (Montel). If a family of meromorphic functions φn : U → C̄

does not assume three values then it is normal.

Proof. Since normality is a local property, we can assume that U is a disk.
Let us endow it with the hyperbolic metric ρ. Let a, b, c be omitted values on C̄,
and let ρ′ be the hyperbolic metric on the thrice punctured sphere C̄ r {a, b, c}.

By the Schwarz Lemma, all the functions φn are contractions with respect to
these hyperbolic metrics. By Proposition 7.5 (iii), the spherical metric is dominated
by ρ′, so the φn are uniformly Lipschitz from metric ρ to the spherical metric.
Normality follows. �

Theorem 4.9 (Refined Montel). Let {φn : U → C̄} be a family of meromorphic
functions. Assume that there exist three meromorphic functions ψi : U → C̄ such
that for any z ∈ U and i 6= j we have: ψi(z) 6= ψj(z) and φn(z) 6= ψi(z). Then the
family {φn} is normal.

Proof. Let us consider the holomorphic family of Möbius transformations
hz : C̄→ C̄ depending on z ∈ U as a parameter such that

hz : (ψ1(z), ψ2(z), ψ3(z)) 7→ (0, 1,∞).

Then the family of functions Φn(z) = hz(φn(z)) omits value 0, 1,∞, and hence is
normal by Theorem 4.8. It follows that the original family is normal as well. �

Exercise 4.10. Show that the theorem is still valid if the functions ψj are
different but ψi(z) = ψj(z) is allowed for some z ∈ U .

Given a family {φn} of meromorphic functions on U , we can define its set of
normality as the maximal open set F ⊂ U on which this family is normal.

4.4. Koebe Distortion Theorem. We will now discuss one of the most
beautiful and important theorems of the classical geometric functions theory.

The inner radius rD(a) ≡ dist(a, ∂D) of a pointed disk (D, a) is the biggest
round disk D(a, ρ) contained in D. The outer radius RD(a) ≡ distH(a, ∂D) is the
radius of the smallest disk D(a, ρ) containing D. (If a = 0, we will simply write rD
and RD.) The shape (or dilatation) of a disk D around a is the ratio RD(a)/rD(a).
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Theorem 4.11 (Koebe Distortion). Let φ : (D, 0) → (D, a) be a conformal
isomorphism, and let k ∈ (0, 1), Dk = φ(Dk). Then there exist constants C = C(k)
and L = L(k) (independent of a particular φ!) such that

(4.1)
|φ′(z)|
|φ′(ζ)| ≤ C(k) for all z, ζ ∈ Dk

and

(4.2) L(k)−1|φ′(0)| ≤ rDk,a ≤ RDk
(a) ≤ L(k) |φ′(0)|.

In particular, the inner radius of the image φ(D) around a is bounded from below
by an absolute constant times the derivative at the origin:

(4.3) rφ(D)(a) ≥ ρ|φ′(0)| > 0.

The expression in the left-hand side of (4.1) is called the distortion of φ. Thus,
estimate (4.1) tells us that the function φ restricted to Dk has a uniformly bounded
distortion (depending on κ only). Estimate (4.2) tells that the shape of the domain
Dk around a is uniformly bounded. This shape is also called the dilatation of h
on Dκ. So, univalent functions have uniformly bounded dilatation on any disk Dκ.
Note that since any proper topological disk in C can be uniformized by D, there
could be no possible bounds on the distortion and dilatation of φ in the whole unit
disk D. However, once the disk is slightly shrunk, the bounds appear!

The Koebe Distortion Theorem is equivalent to the normality of the space of
normalized univalent functions:

Theorem 4.12. The space U of univalent functions φ : (D, 0) → (C, 0) with
|φ′(0)| = 1 is compact (in the topology of uniform convergence on compact subsets
of D).

Let us make a simple but important observation:

Lemma 4.13. Let φ : (D, 0)→ (C, 0) be a univalent function normalized so that
|φ′(0)| = 1. Then the image φ(D) cannot contain the whole unit circle T.

Proof. Otherwise the inverse map φ−1 would be well defined on some disk Dr
with r > 1, and the Schwarz Lemma would imply |Dφ−1(0)| ≤ 1/r < 1, contrary
to the normalization assumption. �

Proof of Theorem 4.12. By Lemma 4.13, for any φ ∈ U there is a θ ∈ R such
that the rotated function eiθφ does not assume value 1. Since the group of rotation
is compact, it is enough to prove that the space U0 ⊂ U of univalent functions φ ∈ U
which do not assume value 1 is compact.

Let us puncture D at the origin, and restrict all the functions φ ∈ U0 to the
punctured disk D∗. Since all the φ are univalent, they do not assume value 0 in D∗.
By the Montel Theorem, the family U0 is normal on D∗.

Let us show that it is normal at the origin as well. Take a Jordan curve γ ⊂ D∗

around 0, and let ∆ be the disk bounded by γ. Restrict all the functions φ ∈ U0 to
γ. By normality in D∗, the family U0 is either uniformly bounded on γ, or admits
a sequence which is uniformly going to ∞. But the latter is impossible since all
the curves φn(γ) intersect the interval [0, 1] (as they go once around 0 and do not
go around 1). Thus, the family U0 is uniformly bounded on γ. By the Maximum
Principle, it is is uniformly bounded, and hence normal, on ∆ as well.
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Thus, the family U0 is precompact. What is left, is to check that it contains all
limiting functions. By the Argument Principle, limits of univalent functions can be
either univalent or constant. But the latter is not possible in our situation because
of normalization |φ′(0)| = 1. ⊔⊓

Exercise 4.14. (i) Show that a family F of univalent functions φ : D → C

is precompact in the space of all univalent functions if and only if there exists a
constant C > 0 such that

|φ(0)| ≤ C and C−1 ≤ |φ′(0)| ≤ C for all φ ∈ F .
(ii) Let (Ω, a) be a pointed domain in C and let C > 0. Consider a family F
of univalent functions φ : Ω → C such that |φ(a)| ≤ C. Show that this family is
normal if and only if there exists ρ > 0 such that each function φ ∈ F omits some
value ζ with |ζ| < ρ.

Proof of the Koebe Distortion Theorem. Compactness of the family U immedi-
ately yields that functions φ ∈ U and their derivatives are uniformly bounded on
any smaller disk Dk, k ∈ (0, 1). Combined with the fact that all functions of U are
univalent, compactness also implies a lower bound on the inner radius rφ(Dk) and on
the derivative φ′(z) in Dk. These imply estimates (4.1) and (4.2) on the distortion
and shape by normalizing a univalent function φ : D→ C, i.e., considering

φ̃(z) =
φ(z)− a
φ′(0)

∈ U .

(Note that this normalization does not change either distortion of the function or
its dilatation.)

Estimate (4.3) is an obvious consequence of the left-hand side of (4.2). ⊔⊓
We have given a qualitative version of the Koebe Distortion Theorem, which

will be sufficient for all our purposes. The quantitative version provides sharp
constants C(k), L(k), and ρ, all attained for a remarkable extremal Koebe function
f(z) = z/(1−z)2 ∈ U . The sharp value of the constant ρ is particularly remarkable:

Koebe 1/4−Theorem. Let φ : (D, 0) → (C, 0) be a univalent function with
φ′(0) = 1. Then φ(D) ⊃ D1/4, and this estimate is attained for the Koebe function.

We will sometimes refer to the Koebe 1/4−Theorem rather than its qualitative
version (4.3), though as we have mentioned, the sharp constants never matter for
us.

Exercise 4.15. Find the image of the unit disk under the Koebe function.

Let us finish with an invariant form of the Koebe Distortion Theorem:

Theorem 4.16. Consider a pair of conformal disks ∆ ⋐ D. Let

mod(D r∆) ≥ µ > 0.

Then any univalent function φ : D → C has a bounded (in terms of µ) distortion
on ∆:

|φ′(z)|
|φ′(ζ)| ≤ C(µ) for all z, ζ ∈ ∆.

The proof will make use of one important property of the modulus of an annulus:
if an annulus is getting pinched, then its modulus is vanishing:
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Lemma 4.17. Let 0 ∈ K ⊂ D, where K is compact. If

mod(DrK) ≥ µ > 0

then K ⊂ Dk where the radius k = k(µ) < 1 depends only on µ.

Proof. Assume there exists a sequence of compact sets Ki satisfying the as-
sumptions but such that Ri → 1, where Ri is the outer radius of Ki around 0.
Let us uniformize D r Ki by a round annulus, hi : A(ρi, 1) → D r Ki. Then
ρi ≤ ρ ≡ e−µ < 1. Thus, the maps hi are well-defined on a common annulus
A = A(ρ, 1). By the Little Montel Theorem, they form a normal family on A, so
that we can select a converging subsequence hin → h.

Let γ ⊂ A be the equator of A. Then h(γ) is a Jordan curve in D which
separates the sets Kin (with sufficiently big n) from the unit circle - contradiction.

�

Remark. The extremal compact sets in the above lemma (minimizing k for a
given µ) are the straight intervals [0, keiθ].

Proof of Theorem 4.16. Let us uniformize D by the unit disk, h : D → D, in
such a way that h(0) ∈ ∆. Let ∆̃ = h−1∆ and φ̃ = φ◦h. By Lemma 4.17, ∆̃ ⊂ Dk,
where k = k(µ) < 1. By the Koebe Theorem, the distortion of the functions h
and φ̃ on ∆̃ is bounded by some constant C = C(k). Hence the distortion of φ is
bounded by C2. ⊔⊓

We will often use the following informal formulation of Theorem 4.16: “If φ : D → C

is a univalent function and ∆ ⊂ D is well inside D, then φ has a bounded distortion
on ∆”. Or else: “If a univalent function φ : ∆ → C has a definite space around ∆,
then it has a bounded distortion on ∆”.

Let us summarize some of the above results in a very useful comparison of the
derivative of a univalent function with the inner radius of its image:

Corollary 4.18. For any univalent function φ : (D, 0)→ (D, a), we have:

rD(A) ≤ |φ′(0)| ≤ 4 rD(a).

Proof. The left-hand side estimate follows from Lemma 4.13 by normalizing

φ. The Koebe 1/4-Theorem implies the right-hand side one: rD(a) ≥
1

4
|φ′(0)|. �

5. Uniformization Theorem

5.1. Statement. The following theorem of Riemann and Koebe is the most
fundamental result of complex analysis:

Theorem 5.1. Any simply connected Riemann surface is conformally equiva-
lent to either the Riemann sphere Ĉ, or to the complex plane C, or the unit disk
D.

We also say that any simply connected Riemann surface as a conformal sphere,
or a conformal plane, or a conformal disk.
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5.2. Classification of Riemann surfaces. Consider now any Riemann sur-
face S. Let π : Ŝ → S be its universal covering. Then the complex structure on
S naturally lifts to Ŝ turning S into a simply connected Riemann surface which
holomorphically covers S. Thus, we come up with the following classification of
Riemann surfaces:

Theorem 5.2. Any Riemann surface S is conformally equivalent to one of the
following surfaces:

• The Riemann sphere Ĉ (spherical case);
• The complex plane C, or the punctured plane C∗, or a torus T2

τ , τ ∈ H

(parabolic case);
• The quotient of the hyperbolic plane H2 modulo a discrete group of isome-

tries (hyperbolic case).

Thus, any Riemann surface comes endowed with one of the three geometries:
projective (§2.3), affine (§2.2), or hyperbolic (§2.4). In particular, any hyperbolic
Riemann surface S is endowed with the canonical hyperbolic metric, the push-
forward of the hyperbolic metric from H2 to S.

5.3. Smooth annuli. We will now pass to domains on Riemann surfaces be-
ginning with annuli:

Proposition 5.3. Let A ⋐ S be a topological annulus in a Riemann surface
S with piecewise smooth boundary. Then A is conformally equivalent to a standard
annulus A(r,R).

Proof. Let us call one of the boundary components of A “inner”, ∂iA, and the
other one “outer”, ∂oA (compare §1.7.12). Let us consider the “harmonic measure”
of the outer component, i.e. a harmonic function u(z) on A vanishing on ∂iA and
≡ 1 on ∂oA (see §10.8). Let u∗ be its harmonic conjugate, This function is not
single valued, but rather gets changed by the period

p =

∫

γ

∗du

under the monodromy along a non-trivial cycle γ in A (see §10.1). Hence the
holomorphic function

f = exp
2π

p
(u+ iu∗)

is single valued. Moreover, it properly maps A onto the round annulus A(1, e1/p)
and has degree one (since f homeomorphically maps the equipotentials of A onto
the round circles. The conclusion follows. �

5.4. Simply connected domains.

Proposition 5.4. Let D ⋐ S be a simply connected domain on a Riemann
surface S with piecewise smooth boundary. Then D is conformally equivalent to the
unit disk D.

Proof. Take a base point z0 ∈ D, and let Dε be a coordinate disk of radius
ε > 0 centered at z0. Then U rDε is a topological annulus with piecewise smooth
boundary, so by Proposition 5.3 there is a conformal map φε : DrDε → A(r(ε), 1)
onto a round annulus. By the Little Montel Theorem, the family of maps φε is
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normal on D r {z0}.17 Let us select a converging subsequence φεk → φ as εk → 0,
where φ : D r {z0} → D is a holomorphic map. By Removability of isolated
singularities, φ holomorphically extends through z0.

Let us show that φ : D → D is proper. It is sufficient to check that for any
r ∈ (0, 1), the preimage φ−1(Dr) is compactly contained in D. Indeed, take any
R ∈ (r, 1). By invariance of the modulus,

mod(φ−1ε (A(R, 1)) =
1

2π
log

1

R
> 0, for any ε > 0 sufficiently small.

By Lemma 4.17, dist(φ−1ε (TR), ∂D) ≥ ρ > 0 for some ρ = ρ(R) > 0. Letting ε→ 0,
we conclude that dist(φ−1(Tr), ∂D) ≥ ρ > 0, and properness of φ follows.

So, φ has a well defined degree. Since degree is stable under perturbations,
deg φ = deg φεk for all k sufficiently large. Thus deg φ = 1, and hence φ is a
conformal isomorphism. �

5.5. Simply connected Riemann surfaces. We are now ready to prove the
Uniformization Theorem: it is covered by the following two results.

Theorem 5.5. Any simply connected open Riemann surface S is isomorphic
to either the disk D or to the complex plane C.

Proof. Fix a base point p ∈ S and some reference local chart ψ near it. By
Lemma 1.80, S can be exhausted by a nest of (open) topological disks Dn with
piecewise smooth boundary:

p ∈ D0 ⋐ D1 ⋐ . . . ,
⋃
Dn = S.

By Proposition 5.4, for each n, there is a conformal map φn : (Dn, p) → (DRn
, 0)

normalized so that φ′n(p) = 1, where the derivative is calculated with respect to the
reference local chart ψ.

The Schwarz Lemma implies that R0 < R1 < . . . . Let R := limRn ∈ (0,∞].
By the Koebe Theorem, for any m ∈ N, the sequence (φn)

∞
n=m, being restricted to

Dm, is precompact. By the diagonal procedure, we can select a subsequence φnk

converging on each Dm. The limits patch together into the desired conformal map
Φ : S → DR (where D∞ ≡ C). �

Theorem 5.6. Any simply connected closed Riemann surface S is isomorphic
to the Riemann sphere Ĉ.

Proof. By the Fundamental Theorem of 2D Topology, S is a topological
sphere. So, if we puncture out a point p from S, we obtain a topological disk.
By Theorem 5.5, S r {p} is isomorphic to either D or C.

Assume the former, and let φ : S r {p} → D be an isomorphism. By Remov-
ability of isolated singularities for conformal maps, φ extends to a holomorphic map
φ̂ : S → D. But such maps do not exist for variety of reasons (e.g., the image φ̂(S)
must be simultaneously compact and open; or by the Maximum Principle).

So, there is an isomorphism φ : S r {p} → C. Using the Removability of
isolated singularities once again, we extend it to an isomorphism φ̂ : S → Ĉ. �

17On normality with varying domains of definition, see §7.7.
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5.6. Extension to ends revisited. Let us now formulate a semi-local version
of Exercise 3.2:

Lemma 5.7. Let f : S → S′ be a holomorphic map between two Riemann
surfaces. Let e and e′ be tame ends of S and S′ respectively such that f induces a
proper map e 7→ e′.

(i) If E is a cusp then f extends holomorphically through the ideal punctures at ∞.

(ii) If E is non-cuspidal then f extends continuously to a covering between the ideal
circles at infinity of the ends.

Proof. Let us consider a topological cylinder F ′ ⊂ S′ representing the end
E′, and let F ⊂ S be the component of f−1(F ′) that has e as one of its ends. Such
a component exists as f properly maps E to E′. Moreover, if F ′ is sufficiently
small then f : F → F ′ is proper, and hence is a branched covering of finite degree.
Then it has finitely many critical points, and F ′ can be further shrunk so that
f : F → F ′ is unbranched. By 1.100, F is a topological cylinder, and hence it
represents the end e. By Exercise 2.61, f : F → F ′ extends to a covering between
the ideal completions of these cylinders, implying the assertion. �

Corollary 5.8. Let i : S →֒ S′ be an embedding between two Riemann sur-
faces. Let E and E′ be tame ends of S and S′ respectively such that i properly maps
E to E′. Then i continuously extends to a homeomorphism ∂IES → ∂IE′S′ between
the ideal circles at infinity of the ends.

Under these circumstances, we identify E and E′ by means of the extended
homeomorphism i.

5.7. Uniformization of orbifolds.

Theorem 5.9. Let O be a Riemann orbifold of finite conformall type with non-
exceptional signature (i.e., different from (S2; p) and (S2, {p.q}, p 6= q). Then O
falls into one of the following three types:

(i) Parabolic type: χ(O) = 0. In this case O is uniformized by a discrete group of
Euclidean motions acting on C (listed in Exercise 2.6), and possesses the canonical
flat structure (up to scaling).

(ii) Elliptic type: χ(O) > 0. In this case O is uniformized by a finite group of
rotations of the round sphere (listed in Exercise 2.13), and possesses the canonical
spherical structure.

(iii) Hyperbolic type: χ(O) < 0. In this case O is uniformized by a finitely generated
Fuchsian group of first kind, and possesses the canonical hyperbolic structure.

Proof. By Theorem 2.93, our orbifold is good, so it can be uniformized by a
discrete group Γ of autoimorphisms of a simply connected Riemann surface S. By
the Uniformization Theorem, S is either C, or Ĉ or H, endowed with the canonical
geometric structure (flat, spherical, or hyperbolic respectively), making Γ a group
of motions. This endows O with the corresponding geometric structure. By the
Gauss-Bonnet Formula for orbifolds (2.36), the Euler characteristic χ(O) has the
same sign as the curvature of the structure. �
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Accordingly Riemann orbifolds are classified as elliptic, parabolic, or hyperbolic
(similarly to Riemann surfaces). Moreover, almost all Riemann orbifolds are hy-
perbiolic: the short list of parabolic and elliptic ones is provided in Exercises 2.6
and 2.13.

6. Extremal length and width

6.1. Definitions. Let us now introduce one of the most powerful tools of
Conformal Geometry. Given a path family Γ in a Riemann surface U , we will
define a conformal invariant L(Γ) called the extremal length of Γ. Consider a
measurable conformal metric ρ|dz| on C with finite total mass,

mρ(U) =

∫
ρ2dx ∧ dy <∞, where ρ : U → [0,∞]

(such metrics are called admissible). Let

lρ(γ) =

∫

γ

ρ|dz|,

stand for the length of γ ∈ Γ in this metric (with the convention lρ(γ) =∞ if γ is
non-rectifiable, or ρ| γ is not measurable, or else it is not integrable18). Define the
ρ-length of Γ as

lρ(Γ) = inf
γ∈Γ

lρ(γ).

Normalize it in the scaling invariant way:

Lρ(Γ) =
lρ(Γ)

2

mρ(U)
,

and define the extremal length of Γ as

L(Γ) = sup
ρ
Lρ(Γ),

where the supremum is taken over all admissible metrics.

A metric ρ on which this supremum is attained (if exists) is called extremal.

Exercise 6.1. Show that the value of L(Γ) does not change if one uses only
smooth admissible metrics ρ.

Let us summarize immediate consequences of the definition:

Exercise 6.2. • Extension of the family: If a path family Γ′ contains a family
Γ, then L(Γ′) ≤ L(Γ).
• Overflowing: If Γ overflows Γ′ (i.e., each path of Γ contains some path of Γ′),
then L(Γ) ≥ L(Γ′).
• Independence of the ambient surface: If U ⊂ U ′ and Γ is a path family in U then
L(Γ) = L(Γ′). (This justifies skipping of “U ” in the notation.)

• Disregarding small subfamilies: If Γ is a smooth foliation of some domain and
Γ′ ⊂ Γ comprises almost all curves of Γ then L(Γ′) = L(Γ).

18For this to make sense, we should think of ρ as an actual function rather than a class
of functions up to modification on null-sets. It is also convenient to assume that ρ is defined
everywhere.
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The extremal width of the family Γ is defined as the inverse to its length:

W(Γ) = L(Γ)−1.
One can also conveniently define it as follows:

Exercise 6.3. W(Γ) = infmρ(U), where the infimum is taken over all metrics
with ρ(γ) ≥ 1 for all paths γ ∈ Γ. (In this context, such metrics are called admis-
sible. Sometimes, to distinguish it from the previous admissibility requirement, we
call these metrics W-admissible.)

Remark 6.4. One should think that a family is “big” if it is “wide”, i.e., it has
big extremal width. So, big families are short.

The extremal length and width are conformal invariants:

If φ : U → U ′ is a conformal isomorphism between two Riemann surfaces such that
φ(Γ) = Γ′, then L(Γ) = L(Γ′). This immediately follows from the observation
that φ transfers the family of admissible metrics on U to the family of admissible
metrics on U ′ preserving all the quantities in question.

6.2. Electric circuits laws. We will now formulate two crucial properties of
the extremal length and width that show that they behave respectively like the
resistance and the conductance in electric circuits.

Let Γ1, Γ2 and Γ be three path families on U . We say that Γ disjointly overflows
Γ1 and Γ2 if any path γ ∈ Γ contains a pair of disjoint paths γ1 ∈ Γ1 and γ2 ∈ Γ2.

Series Law. Assume that a family Γ disjointly overflows families Γ1 and Γ2.
Then

L(Γ) ≥ L(Γ1) + L(Γ2),

or equivalently,
W(Γ) ≤ W(Γ1)⊕W(Γ2).

Here x⊕y = (1/x+1/y)−1 is the harmonic sum of x and y (which is conjugate
to the usual sum by means of z 7→ x−1).

Proof. Let ρ1 and ρ2 be arbitrary admissible metrics. By appropriate rescal-
ings, we can normalize them so that

lρi(Γi) = mρi(U) = Lρi(Γi), i = 1, 2.

Let lρ = max(ρ1, ρ2). Since any γ ∈ Γ contains two disjoint paths γi ∈ Γi, we have:

lρ(γ) ≥ lρ1(γ1) + lρ2(γ2) ≥ lρ1(Γ1) + lρ2(Γ2) = Lρ1(Γ1) + Lρ2(Γ2).

Taking the infimum over all γ ∈ Γ, we obtain:

lρ(Γ) ≥ Lρ1(Γ1) + Lρ2(Γ2).

On the other hand, since ρ ≤ ρ1 + ρ2, we have:

mρ(U) ≤ mρ1(U) +mρ2(U) = Lρ1(Γ1) + Lρ2(Γ2).

Hence
Lρ(Γ) ≥ Lρ1(Γ1) + Lρ2(Γ2).

Taking the supremum over all normalized metrics ρ1 and ρ2, we obtain the desired
inequality. �

We say that two path families, Γ1 and Γ2, are disjoint if they are contained in
disjoint measurable sets.
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Parallel Law. Let Γ = Γ1 ∪ Γ2. Then

W(Γ) ≤ W(Γ1) +W(Γ2).

Moreover, if Γ1 and Γ2 are disjoint then

W(Γ) =W(Γ1) +W(Γ2).

Proof. This time, let us consider metrics ρ1 and ρ2 that are W-admissible in
the sense of Exercise 6.3, so that lρi(Γi) ≥ 1. Let again ρ = max(ρ1, ρ2). Then
lρ(Γ) ≥ 1 as well, and hence

W(Γ) ≤ mρ(U) ≤ mρ1(U) +mρ2(U).

Taking the infimum over the metrics ρi, we obtain the desired inequality.
Assume now that Γ1 and Γ2 are disjoint. Let X1 and X2 be two disjoint

measurable sets supporting the respective families. Take any admissible metric ρ
with ρ(Γ) ≥ 1, and let ρi = ρ|Xi. Then ρi(Γi) ≥ 1 as well, and hence

mρ(U) ≥ mρ1(U) +mρ2(U) ≥ W(Γ1) +W(Γ2).

Taking the infimum over admissible ρ, we obtain the opposite inequality. �

Remark 6.5. Both laws extend immediately to the case of n families Γ1, . . . ,Γn.

6.3. Annulus, rectangle and torus revisited.

6.3.1. Modulus as the extremal length. We will now calculate the modulus of an
annulus (see §2.6.1) in terms of the extremal length. Consider an open flat cylinder
Cyl ≡ Cyllh with circumference l and height h. Proper curves (0, 1) → Cyl going
from the top to the bottom of Cyl will be called vertical. 19 Among these curves
there are genuinely vertical, that is, straight intervals perpendicular to the top and
the bottom. Horizontal curves in Cyl are closed curves homotopic to the top and
the bottom of Cyl. Among them there are genuinely horizontal, that is, the circles
parallel to the top and the bottom. Genuinely vertical and horizontal curves form
the vertical and horizontal foliations respectively.

If A is a conformal annulus, then it is isomorphic to a flat cylinder, and will
be freely identified with it. Curves in A corresponding to (genuinely) verti-
cal/horizontal curves in the cylinder will be called in the same way. In particular,
the vertical and horizontal foliations in A(r,R) are respectively comprised of radial
intervals and co-centric circles.

Proposition 6.6. Let Γ be a family of vertical curves in a conformal annulus
A ≈ Cyllh containing almost all genuinely vertical ones. Then

L(Γ) = modA = h/l.

Moreover, the Euclidean metric on the cylinder Cyl is extremal.

Proof. We will identify A with a flat cylinder Cyl ≡ Cyllh. Take first the flat
metric e on the cylinder. Then le(γ) ≥ h for any γ ∈ Γ, so that, le(Γ) = h. On the
other hand, me(Γ) = lh. Hence

L(Γ) ≥ Le(Γ) = h2/lh = modCyl.

Take now any admissible metric ρ on Cyl. Let γθ ∈ Γ be the genuinely vertical
curve through θ ∈ R/lZ. Then lρ(Γ) ≤ lρ(γθ) for any θ ∈ R/lZ. Integrating this

19In this discussison, we do not require that vertical curves land at any points of ∂A.
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over R/lZ (using that γθ ∈ Γ for a.e. θ ∈ R/lZ)) and applying the Fubini Theorem
and the Cauchy-Schwarz inequality, we obtain:

(6.1) (l · lρ(Γ))2 ≤
(∫

R/lZ

lρ(γθ) dθ

)2

=

(∫

Cyl

ρ dme

)2

≤ lhmρ(Cyl).

Hence Lρ(Cyl) ≤ h/l = modCyl, and the conclusion follows. �

Exercise 6.7. Show that the Euclidean metric is the unique extremal metric
on Cyl.

There is also the “dual” way to evaluate the same modulus:

Exercise 6.8. Let Γ be a family of horizontal curves in Cyl containing almost
all genuinely horizontal curves. Then

modCyl =W(Γ).

6.3.2. Gröztsch Inequality. The following inequality plays an outstanding role
in holomorphic dynamics (the name we use for it is widely adopted in the dynamical
literature):

Proposition 6.9. Consider a conformal annulus A containing n disjoint con-
formal annuli A1, . . . An homotopically equivalent to A. Then

modA ≥
∑

modAk.

Proof. Let Γk be the horizontal family of Ak and Γ be the horizontal family
in A. By the Parallel Law, W(Γ) ≥ ∑W(Γk), and the conclusion follows from
Exercise 6.8. (Dually, one can apply the Series Law to the extremal length of the
vertical families.)

�

6.3.3. Euclidean geometry of an annulus. The length-area method allows one
to relate modA to the Euclidean geometry of A. As a simple illustration, let us show
that modA is bounded by the distance between the inner and the outer complements
of A rel the size of the inner complement:

Lemma 6.10. Consider a topological annulus A ⊂ C. Let K and Q stand for
its inner and outer complements20 respectively. Then

modA ≤ C(1 + dist(K,Q)/diamK).

Proof. Let Γ be the family of horizontal curves in A. According to Exer-
cise 6.8, we need to bound W(Γ).

Take points a ∈ K and c ∈ Q on minimal distance dist(K,Q), and then select
a point b ∈ K such that dist(a, b) > diamK/2. Consider a family ∆ of closed
Jordan curves γ ⊂ Cr{a, b, c} with winding number 1 around a and b and winding
number 0 around c. Since Γ ⊂ ∆, W(Γ) ≤ W(∆).

Let us estimate L(∆) from below. Rescale the configuration {a, b, c} (without
changing notations) so that |a− b| = 1 and |a− c| = d, where

dist(K,Q)/diamK ≤ d ≤ 2 dist(K,Q)/diamK.

20For an annulus with comlicated boundary, they are defined as follows. Take a homotopically
non-trivial Jordan curve γ ⊂ A, and let the inner/outer complement be the union of components
of C rA lying in the inner/outer component of C r γ, respectively.
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Take now the unit neighborhood B of the union [a, b] ∪ [a, c] of two intervals, and
endow it with the Euclidean metric e (extended by 0 outside B). Then le(∆) ≥ 1
so this family is W-admissible. Moreover, me(B) ≤ C(1 + d), and hence W(∆) ≤
C(1 + d) as well. �

Corollary 6.11. If neither K nor Q is a singleton then modA <∞.

Corollary 6.12. If µ := modA ≥ µ > C (with C from Lemma 6.10) then a
homotopically non-trivial round annulus of modulus ≥ log µ can be inscribed into A.

Proof. A round annulus of outer radius dist(Q,K) and inner radius diamK
can be inscribed into A. �

Exercise 6.13. Show that under the above circumstances,

(i) If modA ≥ µ > C then diamK ≤ M exp(−αµ), with absolute M > 0 and
α > 0.

(ii) There is a lower bound: modA ≥ µ(dist(K,Q)/diam(K)) > 0.

An annulus A ⊂ Ĉ is called ε-pinched if

dist(K,Q) ≤ εmin(diamK, diamQ),

where K and Q are the inner and outer complementary components of A.

Proposition 6.14. The modulus of an annulus A ⊂ Ĉ is δ-small iff A is
ε-pinched (quantitatively).

Problem 6.15. Let U = A ∪K. Show that
areaU

areaK
≥ 1 + 4πmodA.

6.3.4. Divergence Property. The Gröztsch Inequality proves an effecient tool to
recognize cusps as ends of Riemann surfaces.

Proposition 6.16. Let (An)∞n=0 be a nest of disjoint annuli in C, and let
K0 ⊃ K1 ⊃ . . . be the corresponding nest of their inner components An.

If
∑

modAn =∞ then K :=
⋃
Kn is a singleton.

Proof. Let us take a horizontal curve γ in A0 and consider the annulus A
bounded by γ and K. By the Gröztsch Inequality,

modA ≥
∞∑

n=1

modAn =∞.

Corollary 6.11 concludes the argument. �

6.3.5. R-symmetric case. Let us consider a pair of nested intervals, L ⋐ int I,
and let H± be the components of I r L. Let us consider the affiliated conformal
annulus

A(I, L) := (Cr R) ∪ (H+ ∪H−).
and let

(6.2) mod(I : L) := modA(I, L), modR(I : L) := min
±
|H±|
|L| .
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Lemma 6.17. We have:

mod(I : L) ≥ ε > 0⇔ modR(I : L) ≥ δ > 0.

Proof. To obtain implication ⇐, consider the round annulus A whose inner
circle is based upon L as a diameter, and the outer circle is based upon the scaled
interval (1 + δ) · I.

The other implication follows from Lemma 6.10. �

Corollary 6.18. Let (I, L) and (I ′, L′) be two pairs of real intervals, and let
φ : (C, I, L) → (C, I ′, L′) be a conformal embedding that restricts to a diffeomor-
phism between the interval pairs. Then

modR(I : L) ≥ δ > 0⇒ modR(I
′ : L′) ≥ ε > 0.

Proof. By conformal invariance and monotonicity of the modulus, we have:

mod(I ′ : L′) ≥ modφ(A(I, L)) = modA(I, L) ≡ mod(I : L),

and the conclusion follows from the lemma. �

Exercise 6.19. Derive the above Corollary from the Koebe Distortion Theo-
rem.

6.3.6. Shrinking nests of annuli. For a set X ⊂ C, let us say that a sequence
of disjoint annuli An ⊂ C is nested around X if for any any n, An separates both
An+1 and X from ∞. (We will also call it a “nest of annuli around X”.)

Corollary 6.20. Consider a nest of annuli An around X. If
∑

modAn =∞
then X is a single point.

Proof. Only the first annulus, A1, can be unbounded in C. Take some disk
D = DR containing A2, and consider the annulus DrX. By the Gröztsch Inequal-
ity,

mod(D rX) ≥
∑

n≥2
modAn =∞.

Hence X is a single point. �

6.3.7. Quadrilaterals (rectangles). This discussion is parallel to the above dis-
cussion of annuli, so we will be brief. Let us consider a standard marked rectangle
Π = Π[l, h] = [0, l] × [0, h] (see §2.6.2). As in the case of an annulus, we can nat-
urally define (topologically) vertical and horizontal paths in Π, as well genuinely
vertical and horizontal ones. The latter form the vertical and horizontal foliations.

Exercise 6.21. (i) Let Γ be a vertical path family in Π[l, h] that contains
almost all genuinely vertical paths. Then L(Γ) = mod(Π).

(ii) More generally, let Γ be a genuinely vertical lamination in Π[l, h] (i.e., a family
of genuinely vertical paths) supported on a measurable set Λ. Let κ be the horizontal
projection of Λ. Then L(Γ) = h/κ.

A quadrilateral or a conformal rectangle Q(a, b, c, d) is a conformal disk Q with
four marked points a, b, c, d on its ideal boundary. We will often let Q = Q(a, b, c, d)
so that there is no notational difference between the quadrilateral and the under-
lying disk. (If the underlying disk is called, say, D then the corresponding quadri-
lateral is denoted accordingly, D = D(a, b, c, d).)
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A quadrilateral has four ideal boundary sides. As in the case of a rectangle
marking of a quadrilateral is a choice of pair of opposite sides called horizontal,
while the other pair is called vertical.

As an important example, let us consider the quadrilateral

H(a, 0, 1) ≡ H(a, 0, 1,∞), a < 0,

based on the upper half-plane H, marked so that [1,∞] is a horizontal side.

Proposition 6.22. Any marked quadrilateral Q is conformally equivalent to a
unique (up to scaling) standard marked rectangle.

Proof. By the Riemann Mapping Theorem, Q can be conformally mapped
(as a marked quadrilateral) onto a marked quadrilateral H(a, 0, 1,∞) with some
a < 0. By Exercise 2.77, this quadrilateral is conformally equivalent to a standard
rectangle.

Uniqueness follows from Exercise 2.76. �

At this point, we can define various conformal notions and objects (modQ,
genuinely vertical foliation, etc) for any marked quadrilateral Q by transferring
them from a standard rectangle Π conformally equivalent to Q. Assertions of
Exercises 2.76 and 6.21 immediately extend to general marked quadrilaterals.

As in the annulus case, the length-area method allows one to relate conformal
and Euclidean quantities:

Exercise 6.23. Show that for R > 1

1

4π
logR ≤ mod(H(0, 1, R)) ≤ − 4π

log(1− 1/R)
.

(Here the left-hand estimate is good for big R, while the right-hand one is good for
R ≈ 1.)

6.3.8. Tori. Let us now consider a flat torus T2. Given a non-zero homology
class α ∈ H1(T

2), we let Γα be the family of closed curves on T2 representing α (we
call them α-curves). Among these curves, there are closed geodesics, α-geodesics
(they lift to straight lines in the universal covering R2) . They form a foliation. All
these geodesics have the same length, lα.

Exercise 6.24. Let Γ be a family of α-curves containing all α-geodesics. Then

W(Γ) =
areaT2

l2α
.

An annulus A embedded into T2 is called an α-annulus if its horizontal curves
represent the class α. (In this case, we also say that A itself represents the class
α.) The following estimate finds interesting applications in dynamics and geometry
(see §24.6):

Proposition 6.25. Let A1, . . . , An be a family of disjoint α-annuli. Then
∑

modAi ≤
areaT2

l2α
.

Proof. Let Γi be the family of horizontal curves of the annulus Ai. Then by
the Parallel Law,

∑W(Γi) ≤ W(Γα), and the result follows from Exercises 6.8 and
6.24. �
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6.4. Dirichlet integral.

6.4.1. Definition. Consider a Riemann surface S endowed with a smooth con-
formal metric ρ. The Dirichlet integral (D.I.) of a function χ : S → C is defined
as

D(χ) =

∫
‖∇χ‖ρ dmρ,

where the norm of the gradient and the area form are evaluated with respect to ρ.
However:

Exercise 6.26. The Dirichlet integral is independent of the choice of the con-
formal metric ρ. In particular, it is invariant under conformal changes of variable.

In the local coordinates, the Dirichlet integral is expressed as follows:

D(h) =

∫
(|hx|2 + |hy|2)dm =

∫
(|∂h|2 + |∂̄h|2)dm.

In particular, for a conformal map h : U →֒ C we have the area formula:

D(h) =

∫
|h′(z)|2dm = areah(U).

6.4.2. D.I. of a harmonic function.

Exercise 6.27. Consider a flat cylinder A = S1 × (0, h) with the unit circum-
ference. Let χ : A → (0, 1) be the projection to the second coordinate (the “height”
function) divided by h. Then D(χ) = 1/h.

Note that the function χ in the exercise is a harmonic function with boundary
values 0 and 1 on the boundary components of the cylinder (i.e., the solution of the
Dirichlet problem with such boundary values).

Exercise 6.28. Such a harmonic function is unique up to switching the bound-
ary components of A, which leads to replacement of χ by 1− χ.

Due to the conformal invariance of the Dirichlet integral (as well as the modulus
of an annulus and harmonicity of a function), these trivial remarks immediately
yield a non-trivial formula:

Proposition 6.29. Let us consider a conformal annulus A. Then there exist
exactly two proper harmonic functions χi : A→ (0, 1) (such that χ1 + χ2 = 1) and
D(χi) = 1/mod(A).

6.4.3. Multi-connected case. Let S be a compact Riemann surface with bound-
ary. Let ∂S = (∂S)0⊔(∂S)1, where each (∂S)i 6= ∅ is the union of several boundary
components of ∂S. Let us consider two families of curves: the “vertical family” Γv

consisting of arcs joining (∂S)0 to (∂S)1, and the “horizontal family” Γh consisting
of Jordan multi-curves separating (∂S)0 from (∂S)1. (A multicurve is a finite union
of Jordan curves.)

Let χ : S → [0, 1] be the solution of the Dirichlet problem equal to 0 on (∂S)0
and equal to 1 on (∂S)1.

Theorem 6.30.

L(Γv) =W(Γh) =
1

D(h)
.
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The modulus of S rel the boundaries (∂S)0 and (∂S)1 is defined as the above
extremal length:

mod((∂S)0, (∂S)1) = L(Γv).
Remark. Physically, we can think of the pair (∂S)0 and (∂S)1 in S as an electric

condensator. The harmonic function χ represents the potential of the electric field
created by the uniformly distributed charge on (∂S)1. The Dirichlet integral D(χ)
is the energy of this field. Thus, mod((∂S)0, (∂S)1) = 1/D(χ) is equal to the ratio
of the charge to the energy, that is, to the capacity of the condensator.

6.5. Non-Crossing Principle. Let us say that two path families Γ and ∆
cross if every path of Γ crosses every path of ∆. The Non-Crossing Principle asserts
that two big path families do not cross:

Non-Crossing Principle. Let Γ be a horizontal foliation in a quadrilateral
or an annulus, and let ∆ be another path family. If W(Γ) · W(∆) > 1 then Γ and
∆ do not cross.

Proof. Let Π be the quadrilateral or the annulus supporting Γ, and let Γ⊥

be the vertical path family in Π. If ∆ crosses Γ then it overflows Γ⊥, and hence

L(∆) ≥ L(Γ⊥) =W(Γ).

�

Exercise 6.31. Assume ∆ is also a horizontal foliation in a quadrilateral or an
annulus. If W(Γ) ·W(∆) = 1, then Γ and ∆ do not cross unless they are supported
on the same quadrilateral and ∆ is equal to Γ⊥.

The Non-Crossing Principle can be sharpened to an assertion that two wide
path families have a relatively small overlap (which will be used only in vol. III).

Let us consider a genuinely vertical lamination in a quadrilateral Q (see Exer-
cise 6.21). After uniformizing it by a standard rectangle Π = Π[l, h], its projection
to the horizontal side induces a transverse measure ν on Λ (defined up to scaling).
If Q is embedded into a Riemann surface S and γ is a path on S, we say that γ
intersects less than ε-portion of the total width of Λ if

ν{λ ∈ Λ : λ ∩ γ 6= ∅} < εν(Λ)

(note that this condition does not depend on the normalization of ν). The same
discussion applies to the case of annulus.

Small Overlapping Principle. Let κ ≥ 1. Let us consider a genuinely
vertical lamination Λ on some conformal annulus or quadrilateral Q ⊂ S, and let
Γ be another path family on S. If W(Λ) > κ and W(Γ) ≥ κ, then there exists a
path γ ∈ Γ that intersects less than 1/κ-portion of the total width of Λ.

Proof. Assume for definiteness that Q is a quadrilateral. Let φ : Π[a, h]→ R
be the uniformization ofQ by a standard rectangle normalized so that the horizontal
projection of φ∗Λ (which is a genuinely vertical lamination in Π) has length κ. By
Exercise 6.21,

W(Λ) =W(φ∗(Λ)) =
κ

h
.

Since W(Λ) > κ, we conclude that h < 1, and thus

area(φ∗Λ) = h · W(φ∗(Λ)) < κ.
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To bound W(Γ), let us the push-forward the Euclidean metric e on Π to the
quadrilateral Q, i.e., let ρ = φ∗(e |Λ). If a curve γ ∈
Gamma intersects at least 1/κ-portion of the total width of Λ, then the transverse
length of γ is at least 1, and hence

lρ(γ) = ν(γ) ≥ 1.

If this happened for every γ ∈ Γ then we would have

W(Γ) ≤ areaρ(Λ) = area(φ∗Λ) < κ,

contradicting the assumption. �

6.6. Transformation rules.

6.6.1. General rules. As we know, both extremal length and extremal width
are conformal invariants. More generally, we have:

Lemma 6.32. Let f : U → V be a holomorphic map between two Riemann
surfaces, and let G be a family of curves on U . Then

L(f(Γ)) ≥ L(Γ).
Moreover, if f is at most d− to− 1, then

L(f(Γ)) ≤ d · L(Γ).
Proof. Let ρ be a conformal metric on U . Let us push-forward the area form

mρ by f . We obtain the area form mτ = f∗(mρ) of some conformal metric τ on V .
Then areaτ (V ) = areaρ(U) and f∗(τ) ≥ ρ. It follows that

Lρ(Γ) ≤ Lτ (f(Γ)) ≤ L(f(Γ)).
Taking the supremum over ρ completes the proof of the first assertion.

For the second assertion, let us consider a conformal metric τ on V and pull
it back to U , ρ = f∗τ . Then lρ(γ) = lτ (f(γ)) for any γ ∈ Γ, while mρ(U) ≤
d · areaτ (V ). Hence

L(Γ) ≥ Lρ(Γ) ≥
1

d
Lτ (f(Γ)),

and taking the supremum over τ completes the proof. �

Corollary 6.33. Under the circumstances of the previous lemma, let ∆ be
a family of curves in V satisfying the following lifting property: any curve γ ∈ ∆
contains an arc that lifts to some curve in Γ. Then L(∆) ≥ L(Γ).

Proof. The lifting property means that the family ∆ overflows the family
f(Γ). Hence L(∆) ≥ L(f(Γ)), and the conclusion follows. �

6.6.2. Coverings of an annulus. Let us start with a particular case which is
most important for dynamical applications.

Proposition 6.34. Let U and U ′ be two conformal disks, and let f : U → U ′

be a holomorphic branched covering of degree D. Let B′ ⋐ U ′ be a Jordan disk and
let B ⋐ U be a component of f−1(B′). Let d = deg(f : B → B′). Then

d · W(U ′ rB′) ≤ W(U rB) ≤ D · W(U ′ rB′)



6. EXTREMAL LENGTH AND WIDTH 129

Proof. Let Γ and Γ′ be the vertical path families on the annuli U r B and
U ′rB′ respectively. Take an arbitrary W-admissible (in the sense of Exercise 6.3)
conformal metric on U ′ r B′, so lρ′(γ′) ≥ 1 for any γ′ ∈ Γ′. Let ρ = f∗(ρ′) be its
pullback to U rB.

Take any path γ ∈ Γ and orient it from the outer boundary. The intersection
γ ∩ f−1(B′) is closed in γ, so we can take the first intersection point b. Let γ0 ⊂ γ
be the initial piece of γ that ends at b. Then the image γ′0 := f(γ0) begins on ∂U ′,
ends at f(b) ∈ B′, and except for the endpoint, is contained in U ′ r B

′
. Thus,

γ′0 ∈ Γ′ and γ0 is a lift of γ. Hence

lρ(γ) ≥ lρ(γ0) = lρ′(γ
′
0) ≥ 1.

Thus, metric ρ is W-admissible for Γ.
By the definition of extremal width given in Exercise 6.3,

W(U rB) =W(Γ) ≤ areaρ(U rB) = D · areaρ′(U ′ rB′).

Taking the infimum over all W-admissible ρ′ we obtain the desired right-hand side
inequality.

To prove the left-hand side inequality, let us consider the genuinely vertical
foliation F ′ on the annulus U ′rB′. This time, let us orient it from B′ to ∂U ′. Let
us cut U ′ r B′ along the critical leaves of F ′, i.e., the leaves passing through the
critical values of f . If there are no such leaves, let us cut U ′ rB′ along one leaf of
F .

We obtain a tiling of U ′ rB′ by rectangles Π′i such that
∑
W(Π′i) =W(U ′ rB′).

Each Π′i lifts to d disjoint rectangles Πij in U rB (with horizontal sides on ∂B and
∂U) each of which is conformally equivalent to Π′i. By Monotonicity of the width,
the Parallel Law, and conformal invriance of the width, we obtain:

W(U rB) ≥ W
(⋃

Πij

)
=
∑
W(Πij) = d ·

∑
W(Π′i) = d · W(U ′ rB′).

�

Exercise 6.35. Generalize Proposition 6.34 to the case when B and B′ are
finite unions of Jordan disks and the restriction f : B → B′ is a branched covering
of degree d. Conclude that if f : U rB → U ′ rB′ is a covering of degree d then

mod(U ′ rB′) = d mod(U rB),

where mod(U rB) stands for the extremal length of the path family connecting ∂B
to ∂U in U rB.

6.7. Maximal, canonical, and covering annuli.

Lemma 6.36. Let S ⊂ Ĉ be a domain on the Riemann sphere. Then in the
homotopy class of any non-trivial simple closed curve γ ⊂ S, there exists an em-
bedded open annulus A ≡ Aγ of maximal modulus. This modulus is infinite if and
only if γ is a peripheral curve around a puncture (i.e., an isolated point of Ĉ r S).
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Proof. The statement is vacuous for Ĉ and C, and obvious for C∗. So, we
can assume that |Ĉ r S| ≥ 3, and thus S is hyperbolic. Let us consider the family
Φ of all conformal embeddings

φ : A(1, r)→ S,

where the radius r > 1 is variable. Let rmax be the sup of all possible radii. Select
a monotonic sequence of radii rn ∈ (1, rmax) converging to rmax, and corresponding
functions φn ∈ Φ, φn : A(1, rn) → S. Since S is hyperbolic, Montel’s Theorem
implies that for any m, the restricted sequence φn|A(1, rm), n = m,m + 1, . . .
admits a convergent subsequence. By the diagonal procedure, we can select a
subsequence φn(k) ∈ Φ that converges on each annulus Am. Its limit provides us
with an extremal embedding A(1, rmax)→ S whose image Aγ is a desired annulus
of maximal modulus,

modAγ =
1

2π
log rmax,

in the given homotopy class.
If γ is a peripheral curve around a puncture, then modAγ =∞ since modD∗ =

∞. The inverse statement follows e.g., from Exercise 6.13. �

We call such annuli Aγ maximal, and we let mod[γ] ≡ modAγ be their moduli.
Of course, the above discussion applies to bordered Riemann surfaces S as well. In
this case, we allow γ to be a component of ∂S, letting mod[γ] be the modulus of
the corresponding maximal peripheral annulus.

Exercise 6.37. Generalize the above result to an arbitrary Riemann surface S
(including tori).

Theorem 6.38. Let S be a domain in Ĉ. Then in each non-trivial homotopy
class [γ] of simple closed curves there is a unique maximal annulus Aγ .

The uniqueness part of this statement is much deeper than the existence result
proved above, and its proof provides us with a beautiful insight into the geome-
try of the maximal annuli. Namely, these annuli are horizontal annuli of so called
Strebel quadratic differentials, i.e, quadratic differentials whose non-singular hori-
zontal trajectories are all circles. Any maximal annulus is obtained by cutting the
sphere along the separatrices of such a differential (see [GaL, §11]). We will leave
this picture without a proof and in our future discussion will refrain from using it,
but will keep it in mind as a good intuition.

Fix now some M > 1. Let us consider a maximal annulus A in S with modA >
2M that does not represent a puncture (but can represent a boundary curve). Let
us uniformize it by a Euclidean cylinder C = S1× (0, h), where S1 has length 1 (so
h = modA > 2M). Round cylinders S1 × (0,M ] and S1 × [h −M,h) are called
buffers in C. Note that they are disjoint since h > 2M . Buffers Bo and Bi in A are
the corresponding annuli in A (where labels “o” and “i” stand for the “outer” and
“inner” respectively21). Removing the buffers, we obtain an M -canonical annulus

A = Ar (Bo ∪Bi).
Lemma 6.39. For any M > 1, any two M -canonical annuli are disjoint.

21On the Riemann sphere, this labeling is arbitrary, but it makes a clear sense when A ⊂ C.
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AB◦
B̃◦Ã

·z̃
γ̃γ

Figure 6.1. Intersection of the annuli forces the buffers cross.

Proof. Let γ, γ̃ be two non-trivial Jordan curves in S, and let A ⊂ A, Ã ⊂ Ã

be the corresponding canonical and maximal annuli. If γ and γ̃ essentially cross
then any horizontal curve in A crosses any horizontal curve in Ã contradicting the
Non-Crossing Principle.

So, the curves γ and γ̃ are essentially disjoint. Replacing them with homotopic
ones, we can assume that γ and γ̃ are disjoint in the first place. Then one of the
Jordan disks in Ĉ bounded by γ contains γ̃. Let us call it the outer side of γ.
Similarly we can define the outer side of γ̃. Since the curves are not homotopic,
the intersection of their outer complementary components contains a point of
ĈrS. This point can be placed at∞, making the inner complementary components
bounded.

Since our curves are non-trivial, we can select a point z̃ ∈ Ĉ r S lying “inside”
γ̃ (i.e., in the inner complementary component of γ̃) and hence “outside” γ.

Let the buffer Bo and B̃o lie on the outer sides of A and Ã, respectively. If
A ∩ Ã 6= ∅ then any horizontal curve δ̃ in B̃o is forced to enter the annulus A (see
Figure 6.1). At the same time, δ̃ must “go around” z̃ forcing it to go outside A. It
follows that δ̃ must cross the whole buffer Bo.

We conclude that the horizontal path families in the buffers Bo and B̃o cross
each other. Since both have width > 1, we arrive at a contradiction with the
Non-Crossing Principle. �

Thus, we obtain the canonical multicurve on S comprising the equators of all
the canonical annuli. The corresponding homotopy classes are also called canonical.

Along with the maximal annuli Aγ , we can consider the covering annuli Aγ
from §1.7.13.

Lemma 6.40. For any domain S in Ĉ and any non-trivial Jordan curve γ ⊂ S,
we have: modAγ − 2 < modAγ < modAγ .

Proof. Under the covering q : Aγ → S, the fundamental group π1(Aγ)
projects to the cyclic group Γ generated by [γ]. Since Γ = π1(Aγ), the annu-
lus Aγ lifts to an annulus Âγ ⊂ Aγ that conformally projects onto Aγ . The upper
estimate for modAγ follows.
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The lower estimate follows from Lemma 7.15 as modAγ is bounded from below
by the modulus of the geometric collar Nη(γ), while the latter is at least π/l− 2 =
modAγ − 2. �

6.8. Canonical weighted arc diagram. Let S be a hyperbolic Riemann
surface of finite topological type, and let ŜI be its ideal compactification (see
§2.4.17). We assume that ∂IS 6= ∅. Let α be a non-trivial proper arc on S landing
on boundary circles of ŜI (perhaps, on the same one). To the homotopy class of α
we will now associate a weight W(α) ≥ 0 as follows.22

Let π : D → S be the universal covering of S, let Γ ≈ π1(S) be the Fuchsian
group of deck transformations acting on D, and let Λ ⊂ T be its limit set. It is a
Cantor set, and the covering π extends continuously to a covering π : TrΛ→ ∂IS
(keeping the same notation). So, for any complementary interval (“gap”) Ĵ ⊂ TrΛ,
the projection π| Ĵ is the universal covering over some component J of the ideal
boundary. Moreover, if γ ∈ Γ is a deck transformation corresponding to the loop
J , then γ is a hyperbolic Möbius map keeping invariant one of the gaps Ĵ over J ,
and the boundary of Ĵ consists of the fixed points of γ.

Let J and J ′ be the boundary components of S connected by the arc α. Then
α lifts to an arc α̂ on D connecting some gaps Ĵ and Ĵ ′ that cover J and J ′

respectively. If α is non-trivial then the intervals cl Ĵ and cl Ĵ ′ are disjoint, and
hence they can be viewed as the horizontal sides of a quadrilateral Π ≡ Π(α̂)
supported on D. Define

W(α) ≡ Ŵ(J, J ′) :=W(Π)

as the width of this quadrilateral. In other words, let us uniformize Π by s standard
rectangle P = [0, a] × [0, 1] so that J and J ′ correspond to the horizontal sides of
P. Then W(α) = a.

If W(α) > 2, let us define the square buffers of Π as the quadrilateral corre-
sponding to the lateral squares [0, 1)× [0, 1] and (a− 1, a]× [0, 1] in P. Removing
the square buffers from Π we obtain a quadrilateral Π̂ = Π(α̂). The weight of α is
defined as the width of Π̂:

W(α) :=W(Π̂) =W(α)− 2 = a− 2.

Note that this width is independent of the choice of the lift α̂ since the corresponding
quadrilaterals are related by Möbius transformations of D.

In case when W(α) ≤ 2, we let W(α) = 0.
The family of arcs α with W(α) > 0 is called the canonical arc diagram A =

A(S) of S.

Lemma 6.41. Quadrilaterals Π̂, Π̂′ corresponding to different lifts α̂, α̂′ of an
arc α ∈ A are disjoint.

Proof. Otherwise these rectangles would have intersecting vertical sides, L ⊂
Π̂ and L′ ⊂ Π̂′, L∩L′ 6= ∅. But then their buffers B and B′ attached to these sides
would cross each other in the sense the corresponding vertical path families cross.
Since the buffers have width 1, this would contradict to the Non-Crossing Principle
(accompanied with Exercise 6.31) . �

22We will not notationally distinguish an arc and its homotopy class.
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Remark 6.42. In fact, we could define arcs allowing self-intersections. What
the above argument shows is that the canonical arcs automatically avoid ones.

Corollary 6.43. The projection π : Π̂→ S is an embedding.

Thus, the projection Π = Π(α) := π(Π̂(α̂)) is an embedded rectangle in S
(obviously independent on the choice of the lift α̂). We call it the canonical rectangle
corresponding to the arc α.

Lemma 6.44. Any two canonical rectangles, Π(α) and Π(β), are disjoint.

Proof. Otherwise, some of their lifts, Π̂(α̂) and Π̂(β̂), would intersect. But
this can be ruled out by the same argument as in Lemma 6.41. �

Together with Proposition 1.94, this implies:

Corollary 6.45. The canonical arc diagram AS contains at most −3χ(S)
arcs. In particular, for a disk with n holes (which is the only case needed for the
dynamical applications) we obtain at most 3(n− 1) arcs.

Thus, we have at most −3χ(S) disjoint canonical rectangles Π(α), α ∈ A, on S.
Putting together the vertical foliations on these rectangles, we obtain the canonical
foliation on S.

7. Hyperbolic metric and Schwarz Lemma

7.1. Schwarz Lemma. In terms of the hyperbolic metric, the elementary
Schwarz Lemma can be brought to a conformally invariant form that plays an
outstanding role in holomorphic dynamics:

Schwarz Lemma. Let φ : S → S′ be a holomorphic map between two hyper-
bolic Riemann surfaces. Then
• either φ is a strict contraction, i.e., ‖Dφ(z)‖ < 1 for any z ∈ S, where the norm
of the differential is evaluated with respect to the hyperbolic metrics of S and S′;
• or else, φ is a covering map, and then it is a local isometry: ‖Dφ(z)‖ = 1 for
any z ∈ S.

Proof. Given a point z ∈ S, let π : (D, 0)→ (S, z) and π′ : (D, 0)→ (S′, φ(z))
be the universal coverings of the Riemann surfaces S and S′ respectively. Then φ
can be lifted to a holomorphic map φ̃ : (D, 0)→ (D, 0). By the elementary Schwarz
Lemma, |φ̃′(0)| < 1 or else φ̃ is a conformal automorphism of D (in fact, rotation).
This yields the desired dichotomy for φ. �

In particular, if S ⊂ S′ then ρS ≥ ρS′ (a smaller Riemann surface is “more
hyperbolic”). Moreover, if S 6= S′ then dρS(z) > dρS′(z) for any z ∈ S.

Corollary 7.1. Let S ⊂ S′ be a nest of two hyperbolic Riemann surfaces,
S 6= S′, and let f : S → Σ be an (unramified) covering map to a Riemann surface
Σ. Then for any z ∈ S we have

‖Df(z)‖S′,Σ > 1,

where the norm of Df(z) is evaluated from the hyperbolic metric of S′ to that of Σ.
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Dθ(I)

φ

Dθ(I
′)

θθ

Figure 7.1. Symmetric Schwarz Lemma.

Proof. Since f is a local isometry from the hyperbolic metric of S to that of
Σ, we have

(7.1) ‖Df(z)‖S′,Σ =
dρS
dρS′

(z),

and the desired estimate follows from the remark preceding this Corollary. �

7.2. Symmetric Schwarz Lemma.

7.2.1. Formulation. Let us formulate an R-symmetric version of the Schwarz
Lemma (with the notation introduced in §2.4.5): Let UR be the class of R-symmetric
univalent maps φ : C(I) → C(I ′) between slit planes that restrict to diffeomor-
phisms I → I ′ between open intervals I, I ′ ⊂ R.

Symmetric Schwarz Lemma. Let φ : C(I) → C(I ′) be a map of class U.
Then for any θ ∈ (0, π), we have φ(Dθ(I)) ⊂ Dθ(I

′).

Proof. Follows from the Schwarz Lemma and Exercise 2.23 (iii) �

Any open interval I = (a, b) ⊂ R can be considered as a model of the hyperbolic
line endowed with the hyperbolic metric

ds =
2(b− a) dx

(x− a)(b− x) .

This metric can be also viewed as induced from the disk D(I) ≈ H2.

Corollary 7.2. Let φ : C(I)→ C(I ′) be a univalent map of class UR. If φ is
not Möbius then it strictly contracts the hyperbolic metric:

(7.2) ‖Dφ(x)‖hyp < 1 ∀ x ∈ I.
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If L ⋐ int I is a smaller interval with modR(I : L) ≥ δ > 0 then the hyperbolic norm
in (7.2) is bounded by ρ(δ) < 1, and the map φ has a bounded distortion on L:

∣∣∣∣
Dφ(x)

Dφ(y)

∣∣∣∣ ≤ C(δ) ∀ x, y ∈ L.

Proof. By the Symmetric Schwarz Lemma, φ(D(I)) ⊂ D(I ′). Contracting
property (7.2) follows from the Schwarz Lemma (for the maps D → D). Conse-
quently, the hyperbolic length of φ(L) is bounded by that of L, which is bounded
in terms of δ. Hence the contraction is uniform on L by the Definite Schwarz
Lemma below (or just by a normality argument). Finally, the distortion bounds
follow from the Koebe Theorem. �

7.2.2. Lipschitz control. Given an interval I = (a, b) and a point z ∈ C(I), let

ang(z, I) = min{| arg(z − b)|, | arg(a− z)|},
where the argument is selected in the range [0, π]. In words, ang(z, I) is the smallest
of the angles between the intervals [a, z], [b, z] and the corresponding real rays
(a,−∞], [b,+∞) of the real line. We let

(7.3) Cθ(I) := {z ∈ C(I) : ang(z, I) > θ}.

Lemma 7.3. Under the circumstances of the Symmetric Schwarz Lemma, let
us consider a point z ∈ Cθ(I) with dist(z, I) ≥ |I|. Then

dist(φ(z), I ′)
|I ′| ≤ C dist(z, I)

|I| with C = C(θ).

Proof. Let Dη(I) be the smallest (closed) geodesic neighborhood of I con-
taining z, and let D+

η (I) be its upper half. Assume for definiteness that z ∈ S :=

∂ D+
η (I) and |z − b| ≤ |z − a|. Let Γ ⊂ S be the circle arc connecting b to z; its

angular size γ is less than π.
Since |z − b| ≥ |I|, the angle between Γ and z − b at b is at least θ/2, so γ ≥ θ.

Hence

dist(z, I) = |z − b| ≥ C−1 diamDη(I), with C = C(θ).

By the Symmetric Schwarz Lemma, φ(z) ∈ Dθ(I
′)). Hence

dist(φ(z), I ′)
|I ′| ≤ diam(Dη(I

′))
|I ′| =

diam(Dη(I))

|I| ≤ C dist(z, I)

|I| ,

as asserted. �

7.3. Hyperbolic metric blows up near the boundary. For a domain
U ⊂ Ĉ, let d(z) stand for the spherical distance from z ∈ U to ∂U .

Lemma 7.4. Let S be a Riemann surface, x ∈ S, and assume that the punctured
surface S = Sr {x} is hyperbolic with the hyperbolic metric ρ. Then

dρ(z) ≍ − |dz|
|z| log |z| ,

where z is a local coordinate on S with z(x) = 0.
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Proof. By Proposition 2.53, a standard cusp Hh/Z is isometrically embedded
into S so that its puncture corresponds to x. On the other hand, by means of the
exponential maps H→ D∗, z 7→ e2πiz, the cusp Hh/Z is isometric to the punctured
disk D∗r , r = e−2πh, in the hyperbolic metric of D∗. By Exercise 2.38, the latter has
the desired form in the plane coordinate of D∗r (which extends to a local coordinate
on S near x). Hence it has the desired form in any other local coordinate on S near
x. �

Proposition 7.5. For any hyperbolic plane domain U ⊂ Ĉ, there exists κ =
κ(U) > 0 such that:

dρU
dρsph

(z) ≥ − κ

d(z) log d(z)
, z ∈ U,

where σ is the spherical metric.

Proof. Take some point z ∈ U , and find the closest to it point a ∈ ∂U .
Since ∂U consists of at least three points, we can find two more points, b, c ∈ ∂U ,
such that the points a, b, c are ε-separated on C, where ε > 0 depends only on
U . Let us consider the Möbius transformation φ that moves (a, b, c) to (0, 1,∞).
By Exercise 2.10, these transformations are uniformly bi-Lipschitz in the spherical
metric, which reduces the problem to the case when (a, b, c) = (0, 1,∞). But in
this case, ρU (z) dominates the hyperbolic metric on U = Cr{0, 1}, and the desired
estimate follows from Lemma 7.4. �

Exercise 7.6. More generally, let S be a Riemann surface endowed with a
conformal Riemannian metric σ, and let K be a compact subset of S such that
SrK is a hyperbolic Riemann surface with hyperbolic metric ρ. Then there exists
a κ = κ(S,K) > 0 such that

dρ

dσ
(z) ≥ − κ

d(z) log d(z)
, z ∈ SrK,

where d(z) = dist(z,K).

7.4. Hyperbolic metric on simply connected domains. For simply con-
nected plane domains, the hyperbolic metric can be very well controlled:

Lemma 7.7. Let D ⊂ C be a conformal disk endowed with the hyperbolic metric
ρD. Then

1

4

|dz|
dist(z, ∂D)

≤ dρD(z) ≤
|dz|

dist(z, ∂D)
.

Remark. Of course, particular constants in the above estimates will not matter
for us.

Proof. Let r = dist(z, ∂D); then D(z, r) ⊂ D. Consider a linear map h :
D → D(z, r) as a map from D into D. By the Schwarz Lemma, it contracts the
hyperbolic metric. Hence

dρD(z) ≤ h∗(dρD(0)) = h∗(|dζ|) = |dz|/r.
To obtain the opposite inequality, consider the Riemann mapping ψ : (D, 0)→

(D, z). By definition of the hyperbolic metric,

dρD(z) = ψ∗(dρD(0)) = ψ∗(|dζ|) =
|dz|
|ψ′(0)| .



7. HYPERBOLIC METRIC AND SCHWARZ LEMMA 137

But by the Koebe 1/4-Theorem, r ≤ |ψ′(0)|/4, so that dρD(z) ≥ |dz|/4r. �

The 1/d-metric on a plane domain U is a continuous Riemannian metric with
the length element |dz|/d(z). The previous lemma tells us that the hyperbolic
metric on a simply connected domain is equivalent to the 1/d-metric.

7.5. Definite Schwarz Lemma. Montel’s compactness allows one to turn
the Schwarz Lemma into a definitive form. Let us begin with an elementary version:

Lemma 7.8. Let φ : (D, 0)→ (D, 0) be a holomorphic map that omits a point z
with |z| ≤ r < 1. Then |φ′(0)| ≤ σ(r) < 1.

Proof. By the Little Montel Theorem and the Hurwitz Theorem, the space
of maps in question is compact (for a given ρ < 1). Hence the Schwarz Lemma
becomes definite on this space. �

Now the Uniformization Theorem immediately turns this elementary fact into
an invariant geometric property:

Lemma 7.9. Let φ : (S, a)→ (S′, a′) be a holomorphic map between hyperbolic
Riemann surfaces. If ρS′(a′, ∂(φS)) ≤ r then ‖Dφ(a)‖ ≤ σ(r) < 1, where the norm
is evaluated with respect to the hyperbolic metrics.

Proof. Following the proof of the Schwarz Lemma given in §7.1, lift φ to a
holomorphic map φ̃ : (D, 0) → (D, 0). By assumption, there is a point z ∈ ∂(φS)
such that ρS′(a′, z) ≤ r. Then φ̃ omits a point z̃ such that

ρD(z̃, 0) = distS′(z, a′) ≤ r.
By Lemma 7.8,

‖Dφ(a)‖ = |φ̃′(0)| ≤ σ(r) < 1.

�

Corollary 7.10. For a nest of two hyperbolic Riemann surfaces S ⊂ S′ and
any z ∈ S such that ρS′(z, ∂S) ≤ r we have:

dρ′

dρ
(z) ≤ σ(r) < 1.

Corollary 7.11. Let S ⊂ S′ be a nest of two hyperbolic Riemann surfaces,
and let f : S → S′ be an (unramified) covering map. Then for z ∈ S we have

‖Df(z)‖S′ ≥ λ(r) > 1, provided distS′(z, ∂S) ≤ r.
Proof. It follows from (7.1) and Corollary 7.10. �

Thus, if S 6= S′ then a covering map f : S → S′ as above is locally strictly
expanding in the hyperbolic metric of S′. (If S = S′ then it is a local isometry.)

Exercise 7.12. Let A′ ⊃ A ⊃ T be a nest of two annuli symmetric with respect
to the unit circle T such that

0 < µ′ ≤ modA′ ≤ 1/µ′, 0 < µ ≤ modA ≤ 1/ν.

Then for any z ∈ T we have:

dρ′

dρ
(z) ≤ σ(µ, µ′) < 1.
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Moreover, if g : A→ A′ is a holomorphic double covering then

‖Dg(z)‖A′ ≥ λ(µ′) > 1.

Let us conclude with the inverse of Corollary 7.10:

Exercise 7.13. For a nest of two hyperbolic Riemann surfaces S ⊂ S′ and any
z ∈ S such that ρS′(z, ∂S) ≥ r > 0 we have:

dρ′

dρ
(z) ≥ ξ(r) > 0, where ξ(r)→ 1 as r →∞.

Thus, the hyperbolic metrics on two Riemann surfaces S ⊂ S′ are comparable
in terms of ρS′(z, ∂S′).

7.6. Thin-thick decomposition.

7.6.1. Definite cusp neighborhoods.

Lemma 7.14. There is a universal ξ > 0 such that any cusp on any hyperbolic
Riemann surface S has a neighborhood bounded by a horocycle of length ξ.

Proof. Let Γ be the Fuchsian group covering S. Assume it contains the
translation T : z 7→ z + 1 covering a cusp of interest. Let us consider horocycles
Lh ≡ Lh(∞) in H centered at ∞ and horocycles

Lr(a) = {z ∈ H : |z − (a+ ir/2)| = r/2}
centered at a ∈ R, and let Hh ≡ Hh(∞), Hr(a) be the corresponding horoballs (see
§2.4.4). Note that T translates points of L1 by distance 1 in the intrinsic horocyclic
metric.

Let us show that if γ(L1(∞)) = Lr(a) for some γ ∈ Γ and a ∈ R then r < e2.
[This will impy the desired assertion since under these circumstances the horoball
He2 will project to a cusp neighborhood on S as a cyclic covering.]

Without loss of generality we can assume that a = 0. Let us consider the
horocycle Le ⊂ H1 on hyperbolic distance 1 from L1. Then γ(Le) = Lr/e (which
in the horocylce in Hr(0) on hyperbolic distance 1 from Lr). Let us consider the
strip S := cl(H1 rHe) and the crescent C := cl(Hr(0)rHr/e(0)) = γ(S).

Let δ := γ ◦ T ◦ γ−1. It is a parabolic map fixing 0 and translatng Lr(0)
by 1 in the intrinsic horocyclic metric. Assume r ≥ e2. Then each horocycle Lρ
withρ ∈ [r/e, r] contains a fundamental interval for δ that fits into S.

Let us take a sequence nk →∞. Take a point z0 ∈ S and consider its translate
z0 + n0 ∈ S and let ζ0 := γ(z0 + n0) ∈ C. Then z1 := δm0(ζ0) ∈ S for some m0.
Now repeat the procedure: let ζ1 := γ(z1 + n1) and z2 := δm1(ζ1) ∈ S, and so on.

Proceeding this way, we will construct a non-escaping infinite Γ-orbit. �

7.6.2. Geometric collars. Given a simple closed geodesic γ on a hyperbolic
Riemann surface S = H/Γ, let

Nη(γ) := {z ∈ S : disthyp(z, γ) < η}.
For instance, let us consider the strip model S for the hyperbolic plane (see §2.4.2)
and a standard cylinder Al = S/lZ. Its equator γl := (R+ iπ/2)/lZ is a hyperbolic
geodesic of length l. In this case, Nη(γl) is also a standard cylinder

N st
η (γl) := {z : 1/2− h < Im z < 1/2 + h}/lZ where

∫ 1/2+h

1/2

dy

sin y
= η.
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3η

l

π
2

0

Figure 7.2. Geometric collar of a geodesic.

Proposition 7.15. Ther exists an η = η(l) such that: for any simple closed
geodesic γ ⊂ S of length l, its η-neighborhood clNη(γ) is isometric to the standard
cylinder clN st

η (γl); Moreover,

η(l) = log
1

l
+O(1) and mod

π

l
− 2 < Nη(γ) <

π

l
as l→ 0.

The neighborhood Nη(γ) will be called the geometric collar of γ.

Lemma 7.16. Let us consider an interval I ⊂ R of Euclidean length l < π.
Let δ ⊂ S and β ⊂ S be respectively the Euclidean semi-circle and the hyperbolic
geodesic in S sharing the endpoints with I. Then β lies under δ.

Proof. Let χI : ∂S → {0, 1, } be the characteristic function of I and let
hδ : S → R+ be its harmonic extension to S. Similarly, let hβ : H → R+ be the

harmonic extension of χI |R to H. Then hδ | ∂S ≥ hβ | ∂S (with a strict inequality

on R+ iπ). By the Maximum Principle (see §10.5), hδ | S > hβ . But

δ = {z ∈ H : hδ(z) = 1/2}, β = {z ∈ S : hβ(z) = 1/2}.

Hence hδ |β > 1/2 = hδ | δ, so δ is separated from I by β. �

Proof of Prop. 7.15. (i) Let us realize the universal covering of S as the strip
S so that γ is lifted to the horizontal geodesic R + πi/2. The corresponding deck
transformation T is the translation by l. Let us consider any deck transformation
R that does not belong to the cyclic group of T , and let β := R(γ). Since the
geodesic γ is simple, β does not intersect it, so both ends of β lie either on R or
on R+ πi. Assume for definiteness that the former holds.

Let I ⊂ R be the ideal interval sharing the endpoints with β (the “shadow” of
β). Since T (β) is disjoint from β, |I| ≤ l. Hence β lies under the geodesic β′ ⊂ R

whose shadow is an interval I ′ ⊃ I of length l. The distance from I ′ to R + iπ/2
depends only on l; call it 3η(l). Then the closed η-neighborhood of R + iπ/2 is
disjoint from all of its translates by deck transformations. The conclusion follows.
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By Lemma 7.16, β lies under the semi-circle δ based upon I. The Euclidean
distance between R+iπ/2 and δ is equal (1−l)/2, implying the desired asymptotics
by elementary estimates. ⊔⊓

Exercise 7.17. (i) A simple closed geodesic γ of length ≤ l is 3η(l)-separated
from any disjoint simple closed geodesic (where η(l) is defined in the above proof).

(ii) The geometric collars of disjoint simple closed geodesics are disjoint.

7.6.3. Collars around geodesics. Recall from §6.7 that given a simple closed
curve γ on a surface S, Aγ stands for the maximal embedded annulus in the ho-
motopy class of γ.

Collar Lemma. Let S be a hyperbolic Riemann surface. Then there exist
absolute l̄ > 0 and M such that if for some simple closed geodesic, lhyp(γ) < l̄ then

|modAγ −
π

lhyp(γ)
| ≤M.

Proof. Let us represent the universal covering of S a the strip S(π) so that
the geodesic γ lifts to the horizontal line {Im z = π/2}. The corresponding deck
transformation covering γ is the translation T : z 7→ z + l with l = lhyp(γ). Any
other lift of γ is a curve contained in a disk D(a, l/2) centered at ∂S(π). If l̄ < π,
then this lift lies outside the strip {| Im z − π/2|} < (π − l̄)/2. Hence this strip
projects cyclically to S, and the conclusion follows. �

7.6.4. Local weights. Let us take a component J of the ideal boundary ∂IS. It
represents a loop on S. Let πJ : AJ → S be the annulus covering of S corresponding
to this loop. (For simplicity, we will often skip label J in the notation, so A = AJ ,
π = πJ .) The local weight of J is defined as the width of this annulus:

Wloc(J) :=W(AJ ).

The following lemma makes a connection between conformal and hyperbolic ge-
ometries of S:

Lemma 7.18. Let γ be the peripheral hyperbolic geodesic on S homotopic to J .
Then

Wloc(J) =
1

π
lhyp(γ).

Proof. By definition of the covering π, the geodesic γ lifts to a simple closed
curve γ̂ ⊂ A such that π : γ̂ → γ is a homeomorphism. Since π is a local isometry,
γ̂ is a closed geodesic, and lhyp(γ̂) = lhyp(γ). But there is only one simple closed
geodesic on A, and by (2.12) we have:

W(A) =
1

π
lhyp(γ̂).

Putting the above ingredients together, we obtain the desired formula. �



7. HYPERBOLIC METRIC AND SCHWARZ LEMMA 141

Figure 7.3. Thin-thick decomposition.

7.6.5. Thin-thick decomposition (without border). The ε-thick part of a Rie-
mann surface is the set of points with injectivity radius ≥ ε.

Theorem 7.19. There exists an absolute ε > 0 with the following property.
Let S be a hyperbolic Riemann surface of finite type without ideal circles at infinity.
Then S is represented as the union of finitely many definite cusps, finitely many
canonical annuli and the ε-thick part.

7.6.6. Comparison of hyperbolic distances.

Exercise 7.20. Let γ1 and γ2 be two geodesic segments in the hyperbolic plane
such that their endpoints stay distance at most d apart. Then

|lhyp(γ1)− lhyp(γ2)| ≤ 2d.

Lemma 7.21. Let U ⊂ V be two hyperbolic Riemann surfaces. For x ∈ U ,
let ρ(x) ≥ 1 be the conformal density of the hyperbolic metric of U with respect to
the hyperbolic metric of V . Let L(x) = distV (x, ∂U), where distV stands for the
hyperbolic distance in V . Then

ρ(x) = 1 +O(e−L).

Proof. Let us consider the universal covering π : (D, 0))→ (V, x), and let Û be
the component of π−1(U) containing 0. Since π is a local isometry, distD(0, ∂Û) = L.
Hence Ũ ⊃ Dr with r = 1−O(e−L).

The hyperbolic metric in Dr is obtained from that in D by scaling by 1/r. By
the Schwarz Lemma, the hyperbolic metric in Û is dominated by that in Dr. Hence
ρ̂(0) ≤ 1/r = 1+O(e−L), where ρ̂ is the density of the hyperbolic metric in Û with
respect to that in D. Since π : Û → U is covering, it is a local isometry as well, so
ρ̂(0) = ρ(x), and we are done. �
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7.6.7. Hyperbolic geometry of a quadrilateral.

Lemma 7.22. Let us consider an arc α connecting ideal boundary components
J and J ′, and let γ and γ′ be the peripheral geodesics homotopic to J and J ′. Then

lhyp(γ ∩Π(α)) = lhyp(γ
′ ∩Π(α)) = πW(α) +O(1).

Proof. Let us consider a lift α̂ of α to the universal covering D. It connects
some ideal intervals Ĵ and Ĵ ′ covering J and J ′ respectively. The geodesics γ and
γ′ lift to geodesics γ̂ and γ̂′ sharing the endpoints with Ĵ and Ĵ ′ respectively. Let
Π̂ be the lift of Π to D.

The quadrilateral in D with horizontal sides Ĵ and Ĵ ′,

Π(α̂) ≈ Πa ≡ [0, a]× [0, 1],

is symmetric with respect to the geodesic δ corresponding to the horizontal axis in
Πa on mid-height. This symmetry interchanges the geodesic segments γ̂ ∩ Π̂ and
γ̂′ ∩ Π̂ implying that they have the same length. So, we can focus on one of these
geodesics, say γ̂ ≡ γ̂a in the Πa-model (with all notations preserved).

Let γ̂(x) be the point on γ̂ with the horizontal coordinate x ∈ [0, a]. Then
Im γ̂a(1) decreases as a decreases (the geodesic γ̂a goes “down” as a decreases,
which can be seen using the comparison principle for the harmonic measure, as
γ̂ is the 1/2-level set for the harmonic function h on Πa which is equal to 1 on
on Ĵ and vanishes on the rest of the boundary of Πa). It follows that for a ≥ 2,
1/2−Im γa(1) is bounded by 1/2−Im γ2(1). For the same reason (or by symmetry),
1/2− Im γ̂a(a− 1) is bounded as well.

We have two geodesics segments, γ̂ ∩ Π̂ and δ ∩ Π̂ with the endpoints staying
bounded hyperbolic distance apart. By Exercise 7.20,

lhyp(γ̂ ∩ Π̂) = lhyp(δ ∩ Π̂) +O(1).

Finally, we should compare the hyperbolic length of δ ∩ Π̂ in Πa and in the
infinite strip S = {0 < Im z < 1} (as we know, the latter is equal to πW(α)).
We claim that they differ by a bounded amount. Indeed, let d(x) = min(x, a − x)
be the distance (both Euclidean and hyperbolic in S) from (x, 1/2) ∈ Π̂ to the
vertical boundary of Π̂. By Lemma 7.21, the ratio between the hyperbolic metrics
in question at that point is 1 +O(e−d(x)), which implies the conclusion. �

Let AJ stand for the family of canonical arcs landing on J . For the correspond-
ing peripheral geodesic γ = γJ , we let

(7.4) γthick ≡ γJ,thick := γ r
⋃

α∈AJ

Π(α).

Lemma 7.23. There exists an absolute ε > 0 such that for any two peripheral
geodesics γ and γ′, we have: disthyp(γthick, γ

′
thick) > ε.

Proof. For a small ε > 0, let us consider two peripheral geodesics, surrounding
boundary curves J and J ′ respectively, with disthyp(γthick, γ

′
thick) < ε. Let a and

a′ be the closest points on these geodesics, and let α0 be the the shortest geodesic
connecting a and a′ (the common perpendicular to our peripheral geodesics).

Let us lift this configuration to the universal covering D so that a and a′ go
to imaginary symmetric points, iâ = −iâ′. (We mark the lifted objects in D with
“hat”.) Then α̂0 = [â′, â] is contained in the full geodesic α̂ := (−i, i), where α
represents an arc in S connecting J to J ′.
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Moreover, γ̂ and γ̂′ are uniformly close almost horizontal (in the Euclidean
sense) geodesics chopping off in D a geometrically thin quadrilateral Q symmetric
with respect to both axes. The complement Tr Q̄ consists of two symmetic arcs λ
and λ′ of size close to 1/2 covering J and J ′ respectively. These arcs are horizontal
sides of a rectangle Π. Since they are very long compared wih the complementary
arcs of T, the rectangle Π is wide. Hence it produces the canonical rectangle Π(α)

whose lift Π̂(α) is obtained by chopping off two square buffers from Π. Moreover,
α̂ is the genuinely vertical geodesic in Π, which belongs to Π̂. Thus, the points a
and a′ belong to Π(α), which is in the thin part of our surface S. The conclusion
follows. �

Corollary 7.24. Any two disjoint closed peripheral geodesics of length ≤ l
are at least ε(l) > 0 separated.

Proof. On the thin part, the geodesics are ε(l)-separated since the canon-
ical rectangles Π(α) from (7.4) intersecting γ or γ′ have a bounded width (by
Lemma 7.22). On the thick part, they are ε-separated with a uniform ε > 0 by
Lemma 7.23. �

7.6.8. Thin-thick decomposition (bordered case).

Theorem 7.25. For a bordered hyperbolic Riemann surface S of finite type, we
have: ∑

J∈∂iS

Wloc(J) = 2
∑

α∈WAD(S)

W(α) +O(|χ(S)|).

Proof. Let us consider all the peripheral geodesics γ = γJ , J ∈ ∂IS, and
their slices γ ∩ Π(α) by the canonical rectangles, α ∈ WAD(S). By Lemma 7.22,
we have:

2
∑

α

W(Π(α) =
1

π

∑

J,α

lhyp(γJ ∩Π(α)) +O(|χ(S)),

where the factor “2” appears because each arc α meets two geodesics γJ . Also, by
Lemma 7.18, ∑

Wloc(J) =
1

π
lhyp(γJ ).

Comparing these inequalities, we see that the desired one boils down to
∑

J

lhyp(γJ,thick) = O(|χ(S)|).

Let ε > 0 be from Lemma 7.23. For each peripheral geodesic γ, consider a maximal
2ε-separated net of points xJi on γJ,thick. Let nJ be the number of these points.
Then

ε nJ ≍ lhyp(γJ,thick).
By the choice of ε, the hyperbolic half-disks B(xJi , ε) (lying on the interior side of
the corresponding geodesics) are pairwise disjoint. Hence

∑

J

πε2

2
nJ ≤ areahyp(Sconv),

where Sconv is the convex hull of S, i.e., the subsurface bounded by all periph-
eral geodesics. By the Gauss-Bonnet formula, the latter is equal to πχ(S). The
conclusion follows. �
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7.7. Carathéodory convergence.

7.7.1. Convergence of domains. Let us consider the space D of all pointed con-
formal disks (D, a) in the complex plane. This space can be endowed with a natural
topology called Carathéodory. We will describe it it terms of convergence:

Definition 7.26. A sequence of pointed disks (Dn, an) ∈ D converges to a
disk (D, a) ∈ D if:

(i) an → a;

(ii) Any compact subset K ⊂ D is eventually contained in all disks Dn:

∃N : K ⊂ Dn ∀n ≥ N ;

(iii) If U is a topological disk contained in infinitely many domains Dn then U is
contained in D.

Note that this definition allows one to pinch out big bubbles from the domains
Dn.

Exercise 7.27. a) Define a topology on D that generates the Carathéodory
convergence.

b) Show that if ∂Dn converges to ∂D in the Hausdorff metric then the disks
Dn converge to D in the Carathéodory sense.

The above purely geometric definition can be reformulated in terms of the
uniformizations of the disks under consideration. Let us uniformize any pointed
disk (D, a) ∈ D by a conformal map φ : D → D positively normalized so that
φ(0) = a and φ′(0) > 0.

Proposition 7.28. A sequence of pointed disks (Dn, a) ∈ D converges to a
pointed disk (D, a) ∈ D if the corresponding sequence of normalized uniformizations
φn : D → Dn converges to the positively normalized uniformization φ : D → D
uniformly on compact subsets of D.

Proof. Assuming φn → φ, let us check properties (i)-(iii) of Definition 7.26.
The first one is obvious. To verify (ii), take a compact subset K of D. Then
φ(Dr) ⊃ K for some r < 1. Hence dist(φ(Tr),K) > 0 and the curve φ : Tr → C

has winding number 1 around any point of K. Since φn → φ uniformly on Tr,
eventually all the curves φn : Tr → C have winding number 1 around all points of
K. Then φn(Dr) ⊃ K.

Let us now verify (iii). It is enough to check that any disk V ⋐ U is contained
in D. For such a disk, we have: mod(Dn, V ) ≥ µ > 0 for all n. Let Wn = φ−1n (Vn).
By the conformal invariance, mod(D,Wn) ≥ µ as well. Hence Wn ⊂ D1−2ε for some
ε > 0 (by Lemma 4.17 or 6.10). Using conformal invariance of moduli and Lemma
6.10 once again, we conclude that dist(φn(T1−ε), V ) ≥ ρ > 0. Since eventually
|φ(z) − φn(z)| < ρ/2 on T1−ε, the curve φ : T1−ε → C has the same winding
number around any point of V as φn : T1−ε → C, and the latter is equal to 1 (for
n sufficiently big). Hence φ(D1−ε) ⊃ V , as required.

Vice versa, assume (Dn, an)→ (D, a) in the Carathéodory topology. By Prop-
erty (ii) of Definition 7.26, the domainsDn eventually contain the disc D(a, rD(a)/2)
(where rD(a) stands for the inner radius of the domain D with respect to a ∈ D,
see §4.4). By Corollary 4.18, |φn(0)| ≥ rD(a)/2.
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On the other hand, by Property (iii), the domains Dn do not eventually contain
the disc D(a, 2rD(a)). By Corollary 4.18, |φ′n(0)| ≤ 8rD(a).

Thus, |φn(0)| ≍ 1. By the Koebe Distortion Theorem (see Exercise 4.14), the
family {φn} is precompact in the space of univalent functions. But by the first
part of this lemma, any limit function φ = limφn(k) is the positively normalized
uniformization of (D, a) by (D, 0). It follows that the φn converge to this uni-
formization. �

For r ∈ (0, 1), let Dr stand for the family of pointed disks (D, a) ∈ D with

r ≤ rD(a) ≤ 1/r.

Corollary 7.29. The space Dr is compact.

Proof. Let φD : (D, 0) → (D, a) be the positively normalized uniformization
of D. By Corollary 4.18, r ≤ φ′D(0) ≤ 4/r By the Koebe Distortion Theorem
(see Exercise 4.14), the family of univalent functions φD, D ∈ Dr, is compact. By
Proposition 7.28, the space Dr is compact as well. �

7.7.2. Convergence of maps. With these notions in hands, we can define con-
vergence of a sequence of functions ψn : (Dn, an) → (C, bn) on varying domains.
Namely, the functions ψn converge to a function ψ : (D, a) → (C, b) if the pointed
domains (Dn, an) converge to (D, a), and ψn → ψ uniformly on compact subsets
of D. (This makes sense since for any K ⋐ D, all but finitely many functions ψn
are well defined on K.)

Remark 7.30. We will often suppress mentioning of the base points an, as
long as it would not lead to a confusion.

We can now naturally define normality of a family of functions ψn : Dn → C

with varying domains of definition. In case when the Dn converge to some domain
D, we also say that “the family {ψn} is normal on D”.

The statement of the Montel Theorem admits an obvious adjustment in this
setting: If the family of domains Dn is Carathéodory precompact and the functions
ψn : Dn → Ĉ omit three values on the Riemann sphere, then the family {φ}n is
normal.

7.7.3. Space of annuli maps. In conclusion, let us consider the space A of
pointed conformal annuli (A, a) whose equator E contains a and separates 0 from
∞.

Exercise 7.31. (i) Carry the above discussion for the space A.

(ii) Show that for any µ ∈ (0, 1), R > 1, the subspace

Aµ,R := {A : µ ≤ modA ≤ 1/µ, R−1 < |a| < R}
is Carathéodory compact.

Let us consider the space Cd of annuli coverings f : (A, a) → (A′, a′) (with
A,A′ ∈ A) of degree d. Let Cd(µ,R) be the subspace of maps f ∈ Cd with A ∈ Aµ,R.

Exercise 7.32. For anty d ∈ Z+, µ ∈ (0, 1) and R > 1. the space Cd(µ,R) is
compact.
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8. Carathéodory boundary

8.1. Prime ends. As we know from §2.4.17, any non-cuspidal tame end E of
a Riemann surface S can be completed by attaching to it ideal circle ∂Ie. It turns
out that in case when S ⋐ Ŝ for some ambient Riemann surface Ŝ, this completion
can be described in terms of the ambient geometry. This is the goal of this section.

We will follow the general strategy outlined in §1.7.6: to define a notion of an
“end”, we need a notion of a “fjord” and a notion of “escaping nest” of fjords.

8.1.1. Nested fjords. We will focus on the case of a conformal disk in the Rie-
mann sphere. So, let us consider a pointed conformal disk (D, a) ⊂ (Ĉ, a). A (gen-
uine) cross-cut inD is an arc σ : [0, 1]→ Dr{a} such that intσ = σ(0, 1) ⊂ D while
∂σ := σ{0, 1} ⊂ ∂D. A generalized cross-cut in D is a proper arc σ : (0, 1) → D
not passing through a.

Exercise 8.1. Any generalized cross-cut σ divides D into two domains,

The component of D r σ that does not contain a is called a prime fjord F .
A prime fjord is specified as genuine or generalized according to the quality of its
cross-cut.

Exercise 8.2. Show that for any ε > 0, a generalized cross-cut σ : (0, 1) →
D can be ε-approximated (in the Hausdorff metric) with a genuine cross-cut σ′ :
[0, 1] → D coinciding with σ on [δ, 1 − δ] (for some δ > 0) and such that the ends
σ′[0, δ] and σ′[1− δ, 1] have length < ε.

Now we can define equivalent nests of prime fjords as in §1.7.5.

Remark 8.3. Sometimes it is convenient to consider continuous nests of prime
fjords Ft, t ∈ (0, ε) (where Fτ ⊂ Ft for τ < t).

Let ψ : D → D be the Riemann mapping. A nest of prime fjords Fn is escaping
if diamψ(Fn) → 0. For instance, a nest of standard fjords Fn is escaping if and
only if |θ+n − θ−n | → 0 and tn → 0, where θ±n , tn are respectively the angles and the
level of the rays and the equipotential bounding the Fn.

Following the general strategy, we now define a prime end E of D as an equiv-
alence class of escaping nests of (generalized) prime fjords. The definition is
designed so that there is a natural one-to-one correspondence between prime ends
and points of the ideal boundary ∂ID ≈ T. In these terms, topology on the ideal
compactification ∂ID ≈ D can be described as follows (compare §1.7.5). Given a
prime fjord F , let Un(F ) be the union of F and all the prime-ends that are subor-
dinated to F . The base of topology of clI D comprises all the sets U(F ), together
with all open sets of D.

According to a general definition from §1.7.6, the impression of the prime end
E represented by a nest of prime fjords (Fn) is defined as

I(E) =
⋂

n

Fn.

8.1.2. Shrinking cross-cuts. The above discussion is quite tautological as the
notion of “escaping fjords” is defined in terms of the Riemann mapping. What will
make it useful is that prime ends can be characterized in terms of the ambient
geometry of the domain D.

A nest of cross-cuts is shrinking if length(σn)→ 0 (in the spherical metric).
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Lemma 8.4. Any prime end is represented by a nest of (genuine) prime fjords
with shrinking cross-cut.

Proof. Let b ∈ T and e = e(b) be the corresponding prime end of D. It is
represented by the (continuous) nest of circular cross-cuts σr := T(b, r)∩D around b.

The images φ(σr) form a continuous nest of (generalized) cross-cuts ofD. These
cross-cuts do not necessarily shrink, but as we will see in a moment, some of them
do.

It will be slightly more convenient to replace D with the upper-half plane H

and to put b at the origin. Let us consider half-circles S(r) = Tr ∩ H around 0.
We will show that there is a sequence of good radii ri → 0 such that the cross-cuts
φ(S(ri)) of D shrink. To this end, let us consider half-annuli Πr = A(r/2, r) ∩ H

viewed as rectangles whose horizontal sides are the semi-circles. Let Fr be the
horizontal foliation of Πr by the half-circles Sρ, r/2 < ρ < r. The extremal length
of this foliation is equal to 1/modΠr = π/ log 2. By the conformal invariance, the
foliation φ(Fr) has the same extremal length.

Let lr be the minimal spherical length of the curves of φ(Sρ), r/2 < ρ < r. By
definition of the extremal length,

(8.1)
l2r

area(φ(Πr))
≤ L(φ(Fr)) =

π

log 2
,

where the “area” stands for the spherical area. Since area(φ(Ar)) → 0 as r → 0,
we conclude that lr → 0 as well, which gives us the desired nest with shrinking
cross-cuts. �

Remark 8.5. a) Notice that the good radii ri constructed above have the
property that ri+1 ≥ ri/2.

b) Note also that the rate of shrinking of the above cross-cuts is uniform with
respect to the choice of b ∈ T. Indeed, all the rectangles Πr are contained in the
annulus A[1 − r, 1) (in the disk model), and areaφ(A[1 − r, 1)) → 0. This makes
estimate (8.1) uniform.

To reverse the above lemma, we will need the following useful fact that can be
called uniform continuity of the Riemann mapping on continua:

Lemma 8.6. Let D ⊂ Ĉ be a conformal disk, and let ψ : D → D be the Riemann
mapping. Then for any ε > 0 there exists a δ > 0 such that for any continuum
γ ⊂ D with diam γ < δ (in the spherical metric) we have diam(ψ(γ)) < ε.

Proof. Assume this is not the case. Then we can find a sequence of continua
γn ⊂ D such that γn → b ∈ ∂D, while the images ψ(γn) converge (in the Hausdorff
metric) to some closed interval ω ⊂ T (which a priori could even coincide with the
whole circle T). Let ω′ be a closed sub-interval of intω.

As in Lemma 8.4, let us pass again to the half-plane model, so that ω′ ⊂ R.
Let us also put b at the origin. Also, let φ = ψ−1 : D→ D.

Lemma 8.4 implies that for any i ∈ N there is a finite family of half-circles
Sri(ai) = {|z − ai| = ri, Im z > 0} such that:

[ai − ri, ai + ri] ⊂ ω, ω′ ⊂
⋃

(ai − ri, ai + ri)

and
ri < 1/i, l(φ(Sri(ai)) < 1/i.
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Since each of these half-circles intersects ψ(γn), and γn → 0, we conclude that
φ(Sri(ai))→ 0 (in the Hausdorff metric).

Concatenating arcs of the above circles, we obtain a genuine cross-cut σi in D

with a base interval Ti such that ω′ ⊂ intTi ⊂ Ti ⊂ ω. Moreover, we can arrange
the construction so that the base intervals Ti form an increasing nest. Then for any
i and j > i sufficiently big, we can find a Jordan curve Γi,j composed by an arc of
σi and an arc of σj . It bounds a Jordan disk ∆ij . By the Maximum Principle,

maxz∈∆ij
|φ(z)| → 0 as i, j →∞.

Letting j →∞, we conclude that

lim sup |φ(z)| ≤ εi as z → ω′,

where εi → 0. Hence φ(z) → 0 uniformly as z → ω′, so φ admits a continuous
extension to ω′ by letting φ|ω′ ≡ 0. But this is impossible. �

Exercise 8.7. Can you justify this assertion?

Corollary 8.8. Let D ⊂ Ĉ be a conformal disk, and let ψ : D → D be the
Riemann mapping. If a curve γ : [0, 1)→ D lands at some boundary point b ∈ ∂D
as t→ 1, then its image ψ(γ) lands at some point e(θ) of the circle T.

Finally, we can invert Lemma 8.4:

Corollary 8.9. Let D ⊂ Ĉ be a conformal disk, and let ψ : D → D be the
Riemann mapping. If (Fn) is a nest of genuine prime fjords in D with shrinking
cross-cuts, then (ψ(Fn)) is a nest of fjords in D of the same quality. Hence the
latter shrinks to some point of of T.

Lemma 8.4 and Corollary 8.9 show that for a conformal disk D ⊂ Ĉ, any prime
end of D is represented by a nest of (genuine) prime fjords with shrinking cross-
cuts, and vice versa: any such a nest represents some ideal end. This brings us to
the standard definition of a prime end as an equivalence class of nests of (genuine)
prime fjords with shrinking cross-cuts. We see that a prime end gives a view of an
ideal boundary point in terms of the spherical geometry (for a conformal disk in
Ĉ). With this understanding, we will also refer to the ideal boundary ∂ID as the
Carathéodory boundary and will use notation ∂CD for it. Accordingly, the ideal
compactification clI D will also be called the Carathéodory compactification clC D.

We are ready to formulate a fundamental result of the classical boundary values
theory:

Carathéodory Boundary Theorem. The Riemann mapping φ : D → D

extends to a homeomorphism φ̂ : D→ clC D.

Exercise 8.10. Let us consider two conformal disks D,D′ ⊂ Ĉ and a home-
omorphism h : D → D

′
. Then h : D → D′ continuously extends to a homeomor-

phism ĥ : clC D → clC D′. Moreover, if D = D′ and h| ∂D = id then ĥ| ∂CD = id.

Corollary 8.11. Let D ⊂ Ĉ be a conformal disk, and let ψ : D → D be
the Riemann mapping. Let h : D → D be a homeomorphism. Then the conjugate
homeomorphism H = φ ◦ h ◦ φ−1 : D → D admits a continuous extension to D.
Moreover, if h|D = id then H|T = id.
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In conclusion, let us consider an arbitrary domain D in Ĉ with a tame end E
corresponding to a connected component K of Ĉ r D. Then K has an annular
collar A ⊂ D representing E. Uniformize A by a round annulus A(r, 1) so that
E corresponds to T. Then one can develop the theory of prime ends for E in the
same way as above identifying the ideal boundary ∂IED ≈ T with its Carathéodory
boundary, ∂CED.

Exercise 8.12. Go through details of this construction.

8.2. Local connectivity and Conformal Schönflies Theorem.

Exercise 8.13. Show that the inverse Riemann map φ : D → D extends con-
tinuously to a point a ∈ ∂D if and only if the corresponding impression I(φ̂(a)) is
a singleton.

Exercise 8.14. Let Γ ⊂ C be an immersed smooth closed curve with trans-
verse self-intersections, and let D be the unbounded component of CrΓ. Then the
uniformization φ : C r D → D admits a continuous extension to a map T → Γ.
Moreover, for any a ∈ Γ, card(φ−1(a)) is equal to the number of components of
intersection D(a, ε) ∩D, where ε > 0 is sufficiently small.

The next classical theorem will motivate some central problems of holomorphic
dynamics:

Carathéodory-Torhorst Theorem. The following properties are equiva-
lent:

(i) The inverse Riemann mapping φ : D→ D extends to a continuous map D→ D;

(ii) ∂D is locally connected;

(iii) Ĉ rD is locally connected.

Proof. (i) =⇒ (ii) by Exercise 1.13.

(ii) =⇒ (iii) by Exercise 1.16.

(iii) =⇒ (i). Assume φ does not admit a continuous extension to D. Then there
is a point a ∈ ∂D such that the corresponding prime end φ̂(a) has a non-singleton
impression I = I(φ̂(a)). Let us consider a nest of semi-circles δn shrinking to
a whose images γn := φ(δn) form a nest γ̄ of cross-cuts representing the prime
end φ̂(a) (see the proof of the Carathéodory Boundary Theorem). By selecting a
subsequence, we can assume that the cross-cuts γn shrink to some point y ∈ ∂D.

Since I is not a singleton, diamD+
n (γ̄) 6→ 0. Hence there exist ε > 0 and a

sequence of points ζn = φ(zn) ∈ D+
n (γ̄) such that dist(ζn, γn) > ε. Let us connect

zn to 0 by the straight interval [0, zn]; it crosses δn at some point bn. As the distance
d(φ(0), φ(bn)) stays away from 0, we can assume it is bigger than ε as well.

Thus, both arcs, φ[0, bn] and φ[bn, zn] must intersect the circle of radius ε/2
around y (for n sufficiently big). Then there is a subarc

ωn ⊂ D(y, ε/2) ∩ φ[0, zn] ⊂ D
with endpoint on this circle that crosses γn at a single point φ(bn). This arc
separates the endpoints of γn in D(y, ε/2) rD, contradicting local connectivity of
Ĉ rD at y. �

As a consequence, we obtain:



150 1. CONFORMAL GEOMETRY

Conformal Schönflies Theorem. Let γ ⊂ Ĉ be a Jordan curve and D be
a component of Ĉ r γ. Then the Riemann uniformization φ : D→ D extends to a
homeomorphism D→ D.

8.3. Accessibility and landing rays. Let K ⊂ C be a hull and let J = ∂K.
Then D := Ĉ r K is a hyperbolic disk, so D r {∞} supports two orthogonal
analytic foliations, by rays and equipotentials centered at ∞ (see §§4.2, 10.9). In
this situation, they are also called external rays and external equipotentials for K.

Let B : C rK → C r D be the Riemann mapping normalized so that B(z) ∼
z as z → ∞. By definition, the external rays and equipotentials for K are the
pullbacks of the straight rays emanated from ∞ and round circles centered at ∞
(compare §4.2). Let Rθ be the pullback of the straight ray {re(θ) : r > 1}, and let
Rθ(r) = B−1(re(θ)).

Let ω(Rθ) stand for the limit set of the ray Rθ, i.e., the set of all subsequential
limits

a = lim
rn→1

Rθ(rn) ∈ J.

We say that a ray Rθ lands at some point a ∈ J if Rθ(r) → a as r → 1 (or

equivalently, ω(Rθ) = {a}). In this case, Rθ = Rθ ∪ {a} is called a closed external
ray.

By the Carathéodory-Torhorst Theorem, we have:

Corollary 8.15. If K ⊂ C is a locally connected hull then every external ray
Rθ lands at some point z(θ) ∈ J .

Lindelöf Theorem. Let D ⊂ Ĉ be a conformal disk, and let φ : D → D be
the Riemann mapping. Assume there is a curve δ : [0, 1)→ D landing at e2πiθ ∈ T

whose image γ(t) := φ(δ(t)) lands at some point ζ ∈ D. Then the ray Rθ also lands
at ζ, with the same access as γ.

Proof. Let us replace D with the half-plane H so that 0 ∈ ∂H corresponds to
e2πiθ (keeping the notation for φ). Then the ray R in question is equal to φ(i ·R+).

In the course of the proof of the Carathéodory Boundary Theorem we con-
structed a shrinking nest of cross-cuts σi = φ(S(ri)), where S(r) = Tr ∩ H and
ri+1 ≥ ri/2. It follows that the ray R intersects cross-cuts σi at points zi such that
lhyp(R[zi, zi+1]) ≤ log 2, where R[zi, zi+1] is the arc of R in between points zi and
zi+1 and lengthhyp stands for the hyperbolic length in D.

Since near ∂D, the hyperbolic metric blows up compared with the spherical one
(Proposition 7.5) we conclude that lengthsphR([zn+1, zi])→ 0 as i→∞. Since the
cross-cuts σi uniformly converge to ζ, so do the arcs R[zi, zi+1], and the conclusion
follows. �

Exercise 8.16. Let D be a conformal disk and let φ : D→ D be the Riemann
mapping. If some ray Rθ, θ ∈ R/Z, lands at some point ζ ∈ ∂D then φ(z) → ζ
uniformly on any Stolz sector centered at e(θ).

The Lindelöf Theorem, together with Corollary 8.8, imply:

Corollary 8.17. Let D ⊂ Ĉ be a conformal disk. If a curve γ in D lands at
some boundary point b ∈ ∂D, then there is a ray Rθ landing at b with the same
access as γ.
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Lemma 8.18. Let D be a conformal disk and let ψ : D → D be the Riemann
mapping. Let γ, γ′ : [0, 1) → D be two curves landing at some points b, b′ ∈ ∂D
respectively, and let e(θ), e(θ′) ∈ T be the landing points of their images ψ(γ), ψ(γ′)
(existing by Corollary 8.8). Then θ′ = θ iff b′ = b and the curves γ, γ′ represent the
same access to b. Moreover, Rθ is the only ray landing at b with the same access.

Proof. Let γ : [0, 1) → D and γ(t) → b as t → 1. For each small ε > 0,
let us define a cross-cut σε as the component of ∂D(b, ε) ∩ D that separates γ(0)
from the γ(t) with t sufficiently close to 1. These cross-cuts form a (continuous)
nest with shrinking cross-cuts that represents a prime end p ∈ ∂CD. Moreover,
γ(t) → p as t → 1 in the Carathéodory compactification clC D of D. By the
Carathéodory Boundary Theorem, δ := ψ(γ(t)) converges to the corresponding
point a = e2πiθ := ψ̂(p) of T.

If γ′ lands at b with the same access, then the prime end p constructed above
is the same for these two curves. Hence ψ(γ′) converges to the same point a ∈ T.
In particular, Rθ is the only ray that can land at b with the same access as γ.

Vice versa, assume that the images δ and δ′ of γ and γ′ converge to the same
point e(θ) of T. By the Lindelöf Theorem, the ray R ≡ Rθ lands at the same point
of ∂D as each curve γ and γ′. So, γ and γ′ land at the same point b.

Let us show that γ and γ′ represent the same access to b as R. It is sufficient to
deal with one of them, say γ. We can also assume without loss of generality that γ
is smooth and transverse to R. If δ = ψ(γ) intersects the interval I := [0, a) at two
consecutive points δ(t) and δ(τ), t < τ , then we can pull the arc δ[t− ε, τ + ε] off so
that it becomes disjoint from I, without changing the access of γ to b. Performing
this to all intersections one by one, we replace δ with a curve landing at a and
disjoint from I, without changing the access of γ to b. Furthermore, by means of
the loop-erasing procedure (see Lemma 1.9), we can turn γ into an arc landing at
the same point b.

Thus, we can assume without loss of generality that δ is an arc disjoint from
I. Let us connect in D the beginning points (δ(0) and 0) of δ and I to obtain a
Jordan curve Γ ⊂ D ∪ {a}. Let ∆ ⊂ D be the open Jordan disk bounded by Γ. By
the Carathéodory Boundary Theorem, the conformal mapping φ ≡ ψ−1 : ∆ → D
extends continuously to ∆. Hence any homotopy δt ⊂ ∆ between δ and I rel a
induces a homotopy γt := φ(δt) ⊂ D between γ and R rel b. �

We see that landing of a ray at a certain boundary point b ∈ ∂D and the number
of landing rays can be detected purely topologically by looking at accesses to this
point. As the rays naturally correspond to prime ends, in the locally connected
case there is one-to-one correspondence between all accesses to all boundary points
and all prime ends.

A cross-cut, and the corresponding fjord, is called Green if it is composed of
two arcs of Green rays and an arc of an equipotential (centered at a). Lemma 8.18
implies that any genuine cross-cut can be replaced with a Green cross-cut with the
same accesses. It follows that any escaping nest of prime fjords is equivalent to a
nest of Green prime fjords. So, prime ends can be defined in terms of Green prime
ends as well.
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8.4. Appendix: Radial limits for bounded functions. Local connectivity
implies accessibilty of all points of a hull. Remarkably, “almost all” points can be
accessed for an arbitrary hull.

Let φ : D→ C be a holomorphic function. We say that it has a radial limit for
θ ∈ R/Z if there exists a limit

φ(e(θ)) := lim
rր1

φ(re(θ)).

We say that φ has almost all radial limits if the radial limits exist for Lebesgue
almost all θ ∈ R/Z.

The following classical result by Fatou (1906) might be the first application
of the Lebesgue Intergation Theory to Complex Analysis that inuagurated the
Boundary Value Theory for holomorphic functions:

Fatou Theorem. Any bounded holomorphic function φ : D → C has almost
all radial limits.

See [GaM, Ch.I,§2] for the proof.

Exercise 8.19. Show that for any hull K ⊂ C, external rays Rθ land for a.e.
θ ∈ R/Z. (It can be also formulated by saying that almost all point with respect to
the harmonic measure on K are accessible.)

Uniqueness Theorem. Let φ : D→ C be a bounded holomorphic function. If
there is a set Θ ⊂ R/Z of positive length such that φ(θ) ≡ c on Θ, then φ ≡ c on
D.

This classical result is attributed to F. & M. Riesz or Privalov. See [GaM, Ch.
VI, §2] for the further discussion.

Remark 8.20. These results are important for the Ergodic Theory of polyno-
mials. However, they do not play much role in the theory developed in the 2nd
volume of this book (§23.2 notwithstanding).

9. Puzzle and pinched disk models

9.1. Cut-curves and puzzle pieces for hulls.

9.1.1. Terminology. Let us develop some terminology concerning intersections
of a curve γ with a hull K ⊂ C.

Assume first that γ is an arc intersecting K for a single parameter, which
we can place at 0. Let a = γ(0). We say that γ touches K at a if the local
branches γ− : (−ε, 0]→ C and γ+ : [0, ε)→ C represent the same access to a from
D := CrK. Otherwise we say that γ cuts K at a.

An embedded curve γ (which can be closed) is called a cut-curve for K if γ cuts
K at every intersection point ai = γ(ti) ∈ K ∩ γ. In particular, we can talk about:

• a Jordan cut-curve;

• a cut-line, i.e., a properly embedded line R → C which is a cut-curve. (It can
also be viewed as a Jordan cut-curve in Ĉ.)

Note that in both cases, the intersection γ ∩K is finite.
Let L : R→ C be a cut-line crossingK at points ai = L(ti), where t1 < · · · < tn.

It is a concatenation of two topological rays

L0 : (−∞, t1]→ D ∪ {a1}, Ln : [tn,+∞)→ {an} ∪D,
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and n − 1 arcs Li : [ti, ti+1] → {ai} ∪ D ∪ {ai+1} whose interiors lie in D. The
Lindelöf Theorem implies that

• L0 is homotopic in D rel a1 to an external ray in D landing at a1 (and similarly,
for Ln);

• Each Li, i = 1, . . . , n− 1, is homotopic in D rel {ai, ai+1} to a concatenation of
two arcs of Riemann rays in D and an equipotential arc.

So, the whole cut-line L is homotopic in Ĉ rel (L∩K)∪{∞} to a line concate-
nated of arcs of external rays and equipotentials in D (in a “minimal” way). The
latter cut-lines are called Green. The ray part of such a line is called vertical, while
the equipotential part is called horizontal.23

We say that a cut-line is simple if it crosses K at a single point a. If such a

line is Green, it comprises two closed external rays, Rθ1 and Rθ2 , landing at a.
A point a ∈ K is called a cut-point if there is a simple cut-line L through this

point. In this case, the components of C r L are called (open24) sectors bounded
by L (rooted at a). For a Green sector S bounded by rays Rθ1 and Rθ2 , we
call Sh(S) := (θ1, θ2) ⊂ R/Z the shadow of S at infinity (where the arc (θ1, θ2) is
selected so that the rays Rθ with θ ∈ (θ1, θ2) are contained in S).

A sector S rooted at a cut-point a is called perfect if the intersection T ∗ :=
(K ∩ S) r {a} is connected. In this case, the closure T := clT ∗ = T ∗ ∪ {a} is
called a branch of K at a, while T ∗ itself is called an unrooted branch. Under
these circumstances, there are no non-peripheral accesses to a from S rK. (By a
peripheral access to a we mean an access given by a boundary curve of ∂S.) For a
perfect Green sector, it follows that no external ray Rθ ⊂ S lands at a.

A puzzle piece (for K) is a closed Jordan disk P bounded by a Jordan cut-curve
γ. The cut-points K∩∂P are called vertices of P . Given a vertex a ∈ ∂P , the local
sector S of ∂P rooted at a and contained in intP is called the corner of P at a. A
puzzle piece is called perfect if all its corners are such.

9.1.2. Chopping off subhulls. More generally than above, we say that two hulls,
K1 and K2, touch at a point a ∈ K1∩K2 if the set K := K1∪K2 admits a cut-line
through a locally separating K1 r {a} from K2 r {a}.

The following lemma shows that a simple cut-line cuts a hull into two subhulls
touching at the cut-point.

Lemma 9.1. Let K ⊂ C be a hull, L be a simple cut-line through a cut-point
a ∈ ∂K, and let S be a corresponding global sector rooted at a. Then the intersection
S ∩K is non-empty, and S ∩K = cl(S ∩K) = (S ∩K) ∪ {a} is a subhull of K.

Proof. The intersection S ∩K is non-empty since L is a cut-line. Further-
more,

S ∩K = (S ∩K) ∪ (∂S ∩K) = (S ∩K) ∪ (L ∩K) = (S ∩K) ∪ {a}.
Let us show that S ∩ K does not contain relatively clopen subsets X ⊂ S.

Assume otherwise. Since S ∩K is closed, X is closed in K as well. On the other
hand, as X ⊂ S ∩ K and X is relatively open in S ∩ K, it is relatively open in
S ∩ K. But since S is open, S ∩ K is relatively open in K. By “transitivity”, X

23This terminology will naturally be extended to various objects below that involve cut-lines
(sectors, puzzlle pieces, corners).

24We will also allow closed and semi-open sectors, with obvious adjustments.
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is relatively open in K. Thus, X is clopen in K contradicting connectivity of the
latter.

Now, if S ∩ K is disconnected then it is decomposed into a disjoint union of
relatively clopen subsets, S ∩K = X1 ⊔X2. Since only one of them can contain a,
which is the only point on ∂S∩K, one of the sets Xi is contained in S, contradicting
the above assertion.

Thus, S ∩ K is a continuum. Let us show that it is full. Indeed, if U is a
bounded component of its complement, then ∂U ⊂ K. Since K is full, U ⊂ intK.
Since U is in the complement of S ∩ K, it intersects intK r S. But then it is
contained in intK r S (since any connected subset of K intersecting both S and
CrS must contain a, which is on the boundary of K). Then ∂U ⊂ KrS, while by
its definition ∂U ⊂ S ∩K. It follows that ∂U ⊂ {a}, which is of course an absurd.

To complete the proof, we need to check that cl(S ∩K) = (S ∩K)∪{a}. Since
we already know that the latter set is closed (equal to S ∩K), it is left to notice
that a ∈ cl(S ∩K), for otherwise S ∩K would be a clopen subset of S ∩K. �

We can now proceed inductively to show:

Corollary 9.2. Let K ⊂ C be a hull.

(i) Let Li be a finite family of disjoint simple cut-lines with Li ∩K = {ai}. Then
any component S of Cr

⋃
Li intersects K, and

S ∩K = cl(S ∩K) = (S ∩K) ∪ {aj ∈ ∂S}
is a subhull of K.

(ii) For any puzzle piece P , the intersection P ∩K is a subhull of K.

Remark 9.3. Notice that any two components S1 and S2 as above are sepa-
rated by a cut-line L, and hence their closures can only touch at a single point
a = L ∩K.

In fact, Corollary 9.2 is still valid for infinitely many cut-lines:

Corollary 9.4. Let K ⊂ C be a hull, and let Li be a countable family of
disjoint simple cut-lines with Li ∩ K = {ai}. Assume z ∈ K is distinct from all
the ai, and let I ≡ I(z) ⊂ K be the set of points in K that are not separated from
z by the cut-lines Li, together with those ai that are not separated from z by other
cut-lines Lj, j 6= i. Then:

(i) I is either a subhull of K or a singleton.

(ii) If none of the ai is separated from z by another cut line Lj (j 6= i), then I(z)
is a hull.

(iii) For any nest of puzzle pieces P1 ⊃ P2 ⊃ . . . , the intersection K∩⋂Pn is either
a subhull of K or a singleton.

Proof. (i) Consider subhulls In ≡ In(z) associated with the first n cut-lines
L1, . . . , Ln. By the previous corollary, they form a nest of subhulls. As

⋂
In = I,

the conclusion follows.

(ii) Under these circumstances, all the ai belong to I, so I is not a singleton
(provided there is more than one point ai; otherwise the assertion is directly covered
by Lemma 9.1).

Part (iii) is a particular case of (i). �
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Letting Si be the sector bounded by Li that does not contain z, we can also
describe I(z) as follows:

I(z) = Cr
⋃
Si.

So, I(z) is obtained from K by chopping off infinitely many sectors Si. Moreover,
in case (ii) these sectors are pairwise disjoint.

Note that in general the relation between accesses to a hull K and a subhull Q
is quite loose. Indeed, different accesses to K can represent the same access to Q,
while on the other hand, an access to Q may not represent any access to K. We
can only say that the set of acceses to K at z is naturally mapped to the set of
accesses to Q at z. [This map is obtained by viewing a curve γ ⊂ CrK landing at
z as a curve in S rQ.] However, under the above circumstances, we can say more:

Lemma 9.5. Under the circumstances of Corollary 9.4 (ii) , the set of acceses
to K at z is naturally injected to the set of accesses to I ≡ I(z) at z.

Proof. Let us consider two curves γ1, γ2 ⊂ C rK landing at z representing
two different accesses to K at z. Together, they form a simple cut-line L through K
at z, which bounds two sectors S±. By Lemma 9.1, the sets K± := (K ∩S±)∪ {z}
are two subhulls of K touching at z; so, they are not singletons. Accordingly, the
set A of cut-points ai is partitioned into two disjoint subsets, A± := {ai ∈ S±} =
{ai ∈ K±}. Let

I± := I ∩K± = (I ∩ S±) ∪ {z}.
Then I+ is obtained from K+ by chopping off sectors Si rooted at ai ∈ K+ and
the sector S−, all disjoint. By Corollary 9.2 (ii), I+ is a not a singleton; similar,
neither is I−. It follows that γ± represent different accesses to I at z. �

9.1.3. Puzzle ends, impressions, and rigidity. Let K be a hull, and let D :=
C r K. Following the general framework of §1.7.6, the family P of puzzle pieces
allows us to compactify the domain D. In this setting, we define puzzle fjords as
the intersections F (P ) := int(P ∩ D) for various P ∈ P. An escaping nest of
fjords F0 ⊃ F1 ⊃ . . . (or, the corresponding puzzle pieces Pn) is defined by the
property that any puzzle piece P ∈ P either contains P∞ :=

⋂
Pn or intP is

disjoint from P∞.

Exercise 9.6. Show that the last property is equivalent to saying that P∞
cannot be cut into two pieces by a cut-line of K.

With these in hands, we have a notion of puzzle ends E ≡ EP , puzzle boundary
∂PD, and puzzle compactifications clP D. We also have a notion of the puzzle
impression P∞(E) of a puzzle end E defined as

⋂
Pn for any escaping nest (Pn)

representing E.
For a ∈ K, we define the puzzle end E(a) as the end represented by escaping

puzzle nests (Pn) such that a ∈ intPn. The corresponding puzzle impression P∞(a)
is the set of points ζ ∈ K that cannot be separated from a by a cut-line (i.e., there is
no cut-line L such that a and ζ lie in different components of CrL). Equivalently,
P∞(a) is the intersection of all puzzle pieces containing a in its interior.

Corollary 9.4 implies:

Corollary 9.7. (i) Let K be a hull. Then any puzzle impression P∞(a) is
either a subhull of K or a singleton.
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(ii) There is a natural pojection K → ∂PD whose fibers are puzzle impressions.

(iii) If all puzzle impressions are singletons then K is homeomorphic to ∂PD.

If the puzzle impression P∞(a) is a singleton then a is called rigid. Equivalently,
a point a ∈ J is rigid if there is a shrinking nest of puzzle pieces Pn containing a in
their interiors. If these pieces can be selected perfect, then we say that a is perfectly
rigid.

Proposition 9.8. (i) If a point a ∈ K is rigid then K is weakly locally con-
nected at a.

(ii) If a ∈ K is perfectly rigid then K is locally connected at a.

(iii) If all points of K are rigid then K is locally connected at a.

Proof. (i) In this case, puzzle pieces Pn containing a in their interior provide
a base of closed neighborhoods of a whose intersections with K are connected.

(ii) In this case, the intPn form a base of open neighborhoods of a whose
intersections with K are connected.

(iii) follows from Exercise 1.11. �

This provides us with a very useful condition for local connectivity that will
be applied numerous times in the dynamical context. Let us formulate it in a user
friendly way:

Corollary 9.9. Let K be a hull. Assume that for some point a ∈ K, there
exists a nest of puzzle pieces Pn such that a ∈ intPn and diamPn → 0. Then K is
rigid, and hence weakly locally connected, at a. If this happens for all a ∈ K then
K is locally connected.

Of course, under the circumstances of the last assertion, K is nowhere dense.

9.1.4. Puzzle and rays. By definitions, a ray Rθ converges to a puzzle end E if
for some (and then for any) escaping nest (Pn) representing E, we have:

∀ n ∈ N ∃ tn > 0 such that Rθ(t) ∈ intPn for t ∈ (0, tn).

In particular, for a ∈ K, a ray Rθ converges to a puzzle end E(a) iff for any
puzzle piece P containing a in its interior, the ray Rθ is eventually trapped in intP
(i.e., there exists t0 > 0 such that Rθ(t) ∈ intP for all t ∈ (0, t0)).

Exercise 9.10. Let K be a hull.

(i) If σ is a cross-cut contained in a puzzle piece P then the corresponding prime
end fjord F is contained in intP .

(ii) If a prime end impression I(E) intersects a puzzle piece P , then I(E) ⊂ P .
Hence, if the limit set ω(R) of an external ray R intersects P then ω(R) ⊂ P .

(iii) For any puzzle end EP , there is at least one prime end EC subordinated to EP .
Hence there is at least one external ray Rθ converging to EP .

(iv) There is a natural continuous surjective projection π : clC D → clP D extending
the identical map D → D. Hence ∂PD is locally connected.

Corollary 9.11. Assume a point a ∈ K is rigid. If a belongs to the impression
I(EC) of some prime end EC then I(EC) = {a}, and hence the corresponding
external ray lands at a.
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Thus, a rigid point a has a well defined full preimage Q ≡ Φ−1(a) ⊂ T under the
Riemann uniformization Φ : CrD→ CrK with the property that Φ continuously
extends to Q, Φ(Q) = a, while the impression of any other prime end is disjoint
from a.

Remark 9.12. The above theory can be developed for a subfamily P of puzzle
pieces satisfying the property that for any two pieces P1, P2 ∈ P,

either int(P1 ∩ P2) = ∅ or P1 ∩ P2 contains some puzzle piece P ∈ P.

Yoccoz puzzle will provide us with an important example of this kind.

9.1.5. Branches and limbs. Let us say that a cut-point a ∈ K is well branched
with valence n ≥ 2 if there are n rays Ri landing at a such that each component of
K r

⋃Ri is connected. Thus, we have n branches Ti of K rooted at a. Corollary
9.8 implies:

Corollary 9.13. A rigid point a ∈ K with finitely many accesses is well
branched.

Here is another useful condition for well branching:

Lemma 9.14. Let S be a sector rooted at a ∈ K bounded by rays Rθ± . Assume
there exists a sequence of cut-points an ∈ K ∩ S which are landing points of rays25

Rθ
n
±
n such that θn± → θ±. Then there exists only one branch of K in S (i.e., K ∩ S

is connected).

Proof. Otherwise we can select a branch T ∗ ⊂ K ∩S that does not contain a
subsequence of the an’s. Let us consider a ray Rη landing in T ∗. Then η separates
one of the θ± from all of the θn± (for that subsequence). �

Exercise 9.15. Assume that a point a ∈ K can be separated from any other
point of K by a cut-line through a well branched point. Then a is perfectly rigid.

We will often deal with pointed hulls K ∋ b centered at some base point b
(which is usually the origin). Under these circumstances, if a 6= b is a well branched
cut-point, then all the branches Ti at a that do not contain b will be called limbs of
K at a, while the corresponding sectors Si ⊃ T ∗i will be called wakes. The branch
containing b will sometimes be called the body B of K at a, but sometimes this term
will be used in a different way (which should not lead to confusion as the definitions
will be explicitly given). Compare §25.6.5 and §37.3.

9.2. Interior components of hulls.

9.2.1. Cut-curves and puzzle pieces for general continua. Let us start with ad-
justing the terminology developed in §9.1.1 to general continua J ⊂ C (not neces-
sarily hulls).

First, cut-curves, cut-lines and cut-points are defined in the same way as for
hulls. (Of course, in the general case cut-curves can pass through bounded compo-
nents of CrJ .) In particular, a cut-line L : R→ C crossing J at points ai = L(ti),
t1 < · · · < tn, is a concatenation of two topological rays

L0 : (−∞, t1]→ D ∪ {a1}, Ln : [tn,+∞)→ {an} ∪D,

25More rays landing at a are allowed.
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and n − 1 arcs Li : [ti, ti+1] → {ai} ∪ Di ∪ {ai+1} whose interiors lie in C r J .
Here D is the unbounded component of C r J , while (Di)

n−1
i=1 is some sequence of

components of C r J (which could be repeated). In particular, if all the Di are
equal to D then L is a cut-line for the hull K of J .

Now, the Lindelöf Theorem implies that

• L0 and Ln are respectively homotopic in D rel a1 and an to the external rays
landing at a1 and an;

• Each Li, i = 1, . . . , n− 1, is homotopic in Di rel {ai, ai+1} to a concatenation of
two arcs of internal Green rays in Di and an arc of equipotential.

So, the whole cut-line L is homotopic in C r J rel (L ∩ J) ∪ {∞} to a line
concatenated of arcs of Green rays and equipotentials in C r J . We call such
cut-lines Green.

We say that a cut-line L is simple for J if it is such for the hull K. We say that
L is dipole if it crosses J at two points, a1 and a2, so that the arc L1 connecting
these points lies in a bounded component D1 of CrJ . We call such a pair of points
a1, a2 ∈ ∂D1 a dipole.

One can proceed to define dipole sectors and shadows, as well as (perfect) dipole
sectors, (perfect) puzzle pieces and their vertices and corners similarly to their or-
dinary counterparts introduced in §9.1.1. Green puzzle pieces are also defined nat-
urally.

Exercise 9.16. Generalize results of §9.1.2 to an arbitrary continuum J ⋐ C.
Namely, let Li be a finite family of disjoint simple cut-lines with Li ∩ J = Ai,
where each Ai is either a singleton or a dipole. Then any component S of Cr

⋃
Li

intersects J , and

S ∩ J = cl(S ∩ J) = (S ∩ J)
⋃

Ai⊂∂S
Ai

is a subcontinuum of J .

Exercise 9.17. If a puzzle piece P is perfect then K ∩ intP is connected.

We can proceed with defining (perfectly) rigid points of J .

Corollary 9.18. If a ∈ J is perfectly rigid then J is locally connected at a.

9.2.2. Limbs and local connectivity at peripheral points. Let K be a hull, and
let D be a component of intK.

Lemma 9.19. Assume D is a Jordan disk and there is a countable set A of
cut-points ai ∈ ∂D such that

(9.1) K = D ∪
⋃

i

L∗i ,

where L∗i = Si ∩ K, Si being a sector bounded by two rays landing at ai. Let
Li := Li ≡ L∗i ∪ {ai}. If diamLi → 0 then:

(i) Any point a ∈ ∂D rA is accessible.

(ii) K is perfectly rigid (and hence locally connected) at any point a ∈ ∂DrA, with
exactly one access (and hence with exactly one external ray landing at a).

(iii) If a limb Li is (perfectly) rigid at its root ai ∈ A then J ≡ ∂K is (perfectly)
rigid at ai.
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Proof. (i) It is sufficient to construct a sequence of cross-cuts σn whose im-
pression is equal to {a}. Due to the Jordan-Schönflies Theorem, we can assume
that a = 0 and D (as a domain in the Riemann sphere) is the lower half-plane
H− = {Im z < 0}. The case when a 6∈ A is trivial, so assume that a ∈ A, and
assume for definiteness that A accumulates on a on the right (while may or may
not accumulate on the left).

Let us label points ai ∈ A near a and the corresponding sets Li so that ai > 0 iff
i > 0. Let εi be the smallest closed disk D(a, εi) containing Li. Since εi → 0, there
exists a positive subsequence i(n) → ∞ such that εi(n) > εj for all aj ∈ (0, an(i)).
Then the disk Dεi(n)

contains all the sets Lj rooted at the aj ∈ (0, an(i)). Hence
there is an arc σn of Tεi(n)

in H rK whose right-hand endpoint belongs to Li(n),
while the left-hand endpoint belongs either to some Lk(n) with k(n) < 0 or to ∂D.
For definiteness, assume the former (as the latter case is even either).

The cross-cuts σn represent some prime-end E. Let us show that its impression
is equal to {a}.

Let Γn be the union of σn, the set Li(n) and Lk(n), and the interval [ak(n), ai(n)].

It is a continuum. Since the limbs shrink, diamΓn → 0. Hence diam Γ̂n → 0 as
well, where Γ̂n is the filled Γn.

Since the prime-end fiord D+
n corresponding to the cross-cut σn is contained

in Γ̂n, we conclude that diamD+
n → 0 as well. Hence I(E) is a singleton, and it

cannot be anything but a.

(ii) Let a ∈ ∂D r A. As above, we assume that a = 0 and D = H−. Take
nearby points a− < 0 < a+ in R r A, and consider rays R± ⊂ H rK landing at
these points. Since diamLi → 0, we can truncate these rays by a horizontal interval
δ on a small height that does not intersect K. We can also connect a− to a+ by
an arc ω in H−. Concatenation of these four arcs, R−, δ, R+, and ω, is a Jordan
cut-curve for J = ∂K that bounds a small puzzle piece P around a.

Moreover, removing of a± from P does not disconnect the latter. Indeed,
(P ∩D)r {a±} is connected, and attaching to it connected sets Li preserves con-
nectivity. Thus, P is perfect, implying that a is perfectly rigid, .

Similarly, removing a from P does not disconnect the latter, implying that
there is only one access to a.

(iii) Let us drop the label i, so a ∈ A, S is the corresponding sector rooted at
a, and L ⊂ S is the corresponding subhull attached to a. Assume L is rigid at a.
Let γ be the boundary of small puzzle piece for L around a. Then it crosses both
rays of the boundary ∂S, and hence it crosses nearby external rays R± landing on
∂D. Let us consider a Jordan cut-curve for J by taking a concatenation of an arc
of γ, arcs of R± and an arc in D connecting the landing points of R+ and R−.
This provides us with a small puzzle piece for J , proving rigidity of a in J = ∂K.
Moreover, if we start with a perfect puzzle piece for L, this construction gives us a
perfect puzzle piece for J . �

Lemma 9.20. Assume D is a Jordan disk and there is a countable dense set A
of cut-points ai ∈ ∂D satisfying (9.1). Then diamLi → 0.

Proof. If diamLi 6→ 0 then we can take a Hausdorff limit L∞ = limLi(k) as
i(k)→∞ which is not a singleton. Hence it is a continuum attached to ∂D. Since
the sets Li(k) are eventually disjoint from the sectors Sj , and the latter are open,
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we have
L∞ ⊂ K r

⋃
Sj = K r

⋃
L∗j .

By (9.1), L∞ ⊂ ∂D. Being a continuum, L∞ is an arc of ∂D. Since A is dense
in ∂D, the set L∞ contains some point aj in its relative interior. But then the
approximating sets Li(k) eventually cross Lj – contradiction. �

9.2.3. LC hulls and Jordan disks. We will now use the Carathéodory Theorem
for further study of the topology of lc hulls.

Let K be a hull, and let (D, b) be a pointed component of intK. (We will refer
to b as the center of D.) Since it is simply connected, it can be uniformized by
the unit disk, φ : (D, 0) → (D, b). Internal rays Rθ of (D, b) are defined to be the
images of the straight rays {re(θ) : 0 ≤ r < 1} under φ.

Proposition 9.21. Let K ⊂ C be a lc hull. Then any component D of intK
is a Jordan disk.

Proof. Let us consider the projection πD : K → D (1.2). Since it is continu-
ous and K is lc, D is lc as well (Exercise 1.13,b)). By the Carathéodory-Torhorst
Theorem, the boundary ∂D is lc as well and the uniformization φ : D→ D extends
continuously to the boundary.

This shows that ∂D is a curve. We just need to show that it is simple. If
not, then there are two internal rays R1 and R2 in D that land at the same point
a ∈ ∂D. Then by Lemma 9.1 (applied to the hull Ĉ r D), the Jordan curve
γ := R1 ∪ R2 ∪ {a} surrounds a point b ∈ ∂D ⊂ ∂K. On the other hand, since
K is full, the open Jordan disk bounded by γ is contained in intK; in particular,
b ∈ intK – contradiction. �

Exercise 9.22. For any two components D1 and D2 of a lc hull K, the closures
D1 and D2 are either disjoint or touch at a single point.

9.3. Legal issues. Let us say that a lc hull K is pointed if every component D
of intK is pointed. Then a point x ∈ K is called legal if x ∈ ∂K or x is the center
of some component of intK. An arc γ in K is called legal if any non-empty slice of
γ by a component D of intK consists of one or two internal rays of D. Obviously,
endpoints of a legal arc are legal. Vice versa:

Exercise 9.23. Let K be a pointed lc hull, and let x and y be two legal points
in K. Then x and y can be connected by a unique legal arc [x, y].

Exercise 9.24. Let γ : (0, 1) → K be a legal arc in a lc hull K. Then any
point a ∈ J ∩ γ is a cut-point that can be accessed from above and from below the
arc.

Exercise 9.25. Assume that K is 0-symmetric. Then for any two symmetric
legal points, x and −x, the legal arc [−x, x] passes through 0.

Let us say that a set H ⊂ K is legally convex if

(i) for any two legal points x, y ∈ H, the legal arc [x, y] is contained in H;

(ii) The slice of H by any component D of intK is a union of some internal rays.

Let now X ⊂ K be a finite set of legal points xi containing at least two points.
The legal hull H = H(X) of X in K is the union of the legal arcs [xi, xj ] connecting
all pairs of these points. This is the smallest legally convex set containing X.

Exercise 9.26. The legal hull H(X) is a topological tree.
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9.4. Pinched disk model for a hull.

9.4.1. Locally connected case. The Carathéodory-Torhorst Theorem allows one
to represent any hull K ⊂ C as a quotient of the unit disc D by a special equivalence
relation ∼

K
. Namely, this theorem provides us with the continuous extension φ :

C r D → (C r K) ∪ ∂K of the Riemann uniformization. Now, the equivalence
classes of ∼

K
on the unit circle T are defined as the fibers φ−1(·) of φ|T. Obviously,

∂K is homeomorphic to the quotient T/ ∼
K

.

We will now extend it to D. Given a non-singleton class X of ∼
K

, let X̂ stand

for the hyperbolic convex hull of X, see §2.4.18. (For any singleton class X = {x},
we let X̂ = X.

Lemma 9.27. Given a lc hull K, the convex hulls X̂ are pairwise disjoint.

Proof. Let us compactify the complex plane C with the circle T∞ at infinity.
Convergence of points zn ∈ C to θ ∈ T∞ means that zn →∞ and arg zn → θ. It is
easy to check that this compactification, C, is homeomorphic to D.

The Riemann uniformization φ : CrD→ CrK extends to a homeomorphism
CrD→ CrK in an obvious way. Since K is locally connected, it further extends
to a continuous map C r D → C r intK by the Carathéodory-Torhorst Theorem.
(We will keep notation φ for all these extensions.)

Given an ∼
K

equivalence class X = φ−1(x) ⊂ T∞, x ∈ ∂K, let

X̃ = {re(θ) : r ∈ [0,∞], θ ∈ X} ⊂ Cr D :,

and let

X ′ = φ(X̃) = X ∪
⋃

θ∈X
Rθ ∪ {x} ⊂ Cr intK.

This is a compact set intersecting T∞ by X and intersecting K by {x}.
Consider now another equivalence class, Y = {φ−1(y)}, y ∈ ∂K, y 6= x. Then

X ∩ Y = ∅, and hence X̃ ∩ Ỹ = ∅. Since φ : CrD→ CrK is a homeomorphism,
the sets X ′ rK and Y ′ rK are disjoint. But the intersections X ′ ∩K = {x} and
Y ′ ∩K = {y} are also disjoint. Thus, X ′ ∩ Y ′ = ∅.

By Proposition 2.65, the sets X and Y are unlinked on T∞ ≈ T, so their convex
hulls X̂ and Ŷ are disjoint in D . �

Each set X̂ is declared to be an equivalence class of ∼
K

. All other equivalence

classes are singletons. (This equivalence relation can be considered not only on D

but on the whole plane C.)

Theorem 9.28. A locally connected hull K ⊂ C is homeomorphic to the quo-
tient D/ ∼

K
. Moreover, the inverse Riemann map φ : C r D → C rK admits am

extension to a homeomorphism (C/ ∼
K
, D/ ∼

K
)→ (C,K).

Proof. Let T̂ :=
⋃
X̂ ⊂ D, where the union is taken over all equivalence

classes on X ⊂ T.

Step 1: The set T̂ is closed. Let zn → z ∈ D and zn ∈ X̂n = φ−1(ζn) with ζn ∈ ∂K.
Passing to a subsequence, we can assume that ζn → ζ ∈ ∂K. By continuity of Φ|T,
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we have (see Exercise 1.121)

lim sup
n→∞

Xn ⊂ X := φ−1(ζ)

It easily implies (see Exercise 2.28) that

lim sup
n→∞

X̂n ⊂ X̂,

so z ∈ X̂.

Step 2: The map φ : T→ ∂K extends to a continuous map φ̂ : T̂→ ∂K by declaring
φ̂(X̂) = φ(X).

Let zn → z ∈ D, zn ∈ X̂n. Without loss of generality, we can assume that
the Xn are pairwise disjoint. Then there exist points z′n ∈ ∂Xn converging to z as
well, so we can assume that zn ∈ ∂Xn in the first place. But

⋃
∂Xn is the support

of a geodesic lamination L, so zn belongs to some geodesic leaf γn = [xn, yn] ∈ L,
where xn, yn ∈ T. But then the γn uniformly on D converge to the geodesic leaf
γ = [x, y] ∈ L through z (see Exercise 2.67). Since φ|T is continuous,

φ̂(zn) = φ(xn)→ φ(x) = φ̂(z).

Step 3: For any gap Q in T̂ the map φ̂ continuously extends to a homeomorphism
Q→ D, where D is a component of intK.

The closure Q ⊂ D is the convex hull of its ideal boundary ∂IQ ⊂ T, which
is a Jordan disk bounded by ∂IQ and a family of hyperbolic geodesics Γj (see
Lemma 2.25 and §2.5). The quotient Q/ ∼

K
is obtained by collapsing the Γj to

singletons, which is also a closed Jordan disk (by the Devil Staircase in the disk,
see Exercise 1.8).

Any homeomorphism between the boundaries of two Jordan discs extends
continuously to the whole discs (e.g., radially). In particular, the embedding
φ̂ : (∂Q/ ∼

K
) → ∂K extends to a homeomorphism (Q/ ∼

K
) → D, where D is

the (open) Jordan disc bounded by φ̂(∂Q). This Jordan disc is contained in intD
since K is full. Since ∂D ⊂ ∂K, D is a component of intK.

Step 4: The map φ̂ : D→ K is continuous.
Given zn → z ∈ D, we want to show that φ̂(zn) → φ̂(z) . By the above

discussion (Steps 2–3), we only need this check it in case zn ∈ Qn where the
Qn are distinct gaps. Since areaQn → 0, there exist points z′n ∈ ∂Qn ⊂ T̂

such that dist(zn, z
′
n) → 0, so z′n → z as well. By Step 2, φ̂(z′n) → φ̂(z). But

dist(φ̂(zn), φ̂(z
′
n) ≤ diam φ̂(Qn)→ 0 by Proposition 9.27. The conclusion follows.

Step 5: The map φ̂ : D → K is onto. Here we will make use of the exterior of
D. Let us consider some circle TR with R > 1 and the corresponding equipotential
ER = φ(TR). It goes once around K, so by the Topological Argument Principle
(Proposition 3.8) all values in K must be assumed by φ̂ �

9.4.2. General case. For a general hullK, we can modify the above construction
to produce a lc model Klc for K. Namely, to each cut-point a ∈ K we can associate
the set X(a) ⊂ T of external angles of the rays landing at a. Take the hyperbolic
convex hull X̂(a) ⊂ D of this set. Its boundary in D is the union of hyperbolic
geodesics. Since the sets X(a) are unlinked, all these geodesics are pairwise disjoint.
Taking the closure and cleaning it up, we obtain a geodesic lamination LK in D.
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Some gaps of this lamination are classes X̂(a), we call them gaps of first kind (or
black gaps), others are called gaps of second kind (or white gaps). Note that no
two gaps of first kind are adjacent, so we obtain a colored lamination. Taking the
quotient of C mod this colored lamination (by collapsing the classes X̂(a) to single
points), we obtain Klc, the lc pinched disk model for K.

Proposition 9.29. Assume
⋃
X(a) is dense in T. Then there exists a natural

continuous projection
π : (C,K)→ (R2,Klc).

This projection is a homeomorphism if and only if K is locally connected.

Exercise 9.30. Let X be a Cantor set on the circle T = R/Z, and let

K =
⋃

θ∈X
[0, e(θ)]

be the corresponding hedgehog. What is the lc model for K?

10. Appendix 1: Potential theory

Harmonic and subharmonic functions is a very important subject on its own
right that penetrates deeply into analysis, geometry, and probability theory. From
our perspective, their outstanding role comes from the fact that they lay down a
foundation for a proof of the Uniformization Theorem. For readers’ convenience,
here we will briefly review needed basics of the theory.

10.1. Harmonic functions and differentials. Recall that a function u :
U → R on a domain U ⊂ C is called harmonic if u ∈ C2(U) and ∆u = 0 where
∆ = ∂2x + ∂2y is the usual Euclidean Laplacian. The real and imaginary parts of
any holomorphic function f = u+ iv on U are harmonic, which is readily seen from
the Cauchy-Riemann equations

∂xu = ∂yv, ∂yu = −∂xv.
They are called conjugate harmonic functions.

Vice versa, any harmonic function u can locally be represented as the real part
of a holomorphic function. Indeed, ∆u = 0 gives the integrability condition for the
Cauchy–Riemann equations that allow one to recover locally the conjugate function
v.

This can be nicely expressed in terms of the Hodge ∗ operator. Let V ≈ R2

be the oriented 2D Euclidean space. By self-duality, we identify vector fields
τ = a∂x + b∂y with 1-forms ω = adx + bdy. The Hodge ∗-operator is defined as
π/2-rotation of ω or τ , i.e. ∗ω = −bdx+ ady.

Then the Cauchy–Riemann equations can be written as

(10.1) dv = dcu, where dc := ∗d, while ddcu = ∆u dz ∧ dy.
So, u is harmonic if and only if the form dcu is closed, and then (10.1) can be locally
integrated:

(10.2) v(z) =

∫ z

z0

dcu =

∫

γ

∂u

∂n
ds,

where γ is a smooth (oriented) path connecting z0 to z (within a small disk), ds
is the length element on γ and n is the unit normal vector to γ rotated clockwise
from the corresponding tangent vector to γ.
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Globally, the integral (10.2) depends on the homotopy class of the path γ (rel
the endpoints), so it defines a multi-valued harmonic function v and the correspond-
ing multivalued holomorphic function f = u+ iv. The monodromy for this function
along a cycle γ depends only on the homology class of γ and is given by the periods
of dcu:

fγ(z)− f(z) = i

∫

γ

dcu = i

∫

γ

∂u

∂n
ds,

where fγ is the result of analytic continuation of f along along γ. In particular, if
a is an isolated singularity for u, then the monodromy if f as we go around a little
circle γ = Sr := {|z − a| = r} is equal to

fγ(z)− f(z) = i

∫

Sr

∂u

∂r
(ζ) dθ.

Relation between harmonic and holomorphic functions makes the notion of
harmonicity manifestly invariant under holomorphic changes of variable: if u is
harmonic then so is u ◦ φ for any holomorphic map φ. Thus, harmonicity is well-
defined on an arbitrary Riemann surface S. This can also be seen from the original
definition by expressing the Laplacian in terms of the differential operators ∂ and
∂̄ (see §2.11). Indeed, we have:

(10.3) ∂ =
1

2
(d+ idc), ∂̄ =

1

2
(d− idc).

so,
∆u dx ∧ dy = ddc u = 2i ∂∂̄ u.

Remark 10.1. Expressions (10.3) show that d and dc are (twice) the real and
imaginary parts of the operators ∂ and ∂̄.

A C1 differential 1-form ω = adx + bdy is called harmonic if it is locally the
differential of a harmonic function. It is called co-closed if d(∗ω) = 0. It is straight-
forward to check that a form ω is harmonic if and only if it is closed and co-closed.

Another characterization is that harmonic 1-forms are real part of Abelian
differentials. Namely, the differential α = ω + iη is holomorphic if and only if ω is
is harmonic and η = ∗ω. (Note that unlike the case of functions, this relation is
global.)

10.2. Basic properties. Given a domain U on a Riemann surface S, let
H(U) stand for the space of harmonic functions in U , and let H(U) stand for the
subspace of H(U) consisting of functions that admit continuous extension to U .

Mean Value Property. A C2 function u on a domain U ⊂ C is harmonic
is and only if for any disk D(a, r) ⊂ U , we have

u(a) =Mu(a, r) :=
1

2π

∫ 2π

0

h(a+ reiθ) dθ;

Proof. The mean value property for harmonic functions immediately follows
from the corresponding property for holomorphic ones. The inverse follows from
the second order Taylor expansion at z averaged over a little circle:

(10.4) Mu(z, r)− u(z) =
1

4
∆u(z)r2 + o(r2).

�
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The Mean Value Property implies in a standard way (as for holomorphic func-
tions):

Maximum/Minimum Principle. If a harmonic function u on a Riemann sur-
face U has a local maximum or minimum in U then it is constant.

Corollary 10.2. Let U ⋐ S be a compactly embedded domain in a Riemann
surface S, and let u ∈ H(U). Then u attains its maximum and minimum on ∂U .

Corollary 10.3. Under the above circumstances, u is uniquely determined by
its boundary values, u| ∂U .

10.3. Poisson Formula. The Poisson Formula allows us to recover a har-
monic function h ∈ H(D) from its boundary values:

Proposition 10.4. For any harmonic function h ∈ H(D) in the unit disk, we
have: formula: the following Poisson representation:

h(z) =
1

2π

∫ 2π

0

h(ζ)P (z, ζ) dθ, z ∈ D, ζ = eiθ ∈ T,

with the the Poisson kernel

(10.5) P (z, ζ) =
1− |z|2
|z − ζ|2 .

Proof. For z = 0, this formula amounts to the Mean Value Property:

h(0) =
1

2π

∫ 2π

0

h(eiθ) dθ.

It implies the formula at any point z ∈ D by making a Möbius change of variable

φz : D→ D, ζ 7→ ζ − z
1− z̄ζ

that moves z to 0. Since h ◦ φ−1z ∈ H(D), we obtain:

h(z) = (h ◦ φ−1z )(0) =
1

2π

∫ 2π

0

h ◦ φ−1z dθ =
1

2π

∫ 2π

0

h dθz,

where

dθz = (φz)
∗(dθ) = |(φz)′(θ)| dθ,

and the latter derivative is equal to the Poisson kernel P (z, ζ) (check it!).
Uniqueness of the extension follows from the Maximum Principle. �

The Dirichlet problem (in some domain D ⊂ Ĉ) is the problem of recovery of
a harmonic function h ∈ H(D) from its boundary values on ∂D. The Poisson
formula provides us with an explicit solution of this problem in the unit disk:

Proposition 10.5. Any continuous function g ∈ C(T) on the unit circle admits
a unique harmonic extension h ∈ H(D) to the unit disk (so that g = h|T). This
extension is given by the Poisson formula:

h(z) =
1

2π

∫ 2π

0

g(ζ)P (z, ζ) dθ, z ∈ D, ζ = eiθ ∈ T.
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Proof. The Poisson kernel P (z, ζ) as a function of ζ ∈ T and z ∈ D has the
following properties:

(i) P (z, ζ) > 0, and for any z ∈ D, we have
1

2π

∫

T

P (z, ζ) dθ = 1;

(ii) For any ζ ∈ T, the kernel P (z, ζ) is harmonic in z ∈ D;

(iii) For any ζ0 ∈ T and any ε > 0, we have:

Pz(ζ)→ 0 as z → ζ0 uniformly in ζ ∈ T r D(ζ0, ε).

Property (i) follows from the Poisson representation of the function h(z) ≡ 1
in D.

To check (ii), notice that P (·, ζ) is the pullback of the function Imu on the
upper half-plane to the unit disk under the Möbius transformation

φζ : D→ H, φζ : z 7→ i
ζ + z

ζ − z .

Exercise 10.6. Check this using that φz is a hyperbolic isometry.

The last property is obvious (it corresponds to the fact the the function Imu
vanishes on R).

Properties (i) and (iii) imply that P (z, eiθ) dθ, viewed as measures on T weakly
converge to δζ0 . This implies that g gives the boundary values of h. Property (ii)
implies harmonicity of h in D. �

10.4. Harnak Inequality and normality. This inequality allows one to
control a positive harmonic function by its value at one point. Let us begin with
the case of disk:

Lemma 10.7. For any r ∈ (0, 1), there exists a constant C(r) > 1 such that for
any positive harmonic function u ∈ H(D), we have:

C(r)−1 u(0) ≤ h(z) ≤ C(r)u(0), |z| ≤ r.
Proof. It immediately follows from the Poisson representation since

C(r)−1 ≤ P (z, ζ) ≤ C(r) (|ζ| = 1, |z| ≤ r) with C(r) =
1 + r

1− r
and the Mean Value Property. �

Let us now consider the general case. By a coordinate disk D(a, ε) we mean
a domain lying within some local chart and equal to the disk D(z(a), ε) in this
coordinate.

Theorem 10.8. Let S be a (connected) Riemann surface, and let z0 ∈ U ,
K ⋐ U . Then there exists a constant CK > 1 such that for any positive harmonic
function u ∈ H(U), we have:

C−1K u(z0) ≤ u(z) ≤ CK u(z0), for any z ∈ K.
Proof. We can find finitely many coordinate disks D(zi, εi) whose union

∪D(zi, εi/2) is connected and covers K ∪ {z0}. Applying the Lemma 10.7 con-
secutively to these disks, we obtain the desired inequalities. �

Similarly to holomorphic functions, bounded families of harmonic functions
are normal (i.e., precompact in the topology of uniform convergence on compact
subsets):
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Proposition 10.9. A bounded family of harmonic functions on U is normal.

Proof. The Poisson formula gives a bound on the partial derivatives of u ∈
H(u) on a compact subset K ⋐ U in terms of the bound on u (and the set K). By
the Ascoli-Arcela, our family is precompact in the space of continuous functions on
U (in topology of uniform convergence on compact subsets). But the Mean Value
Property survives under taking locally uniform limits. Hence harmonicity survives
as well. �

Corollary 10.10. Let un ∈ H(U) be an increasing sequence of harmonic
functions, and let un(z0) ≤ C at some point z0 ∈ U . Then the un converge,
uniformly on compact subsets of U , to a harmonic function u ∈ H(U).

Proof. Subtracting u0 from the un, we see that our functions can be assumed
positive. By the Harnak Inequality, the un are uniformly bounded on compact
subsets. So, their pointwise limit u(z) is finite. Moreover, by Proposition 10.9,
they form a normal sequence, and hence u is harmonic. �

10.5. Subharmonic functions. Harmonic functions are analytic and hence
rigid: they cannot be locally modified. Subharmonic functions are much more
flexible, but at the same time, they still possess good compactness properties (an
a priori upper bound is sufficient). This combination makes them very useful.

The basic example of a subharmonic function is u = log |f(z)| where f is a
holomorphic function. In fact, this function is harmonic everywhere except for
zeros of f where it assumes value −∞ (“poles”of u). This suggests that in general
subharmonic functions should also be allowed to have poles. Of course, [−∞,∞)
is naturally endowed with topology of a half-open interval.

Definition 10.11. A function u : D → [−∞,∞) on a domain D ⊂ C is called
subharmonic if it is not identically equal to −∞26 and satisfies the following two
conditions:

• Mean Value Property (subharmonic): For any disk D(z, r) ⋐ D,

(10.6) u(z) ≤Mu(z, r)

• u is upper-semicontinuous.

Remark 10.12. Notice that the two conditions in the above definition make
the value of a subharmonic function well determined at a point by its values nearby.
In fact, below we will be dealing only with continuous subharmonic functions, and
mostly, assuming only finite values. However, the following basic subharmonic
function does have a pole:

Example 10.13. Let u(z) = log |z|. This function is harmonic in C∗, so the
MVP is satisfied on an any disk D(a, r) ⋐ C∗. It is also obviously satisfied on Dr
as −∞ < Mu(0, r).

Let us check it for the disk D(a, r) ∋ 0. Making an affine change of variable, we
can consider instead the Mean Value Property on D for a function v(z) = log |z−c|,
c ∈ D∗. Then we have:

1

2π

∫

T

u(z) dθ =
1

2π

∫

T

(
u(z) + log

∣∣∣∣
1− c̄z
z − c

∣∣∣∣
)
dθ

26This convention is not completely standardized.
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=
1

2π

∫

T

log |1− z̄c| dθ = 0 > log |c| = v(0).

For the disk D(a, |a|) whose boundary passes through 0, MVP follows by continuity.

Remark 10.14. The above estimate is a particular case of the Jensen formula:

1

2π

∫

T

log |f(ζ)|d θ = log |f(0)|+
∑

log
1

|ai|
,

where f is a holomorphic function in D, continuous up to the boundary, that does
not vanish on T and at 0.

We let SH(U) stand for the space of continuous subharmonic functions in U .
Obviously, the set of subharmonic functions is invariant under addition and

multiplication by positive numbers, so it is a cone. Also, Maximum of finitely
many subharmonic functions is subharmonic. For instance, the function log+ |z| =
max{log |z|, 0} is subharmonic.

As for harmonic functions, the Subharmonic Mean Value Property implies:

Maximum Principle. If a subharmonic function u on a Riemann surface U
has a local maximum in U then it is constant.

However, the Minimum Principle is not any more valid for subharmonic func-
tions.

More generally, we can majorant a subharmonic function by a harmonic one:

Lemma 10.15. Let D be a bounded domain in C, and let u and h be respec-
tively harmonic and a continuous subharmonic functions on D, both admitting a
continuous extensions to D. If u ≤ h on ∂D then u ≤ h in D.

Vice versa, if a function u is continuous in a domain U ⊂ C and the above
property is satisfied for any domain D ⋐ U and any harmonic h ∈ H(U), then u is
subharmonic.

Proof. To check the former assertion, apply the Maximum Principle to u−h.
To check the latter, let us consider a coordinate disk D and let h solves the

Dirichlet Problem in D with the boundary values h| ∂D = u| ∂D. Then u|D ≤
h|D. Evaluating it at the center of D, we obtain the Mean Value Property for
subharmonic functions. �

This lemma shows that the notion of subharmonicity is bi-holomorphically in-
variant (at least for continuous functions27, and hence is well defined on an arbitrary
Riemann surface.

Also, let us consider a function

ũD(z) = u(z) for z ∈ U rD, and u(z) = h(z) for z ∈ D,
where h is a harmonic function in D defined in the second part of Lemma 10.15.
We call ũd the harmonic majorant of u rel ∂D. The first part of Lemma 10.15
implies that the harmonic majorant of u is subharmonic.

A function u is called superharmonic if −u is subharmonic. Properties of such
functions follow immediately form the corresponding properties of subharmonic
ones.

27It is still true in general, but we will not need it
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10.6. Perron method. A (non-empty) family P of continuous subharmonic
functions on a Riemann surface U is called Perron if it satisfies the following prop-
erties:

(i) If u, v ∈ P then max(u, v) ∈ P;
(ii) For any u ∈ P and any coordinate disk D ⋐ U , the harmonic majorant

ũD also belongs to P.

Proposition 10.16. If P is a Perron family on U then the function

h(z) := sup
P
u(z)

is either harmonic or identically equal to ∞.

Proof. Since harmonicity is a local property, it is enough to check it within
coordinate disks D ⋐ U . Fix such a disk D. Since u ≤ ũ ∈ P, we have
h(z) := sup

P
ũ(z). So, without loss of generality we can assume that all the functions

u ∈ P are harmonic in D.
Take a countable dense subset X ⊂ D. By means of the diagonal procedure,

we can select a sequence of functions un ∈ P such that h(z) = supun(z) for any
z ∈ X. Let vn be the harmonic majorant (rel ∂D) of the function max(u1, . . . , un),
n ∈ Z+. This is a monotonically increasing sequence of functions of the family P,
harmonic on D, and such that vn(z) → h(z) on X. By Corollary 10.10, vn → φ
locally uniformly on D, where φ is either harmonic, or else φ ≡ ∞. In either case,
we have:

φ(z) = h(z) ≥ u(z) for any z ∈ X, u ∈ P.
Since both φ and u are continuous, we conclude that φ ≥ u everywhere on D; hence
φ ≥ h everywhere on D. On the other hand, since φ = h on the dense set X and h
is upper semicontinuous (as sup of a family of continuous functions), we conclude
that φ ≤ h everywhere on D. Thus φ ≡ h on D. �

10.7. Dirichlet barriers. We will now apply the Perron method to solve the
Dirichlet problem in an arbitrary domain (for which it is solvable at all).

Let U ⋐ S be a domain in a Riemann surface S, and let g be a continu-
ous function on ∂U . Let us consider the following Perron family of subharmonic
functions:

P ≡ PU (g) = {u ∈ SH(U) : lim sup
ζ→z

u(ζ) ≤ g(z) ∀z ∈ ∂U}.

By Proposition 10.16, the function hg := supP u is harmonic in U . To study its
boundary values, we will introduce the following notions:

A barrier ba at a boundary point a ∈ ∂U is a subharmonic function ba(z)
defined on a relative neighborhood D of a in U , continuous up to ∂D,28 and such
that ba(a) = 0 while ba(z) < 0 for any z 6= a. A point a ∈ ∂U is called Dirichlet
regular if it has a barrier.

Example 10.17. If ∂U near a is an arc of a smooth curve then a is regular.
Indeed, then there is a wedge

W = {| arg(z − a)− α| < ε, 0 < |z| < 2π ε}

28This condition can be relaxed, but it is sufficient for our purposes. In fact, harmonic

barriers would also be good enough for us.
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which is disjoint from U . The complementary wedge can be mapped conformally
onto the lower half-plane (by a branch of the power function φ(z) = eiθ(z−a)γ with
appropriate γ ∈ (0, 1) and θ. The function b = Imφ(z) restricts to a barrier at a
on U .

Exercise 10.18. Show that the same is true is ∂U near a is a Jordan arc.

Theorem 10.19. Let U ⋐ S be a domain in a Riemann surface S, and let g
be a continuous function on ∂U . Let us consider the harmonic function h = hg
constructed above by means of the Perron method. Then for any Dirichlet regular
point a ∈ ∂U , we have: h(z)→ g(a) as z → a.

Proof. Without loss of generality, we can assume that g(a) = 0.
Let us first show that

(10.7) lim inf
z→a

h(z) ≥ 0.

Take a small r > 0 such that the barrier b(z) = ba(z) is well defined in Dr :=
D(a, 2r)∩U . Let ξ be the supremum of b on Sr := {|z− a| = r}∩U . By definition
of the barrier, ξ < 0.

The function ˆ̂b(z) := max(b(z), ξ) is a continuous subharmonic function in
D(a, r)∩U equal to ξ on Sr. Hence it extends to a continuous subharmonic function
in in U by letting b̂ ≡ ξ in U rDr.

Let now

η = inf{g(z) : z ∈ ∂U rDr}, −ε = inf{g(z) : z ∈ ∂U ∩Dr} < 0,

and consider
β(z) =

η

ξ
b̂(z)− ε.

This is a subharmonic function in U with

lim
z→p

β(z) = η for p ∈ ∂U rDr; lim inf
z→p

β(z) ≤ −ε for p ∈ ∂U ∩Dr,

so β belongs to the Perron family P.
It follows that h ≥ β and hence

lim inf
z→a

h(z) ≥ −ε.

Since ε→ 0 as r → 0, we obtain (10.7).

To obtain the opposite estimate, let us consider the negative barrier −b(z). It
allows us to construct, for any ε > 0, a superharmonic function α in U such that

lim inf
z→p

α(z) ≥ g(p) ∀p ∈ ⋄U and lim sup
z→a

α(z) ≤ ε.

By the Maximum Principle, u ≤ α for any u ∈ P, and hence h ≤ α as well. It
follows that

lim sup
z→a

h(z) ≤ ε,

and we are done. �

We say that a domain U ⋐ S has a Dirichlet regular boundary if ∂U is non-
empty and all points of ∂U are regular.

Corollary 10.20. Let U ⋐ S be a domain with Dirichlet regular boundary.
Then the Dirichlet problem is solvable in U for any continuous boundary values.
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10.8. Harmonic measure. Let U ⋐ S be a domain with Dirichlet regular
boundary. Then any continuous function g ∈ C(∂U) admits a harmonic extension
ĝ ∈ H(U) to U . Endow H(U) with uniform topology on the whole U . It is a
Banach space isomorphic to C(∂U) by means of the natural restriction and the
above extension operators.

For a given z ∈ U , evaluation ĝ(z) is a bounded linear functional on C(∂U)
and hence it is represented by a Borel measure µz on ∂U :

ĝ(z) =

∫

∂U

g dµz.

This measure is called the harmonic measure for U at z. For instance, in the unit
disk, we have dµz = P(z, ζ) dθ where P is the Poisson kernel.

If ∂U is disconnected and K ⊂ ∂U is a clopen subset then µz(K) is a harmonic
function on U with boundary values 1 on K and 0 on ∂UrK. This function itself is
sometimes referred to as the “harmonic measure ofK” (which may sound confusing).

10.9. Green function. We will restrict our discussion to domains U ⋐ S
with Dirichlet regular boundary. The Green function G = Gp on U with pole at
p ∈ U is a harmonic function such that

(Gr1) G(z)→ 0 as z → ∂U ;
(Gr2) In a local coordinate z near p such that z(p) = 0, we have:

G(z) = log
1

|z| +O(1) near p.

For instance, the Green function in D with pole at 0 is − log |z|.
Remark 10.21. Obviously, existence of such a function G implies the Dirichlet

regularity of U as −G provides a barrier at any boundary point. In the non-regular
case, condition (Gr1) can be relaxed so that the Green function still exists as long
as ∂U has positive capacity.

Remark 10.22. The Green function has a clear electrostatical meaning as the
potential of the unit charge placed at p in a domain bounded by a conducting
material with the ground potential 0.

The level sets of the Green function Gp are called equipotentials, its gradient
lines are called rays (emanated from p). They form two orthogonal foliations on
U r {p} with singularities at the critical points of Gp

Theorem 10.23. Let U ⋐ S be a domain in a Riemann surface S with Dirichlet
regular boundary. Then for any p ∈ U , there exists a unique Green function Gp
with pole at p.

Proof. Let us consider the following family P = PU [p] of functions on Ur{p}:
(i) lim sup

z→∂U
u(z) ≤ 0;

(ii) In a local coordinate z near p such that z(p) = 0, we have:

u(z) = log
1

|z| +O(1).

Obviously, it is a Perron family, so the function G = supP u is harmonic in
U r {p} unless it is identically equal to ∞. We will show that this function is
actually finite, and it is the desired Green function.
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First, P is non-empty. Indeed, for a small r > 0, the function u0 := log+(r/|z|)
(equal to log(|z|/r) on the coordinate disk D(p, r) and extended by 0 the whole U)
is in P. Thus,

(10.8) G(z) ≥ log+
|z|
r
≥ 0.

Let us show that G is finite. Let Sr be the coordinate circle centered at p of
radius r, and let ‖u‖r be the sup-norm of a function u on Sr. Let us fix two small
radii 0 < r < R and compare ‖u‖r and ‖u‖R for u ∈ P.

First, let us look at u from “inside”. Take a small ε > 0 and let

uε(z) = u(z) + (1 + ε) log |z|.
This function is subharmonic in D(p,R)r {p} and equal to −∞ at p (by property
(ii) of the family P). Hence it is subharmonic on the whole disk D(p,R). By the
Maximum Principle, ‖uε‖r ≤ ‖uε‖R, so

‖u‖r ≤ ‖u‖R + (1 + ε) log
R

r
.

Letting ε→ 0, we obtain

(10.9) ‖u‖r ≤ ‖u‖R + log
R

r
.

On the other hand, we can look at u from “outside”. The Maximum Principle
in S rD(z, r) implies that for any u ∈ P
(10.10) ‖u‖R < ‖u‖r,
but we want to have a definite drop:

(10.11) ‖u‖R ≤ λ ‖u‖r
with some λ < 1 independent of u. Together with (10.9), this would imply

‖u‖r ≤
1

1− λ log
R

r

that would prove finiteness of G on Sr and hence everywhere on U .
To prove (10.11), let us consider the solution v of the Dirichlet problem in

U r D(z, r) with boundary values 1 on Sr and 0 on ∂U (the “harmonic measure”
of Sr). Since the boundary of ∂U is regular by assumption and Sr is regular as
a smooth curve, such a v exists (Corollary 10.20). By the Maximum Principe,
λ := ‖v‖R < 1.

Furthermore, the function u(z) is asymptotically majorated by ‖u‖r v(z) near
the boundary of S rD(p, r). By the Maximum Principle,

(10.12) u(z) ≤ ‖u‖r v(z), z ∈ rD(p, r).

Taking its sup on SR, we obtain (10.11).
The required properties of the Green function also follow from the above es-

timates. Indeed, (10.8) and (10.12) imply (Gr1), while (10.8) and (10.9) imply
(Gr2).

�

Notice in conclusion that the Green function extends subharmonically to the
whole Riemann surface S by letting G ≡ 0 on S r U .
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Exercise 10.24. The Green function has a critical point in U if and only if U
is not simply connected.

Notes

Conformal Schönflies Theorem was proven in [Ca1]. The theory of prime ends
and Carathéodory Boundary Theorem appeared in [Ca2]. “Carathéodory-Torhorst
Theorem” is usually attributed to Carathéodory. In fact, in the above two papers
that Carathéodory wrote on the subject, there is no mentioning of local connectivity
or the problem of continuity up to the boundary of the inverse Riemann mapping.
The theorem was proven in Torhorst’s thesis in 1918 (see [To]) written under advice
of Hahn who introduced the notion of local connectivity in 1913. See Lasse Rempe
[Re1] for an account of this story.

The notion of Schwarzian derivative goes back at least to Riemann.





CHAPTER 2

Quasiconformal geometry

11. Analytic definition and regularity properties

11.1. Linear discussion.

11.1.1. Teichmüller metric on the space of conformal structures. Let V ≈ R2 be
a real two-dimensional vector space. A conformal structure µ on V is a Euclidean
structure (v, w)µ up to scaling. Equivalently, it is an ellipse Eµ = {‖w‖µ = 1}
centered at the origin, up to scaling (here ‖w‖µ is the associated Euclidean norm).
Let Conf(V ) stand for the space of conformal structures on V .

Let us consider two Euclidean structures, (v, w)µ and (v, w)ν representing con-
formal structures µ and ν. We define the Teichmüller distance between µ and ν as
the distortion of one Euclidean norm with respect to the other:

distT(µ, ν) = log

(
max
w∈V ∗

‖w‖µ
‖w‖ν

: min
w∈V ∗

‖w‖µ
‖w‖ν

)
where V ∗ = V r {0}.

Note that it is independent of the the choice of Euclidean structures representing
µ and ν.

Exercise 11.1. Check that distT is a metric on Conf(V ).

If we simultaneously diagonalize the Euclidean structures so that

‖w‖2ν = x2 + y2, ‖w‖2µ = x2/a2 + y2/b2, where w = (x, y), a ≥ b > 0,

then

distT(µ, ν) = log(a/b) ≡ logK.

The ratio K = a/b of the axes of the ellipse Eµ is called the dilatation of µ relative
to ν. We denote it Dil(µ : n), skipping ν if it is the standard conformal structure.
Informally we can say that the Teichmüller distance measures the relative shape of
the ellipses representing our conformal structures.

An invertible linear operator A : V ′ → V induces a natural pullback opera-
tor A∗ : Conf(V ) → Conf(V ′): If (v, w)µ is the Euclidean structure representing
µ ∈ Conf(V ) then the pullback A∗µ is represented by (Av,Aw)µ. It follows imme-
diately from the definitions that the Teichmüller metric is preserved by the pullback
transformations.

In particular, the group GL(V ) of linear automorphisms of V isometrically
acts on Conf(V ) on the right: µA := A∗µ. Let us restrict this action to the group
GL+(V ) of orientation preserving automorphisms. Since this action is transitive,
it turns Conf(V ) into a GL+(V )-homogeneous space.

To understand this space, let us fix some reference conformal structure σ and
select coordinates (x, y) on V that bring it to the standard form x2 + y2. Then

175
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GL+(V ) gets identified with GL+(2,R), and the isotropy group of σ gets identified
with the group Sim(2) of similarities. Hence

(11.1) Conf(V ) ≈ Sim(2)rGL+(2,R) = SO(2)r SL(2,R).

Recall that in §2.4.3 we endowed the symmetric space SO(2) r SL(2,R) with an
invariant metric.

Exercise 11.2. This invariant metric coincides with the Teichmüller metric
on Conf(V ).

But according to Exercise 2.19, the hyperbolic plane H is naturally isometric
to the symmetric space

PSL(2,R)/PSO(2) ≈ SL(2,R)/SO(2).

Since the left and right symmetric spaces are equivariantly isometric by the inversion
A 7→ A−1, we conclude:

Proposition 11.3. The space Conf(V ) endowed with the Teichmüller metric
is equivariantly isometric to the hyperbolic plane H.

Remark 11.4. As we have already mentioned in §2.4.3, the Lie Theory provides
a general underlying principle for the hyperbolicty of the symmetric space (11.1)
without a priori familiarity with the hyperbolic plane.

In conclusion, let us give one more interpretation of the isomorphism (11.1). It
is obtained by associating to an operator A ∈ GL+(2,R) the conformal structure
µ represented by the Euclidean structure (v, w)µ = (Av,Aw) (where (v, w) is the
standard Euclidean structure on R2). The corresponding ellipse Eµ is the pullback
of the standard round circle: Eµ = A−1(T).

Making use of the polar decompositions of linear operators, we can uniquely
represent A as a product of a positive self-adjoint operator P and a rotation O,
A = O · P . Let λmax ≥ λmin > 0 stands for the eigenvalues of P . The operator A
is a similarity if and only if P is scalar, i.e., λmax = λmin. Otherwise we have two
orthogonal (uniquely defined) eigenlines lmax and lmin corresponding to λmax and
λmin respectively. These lines give the directions of maximal and minimal expansion
for the operator A. Moreover, the ellipse Eµ = A−1(T) = P−1(T) has the big axis
of length 1/λmin in lmin and the small axis of length 1/λmax in lmax.The dilatation
of this ellipse (equal to λmax/λmin) will be also called the dilatation of A, DilA.

Exercise 11.5. Show that DilA−1 = DilA and Dil(AB) ≤ DilA DilB with
equality attained iff the eigenlines of A and B−1 coincide.

11.1.2. Beltrami coefficients. Let now V = CR be the decomplixified C. It is
endowed with the standard conformal structure σ (represented by the Euclidean
metric |z|2) and with the standard orientation (such that {1, i} is positively ori-
ented). Let A : CR → CR be an invertible R-linear operator (which can be also
viewed as a C-valued R-linear form on V ).

Let us describe the conformal structure A∗σ in coordinates z, z̄ of CR. The
operator A can be represented as

(11.2) z 7→ az + bz̄ = az(1 + µ
z̄

z
),

where µ = b/a is called the Beltrami coefficient of A. Let µ = |µ|e2iθ, where
θ ∈ R/πZ.
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Figure 11.1. Ellipse Eµ.

Exercise 11.6. The operator A is conformal iff µ = 0;
A is invertible iff |µ| 6= 1; A is orientation preserving iff |µ| < 1.

Remark 11.7. Note that the compex conjugation Az does not affect the metric
|Az|2 = |az + bz̄|2, but it replaces the Beltrami coefficient µ = b/a with the T-
symmetric one, 1/µ̄. In shows that any Euclidean metric on CR is conformally
equivalent to a metric |z + µz̄|2 with |µ| < 1 (corresponding to the orientation
preserving operators A).

In what follows we assume that A is an invertible orientation preserving op-
erator, i.e., |µ| < 1. If we have another such a form A′ = a′z + b′z̄ on V then
A′/A ≡ const iff µ = µ′. Thus, the conformal structures A∗σ are in one-to-one
correspondence with the Beltrami coefficient µ ∈ D, so Conf(V ) ≈ D.

Let us now describe the shape of the ellipse A−1(T) in terms of µ. The
maximum of |Az| on the unit circle T = {z = eiφ} is attained at the direc-
tion φ = θ modπZ, while the minimum is attained at the orthogonal direction
θ + π/2 modπZ. These are the eigenlines lmax and lmin of the positive part P of
A. The corresponding eigenvalues are equal to

λmax = |a|(1 + |µ|) = |a|+ |b|, λmin = |a|(1− |µ|) = |a| − |b|.

Thus

(11.3) DilA =
1 + |µ|
1− |µ| , detA = |a|2 − |b|2 = λ2min DilA.

This gives us a description of the dilatation and direction of the ellipse E = A−1(T)
in terms of |µ| and arg µ respectively.

Under conformal changes of variable, z = Tζ = αζ (α ∈ C∗) the Beltrami
coefficients is rotated: ν := T ∗µ = (ᾱ/α)µ, while the (−1, 1)-form

µ
z̄

z
= ν

ζ̄

ζ

does not change. It shows that the Beltrami coefficients in various conformal coor-
dinates represent a single (−1, 1)-Beltrami form.
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Exercise 11.8. Under a general linear change of variable z = Tζ = αζ + βζ̄,
Beltrami coefficeints are transformed as follows:

T ∗µ =
ᾱµ+ β

β̄µ+ α
.

It follows that the map M : Conf(CR) → D that associates to a conformal
structure its Beltrami coefficient is PSL(2,R)-equivariant.

Exercise 11.9. The map M is an equivariant isometry between Conf(CR)
(endowed with the Teichmüller metric) and the disk D (endowed with the hyperbolic
metric).

In what follows we will feel free to identify conformal structures with the cor-
responding Beltrami forms (and in a particular coordinate, with the corresponding
Beltrami coefficients). We will often use the same notation for these objects.

11.1.3. Infinitesimal notation. Let us now interpret the above discussion in
infinitesimal terms. Consider a map h : U → C on a domain U ⊂ C differentiable
at a point z ∈ U , and apply the above considerations to its differential Dh(z) :
TzU → ThzC. In the (dz, dz̄)-coordinates of the tangent spaces, it assumes the
form

∂h+ ∂̄h = ∂zh dz + ∂z̄h dz̄,

where the partial derivatives ∂z and ∂̄z and the operators ∂ and ∂̄ are defined in
§2.11. Moreover,

Dh(z) = ∂zh(z) dz

(
1 + µh(z)

dz̄

dz

)
,

where µh = ∂z̄h/∂zh is the Beltrami coefficient of h at z. In fact, as was explained
above, this coefficient represents a (−1, 1)-form

∂̄h/∂h = µh
dz̄

dz

called the Beltrami differential of h at z. However, in what follows we will not
make a notational difference between the Beltrami differential and the coefficient
(and will usually use notation ∂, ∂̄ for the partial derivatives ∂z, ∂z̄).

Assume that Dh(z) is non-singular and orientation preserving, i.e., |µh| < 1.
The map h is conformal at z if and only if µh(z) = 0, which is equivalent to the
Cauchy-Riemann equation ∂̄h(z) = 0.

Let us consider an infinitesimal ellipse

(11.4) Eh(z) ≡ Dh(z)−1(Thz) ⊂ TzU,

where Thz is a round circle in the tangent space ThzU . If h is not conformal at
z, then Eh(z) is a genuine (not round) ellipse with the small axis in the direction
arg(µh(z))/2 mod π and the shape

(11.5) Dil(h, z) =
1 + |µh(z)|
1− |µh(z)|

.

Moreover, by the second formula of (11.3), we have:

(11.6) Jac(h, z) = |∂h(z)|2 − |∂̄h(z)|2 = λmin(z)
2 Dil(h, z),

where Jac(h, z) ≡ detDh(z) and λmin(z) = inf
|v|=1

|Dh(z) v|.
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If we have a differentiable change of variable z = φ(ζ) then infintesimal ellipses
E and the corresponding Beltrami differentials µ at Tz can be pulled back to Tζ .
According to Exercise 11.8, the corresponding tranformation rule is:

(φ∗µ)(ζ) =
∂zφ(ζ) · µ(z) + ∂z̄φ(ζ)

∂z̄φ(ζ) · µ(z) + ∂zφ(ζ)
or more concisely : φ∗µ =

∂zφ · (µ ◦ φ) + ∂z̄φ

∂z̄φ · (µ ◦ φ) + ∂zφ
.

In the orientation preserving case, φ∗ preserves the hyperbolic distance between
Beltrami differentials with |µ(z)| < 1. In the conformal case, we have:

(φ∗µ)(ζ) =
φ′(ζ)
φ′(ζ)

· µ(z) or concisely : φ∗µ =
φ′

φ′
· (µ ◦ φ).

11.2. Measurable conformal structures. A (measurable) conformal struc-
ture on a domain U ⊂ C is a measurable family of conformal structures in the
tangent planes TzU , z ∈ U . In other words, it is a measurable family E of infinites-
imal ellipses E(z) ⊂ TzU defined up to scaling by a measurable function ρ(z) > 0,
z ∈ U . (As always in the measurable category, all the above objects are defined
almost everywhere.) According to the linear discussion, any conformal structure
is determined by its Beltrami coefficient µ(z), z ∈ U , a measurable function in
z assuming its values in D, and vice versa. Thus, conformal structures on U are
described analytically as elements µ from the unit ball of L∞(U). We say that a
conformal structure has a bounded dilatation if the dilatation of the ellipses E(z)
are bounded almost everywhere. In terms of Beltrami coefficients, it means that
‖µ‖∞ < 1 since

Dilµ := ‖DilE(z)‖∞ =
1 + ‖µ‖∞
1− ‖µ‖∞

.

The standard conformal structure σ ≡ σU is given by the family of infinitesimal
circles. The corresponding Beltrami coefficient vanishes almost everywhere: µ = 0
in L∞(U).

Remark 11.10. Sometimes ‖µ‖∞ is also referred to as the dilatation of µ. We
will reserve notation dilµ for this occasion. Then “bounded dilatation” would mean
that dilµ < 1.

The space of conformal structures on U with bounded dilatation is endowed
with the Teichmüller metric:

distT(µ, ν) = ‖distT(µ(z), ν(z))‖∞.
Remark 11.11. Since the right-hand side in the above formula depends only

on the real structure on the tangent spaces, we do not need the reference complex
structure on U to define the Teichmüller metric.

Denote by DHomeo+(U, V ) (standing for “differentiable homeomorphisms”) the
space of orientation preserving homeomorphisms h : U → V that are differentiable
almost everywhere with a non-singular differential Df(z) measurably depending on
z.1 Consider some homeomorphism h ∈ DHomeo+(U, V ) between two domains
in C. Then by the above linear discussion we obtain a measurable family E of
infinitesimal ellipses Eh(z) = Dh(z)−1(Thz) ⊂ TzU that determines a (measurable)
conformal structure µh = h∗σ on U . Analytically this structure can be described picture

1If we do not need to specify the domain and the range of h we write simply h ∈ DHomeo+;
if we do not assume that h is orientation preserving, we skip “+”.
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as the Beltrami coefficient µh(z) = ∂̄h(z)/∂h(z) of h. We say that h has a bounded
dilatation if the corresponding conformal structure h∗σV does. In this case we let

Dilh := ‖Dil(h, z)‖∞ =
1 + ‖µh‖∞
1− ‖µh‖∞

= distT(h
∗σV , σU ).

Obviously, the pullback structure h∗σ does not change if we postcompose h with
a conformal map φ. If we precompose h with a conformal map φ then the Beltrami
coefficient will be transformed as follows:

µh◦φ =
φ′

φ′
µh ◦ φ,

so that the Beltrami coefficients in various local charts represent a single (−1, 1)-
form µdz̄/dz called the Beltrami differential of h (compare §11.1.3).

This allows us to generalize the above discussion to arbitrary Riemann surfaces.
A (measurable) conformal structure on a Riemann surface S is a measurable family
E of infinitesimal ellipses E(z) defined up to scaling. Analytically it is described as a
measurable Beltrami differential µ with |µ(z)| < 1 a.e. To any homeomorphism h ∈
DHomeo+(S, S′) between two Riemann surfaces corresponds the pullback structure
h∗σS′ represented by the field of ellipses Eh(z) = Dh(z)−1(Tr).2 The corresponding
Beltrami differential is µh = ∂̄h/∂h (where ∂̄h and ∂h are now viewed as 1-forms).

Remark 11.12. (i) Once again, measurable conformal structures can be con-
sidered on arbitrary smooth surfaces as well, with the dilatation measured with
respect to a reference Riemannian metric (and on a compact surface, the virtue
of being bounded does not depend on the choice of the reference metric.) The
space of bounded structures is endowed with the Teichmüller metric. Moreover,
this discussion can be further promoted to quasiconformal surfaces.

(ii) A key problem is whether any conformal structure µ is associated to a cer-
tain map h. This problem has a remarkable positive solution in the category of
quasiconformal maps (see §14 below).

More generally, let us consider a (non-invertible) map f : U → V which is
differentiable for a.e. z ∈ U in the classical sense with non-singular Df(z). For
such maps the push-forward operation is not well-defined, but the pullback ν = f∗µ
and Dil f are still well-defined. The property that Dil(f∗µ) ≤ Dil(f) · Dil(µ) is
obviously valid in this generality. This observation will be used in the context of
quasiregular maps: see §29.1.1.

11.3. Analytic definition. We are now ready to give a definition of quasi-
conformality. An orientation preserving homeomorphism h : S → S′ between two
Riemann surfaces is called quasiconformal if

Q1. It has locally integrable distributional partial derivatives;

Q2. It has bounded dilatation, i.e., ∂̄h ≤ k ∂h a.e. for some k ∈ [0, 1).
Note that the second property makes sense because the first property implies

that h is differentiable a.e. in the classical sense (by Proposition 11.18).
We will often abbreviate “quasiconformal” as “qc”. A qc map h is called K-qc

if Dilh ≤ K, where K = (k + 1)/(k − 1) ∈ [1,∞) with k ∈ [0, 1) as above.

2Note that the ellipses Eh(z) are defined only up to scaling since the round circles Tr on S′

are (as there is no preferred metric on S′).
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Remark 11.13. 1) Under the above circumstances, the quantification k-qc is
sometimes more convenient (so that dilh ≤ k < 1), but to avoid confusion, we will
refrain from using it.

2) One of the problems with the above analytic definition is that property Q1 is
not symmetric under taking the inverse h−1. Neither it is invariant under taking
compositions. But we will see eventually that the definition is equivalent to a
geometric one, quasi-invariance of moduli (see QC2 in §12.5), that manifestly has
both virtues.

11.4. Absolute continuity and Sobolev class W. We will now prove sev-
eral important regularity properties of quasiconformal maps. Recall the definition
of the Sobolev class Wloc(U) ≡ W2

loc(U) from the Appendix to this section.

Proposition 11.14. Let h : U → V be a qc map. Then h−1 is absolutely
continuous with respect to the Lebesgue measure,3 and thus for any Borel set X ⊂ U ,

m(h(X)) =

∫

X

Jac(h, z) dm.

The partial derivatives ∂h and ∂̄h belong to L2
loc(U), so h ∈ W2

loc(U).

Proof. Since both statements are local, we can restrict ourselves to homeo-
morphisms h : U → V between bounded domains in the complex plane. Consider
the pullback of the Lebesgue measure on V , µ = h∗m. It is a Borel measure defined
as follows: µ(X) = m(h(X)) for any Borel set X ⊂ U . Let us decompose it into
absolutely continuous and singular parts: µ = ρ ·m+ ν. By the Lebesgue Density
Points Theorem, for almost all z ∈ U , we have:

1

πε2

∫

D(z,ε)

ρ dm→ ρ(z);
1

πε2
ν(D(z, ε))→ 0 as ε→ 0.

Summing up we obtain:

m(h(D(z, ε))

m(D(z, ε))
=

µ(D(z, ε)

m(D(z, ε)
→ ρ(z) a.e. as ε→ 0.

But if h is differentiable at z then the left hand-side of the last equation goes
to Jac(h, z). Hence Jac(h, z) = ρ(z) a.e. It follows that for any Borel set X,

(11.7)
∫

X

Jac(h, z) dm =

∫

X

ρ dm ≤ µ(X) = m(hX).

But Jac(h, z) = |∂̄h(z)|2 − |∂h(z)|2 ≥ (1− k2) |∂h(z)|2, where k = ‖µh‖∞. Thus

(11.8)
∫

X

|∂h|2 dm ≤ 1

1− k2 m(hX);

∫

X

|∂̄h|2 dm ≤ k2

1− k2 m(hX),

and we see that the partial derivatives of h are locally square integrable.
What is left is to prove the opposite to (11.7). As we have just shown, h locally

belongs to the Sobolev class W. Without loss of generality we can assume that it
is so on the whole domain U , i.e., h ∈ W(U), and that h can be approximated in
W(U) by a sequence of C∞ functions hn. Take a domain D ⋐ U with piecewise
smooth boundary (e.g., a rectangle).

3We will show later (see Prop. 12.15) that the inverse to qc maps are also qc, making h itself
absolutely continuous as well.
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Let Vn ⊂ hn(D) be the set of regular values of hn. By Sard’s Theorem, it has

full measure in hn(D). Let Rn = h−1n (Vn) ∩D. Note that
∫

Rn

Jachn dm is equal

to the area of the image of hn|Rn counted with multiplicities:
∫

D

Jac(hn, z) ≥
∫

Rn

Jac(hn, z) dm =

∫

Vn

card(h−1n ζ) dm ≥ m(Vn) = m(hn(D)).

Since hn → h uniformly on D, m(hnD) → m(h(D)). Since Jac(hn) → Jac(h) in
L1(U) (as the partial derivatives converge in L2),

∫

D

Jac(hn, z) dm→
∫

D

Jac(h, z) dm.

Putting the last estimates together, we obtain the desired.
For an arbitrary Borel set X ⊂ U , the result follows by a simple approximation

argument using a covering of X by a union of rectangles Di with disjoint interiors
such that m(∪Di rX) < ε. �

Remark 11.15. This proof shows that for a qc map h : U → Dr, where U ⊂ C,
the distributional derivatives belong to L2(U).

11.5. Appendix: Distributional derivatives and absolute continuity∗

on lines. Let U be a domain in C ≡ CR. All functions below are assumed to
be complex valued. A test function φ on U is an infinitely differentiable function
with compact support. One says that a locally integrable function h : U → C has
distributional partial derivatives4 of class L1

loc if there exist functions ρ and g of
class L1

loc on U such that for any test function φ,
∫

U

h · ∂φ dm = −
∫

U

ρφ dm;

∫

U

h · ∂̄φ dm = −
∫

U

g φ dm,

where m is the Lebesgue measure. In this case ρ and g are called ∂− and ∂̄−
derivatives of h in the sense of distributions.

This notion is obviously equivalent to the existence of distributional partial
derivatives ∂x and ∂y in the real variables (defined analogously). Clearly, the latter
property is invariant under smooth changes of variable, so that it makes sense on
any smooth manifold (and in all dimensions). Below this notion is related to the
absolute continuity∗ on lines. (See §50.4 for the meaning of the “star”.)

Exercise 11.16. Prove that a function h on the interval (0, 1) has a distribu-
tional derivative of class L1

loc if and only if it is absolutely continuous∗. Moreover,
its classical derivative h′(x) coincides with the distributional derivative a.e..

There is a similar criterion in the two-dimensional setting. A continuous func-
tion h : U → C is called absolutely continuous∗ on lines if for any family of parallel
lines in any disk D ⋐ U , h is absolutely continuous∗ on almost all of them. Hence,
taking a typical line γ of the above family, the curve h : γ → C is rectifiable. Clearly
such functions have classical partial derivatives almost everywhere.

Proposition 11.17. Consider a homeomorphism h : U → V between two
domains in the complex plane. It has distributional partial derivatives of class L1

loc

if and only if it is absolutely continuous∗ on lines.

4In the Russian literature, they are called generalized derivatives.
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In fact, in the proof of existence of distributional partial derivatives (the easy
direction of the above Proposition), just two transverse families of parallel lines are
used. Thus one can relax the definition of absolutely continuity∗ on lines by taking
any two directions (“horizontal” and “vertical”).

On the other hand, since existence of distributional partial derivatives can be
recognized in any local charts, a map with this property is absolutely continuous∗

on almost all curves of any smooth foliation.

Proposition 11.18. Consider a homeomorphism h : U → V that has partial
derivatives a.e. Then for almost any z ∈ U , h is differentiable at z in the classical
sense, i.e., h ∈ DHomeo.

This result can be viewed as a measurable generalization of the elementary fact
that existence of continuous partial derivatives implies differentiability.

Project 11.19. Fill in details of the above discussion (using literature as
needed), see e.g., [A2, Ch II B].

In conclusion, let us define the Sobolev class Wp ≡ Wp(U) (on a bounded do-
main U ⋐ C ) as the space of bounded continuous functions h : U → C whose
distributional partial derivatives on U belong to Lp(U).5 The norm on W is the
maximum of the uniform norm of h and Lp-norm of its partial derivatives. Any
finction h ∈ Wp(U) can be approximated by infinitely smooth functions in Wp(V )
for any domain V ⋐ U . This can be shown by the standard regularization proce-
dure: convolute h with a sequence of bump-functions φn(x) = n2φ(nx), where φ is
a non-negative test function on U with

∫
φ dm = 1 (see [Ste, Ch V, §2.1] or [LV,

Ch. III, Lemma 6.2]). However, if h is a homeomorphism, these approximating
functions do not necessarily inherit this propery.

Remark 11.20. The usual Sobolev class W 1,p is defined as the space of Lp-
functions with distributional derivatives of class Lp. So, our space Wp is the in-
tersection of W 1,p with the space of bounded continuous functions. Note that by
the Sobolev Embedding Theorem, for p > 2 functions of W 1,p are automatically
continuous (see [Ste, Ch V, §2.2]), but the borderline W 1,2-regularity of qc maps
is not sufficient for this conclusion (though in the end of the day it is known that
qc maps do belong to W 1,p with p > 2 [Ge]).

We let W ≡W2.

12. Geometric definitions

Besides the analytic definition given above, we will give two geometric defini-
tions of quasiconformality, in terms of quasi-invariance of moduli, and in terms of
bounded circular dilatation (or, “quasi-symmetricity”).

12.1. Quasi-invariance of moduli. In this section we will show, by the
length-area method, that the moduli of annuli are quasi-invariant under qc maps.
This will follow from a more general result on quasi-invariance of extremal length:

Lemma 12.1. Let h : U → Ũ be a K-qc homeomorphism. Let Γ be a smooth
foliation of some domain in U and let Γ̃ = h(Γ). Then L(Γ̃) ≤ KL(Γ).

5Only exponents p = 1, 2 will be relevant for us.
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Proof. To any measurable metric ρ̃ on Ũ , we are going to associate a metric
ρ on U such that

(12.1) h∗(ρ̃) ≤ ρ
while

(12.2) h∗(mρ̃) ≥ K−1mρ

(so, the map h is contracting with respect to these metrics, with the area contraction
bounded by K). Then ρ̃(γ̃) ≤ ρ(γ) for almost any γ ∈ Γ and γ̃ = h(γ) ∈ Γ̃

(since h is absolutely continuous∗ on a.e. γ), while mρ̃(Ũ) ≥ K−1mρ(U). Hence
Lρ̃(Γ̃) ≤ KLρ(Γ). Taking the supremum over all metrics ρ̃, we obtain the desired
estimate.

Let X be the set of full measure where h is classically differentiable. Then we
let ρ(z) = ρ̃(h(z))λmax(z) on X (recall from §11.1.3 that λmax(z) is the maximal
expansion factor of Dh(z)), and we let ρ(z) = ∞ outside X. Since Γ is a smooth
foliation, h is absolutely continuous∗ on almost all curves of Γ. Let Γg be the family
of such “good” curves, and let Γ̃g := h(Γg). By Exercise 6.2, L(Γ) = L(Γg) while
L(Γ̃) ≤ L(Γ̃g), so it is enough to check the desired property for the good families.

So let γ ∈ Γg. Then for any z ∈ X ∩γ and any unit tangent v ∈ TzU , we have:

|(h∗ρ̃) v| = ρ̃(h(z)) · |Dh(z)v| ≤ ρ̃(h(z)) · λmax(z) = ρ (v).

So (12.1) is satisfied for z ∈ γ∩X (while for z ∈ γrX it is obviously satisfied). Let
dl and dl̃ be the length measures on γ and γ̃ = h(γ), respectively. Since h : γ → γ̃

is absolutely continuous∗ with respect to these measures, h∗(dl̃) ≤ dl. Integrating
(12.1) over these measures yields: lρ̃(γ̃) ≤ lρ(γ) for any γ ∈ Γg. Taking the infimum
of the good curves, we obtain: lρ̃(Γ̃g) ≤ lρ(Γg).

On the other hand,

h∗(dmρ̃) = ρ̃(hz)2 Jach(z) dxdy = K(z)−1ρ(z)2dxdy ≥ K−1dmρ,

where the second equality comes from (11.6). This provides us with (12.2), and the
conclusion follows. �

Remark 12.2. In the above argument we had to be careful with the direction
of quasiconformality (h or h−1), as at this stage we do not yet know that the notion
is symmetric. The next statement is exactly the moment when it gets symmetrized.

Proposition 12.3. Consider a K-qc map h : A → Ã between two topological
annuli. Then

K−1 mod(Ã) ≤ mod(A) ≤ Kmod(Ã),

Proof. Let Γ be the genuinely vertical foliation on A, and let Γ̃ := h(Γ).
By Proposition 6.6, modA = L(Γ), while mod Ã ≤ L(Γ̃). By Lemma 12.1,
L(Γ̃) ≤ KL(Γ), which yields the desired right hand-side estimate. The left-hand
side estimate is obtained by replacing the vertical foliation with the horizontal
one. �

Exercise 12.4. Show that the moduli of rectangles are quasi-invariant in the
same sense as for the annuli.

Exercise 12.5. Prove that C and D are not qc equivalent.
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Figure 12.1. Bound on the circular dilatation.

12.2. Macroscopic circular dilatation. According to the original analytic
definition of qc maps, they have bounded infinitesimal dilatation a.e. It turns out
that this property can be substantially strengthened: in fact, qc maps have bounded
macroscopic dilatation in sufficiently small scales everywhere.

Let h : U → V be a homeomorphism between two domains, and let D :=
D(z, ρ) ⊂ U . Then we can define the macroscopic circular dilatation Dil(h, z, ρ) as
the shape of h(D) around h(z) (as for conformal maps in §4.4). (Recall also from
§4.4 the definitions of the inner and outer radii of a pointed domain.)

Lemma 12.6. Let h : U → V be a K-qc homeomorphism. Let D = D(z, ρ) ⊂ U
and D(h(z), R) ⊂ V , where R is the outer radius of h(D). Then

Dil(h, z, ρ) ≤ expCK,

where C an absolute constant.

Proof. For notational convenience, let us normalize h so that z = h(z) = 0,
and let r be the inner radius of h(D). Let a and b be two points on the circle Tρ for
which |h(a)| = r and |h(b)| = R. Let us consider the annulus A′ := A(r,R) ⊂ V and
let A = h−1(A′). The inner component of CrA contains points 0 and a ∈ Tρ, while
its outer component of CrA contains b ∈ Tρ. (See Figure 12.1.) By Lemma 6.10,
modA is bounded by an absolute constant C. By Lemma 12.3,

1

2π
log

R

r
= modA′ ≤ KmodA ≤ KC,

and we are done. �

The upper circular dilatation of h at z is defined as

Dil(h, z) = lim sup
ρ→0

Dil(h, z, ρ).

(Of course, if h is differentiable at z then Dil(h, z) = Dil(h, z).) We define the upper
circular dilatation of h as

Dilh := sup
z∈U

Dil(h, z).

Lemma 12.6 immediately implies:
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Proposition 12.7. Any K-qc map U → V has a bounded upper dilatation:

Dilh ≤ expCK,

where C is an absolute constant.

12.3. Quasisymmetry.

12.3.1. Generalities. We will now give a characterization of qc maps that can
be applied in a very general setting. For a triple of points (x, y, z) in a metric space
X, let the brackets

[y, z]x :=
dist(z, x)

dist(y, x)
denote the distance ratio centered at x.

Let η : R+ → R+ be a function such that η(t) → 0 as t → 0. An embedding
h : X → Y between two metric spaces is called η-quasisymmetric (“η-qs”) if for any
triple of points (x, y, z) in X we have:

(12.3) [y, z]x ≤ t =⇒ [h(y), h(z)]h(x) ≤ η(t).
A map h is called quasisymmetric if it is η-qs for some η. Such an h distorts the
ratios in a controlled way.

The function η(t) is called the qs dilatation of h.

Exercise 12.8. Show that the dilatation function η can be selected as a home-
omorphism R+ → R+ (which will be our standing convention in what follows).

For instance, L-bi-Lipschitz homeomorphisms are η-qs with linear dilatation
η(t) = L2t. However, the class of qs maps is much bigger:

Exercise 12.9. The power homeomorphisms of R, x 7→ sign(x)|x|δ, are qua-
sisymmetric. What are their qs dilatations?

QS maps can serve as morphisms of the category of metric spaces:

Exercise 12.10. The inverse of a qs map is qs, with ηh−1 = σ ◦ η−1 ◦σ, where
σ(t) = 1/t. Compositions of qs maps are qs, with ηg◦h = ηg ◦ ηh.

We conclude that quasisymemtries of any metric space form a group.

12.3.2. QC vs QS. The most important value of the dilatation function η(t)
is η(1) that controls macroscopic dilatation of h on the balls and (as we will see
momentarily) often controls the full η(t).

Lemma 12.11. An embedding h : Rm → Rn is η-qs if and only if (quantitatively)
it has L-bounded macroscopic dilatation: Dil(h, z, ρ) ≤ L for all discs D(z, ρ).

Proof. Obviously, quasisymmetry implies that macroscopic dilatation is bounded
by L = η(1). Vice versa, bounded macroscopic dilatation implies (12.3) with a
function η(t) = O(tα) as t → ∞, where the exponent α ≥ 1 depends only on the
dilatation.

Exercise 12.12. Prove this assertion and calculate η(t) in terms of L = η(1).

What is more subtle is to show that η(t)→ 0 as t→ 0.
Let us take a triple of points x, y, z, and let x′, y′, z′ stand for their images

under h (in what follows, the images of other points under h will be marked with
the “prime” as well). Property (12.3) implies:

(12.4) [z, y]x ≥ 1 =⇒ [z′, y′]x′ ≥ ε = 1/L > 0.
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By making affine changes of variable in the domain and the target, we can
normalize the situation so that x = x′ = 0, |y| = |y′| = 1, z = R ∈ R, z′ = r ∈ R.
Of course, we can assume that R > 1. We want to show that r → ∞ as R → ∞.
Let us partition the interval [0, z] by points zn = z/2n, n = 0, 1, . . . , N , where N is
selected so that zN ∈ [1, 2). So, N ≥ log2R− 1→∞ as R→∞.

Applying (12.4) to the triple of points (0, 1, zN ), we obtain: |z′N | ≥ ε. Then
applying it inductively (backwards) to the triples (zn, 0, zn−1) (centered at zn−1),
we conclude that

|z′n − z′n−1| ≥ ε|z′n−1| ≥ ε2,
so the net of points z′n is ε2-separated. On the other hand, applying (12.4) to the
triple (0, zn, z), we conclude that |z′| ≥ ε|z′n|, so that all the points z′n belong to the
disc Dr/e. Hence the discs of radius ε2/2 centered at the zn are pairwise disjoint
and are contained in the disc D2r/e. It follows that

N ≤ areaD2r/ε

areaDε2/2
=

16

ε6
r2,

and hence r ≥ c√logR with c > 0 depending only on L. �

Also, in the light of the above result, embeddings h : Rm → Rn with L-
bounded macroscopic dilatation will also be referred to as L-qs. (We hope that a
slight terminological inconsistency with “η-qs” will not cause confusion).

Putting together Lemmas 12.6 and 12.11, we obtain:

Proposition 12.13. Any quasiconformal map h : U → V is quasisymmetric
on compac sets Q ⋐ U (with the qs dilatation controlled by Dilh and a lower bound
on min{dist(Q,U), dist(h(Q), V ). Moreover, there is an L depending only on K
such that:

(i) Any K-qc homeomorphism h : C→ C is L-qs (in the Euclidean metric);

(ii) Any K-qc homeomorphism h : Ĉ→ Ĉ fixing 0, 1 and∞ is L-qs (in the spherical
metric).

Note that without a normalization, the last (quantitative) assertion fails as the
Möbius group is not uniformly qs on the sphere.

12.4. Back to the analytic definition.

Proposition 12.14. If a homeomorphism h : U → V between domains U and
V has an L-bounded upper circular dilatation then it is L-qc.

Proof. Since the L-bounded circular dilatation implies the L-bounded infini-
tesimal dilatation at any point of differentiability, all we need to show is that h has
the required regularity, i.e., it is absolutely continuous∗ on almost all parallel lines.
Since this is a local property, we can assume that U us the unit square, and that
the parallel lines in question are horizontal.

Let Ub = {z ∈ U : Im z ≤ b}. Since the area function

µ : b 7→ area(h(Ub))

is monotonic, it is differentiable for a.e. b. Let us take such a point b where
µ is differentiable, and prove absolute continuity of h on the corresponding line
γb = {z : Im z = b}.
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For K ∈ N, let XK = {z ∈ γb : Dil(h, x, ε) ≤ K/2 for ε ≤ 1/K}. Since the
dilatation of h is bounded we have:

⋃
XK = γb. Hence it is enough to prove that

h|XK is absolutely continuous.
Let Q ⊂ XK be a set of zero length. We want to show that h(Q) has zero

length as well. By approximation, it is sufficient to show this for closed sets. Then
Q can be covered with finitely many disks Di = D(zi, ε) (zi ∈ γb, i = 1, . . . , n) with
intersection multiplicity at most 2 and an arbitrary small total length. Hence for
any δ > 0, we have nε ≤ δ once ε is sufficiently small.

Let us consider the outer and inner radia of the h(Di), respectively: Ri =
Rh(zi, ε) and ri = rh(zi, ε). Then Ri ≤ Kri, l(h(X)) ≤∑Ri, and by the Cauchy-
Bunyakovsky inequality,

l(h(X))2 ≤ n
∑

R2
i ≤ nK2

∑
r2i ≤

K2δ

π
· 2 · area(h(

⋃
Di))

ε

(where “2” comes from the intersection multiplicity). But since
⋃
Di ⊂ Ub+εrUb−ε,

the last ratio (without “2”) is bounded by

µ(b+ ε)− µ(b− ε)
ε

→ 2µ′(b) as ε→ 0,

and the desired conclusion follows. �

12.5. Summary. Thus, quasiconformality can be defined in several equiva-
lent (non-trivially related) ways: An orientation preserving homeomorphism h :
U → V between two domains in C is K-quasiconformal if one of the following
equivalent properties QC1–QC3 holds:

QC1. Analytic definition.

(i) Regularity: h has distributional derivatives ∂h and ∂̄h of class L1
loc. Equivalently,

h is absolutely continuous∗ on almost all lines in any given direction (and it is
sufficient to be so in two transverse directions).

(ii) Bounded dilatation: Dilh ≤ K a.e., or equivalently, |∂̄h| ≤ k · |∂h| a.e., where
k = (K − 1)/(K + 1) < 1.

QC2. Quasi-invariance of moduli. Moduli of quadrilaterals and annuli are K-
quasi-invariant.

QC3. Bounded upper circular dilatation: Dilh ≤ Q everywhere (where Q ≥ K can
be bounded in terms of K).

A closely related notion is quasisymmetry:

QS. Any η-qs map h is K-qc and any K-qc map is locally η-qs, quantitatively (here
we use the Euclidean metric on C). Moreover, in case when U = V = C, η-qs and
K-qc are equivalent, quantitatively. (In Corollary 13.13, we will give a D-version
of this assertion.)

Finally, we can conclude:

Proposition 12.15. The inverse of a K-qc map is K-qc. The composition of
K1-qc map and K2-qc map is (K1K2)-qc.

Corollary 12.16. The family of qc self-maps U → U of a given domain is a
group.
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13. Further important properties of qc maps

13.1. Weyl’s Lemma. This lemma asserts that a 1-qc map is conformal. In
other words, if a qc map is infinitesimally conformal on the set of full measure (i.e.,
∂̄h(z) = 0 a.e.) then it is conformal in the classical set. Since ∂̄h(z) = 0 is just the
Cauchy-Riemann equation, this statement is classical for smooth maps.

Let us formulate a more general version of Weyl’s Lemma:

Weyl’s Lemma. Assume that a continuous function h : U → C belongs to the
Sobolev class W1

loc. If ∂̄h(z) = 0 a.e. then h is holomorphic.

Proof. By approximation, Weyl’s Lemma can be reduced to the classical
statement. Since the statement is local, we can assume without loss of general-
ity that the partial derivatives of h belong to L1(U). Convoluting h with smooth
bump-functions we obtain a sequence of smooth functions hn = h∗θn converging to
h uniformly on U with derivatives converging in L1(U). Let us show that ∂̄hn = 0.
For a test function η on U , we have:

∫
∂̄hn(z) η(z) dm(z) = −

∫
hn(z) ∂̄η(z) dm(z)

= −
∫
h(ζ) dm(ζ)

∫
θn(z − ζ)∂̄η(z) dm(z)

=

∫
h(ζ) dm(ζ)

∫
∂̄θn(z − ζ)η(z) dm(z)

=

∫
η(z) dm(z)

∫
h(ζ) ∂̄θn(z − ζ) dm(ζ)

=

∫
η(z) dm(z)

∫
∂̄h(ζ) θn(z − ζ) dm(ζ) = 0.

Here the first and the third equalities are the classical integration by parts, the
next to the last one comes from the definition of the distributional derivative, and
the intermediate ones come from the Fubini Theorem.

It follows that the smooth functions hn satisfy the Cauchy-Riemann equations
and hence holomorphic. Since uniform limits of holomorphic functions are holo-
morphic, h is holomorphic as well. �

13.2. Devil’s Staircase vs Weyl’s Lemma. The following example shows
that Weyl’s Lemma is not valid for homeomorphisms of class DHomeo (i.e., dif-
ferentiable a.e.). The technical assumption that the classical derivative can be
understood in the sense of distributions (which allows us to integrate by parts) is
thus crucial for the statement.

Take the standard Cantor set Q ⊂ [0, 1] and consider a devil’s staircase h :
[0, 1] → [0, 1], i.e., a continuous monotone function which is constant on the gaps
in Q (See §1.1.2.)

Consider a strip S = [0, 1] × R and let f : (x, y) 7→ (x, y + h(x)). This is a
homeomorphism on S which is a rigid translation on every strip G× R over a gap
G ⊂ [0, 1] r Q. Since m(K × R) = 0, this map is conformal a.e. However it is
obviously not conformal on the whole strip P .

Clearly f in not absolutely continuous on the horizontal lines: it translates
them to devil’s staircases.
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13.3. Quasiconformal removability and gluing. A closed set Q ⊂ C is
called qc removable if any homeomorphism h : U → C defined on a neighborhood
U of Q which is quasiconformal on U rQ is quasiconformal on U .

Remark. We will see later on (Proposition 16.4) that qc removable sets have
zero measure and hence Dil(f |U) = Dil(f |U rQ).

Exercise 13.1. Show that isolated points are removable.

Little Gluing Lemma (smooth version). Piecewise smooth Jordan curves
(or arcs) are removable.

Proof. Let us consider a smooth Jordan arc Γ ⊂ U and a homeomorphism
f : U → C which is quasiconformal on U rΓ. We should check that f is absolutely
continuous on lines near any point z ∈ Γ. Take a small box B centered at z whose
sides are not parallel to TzΓ. Then any interval l in B parallel to one of its sides
intersects Γ at a single point ζ. Since for a typical l, f is absolutely continuous on
both sides of l r {ζ}, it is absolutely continuous on the whole interval l as well.

Moreover, Dil(f) is bounded since it is so on U r Γ and Γ has zero measure.
It proves the assertion for smooth arcs. In the piecewise smooth case, remove

first smooth pieces and then remove remaining isolated points by the previous
Exercise. �

The above statement is simple but important for holomorphic dynamics. It will
allow us to construct global qc homeomorphisms by gluing together different pieces
without spoiling dilatation. Note that it fails for 1D qs maps (see Exercise 15.1
below).

Let us now state a more delicate gluing property:

Bers’ Gluing Lemma. Consider a closed set Q ⊂ Ĉ and two its neighborhoods
U and V . Assume that we have two quasiconformal maps f : U r Q → Ĉ and
g : V → Ĉ that match on ∂K, i.e., the map

h(z) =

{
f(z), z ∈ U rQ
g(z), z ∈ Q

is continuous. Then h is quasiconformal and µh(z) = µg(z) for a.e. z ∈ Q.

Proof. Consider a map φ = g−1 ◦ h. It is well-defined in a neighborhood Ω
of Q, is identity on Q, and is quasiconformal on Ω r Q. Let us show that it is
quasiconformal on Ω. Again, the main difficulty is to show that h is absolutely
continuous on lines near any point z ∈ Q.

Take a little box B near some point z ∈ Q with sides parallel to the coordinate
axes. Without loss of generality we can assume that z 6=∞ and φ(B) is a bounded
subset of C. Let ψ denote the extension of ∂φ/∂x from B rQ onto the whole box
B by 0. By (11.8), ψ is square integrable on B and hence it is square integrable on
almost all horizontal sections of B. All the more, it is integrable on those sections.
Take such a section I, and let us show that φ is absolutely continuous on it.

Let Ij ⊂ I be a finite set of disjoint intervals; ∆φj denote the increment of φ
on Ij . We should show that

(13.1)
∑
|∆φj | → 0 as

∑
|Ij | → 0.
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Take one interval Ij and decompose it as L ∪ J ∪ R where ∂J ⊂ Q and intL and
intR belong to B rQ. Then

|∆φj | ≤ |J |+
∫

L∪R
ψ dx ≤ |Ij |+

∫

Ij

ψ dx.

Summing up the last estimates over j and using integrability of ψ on Ij , we obtain
(13.1).

Absolute continuity on the vertical lines is treated in exactly thesame way.

The last assertion of the lemma follows from the following remarks:

• If z ∈ Q be a point of differentiability for h, then the differntial Dh(z), and hence
the dilatation µh(z), can be read off from two directional derivatives of h at z.

• The directional derivative of h along a line L through z ∈ Q is determined by the
restriction of h |L ∩Q, provided z is not isolated on L ∩Q.

• If z is a density point for Q, the latter property holds for a.e. line L through z.

• By the Lebesgue Theorem, almost all points of Q are density points.

(And similarly for g.) �

13.4. Compactness on Ĉ. We will proceed with the following fundamental
property of qc maps:

Theorem 13.2. The space of K-qc maps h : Ĉ → Ĉ fixing 0, 1 and ∞ is
compact in the topology of uniform convergence on Ĉ

Proof. It will be more convenient to consider the space X of K-qc maps h
such that h{0, 1,∞} = {0, 1,∞}. First, we will show that the family of maps
h ∈ X is equicontinuous. Otherwise we would have an ε > 0, a sequence of
maps hn ∈ X , and a sequence of points zn, ζn ∈ Ĉ such that d(zn, ζn) → 0 while
d(hn(zn), hn(ζn)) ≥ ε, where d stands for the spherical metric. By compactness
of Ĉ, we can assume that the zn, ζn ∈ Ĉ converge to some point a and the hn(a)
converge to some b. Postcomposing or/and precomposing if necessary the maps
hn’s with z 7→ 1/z, we can make |a| ≤ 1, |b| ≤ 1.

Consider a sequence of annuli An = {z : rn < |z − a| < 1/2} where rn =
max(|zn − a|, |ζn − a|) → 0. Since the disk D(a, 1/2) does not contain one of the
points 0 or 1, its images hn(D(a, 1/2)) have the same property. Hence the Euclidean
distance from the point hn(a) (belonging to the inner complement of hn(An)) to
the outer complement of that annulus is eventually bounded by 3. On the other
hand, the diameter of the inner complement of hn(An) is bounded from below by
ε > 0. By Lemma 6.10, mod(hn(An)) is bounded from above. But

modAn =
1

2π
log

1

2rn
→∞

contradicting quasi-invariance of the modulus (Proposition 12.3).
Hence X is precompact in the space of continuous maps Ĉ → Ĉ. Since X is

invariant under taking the inverse h 7→ h−1, and the composition is a continuous op-
eration in the uniform topology, X is precompact in Homeo(Ĉ). Since Homeo+(Ĉ)

is closed in Homeo(Ĉ), X is precompact in the former space as well.

To complete the proof, we should show that the limit functions are also K-qc
homeomorphisms. Let a sequence hn ∈ X uniformly converges to some h. Given
a point a ∈ Ĉ, we will show that in some neighborhood of a, f has distributional
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derivatives of class L2. Without loss of generality we can assume that a ∈ C.
Take a neighborhood B ∋ a such that h(B) is a bounded subset of C. Then the
neighborhoods hn(B) are eventually uniformly bounded. By (11.8), the partial
derivatives ∂hn and ∂̄hn eventually belong to a fixed ball of L2(D). Hence they
form weakly precompact sequences, and we can select limits along subsequences
(without changing notations):

∂hn →
w
φ ∈ L2(D); ∂̄hn →

w
ψ ∈ L2(D).

It is straightforward to show that φ and ψ are the distributional partial derivatives
of h. Indeed, for any test functions η we have:

(13.2)
∫
h ∂η dm = lim

∫
hn ∂η dm = − lim

∫
∂hn η dm = −

∫
φ η dm,

and the similarly for the ∂̄-derivative.
What is left is to show that |φ(z)| ≤ k|ψ(z)| for a.e. z, where

k = (K − 1)/(K + 1). To see this, select a further subsequence in such a way that
|∂hn| →

w
|φ|, |∂̄hn| →

w
|ψ| and use the fact that the weak topology respects the

order (see Exercise 13.16 from the Appendix). �

Exercise 13.3. Fix any three points a1, a2, a3 on the sphere C. A family X
of K-qc maps h : Ĉ → Ĉ is precompact in the space of all K-qc homeomorphisms
of the sphere (in the uniform topology) if and only if the reference points are not
moved close to each other (or, in formal words: there exists a δ > 0 such that
d(hai, haj) ≥ δ for any h ∈ X and i 6= j, where d is the spherical metric). Consider
first the case K = 0.

13.5. Quasi-isometries and the boundary extension.

13.5.1. Quasi-isometries and quasi-geodesics. A map h : X → X of a metric
space (X, d) is called a (L,C)-quasi-isometry, where L ≥ 1 C ≥ 0, if

L−1d(x, y)− C ≤ d(h(x), h(y)) ≤ Ld(x, y) + C ∀ x, y ∈ X.
In other words, it is a bi-Lipschitz map in “big scales”. (In small scales, nothing can
be said, because of the additive constant C.) Note that it is not even required that
h is continuous or invertible, but for the sake of our discussion, it is convenient to
assume that all quasi-isometries under consideration are homeomorphisms.

Lemma 13.4. A K-quasiconformal homeomorphism h : D → D is a hyperbolic
(C,L)-quasi-isometry (quantitatively).

Proof. It is sufficient to show that a geodesic arc γ of length ≤ 1 is mapped
to a geodesic with a bounded distance between its endpoints. Indeed, then one can
chop a geodesic arc γ of length ≥ 1 into n ≤ lhyp(γ) + 1 pieces of length ≤ 1 and
apply the Triangle Inequality to h(γ).

So, let lhyp(γ) ≤ 1. Since the group of hyperbolic motions acts transitively on
D, we can assume that γ is a straight Euclidean interval connecting 0 to some point
a ∈ D, where |a| ≤ ā < 1 (with an absolute ā) and that h fixes 0. Then the annulus
A := D r γ has a definite modulus ≥ µ > 0. Since moduli of annuli are quasi-
invariant under qc maps, mod(h(A)) ≥ K−1µ > 0. This bounds dist(h(a)),T)
from below (due to Proposition 6.14), and hence bounds the hyperbolic distance
from h(a) to 0 = h(0) from above. �
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A path γ in the hyperbolic plane is called am (L,C)-quasi-geodesic if for any
two points a, b ∈ γ

diamhyp[a, b]γ ≤ Ldisthyp(a, b) + C.

where [a, b]γ is the arc of γ connecting a to b.

Remark 13.5. Once again, because of the additive constant C, this property
tells us nothing about the small scale geometry of γ. The corresponding small scale
notion is a quasiarc (see §15.3.1).

Exercise 13.6. A path γ ⊂ H is a quasi-geodesic iff it is a quasi-isometric
image of an interval [0, t] (quantitatively).

Proposition 13.7. Any (L,C)-quasigeodesic (finite or infinite) in H is R-
shadowed by a geodesic, where R depends on (L,C) only.

Proof. It is sufficient to deal with finite quasi-geodesics since then one can pass
to an infinite limit. Let UR be the R neighborhood of the geodesics δ connecting the
endpoints of γ. Let us show that for R big enough, any component σ of γrUR has a
bounded diameter (where all bounds depend only on (L,C)). Then the conclusion
will follows since the whole γ will be trapped in a bounded neighborhood of UR.

So, let σ be a component of γ r UR connecting some points c, d ∈ ∂UR. Let
c′, d′ be their projections to the geodesic δ (extended to a bi-infinite one). Let us
consider a path ω which is a concatenation of three geodesic arcs, [c, c′], [c′, d′], and
[d′, d]. By Exercise 2.32, the length [c′, d′] is at most e−R diam[c, d]γ , so the length
of ω is atmost e−R diam[c, d]γ + 2R. If R is big then this length is much smaller
than diam[c, d]γ , (provided the latter is also big in terms of R), contradicting the
quasi-geodesic quality of γ. �

13.5.2. Boundary extension.

Lemma 13.8. Any hyperbolic quasi-isometry h : D→ D extends radially to the
boundary T.

Proof. Take a point z ∈ T and consider a hyperbolic geodesic γ in D landing
at z. Then h(γ) is a quasi-geodesic. By Proposition 13.7, it is uniformly shadowed
by some geodesic δ. Then γ lands at the same ζ ∈ T as δ does. �

Theorem 13.9. Any qc homeomorphism h : D → D extends to a homeomor-
phism D→ D.

Proof. The proof follows the lines of the proof of Lemma 8.1.2 from the
Carathéodpry Prime Ends Theory. As in that proof, consider the family of quadri-
laterals (half-annuli) Πr ⊂ D with “vertical sides” on T and with equal moduli,
shrinking to some point b ∈ T. By Lemma 13.8, the images h(Πr) are also quadri-
laterals with vertical sides on T. By the quasi-invariance of moduli, these images
have moduli of order 1. Moreover, areah(Πr) → 0 as r → 0. By the length-area
estimate, the h(Πr) contain horizontal curves shrinking to h(b). �

Remark 13.10. More generally, quasi-isometries of D continuously extend to
the boundary as well, and this property is valid in all dimension (see [Th2]).

Combining this with the Conformal Schönflies Theorem, we obtain:

Corollary 13.11. Any qc homeomorphism h : D1 → D2 between Jordan
domains extends continuously to the boundary.
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13.6. Compactness on D. Let us now state a disk version of the above
Compactness Theorem:

Corollary 13.12. The space of K-qc homeomorphisms f : D→ D fixing 0 is
compact in the topology of uniform convergence on D.

Proof. Let Y be the space of K-qc homeomorphisms h : D→ D fixing 0, and
X be the space of T-symmetric K-qc homeomorphisms H : C→ C fixing 0 and ∞.
(To be T-symmetric means to commute with the involution τ : C→ C with respect
to the circle.) Clearly maps H ∈ X preserve the unit circle (the set of fixed points
of τ); in particular, they do not move 1 close to 0 and ∞. By Theorem 13.2 (and
the Exercise following it), X is compact.

Let us show that X and Y are homeomorphic. The restriction of a map H ∈ X
to the unit disk gives a continuous map i : X → Y. The inverse map i−1 : Y → X
is given by the following extension procedure. First, extend h ∈ Y continuously
to the closed disk D (by Theorem 13.9), and then reflect it symmetrically to the
exterior of the disk, i.e., let H(z) = τ ◦ h ◦ τ(z) for z ∈ Ĉ r D. Since τ is an
(orientation reversing) conformal map, H is K-qc on Ĉ r T. By the Little Gluing
Lemma (smooth version), it is K-qc everywhere, and hence belongs to X .

Hence Y is compact as well. �

The extension from D to C provided in this proof also implies (via property QS
from §12.5) :

Corollary 13.13. A homeomorphism h : (D, 0)→ (D, 0) is K-qc iff it is η-qs
(quantitatively).

Exercise 13.14. Let K ≥ 1, C > 0.

(i) Let (D, a, , b) be a double-pointed conformal disk in C. The space of K-qc
homeomorphisms f : D → C such that

(13.3) |f(a)|, |f(b)| ≤ C and |f(a)− f(b)| ≥ C−1,
is compact in the topology of uniform convergence on compact subsets of D.

(ii) More generally, let (Dn, an, bn) be a sequence of disks in C Carathéodory con-
verging to a hyperbolic disk (D, a, b), and let fn : Dn → C be a sequence of K-qc
maps satisfying (13.3) at the corresponding points. Then fn admits a subsequence
converging, uniformly on compact subsets of D, to a K-qc map f : D → C.

13.7. Appendix: Banach spaces preliminaries. This background can be
found in any text book in Functional Analysis, see e.g., [Lyu, Ru].

13.7.1. Generalized sequences. Since we need L∞, we do not assume here that
our spaces are separable. This means that sequential formulations may not be
sufficient. An easy way of dealing with this nuisance is to use instead generalized
sequences (µn)n∈N labeled by directed sets. Recall that a partially ordered set
(N ,�) is called directed if any two elements have a majorant:

∀ m, l ∈ N ∃n ∈ N s.t. n � l, n � m.
The theory of limits for generalized sequences is identical with the standard

theory. The advantage is that all the topological concepts can formulated in the
generalized sequential terms, e.g., the closure of a set coincides with the set of the
limits of generalized sequences. (Here relevant directed sets are sets of neighbor-
hoods of a point ordered by inclusion: U � V if U ⊂ V .)
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13.7.2. Weak topologies. The dual space to B (of bounded linear functionals Φ :
B → C) is denoted by B∗. For instance, (L2)∗ ≈ L2, (L1)∗ ≈ L∞, C(X)∗ ≈M(X),
where X is a compact space and M(X) is the space of finite Borel measures on X
(real or complex-valued depending on the main field).

The weak topology (w-topology) on B is defined as topology of convergence on all
test functionals: µn → µ if Φ(µn)→ Φ(µ) for all Φ ∈ B∗ (where (µn) is a generalized
sequence). In case of a bounded sequence µn, it is sufficient to test convergence
on a dense (in the Banach norm) family of test functionals. For instance, weak
convergence of functions µn ∈ L∞(D) can be tested on functions φ ∈ C∞comp(D):

µn →
w∗
µ iff

∫
φµn dm→

∫
φµdm ∀φ ∈ C∞comp(D).

The weak∗ topology (w∗-topology) on B∗ is the topology of pointwise convergence
on all elements µ ∈ B. When it does not lead to confusion, we will refer to this
topology as just “weak” skipping the ∗ (for instance, in the case of the space of
measures). The main virtue of this topology comes from the fact that the unit ball
B∗1 is w∗-compact. Note also that vice versa, any weakly convergent sequence is
bounded (Banach-Schteinhaus).

However, one should handle the weak topology with caution: for instance,
product is not a weakly continuous operation:

Exercise 13.15. Show that sinnx→
w

0 in L2[0, 2π], while sin2 nx→
w

1/2.

At least, the weak topology respects the order:

Exercise 13.16. Let hn →
w
h in L2.

• If hn ≥ 0 then h ≥ 0;
• If hn = 0 a.e. on some subset Y ⊂ X, then h = 0 a.e. on Y ;
• After selecting a further subsequence, we have:

h+n →
w
h+ and h−n →

w
h−, so that |hn| →

w
|h|.

Here h+(z) = max(h(z), 0), h−(z) = min(h(z), 0).

There is a natural embedding B → B∗∗. It is isometric with respect to the
Banach norms, but its image is dense in the w∗-topology of B∗∗.

14. Measurable Riemann Mapping Theorem

We are now ready to prove one of the most remarkable facts of analysis: any
measurable conformal structure with bounded dilatation is generated by a quasi-
conformal map:

Measurable Riemann Mapping Theorem. Let µ be a measurable Beltrami
differential on Ĉ with ‖µ‖∞ < 1. Then there is a quasiconformal map h : Ĉ → Ĉ

that solves the Beltrami equation ∂̄h/∂h = µ. This solution is unique up to post-
composition with a Möbius automorphism of Ĉ. In particular, there is a unique
solution fixing three points on Ĉ (say, 0, 1 and ∞).

We will abbreviate this result as MRMT. Its local version sounds as follows:

Theorem 14.1 (Semi-local integrability). Let µ be a measurable Beltrami dif-
ferential on a domain U ⊂ C with ‖µ‖∞ < 1. Then there is a quasiconformal map
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h : U → C that solves the Beltrami equation ∂̄h/∂h = µ. This solution is unique
up to post-composition with a conformal map.

The rest of this section will be occupied with a proof of these two theorems.

14.1. Uniqueness. Uniqueness part in the above theorems is a consequence
of Weyl’s Lemma. Indeed, if we have two solutions h and g, then the composition
ψ = g ◦ h−1 is a qc map with ∂̄ψ = 0 a.e. on its domain. Hence it is conformal.

14.2. Local vs global. Of course, the global MRMT immediately yields the
local integrability (e.g., by zero extension of µ from U to the whole sphere). Vice
versa, the global result follows from the local one and the classical Uniformization
Theorem for the sphere (Theorem 5.1). Indeed, by the local integrability, there
is a finite covering of the sphere S2 ≡ Ĉ by domains Ui and a family of qc maps
φi : Ui → C solving the Beltrami equation on Ui. By Weyl’s Lemma, the gluing
maps φi ◦φ−1j are conformal. Thus, the family of maps {φi} can be interpreted as a
complex analytic atlas on S2, which endows it with a new complex analytic structure
µ (compatible with the original qc structure). But by the Uniformization Theorem,
all complex analytic structures on S2 are equivalent, so there exists a biholomorphic
isomorphism h : (S2, µ) → Ĉ. It means that the maps h ◦ φ−1i are conformal on
φi(Ui). Hence h is quasiconformal on each Ui and h∗µ = (h ◦ φ−1i )∗σ = σ over
there. Hence h is a global quasiconformal solution of the Beltrami equation.

14.3. Strategy. The further strategy of the proof will be the following. First,
we will solve the Beltrami equation locally assuming that the coefficient µ is real
analytic. It is a classical (and elementary) piece of the PDE theory. By the Uni-
formization Theorem, it yields a global solution in the real analytic case. Approxi-
mating a measurable Beltrami coefficient by real analytic ones and using compact-
ness of the space of normalized K-qc maps, we will complete the proof.

14.4. Real analytic case. Assume that µ is a real analytic Beltrami coeffi-
cient in a neighborhood of 0 in R2 ≡ CR with |µ(0)| < 1. Then it admits a complex
analytic extension to a neighborhood of 0 in the complexification C2. Let (x, y) be
the standard coordinates in C2, and let u = x+ iy, v = x− iy. In these coordinates
the complexified Beltrami equation assumes the form:

(14.1)
∂h

∂v
− µ(u, v)∂h

∂u
= 0.

This is a linear equation with variable coefficients, which can be solved by the
standard method of characteristics. Namely, let us consider a vector field W (u, v) =
(−µ(u, v), 1) near 0 in C2. Since the left-hand side of (14.1) is the derivative of h
along X, we come to the equation Wh = 0. Solutions of this equation are the first
integrals of the ODE ẇ = W (w). But since W is non-singular at 0, this ODE has
a non-singular local first integral h(u, v). Restricting h to R2, we obtain a local
solution h : (R2, 0) → C of the original Beltrami equation. Since h is non-singular
at 0, it is a local (real analytic) diffeomorphism.

By means of the Uniformization Theorem, we can now pass from local to
global solutions of the Beltrami equation with a real analytic Beltrami differential
µ(z)dz̄/dz on the sphere (see §14.2). Note that the global solution is real analytic
as well since the complex structure generated by the local solutions is compatible



14. MEASURABLE RIEMANN MAPPING THEOREM 197

with the original real analytic structure of the sphere (as local solutions are real
analytic).

Exercise 14.2. For a real analytic Beltrami coefficient

µ(z) =
∑

an,mz
nz̄m

on C, find the condition of its real analyticity at ∞.

There is also a “semi-local” version of this result:

If µ is a real analytic Beltrami differential on the disk D with ‖µ‖∞ < 1, then
there is a (real analytic) quasiconformal diffeomorphism h : D → D solving the
Beltrami equation ∂̄h/∂h = µ.

To see it, consider the complex structure µ on the disk generated by the local
solutions of the Beltrami equation. We obtain a simply connected Riemann sur-
face S = (D, µ). By the Uniformization Theorem, it is conformally equivalent to
either the standard disk (D, σ) or to the complex place C. But S is quasiconfor-
mally equivalent to the standard disk via the identical map id : (D, µ) → (D, σ).
By Exercise 12.5, it is then conformally equivalent to the standard disk, and this
equivalence h : (D, µ)→ (D, σ) provides a desired solution of the Beltrami equation.

By §14.1, such a solution is unique up to a post-composition with a Möbius
automorphism of the disk.

14.5. Approximation. Let us consider an arbitrary measurable Beltrami co-
efficient µ on a disk D with ‖µ‖∞ <∞. Select a sequence of real analytic Beltrami
coefficients µn on D with ‖µn‖∞ ≤ k < 1, converging to µ a.e.

Exercise 14.3. Construct such a sequence (first approximate µ with continuous
Beltrami coefficients).

Applying the results of the previous section, we find a sequence of quasiconfor-
mal maps hn : (D, 0)→ (D, 0) solving the Beltrami equations ∂̄hn/∂hn = µn. The
dilatation of these maps is bounded byK = (1+k)/(1−k). By Corollary 13.12, they
form a precompact sequence in the topology of uniform convergence on the disk.
Any limit map h : D→ D of this sequence is a quasiconformal homeomorphism of
D. Let us show that its Beltrami differential is equal to µ.

By (11.8), the partial derivatives of the hn belong to some ball of the Hilbert
space L2(D). Hence we can select weakly convergent subsequences ∂hn → φ,
∂̄hn → ψ. We have checked in (13.2) that φ = ∂h and ψ = ∂̄h. What is left is to
check that ψ = µφ. To this end, it is enough to show that µn ∂hn → µφ weakly (to
appreciate it, recall that the product is not weakly continuous, see Exercise 13.15).
For any test function η ∈ L2(D), we have:

∣∣∣∣
∫

(ηµφ− ηµn ∂hn) dm
∣∣∣∣ ≤

≤
∣∣∣∣
∫
ηµ(φ− ∂hn) dm

∣∣∣∣+
∫
|η(µ− µn) ∂hn| dm.

The first term in the last line goes to 0 since the ∂hn weakly converge to φ. The
second term is estimated by the Cauchy-Schwarz inequality by ‖η(µ−µn)‖2‖∂hn‖2,
which goes to 0 since µn → µ a.e. (and are uniformly bounded) while the ∂hn belong
to some Hilbert ball. This yields the desired.
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It proves the Measurable Riemann Mapping Theorem on the disk D, which
certainly implies the local integrability. Now the global theorem on the sphere
follows from the local integrability by §14.2. This completes the proof.

14.6. Conformal and complex structures. Let us discuss the general rela-
tion between the notions of complex and conformal structures. Consider an oriented
surface S endowed with a qs structure, i.e., supplied with an atlas of local charts
ψi : Vi → C with uniformly qc transit maps ψi ◦ ψ−1j (“uniformly qc” means “with
uniformly bounded dilatation”). Note that a notion of a measurable conformal
structure with bounded dilatation makes perfect sense on such a surface (in what
follows we call it just a “conformal structure”).

Endow S with a complex structure compatible with its qs structure. By defini-
tion, it is determined by an atlas φi : Ui → C on S of uniformly qc maps such that
the transit maps are complex analytic. Then the conformal structures µi = φ∗i (σ)
on Ui coincide on the intersections of the local charts and have uniformly bounded
dilatations. Hence they glue into a global conformal structure on S.

Vice versa, any conformal structure µ determines by the Local Integrability
Theorem (Theorem 14.1) a complex structure on the surface S compatible with its
qc structure (see §14.2).

Thus, the notions of conformal and complex structures on a qc surface are
equivalent. In what follows we will not distinguish them either conceptually or
notationally.

Fixing a reference complex structure on S (so that S becomes a Riemann sur-
face), complex/conformal structures on S get parametrized by measurable Beltrami
differentials µ on S with ‖µ‖∞ < 1.

14.7. Explicit formula. Let us now give an explicit formula for the solution
of the Beltrami equation with compact support in C:

Theorem 14.4. Let µ be a Beltrami differential in C with compact support
and ‖µ‖∞ < 1. Let h : C → C be the solution of the Beltrami equation ∂̄h = µ∂h
normalized so that h(z)− z → 0 as z →∞. Then

h = id+T (I − µS)−1(µ),
where S : L2 → L2 is the Hilbert transform, T : L2

comp → W is the Cauchy
transform that solves the Beltrami equation ∂̄(Tν) = ν (see Appendix 14.10.1).

Proof. Let φ := h− id. It satisfies the equation

∂̄φ = µ(1 + ∂φ).

Let ν := ∂̄φ. Since ν ∈ L2 (Theorem 11.14), we obtain:

• as φ is correctly normalized (∼ c/z) we have φ = Tν;

• the Hilbert transform S is well defined at ν and ∂φ = Sν (see Appendix 14.10.3).

We come up with the equation

(I − µS)ν = µ.

Since the Hilbert transform is a unitary operator in L2, the operator µS is a con-
traction. Hence I −µS is invertible, so ν = (I −µS)−1(µ), and the desired formula
follows. �
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14.8. Dependence on parameters. It is important to know how the solu-
tion of the Beltrami equation depends on the Beltrami differential. It turns out
that this dependence is as best possible: holomorphic. Let us start with continuity:

Proposition 14.5. Let µn be a sequence of Beltrami differentials on C with
uniformly bounded dilatation, converging a.e. to a differential µ. Consider qc so-
lutions hn : Ĉ → Ĉ and h : Ĉ → Ĉ of the corresponding Beltrami equations fixing
0, 1 and ∞. Then the hn converge to h uniformly on C.

Proof. By Theorem 13.2, the sequence hn is precompact. Take any limit map
g of this sequence. By the argument of §14.5, its Beltrami differential is equal to
µ. By uniqueness of the normalized solution of the Beltrami equation, g = h. The
conclusion follows. �

Let us now discuss the holomorphic dependence on parameters. Beltrami dif-
ferentials are elements of the complex Banach space L∞, while qc maps h : C→ C

are elements of the complex Sobolev space W. So, it makes sense to talk about
holomorphic maps from one space to the other (see Appendix 14.11).

Let B : L∞1 → W be the map that associates to a Beltrami differential µ ∈
L∞1 (DR) with ‖µ‖∞ < 1 the normalized solution hµ : C → C of the Beltrami
equation ∂̄hµ = µ∂hµ, hµ(0) = 0, hµ(1) = 1.

Theorem 14.6. For any R > 0, the map B : L∞1 (DR)→W is holomorphic.

Proof. Let us take a look at the explicit formula of Theorem 14.4. The Hilbert
and Cauchy transforms are holomorphic as they are complex linear operators. Mul-
tiplication (µ, S) 7→ A = µS is holomorphic being bilinear. Moreover, since S is
unitary in L2, we have ‖A‖ = ‖µ‖∞ < 1. Finally, the resolvent A 7→ (I − A)−1
is holomorphic on the unit ball of the space of operators (see §14.11.2). As the
composition of holomorphic operations is holomorphic, hµ given by the formula
depends holomorphically on µ.

It is normalized differently, though. To bring it to the normal form, notice that
the points aµ := hµ(0) and bµ := hµ(1) depend holomorphically on µ. Hence the
affine transformation

φµ : z 7→ z − aµ
bµ − aµ

is holomorphic in two variables, z and µ. It follows that the properly normalized
map φµ ◦ hµ depends holomorphically on µ as well. �

The above result is usually formulated in terms of one-parameter families:

Corollary 14.7. Let U be a domain in C, R > 0. If the Beltrami differential
µλ ∈ L∞1 (DR) holomorphically depends on a parameter λ ∈ U , then so do the
normalized solutions hλ : C→ C of the corresponding Beltrami equations.

Note that if hλ depends holomorphically on λ, then any point z ∈ C moves
holomorphically as λ changes (in fact, holomorphic dependence on parameters is
often understood in this weak sense). More generally, we have:

Corollary 14.8. Let µt be a family of Beltrami differentials on a disk DR
depending smoothly on a parameter t ∈ Rn. Then the corresponding normalized
solutions ht : C→ C of the Beltrami equation depend smootly on t as well.
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In fact, the above theorem is still valid (though not needed in this book) without
assuming that the Beltrami differentials have uniformly bounded support:

Exercise 14.9. Prove that the map B : L∞1 →W (that associates to a Beltrami
differential µ ∈ L∞1 (C) with ‖µ‖∞ < 1 the normalized solution hµ : C → C of the
Beltrami equation ∂̄hµ = µ∂hµ, hµ(0) = 0, hµ(1) = 1) is holomorphic.

14.9. Quasiregular maps. A map h : S → S′ is called K-quasiregular if for
any z ∈ S there existK-qc local charts φ : (U, z)→ (C, 0) and ψ : (V, f(z))→ (C, 0)
such that ψ ◦ f ◦ φ−1 : z 7→ zd. Sometimes we will abbreviate K-quasiregular maps
as K-qr. A map is called quasiregular if it is K-qr for some K. We will also use a
term quasi-holomorphic which sounds more suggestive.

Exercise 14.10. Show that any quasiregular map f : S → S′ can be decomposed
as g ◦ h, where h : S → T is a qc map to some Riemann surface T and g : T → S′

is holomorphic. In particular, if S = S′ = Ĉ then T = Ĉ as well and g : Ĉ→ Ĉ is
a rational map.

14.10. Appendix 1: ∂̄-equation and Hilbert Transform.

14.10.1. Solution of the ∂̄-equation.

Theorem 14.11. Let ν ∈ L∞comp. Then the ∂̄-equation ∂̄v = ν has a unique
continuous solution v of class W behaving as c/z at ∞. Moreover, it can be found
as the Cauchy transform of ν:

v(z) = Tν(z) := − 1

π

∫
ν(ζ)

ζ − z dm(ζ).

Proof. Let supp ν ⊂ DR. First notice that for any z ∈ C, 1/(z − ζ) ∈
L1(DR) and its L1-norm is locally bounded, while ν ∈ L∞(DR). Hence the Cauchy
transform v(x) = Tν(z) is well defined for any z ∈ C and belongs to L1

loc. Moreover,
v is holomorphic on Cr supp ν and decays as c/z.

Let us check that v is continuous. Consider the regular representation of the
additive group of C is Lp:

Lzg(u) = g(u+ z), g ∈ Lp, z ∈ C.

It is strongly continuous in the sense that for any g ∈ Lp, Lzg is continuous in z.
Let us take p > 1 and q ∈ (1, 2) such that 1/p+ 1/q = 1. Since 1/u ∈ Lqloc, we can
apply the Hölder Inequality in the space Lp(DR) (for ε > 0 small enough):

|v(z + ε)− v(z)| =
∣∣∣∣∣

∫

|u|≤3R

ν(z + u+ ε)− ν(z + u)

u
dm(u)

∣∣∣∣∣

≤ ‖Lεν − ν‖p
∫

|u|≤3R
|1/u|q dm→ 0 as ε→ 0,

and the conclusion follows.
Let us now assume that ν ∈ C2

comp. Then the Lebesgue Dominated Convergence
easily justifies legitimacy of differentiation under the sign of integral, implying that
v is twice differentiable and hence v ∈ C1. Moreover,

∂̄v = − 1

π

∫
∂̄ν(z + u)

u
dm(u) = ν(z),

where the last equality follows from the Green Formula.
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The general case is obtained by approximating ν by a a sequence νk → ν a.e.,
where the νk ∈ C2

comp have uniformly bounded support and uniformly bounded
L∞-norm. Selecting a weakly convergent (in L2) subsequence νk(i), we ensure
that the Tνk(i) converge in W, implying that v ∈ W (compare with the proof of
Theorem 13.2).

Uniqueness of the solution follows from Weyl’s Lemma: If ∂̄v = 0 a.e. for
v ∈ W, then v is holomorphic. Since v vanishes at ∞, it vanishes identically. �

14.10.2. Fourier transform. Let < z, ζ >= Re(zζ̄) stand for the standard Her-
mitian structure in C. Recall that a Fourier transform of a function φ ∈ L1 ≡ L1(C)
is defined as

φ̂(z) ≡ Fφ(z) := i

2

∫

C

φ(ζ)e(− < z, ζ >) dζ ∧ dζ̄

Here is the list of basic properties of the Fourier transform F :

• It is a contracting operator L1 → C0, where C0 is the space of continuous functions
φ : C→ C such that φ(z)→ 0 as z → 0.

• It is an algebra homomorphism, where the multiplication in L1 is convolution ∗,
while the multiplication in C0 is pointwise.

• It preserves the L2-norm:

(14.2) ‖φ̂‖2 = ‖φ‖2, for any φ ∈ L1 ∩ L2,

and hence extends to a unitary operator L2 → L2 (for which we will keep the same
notation). Equality (14.2) is called Parseval’s Identity.

• It conjugates the partial derivations ∂
∂x and ∂

∂y to the multiplication operators by
the corresponding variables (up to 2πi-factor):

∂̂xφ = 2πix φ̂, ∂̂yφ = 2πiy φ̂,

for any function φ ∈ L1
0 with L1

0 distributional partial derivatives. It follows that

∂̂φ = πiz̄ φ̂, ̂̄∂φ = πiz φ̂

in this class of functions.

14.10.3. Hilbert Transform. The Hilbert transform is a unitary operator S :
L2 → L2 that carries ∂̄φ to ∂φ for any function φ ∈ W. In the Fourier chart, it is
defined as the multiplication operator:

Sφ̂ =
ζ̄

ζ
φ̂, φ ∈ L2.

The Hilbert trasform can be explicitly defined on functions φ ∈ C2
comp as the

principal value of the following singular integral:

Sφ(z) = − 1

π
lim
ε→0

∫

|ζ−z|>ε

φ(ζ)

(ζ − z)2 dm.

Then it can be isometrically extended to L2. See [A2, Ch V.A],[Ste].

14.11. Appendix 2: Holomorphic maps between Banach spaces.



202 2. QUASICONFORMAL GEOMETRY

14.11.1. Smoothness in Banach spaces. Basic notions in this generality are the
same as in the finite dimensional case. Let B and Q be Banach spaces, and let U
be a domain in B. We refer to maps U → Q as Banach maps.

A Banach map f : U → Q is called differentiable at a point µ ∈ U if

f(µ+ v) = f(µ) +Dµf(v) + o(‖v‖) for all v ∈ B small enough,

where Dµf : B → Q is a (bounded) linear operator called the differential of f . The
map f is called (C1)-smooth on U if it is differentiable at all points µ ∈ U , and the
differential Dµf depends continuously on µ. It is called a diffeomorphism (onto its
image V), if V is open in Q, f is invertible, and the inverse map f−1 is smooth as
well. The Banach category is appropriate for the smooth theory since the Implicit
Function Theorem is still valid in this generality:

Implicit Function Theorem. Let f : (U , 0) → (Q, 0) be a smooth Banach
map such that D0f : B → Q is an invertible linear operator. Then f is a local
diffeomorphism.

14.11.2. Holomorphic maps: definitions and examples. In what follows, all Ba-
nach spaces are assumed to be complex. A continuous Banach map f : U → Q is
called holomorphic if for any complex line L = {x + λv}λ∈C (where x, v ∈ B)
and any (bounded) test linear functional Φ ∈ Q∗, the composition Φ ◦ f | L ∩ U is
holomorphic in λ. (As we see, this is essentially one-dimensional notion.)

A Banach map f : B → Q is called a degree d homogeneous polynomial if it is
the restriction of a (bounded) degree d polylinear map

f̃ : B × · · · × B → Q, f̃(v1 . . . vd) ≤ C‖v1‖ · · · ‖vd‖,
to the diagonal ∆ = {(v, . . . v) : v ∈ B}. For instance, let Aut(B) be the space of
(bounded) linear operators A : B → B. Then the map Aut(B)→ Aut(B) , A 7→ Ad

is a homogeneous polynomial of degree d.
A polynomial is a sum of homogeneous polynomials.
Let us temporarily6 say that a Banach map U → Q is strongly holomorphic if

it admits a Taylor expansion near any point µ ∈ U :

f(µ+ v) = f(µ) +Dµf(v) +D2
µf(v) + . . . ,

where Dd
µf is a homogeneous degree d polynomial in v. If this series converges in

the whole space B, f is called entire.
For instance, consider a series

f(A) =
∞∑

d=0

cdA
d, with cd ≤ rd.

It defines a holomorphic map Aut(B) → Aut(B) on the ball Aut1/r(B) of radius
1/r. (In particular, if the cn decay super-exponentially, then it defines an entire
function.) Here are two important examples: the exponential map

exp : AutB → AutB, expA =

∞∑

d=0

Ad

d!
,

6As we will see momentarily that this notion is equivalent to being holomorphic.
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is entire, and the resolvent:

R(A) ≡ (I −A)−1 =
∞∑

d=0

Ad

is strongly holomorphic in the unit ball of Aut(B).
Exercise 14.12. (i) Complex linear and polynomial maps are holomorphic.

(ii) Uniform limits of holomorphic maps are holomorphic.

(iii) Strongly holomorphic maps (in particular, the exponential and the resolvent)
are all holomorphic.

A holomorphic curve in B is a subset Γ of B that locally admits a holomorphic
parametrization γ : D→ B.

Proposition 14.13. For a continuous Banach map f : U → Q, U ⊂ B, the
following properties are equivalent:

(i) f is holomorphic;

(ii) f is smooth with complex linear differentials Dµf : B → Q;

(iii) The restriction of f to any holomorphic curve in B is holomorphic;

(iv) f is strongly holomorphic.

Proof. Since (i) is the weakest property, while (iv) is the strongest, it is
sufficient to show that (i) =⇒ (iv). Let us first review the case of a scalar function
on a finite-dimensional space, i.e, let B = Cn, Q = C. Combining the classical
1D Cauchy formula with the Fubini Formula, we obtain the n-dimensional Cauchy
representation of f (for r > 0 sufficiently small):
(14.3)

f(z+v) =
1

(2πi)n

∫

Tn
r

f(z + ζ) dζ1 . . . dζn
(ζ1 − v1) . . . (ζn − vn)

, v = (v1 . . . vn) ∈ Dnr , ζ = (ζ1 . . . ζn).

Now the geometric series expansion (in 1D)

1

ζ − v =
∞∑

m=0

vm

ζm+1
, |v| < |ζ|,

implies the Taylor expansion for f .

For a general Q, while B = Cn, the Cauchy contour integral still makes sense
(as an integral of a continuous Banach-valued function). Cauchy Formula (14.3)
is still valid since it can be tested by any linear functional Φ ∈ Q∗. It implies the
Taylor expansion as in the scalar case.

Let us now consider a Q-valued function on a general B. To define the po-
larized dth differential Dd

z(v1, . . . , vd), take any finite dimensional subspace E ⊂ B
containing all the vectors vk, and use the finite dimensional result in z + E. The
outcome is independent of the choice of E: for another subspace E′ as above, we
can consider E ⊕ E′ which induces the same outcome as either E or E′. �

Corollary 14.14. Holomorphic maps are smooth.

Corollary 14.15. (i) Composition of two holomorphic maps is holomorphic.

(ii) If f is holomorphic and invertible, then the inverse is holomorphic as well.
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Corollary 14.16. A map f : (Dr, 0) → (B, 0) is holomorphic if and only it
admits a power series representation

f(λ) =

∞∑

n=0

anλ
n,

where an ∈ B and ‖an‖ ≤ Cρn for any ρ > 1/r (with C depending on ρ).

14.11.3. Cauchy Inequality and Normality. As in dimension one, the Cauchy
Inequality bounds the derivative in terms of the map:

Proposition 14.17. If supU ‖f(µ)‖ ≤M , then

‖Dµf‖ ≤
M

dist(µ, ∂U) , µ ∈ U .

Proof. Let r := dist(µ, ∂U). Take a normed vector v ∈ B and a normed
functional Φ ∈ Q∗. Applying the classical Cauchy Inequality to the holomorphic
function λ 7→ Φ(f(µ+λv)), λ < r, we obtain |Φ(Dµf(v))| ≤M/r. Taking sup over
Φ, we obtain ‖Dµf(v)‖ ≤ M/r (by the Hahn-Banach Theorem). Taking sup over
v, we obtain the desired. �

For a domain U ⊂ B, let us say that a subset K ⊂ U is strictly contained in U
if dist(K, ∂U) > 0. We endow the space of holomorphic functions U → C with the
topology of uniform convergence (for generalized sequences) on strictly contained
subsets.

Proposition 14.18. Given a domain U in a Banach space B and M > 0, the
family of all holomorphic functions U → DM is compact.

Proof. By the Cauchy Inequality, such a family is equicontinuous on any strict
subset K of U . The Ascoli-Arcela criterion implies precompactness of our family in
the space of continuous functions U → DM . Since uniform limits of holomorphic
functions are holomorphic, the conclusion follows. �

This validates the Montel Theorems for families of functions on Banach do-
mains.

Proposition 14.19. Let fn : U → Q be a bounded (generalized) sequence of
holomorphic maps pointwise converging to a map f , i.e., fn(µ)→ f for any µ ∈ U .
Then f is holomorphic as well.

Proof. For any functional Φ ∈ Q∗, the sequence of functions gn := Φ ◦ fn
pointwise converges to Φ ◦ f . By the last Proposition, the functions gn form a
normal family. Hence there is a generalized subsequence converging (uniformly on
strict subsets K ⊂ U , and hence pointwise) to a holomorphic function g. Necessarily,
f = g, and we are done. �

14.11.4. Sufficient supply of test functionals. Here we will see that holomor-
phicity can be tested by dense sets of functionals.

Lemma 14.20. Let f : U → Q be a a locally bounded Banach map, U ⊂ B. If
the function Φ ◦ f is holomorphic for a w∗-dense set Q∗0 of functionals Φ ∈ Q∗,
then f is holomorphic.
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Proof. We need to show that Φ ◦ f is holomorphic for all Φ ∈ Q∗. By
assumption, any Φ ∈ Q∗ is the w∗-limit of some directed family (Φn) ⊂ Q∗0. Hence
Φn ◦ f → Φ ◦ f pointwise on U . Since the family of functions (Φn ◦ f) is locally
bounded, the conclusion follows from Proposition 14.19. �

Corollary 14.21. Let µ : U → Q∗, λ 7→ µλ, be a continuous family in the
dual space such that λ 7→ µλ(φ) is holomorphic for a w-dense set of test elements
φ ∈ Q. Then µ is holomorphic.

Proof. Since the natural embedding Q → Q∗∗ has a dense image in the
w∗-topology of Q∗∗, we obtain a w∗-dense set of functionals on Q∗ to test holomor-
phicity. �

The above lemmas allow us to test holomorphicity on C∞-smooth functions
only:

Corollary 14.22. Holomorphicity of a map f : U → Q to any of the func-
tional spaces Q = Lp(D) or Wp(D), p ∈ [1,∞], can be tested by pairing of f with
functions φ ∈ C∞comp(D).

14.11.5. Holomorphic curves in functional spaces. The space L∞ is particularly
important for us since Beltrami differentials belong to this class.

Lemma 14.23. Let µλ be a family in L∞(D) over a domain Λ ⊂ C. It is
holomorphic in λ if and only if it is locally bounded and the functions λ 7→ µλ(z) are
holomorphic in λ for a.e. z (after making an appropriate choice of representatives
of the µλ).

Proof. Without loss of generality we can assume that Λ = D is the unit disk.
Assume λ 7→ µλ is holomorphic over D. Then by Corollary 14.16, it admits a

power series representation

(14.4) µλ(z) =

∞∑

n=0

νn(z)λ
n,

where νn ∈ L∞ and ‖νn‖∞ ≤ Cρn for any ρ > 1. Hence there exists a subset
X ⊂ D of full measure such that for any ρ > 1 we have:

νn(z) ≤ Cρn ∀ z ∈ X.
It follows that for any z ∈ X, the function λ 7→ µλ(z) is holomorphic over D (where
the representative of µλ on X is chosen by the power series (14.4)).

Vice versa, assume that for a.e. z ∈ D, the function λ 7→ µλ(z) is holomorphic
over D. Then (14.4) holds for a.e. z ∈ D, with

νn(z) =
1

2πi

∫

|λ|=r

µλ(z)dλ

(−λ)n+1
for any r ∈ (0, 1).

But since the family (µλ) is locally bounded, it is bounded over the circle {|λ| = r},
implying that

|νn(z)| ≤
C

rn
,

with C = C(r) independent of z. Hence ‖νn‖∞ = O(r−n), and the map λ 7→ µλ is
holomorphic by Corollary 14.16. �
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Exercise 14.24. Let f : S → T be a holomorphic map between two Riemann
surfaces, and let (µλ) be a holomorphic family of Beltrami differentials on T . Then
(f∗(µλ)) is a holomorphic family of Beltrami differentials on S.

Functions of class L2 appear in our context as derivatives of qc maps.

Lemma 14.25. Let φλ be a complex one-parameter family in L2(D) over a
domain Λ ⊂ C. It is holomorphic in λ if and only if it is locally bounded in L2

and the functions λ 7→ φλ(z) are holomorphic in λ for a.e. z (after making an
appropriate choice of representatives of the µλ).

Proof. As in the previous lemma, assume that Λ = D is the unit disk and
consider a power series representation

φλ(z) =

∞∑

n=0

ψn(z)λ
n,

where ψn ∈ L2(D) and ‖ψn‖2 ≤ Cρn for any ρ > 1. Let σ > ρ. By the Chebyshev
Inequality,

area{z : |ψn(z)| ≥ σn} ≤ C2
( ρ
σ

)2n
.

By the Borel-Cantelli Lemma, |ψn(z)| = O(σn) a.e. The conclusion follows as in
the previous lemma.

The inverse statement we leave to the reader. �

Finally, let us consider the space W corresponding to qc maps themselves:

Lemma 14.26. Let hλ be a complex one-parameter family in W(D) over a
domain Λ ⊂ C. It is holomorphic in λ if and only if it is locally bounded in W and
for any z ∈ D, the evaluation function λ 7→ hλ(z) is holomorphic in λ. Moreover,
in this case the partial derivatives (∂hλ)λ∈Λ and (∂̄hλ)λ∈Λ form holomorphic curves
in L2.

Proof. The necessity is obvious since for any z ∈ D, the evaluation h 7→ h(z)
is a linear functional on W. Vice versa, if all the evaluations are holomorphic in λ,
then for any test function ψ ∈ C∞comp(D), the pairing

∫

D

hλ(z)ψ(z) dm(z)

is holomorphic in λ as well, and Corollary 14.22 implies that λ 7→ hλ is a holomor-
phic curve in W.

Plugging ∂ψ is place of ψ, we see that∫

D

hλ(z) ∂ψ(z) dm(z) = −
∫

D

∂hλ(z)ψ(z) dm(z),

depends holomorphically on λ. Applying Corollary 14.22 again, we conclude that
λ 7→ ∂hλ is a holomorphic curve in L2. Similarly, λ 7→ ∂̄hλ is. �

15. One-dimensional qs maps, quasicircles and qc welding

In this section, we will develop further the idea of quasisymmetry (see §12.3)
for one-dimensional maps and plane curves.

15.1. Quasisymmetric 1D maps.
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15.1.1. QS maps of the line. Let us first consider the rel line R in the Euclidean
metric. According to Lemma 12.11, L-qs maps h : R→ R can be defined as in terms
of bounded macroscopic dilatation. Namely, for any two adjacent intervals I, J ⊂ R

of equal length, we require:

(15.1)
|f(I)|
|f(J)| ≤ L.

It looks at first glance that the class of 1D qs maps is a good analogue of the
class of 2D qc maps. However, this impression is superficial: two-dimensional qc
maps are fundamentally better than one-dimensional qs maps. For instance, qc
maps can be glued together without any loss of dilatation (the Gluing Lemma)
while qs maps cannot:

Exercise 15.1. (i) For any δ > 0, the power map h : [0, 1]→ [0, 1] is qs.

(ii) Consider a map h : R→ R equal to id on the negative axis, and equal to x 7→ x2

on the positive one. This map is not quasi-symmetric, though its restrictions to the
both positive and negative axes are.

Another deficiency of one-dimensional qs maps is that they can well be singular
(and typically are in the dynamical setting), while 2D qc maps are always absolutely
continuous (Proposition 11.14).

These advantages of qc maps makes them much more efficient tool for dynamics
than one-dimensional qs maps. This is one of the reasons why complexification of
one-dimensional dynamical systems is so powerful.

15.1.2. QS circle maps. Of course, an L-qs circle homeomorphism h : T → T

can be defined is the same way as in the case of R, with understanding of (15.1) in
terms of the circle metric. However, there is a subtle difference between these two
cases. Namely, in the line case, the group of 1-qs maps coincides with the group of
affine maps x 7→ ax + b, which is equal to the group of Möbius automorphisms of
R. On the other hand, in the circle case, only rotations are 1-qs, and in fact,

Exercise 15.2. The group of Möbius automorphisms φ of the circle T is not
uniformly qs. However, if φ(0) ≤ r < 1 then φ is L(r)-qs.

15.1.3. Tilings with bounded geometry. Let I be a closed interval or a circle.
Assume we have an increasing nest (T n)∞n=0 of tilings of I,

T 0 ≻ T 1 ≻ . . . ,
by intervals Tnk , k = 0, 1, . . . , pn − 1. One says that the nest has bounded com-
binatorics if each interval Tnk is tiled by a bounded number of intervals Tn+1

j of

the next level. It has bounded geometry if all such nested intevals Tnk ⊃ Tn+1
j are

comparable in size. Obviously, bounded geometry implies bounded combinatorics.

Exercise 15.3. Assume we have two intervals I and Ĩ (or two circles) supplied
with two nests of tilings as above, (T n) and (T̃ n), with bounded geometry. Let
h : I → Ĩ be a homeomorphism respecting these tilings, i.e., h(Tnk ) = T̃nk for any
tile Tnk . Then h is qs (quantitatively).

This statement will be useful in the dynamical setting where nests of tilings as
above appear naturally.
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15.2. Ahlfors-Beurling Extension.

15.2.1. Extension from R. As we know, the class of orientation preserving qs
maps on the plane coincides with the class of qc maps (Propositions 12.13 and
12.14). In particular, if we consider a quasiconformal map h : C → C preserving
the real line R, it restricts to a quasisymmetric map on the latter. Remarkably, the
inverse is also true:

Theorem 15.4. Any L-qs orientation preserving map h : R→ R extends to a
K(L)-qc map H : C → C. Moreover, this extension can be selected to be affinely
equivariant (i.e, so that it commutes with the action of the affine group z 7→ az+ b,
a ∈ R+, b ∈ R). Moreover, this map is smooth outside R.

Proof. An extension to the upper half-plane H can be given by an explicit
formula:

H(x+ iy) =
1

2y

∫ x+y

x−y
h(t)dt+

i

y

(∫ x+y

x

h(t)dt−
∫ x

x−y
h(t)dt

)
.

It is clearly smooth in H and is continuous up to the boundary with boundary values
h. By a fairly direct calculation, one can check that it has a positive Jacobian (so
it is a local orientation preserving diffeomorphism) and to bound its dilatation in
terms of L. One should also check that H(z)→∞ as z →∞ in H, so H is proper.
As h|R ∪ {∞} is a homeomorphism, we conclude that degH = 1, and hence H is
a homeomorphism as well.

Exercise 15.5. Supply omitted technical details.

Finally, the transform h 7→ H is manifestly affinely equivariant, and it extends
to the lower half-plane by reflection. �

15.2.2. Extension from T. As the group of Möbius automorphisms of the circle
is not uniformly qs, the circle version of the Ahlfors-Beurling Theorem requires
some extra care:

Lemma 15.6. Let H : D → D be a K-qc map with H(0) ≤ r < 1. Then H
admits an extension to a L(K, r)-qs circle homeomorphism.

Vice versa, any L-qs circle homeomorphism h admits and extension to a K(L)-
qc map H : (D, 0)→ (D, 0).

Proof. H can be continuously extended to T, and then by symmetry to the
whole Riemann sphere.

Since Möbius automorphisms φ : D → D with |φ(0)| ≤ r are L(r)-qs on T,
H can be normalized so that H(0) = 0, and by symmetry, H(∞) = ∞. Then
H(C) = C, and Lemma 12.6 implies that H is L(K)-qs. �

15.2.3. Interpolation in an annulus.

Lemma 15.7. Let us consider two round annuli A = A[1, r] and Ã = A[1, r̃],
with 0 < ε ≤ modA ≤ ε−1 and ε ≤ mod Ã ≤ ε−1. Then any κ-qs map h :
(T,Tr)→ (T̃, T̃r̃) admits a K(κ, ε)-qc extension to a map H : A→ Ã.

Proof. Since A and Ã are ε2-qc equivalent, we can assume without loss of
generality that A = Ã. Let us cover A by the upper half-plane, θ : H → A,
θ(z) = z

− log ri
π , where the covering group generated by the dilation T : z 7→ λz, with
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h

H

Figure 15.1. QC extension of a qs map by means of Calreson-
Whitney tilings.

λ = e
2π2

log r . Let h̄ : (R, 0)→ (R, 0) be the lift of h to R such that h̄(1) ∈ [1, λ) ≡ Iλ
and h̄(1) ∈ (−λ,−1] (note that R+ covers Tr, while R− covers T). Moreover, since
deg h = 1, it commutes with the deck transformation T .

A direct calculation shows that the dilatation of the covering map θ on the
fundamental intervals Iλ and −Iλ is comparable with (log r)−1. Hence h̄ is C(κ, r)-
qs on this interval. By equivariance it is C(κ, r)-qs on the rays R+ and R−.

It is also quasi-symmetric near the origin. Indeed, by the equivariance and
normalization,

(1 + λ)−1|J | ≤ |h̄(J)| ≤ (1 + λ)|J |
for any interval J containing 0, which easily implies quasi-symmetry.

Since the Ahlfors-Beurling extension is affinely equivariant, the map h̄ extends
to a K(κ, r)-qc map H̄ : H → H commuting with T . Hence H̄ descends to a
K(κ, r)-qc map H : A→ A. �

15.2.4. QS equivalence between Cantor sets with bounded geometry. Recall from
§1.1.1 basics about combinatorics and geometry of real Cantor sets. The following
assertion will have important dynamical ramifications (see §38.9):

Exercise 15.8. Any two Cantor sets K, K̃ ⊂ R with the same combinatorics
and bounded geometry qs equivalent, i.e., there exists a quasisymmetric homeomor-
phism h : (R,K) → (R, K̃) respecting the combinatorics. Moreover, the dilatation
of h depends only on the bounds on the geometry of K and K̃.

15.3. Quasicircles.

15.3.1. Geometric definition. Let us start with an intrinsic geometric definition
of quasicircles:

Definition 15.9. A Jordan curve γ ⊂ C is called a κ-quasicircle if for any
two points x, y ∈ γ there is an arc δ ⊂ γ bounded by these points such that

(15.2) diam δ ≤ κ|x− y|.
A curve is called a quasicircle if it is a κ-quasicircle for some κ. The best possible

κ in the above definition is called the geometric dilatation of the quasicircle. Let
us emphasize that this notion is global in the sense that (15.2) should be satisfied
in all scales. However, it can be localized as follows:

Exercise 15.10. If (15.2) is satisfied for all pairs of points with |x − y| ≤ ε,
then γ is a κ′-quasicircle with κ′ depending only on κ and N , where N is the number
of arcs of diam ε needed to cover γ.
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A Jordan disk (either open or closed) is called (κ-)quasidisk if it is bounded
by a (κ-)quasicircle.

Exercise 15.11. A Jordan disk D is a κ-quasidisk if and only if the Euclidean
path metric on D is κ-Lipschitz equivalent to the Euclidean chordal metric.

A C-quasi-center of a Jordan curve γ (or, of the corresponding Jordan disk
D) is a point a ∈ D such that D has a C-bounded shape around a:

RD(a)

rD(a)
≤ C.

(Here RD(a) and rD(a) are outer and inner radii of D around a, see §4.4.)

Exercise 15.12. Any κ-quasidisk has a C(κ)-quasi-center.

The shape bound C(κ) will often be implicit in our discussion, and sometimes
we will even say that D is “centered at a”.

Exercise 15.13. Let γ be a 0-symmetric κ-quasicircle. Then 0 is (2κ + 1)-
quasi-center of γ.

For a simply connected domain D ⊂ Ĉ, let us say that a point z0 ∈ ∂D is a
cusp if dist(z, z0)/dist(z, ∂D)→ 0 as z → z0 in D. The following simple assertion
gives the best intuitive characterization of quasicircles:

Exercise 15.14. Quasicircles do not have cusps.

15.3.2. Quasi-rectangles and the cross-ratios. Given four points a, b, c, d on a
Jordan curve γ, let Πγ(a, b, c, d) stand for the corresponding quadrilateral. In case
when γ is a quasicircle, this quadrilateral will be called a quasi-rectangle.

Lemma 15.15. The modulus of a quasi-rectangle, mod(Πγ(a, b, c, d)), is con-
trolled by the cross-ratio R := [a, b, c, d]. More precisely,

0 < θ1(R) ≤ modΠγ(a, b, c, d) ≤ θ2(R),

where the functions θi depend only on the geometric dilatation of γ, and θ1(R)→∞
as R→∞.

15.3.3. Quasitriangles and ratios. A Jordan domain D with four marked points
a, b, c, d such that a, b, c ∈ γ = ∂D while d ∈ intD is called a pointed topological
triangle ∆γ(a, b, c; d). Let as define mod∆γ(a, b, c; d) as the extremal length of the
family of proper paths γ ⊂ D connecting [a, b] to [c, a] and separating d from [b, c].
In case when γ is a quasicircle centered at d, ∆γ(a, b, c; d) will be called pointed
quasitriangle.

Lemma 15.16. The modulus of a quasitriangle, mod∆γ(a, b, c; d), is controlled
by the ratio R := |b− c|/|b− a|, in the same sense as above.
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15.3.4. The Riemann mapping. What makes quasicircles so important is their
characterization as qc images of the circle:

Theorem 15.17. Let a be a quasi-center of a κ-quasidisk D, and let ψ :
(D, 0) → (D, a) be the normalized Riemann mapping. Then ψ admits a K(κ)-qc
extension to the whole complex plane.

Vice versa, let (D, a) be a pointed Jordan disk such that there exists a K-qc
map h : (C,D, 0)→ (C, D, a). Then D is a κ-quasidisk with a quasi-center a.

Proof. The last assertion follows immediately from the fact that h has L(K)-
bounded macroscopic dilatation (by Lemma 12.6). �

15.3.5. Quasi-annuli. A C-quasi-annulus is a conformal annulus A ⊂ C such
that there is a C-qc map h : (C, A) → (C,A(1, r)). By the second part of The-
orem 15.17, a C-quasi-annulus is bounded by κ(C)-quasicircles. Vice versa, we
have:

Lemma 15.18. Let A be a conformal annulus with modA = log r ≥ µ > 0
bounded by κ-quasicircles. Then A is a C(µ, κ)-quasi-annulus. In fact, the Riemann
mapping φ : A→ A(1, r) admits a K(µ, κ)-qc extension to the whole plane.

Lemma 15.19. Let A and Ã be C-quasi-annuli with min(modA,mod Ã) ≥ µ >
0. Then any L-qs map h : ∂A → ∂Ã admits a K(C, µ, L)-extension to C (quanti-
tatively).

Exercise 15.20. Assume an annullus A is partitioned by a κ−quasicircle γ
into two homotopic sub-annuli Ai with modAi ≥ µ > 0. Then

modA ≤ C(µ, κ) (modA1 +modA2).

15.3.6. Little Gluing Lemma.

Little Gluing Lemma. Let Γ be a piecewise quasicircle (or quasiarc) con-
tained in a domain U ⊂ C, and let h : U → V be a homeomorphism. If h is K-qc
on U r Γ then h is K-qc on the whole domain U .

15.3.7. Compactness in the space of quasicircles. Let QDκ,r, r > 0, denote the
space of pointed κ-quasidisks (D, 0) with r ≤ rD,0 ≤ RD,0 ≤ 1/r, endowed with
the Carathéodory topology.

Proposition 15.21. The space QDκ,r is compact.

Proof. Consider a quasidisk (D, 0) ∈ QDκ,r. By Theorem 15.17, the normal-
ized Riemann mapping h : (D, 0) → (D, 0) admits a K-qc extension to the whole
complex plane C, where K depends only on κ and r. Moreover, r ≤ |h(1)| ≤ 1/r.
By the Compactness Theorem (see Exercise 13.3), this family of qc maps is compact
in the uniform topology on C. Since uniform limits of κ-quasidisks are obviously
κ-quasidisks, the conclusion follows. �

15.4. QC welding. Recall from §1.7.2 and §2.1 the discussion of the con-
nected sum D⊔h (ĈrD) of two disks along the circle T by means of an orientation
preserving 7 homeomorphism h : T→ T. The outcome is a topological sphere S2.

7As we know from §1.7.2, h should be “orientation reversing”. There is no contradiction here
because our h is indeed orientation reversing with respect to the orientations that T inherits from
D and from C r D.
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D̄

h

φ∞

H

Ĉ

id (Ĉ, µ)

S2
h

C \ D

φ0

Γh

h

Figure 15.2. Quasiconformal welding.

As we know from Exercise 2.3, if h is real analytic then this sphere has a
natural complex structure. By the Uniformization Theorem, there is a conformal
isomorphism H : S2 → Ĉ. Then Γ ≡ Γh := H(T) is an analytic Jordan curve in Ĉ.

Vice versa, given an (oriented) analytic Jordan curve Γ ⊂ Ĉ, let U0 and U∞
be the components of Ĉ r Γ (where Γ is positively oriented with respect to U0),
and let φ0 : U0 → D, φ∞ : U∞ → CrD be the corresponding Riemann mappings.
Then φ0 ◦ φ−1∞ |T is an orientation preserving analytic homeomorphism of T.

Exercise 15.22. Show that these constructions provide us with a one-to-one
correspondence between analytic orientation preserving homeomorphisms h : T →
T, up to two-sided action of Möb(D), and analytic Jordan curves Γ ⊂ Ĉ, up to the
action of Möb(Ĉ).

We are now prepared for a far-reaching generalization of this assertion:

Theorem 15.23. Let h : T → T be a quasisymmetric orientation preserving
homeomorphism. Then the connected sum S2

h = D ⊔h (C r D) can be endowed
with a unique complex structure compatible with the complex structures of D and
ĈrD. This gives us a one-to-one correspondence between orientation preserving qs
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homeomorphisms h : T→ T, up to the two-sided action of Möb(D), and quasicircles
Γ ⊂ Ĉ, up to the action of Möb(Ĉ). The inverse map is obtained as the composition
φ0 ◦ φ−1∞ |T, where

(15.3) φ0 : U0 → D, φ∞ : U∞ → Cr D

are Riemann mappings to the components of Ĉ r Γ (where Γ is positively oriented
with respect to U0).

Moreover, there is a quantitative one-to-one correspondence between orientation
preserving L-qs homeomorphisms h : T → T (up to the two-sided action of the
rotation group T), and κ-quasicircles Γ ⊂ C∗ that are κ-quasi-centered at 0 (up to
the action of the complex scaling group C∗).

Proof. By the Ahlfors-Beurling Theorem, h extends to a qc map

ĥ : Ĉ r D→ Ĉ r D.

Define a measurable conformal structure µ on Ĉ by letting µ = h∗(σ) on ĈrD and
µ = σ on D. By MRMT, it determines a new complex structure on C, which can
be uniformized by the standard Riemann sphere by means of a qc map

H : (C, µ)→ (C, σ).

This gives us a quasicircle Γĥ := H(T), with the orientation induced from T. Since
H is defined up to the post-composition with a Möbius map, the quasicircle Γĥ is
defined up to the action of Möb(Ĉ) (given the extension ĥ).

Let us show that Γĥ is actually independent of the choice of the extension ĥ.
Indeed, if ĥ′ : Ĉ r D → Ĉ r D is another qc extension, then h′ = h ◦ ψ, where
ψ : Ĉ r D → Ĉ r D is a qc homeomorphism equal to id on T. Let us consider a
homeomorphism Ψ : Ĉ→ Ĉ which is equal to ψ on ĈrD and equal to id on D. By
the Gluing Lemma, it is qc on the whole sphere. Moreover, the homeomorphism
H ′ := H ◦Ψ solves the Beltrami equation for the differential µ′ associated with h′,
and H ′|T = H|T. The conclusion follows.

Thus, we can write Γĥ ≡ Γh. In fact, Γh is invariant under the two-sided
action of Möb(D): it does not change if h is replaced with A ◦ h ◦ B−1|T, where
A,B ∈ Möb(D). Indeed, replacing h with A ◦ h does not change the conformal
structure µ, so it does not change H. Replacing h with h ◦ B−1|T amounts to
replacing H with H ◦B−1, which does not affect Γh either. So we have constructed
a map

(15.4) h (moduloMöb(D)) 7→ Γh (modulo Möb(Ĉ))

Let U0 and U∞ be the complementary components of CrΓh. By construction,
the maps

(15.5) φ0 := H−1 : U0 → D and φ∞ := ĥ ◦H−1 : U∞ → Cr D

are conformal, so they are equal to the Riemann mappings for U0 and U∞ respec-
tively. Moreover, their composition brings us back the original map h:

(15.6) φ∞ ◦ φ−10 |T = h.

Let ψ0 and ψ∞ be the inverse maps. Then ψ0 = ψ∞ ◦ h, so the map

(15.7) Ψ : (S2
h,T)→ (Ĉ,Γ) given by Ψ|D = ψ0, Ψ| Ĉ r D = ψ∞,
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is a well defined homeomorphism. As it is conformal on D and Ĉ r D, it induces a
desired complex structure Ψ∗(σ) on S2

h.
Let us show that such a complex structure is unique. Indeed, assume there are

two such structures, and let Γ, Γ′ be the corresponding quasicircles. Then there
exists a homeomorphism Φ : (Ĉ,Γ)→ (Ĉ,Γ′) conformal on ĈrΓ. Since quasicircles
are removable, Φ is Möbius, so the structures are conformally equivalent.

Furthermore, application of a Möbius transformation A ∈ Möb(Ĉ) to Γ leads to
pre-composition of the Riemann mappings (15.5) with A−1, which does not affect
the gluing map h in (15.6). Also, as the above Riemann mappings are well defined
up to post-composition with a Möbius map A ∈ Möb(D), the gluing map h is well
defined up to two-sided action of Möb(D). Hence the above construction provides
us with the left inverse for the map (15.4), showing that the latter is one-to-one
onto the image.

What is left, is to show that (15.4) is surjective. It amounts to the repetition of
the construction of the gluing map (15.6) for a general oriented quasicircle Γ ⊂ Ĉ.
So, let U0 and U∞ be the components of Ĉ rΓ, where Γ is positively oriented with
respect to U0. Let us consider the corresponding Riemann mappings (15.3), and
let ψ0, ψ∞ be the inverse maps. Then h := φ∞ ◦φ−10 |T is an orientation preserving
circle homeomorphism.Moreover, as ψ0 = ψ∞ ◦ h, the map defined as (15.7) is a
well defined homeomorphism.

By Theorem 15.17, ψ0 and ψ∞ admit qc extensions Ψ0,Ψ∞ : (Ĉ,T)→ (Ĉ,Γ).
Hence their restrictions ψ0, ψ∞ : T→ Γ are quasisymmetric, implying that h : T→
T is qs as well.

By what we have already shown, the connected sum S2
h := D ∪h (Ĉ r D),T)

has a unique complex structure compatible with the complex structures on D and
C r D. Since the homeomorphism Ψ (15.7) is conformal on D and Ĉ r D, it is a
biholomorphic isomorphism between (S2

h,T) and (C,Γ), so Γ is realized by a qc
welding.

For the last quantitative assertion, recall from Lemma 15.6 that any L-qc home-
omorphism h : T → T extends to a K(L)-qc homeomorphism h : (D, 0) → (D, 0).
Then the solution H of the Beltrami equation is also K(L)-qc. Normalizing it
so that H(0) = 0 and H(∞) = ∞, we obtain by Proposition 12.13 the desired
κ(L)-quasicircle Γ (modulo the action of C∗).

Vice versa, let Γ ⊂ C∗ be a κ-quasicircle centered at 0 (modulo the action of
C∗). Normalizing the corresponding Riemann mappings φ0 and φ∞ (15.3) so that
they fix 0 and ∞ respectively, we make them well defined up to post-composition
with a rotation and precomposition with a complex scaling. Hence the transit map
h = φ∞ ◦ φ−10 |T is well defined up to the two-sided action of the rotation group.
Moreover, by Theorem 15.17, each of them admits a K(κ)-extension to the whole
sphere Ĉ fixing 0 and ∞. Applying Proposition 12.13 once again, we conclude that
both maps are L(κ)-qs. Hence so is h (with a different L). �

This construction is called the qc welding of D and Ĉ r D by means of a qs
homeomorphism h : T → T. More generally, any Jordan curve Γ ⊂ Ĉ can be
viewed as a qc welding by means of some homeomorphism h : T → T (namely, by
the transit map from the interior to the exterior Riemann mappings). However,
not all homeomorphisms appear this way.
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Figure 15.3. A homeomorphism of R that cannot be realized as
the welding for a Jordan curve.

16. Removability

16.1. Conformal vs quasiconformal. Similarly to the notion of qc remov-
ability introduced in §13.3 we can define conformal removability:

Definition 16.1. A compact subset X ⊂ C is called conformally removable if
for any open sets U ⊃ X in C, any homeomorphic embedding h : U →֒ C which is
conformal on U rX is conformal/qc on U .

In fact, these two properties are equivalent:

Proposition 16.2. Conformal removability is equivalent to qc removability.

Thus, we can unambiguously call a set “removable”.
It is classical that isolated points and smooth Jordan curves are conformally

removable. Proposition 16.2 implies that they are qc removable as well (which was
also shown directly in §13.3 of Ch. 2). Since qc removability is invariant under qc
changes of variable, we obtain:

Lemma 16.3. Quasicircles are removable.

.

16.2. Removability and area. The Measurable Riemann Mapping Theorem
yields:

Proposition 16.4. Removable sets have zero area.

Proof. Assume that m(X) > 0. Then there exists a non-trivial Beltrami
differential µ supported on X. Let h : C → C be a solution of the corresponding
Beltrami equation. Then h is conformal outside X but is not conformal on X. �

The reverse is false:

Example 16.5.
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16.3. Divergence property.

Definition 16.6. Let us say that a compact set X ⊂ C satisfies the divergence
property if for any point z ∈ X there exists a nest of annuli An(z) around z such
that ∑

An(z) =∞.
Without loss of generality we can assume (and we will always do so) that each
annulus in this definition is bounded by two Jordan curves.

Lemma 16.7. Compact sets satisfying the divergence property are Cantor.

Proof. Consider any connected componentX0 ofX, and let z ∈ X0. Then the
annuli An(z) are nested around X0. By Corollary 6.20 of the Grötzsch Inequality,
X0 is a single point. �

Lemma 16.8. Let X ⊂ C be a compact set satisfying the divergence property.
Then for any neighborhood U ⊃ X, any qc embedding h : U r X →֒ C admits a
homeomorphic extension through X.

Proof. Let h : U rX →֒ C be a K-qc embedding. If X ⊂ U ′ ⋐ U then h(U ′)
is bounded in C. So, without loss of generality we can assume that h(U) is bounded
in C.

For z ∈ X, let us consider the nest of annuli h(An(z)). Since h is quasiconfor-
mal, ∑

modh(An(z)) ≥ K−1
∑

modAn(z) =∞.
Let ∆n(z) be the bounded component of Cr h(An(z)), and let

∆∞(z) =
⋂

n

Dn(z).

By Corollary 6.20 of the divergence property, ∆∞(z) is a single point ζ = ζ(z). Let
us extend h through X by letting h(z) = ζ.

This extension is continuous. Indeed, let Dn(z) be the bounded component of
C r An(z). Then by Corollary 6.20, diamDn(z) → 0, so that Dn(z) is a base of
(closed) neighborhoods of z. But

diamh(Dn(z)) = diam∆n(z)→ 0,

which yields continuity of h at z.
Switching the roles of (U,X) and (h(U), h(X)), we conclude that h−1 admits a

continuous extension through h(X). Hence the extension of h is homeomorphic. �

It is worthwhile to note that, in fact, general homeomorphisms extend through
Cantor sets:

Exercise 16.9. (i) Let us consider two Cantor sets X and X̃ in C and their
respective neighborhoods U and Ũ . Then any homeomorphism h : U rX → Ũ r X̃
admits a homeomorphic extension through X.

(ii) It was essential to assume that both sets X and X̃ are Cantor! For any
compact set X ⊂ C, give an example of an embedding h : C rX →֒ C which does
not admit a continuous extension through X.

Lemma 16.10. Compact sets satisfying the divergence property have zero area.
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We will show now that sets satisfying the divergence property are removable,
and even in the following stronger sense:

Theorem 16.11. Let X ⊂ C be a compact set satisfying the divergence property.
Then for any neighborhood U ⊃ X, any conformal/qc embedding h : U rX →֒ C

admits a conformal/qc extension through X.

Proof. Let h : U rX →֒ C be a K-qc embedding. By Lemma 16.8, h extends
to an embedding U →֒ C, which will be still denoted by h. Let us show that h
belongs to the Sobolev class H(U).

Since X is a Cantor set, it admits a nested base of neighborhoods Un such
that each Un is the union of finitely many disjoint Jordan disks. Take any µ > 0.
By the Grẗzsch Inequality, for any n ∈ N there is k = k(µ, l) > 0 such that
mod(∂Un+k, ∂Un) ≥ µ > 0. Let χn be the solution of the Dirichlet problem
in Un r Un+k vanishing on ∂Un+k and equal to 1 on ∂Un. By Theorem 6.30,
D(χn) ≤ 1/µ.

Let us continuously extend χ to the whole plane in such a way that it vanishes
on Un+k and identically equal to 1 on C r Un. We obtain a piecewise smooth
function χ : C → [0, 1], with the jump of the derivative on the boundary of the
domains Un and Un+k.

Let hn = χn h. These are piecewise smooth functions with bounded Dirichlet
integral. Indeed,

D(hn) =

∫
(|∇χn|2|h|2 + |χn|2|∇h|2)dm ≤ diam(h(U))/µ+ C(K)m(h(U)),

where C(K) = (1+ k2)/(1− k2) comes from the area estimate (area estimate). By
weak compactness of the unit ball in L2(U), we can select a converging subsequence
∂hn → φ, ∂̄hn → ψ. But hn → h pointwise on U r X, so that by Lemma 16.10,
hn → h a.e. It follows that φ and ψ are distributional partial derivatives of h (see
(13.2)).

Finally, if h is conformal on U rX then by Weyl’s Lemma it is conformal on
U . �

17. Holomorphic motions

17.1. Definition. Let (Λ, λ◦) be a pointed complex Banach manifold8 and
let X ≡ X◦ ⊂ Ĉ be an arbitrary subset of the Riemann sphere (can be non-
measurable). A holomorphic motion h over (Λ, λ◦)

9 is a family of injections

hλ : X → Ĉ, λ ∈ Λ,

depending holomorphically on λ (in a weak sense that the functions z 7→ hλ(z) are
holomorphic in λ for all z ∈ X) and such that hλ◦

≡ h◦ = id. In this situation, we
let Xλ := hλ(X◦).10

For z ∈ X, holomorphic functions φz : Λ → Ĉ, λ 7→ hλ(z), are called orbits
of the holomorphic motion. Since the functions hλ are injective, the orbits do not

8We will eventually deal with infinite dimensional parameter spaces, so we need to prepare
the background in this generality. However, in the first reading the reader can safely assume that
the space Λ is a one-dimensional disk (which is the main case to consider anyway).

9We will often make a point λ◦ implicit in the notation and terminology.
10We will sometimes say briefly that “the sets Xλ move holomorphically” or “the set X moves

holomorphically” without mentioning explicitly the maps hλ.



218 2. QUASICONFORMAL GEOMETRY

collide, or equivalently, their graphs Lz ⊂ Λ× Ĉ (also called leaves of the motion)
are disjoint. Thus, a holomorphic motion provides us with a family of disjoint
holomorphic graphs over Λ. We refer to such a family as a (trivial) holomorphic
lamination F. Of course, the above reasoning can be reversed, so that, trivial
holomorphic laminations give us an equivalent (dual) way of describing holomorphic
motions.

A regularity of a holomorphic motion is the regularity of the maps hλ on X. For
instance, a holomorphic motion is called continuous, qc, smooth or biholomorphic if
all the maps hλ, λ ∈ Λ, have the corresponding regularity on X (to make sense of it
in some cases we need extra assumptions on X, e.g., openness). The regularity of h
can also be interpreted as the transverse regularity of the corresponding lamination
F, see §17.4.2 below.

Notice that a priori we do not impose any regularity on the maps hλ (not
even measurability!). A remarkable property of holomorphic motions is that they
automatically have nice regularity properties and that they automatically extend
to motions of the whole Riemann sphere. This set of properties are usually referred
to as the λ-lemma. It will be the theme of the rest of this section.

While dealing with a holomorphic motion of a set X, Y , etc., we let Xλ :=
hλ(X), Yλ := hλ(Y ), etc. We will refer to the z-variable of a holomorphic motion
as the dynamical variable (though in general, there is no dynamics in the z-plane).
The λ-variable is naturally referred to as the parameter.

We let

(17.1) X :=
⋃

λ∈Λ
Xλ ⊂ C2, Y :=

⋃

λ∈Λ
Yλ ⊂ C2, etc.

be the total space of the corresponding motion. It has two transverse structures: It
is fibered over Λ with fibers Xλ (resp., Yλ, etc.) and it is foliated by the leaves of
the motion. For a subdomain Λ′ ⊂ Λ, we let

X|Λ′ :=
⋃

λ∈Λ′

Xλ

be the total space of the restricted motion.
In case when Xλ are Jordan disks, we will refer to X as a foliated tube.

17.2. Extension to the closure and continuity.

First λ-lemma (Extension to the closure). A holomorphic motion h of any
set X ⊂ Ĉ extends to a continuous holomorphic motion of its closure X.

Proof. If X is finite, there is nothing to prove, so assume it is infinite.
Let us show that the family of orbits φz, z ∈ X, of our holomorphic motion is

normal. To this end, let us remove from X three points zi ∈ X; let X ′ = X r {zi}
and let ψi be the orbits of the points zi. Since the orbits of a holomorphic motion
do not collide, the family of orbits of points z ∈ X ′ satisfies the condition of the
Refined Montel Theorem, 4.9, with exceptional functions ψi, and the normality
follows.11

Let Φ be the closure of the family of orbits in the spaceM(Λ) of meromorphic
functions on Λ. By the Hurwitz Theorem, the graphs of these functions are disjoint,
so they form a holomorphic lamination representing a holomorphic motion of X.

11Results of §14.11.3 allow us to apply the Montel Theorem on Banach domains.
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Let us keep notation hλ for the extended holomorphic motion, and notation
φz, z ∈ X, for its orbits.

Let us show that this motion is continuous. Let λ ∈ Λ, let zn → z be a
converging sequence of points in X, and let φn ∈ Φ and φ ∈ Φ be their respective
orbits. We want to show that hλ(zn) → hλ(z), or equivalently φn(λ) → φ(λ).
But otherwise, the sequence φn would have a limit point ψ ∈ M(Λ) such that
ψ(λ◦) = φ(λ◦) while ψ(λ) 6= φ(λ), which would contradict to the laminar property
of the family Φ. �

In particular, for a holomorphic motion of any compacts set X, the maps
hλ : X → Xλ are automatically homeomorphisms.

17.3. Extension of smooth holomorphic motions. In this short section
we will prove a simple extension lemma for smooth holomorphic motions.

Lemma 17.1 (Local extension). Let us consider a compact set Q ⊂ C and a
smooth holomorphic motion hλ of a neighborhood U of Q over a Banach domain
(Λ, λ◦). Then there is a smooth holomorphic motion Hλ of the whole complex plane
C over some neighborhood Λ′ ⊂ Λ of λ◦ whose restriction to Q coincides with hλ.

Proof. We can certainly assume that U is compact. Take a smooth function
φ : C→ R supported in U such that φ|Q ≡ 1, and let

Hλ = φhλ + (1− φ) id .
Clearly H is smooth in both variables, holomorphic in λ, and identical outside U .
As H◦ = id, Hλ : C→ C is a diffeomorphism for λ sufficiently close to λ◦, and we
are done. �

We will sometimes refer to this statement as the Elementary λ-Lemma.

17.4. Transverse quasiconformality.

17.4.1. Quasiconformality of hλ.

Second λ-lemma (Quasiconformality). Let hλ : X → Xλ be a holomorphic
motion of a set X ⊂ C over the disk D. Then for |λ| ≤ r < 1, the maps hλ are
η-quasisymmetric with dilatation η depending only on r. Consequently, if X is open
then the maps hλ are K-qc with dilatation K depending only on r.

Proof. Let t > 1. Take three distinct points a, b, c ∈ C such that

t−1 ≤ |c− a||b− a| ≤ t.

We need to show that

η−1 ≤ |hλ(c)− hλ(a)||hλ(b)− hλ(a)|
≤ η, |λ| ≤ r, for some η = ηr(t) > 1.

Let us normalize the holomorphic motion by affine changes of variables so that
hλ(a) ≡ 0, hλ(b) ≡ 1. Since affine maps do not distort ratios, it is enough to prove
the assertion for the normalized motion, for which it assumes the form:

t−1 ≤ |c| ≤ t, |λ| ≤ r, c 6= 1 =⇒ η−1 ≤ |hλ(c)| ≤ η.
But the orbit λ 7→ hλ(c) is a holomorphic map D→ Cr {0, 1}, and the conclusion
follows from the normality of the family of all such maps (Big Montel Theorem). �
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Exercise 17.2. Check a slightly more general assertion, for holomorphic mo-
tions hλ : Ĉ→ Ĉ, λ ∈ D, of the Riemann sphere.

Given a holomorphic motion h over Λ, let

Dilh = sup
λ∈Λ

Dilhλ

(which can be infinite). We say that the holomorphic motion h is K-qc if

Dilh ≤ K.
In these terms, the Second λ-Lemma tells us that if h is a holomorphic motion over
D then for r < 1, Dil(h|Dr) ≤ K(r). Since biholomorphic reparametrizations of
the parameter domain do not affect Dilh, we can formulate the Second λ-Lemma
in an invariant form:

Corollary 17.3. Any holomorphic motion h over D, restricted to a hyperbolic
disk Dhyp(a, ρ) ⊂ D, has a bounded dilatation (in terms of ρ):

Dil(h|Dhyp(a, ρ)) ≤ K(ρ).

Note finally that the Second λ-Lemma is valid over any Banach ball as well (by
restricting the holomorphic motion to one-dimensional complex disks):

Corollary 17.4. Let hλ : X → Xλ be a holomorphic motion over a complex
Banach ball B1. Then for |λ| ≤ r < 1, the maps hλ are η-quasisymmetric with
dilatation η depending only on r.

17.4.2. Holonomy. Take two point p◦ = (λ◦, z◦) and p = (λ, z = hλ(z0)) on the
same leaf L(p0) and consider local transversals Γ◦ ∋ p◦ and Γ ∋ p to L through these
points (i.e., local holomorphic curves transverse to L). Then for q◦ = (λ◦, ζ) ∈ Γ◦

near p0, the leaf L(q0) intersects Γ transversely at a single point, so there is a
well defined local map h : (Γ◦, p◦) → (Γ, p) called the holonomy from Γ◦ to Γ.
The lamination F is called transversely (locally qc)/smooth/biholomorphic if all the
holonomy maps are such.12

Exercise 17.5. The holomorphic motion h is smooth/biholomorphic iff the
corresponding lamination F is transversely smooth/biholomorphic.

Lemma 17.6. Let h = (hλ) be a holomorphic motion of an open set U over
the disk (D, 0), and F be the corresponding holomorphic lamination. Then F is
transversely locally quasiconformal. Moreover, if Γ0 and Γ are local transversals
though points p0 = (0, z0), and p = (λ, z = hλ(z0)), then the dilatation Dil h(z0) of
the holonomy h : (Γ0, p0)→ (Γ, p) is bounded by Dilhλ(z0) (which in turn, depends
only on an upper bound r ∈ (0, 1) for |λ|).

Proof. If the transversals are vertical lines {0}×C and λ×C then the result
follows from the Second λ-Lemma.

Furthermore, the holonomy from the vertical line λ×C to the transversal Γ is
locally conformal at point p. To see this, let us select a holomorphic coordinates
(θ, z) near p in such a way that p = 0 and the leaf via p becomes the parameter
axis. Let z = ψ(θ) = ε + . . . parameterizes a nearby leaf of the foliation, while
θ = g(z) = bz + . . . parameterizes the transversal Γ.

12Notice that smoothness and holomorphicity are local properties, while quasiconformality
is not: that is why we need to say “locally qc” but not “locally smooth” or “locally biholomorphic”.
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Let us do the rescaling z = εζ, θ = εν. In these new coordinates, the above
leaf is parametrized by the function Ψ(ν) = ε−1ψ(εν), |ν| < R, where R is a fixed
parameter. Then Ψ′(ν) = ψ′(εν) and Ψ′′(ν) = εψ′′(εν). By the Cauchy Inequality,
Ψ′′(ν) = O(ε). Moreover, ψ uniformly goes to 0 as ψ(0) → 0. Hence |Ψ′(0)| =
|ψ′(0)| ≤ δ0(ε), where δ0(ε) → 0 as ε → 0. Thus Ψ′(ν) = δ0(ε) + O(ε) ≤ δ(ε) → 0
as ε → 0 uniformly for all |ν| < R. It follows that Ψ(ν) = 1 + O(δ(ε)) = 1 + o(1)
as ε→ 0.

On the other hand, the manifold Γ is parametrized in the rescaled coordinates
by a function ν = bζ(1+o(1)). Since the transverse intersection persists, S intersects
the leaf at the point (ν0, ζ0) = (1, b)(1 + o(1)) (so that R should be selected bigger
than ‖b‖). In the old coordinates the intersection point is (θ0, z0) = (ε, bε)(1+o(1)).

Thus the holonomy from λ × C to Γ transforms the disc of radius |ε| to an
ellipse with small eccentricity, which means that this holonomy is asymptotically
conformal. As the holonomy from {0} × C to Γ0 is also asymptotically conformal,
the conclusion follows. �

Corollary 17.7. Under the above circumstances, if Dilh ≤ K, then F is
transversely K-qc.

Again, the above discussion is valid over Banach balls, by restricting the motion
to one-dimensional complex disks:

Lemma 17.8. For any holomorphic motion h = (hλ) of an open set U over
a Banach ball B1, the corresponding lamination F is transversely locally quasicon-
formal, with the dilatation Dil h(z0) of the holonomy h : (Γ0, p0) → (Γ, p), where
p0 = (0, z0) ∈ Γ0, p = (λ, z = hλ(z0)) ∈ Γ, bounded by Dilhλ(z0) (which in turn,
depends only on the upper bound on |λ|). If Dilh ≤ K then F is transversely K-qc.

More generally, we can consider a holonomy on holomorphic curves that are
not necessarily transverse to the motion:

Lemma 17.9. Let T be a transversal to a holomorphic motion h of an open set,
while S be an arbitrary holomorphic curve in the domain of the motion. Then the
holonomy γ : S → T is locally quasiregular (with the same quantification as above).

Proof. It is locally K-qc at the points where S crosses F transversally, with
dilatation depending only to the hyperbolic distance of the corresponding parameter
to S. By removability of isolated singularities, it is locally quasiregular at the
tangency points. �

Quasiconformality is apparently the best regularity of holomorphic motions
which is satisfied automatically.

17.4.3. Lifts of holomorphic motions.

Lemma 17.10. Let hλ : V◦ → Vλ be a holomorphic motion of a domain V◦ ⊂ C

over a simply connected parameter domain Λ. Let fλ : Uλ → Vλ be a holomorphic
family of proper maps with critical points ckλ such that the critical values vkλ = fλ(c

k
λ)

form orbits of hλ.13 Then hλ uniquely lifts to a holomorphic motion Hλ : U◦ → Uλ
such that

(17.2) fλ ◦Hλ = hλ ◦ f◦.
13In particular, any holomorphic family of univalent maps fλ : Uλ → Vλ is allowed.
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Proof. Notice that (17.2) means that the lamination associated with the mo-
tion H is the pullback of the lamination associated with the motion h under the
map f (23.18). Clearly, such a pullback unique if exists.

Let us take any regular value ζ◦ = f◦(z◦) ∈ V◦, and let φ(λ) = hλ(ζ◦) be its
orbit. We would like to lift this orbit to a desired orbit of z◦, so we are looking for
a holomorphic solution z = ψ(λ) of an equation

(17.3) fλ(z) = φ(λ)

with ψ(z◦) = ζ◦. Since φ(λ) is a regular point of fλ for any λ ∈ Λ, the Implicit
Function Theorem implies that near any point (λ′, z′) satisfying (17.3), it admits
a unique local analytic solution z = ψ(λ). Since the maps fλ are proper, this
continuation along any path compactly contained in Λ cannot escape the domain
Uλ. Since Λ is simply connected, ψ(λ) extends to the whole domain Λ as a single
valued holomorphic function.

Two different orbits λ 7→ ψ(λ) obtained in this way do not collide, for (17.3)
would have two different solutions near the collision point. Hence they form a
holomorphic motion of V◦ r {vk

◦
} over Λ. By the First λ-lemma, this motion

extends to the whole domain V◦.
Finally,

fλ(Hλ(z◦)) = fλ(ψ(λ)) = φ(λ) = hλ(ζ◦) = hλ(f◦(z◦))

holds for any point z◦ ∈ U◦ except perhaps finitely many exceptions (preimages of
the critical values of f◦). By continuity, it holds for all z◦ ∈ U◦. �

17.4.4. Global transversal. A global transversal Γ to a holomorphic motion hλ :
X◦ → Xλ over Λ is the graph of a holomorphic function φ : Λ→ C that intersects
every leaf of the motion transversely at a single point. In fact, the transversality is
automatic under a mild assumption:

Lemma 17.11. Assume that the moving set Xλ has dense interior. If a holo-
morphic graph Γ intersects every leaf of h at a single point then the intersection is
transverse.

Lemma 17.12. Let U be a Jordan disk and let X ⊂ U . Let hλ : ∂U ∪ X →
∂Uλ ∪Xλ be a holomorphic motion of these sets over Λ. If Γ is a global transversal
to ∂horU then it is a global transversal to X.

Lemma 17.13. Let Uλ and Vλ be two Jordan disks holomorphically moving over
Λ. Let Fλ : Uλ → Vλ be a fibered conformal isomorphism between these disks. Let
δ : Λ→ C2 and γ : Λ→ C2 be two holomorphic curves such that F(γ) = δ. If γ is
a global transversal to ∂U then δ is a global transversal to ∂V.

17.5. Phase-Parameter Relation (without dynamics). :et γ : X → Γ
(where X ≡ X◦) be the holonomy along the leaves of the motion, and let π : Γ→ Λ
be the projection of Γ onto Λ. Their composition,

(17.4) χ : X → Λ, χ := π ◦ γ,
is a homeomorphism onto the image called the phase-parameter map. Since the
projection π is holomorphic, Corollary 17.7 implies:

Lemma 17.14. Let h be a holomorphic motion of a domain U ⊂ C over
Λ ⊂ C with Dilh ≤ K. Then for any global transversal Γ, the corresponding
phase-parameter map χ : U → Λ is K-qs.
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17.5.1. Holomorphic dependence of the Beltrami differential on λ.

Lemma 17.15. Let hλ : U → Uλ be a holomorphic motion of a domain U ⊂
C over a disk Λ ⊂ C. Then the Beltrami differential µλ = ∂̄hλ/∂hλ depends
holomorphically on λ (as an element of L∞(U)).

Proof. Let us take subdomains U ′ ⋐ U and Λ′ ⋐ Λ. Since the family of
functions λ 7→ hλ(z), z ∈ U ′, is normal, it is uniformly bounded over Λ′. Hence
the maps hλ : U ′ → C, λ ∈ Λ′, are uniformly bounded. Moreover, by the Second
λ-Lemma, they are uniformly K-qc. By (11.8), the L2(U ′)-norms of the partial
derivatives ∂hλ, ∂̄hλ, are uniformly bounded as well. Thus, the family of maps hλ,
λ ∈ Λ′, is bounded in the Sobolev space H2(U ′).

By Lemma 14.26, (hλ)λ∈Λ is a holomorphic curve in H2(U ′), and moreover,
the partial derivatives (∂hλ)λ∈Λ, (∂̄hλ)λ∈Λ, form holomorphic curves in L2(U ′).
By Lemma 14.25, the functions λ 7→ ∂hλ(z) and λ 7→ ∂̄hλ(z) are holomorphic over
Λ for a.e. z ∈ U . Hence so is the Beltrami differential µλ(z) = ∂̄hλ(z)/∂hλ(z).
Moreover, ‖µλ‖∞ < 1. By Lemma 14.23, µλ as an element of L∞(U) depends
holomorphically on λ. �

17.6. Further λ-lemmas. Let us say that an extension of a holomorphic
motion to some domain D ⊂ C is canonical if it behaves naturally under various
conformal representations of D.

Third λ-lemma (Canonical Extension). Let hλ : X → Xλ, λ ∈ B1, be a
holomorphic motion of some set X ⊂ C over a Banach ball B1. Then it admits a
canonical extension to a motion ĥλ : Ĉ→ Ĉ over B1/3.

This result is based upon quite advanced Teichmüller theory: it will be proved
(and used) in vol. III.

We say that an extension of a holomorphic motion over Λ s parameter global if
it is defined over the whole parameter domain Λ

Fourth λ-lemma (Parameter Global Extension). Let hλ : X → Xλ, λ ∈ D,
be a holomorphic motion of some set X ⊂ C over the disk D. Then it admits a
parameter global extension to a holomorphic motion ĥλ : Ĉ → Ĉ (over the same
disk D).

This result needs some preparation in Complex Analysis in Several Variables:
it will also be dealt with (and used) in vol. III.

18. Moduli and Teichmüller spaces of punctured spheres

18.1. Moduli spaces: preview. Consider some qc surface S (with or with-
out boundary, possibly marked or partially marked).

The moduli space M(S), or the deformation space of S is the space of all
conformal structures on S compatible with the underlying qc structure, up to the
action of qc homeomorphisms preserving the marked data. In other words, M(S)
is the space of all Riemann surfaces qc equivalent to S, up to conformal equivalence
relation (respecting the marked data).

If we fix a reference Riemann surface S0, then its deformations are represented
by qc homeomorphisms h : S0 → S to various Riemann surfaces S. Two such
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homeomorphisms h and h̃ represent the same point of the moduli space if there
exists a conformal isomorphism A : S → S̃ such that the composition

H = h̃−1 ◦A ◦ h : S0 → S0

respects all the marked data. In particular, H = id on the marked boundary. In
the case when the whole fundamental group is marked, H must be homotopic to
the id relative to the marked boundary.

For instance, if S has a finite conformal type, i.e., S is a Riemann surface of
genus g with n punctures (without marking), then M(S) is the classical moduli
space Mg,n. If S is fully marked thenM(S) is the classical Teichmüller space T g,n.
This space has a natural complex structure of complex dimension 3g − 3 + n for
g > 1. For g = 1 (the torus case), dimT 1,0 = 1 (see §2.6.3) and dimT 1,n = n for
n ≥ 1. For g = 0 (the sphere case), dimT 0,n = 0 for n ≤ 3 (by the Riemann-
Koebe Uniformization Theorem and 3-transitivity of the Möbius group action) and
dimT 0,n = n− 3 for n > 3.

Exercise 18.1. What is the complex modulus of the four punctured sphere?

There is a natural projection (forgetting the marking) from T g,n onto Mg,n.
The fibers of this projection are the orbits of the so called Teichmüller modular
group acting on T g,n (it generalizes the classical modular group PSL(2,Z), see
§2.6.3).

By the Riemann Mapping Theorem, the disk D does not have moduli. However,
if we mark its boundary T, then the space of moduli, M(D,T), becomes infinitely
dimensional! By definition, M(D,T) is the space of all Beltrami differentials µ on
D up to the action of the group of qc homeomorphisms h : D→ D whose boundary
restrictions are Möbius: h|T ∈ PSL(2,R). It is called the universal Teichmüller
space, since it contains all other deformation spaces. It plays an important role in
holomorphic dynamics.

18.2. Definitions. Let us consider the Riemann sphere with a tuple of n
marked points Z = (z1, . . . , zn) (or, equivalently, n punctures). The punctures
are considered to be “colored”, or, in other words, the set P is ordered. Two such
spheres (C,Z) and (C,Z ′) are considered to be equivalent if there is a Möbius
transformation φ : (C,Z) → (C,Z ′) (preserving the colors of the punctures, i.e.,
φ(zi) = z′i). The space of equivalence classes is called the moduli spaceMn.

If n ≤ 3 then the moduli space Mn is a single point. If n ≥ 4, we can place
the last three points to (0, 1,∞) by means of a Möbius transformation. With this
normalization (C,Z) ∼ (C,Z ′) if and only if Z = Z ′, and we see that

Mn = {z = (z1, . . . , zn−3) : zi 6= 0, 1; zi 6= zj}.
This shows that Mn an (n− 3)-dimensional complex manifold.

Let us fix some reference normalized tuple Z◦ = (a1, . . . an−3, 0, 1,∞). Then we
can also define Mn as the space of homeomorphisms h : (C,Z◦)→ C normalized
by h(0) = 0, h(1) = 1, up to equivalence: h ∼ h′ if h(Z◦) = h′(Z◦).

Let us now refine this equivalence relation by declaring that h ≃ h′ if h is
homotopic (or, equivalently, isotopic) to h′ rel Z◦, and let [h] stand for the cor-
responding equivalence classes. It inherits the quotient topology from the space
of homeomorphisms (endowed with the uniform topology). This quotient space is
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called the Teichmüller space Tn. Since the equivalence relation ≃ is obviously
stronger than ∼ we have a natural projection π : Tn →Mn.

18.3. Spiders. The homotopy class [h] can be visualized as the punctured
sphere marked with a “spider”. A spider S on the punctured sphere (C,Z) is a
family of disjoint paths σi in CrZ connecting zi to ∞, i = 1, . . . n− 1. We let [S]
be the class of isotopic spiders (rel Z).

Lemma 18.2. There is a natural one-to-one correspondence between points of
Tn and classes of isotopic spiders, (C,Z, [S]).

Proof. Let us fix a reference spider (C,Z◦,S◦). Then to each homeomorphism
h ∈ Tn we can associate a spider S = h(S◦). Isotopy ht rel Z◦ induces isotopy of
the corresponding spiders rel Z. Hence we obtain a map [h] 7→ [S].

Vice versa, let us have a spider (C,Z,S). Then there exists a homeomorphism
h : (C,Z◦,S◦) → (C,Z,S). If (C,Z,S ′) is an isotopic spider then the isotopy
St rel Z, 0 ≤ t ≤ 1, lifts to an isotopy ht rel Z0. Given any parameterizing
homeomorphism h′ : S◦ → S ′, we can isotopy h1 so that it will coincide with h′ on
S◦. Since two homeomorphisms of a topological disk coinciding on the boundary
are isotopic rel the boundary, we are done. �

18.4. Universal covering. The spiders can be labeled by tuples of n − 1
elements of the fundamental group π1(Cr Z) ≈ Fn−1 (where the latter stands for
the free group in n − 1 generators). Indeed, let us consider a bouquet of circles∨n−1
i=1 Ci in Ci r Z based at some point a ∈ C r Z and such that the circle Ci

surrounds zi but not the other points of Z. These circles oriented anti-clockwise
represent generators of the fundamental group π1(CrZ, a). Accordingly, any loop
in
∨
Ci is homotopic to a concatenation of the loops Ci and their inverse. Let us

select a proper arc γ∞ connecting a to ∞ in the complement of
∨
Ci, and n − 1

arcs γi in the punctured disks bounded by the Ci. Since
∨
Ci is a homotopy

retract for C r Z, any arc connecting zi to ∞ is homotopic to the concatenation
of the γi, a loop in

∨
Ci, and γ∞. Thus, any spider leg is labeled by an element of

π1(Cr Z, a).
Proposition 18.3. The natural projection π : Tn → Mn is the universal

covering over Mn.

Proof. Let us first show that π is a covering. Take some base tuple Z◦ =
(z◦1 , . . . z

◦
n−1) ∈ Mn, and consider a bouquet of circles Ci and the paths γ◦i , γ

◦
∞ in

C r Z as above. Consider a neighborhood U1 × · · · × Un−3 of Z◦ in Mn, where
the Ui are little round disks around z◦i fully surrounded by the circle Ci. Let us
connect any point zi ∈ Ui to z◦i with a straight interval. Concatenating them with
γ◦i , we obtain a path γi connecting zi to a and continuously depending on zi ∈ Ui.

Select now any element τ ∈ π(Cr Z, a).
�

18.5. Infinitesimal theory. A tangent vector to the moduli space Mn at
point z = (z1 . . . , zn−3, 0, 1,∞) can be represented as a tuple

v = (v(z1), . . . v(zn−3))

of tangent vectors to C at points zi. Since the natural projection Tn → Mn is a
covering, tangent vectors to Tn can be represented in the same way.
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Any such tuple of vectors admits an extension to a smooth vector field v van-
ishing at points (0, 1,∞) (such vector field will be called “normalized”). So, we can
view the tangent space toMn (and Tn) as the space Vect = Vect(Ĉ,Z) of smooth
normalized vector fields modulo equivalence relation: v ∼ w if v(zi) = w(zi),
i = i, . . . , n− 3.

With this in mind, we can give a nice description of the cotangent space to
Mn and Tn. Let us consider the space Q1 = Q1(Ĉ,Z) of integrable holomorphic
quadratic differentials q = q(z) dz2 on Ĉ with poles in Z. Such differentials must
have at most simple poles (at ∞ it amounts to q(z) = O(1/|z3|)).

Exercise 18.4. Show that this space Q1 of quadratic differentials has complex
dimension n− 3. Moreover, the map q 7→ (λ1, . . . , λn−3), where λi = Reszi q, is an
isomorphism between Q1 and Cn−3.

It turns out that it is not an accident that dimQ1 = dimMn.

Proposition 18.5. The space Q1(ĈrZ) of quadratic differentials is naturally
identified with the cotangent space to Mn (and Tn). The pairing between a cotan-
gent vector q ∈ Q1(Ĉ r Z) and a tangent vector v ∈ Vect(Ĉ,Z) is given by the
formula:

(18.1) < q, v >= − 1

π

∫ ∫
q ∂̄v =

n−3∑

i=1

λivi,

where vi = v(zi), λi = Reszi q.

Proof. Let us first note that this pairing is well defined. Indeed, as we saw in
§2.11, ∂̄v is a Beltrami differential, and the product q ∂̄v as a conformal Riemannian
metric that can be identified with its area form

q ∂̄v ∼ i

2
q(z) ∂̄v(z) dz ∧ dz̄.

Moreover, this area form is integrable since q is integrable and ∂̄v is bounded.
Let us calculate the integral. Since q is holomorphic, we have14:

q ∂z̄v dz ∧ dz̄ = ∂z̄(q v) dz ∧ dz̄ = −∂̄(q v dz) = −d(q v dz).
Let γε(zi) be the ε-circles centered at finite points of Z, i = 1, . . . , n−1, and let

Γε be the ε−1-circle centered at 0 (where all the circles are anti-clockwise oriented),
and let Dε be the domain of C bounded by these circles. Then by the Stokes
formula

− 1

2πi

∫ ∫

Dε

d(q vdz) =
1

2πi

∑∫

γε(zi)

q v dz − 1

2πi

∫

Γε

q v dz.

But near any zi ∈ C we have:

q v =
λiv(zi)

z − zi
+O(1).

Hence
1

2πi

∫

γε(zi)

q v dz → λiv(zi) as ε→ 0.

14In this calculation ∂ and ∂̄ are interpreted as external derivatives rather than their tensor
counterparts
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Note that these integrals asymptotically vanish at zn−2 = 0 and zn−1 = 1 since v
vanishes at these points. The integral over Γε asymptotically vanishes as well since
q(z) = O(|z|−3) while v(z) = o(|z|2) near ∞ (as the vector field v/dz vanishes at
∞).

Finally, we obtain:

1

2πi

∫ ∫
q ∂z̄v dz ∧ dz̄ =

n−3∑

i=1

λiv(zi)

So, the pairing (18.1) depends only on the values of v at the points z1, . . . , zn−3,
and hence defines a functional on tangent space TMn. This gives an isomorphism
between Q1 and the cotangent space T∗Mn since (λ1, . . . , λn−3) are global coordi-
nates on the both spaces (see Exercise 18.4). �

18.6. Teichmüller metric. Let us endow the space Q1(Ĉ rZ) with the L1-
norm:

‖q‖1 =

∫
|q|,

and the dual space Vect(Ĉ,Z) with the dual norm:

‖v‖T = inf ‖∂̄v‖∞,
where the infimum is taken over all smooth vector fields v with v(zi) = vi, i =
1, . . . , n− 3, that vanish at 0, 1 and ∞.

Exercise 18.6. Check that the above two metrics are dual in the usual sense:

‖q‖1 = sup
‖v‖=1

| < q, v > |.

Recall that a Finsler metric on a manifold X is a continuous family of norms
‖v‖x on the tangent spaces TxX (where continuity means that the function (x, v) 7→
‖v‖x is continuous on the tangent bundle). Equivalently, it is a continuous family
of norms on the cotangent bundle.

Given a Finsler metric, we can measure the length of rectifiable paths:

l(γ) =

∫

γ

‖ ·γ(t)‖ dt,

which induces the Finsler distance on X:

dist(x, y) = inf
γ
l(γ),

where the infimum is taken over all rectifiable curves γ connecting x to y.

Exercise 18.7. Show that the above norms on Q1 and Vect endow Tn (and
Mn) with a Finsler metric (i.e., check continuity).

Obviously, the projection π : Tn →Mn is a local isometry with respect to the
corresponding Finsler metrics.

The Teichmüller metric on Tn is defined as follows. Let us consider two marked
Riemann surfaces h : (S2,P) → (Ĉ,Z) and h′ : (S2,P) → (Ĉ,Z ′) representing
points τ = [h] and τ ′ = [h′] of Tn. Then

dist(τ, τ ′) = inf
φ

log Dilφ,

where φ runs over all qc maps (Ĉ,Z)→ (Ĉ,Z ′) such that h′ ≃ φ ◦ h.
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Exercise 18.8. Check that this is a metric.

Theorem 18.9. The above Finsler metric on Tn coincides with the Teichmüller
metric.

18.7. Compactness in Mn.

Lemma 18.10. A subset K ⊂ Mn is precompact if and only if there exists an
ε > 0 such that for any (Ĉ,Z) ∈ K the marked points zi ∈ Ĉ are ε-separated in the
spherical metric.

Proof. The space Ĉn is a natural compactification of Mn: a point z =
(z1, . . . , zn) ∈ Ĉn) belongs to Mn if and only if zi 6= zj for any i 6= j. For any
sequence (zk) in Mn we can take a limit in Ĉn. This limit belongs to Mn if and
only if the coordinates of the zk are ε-separated for some ε > 0. �

A topological annulus A ⊂ S2 r Z is called trivial/peripheral if so are its
horizontal curves (see §1.7.10).

It is important to formulate the above compactness criterion in the conformally
invariant/hyperbolic terms:

Lemma 18.11. A subset K ⊂ Mn is precompact if and only if one of the
following equivalent properties hold:

• There exists µ > 0 such that modA ≤ µ for any non-peripheral annulus A ⊂
Ĉ r Z;

• There exists δ > 0 such that lhyp(γ) ≥ δ for any closed hyperbolic geodesic in
Ĉ r Z.

18.8. Appendix 1: General Teichmüller spaces.
18.8.1. Marked Riemann surfaces. The previous discussion admits an exten-

sion to an arbitrary qc class QC of Riemann surfaces that we will outline in this
section. Take some base Riemann surface S0 ∈ QC (without boundary), and let
S0 be the ideal boundary compactification of S0. Given another Riemann surface
S ∈ QC (with compactification S), a marking of S is a choice of a qc homeomor-
phism φ : S0 → S (parametrization by S0) up to the following equivalence relation.
Two parametrized surfaces (S, φ) and (S′, φ′) are equivalent if there is a conformal
isomorphism h : S → S′ that makes the following diagram homotopically com-
mutative rel the ideal boundary (i.e., there is a qc homeomorphism φ̃ : S0 → S

homotopic to φ rel ∂S0 such that h ◦ φ̃ = φ′). A marked Riemann surfaces is
an equivalence class τ = [S, φ] of this relation. The space of all marked Riemann
surfaces is called the Teichmüller space T (S0).

Remark 18.12. Fixing a set ∆0 of generators of π1(S0) and parametrizations
of the boundary components of ∂S0 by the standard circle T, we naturally endow
any marked Riemann surface [S, φ] with a set of generators of π1(S) (up to an inner
automorphism of π1(S)) and with a parametrization of the components ∂S by T.
Thus, we obtain a marked surface in the sense of §1.7.15.
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18.8.2. Representation variety. Let us now uniformize the base Riemann sur-
face S0 by a Fuchsian group Γ0. The (Fuchsian) representation variety Rep(Γ0)
is the space of faithful15 Fuchsian representations i : Γ0 → PSL(2,R) up to con-
jugacy in PSL(2,R) endowed with the algebraic topology. In this topology in → i
if after a possible replacement of the in with conjugate representations, we have:
in(γ)→ i(γ) for any γ ∈ Γ0.

Lemma 18.13. There is a natural embedding e : T (S0)→ Rep(S0).

Proof. Let φ : S0 → S be a qc parametrization of some Riemann surface S ∈
QC, and let Γ be a Fuchsian group uniformizing S. Then φ lifts to an equivariant
qc homeomorphism Φ : (H,Γ0) → (H,Γ), so there is an isomorphism i : Γ0 → Γ
such that Φ ◦ γ0 = γ ◦ Φ for any γ0 ∈ Γ0 and γ = i(γ0).

If we replace Φ with another lift T ◦ Φ, where T ∈ Γ, then i will be replaced
with a conjugate representation γ0 7→ T−1 ◦ i(γ0) ◦ T .

If we replace φ with a homotopic parametrization φ̃ : S0 → S then the induced
representation Γ0 → Γ will not change. Indeed, a homotopy φt connecting φ to φ̃
lifts to an equivariant homotopy Φt : (H,Γ0)→ (H,Γ) inducing a path of represen-
tations it : Γ0 → Γ. Then for any γ0 ∈ Γ0, the image it(γ0) ∈ Γ moves continuously
with t. Since Γ is discrete, it(γ) cannot move at all.

If we further replace φ̃ with h◦ φ̃, where h : S → S′ is a conformal isomorphism
then the representation i : Γ0 → Γ will be replaced with a conjugate by T : H→ H

where T ∈ PSL(2,R) is a lift of h.
Thus, we obtain a well defined map e : T (S0) → Rep(S0) that associates to

a marked surface [S, φ] the induced representation i : Γ0 → Γ up to conjugacy in
PSL(2,R).

Let us now show that e is injective. Let φ : S0 → S and φ′ : S0 → S′ be two
parametrizations whose lifts Φ and Φ′ to H induce two representations i and i′ of Γ0

that are conjugate by T ∈ PSL(2,R). Then Φ and Ψ = T−1 ◦Φ are two equivariant
homeomorphisms (H,Γ0)→ (H,Γ) that induce the same representation i : Γ0 → Γ.
We need to show that they are equivariantly homotopic.

To this end let us consider the following diagram encoding equivariance of Φ
and Ψ:

Let δ(x) be the hyperbolic geodesic connecting Φ(x) to Ψ(x). Since γ is a
hyperbolic isometry, it isometrically maps δ(x) to δ(γ0x). Let t 7→ Φt(x) be a
uniform motion along δ(x) from Φ(x) to Ψ(x) with such a speed that at time t = 1
we reach the destination (in other words, Φt(x) is the point on δ(x) on hyperbolic
distance t disthyp(Φ(x),Ψ(x)) from Φ(x)). Then γ(Φtx) = Φt(γ0x), and we obtain
a desired equivariant homotopy. �

18.8.3. Teichmüller metric. Let us endow the space T (S0) with the following
Teichmüller metric. Given two marked surfaces τ = [S, φ] and τ ′ = [S′, φ′], we let
distT(τ, τ

′) be the infimum of dilatations of qc maps h : S → S′ that make the
above diagram homotopically commutative.

Lemma 18.14. distT is a metric.

Proof. Triangle inequality for distT follows from submultiplicativity of the
dilatation under composition. So, distT is a pseudo-metric. Let us show that it

15i.e., injective
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is a metric, Indeed, if distT(τ, τ
′) = 0 then there exists a sequence hn : S → S′

of qc maps in the right homotopy class with Dil(hn) → 0. Let Hn : H → H be
the lifts of the hn that induce the same isomorphism between Γ and Γ′. Then the
Hn is a sequence of qc maps with uniformly bounded dilatation whose extensions
to R = ∂H all coincide. Now Compactness Theorem 13.2 implies that the Hn

uniformly converge to an equivariant conformal isomorphism T : (H,Γ0)→ (H,Γ).
It descends to a conformal isomorphism h : S → S′ in the same homotopy class as
the hn. �

Exercise 18.15. Show that the embedding e : T (S0)→ Rep(Γ0) is continuous.
(from the Teichmüller metric to the algebraic topology).

Notes

The local version of the “MRMT” goes back to Gauss who proved that any
real analytic metric can be locally brought to a conformal form ρ(z)|dz|2 thus,
solving the “Beltrami equation” with an analytic coefficient). Once the Uniformiza-
tion Theorem becomes available, the global version follows (with the corresponding
regularity of the metric.)

Apparently, the theory of quasiconformal maps originated in the work on car-
tography by Tissot in mid XIXth century: see a historical account in [Pap]. The
official birth is usually associated with Gröztsch’s 1928 paper [Gr], where the ex-
tremal problem for rectangle diffeomorphisms was considered (making one of the
first applications of the length-area method). Probably, the Koebe Distortion The-
orem played a motivating role in this story.16 Gröztsch developed this circle of ideas
through the early 1930s. It was further advanced in the work of Teichmüller around
1940 who connected extremal maps on Riemann surfaces to quadratic differentials.
(See [Ku] for more comments on this early history.)

In 1935, the notion of quasiconformality was rediscovered by Lavrentiev (al-
ready for homeomorphisms) who proved solvability of the Beltrami equation with a
continuous coefficient. In 1938, Morrey proved the measurable version. (Lavrentiev
was motivated by the geometric problem of bringing Riemannian metrics to a con-
formal form, while Morrey’s interest came from the PDE side). Lavrentiev called
these maps “pseudo-analytic”; the name “quasiconformal” was given by Ahlfors [A4]
(p. 185).

However, a systematic development of the theory (under proper regularity as-
sumptions) was undertaken only after the war, by Lavrentiev, Bers and Nierenberg,
Vekua and Bojarski, Ahlfors and Bers, Volkovyskii, Belinskii and Pesin, Strebel,
Pfluger and Mori, followed by many others.

Let us mention, in particular, the following contributions:17

Definition of quasiconformality in terms of the uniform bound on the upper circular
dilatation was introduced by Lavrentiev [Lav]. This class of maps was systemati-
cally studied by I.N. Pesin [Pes] who proved that the absolutely continuity property,
as well as compactness of the space of K-qc maps. The quasisymmetry property

16Gröztsch was a student of Koebe.
17Unfortunately, the history of the theory of qc maps, though quite recent, is not readily

decipherable. The author has browsed through the literature of those days in a non-systematic
way, so some important contributions (and causality relations between them) can certainly be
overlooked.
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also appeared in [Pes] with attribution to Belinskii. It is also mentioned that such
maps are absolutely continuous on lines, with a reference to Menshov (1937).

With this regularity in hands, the Grötzsch method implies the quasi-invariance
of moduli. Mori’s paper [Mori, Lemma 4] closes up the loop by showing that
the quasi-invariance of moduli implies local quasisymmetry (and hence a uniform
bound on the upper circular dilatation).

As far as we can tell, distributional derivative were introduced into the subject
by Vekua [Ve1].

The Ahlfors-Beurling criterion appeared in [ABeu].
As we have already mentioned, the local version of the MRMT is due to Morrey

[Mor]. A global approach via integral representations was developed by Vekua
[Ve2] and Bojarski [Bo]. It was further explored by Ahlfors and Bers [AB] (see
also [A2]), with the emphasis on the parameter dependence, who followed up with
numerous deep applications to Teichmüller theory and theory of Kleinian groups.
Various contemporary views appeared in [DB, IM]. We have taken as qualitative
path as we could get, making a minimalistic use of integral representations.

The idea of the Moduli spaces of Riemann surfaces goes back to Riemann.
The idea of marked surfaces leading to “Teichmüller spaces” is usually attributed
to Teichmüller, though apparently it had appeared already in Fricke’s work early
in the of the 20th century. (In fact, sometimes the spaces are called Fricke, see
[Ab]).

As we have mentioned above, quasiconformal maps found deep applications in
the work of Ahlfors and Bers (in the 1960-70’s) to the theory of Kleinian groups
(with a feedback to the qc theory). In particular, qc welding appeared in [Bers1]
in this context.

Quasiconformal maps attained even greater prominence in the work of Mostow
(late 1960s), Thurston, and Sullivan in the 1970s, relating them in a deep way to
Hyperbolic Geometry and Ergodic Theory. They were introduced to Holomorphic
Dynamics by Sullivan in the early 1980s, and have become an indispensable tool in
this field ever since.

The First λ-Lemma (extension to the closure) appeared in [L7] and [MSS] in
the dynamics context. The Second λ-Lemma (quasiconformality) is due to Mañé-
Sad-Sullivan [MSS]. The Third λ-Lemma (the canonical extension) is due to Bers
and Royden [BR]. Independently, existence of some extension to the whole sphere
over some ball Br (of a universal radius r ∈ (0, 1)) was proved by Sullivan and
Thurston [STh]. The Fourth λ-Lemma was proved by Slodkovski [Sl], based on
the Forstenri

v
c machinery [For]

The first text book on the basic theory of qc maps was written by Volkovysski
[V] (who applied them to the type problem for Riemann surfaces). It followed
with many more, in Russian and English, see [A2, Bel, Kr, LV], with the book
by Ahlfors remaining the most popular source. Among more recent sources let us
mention [GaL, He], where the former focuses on applications to the Teichmüller
theory, while the latter develops a contemporary general theory of quasisymmetric
maps on metric spaces.

Quasiconformal maps remain an active area of research, with many important
applications. In the upcoming volumes, we will encounter them frequently.
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Complex and real quadratic family



19. Glossary of Dynamics

This glossary collects some basic notions, examples and results of Ergodic The-
ory and Dynamics. In particular, we give a nearly complete account of the theory of
expanding circle maps that serves as a good prototype for many dynamical themes.

19.1. Orbits and invariant sets. Consider a continuous endomorphism f :
X → X of a topological space X. The n-fold iterate of f is denoted by fn, n ∈ N. A
topological dynamical system (with discrete positive time) is the N-action generated
by f , n 7→ fn. The orbit or trajectory of a point x ∈ X is orbx = {fnx}n∈N. (We
often let xn ≡ fnx, zn ≡ fnz, etc.) The subject of Topological Dynamics is to
study qualitative behavior of orbits of a topological dynamical system.

Here is the simplest possible behavior: a point α is called fixed if fα = α. More
generally, a point α is called periodic if it has a finite orbit, i.e., there exists a p ∈ Z+

such that fpα = α. Any such moment p is called a period of α, but we will reserve
this term for the minimal period , unless otherwise is explicitly assumed. The orbit
of α (consisting of p permuted points) is naturally called a periodic orbit or a cycle
(of period p). We will write periodic orbits in bold: α = orbα, β = orbβ, etc. The
sets of fixed and periodic points are denoted Fix(f) and Per(f) respectively.

Exercise 19.1. Count the number of periodic points of minimal period p in
terms of the numbers |Fix(fn)|.

A point α is called preperiodic if fnα is periodic for some n > 0 (but α itself is
not periodic). The minimal such n is called the preperiod of α.

A subset Z ⊂ X is called (forward) invariant under f if f(Z) ⊂ Z (or equiv-
alently, f−1(Z) ⊃ Z). It is called backward invariant if f−1(Z) ⊂ Z. If Z is
simultaneously forward and backward invariant (so that f−1(Z) = Z), it is called
completely invariant.

A set Z is called wandering if fnZ ∩ fmZ = ∅ for any n > m ≥ 0. It is called
weakly wandering18 if f−n(Z) ∩ Z = ∅ for any n > 0.

Exercise 19.2. Show that wandering sets are weakly wandering but not the
other way around (in general). Show that Z is weakly wandering if and only if
either of the following properties is satisfies:

• f−n(Z) ∩ f−m(Z) = ∅ for any n > m ≥ 0;
• No point z ∈ Z returns back to Z under iterates of f .

Topologically, the asymptotical behavior of an orbit can be studied in terms of
its limit set. The ω-limit set ω(x) of a point x is the set of all accumulation points
of orb(x). We say that the orbit of x converges to a cycle α if ω(x) = α.

A point x is called recurrent if ω(x) ∋ x. Existence of non-periodic recurrent
points is a feature of non-trivial dynamics.

A backward orbit of a point x is a sequence of points (x−n)n∈N such that x0 = x
and f(x−n−1) = x−n for all n ∈ N.

Exercise 19.3. If X is compact that the limit set for any forward or backward
orbit is a non-empty compact invariant subset O of X, and the restriction f | O is
surjective .

18Actually, in the literature these sets are usually called “wandering” as well.
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The sets

Orb−(x) :=
⋃

n≥0
f−n(x), Orb(x) :=

⋃

m≥0
Orb−(f

mx) ≡ Orb−(orbx)

are called respectively the grand backward orbit and the grand orbit of a point x.
The latter is an equivalence class of the following equivalence relation:

x ∼ y if fnx = fmy for some m,n ∈ N.

Note that the usual forward orbits orbx are not classes of any equivalence relation.
In fact, the grand orbits relation is the minimal one generated by the forward orbits.

There is a smaller equivalence relation

z ∼ ζ if fnz = fnζ for some n ∈ N.

These equivalence classes will be called petit orbits19 of f .

Given a connected set U and a point x such that fnx ∈ intU for some n ≥ 0,
let V be the connected component of f−nU containing x. It is called i the pullback
of U (along the n-orbit of x).

A point x is called Lyapunov stable if the orbits of nearby points stay close to
orbx, i.e.,

∀ε > 0 ∃δ > 0 such that d(x, y) < δ =⇒ d(fnx, fny) < ε, n = 0, 1, 2, . . .

This notion is particularly useful in the case when x is fixed or periodic.

19.2. Return map and its relatives. Let Y ⊂ X. The first return map
to Y is a partially defined map R ≡ RY : Y → Y such that Rx = fnx, where
n = n(x) > 0 is the first positive moment such that fnx ∈ Y (if exists). Such n(x)
is called the first return time.

Similarly, the first landing map to Y is a partially defined map L ≡ LY : X → Y
such that Lx = fnx, where n = n(x) ≥ 0 is the first non-negative moment such
that fnx ∈ Y . Such n(x) is called the first landing time. Note that L |Y = id and
R = L ◦ f |Y .

The first return map to X r Y is also called the transit map through Y ,

T ≡ TY := RXrY , fx = fnx,

where n = n(x) is called the first transit time of x ∈ X r Y through Y .
Each of these maps is usually discontinuous.20

19.3. Topological transitivity and related notions. A map f : X → X
is called topologically transitive if it has a dense orbit.

In case of a complete metric space X (in particular, for a compact metrizable
space with an arbitrary metric) a property of a point x ∈ X is called generic if it is
satisfied on the countable intersection of dense open sets. By the Baire Theorem,
the complementary set is nowhere dense.

Exercise 19.4. Assume X is a complete metric space.
(i) Show that topological transitivity is equivalent to the following property: for any
open sets U and V , there exists an n ∈ N such that f−n(U) ∩ V 6= ∅.
(ii) If f is topologically transitive then the orbit of a generic point x ∈ X is dense.

19Usually they are called small orbits but we reserve this term for another purpose.
20To make these maps better, we will sometimes slightly modify the definitions (see §31.2),

but this will always be explicitly pointed out.
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A map f : X → X is called minimal if all its orbits are dense.

Exercise 19.5. (i) If f is minimal then the first landing times to any neigh-
borhood U are bounded (of course, with a bound depending on U).

(ii) Vice versa, assume f is topologically transitive, and let x ∈ X be a point with
dense orbit. If the first landing times to any neighborhood U ∋ x are bounded (for
points that land in U), then f is minimal.

A map f is called topologically mixing if for any open sets U and V , there
exists an N ∈ N such that f−n(U)∩V 6= ∅ for all n ≥ N . It follows from the above
Exercise that mixing is stronger than transitivity. An even stronger property is
topological exactness asserting that for any open set U , there exists an n ∈ N such
that fn(U) = X. (Of course, this property makes sense only for endomorphisms.)
This property is also called leo (“locally eventually onto”).

19.4. Equivariant maps. Two dynamical systems f : X → X and g : Y →
Y are called topologically conjugate (or topologically equivalent) if there exists a
homeomorphism h : X → Y such that h ◦ f = g ◦h, i.e., the following commutative
diagram is valid:

X −→
f

X

h ↓ ↓ h

Y −→
g

Y

Classes of topologically equivalent dynamical systems (within an a priori spec-
ified family) are called topological classes. If X and Y are endowed with an extra
structure (e.g., smooth, conformal, quasiconformal etc.) respected by h, then f
and g are called smoothly/conformally/quasiconformally conjugate (or equivalent).
The corresponding equivalence classes are called smooth/conformal/quasiconformal
classes.

Topological conjugacies respect all properties which can be formulated in terms
of topological dynamics: orbits go to orbits, cycles go to cycles of the same period,
ω-limit sets go to the corresponding ω-limit sets, converging orbits go to converging
orbits, etc.

A homeomorphism h : X → X commuting with a dynamical system f : X → X
(i.e., conjugating f to itself) is called an automorphism of f .

A continuous map which makes the above diagram commutative is called equi-
variant (with respect to the actions of f and g). A surjective equivariant map is
called a semi-conjugacy between f and g. In this case g is also called a quotient of
f .

It will be convenient to extend the above terminology to partially defined maps.
Let f and g be partially defined maps on the spaces X and Y respectively (i.e., f
maps its domain Dom(f) ⊂ X to X, and similarly does g). Let A ⊂ X. A map
h : A → Y is called equivariant (with respect to the actions of f and g) if for any
x ∈ A ∩ Dom(f) such that fx ∈ A we have: hx ∈ Dom(g) and h(fx) = g(hx).
(Briefly speaking, “the equivariance is satisfied whenever it makes sense”.)

19.5. Multipliers. Let f : (M,α) → (M,α) be a local smooth map of a
manifold fixing a point α.. The eigenvalues of the differential Df(α) (calculated in
any local chart near α) are called the multipliers ρk of α. A basic observation is
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that the multipliers remain invariant under smooth conjugacies, and in particular,
are independent of the choice of a local chart near α:

Proposition 19.6. If two local diffeomorphisms21 f : (M,α) → (M,α) and
f̃ : (M̃, α̃)→ (M̃, α̃) are conjugate by a local homeomorphism h : (M,α)→ (M̃, α̃)
which is differentiable at α, then they have the same multipliers.

Proof. By the Chain Rule, the differentials Df(α) and Df̃(α̃) are conjugate
by the differential Dh(α). �

More generally, the multipliers of a periodic point α of minimal period p (and
of its cycle α) are defined as the multipliers of α as a fixed point for fp. By
the previous statement, they remain invariant under conjugacies differentiable at
α. Moreover, by the Chain Rule, we can calculate them as the eigenvalues of the
matrix product

Dfp(α) =

p−1∏

k=0

Df(αk), αk = fkα,

where the differentials are calculated at any local charts near the αk. (Note that
this formula shows that the multipliers ρ(α) are independent of the choice of a
periodic point αk within the cycle α.)

In the case of a local holomorphic map f : (M,α)→ (M,α), the multipliers of
α are defined as the complex eigenvalues, so there are only n (rather than 2n) of
them. They remain invariant under biholomorphic conjuagacies, and in particular,
are independent of the choice of a holomorphic local chart.

This definition extends naturally to the case of periodic points.

19.6. Elements of Ergodic Theory.

19.6.1. Space of probability measures. Let X be a compact space. The space of
Borel measures on X is endowed with the weak topoology (w∗), see §13.7.2. Recall
that convergence µn → µ in this topology means that∫

φ dµn →
∫
φ dµ as n→∞

for any continuous function φ ∈ C(X). Equivalently

µn(D)→ µ(D) for any domain D with µ(∂D) = 0.

(It is sufficient to check this for a basis of topology, e.g. for a suitable family of
balls.)

Let M(X) be the subspace of probabilty measures on X. It is a convex compact
space.

Any continuous map f : X → X induces the push-forward operator f∗ : M →
M that can be defined in two equivalent ways:

(f∗µ)(Y ) = µ(f−1(Y )) for any measurable subset Y ⊂ X
or ∫

φ d(f∗µ) =
∫
φ ◦ f dµ for any continuous function φ ∈ C(X).

Exercise 19.7. Assume that f : X → X is a homeomorphism, and let ρ ∈
L1(µ). Then f∗(ρ dµ) = (ρ ◦ f−1) dµ.

21In fact, it is enough to assume differentiability at the marked fixed points only.
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19.6.2. Invariant measures: averaging and equidistribution. A measure µ ∈
M(X) is called invariant if f∗µ = µ, i.e.,

∫
φ ◦ f dµ =

∫
φ dµ

for any continuous function φ ∈ C(X). Equivalently, for any measurable set Y ⊂ X,
we have µ(f−1(Y )) = µ(Y ).

The simplest example of an invariant measure is the δ-measure δα supported
on a fixed point α. More generally, one can consider a measure

δα =
1

p

p−1∑

k=0

δfkα

equidistributed over a periodic cycle α = {fkα}p−1k=0.

Exercise 19.8. Show that if δα is an atom of an invariant measure µ (i.e.,
µ({α}) > 0) then α is a periodic point.

We say that an orbit of x is equidistributed with respect to µ if

1

n

n−1∑

k=0

δfkx → µ as n→∞

in the space M(X). In other words,

1

n

n−1∑

k=0

φ(fkx)→
∫
φ dµ as n→∞

for any continuous function φ ∈ C(X). Equivalently, for any open subset D ⊂ X
with µ(D) = 0, the orbit of x visits D with asymptotic frequency equal to µ(D).

Under these circumstances, we also say that the orbit of x is governed by µ.

Bogolyubov-Krylov Theorem. Any continuous map f : X → X on a
compact space X has an invariant probability measure.

Proof. It can be constructed by an averaging procedure. Namely, start with
an arbitrary probability measure m and consider its ergodic averages

(19.1) mn =
1

n

n−1∑

k=0

fk∗m.

Since the space M(X) is compact, we can select a converging subsequence mn(i) →
µ, which is a desired invariant measure, since

f∗mn −mn =
1

n
(fn∗m−m)→ 0 as n→∞.

�

Non-atomic invariant measures immediately create an interesting dynamics:

Poincaré Recurrence Theorem. For any finite invariant measure µ, al-
most all points are recurrent.
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Proof. It follows from a stronger assertion that for any measurable set Y ,
almost all points x ∈ Y return to Y . Indeed, let Z ⊂ Y be the set of points that
never return to Y . This set is weakly wandering, hence the full preimages f−n(Z),
n = 0, 1, . . . , are pairwise disjoint. Since µ is invariant, all these preimages have
the same measure m. Since µ is finite, m = 0. �

A measure µ is called ergodic if for any any measurable decomposition X =
Y1 ⊔ Y2 into two invariant sets, either µ(Y1) = 0 or µ(Y2) = 0.22 Equivalently, any
completely invariant measurable subset Y ⊂ X has either zero or full measure.

Exercise 19.9. Non-ergodicity of a measure µ is equivalent to the existence of
an invariant function φ ∈ L1(µ) (i.e., φ ◦ f = φ µ-a.e.)

The following fundamental result asserts that an ergodic measure µ governs
behavior of µ-almost all orbits:

Birkhoff Ergodic Theorem. For any ergodic invariant probability measure
µ, almost all orbits are equidistributed with respect to µ.

In other words, µ-typical points are equidistributed with respect to an invariant
measure µ. In fact, the equidistribution property is often used as a definition of a
typical point for µ.

Exercise 19.10. Show that for any ergodic invariant probability measure µ and
any function φ ∈ L1(µ), we have

1

n

n−1∑

k=0

φ(fkx)→
∫
φ dµ as n→∞

for µ-a.e. x.

In particular, if we take φ = χY to be the characteristic function of some
measurable set Y then µ-almost all orbits visit Y with the asymptotic frequency
equal to µ(Y ).

Proposition 19.11. Two different ergodic invariant probability measures (for
the same transformation) are mutually singular.

Proof. Let us first show that if µ ∈ Mf (X) is ergodic and ν is absolutely
continuous with respect to µ then ν = µ. Indeed, such measures share a typical
point x, and both of them can be recovered from this point by taking the limit of
its Birkhoff averages.

Exercise 19.12. Justify the above assertion in the case of invertible f without
using the Ergodic Theorem.

In general, let ν = νa + νs be the decomposition of ν into the absolutely con-
tinuous and singular parts with respect to µ. If both of them are not vanishing
then their measurable supports23 can be selected to be invariant and disjoint, con-
tradicting ergodicity of ν.

Exercise 19.13. Justify this assertion. Show that both components νa and νs
are invariant measures.

22Note that this definition makes sense for non-invariant measures, too.
23A measurable support is any measurable set of full measure.
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Hence ν is either absolutely continuous or singular with respect to µ. But in
the former case, ν = µ, as we have shown above. The conclusion follows. �

Let Mf (X) stand for the space of f -invariant probability measures. It is a
non-empty convex compact subset of M(X).

Exercise 19.14. Show that ergodic measures can be characterized as extreme
points of Mf (X). (Recall that µ is extreme if it cannot be represented as a convex
combination of two other measures.)

As extreme points exist by the Krein-Milman Theorem, we conclude:

Corollary 19.15. Any continuous map f : X → X on a compact space has
an ergodic invariant measure.

By the Choquet Theorem, for any invariant measure µ there is a probability
distribution dP on the space of extreme points such that

µ =

∫
ν dP (ν).

This representation is called the ergodic decomposition of µ. In the case when dP
is supported on a finite or countable set of measures, it assumes a simple form

µ =
∑

piνi,
∑

pi = 1, pi > 0

where the νi are mutually singular ergodic measures, called the ergodic components
of µ. The meaning of a continuous ergodic decomposition is less obvious. A sug-
gestive example is provided by a skew map of the cylinder (endowed with the flat
area):

f : T× I → T× I, (x, y) 7→ (x+ y, y)

decomposed a.e. into ergodic circle rotations (corresponding to irrational y).
See §... for more comments on this notion.

19.6.3. Unique ergodicity. A map f is called uniquely ergodic if it has a unique
(Borel probability) invariant measure µ. It amounts to the following Uniform Er-
godic Theorem:

Exercise 19.16. A measure µ is a unique invariant measure for f : X → X
(where X is compact) iff for any continuous function φ ∈ C(X) we have

1

n

n−1∑

k=0

φ ◦ fk →
∫
φ dµ as n→∞

uniformly on X.

19.6.4. Mixing. An invariant measure µ is called mixing if for any measurable
sets Y and Z we have:

µ(f−n(Y ) ∩ Z)→ µ(Y ) · µ(Z) as n→∞.
Exercise 19.17. Show that mixing is equivalent to the following property: For

any continuous functions φ and ψ we have∫
(φ ◦ fn) · ψ dµ→

∫
φ dµ

∫
ψ dµ.

This also holds for any integrable φ and ψ.

Obviously, mixing implies ergodicity.
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19.6.5. Quasi-invariant measures and acim’s. In Dynamics, one often encoun-
ters the following situation: there is a natural geometric or physical measure m
(e.g., Lebesgue or Hausdorff) that provides a meaningful sense of typicality, so it
is interesting to understand the behavior of m-typical orbits. Here we supply a
conceptual frame for this discussion.

A measure m is called quasi-invariant if f∗m ∼ Lm (i.e., these two measures
are in the same measure class). In other words, for any measurable set Y , we have

m(Y ) = 0⇐⇒ m(f−1(Y )) = 0.

Ergodicity of a quasi-invariant measure is defined exactly as above (in terms of
indecomposibility). (Equivalently, there are no non-constant measurable functions
φ : X → R invariant under f , i.e., such that φ ◦ f = φ.) However, it does not imply
equidistribution of m-typical orbits. To address this problem, one can try to find
an (ergodic) invariant measure µ which is absolutely continuous with respect to m
(abbreviated acim). By the Birkhoff Ergodic Theorem, µ would govern the behavior
of m-typical orbits. This makes the problem of existence of an acim central in the
field. Here is a useful general criterion:

Proposition 19.18. Let m be a probability quasi-invariant measure. Assume
that for any ε > 0 there exists a δ > 0 such that

m(Y ) < δ =⇒ m(f−n(Y )) < ε, n = 0, 1, 2, . . .

Then there exists an acim µ.

Proof. Let us construct an invariant measure µ by the Bogolyubov-Krylov
averaging procedure applied to m. Then for the measures mn (19.1), we have:

m(Y ) < δ =⇒ mn(Y ) < ε, n = 0, 1, 2, . . . .

If Y is an open set with m(∂Y ) = 0, then we can pass to the limit and conclude
that µ(Y ) < ε as well. This implies absolute continuity. �

Assume now that M is a Riemannian manifold, f : M → M is a smooth map
with Jacobian Jac f ≡ Jacm f evaluated with respect to the Riemannian volume m.

Exercise 19.19. Under these circumstances, assume the critical locus of f has
zero volume. Then m is quasi-invariant under f . Moreover, if dµ = ρ dm is an
acim with density ρ, then f∗(dµ) = h dm, where

(19.2) h(y) =
∑

x∈f−1(y)

ρ(x)

Jacm f(x)

(as long as y is not a critical value).

Exercise 19.20. Let f : R → R, y = x2, and let m be the Lebesgue mesure

on R. Then f∗(m) =
m

2
√
y
.

19.7. Attractors. Let f : M → M be a smooth map of a manifold. A
periodic point α ∈ M (and its cycle α) is called attracting if |ρk| < 1 for all its
multipliers.

Exercise 19.21. (i) Any attracting fixed point α has an invariant neighborhood

U such that
∞⋂

n=0

fn(U) = {α}.
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(ii) Generalize it to the case of an attracting cycle.

Attracting cycles provide us with simplest examples of attractors. In general,
we want to define an “attractor” as a compact invariant subset A ⊂ M that “at-
tracts” an “essential” set of points. This notion vary depending on the meaning
of the words “attracts” and “essential”. There are two viewpoints on the latter:
Lebesgue (measure-theoretical) and Baire (topological). Let us start with the for-
mer.

Let us endow M with a Riemannian metric and the corresponding Lebesgue
measure m. Let

R(A) := {x ∈M : ω(x) ⊂ A}
be the realm of attraction of A.

A measurable set is neglectable from the measure-theoretical point of view if it
has zero Lebesgue measure; otherwise, it is essential. Some property depending on
a point x ∈M is called typical if it is satisfied on a subset of full measure.

A measure-theoretic attractor (in the sense of Milnor) is a compact invariant
subset A ⊂ M such that m(R(A)) > 0, and for any proper compact invariant
subset A′ ⊂ A, we have m(R(A)) rR(A′)) > 0 (i.e., we cannot shrink A without
an essential loss of the realm). For instance, it is sufficient that ω(x) = A for a set
of x of positive measure.

An attractor A is called global if ω(x) ⊂ A for almost all x ∈M .

Exercise 19.22. For any smooth endomorphism f : M → M of a compact
manifold, there is a unique global measure-theoretic attractor.

An attractor A is called minimal if it does not contain any smaller attractors.

Exercise 19.23. (i) A measure-theoretic attractor A is minimal iff ω(x) = A
for almost all x ∈ R(A).
(ii) The global attractor A is minimal iff it is a unique attractor of f . In this case,
ω(x) = A for almost all x ∈M .

A topological attractor is defined by replacing the conditions of having posi-
tive Lebesgue measure in the above definitions with conditions being topologically
essential.

Exercise 19.24. (i) Develop a little theory for topological attractors along the
lines of the above measure-theoretic discussion.

(ii) Let A be a compact invariant subset with non-empty interior. If f |A is topo-
logically transitive then A is a minimal topological attractor.

We define the basin of attraction D(A) as the interior of the realm. In the
simplest case of an attracting cycle α, the basin and the realm coincide. However,
for the map f : R → R, x 7→ x + x2, with fixed point 0, we have: R(0) = [−1, 0],
while D(0) = (−1, 0). (It is an example of a parabolic point: they will be important
players in what follows.)

In this book we will encounter interesting examples of attractors with an empty
basin.

Let us finish with a useful related notion. Let X be a topological space that
can be exhausted with compact subsets,24 and let f : X → X be a continuous map.

24For time being, the reader can think of locally compact spaces, but eventually we will need
more general ones (that would include the space of “quadratic-like germs”).
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A pre-compact subset K ⋐ X is called absorbing if for any compact subset Y ⋐ X,
there exists an N such that fn(Y ) ⊂ K for all n ≥ N .

This notion can also be applied to partially defined maps f . Then fn(Y ) should
be understood as fn(Y ∩Dom fn).

19.8. Invertible one-dimensional maps.

19.8.1. Local topological classification. Let us consider a local homeomorphism
f : (R, 0)→ (R, 0) (a germ) with an isolated fixed point at the origin. Let I+ = [0, ε]
and I− = [−ε, 0] be one-sided closed neighborhoods of 0 that do not contain any
other fixed points.

Assume first that f is orientation preserving (in which case the fixed point is
also called orientation preserving). Then two different scenarios can occur in I+:

0 < f(x) < x or f(x) > x ∀ x ∈ I+.
In the former case, 0 (and the germ f) are called (topologically) attracting on the
right, while in the latter case, they are called (topologically) repelling on the right.

Exercise 19.25. (i) If 0 is topologically attracting on the right then

f(I+) ⋐ I+ and fnx→ 0 as n→∞ for any x ∈ I+.

(ii) In the topologically repelling case, f(I+) ⋑ I+ and all orbits escape: For any
x ∈ I+ there exists the escape moment n = n(x) ∈ Z+ such that fnx 6∈ I+.

(iii) All maps as above that are attracting (respectively: repelling) on the right are
topologically conjugate on their I+−half-neighborhoods.25

A similar discussion can obviously be carried on the left-hand side. If 0 is
(topologically) attracting/repelling on both sides then it (and the germ f) are natu-
rally called (topologically) attracting/repelling . Otherwise, we say that 0 (and the
germ f) are of mixed type.

Corollary 19.26. Any two orientation preserving topologically attracting (resp.,
topologically repelling) local homeomorphisms as above are topologically conjugate
near the origin (by an orientation preserving homeomorphism). And so are all the
maps of mixed type (perhaps, by an orientation reversing conjugacy).

If f is orientation reversing then 0 (and the germ itself) are called a flip. The
dynamics in this case can be analysed by taking the 2nd iterate of f :

Exercise 19.27. Assume 0 is a flip and there are no periodic points of period
2 near it. Then there is a neighborhood I ∋ 0 such that either f(I) ⋐ I or f(I) ⋑ I.
In the former case, 0 is called (topologically) attracting: fnx → 0 for all x ∈ I.
In the latter case, it is called (topologically) repelling: all orbits escape I. Any two
attracting (resp., repelling) flips are topologically conjugate.

Notice that in the attracting flip case, the components I± of I r {0} form a
cycle of intervals of period 2:

f(I+) ⊂ I− and f(I−) ⊂ I+.

25With the understanding that in the repelling case the equivariance relation is satsfied on
f−1(I+).
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If f is smooth then it can be locally written as f(x) = ρx + o(|x|), where ρ is
the multiplier of 0. If ρ 6= 0, then f is a local diffeomorphism; moreover, it is a flip
iff ρ < 0.

According to the previous discussion, the following germs represent all possible
topological types (where any one in the row can be selected in each case):

• Topologically attracting orrientation preserving germs:

x 7→ ρx, 0 < ρ < 1, or x 7→ x− x2l+1, l ∈ Z+;

• Topologically repelling orrientation preserving germs:

x 7→ ρx, ρ > 1, or x 7→ x+ x2l+1, l ∈ Z+;

• Mixed germs: x 7→ x− x2l, l ∈ Z+ (attracting on the right);

• Topologically attracting flips:

x 7→ ρx, −1 < ρ < 0, or x 7→ −x+ xk+1, k ∈ Z+;

• Topologically repelling flips:

x 7→ ρx, ρ < −1, or x 7→ −x− xk+1, k ∈ Z+.

Note that for smooth germs the fixed point 0 (and the germ f) is called attracting

if |ρ| < 1, repelling if |ρ| > 1, and parabolic if ρ ∈ {±1} (compare §21.1). That is
why we used “topologically” in the above definitions.

Exercise 19.28. (i) For a smooth attracting germ f : x 7→ ρx + o(x1+δ),
0 < |ρ| < 1, δ > 0, the orbits xn converge to zero exponentially fast: xn ≍ ρn.

(ii) For a smooth parabolic germ x 7→ x − xk+1 + o(xk+1+δ), x > 0, the orbits
converge to zero polynomially: xn ≍ n−1/k.

As we have already mentioned in §19.6, the multiplier ρ is a smooth invariant,
so the smooth classification of germs differs from the topological one. Also, as
we have just seen, some parabolic germs are topologically indistinguishable from
attracting or repelling ones. However, smoothly they are always different:

Exercise 19.29. (i) Any two smooth attracting germs fi : x 7→ ρx+h.o.t. with
the same multiplier, 0 < |ρ| < 1, are smoothly conjugate. Similarly, for smooth
repelling germs.

(ii) Any two smooth parabolic germs of the same topological type and the same order
of degeneracy are smoothly conjugate.

(iii) However, no parabolic germ is smoothly conjugate to an attracting or repelling
one.

Analytic classification of attracting and parabolic germs will be discussed in
§§23.1.2, 23.7.3. For quasisymmetric (qs) classification, see §21.3.4.

19.8.2. Invertible interval maps. These are the simplest dynamical examples:

Exercise 19.30. Let f : I → I be a continuous monotone map of an interval.
Its set of fixed points, Fix(f), is a non-empty closed set.

(i) If f is increasing than any orbit converges to a fixed point.

(ii) If f is decreasing than Fix(f) is a singleton, Fix(f) = {α}, and any orbit either
converges to α or it converges to a cycle of period 2.

Here is zigzag pictures illustrating the above types of behavior:
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19.8.3. Circle rotations. Let us consider a circle rotation

Rθ : T→ T, z 7→ e(θ)z

by angle θ ∈ R/Z. Note that in the angular coordinate α ∈ R/Z it becomes the
translation α 7→ α+ θ mod 1. If the rotation number is rational, θ = p/q, then the
dynamics is non-interesting as Rqθ = id. Otherwise it exhibits several interesting
features:

Exercise 19.31. For an irrational w, the rotation Rθ is minimal and uniquely
ergodic (with the Lebesgue measure m on T being the only invariant measure).

Thus, for any θ ∈ (R r Q)/Z, the fractional parts {n θ} are dense in [0, 1]
(Kronecker Theorem) and are equidistributed over there (Weyl Equidistribution
Theorem), i.e., for any interval I ⊂ [0, 1], we have:

1

N
#{n ∈ [1, N ] : {n θ} ∈ I} → |I| as n→∞.

19.8.4. Circle homeomorphisms. Let S1 be an oriented circle, and let f : S1 →
S1 be an orientation preserving circle homeomorphism. Assume it has a periodic
cycle α = (fnα)q−1n=0 of period q. It is naturally cyclically ordered. Since f preserves
the cyclic order on S1, it does so on α, and hence f |α has a well defined rotation
q/p.

Exercise 19.32. Under the above circumstances, any periodic point of f has
period q and rotation number p/q.

In this situation, p/q is called the rotation number of f .

Exercise 19.33. For any component I of S1 r Per(f), fq| I is an interval
homeomorphism such that for any x ∈ I we have: fqnx → a+ as n → +∞ and
fqnx → a− as n → −∞, where a± are appropriately labeled endpoints of I (with
the labeling independent of x).

Note that it can happen that a+ = a−. Then it is a fixed point of f that
attracts all orbits in both forward and backward time. For instance, consider the
translation T : x 7→ x+ 1 on R̂ ≡ R ∪ {∞} ≈ S1.

Project 19.34. If a homeomorphism f : S1 → S1 does not have periodic
points. then it is monotonically semi-conjugate to an irrational circle rotation Rθ,
θ ∈ RrQ. Moreover,

(i) The preimage of any point under the conjugacy h : S1 → R/Z is either a
singleton or a wandering interval.

(ii) For any x ∈ R, θ = lim
n→+∞

1

n
Fnx mod 1, where F : R→ R is a lift of f to the

universal covering.

Under the above circumstances, θ is called the rotation number of f .

Exercise 19.35. Any orientation preserving circle homeomorphism keeping the
Leb measure invariant is a rotation.

19.9. Expanding maps.
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19.9.1. Continuous setting. A continuous map f : X → X of a metric space is
called globally uniformly expanding if there exists a factor λ > 1 such that

d(fx, fy) ≥ λ d(x, y) for any two points x, y ∈ X.

There are two natural weaker notions: f is called globally strictly expanding if
d(fx, fy) > d(x, y) for any two distinct points x, y ∈ X, and it is called globally
weakly expanding if d(fx, fy) ≥ d(x, y) for any two points x, y ∈ X.

Exercise 19.36. There are no globally strictly expanding maps on non-singleton
compact spaces.

So, to be useful for compact spaces this notion should be relaxed. A continuous
map f : X → X is called locally uniformly expanding if there exists a factor λ > 1
and26 ε > 0 such that

(19.3) d(fx, fy) ≥ λ d(x, y) for any x, y ∈ X with d(x, y) < ε.

The corresponding notions of strict and weak local expanding properties are self-
explanatory.

Exercise 19.37. Any locally strictly expanding map on an infinite compact
space is non-injective.

Throughout the book, “expanding” will mean “locally expanding”, unless other-
wise is explicitly assumed.

Obviously, the iterates fn inherit any of these local expanding properties.
Moreover, in the uniform case, the expanding factor grows exponentially under
the iterates. This suggests a dynamically more natural notion: A continuous map
f : X → X of a compact metric space is called dynamically uniformly expanding
if it has a uniformly expanding iterate fn. Equivalently, there is a factor λ > 1, a
constant C > 0 and a sequence of scales εn → 0 such that

d(fnx, fny) ≥ C λnd(x, y) ∀ x, y ∈ X with d(x, y) < εn.

Note that this notion of is invariant under bi-Lipschitz changes of the metric.

Let us also mention the following purely topological notion. A map f : X → X
is called ε-expansive if there exists and ε > 0 such that for any two points x, y ∈ X
there exists a moment n ∈ N such that d(fnx, fny) > ε. It is called expansive if it
is ε-expansive for some ε > 0.27

Parabolic maps will provide interesting examples of expansive maps which are
not locally uniformly expanding (see e.g., Corollary 26.8 below).

19.9.2. Smooth setting. In the smooth category, there is a natural infinitesimal
version of the above discussion. Let f : M → M be a smooth endomorphism of
a Riemannian manifold of dimension ≥ 1, and let K ⊂ M be a closed invariant
subset. The map f is called infinitesimally strictly expanding on K if

‖Df(x)v‖ > ‖v‖ for any x ∈ K and any non-vanishing tangent vector v ∈ TxM .

(Compare with Corollary 7.11 of the Schwarz Lemma.) It is called infinitesimally
uniformly expanding on K if there exist a factor λ > 1 such that

‖Df(x)v‖ ≥ λ‖v‖ for any x ∈ K and any tangent vector v ∈ TxM .

26If K is non-compact then ε (end the εn below) shooud depend on x.
27For invertible maps, it is more meaningful to consider two-sided orbits in this definition.
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Of course, ifK is compact then these two notions are equivalent. The corresponding
weak notion is

‖Df(x)v‖ ≥ ‖v‖ for any x ∈ K and any tangent vector v ∈ TxM .

Exercise 19.38. Check the following relations:

(i) The infinitesimal uniform expanding property is equivalent to the local uniform
expanding property.

(ii) The infinitesimal strict expanding property implies the local strict expanding
property, but not the other way around.

(iii) In case of K = M , the infinitesimal weal expanding property is equivalent to
the local weak expanding property.

Let us now pass to a dynamical version of this discussion. A map f as above is
called dynamically infinitesimally uniformly expanding on K if there exist a factor
λ > 1 and a constant C > 0 such that for any x ∈ K and any tangent vector
v ∈ TxM we have:

(19.4) ‖Dfn(x)v‖ ≥ Cλn‖v‖, n = 0, 1, . . . .

This notion is independent of the choice of a Riemannian metric.

Exercise 19.39. (i) Dynamical infinitesimal and local uniform expanding prop-
erties are equivalent.

(ii) Under these circumstances, there exists a Riemannian metric ρ on M and a
factor λ1 > 1 such that

‖Df(x)v‖ρ ≥ λ1‖v‖ ∀ x ∈ K, v ∈ TxM.

Such a metric is called Lyapunov.

Assume now that K = M , i.e., f is expanding on the whole manifold. Being
a local homeomorphism of a compact space, f is a covering, so it has some degree
d ∈ Z∗. Since f is not a homeomorphism, |d| ≥ 2. Moreover, if f is orientation
preserving then d is positive, and so d ≥ 2.

In the smooth dynamical setting, “expanding” will usually mean “dynamically
inifnitesimally uniformly expanding”.

19.10. Bernoulli shift.

19.10.1. Definition. Consider the space Σ ≡ Σ+
2 of one-sided sequences ī =

(i0i1 . . . ) of zeros and ones. Supply it with the weak topology (convergence in this
topology means that each coordinate eventually stabilizes). We obtain a Cantor set.
Define the shift σ ≡ σ2 on this space as the map of forgetting the first coordinate,

σ : (i0i1 . . . ) 7→ (i1i2 . . . ).

It is called the (one-sided) Bernoulli shift with two states.

Exercise 19.40. Show that:

• σ is topologically exact and hence topologically transitive;
• Periodic points of σ are dense in Σ.

Exercise 19.41. Show that the only non-trivial automorphism of σ is induced
by the relabeling 0↔ 1.
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A subshift of the Bernoulli shift is the restriction of σ to a closed invariant
subset X ⊂ Σ.

19.10.2. Cylinders. Given an n-string j̄ ≡ (j0, . . . jn−1) of zeros and ones, let

Σnj̄ ≡ Σj0...jn−1
:= {̄i ∈ Σ : ik = jk, k = 0, . . . , n− 1}

≡ {̄i ∈ Σ : σk (̄i) ∈ Σjk , k = 0, . . . , n− 1}.
Such a set is called a cylinder of rank n. (We consider the whole space Σ ≡ Σ0 as
a “cylinder of rank 0”.) Given a cylinder Σn

j̄
≡ Σj0...jn−1

of rank n, we have

(R1) Σn
j̄

is the disjoint union of two cylinders of rank n+1, Σi0...in−10 and Σi0...in−11,

(R2) Σn
j̄

is mapped by σ homeomorphically onto the cylinder Σi1...in of rank n− 1.

In particular, the whole space Σ is decomposed into 2n disjoint cylinders of
rank n each of which is mapped homeomorphically by σn onto the whole space Σ.

The space Σ is endowed with a natural dyadic metric:

(19.5) d(̄i, j̄) = 2−n, where n = min{k : ik 6= jk}.
Thus, diamΣn

j̄
= 2−n for any cylinder of rank n. With respect to this metric, the

shift σ is locally expanding by a factor of 2:

d(fx, fy) = 2d(x, y) ∀ x, y ∈ Σ1
i , i ∈ {0, 1}.

19.10.3. Bernoulli measure. Since the Bernoulli shift has plenty of periodic
points, it has plenty of atomic invariant measures. In fact, it has a plenty of non-
atomic measures as well. Among them there is one most classical that corresponds
to the process of tossing of a fair coin: zeros and ones label tails and heads that
appear independently in the tossing process. In other words, we consider a measure
µ uniformly spread over the cylinders:

µ(Σi0...in−1) =
1

2n
.

By Kolmogorov’s Theorem, this defines uniquely a Borel measure. It is called the
balanced Bernoulli measure for σ. (Here “balanced” suggests that all the states have
equal probabilities, while “Bernoulli” suggests that th events happening at different
times are independent).

Exercise 19.42. Show that µ is invariant and mixing, and hence ergodic.

The conclusion of the Birkhoff Ergodic Theorem in this case coincides with
the classical Bernoulli Law of Large Numbers for the coin tossing: For a typical
sequence ī ∈ Σ, the asymptotic frequency of appearance of zeros (or ones) is equal
to 1/2.

In fact, the Bernoulli measure is “as mixing as one can get” as the future of the
process is completely independent of the past.

Exercise 19.43. Periodic points and iterated preimages of the Bernoulli shift
are equidistributed with respect to the Belnoulli measure:

1

2p

∑

ī∈Fix(σp)

δī → ν,
1

2n

∑

ī∈σ−n(j̄)

δī → ν, as n→∞ ∀ j̄ ∈ Σ.

Show that the same is valid for periodic points of minimal period p.
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The balanced Bernoulli measure is also called the measure of maximal entropy
for the shift (see §46.10.7).

Remark 19.44. The above discussion of the Bernoulli shift admits a straight-
forward generalization to the case of one-sided Bernoulli shifts σd : Σ

+
d → Σ+

d with
d states. The only subtlety is concerned with Exercise 19.41 which is in fact wrong
for d > 2:

Exercise 19.45. Give an example of a non-trivial automorphism of the one-
sided Bernoulli shift σ3.

Along with the balanced Bernoulli measure, one can consider Bernoulli mea-
sures that assign different probabilities to different symbols. Namely, let p =
(p1, . . . , pd) ∈ ∆d−1 be a probability distribution on d symbols. For a string
ī = (i0 . . . in−1), we define the probability of the corresponding cylinder in Σ ≡ Σd
as follows:

µp(Σ
m
ī ) = pi0 . . . pin−1

.

(So, the events at different moments are independent.)

Exercise 19.46. (i) Show that this determines an invariant measure on Σ.

(ii) Show that each measure µp is ergodic.

(ii) Show that each of them is mixing.

19.11. Coding: a general idea.

19.11.1. Partitions and corresponding codings. Let us consider a map f : X →
X. A partition (Xi) of X into pieces Xi ⊂ X is a decomposition X =

⊔
Xi.

To any partition into d pieces corresponds a natural coding of the orbits of f
by sequences ī = (i0, i1, . . . ) in d symbols by the rule

fnx ∈ Xin , n = 0, 1, . . .

This gives the coding map π : X → Σ+
d , x 7→ ī(x). This map is equivariant, i.e.,

π ◦ f = σ ◦ π: indeed, replacement of x by fx results in forgetting the first symbol
i0 in the sequence ī.

A partition is called open if all the piecesXi are such. For instance, the partition
of the shift space Σ into cylinders of some rank n is open.

Exercise 19.47. For an open partition, the coding map π is continuous. Thus,
it gives a semi-conjugacy between f and a subshift of the Bernoulli shift σ.

The sets
Xn
ī ≡ Xi0,...in−1

:= π−1(Σi0...in−1
)

will be referred as cylinders of rank n (for this coding).
Let us say that f is expanding28 with respect to a partition (Xi) if there exist

λ > 1 and n ∈ Z+ such that for any cylinder Xn
ī
, we have:

dist(fnx, fny) ≥ λ dist(x, y), ∀x, y ∈ Xn
ī .

Exercise 19.48. Let (Xi) be an open partition of a compact space X. The cor-
responding semi-conjugacy π is injective iff diamXn

ī
→ 0 as n→∞. In particular,

this is the case when f is expanding with respect to the partition (Xi).

28Here we actually deal with a “locally uniformly expanding” property, compare §19.9.
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19.11.2. Tilings and corresponding codings. A tile Y in a space X is a closed
subset such that Y = clY ◦. A tiling X or tessellation of X into tiles (also called
“pieces”) Xi is a decomposition X =

⋃
Xi such that

X◦i ∩X◦j = ∅ for i 6= j.

We let ∂X :=
⋃
∂Xi, diamX := max diamXi.

Let us consider the following invariant set:

X◦ = {x ∈ X : fnx ∈
⋃
X◦i , n = 0, 1, . . . }

endowed with the open partition (X◦i ). Note that if X is compact (or complete)
and f is open, then by the Baire Category Theorem, X◦ is dense in X.

If our tessellation comprises d tiles then by the previous consideration, we
obtain the coding map π : X◦ → Σ+

d semiconjugating f |X◦ to the restriction of
the Bernoulli shift σ to an invariant subset Y ◦ (which is not closed in general) .

We say that f is expanding with respect to the tiling (Xi) if f |X◦ is expanding
with respect to the partition (X◦i ).

Exercise 19.49. Let X be compact, and let f be expanding with respect to the
tiling (Xi). Then the inverse of the coding map π : X◦ → Y ◦ extends to a surjection
π−1 : clY ◦ → X semiconjugating the subshift σ| clY ◦ to f .

The cylinders Xn
ī
≡ Xi0...in−1

associated with a tiling (Xi) are defined as the
closures of the corresponding cylinders (X◦)n

ī
associated with the partition (X◦i ).

Equivalently, Xn
ī

= π−1(Σn
ī
). They form a nest of tilings Xn := (Xn

i ), with the
natural inclusion and transformation rules: Any tile of rank n is tessellated by some
tiles of rank n+1 (obtained by adding a symbol in on the right) and for n > 0 it is
mapped to a tile of rank n− 1 (obtained by erasing the first symbol i0). [Compare
with rules (R1)-(R2) in §19.10.2.]

Exercise 19.50. Let (Xn) and (X̃n) be shrinking nests of tessellations of com-
pact spaces X and X̃, respectively. Let hn : X → X̃ be a sequence of homeomor-
phisms maping Xn to X̃n such that hn+1 | ∂Xn = hn | ∂Xn. Then the hn uniformly
converge to a homeomorphism h : X → X̃.

19.11.3. Bernoulli generator. A tiling (Xi)
d
i=1 of a compact space X is called

(unbranched) Bernoulli if each piece Xi is mapped by f onto the whole space X
and this map is injective on intXi. In particular, this definition can be applied in
the case of an open partition.

Remark 19.51. In what follows we will also encounter situations of branched
Bernoulli tilings when the maps f : Xi → X are branched coverings.

Exercise 19.52. (i) If f is expanding with respect to an open Bernoulli parti-
tion then the corresponding coding π : X → Σd is a conjugacy between f and the
Bernoulli shift σd.

(ii) If f is expanding with respect to a Bernoulli tiling then the corresponding coding
π−1 : Σd → X is a semi-conjugacy between the Bernoulli shift σd and f . Moreover,
it is one-to-one outside of a set of first Baire category.

In this case, the tiling (Xi) is called a Bernoulli generator, and the map f itself
is called Bernoulli.



19. GLOSSARY OF DYNAMICS 251

Figure 19.1. The doubling map θ 7→ 2θ mod 1.

More generally, assume we have d tiles Xi ⊂ X each of which is mapped by f
homeomorphically onto the whole space X (but their union is not necessarily the
whole space X). Let us call such a family (Xi) a Bernoulli family of tiles. Let

(19.6) K = {x ∈ X : fnx ∈
⋃
Xi, n = 0, 1, . . . }.

It is a closed invariant subset of X.

Exercise 19.53. If f is expanding with respect to a Bernoulli family of tiles
then there is a semi-conjugacy h : Σd → K which is one-to-one over the set

K◦ := {x ∈ K : fnx ∈
⋃

intXi, n = 0, 1, . . . }.
If Xi ⊂ intX for all i then h is a conjugacy.

19.12. Doubling map. The doubling map is just the squaring map

f0 : z 7→ z2

on the unit circle T. Passing to the annular coordinate T : θ ∈ R/Z, where z = e(θ),
we obtain the map θ 7→ 2θ modZ, which justifies the term “doubling”. We can also
view it as a map T : θ 7→ 2θ mod 1 on the unit interval I ≡ [0, 1], i.e.,

T (θ) = 2θ for θ ∈ [0, 1/2] and T (θ) = 2θ − 1 for θ ∈ [1/2, 1],

with understanding that the endpoints must be identified.
The doubling map has a unique fixed point z = 1, i.e., θ = 0. The preimages

of this point under Tn are dyadic rationals θ = p/2n, p = 0, 1, . . . , 2n − 1. They
tessellate the circle into (closed) dyadic intervals

Inī ≡ Ii0...in−1
=

{
θ = i0 +

i1
2
+ · · ·+ in−1

2n−1
+
θn
2n
, where θn ∈ [0, 1]

}
,

consisting of angles whose dyadic expansion begins with ī ≡ (i0, . . . , in−1) (and
may end with the infinite number of “1” ’s, to make the interval closed). Note that

(19.7) Ini0...in−1
= In+1

i0...in−1,0
∪ In+1

i0...in−1,1
, and T (Ini0...in−1

) = In−1i1...in−1
.

It follows that Tn(In
ī
) = T for any dyadic interval, and this map is one-to-one,

except that it glues the endpoints of In
ī

to z = 1.

Exercise 19.54. Show that int Ini0...in−1
= {θ : T kθ ∈ int I1ik , k = 0, . . . , n−1}.

Exercise 19.55. The map φ : Σ → [0, 1] that associates to a dyadic sequence
ī = (i0i1 . . . ) the angle θ with this dyadic expansion, is a semiconjugacy between
the Bernoulli shift σ : Σ→ Σ and the doubling map.

Note that this description of the doubling dynamics in terms of the usual dyadic
expansions is just the coding generated by the Bernoulli tiling

[0, 1] = I10 ∪ I11 ≡ [0, 1/2] ∪ [1/2, 1].

In the angular coordinate, the doubling map is expanding by a factor of two:
T ′(θ) = 2 for all θ ∈ R/Z.
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Exercise 19.56. The Lebesgue measure m on T is invariant under T . The
above semi-conjugacy φ : Σ → T induces an isomorphism between the Bernoulli
shift σ with the Bernoulli measure µ and the doubling map T with m. Moreover,
m is mixing and hence ergodic.

Exercise 19.57. Periodic points of the doubling map are rationals θ = p/q with
odd denominator. Preperiodic points are rationals θ = p/q with even denominator
(in the irreducible representation).

Proposition 19.58 (Compare Exercise 19.41). The doubling map does not
have non-trivial orientation preserving automorphisms.

Proof. Let h : T → T be an automorphism for the doubling map, i.e., a
homeomorphism commuting with T .

Since θ = 0 is the unique fixed point of T , it must be also fixed by h. Since
θ = 1/2 is the only T -preimage of 0 different from 0, it must be fixed by h as well.
Hence the dyadic intervals I10 = [0, 1/2] and I11 = [1/2, 1] are either h-invariant
or are permuted by h (fixing the endpoints). But in the latter case, h would be
orientation reversing, so both intervals are invariant.

Each of them contains one T -preimage of 1/2, respectively θ = 1/4 and θ = 3/4,
so these points must also be fixed by h. Hence all the dyadic intervals I2i0i1 of rank
2 are h-invariant (with the endpoints fixed).

Assume inductively that all the dyadic intervals Ini0...in−1
of rank n are h-

invariant (with the endpoints fixed). Since each of them contains one dyadic point
of next level, p/2n+1 ∈ T−n+1(0) with odd p, all these points must be fixed, and
hence all the dyadic intervals of rank n+ 1 are h-invariant.

We conclude by induction that all the dyadic points p/2n, n ∈ N, are fixed by
h. By continuity, h = id. �

The doubling map, and its quotients, will serve as the main dynamical model
for quadratic polynomials on their Julia sets.

The above discussion can be readily generalized to the case of degree d circle
maps Td : T/Z→ T/Z, θ 7→ dθ, d ≥ 2, with one noteworthy adjustment:

Exercise 19.59. The map Td has d − 1 fixed points. Orientation preserving
automorphisms of Td are circle rotations by angles 1/(d− 1).

One can find many doubling restrictions inside of the d-adic map:

Exercise 19.60. Assume there exist two disjoint closed arcs I1 and I2 in T

such that:

(i) One of the gaps between I1 and I2 is bounded by Td-fixed points;

(ii) The map Td is injective on each Ik;

(iii) Td(Ik) ⊃ I1 ∪ I2, k = 1, 2.

Then the set

K := {θ : Tnd (θ) ∈ I1 ∪ I2, n = 0, 1, . . . }
is a Td-invariant Cantor set on which Td is conjugate to T2, and there exists a
monotonically non-decreasing Devil K-Staircase map h : T → T semiconjugating
Td|K to the circle doubling map. Moreover, h provides a natural period preserving
one-to-one correspondence between cycles of period p > 1 for Td|K and for T2.
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19.13. Expanding circle maps. This theory contains germs of various im-
portant ideas that will be discussed throughout the book.

19.13.1. Fixed point. Let us consider a smooth orientation preserving expand-
ing circle map g : T → T. As we know (see §19.9.2), it is a covering of some
degree d ≥ 2. Following the spirit of our exposition, in what follows we will assume
that expanding circle maps under consideration have degree two, unless otherwise is
explicitly stated.

Lemma 19.61. Any expanding circle map g : T→ T of degree two has a unique
fixed point β.

Proof. Lifting g to the universal covering, we obtain an orientation preserving
diffeomorphism g̃ : R→ R satisfying the following equivariance property

g̃(x+ 1) = g̃(x) + 2 (since deg g = 2).

It follows that g̃(x) ∼ 2x as x → ∞, so by the Intermediate Value Theorem the
equation g̃(x) = x has a solution β̃.

It projects to a fixed point β ∈ T for g. Assume there is another fixed point
α ∈ T. These two fixed points divide T into two intervals J0 and J1. Since g
is expanding, none of these intervals can be invariant. Hence each of these inter-
vals covers itself with degree ≥ 2 and covers the other interval with degree ≥ 1.
Altogether, the degree of g |T would be at least 3. �

Conjugating g by a rotation, we can always normalize it so that the fixed point
β is placed at 1. Throughout the book, we will assume such a normalization unless
otherwise is explicitly stated.

19.13.2. Dynamical tilings and conjugacy. Let β′ 6= β be the second preimage
of the fixed point β = 1. They divide T into two closed intervals I10 = [β, β′]
and I11 = [β′, β], where the endpoints are labeled in the positive way with respect
to the circle orientation. Moreover, the interiors of these intervals are mapped
homeomorphically onto T r {β}. Hence each of them contains a preimage of β′,
and we obtain a tiling of T into four closed intervals I200, I

2
01, I

2
10, I

2
11 that appear in

the listed order as we go around the circle in the positive direction. In turn, each
of these intervals contains an order two preimage of 1, producing a tiling of T into
8 intervals I3i0i1i2 , where ik ∈ {0, 1}.

Proceeding this way, we obtain a nest of dynamical tilings In = In(g) of T into
2n intervals Ini0...in−1

≡ Ini0...in−1
(g), where ik ∈ {0, 1}, such that the lexicographic

order on the set of dyadic sequences ī = (i0 . . . in−1) corresponds to the order
of the intervals on T r {1}. They are nested and transformed by g in the same
combinatorial way (19.7) as the standard dyadic tilings (In

ī
) for the doubling map.

We will call these intervals dynamical (dyadic) intervals or tiles.
Since g is expanding, these intervals shrink at an exponential rate:

(19.8) C0λ
−n
0 ≤ |Inī | ≤ Cλ−n, where λ ≥ λ0 > 1, C, C0 > 0.

Proposition 19.62. Any expanding circle map g of degree two is topologically
conjugate to the doubling map T ≡ f0 (by an orientation preserving homeomorphism
h). Moreover, the natural semi-congugacy φ : Σ → T between the Bernoulli shift
σ and g corresponds, via h, to the the semi-conjugacy φ0 for T described Exercise
19.55: h ◦ φ = φ0.
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Figure 19.2. Linearization of an expanding circle map.

Proof. Let us consider the nest of dynamical tilings In(g) for g, along with
the corresponding dyadic nest In(T ) for the doubling map.

Let hn be the piecewise linear homeomorphism T→ T that maps In
ī
(g) linearly

onto In
ī
(T ). Since our tilings are transformed by g and T in the same combinatorial

way, hn conjugates g to T on the tilings’ boundaries (which are equal to g−n(β)
and T−n(β) respectively). Finally, (19.8) implies that the hn uniformly converge
to a homeomorphism h : T→ T which conjugates g to T on the whole circle.

Moreover, the Bernoulli tiling I0 generates a Bernoulli model for g (see §19.11.3),
which manifestly corresponds, via h, to the model for T . �

The conjugacy h can be viewed as the linearization of the expanding map g.

Corollary 19.63. Expanding circle maps of degree two do not admit non-
trivial orientation preserving automorphisms.

Exercise 19.64. An expanding circle map g : T→ T of degree d is topologically
conjugate to Td : θ 7→ dθ (by an orientation preserving homeomorphism). Hence it
has d − 1 fixed points and the group of orientation preserving automorphisms of g
is the cyclic group of order d− 1.

19.13.3. Balanced measure. A Borel measure µ for an expanding circle map can
be prescrbed by the masses ν(In

ī
) of the dynamical intervals (satisfying the natural

compatibility conditoins). The easiest way of doing so it to assign to all dynamical
intervals In

ī
of rank n the same mass 2−n. We obtain an invariant measure ν called

balanced. Note that it has obviously full support in Σ.
The balanced measure of the doubling map is the Leb measure m. Since the

balanced property is preserved under conjugacies, we have m = h∗(ν), so

(19.9) h(θ) = ν[0, θ].

(Note that h(0) = 0 due to our normalization of g.) Thus, once we have constructed
the balanced measure, we can recover the linearizing conjugacy h by means of (19.9).

The following equidistribution properties motivate dynamical significance of
the balanced measure:

Exercise 19.65. Periodic points and iterated preimages of an expanding circle
map are equidistributed with respect to the balanced measure:

1

2p − 1

∑

x∈Fix(gp)
δx → ν,

1

2n

∑

x∈g−ny

δx → ν, as n→∞ ∀ y ∈ T.

Another motivation comes in the framework of the Entropy Theory where the
balanced measure is also called the measure of maximal entropy.

19.13.4. Distortion and quasisymmetry.

Exercise 19.66. The above conjugacy between T and g (and its inverse) is
Hölder continuous.

In fact, we can say more:

Proposition 19.67. For g ∈ C2, the above conjugacy between T and g is
quasisymmetric.
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The proof is based upon a very important bounded distortion property for the
iterates of g:

Lemma 19.68 (Distortion Lemma). Let g ∈ C2. Assume an iterate gn is
injective on an interval J ⊂ T. Then for any x, y ∈ J we have:

|Dgn(x)|
|Dgn(y)| ≤ C,

where C depends only on C2-norm of f and on the expanding factor λ.

Proof. Let us consider the function log |Dg(x)| written in the angular coor-
dinate on T. It is L-Lipschitz with

L = max
x∈T
|D2g(x)|
|Dg(x)|

depending only on the C2-norm of g.
Let Jk = gk(J). Since g is expanding and gn is injective on J , we have:

|Jk| ≤ L
|Jn|
λn−k

≤ L

λn−k
.

Hence

| log |Dgn(x)| − log |Dgn(y)|| ≤
n−1∑

k=0

| log |Dg(gkx)| − log |Dg(gky)||

≤ L
n−1∑

k=0

|Jk| ≤ L
n−1∑

k=0

1

λn−k
≤ Lλ

λ− 1
.

�

Exercise 19.69 (Denjoy Distortion Estimate). Let fk : Ik → Ik+1 be a chain
of C2 diffeomorphisms between intervals Ik, k = 0, 1, . . . , n, and let F = fn−1 ◦ · · · ◦
f1 ◦ f0. Then

|DFn(x)|
|DFn(y)| ≤ exp

(
L ·

n−1∑

k=0

|Ik|
)
, where L = max

k
max
x∈Ik

|D2fk(x)|
|Dfk(x)|

.

Exercise 19.70. Under the circumstances of Lemma 19.68, for any ε > 0,
there exists a δ > 0 such that

dist(gnx, gny) < δ =⇒ |Dgn(x)|
|Dgn(y)| ≤ 1 + ε ∀ n ∈ N, x, y ∈ J.

Lemma 19.71. The nest of dynamical tilings In
ī

corresponding to an expanding
circle map g ∈ C2 has a bounded geometry (see §15.1.3), with the bound depending
only on the C2-norm of g and the expanding factor λ.

Proof. Consider a nest of two intervals In
ī
⊃ In+1

īj
and apply gn−1 to it. It will

be homeomorphically mapped onto the nest I1in ⊃ I2inin+1
. The latter intervals have

a comparable length as there are only finitely many intervals of level 1 and 2. By
the bounded distortion property of the last lemma, so do the initial intervals. �
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Proof of Proposition 19.67. (Compare Exercise 15.3.) Take two adjacent inter-
vals S and T on the circle of equal length. Select the smallest level n such that S
contains a dynamical tile S′ = In

ī
of level n. Then it is contained in one or two

adjacent dynamical tiles of level n−1. Calling the union of these tiles S′′, we obtain

S′ ⊂ S ⊂ S′′ and |S′| ≍ |S′′|.
Since the nest of dynamical tilings has a bounded geometry, we can squeeze

T in between two interval, T ′ ⊂ T ⊂ T ′′ of comparable length, each of which is a
bounded unions of dynamical tiles of the same level n+O(1).

Applying the conjugacy h to these intervals, we conclude that h(S) and h(T )
are both squeezed in between two intervals each of which is a bounded union of
dyadic intervals of level n+ O(1). It follows that the lengths of all six intervals in
question are comparable.

19.13.5. Analytic expanding circle maps. Expanding circle maps g : T → T

that appear in this book usually come from conformal annuli coverings (see e.g.,
§§25.3, 41.1):

Lemma 19.72. Let V ⊂ V ′ be a nest of two T-symmetric conformal annuli, and
let g : V → V ′ be a holomorphic covering map of degree d ≥ 2. Then the restriction
g|T is an expanding circle map.

Proof. First, by symmetry, g preserves the unit circle. Second, since modV ′ =
dmodV , the annulus V is strictly contained in V ′. By Corollary 7.11, g|T is ex-
panding in the hyperbolic metric of V ′. �

We can also control the geometry of g|T from the outside.

Lemma 19.73. Under the above circumstances, assume that V ⋐ V ′. Then the
C2-norm of g : T → T and the expanding factor λ are controlled by a lower bound
µ on the modulus of the (external) fundamental annulus A := V̄ ′ r (V ∪ D).

Proof. An upper bound on the C2-norm of g|T in terms of µ follows from the
Koebe Distortion Theorem. A lower bound on λ follows from Corollary 7.11. �

In fact, any analytic expanding circle map admits such an external structure:

Exercise 19.74. Let g : T→ T be a real analytic expanding circle map. Then:

(i) There exists a nest of two T-symmetric annuli V ⋐ V ′ with smooth boundary
such that g admits a holomorphic extension to a covering map V → V ′.

(ii) The preimages V n := g−n(V ′) are T-symmetric annuli covering V ′ under gn

with degree dn.

In what follows, we will assume without saying that an expanding analytic circle
map g : T→ T comes equipped with an annulus extension g : V → V ′ as above.

19.13.6. Ergodicity. Let m be the normalized angular measure on the circle.

Proposition 19.75. Any expanding circle map g ∈ C2 is ergodic with respect
to m.

Proof. We will use background from Appendix 2 below.
Let us consider a completely invariant measurable set X ⊂ T of positive mea-

sure. We claim that X has positive (lower) density at any point x ∈ T:

(19.10) dens(X |x) ≡ lim inf
I∋x

dens(X| I),
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where I ⊂ T runs over all intervals containing x.
For any n ∈ N, let In ≡ In

ī(n)
be a dynamical dyadic interval containing x. (If

there are two such intervals, select any of them.) Lemma 19.68 implies that the
map fn : In → T has a bounded distortion:29 there exists C > 0 (independent of
n) such that

|Dgn(y)|
|Dgn(y′)| ≤ C for any y, y′ ∈ In.

Since X is completely invariant, we obtain

dens(X| In) ≥ C−1m(X).

By the bounded geometry of the nest of dynamical tilings (Lemma 19.71), the
intervals In fill a dense set of scales around x. Property (19.10) follows.

Assume by contradiction that T is decomposed into two (completely) invariant
measurable subsets of positive length: T = X1⊔X2. By the Lebesgue Density Points
Theorem, there is a point x ∈ X1 with dens(X1|x) = 1. Hence dens(X2|x) = 0,
contradicting the above assertion. �

We will see many further applications of the above method of transforming
certain qualities from small scales to big scales by expanding dynamics. We will
refer to it as dynamical magnification machinery.

19.13.7. Absolutely continuous invariant measure (acim).

Theorem 19.76. Any expanding circle map g ∈ C2 has a unique acim ρ dm,
where ρ is a positive continuous function. Moreover, If g is real analytic then so is
the density ρ.

Proof. Let us push forward the angular measure under the iterates of g,
(gn)∗(dm) = ρn dm. By formula (19.2),

(19.11) ρn(y) =
∑

x∈g−ny

1

Dgn(x)
=

dn∑

i=1

Dg−ni (y),

where g−ni stand for the local inverse branches of g−n near y, and the Dgn, Dg−ni
mean the derivatives calculated in the angular coordinate (since these derivatives
are positive, we do not need to take the absolute values). By Lemma 19.68, these
branches have bounded distortion, implying that the densities ρn have a uniformly
bounded oscillation: there exists C > 0 such that

(19.12)
ρn(y)

ρn(y′)
≤ C for all y, y′ ∈ T.

Since
∫

T

ρn dm = 1, we conclude that
1

C
≤ ρn(y) ≤ C for all y ∈ T. Integration over

a measurable subset Y ⊂ T implies thatm(g−n(Y )) ≍ m(Y ). By Proposition 19.18,
g has an acim (with a density bounded away from 0 and ∞).

In fact, by using Exercise 19.70 instead of Lemma 19.68, the oscillation bound
(19.12) can be made equicontinuos: For any ε > 0 there exists a δ > 0 such that

dist(y, y′) < δ =⇒ ρn(y)

ρn(y′)
< 1 + ε,

29Of course, it does not matter that this map is slightly non-invertible, as gn(∂In) = {1}.
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implying that the limiting density is continuous.

Let us show uniqueness. We have just constructed an acim µ ∼ m. Since m
is ergodic (by Proposition 19.75), so is µ, and so would be any other acim ν. But
then ν = µ by Proposition 19.11.

If g is real analytic, it admits a holomorphic extension to an annuli map A→ A′

as in Exercise 19.74. Moreover, the preimages An := g−n(A′) are T-symmetric an-
nuli covering A′ under gn with degree dn. Hence any point y ∈ T has a neighborhood
W (y) where g−n has dn holomorphic inverse branches g−ni . They provide us with
an analytic extension of densities (19.11) to W (y), and hence to a complex neigh-
borhood W of T. Moreover, by the Koebe Distortion Theorem, the branches g−ni
have a bounded distortion, implying that the densities ρn are uniformly bounded
in each W (y). By compactness of the circle, they are uniformly bounded in the
whole neighborhood W .

Hence the average densities

ρaven :=
1

n

n−1∑

k=0

ρk

are also uniformly bounded in W . By the Little Montel Theorem, they form a
normal family in W , so we can select a subsequential limit ρ. It is holomorphic in
W and its restriction to T is the density of some invariant measure. Since the acim
is unique, the conclusion follows. �

19.13.8. Deformation space. The deformation space of (degree 2) analytic ex-
panding circle maps is the space E ≡ E2 modulo analytic conjugacy. The term
relates it to Teichnmüller spaces of Reimann surfaces or to deformation spaces of
Kleinian groups. Indeed. Proposiotion 19.67 asserts that all expanding circle maps
g ∈ E are obtained by a qs deformation of a single map, e.g., of the square map
f0 : z 7→ z2.

Let us start with providing “best” representatives in analytic classes of E :
Proposition 19.77. Let g : T→ T be a analytic expanding circle map. Then g

is anlytically conjugate to a unique (normalized) analytic expanding Leb-preserving
circle map g◦ : T→ T.

Proof. Let ρ be the density of the acim for g. Then

φ(θ) =

∫ θ

0

ρ(x) dm = m[0, θ],

is a real analytic circle diffeomorshism such that φ∗(ρ dm) = dm. The g◦ :=
φ ◦ g ◦ φ−1 is a desired expanding map.

If there are two maps, g◦ and g̃◦, as above, then they are conjugate by an
orientation preserving diffeomorphism for which m is invariant. By Exercice 19.35,
it must be a rotation. �

Remark 19.78. The above Proposition is also valid in the Cr-category, r ≥ 2,
in place of the analytic one. However, the proof requires honest estimates of the
derivatives of the densities ρn. In the analytic setting, they are not needed due
to the Cauchy Estimate (Montel Theorem). It is an illustration of how analyticity
makes our life easier.
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The next assertion gives a sharp dichotomy for the deformation regularity:

Proposition 19.79. Let g and g̃ be two expanding analytic circle maps, and let
h be the orientation preserving conjugacy between them. Then h is either analytic
or singular with respect to the Lebesgue measure. Moreover, if g 6= g̃ and both maps
are normalized and Leb-preserving, then h is singular.

Proof. As above, let ρ dm and ρ̃ dm be the acim’s for g and g̃ respectively.
Since ρ dm is g-ergodic, h∗(ρ dm) is g̃-ergodic. Hence it is eather absolutely continu-
ous or totally singular. In the latter case, the map h is singular. In the former case,
h∗(ρ dm) is an acim for g̃. By uniqueness of such a measure, h∗(ρ dm) = ρ̃ dm.

Let φ and φ̃ be the analytic diffeomorphisms from Proposition 19.77 that re-
spectively bring g and g̃ to the normalized Leb-preserving models. Then the homeo-
morphism φ̃◦h◦φ−1 is Leb-preserving as well, and hence is a rotation (see Exercise
19.35); in fact, it is the identity as g◦ and g̃◦ are normalized. The conclusions
follow. �

Thus, the deformation space E can be realized as the space of normalized Leb-
preserving expanding maps g ∈ E.

As we have already mentioned (see §19.5), multipliers of periodic points remain
invariant under analytic (actually, smooth) conjugacies. It terns out, that together
they determine the analytic class:

Theorem 19.80. Two analytic expanding circle maps g, g̃ ∈ E are analytically
conjugate if and only if they have the same multipliers.30

Proof. Let us consider the dynamical tilings T n and T̃ n for our maps. Take
any two corresponding tiles In

ī
and Ĩn

ī
. Since gn(int In

ī
) homeomorphically covers

the whole puncured circle T r {β}, which contains int In
ī
, our tile In

ī
contains a

periodic point αn
ī

of period n (not necessarily the smallest one). Then Ĩn
ī

contains

the corresponding periodic point α̃n
ī
. Let ρn

ī
and ρ̃n

ī
be the derivatives of fn and f̃n

(respectively) at these points, which are equal to the appropriate powers of their
multipliers. By assumption, ρn

ī
= ρ̃n

ī
. Then the Distortion Lemma (19.68) implies

In
ī
≍ Ĩn

ī
. It follows that the conjugacy h between g and g̃ is bi-Lipschitz, and hence

absolutely continuous. By Lemma 19.79, it is real analytic. �

From this point of view, the multipliers form a complete space of coordinates
(“moduli”) for the space E.

19.13.9. Saw-like maps. Let I := [−1, 1], I− := [−1, 0], I+ := [0, 1]. The map

(19.13) Λ : I → I, g0 : x 7→ 2|x| − 1.

is called (symmetric linear) saw-like map. It is similar to the doubling map. Its
non-linear (symmetric) relatives are defined as even maps g : I → I such that:

• Both branches Λ± = (Λ : I± → I) are diffeomorphisms; one of them is oriention
preserving while the other is orientation reversing (for definiteness, we assume that
f | I+ is orientation preserving.

• Λ is expanding: |DΛ±(x)| ≥ λ > 1 for all x ∈ I± (one can also understand it in
the dynamical sense).

We refer to such maps as (symmetric non-linear) saw-like maps.31

30Here the periodic points of g and g̃ are rnaturally related by the conjugacy.
31Later on we will encounter more general maps
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Project 19.81. Develop a theory of saw-like maps that parallels the above
theory of expanding circle maps.

19.13.10. Gauss map. In many dynamical applications, one needs to general-
ize the above discussion to expanding maps with infinitely many branches. The
classical Gauss map serves as a good prototype for this situation.

The map G : (0, 1] → [0, 1], x 7→ {1/x} (where {y} stands for the fractional
part of y) is called the Gauss map. In terms of continued fraction expansions,

x =
1

s1 +
1

s2+...

≡ [s1, s2, . . . ], sn ∈ N,

the Gauss map acts a the shift: G(x) = [s2, s3, . . . ].

Remark 19.82. Here we formally associate to 0 the “conttinued fraction” [0]
and let the shift act on a single-digit fraction as σ[s] = [0].

Exercise 19.83. The Gauss map has the following properties:

(i) It is expanding: ∃ λ > 1 such that (G2)′(x) ≥ λ for all x ∈ (0, 1].

(ii) It has bounded distortion:

∃ C > 0 such that ∀ n ∈ N and ∀ x, y ∈
[

1

n+ 1
,
1

n

]
we have :

G′(x)
G′(y)

≤ C.

(iii) The measure dµ =
1

log 2

dx

1 + x
is invariant under G.

(iv) The measure µ is ergodic.

Exercise 19.84. Show that for a.e. x = [s1, s2, . . . , sn] ∈ (0, 1],

(i)
s1 + s2 + · · ·+ sn

n
→∞ as n→∞.

(ii) There exists a finite limit

lim
n→∞

n
√
s1 · s2 · . . . sn.

Calculate it.

The Gauss map has many further number-theoretic and dynamical applications.

19.13.11. Dynamical Cantor sets. Let us start with a simple observation that
the standard 1/3-Cantor K set can be dynamically generated by the tripling map

T3 : [0, 1]→ [0, 1], T3 : x 7→ 3x mod 1

Let I0 = [0, 1/3], I1 = [2/3, 1].

Exercise 19.85. Show that:

(i) K = {x ∈ [0, 1] : Tn3 x ∈ I0 ∪ I1, n = 0, 1, . . . };
(ii) T3 |K is naturally topologically conjugate to the Bernolli shift σ2;

(iii) length(K) = 0.

More generally, we can consider non-linear expaning maps of the same topo-
logical type as the tripling map. Such a map is defined on the union of two disjoint
closed intervals Ik ⊂ [0, 1], f : I0 ∪ I1 → [0, 1], so that each branch f : Ik → [0, 1] is
an orientation preserving diffeomorphism with f ′(x) ≥ λ > 1. Let

K ≡ Kf := {x ∈ [0, 1] : fnx ∈ I0 ∪ I1, n = 0, 1, . . . }.
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Exercise 19.86. Under the above circumstances, show that:

(i) K is a Cantor set;

(ii) f |K is topologically conjugate to the Bernoulli shift σ2;

(iii) State and prove a bounded distortion property for K;

(iv) Show that K is porous (uniformly in all scales) [see Appendix 2 below],
and hence length(K) = 0.

One can consider a more general situation when we have d disjoint intervals
Ik inside [0, 1], and a map f :

⋃
Ik → [0, 1] such that each branch f : Ik →

[0, 1] is an expanding diffeomorphism (not necessarily orientation preserving). The
generalization of the above Exercises to this situation is straightforward.

Such Cantor sets are called dynamical.

19.14. Markov shifts and maps.

19.14.1. Markov shifts. This section is based on the Perron-Frobenius Theory
summarized in the Appendix 3 below, §19.19.

Recall that Σ+
d stands for the full space of one-sided sequences of symbols

1, . . . , d. Let us consider a square matrix A = (aij)
d
i,j=1 of zeros and ones, called a

transit Markov matrix. Let

Σ+
A = {̄i ∈ Σ+

d : Ainin+1
= 1, n = 0, 1, . . . }.

In other words, we consider the space of all one-sided paths in the oriented graph ΓA
corresponding to A. This space is obviously closed in Σ+

d and invariant under the
shift σ. The corresponding subshift σ ≡ σA : Σ+

A → Σ+
A is called the (Topological)

Markov shift or subshifts of finite type.

Exercise 19.87. The Markov shift σA is topologically transitive iff the transit
matrix A is irreducible. In this case:

(i) Periodic points are dense in ΣA and |FixσnA| ∼ rn, where r = r(A) is the spectral
radius of A;

(ii) Iterated preimages of any point x ∈ ΣA are dense in ΣA, and |f−n(x)| ≍ rn;
(ii) σA is topologically exact (or, equivalently: topologically mixing) iff A is primi-
tive.

Using the Spectral Decomposition for Markov graphs, we conclude

Corollary 19.88. Let A be irreducible. Then the space Σ+
A is decomposed into

finitely many closed subsets,

Σ+
A =

p⊔

i=1

Yi

cyclically permuted by σ and such that σp : Yi → Yi is topologically exact.

19.14.2. Markov maps. A tiling32 X =

d⋃

i=1

Xi is called (unbranched) Markov if

(M1) the map f is injective on each Xi, and f(X◦i ) is open;

(M2) Markov property: f(X◦i ) ∩X◦j 6= ∅ =⇒ f(Xi) ⊃ Xj .

32also referred to as a partition
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To such a tiling, we can associate the following Markov matrix A = (aij)
d
i,j=1:

(19.14) aij = 1 if f(Xi) ⊃ Xj , aij = 0 otherwise.

Then
f(Xi) =

⋃

j:aij=1

Xj .

Exercise 19.89. Let f be an expanding map with respect to a Markov tiling
(Xi). Then the inverse coding map clY ◦ → X◦ from Exercise 19.49 has the property
that clY ◦ = Σ+

A.

Such maps f are called Markov. They are also called Topological Markov Chains
(inthe Russian literature) and subshifts of finite type (in the Western one).

Note that Bernoulli maps introduced in §19.11.3 are exactly Markov maps with
the strictly positive matrix A, i.e., aij = 1 for all i, j.

A Markov map is called irreducible/primitive if the corresponding Markov ma-
trix A is such.

Here is an interesting class of examples:

Exercise 19.90. (i) Let f : I → I be a piecewise monotone map of the inter-

val, and let I =
d⋃

k=1

Ik be the tiling of I into monotonicity intervals. If the set of

boundary points
⋃
∂Ik is forward invariant, then f is a Markov map.

(ii) Assume that f is smooth and expanding on each Ik, i.e., there is a λ > 1 such
that |f ′(x)| ≥ λ for any x ∈ ⋃ I◦k . Then there exists a natural semi-conjugacy
between the corresponding Markov shift σA and f . This semi-conjugacy is one-to-
one except countably many points (iterated preimages of boundary points ∂Ik) over
which it is two-to-one.

(iii) In particular, consider saw-like maps: continuous expanding maps Λ as above
with two intervals of monotonicity, I1 and I2, on which f has opposite orientation.
Such a maps is Markov iff its turning point (the common point of I1 and I2) is
periodic or preperiodic. Show that in the periodic case, the associated matrix A is
irreducible.

Exercise 19.91. Consider the (orientatin reversing) “anti-doubling” map of
the circle

T ≡ T−2 : T→ T, θ 7→ −2θ mod 1.

Using the fixed points of T , semi-conjugate T to the Markov shift σA with 3 × 3
matrix A = (1− δij).

More generally, we will often encounter the following situation. A family of
tiles (Xi)

d
i=1 is called Markov if it satisfies properties (M1)–(M2). Let us consider

the maximal closed invariant subset K ⊂ ⋃Xi (described as in (19.6)). As above
(19.14), we can naturally associate to it a Markov matrix A. Similarly to the
Bernoulli coding of Exercise 19.53, we now obtain a Markov coding of our dynamics:

Exercise 19.92. If f is expanding with respect to a Markov family of tiles then
there is a semi-conjugacy h : Σ+

A → K which is one-to-one over the set

K◦ := {x ∈ K : fnx ∈
⋃

intXi, n = 0, 1, . . . }.
If f(Xi) ⋑ Xj as long as aij = 1, then h is a conjugacy.
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19.14.3. Balanced Markov measures. The Bernoulli measure for the full shift
has two natural Markov versions. Let us say that a measure µ on ΣA ≡ Σ+

A is
balanced if any two admissible cylinders of the same rank have comparable measures:

µ(Σnī ) ≍ µ(Σnj̄ ).
As there are ≍ rn of cylinders of rank n, where r = r(A) is the spectral radius of
A, for a balanced measure µ we have:

µ(Σnī ) ≍ r−n

So, all balanced measures belong to the same measure class (with bounded mutual
Radon-Nikodim derivatives). Note also, that any of them has full support in ΣA.

Here is a particularly nice situation. If the shift σ : ΣA → ΣA has a a.e.-
constant Jacobian Jacm σ with respect to some quasi-invariant measure m then
this Jacobian must be equal to r, and

(19.15) m(Σni0...in−1
) = r−nm(Σi0),

so such a measure is balanced.

Proposition 19.93. Let σ : ΣA → ΣA be an irreducible (one-sided) Markov
shift. Then in the balanced measure class, there is a unique measure with constant
Jacobian.

Proof. Let mi := m(Σi). As for any ī = (i0 . . . in−1) we have

m(Σī) =
⊔

aik=1

m(Σī k), where i ≡ in−1,

the Kolmogorov compatibility condition for the measure (19.15) with constant
Jacobian amounts to

mi =
1

r

∑
aikmk,

saying that m := (m1 . . .mn) is an r-eigenvector for A. By the Perron-Frobenius
Theorem, such an eigenvector m exists and is unique in the probability simplex
∆, and moreover m > 0. This proves the existence and uniqueness of the measure
with constant Jacobian. �

Exercise 19.94. The balanced measure class is ergodic.

19.14.4. Markov processes. Let us consider a finite space V = {1, . . . , d}. (Think
of it as the space of states of some physical system or a net of sites.) Informally
speaking, a Markov process is a random process on this space whose future depends
only on the current moment, but not on the past history. Such a process is deter-
mined by an initial distribution q = (q1 . . . qd) of states and a d × d transit matrix
P = (pij) of conditional probabilities of passing from a state i to j. (Note that the
vector q belongs to the probability symplex ∆, while the matrix P is stochastic.)
This data detemines a probability measure µ on the space Σ+

d which gives masses

µ[i0i1 . . . in−1in] = qi0pi0i1 . . . pin−1in

to the cylinders. Indeed, the stochastic property of P ensures the compatibility
condition for these masses:

µ[i0i1 . . . in−1] =
∑

j

µ[i0i1 . . . .in−1 j]
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If µ is shift invariant, it is called the stationary measure for the Markov process.
It amounts to the dual compatibility condition

µ[i0i1 . . . in−1] =
∑

j

µ[j i0i1 . . . .in−1]⇐⇒
∑

j

qjpji = qi ∀ i ≡ i0.

meaning that q is an invariant row for P (or, in other words, an invariant column
for the transposed matrix P ∗). Now the Perron-Frobenius Theorem immediately
implies:

Proposition 19.95. For any irreducible stochastic matrix P , there exists a
unique stationary Markov process (i.e., a unique shift invariant measure) with the
transit matrix P ).

19.14.5. Invariant balanced measure.

Theorem 19.96. Let σ : ΣA → ΣA be an irreducible (one-sided) Markov shift.
Then in the balanced measure class, there is a unique invariant measure.

This measure is naturally called the balanced invariant measure. Later on, it
will be interpreted as the measure of maximal entropy (see §46.10.7).

Proof. Let
pij =

aijuj
rui

be the stochastic matrix conjugate to A/r, where r = r(A) (see Lemma 19.124),
and let (qi) ∈ ∆ be its invariant row. By Proposition 19.95, the Markov process
with the initial distribution (qi) and the transition probabilities (pij) provides us
with an invariant measure µ for σA. This measure is balanced as for any admissible
cylinder [i0 . . . in] we have

µ[i0 . . . in] = qi0

n−1∏

k=0

uik+1

ruik
=

1

rn
qi0uin
ui0

≍ 1

rn
.

Uniqueness follows from the ergodicity of the balanced measure class (Exer-
cise 19.94) and Proposition 19.11. �

19.14.6. Equidistribution of periodic points.

Exercise 19.97. For an irreducible topoloigical Markov map σ ≡ σA, we have

(i)
|Fix(σp)| = trAp ∼ rp ≍ ‖Ap‖,

where r ≡ r(A) is the spectral radius of A, and ‖ · ‖ is any norm in the space of
matrices.

(ii) For any ε > 0 there exists an N such that any orbit (fkx)n−1k=0 of an arbitrary
length n ∈ Z+ can be ε-shadowed by a piece (fkα)n−1k=0 of a periodic orbit of period
p ≤ n+N :

d(σkx, σkα) < ε, k = 0, . . . , n− 1, fpα = α.

The last property is called the Shadowing property.

As in the expanding circle case (see Exercise 19.65), we have the following
equidistribution propertty:
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Theorem 19.98. For an irreducible topoloigical Markov map σ ≡ σA, periodic
points are equidistributed with respect to the invariant Markov measure:

1

|Fix(σp)|
∑

α∈Fix(σp)

δα ∼
1

rp

∑

α∈Fix(σp)

δα → µ as p→∞.

Proof. Take any limit ν of the measures in the left-hand side. It is an invariant
measure in the balanced measure class. The latter follows from the property that
for some N any cylinder of rank n contains at least one but at most a bounded
number of periodic points of period ≤ n+N (compare with the above Shadowing
property). The conclusion follows. �

Exercise 19.99. State and prove a similar equidistribution result for the iter-
ated preimages.

19.14.7. Markov interval maps: model with constant slope. Using the Markov
coding, the above results can be now transferred to expanding interval Markov
maps (as in Exercise 19.90):

Exercise 19.100. Let f : I → I be an expanding interval Markov map with
and irreducible transition matrix.

(i) Define a quasi-invariant balanced measure for f ; show that all of them belong to
the same measure class with full support.

(ii) Show that there exists a unique balanced measure m with constant Jacobian.

(iii) Show that there exists a unique invariant balanced measure µ.

(iv) Show that periodic points are equidistributed with respect to µ.

These results have a very interesting application. Let us say that a piecewise
monotone interval map has a constant slope λ > 1 if it is affine on each interval Ik
with slope whose absolute value is equal to λ.

Exercise 19.101. (i) Let f be an expanding Markov interval map with an
irreducible matrix A. Then f is topologically conjugate to a map with constnt slope
λ > 1.

(ii) Let l(f) denote the number of intervals of monotonicity of f . Then

λ = lim
n→∞

n
√
l(fn) = lim

n→∞
n
√

#Fix(fn).

19.15. Nielsen map associated to a Fuchsian group. In this section we
will outline a classical construction of Markov circle maps associated to Fuchsian
groups. This allows one to reduce many aspects of the Teichmüller Theory to the
Dynamics of a single map.

Similarly to the interval case (see Exercise 19.90), being “Markov” in the circle
case amounts to having an invariant finite set of pounts X ⊂ T. Let us say that a
map g is orbit equivalent to a group Γ if grand orbits of g coincide with orbits of Γ.

Let us start with Schottky groups. Consider four disjoint closed intervals, I,
I ′, J , J ′, on the cirlce T such that the pairs I & I ′ and J & J ′ are linked. Let
γ : (D, ∂I) → (D, ∂I ′) be a hyperbolic Möbius automorphism of D that stretches
I to T r I ′, and let δ : (D, ∂J) → (D, ∂J ′) be a similar automorphism for J . The
group Γ ⊂ PSL(2,R) generated by γ and δ is an example of a Schottky group.
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Exercise 19.102. (i) The complement of the four hyperbolic half-planes based
upon the intervals I, I ′, J, J ′ is a fundamental domain for Γ.

(ii) Γ is a free Fuchsian groups of a second kind.

(iii) The quotient D/Γ is a torus with a hole.

(iv) Define and generalize the above results to Schottky Fuchsian groups with n
generators.

Let us now define a map f : I ∪ I ′ ∪ J ∪ J ′ → T as follows:

f | I = γ, f | I ′ = γ−1, f | J = δ, f | J ′ = δ−1.

Exercise 19.103. (i) f is an expanding Markov map.

(ii) The corresponding dynamical Cantor set Λ coincides with the limit set of Γ.

(iii) f is orbit equivalent to Γ.

Let us now consider the modular group Γ = PSL(2,Z) acting on the closed
upper half-plane (see §2.4.12).

Define the following circle map g : R̂∗ → R̂∗:

(19.16) g(x) =





δ(x) = −1/x if 0 < |x| < 1,

γ−1(x) = x− 1 if x ≥ 1,

γ(x) = x+ 1 if x ≤ 1.

Let T be the first return of g to the interval [0, 1).

Exercise 19.104. Show that
(i) g is orbit equivalent to Γ, and

(ii) T is the second iterate of the Gauss map;

(iii) Conclude that two points, x = [a1a2 . . . ] and y = [b1b2 . . . ],33 in the interval
[0, 1) belong to the same Γ-orbit iff there exist k, l ∈ N such that

an+2l = bn+2k, n = 0, 1, . . . .

Let us now conside groups uniformizing closed Riemann surfaces.

Proposition 19.105. Let Γ be a Fuchsian group acting on the disk D with
a compact quotient S = D/Γ. Then Γ is orbit equivalent to a (discontinuous)
piecewise Möbius expanding Markov map g ≡ gΓ : T → T whose Möbius branches
are generators of Γ.

Such a maps is called a Nielsen map associated with Γ.

Exercise 19.106. Consider the congruence subgroup Γ2 from §2.4.13. The
vertices of the fundamebtal triangle ∆ tessellate T into three intervals Ik. Define a
“modular map” f : T→ T by letting f | Ik be the reflection in the corresponding side
γk of ∆. Then:

(i) f is an orienation reversing double covering of T;

(ii) f admits a natural semi-conjugacy with the Markov shift σA from Exercise 19.91;

(iii) f is conjugate to the anti-doubling map T−2 (the conjugacy is related to the
“Minkowski question mark function”).

19.16. Inverse limits and Natural extensions.

33Recall that this notation stands for the continued fraction expansions.
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19.16.1. General construction. Let us consider a sequence of metrizable topo-
logical spaces X−n and surjective continuous maps

X0 ←
f0
X−1 ←

f−1

X−2 ←
f−2

. . .

The inverse limit of this sequence, lim
←−

fn, is the space

X̂ ≡ lim
←−

(f−n : X−n−1 → X−n) =

= {x̂ = (x0, x−1, x−2, . . . ) : x−n ∈ X−n, fn(x−n−1) = x−n}
endowed with the weak topology. It is naturally projected to all the spaces involved:

(19.17) π−n : X̂ → X−n, x̂ 7→ x−n.

By general topology, X̂ is metrizable. Moreover, if all the X−n are compact then
so is X̂.

Exercise 19.107. (i) If all the X−n are finite spaces (with discrete topology)
then X̂ is a Cantor set.

(ii) If all the X−n are topological groups, while the f−n are continuous group en-
domorphisms endomorphisms, then X̂ is endowed with a natural toplogical group
structure.

19.16.2. Adding machine. Let u snow consider a sequence (pn)∞n=0 of increasing
natural numbers pn ∈ N, pn ≥ 2, such that pn+1 is a multiple of pn. Let q0 = p0,
and qn = pn/pn−1 (for n ≥ 1) be the corresponding relative periods; denote this
sequence q = (qn)

∞
n+0.

Letting Z/pnZ → Z/pn+1Z be the natural homomorphisms, we obtain the
inverse limit

Zq := lim
←−

Z/pnZ,

By Exercise 19.107, it is a compact metrizable group, and in fact, a ring with unit
e = (1, 1, . . . ). It is called the q-adic ring. Translation by this unit τq : Zq → Zq,
x 7→ x+ e, is called the (q-adic) adding machine or odometer.

Exercise 19.108. The adding machine is minimal and uniquely ergodic. Its
only invariant measure is the Haar measure on Zq, which is equal to the limit of
the homogeneous measures on the cyclic groups Zpn .

In the stationary case, q = (q, q, q, . . . ), the ring Zq ≡ Zq and the machine are
called q-adic. In particular, in case q = 2 they are called dyadic.

19.16.3. Natural extension. This is a general useful construction that “makes”
any map invertible.

Let us assume that in the inverse limit definition, all the spaces X−n and all
the maps f−n are the same, X−n = X and f−n = f for n ∈ N, so we are given
just one surjective continuous map f : X → X. Then X̂ becomes the space of its
backward orbits

X̂ = {x̂ = (x ≡ x0, x−1, x−2, . . . ) : x−n ∈ X, f(x−n−1) = x−n}.
A nice feature of this special case is that f lifts to a homeomorphism f̂ : X̂ → X̂,

f̂(x̂) = (fx−n)
∞
n=0 = (fx0, x0, x1, . . . ),
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whose inverse is the “shift” given by forgetting the first coordinate: f̂−1(x̂) =

(x−n)∞n=1. Moreover, the projection π ≡ π0 : X̂ → X (19.17) is equivariant:
π ◦ f̂ = f ◦ π. This lift is called the natural extension of f .

Exercise 19.109. (i) In case when the original map f is a homeomorphism, π
is also a homeomorphism conjugating f̂ and f .

(ii) There is a natural one-to-one equivariant correspondence between periodic points
of f and f̂ .

Exercise 19.110. There is a natural one-to-one correspondence between in-
variant measure for f and f̂ .

Along with the one-sided Bernoulli shift σ : Σ+
2 → Σ+

2 introduced in §19.10, we
can consider the two sided Bernoulli shift σ̂ : Σ2 → Σ2, where Σ2 is the space of two-
sided dyadic sequences (in)∞n=−∞ and (σ̂)n = in+1 (so, a sequence is shifted by one
to the left). It is a homeomorphism of Σ2. More generally, we can consider the two-
sided Bernoully shifts σ̂d in d symbols and two-sided Markov shifts σ̂A : ΣA → ΣA
(see §19.14.1).

Exercise 19.111. (i) These two-sided shifts are the natural extensions of the
corresponding one-sided shifts.

(ii) Specify the construction from Exercise 19.110 for the shifts σA and σ+
A .

19.16.4. Baker transformormation, horseshoe, solenoid. Let us introduce sev-
eral illuminating examples.

Let us consider the unit box B = I× I. Let us tile it into two vertical and two
horizontal rectangles (respectively):

Πver
0 := {(x, y) ∈ B : 0 ≤ x ≤ 1/2}; Πver

1 : {(x, y) ∈ B : 1/2 ≤ x ≤ 1};
and

Πhor
0 := {(x, y) ∈ B : 0 ≤ y ≤ 1/2}; Πhor

1 : {(x, y) ∈ B : 1/2 ≤ y ≤ 1};
Let T̂ : B→ B be the picewise affine map that affinely maps each vertical rectangle
Πver
k onto the corresponding horizontal rectangle Πhor

k , k ∈ {0, 1} (for instance it
acts as (x, y) 7→ (2x, y/2) on Πver

0 . It is called the baker transformation.

Exercise 19.112. (i) The projection π : (x, y) 7→ x semi-conjugates T̂ to the
doubling map T turning T̂ into the natural extension of T .

(ii) There is a natural semi-conjugacy between the two-sided Bernoulli shift σ :

Σ2 → Σ2 and T̂ . It is generically one-to-one (over all points except those whose
orbits land on the vertical boundary of B).

(iii) Vertical sections Lver
x := {(x, y) : y ∈ I} of B are specified by the “future”

itinerary (i0i1 . . . ). Moreover,

dist(fnx, fny) =
1

2n
dist(x, y) as n→ +∞.

For this reason, the Lver
x are called “local stable manifolds” W s

loc(x).

(iv) Similarly, horizontal sections Lhor
y of B are specified by the “past” itinerary

(i−1i−2 . . . ). Moreover,

dist(fnz, fnz) =
1

2n
dist(z, z′) as n→ −∞ for any z, z′ ∈ Lx.
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They are called “local unstable manifolds” Wu
loc(x).

(vi) Global unstable manifolds are defined as

W s(z) := {z′ : dist(fnz′, fnz)→ 0 as n→ +∞}

(and then dist(fnz, fnz′) ≤ C 1

2n
as n→ +∞ for some C = C(z).) Show that

W s(z) =
⋃
Lx′ , where the union is taken over all x′ ∈ I with the same “tale” as x,

i.e.,
(i′ni

′
n+1 . . . ) = (inin+1 . . . ) for some n = n(z′).

(In other words, x′ belongs to the grand fiber of x.)

(vii) Formulate the similar statement for “global unstable manifolds” Wu(z).

(viii) T̂ preserve the Lebesgue measure on B, which corrresponds to the Bernoulli
measure for σ.

(ix) There is a natural one-to-one correspondence between invariant measures for
the doubling map and the baker transformation.

19.17. Appendix 1: Baire category. One says that a subset Y ⊂ X is of
first Baire category if it is a countable union of nowhere dense subsets. According
to the Baire Category Theorem, if X is complete, then the complement X r Y of a
set of first category is everywhere dense.

In the topological setting (on a complete space X), subsets Y ⊂ X of first
category are viewed to be negligible Accordingly, all other sets are considered to be
topologically essential. If a subset Y ⊂ X has a topologically negligible complement,
we say that it has full category or it is residual.

Some property depending on a point x ∈ X is called generic if it is satisfied on
a subset of full category. (In this case, we also say that this property is satisfied
generically, or for a generic point x).

A subset Y ⊂ X has type Gδ if it is a countable intersection of open sets.
Complementary sets are countable unions of closed subsets; such sets have type Fσ.
Notice that any neglectable set Y ⊂ X is contained in a neglectable set Y ′ of type
Fσ. Dually, any residual set Y contains some residual subset Y ′ of type Gδ.

Exercise 19.113. Give an example of a set X ⊂ [0, 1] such that X has zero
measure but full category (or the other way around).

19.18. Appendix 2: Lebesgue Density Points. Given two measureable
sets, X and D in R2 with m(D) > 0, we let

dens(X |D) :=
m(X ∩D)

m(D)
.

For a point a ∈ R2, the upper and lower density of X at a are defined as

dens(X | a) := lim sup
r→0

dens(X |D(a, r)), dens(X | a) := lim inf
r→0

dens(X |D(a, r)).

The density at a is defined as

dens(X | a) := lim
r→0

dens(X |D(a, r))

if the limit exists. A point a is called a Lebesgue density point of X if dens(X | a) =
1. According to the Lebesgue Density Points Theorem, almost all a ∈ X are density
points.
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In the above definition, one can replace round disks with domains of bounded
shape filling a dense set of scales (and it is important for dynamical applications):

Exercise 19.114. Let C > 1. A point a is a density point for a measurable set
X ⊂ R2 iff there is a nest of domains Dn ∋ a with the following properties:

• They shrink: diamDn → 0;

• They have a C-bounded shape around a;

• They fill a C-dense set of scales in the sense that diamDn+1 ≥ C−1 diamDn;

• dens(X |Dn)→ 1 as n→∞.

We say that X is porous at z ∈ X if there is a κ ∈ (0, 1) and a sequence of
radii rn → 0 such that each disk D(z, ρn) contains a disk D(ζ, κρn) ⊂ D(z, ρ)rX.
Informally speaking, X has definite gaps in arbitrary small scales.

By the Lebesgue Density Points Theorem, porous sets have zero area.

Note that all nowhere dense compact sets are porous in moderate scales:

Exercise 19.115. Let X be a nowhere dense compact subset of R2. Then for
any ε > 0 there is a κ = κ(ε) ∈ (0, 1) such that any disk D(z, r) with z ∈ X and
r ≥ ε contains a gap D(ζ, κr) ⊂ D(z, r)r J .

Let us say that a setX ⊂ C is porous at z ∈ X in all scales if there is a κ ∈ (0, 1)
such that any disk D(z, ρ), ρ ∈ (0, 1) contains a disk D(ζ, κρ) ⊂ D(z, ρ) r X.
Informally speaking, X has definite gaps in all scales.

A set J is called uniformly porous in all scales if the above property holds for
all z ∈ J (with the same κ).

We can also naturally define density points and porousity at z with respect to
some family of domains containing x.

Exercise 19.116. Let (Dn) be a shrinking nest of ovals of a bounded shape
around z that fill a dense set of scales.

(i) If X is porous at z with respect to the nest (Dn) then X is porous at z.

(ii) If z is a density point of X with respect to (Dn) then z is a density point of X.

Exercise 19.117. Show that a Cantor set K in R or C with bounded geometry
is uniformly porous in all scales, and hence has zero Lebesgue measure (in the
corresponding space).

Under maps with bounded Jac-distortion, density of sets is distorted by a
bounded amount:

Exercise 19.118. Let f : D → ∆ be a diffeomorphism between domains in R2

that has C-bounded distrotion:
Jac f(x)

Jac f(x′)
≤ C for any x, x′ ∈ D.

Then for any measureable X ⊂ D we have

C−1 dens(X |D) ≤ dens(f(X)|∆) ≤ C dens(X |D).

Of course, all of the above admits a straightforward generalization to subsets
of any Euclidean space Rn, and in particular, of the real line R. In the latter case,
we can also talk about one-sided densities at a, dens±(X | a) (also: upper and lower
ones) defined in terms of intervals (a, a+ ε) and (a− ε, a) respectively.
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Exercise 19.119. For a measurable set X ⊂ R, a point x ∈ X is a density
point iff it is a one-sided density point (on both sides). Equivalently, it is a density
point with respect to the family of all intervals J ∋ x.

19.19. Appendix 3: Perron-Frobenius Theory. Perron-Frobenius Theory
studies spectral properties of non-negative matrices A (or, more generally: opera-
tors in linear vector spaces preserving some cone). These properties depend largely
on the distribution of positive elements in A which can be described in terms of an
associated graph ΓA. So, let us start with a bit of graph theory.

19.19.1. Spectral decomposition for graphs. Let V = {vi}di=1 be a finite set, and
let Γ ≡ Γ | V be an oriented graph with vertices vi. For a subset W ⊂ V, we let
Γ |W be the restriction of Γ to W.

Let us introduce the following relation on V: vi � vj if there is an oriented
path from vi to vj . It is transitive but not necessarily reflexive. A vertex vi is
called recurrent if vi � vi, i.e., there exists an oriented loop based at vi. Let R
be the set of recurrent vertices. Restricted to R, our relation becomes reflexive.
Moreover, the non-recurrent vertices can be re-labeled so that vj ≻ vi =⇒ j > i,
vi, vj ∈ V rR.

A graph is called recurrent if all its vertices are recurrent, i.e., V = R. For a
recurrent graph, the relation � is reflexive.

However, this relation is usually not anti-symmetric. So, for a recurrent graph
let us consider the equivalence relation

vi ∼ vj if vi � vj and vj � vi, vi, vj ∈ Γ.

and the corresponding equivalence classes Ek, k = 1, . . . , l. The restrictions Ek ≡
Γ | Ek are called irreducible components of Γ. The relation � becomes a partial order
≻ on the space of irreducible components.

A recurrent graph Γ is called irreducible if it has a single irreducible component
(i.e., E1 = V). It is called asymptotically irreducible if it has a unique maximal
irreducible component El, i.e., for any vertex vi, there is a path leading from vi to
El.

Two extreme examples of irreducible graphs Γ | E are provided by a permutation
graph generated by a cyclic permutation σ : E → E (i.e., there is an arrow from vi
to vj iff vj = σ(vj)), and the full graph for which all (ordered) pairs of vertices are
connected. We will see momentarily that any irreducible graph can be understood
in terms of these two extreme cases.

For n ∈ Z+, let Γn be the graph with the same vertices as Γ whose arrows are
(oriented) paths in Γ of length n. The graph Γ is called primitive if Γn is full for
some n ∈ Z+.

Exercise 19.120 (Spectral Decomposition for graphs). Any irreducible graph

Γ ≡ Γ | E admits a decomposition into primitive components: E =

p⊔

i=0

Pk, where the

arrows from Pk go only to Pk+1, k ∈ Z/pZ, and the blocks Γ | Pk are primitive.

The number p of the primitive components above is called the period of Γ. We
will also refer to the primitive components as basic sets.
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Figure 19.3. An irredicible Markov matrix of period 2 and its graph.

19.19.2. Spectral Decomposition for non-negative matrices. Let us consider a
d × d matrix A = (aij)

d
i,j=1. It is is called non-negative (A ≥ 0) if aij ≥ 0, and it

is called positive (A > 0) if aij > 0 for all i, j. (A similar terminolody is used for
vectors u ∈ Rd.)

Let us asscociate to such a matrix an oriented graph Γ ≡ ΓA supported on the
set V = {vi}di=1 of d vertices such that vi is connected to vj by an arrow iff aij > 0.
Notice that the graph Γn corresponds to the matrix An.

A non-negative matrix A is called recurrent/irreducible/primitive if the corre-
sponding graph ΓA is such. Notice that A is primitive iff AN > 0 for some N ∈ Z+.

Let us label the irreducible components Ek so that Ek ≻ El =⇒ k > l. The
corresponding spaces Ek ⊂ Rd generate an invariant flag, i.e., the sums

Ek :=
k⊕

j=0

Ej
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are invariant under A. The operators Ak induced on the factor-spaces Ek/Ek−1 ≈
Ek (where E0 ≡ {0}) have non-negative irreducible matrices (in the bases coming
from the original basis of Rd) with graphs Γ | Ek; they are called irreducible compo-
nents of A. This brings the matrix A to a block-triangular form, with blocks Ak,
which is called the decomposition of A into irreducible components.

Further decomposition of an irreducible component Ek into the cycles of prim-
itive compontents Pkl leads to decomposing the corresponding space Ek into di-

rect sum
pk⊕

l=0

Pkl so that Ak : Pkl → Pk,l+1, and the operators Apk : Pkl → Pkl,

l ∈ Z/pkZ, are primitive. This brings the irreducible block Ak to a block-cyclic
form. It is called the Spectral Decomposition of a recurrent non-negative matrix A.

19.19.3. Boundary spectrum. Recall that the set of eigenvalues λi of A is called
its spectrum, specA, and the maximum of the |λi| is called the spectral radius r(A).
The set of eigenvalues λi on the cirle |λ| = r(A) is called the boundary spectrum
specb(A).

Exercise 19.121. We have: specAr spec(A |R) ⊂ {0}, so

specbA = specb(A |R), r(A) = r(A |R).
This reduces the study of the boundary spectrum to the recurrent case.
The decomposition of a recurrent matrix A ≥ 0 into irreducible components

Ak brings it to the block-triangular form, implying:

specA =
⋃

specAk, r(A) = max r(Ak).

To understand spectral properties of an irreducible matrix, let us start with
the (main) primitive case:

Perron-Frobenius Theorem (Primitive case). For any primitive matrix
A ≥ 0, we have:

(i) The spectral radius r ≡ r(A) is a simple eigenvalue.

(ii) The corresponding eigenvector u ∈ Rd can be selected positive.

(iii) There are no other eigenvalues in the boundary spectrum.

(iv) There exists ρ ∈ (0, r) such that for any w ∈ Rn,

Anw = c(w)rnu+O(ρn)

(with a uniform constant in the error term).

Proof. The primitive case is immediately reduced to the positive one, so we
can assume that A > 0 in the first place. Let us consider the probabilistic symplex

∆ := {x = (xi) ∈ Rd : xi ≥ 0, φ(x) = 1}, where φ(x) =
∑

xi.

Since A > 0, we have a well defined continuous transformation

g : ∆→ int∆, x 7→ Ax

φ(Ax)
.

Let L be the family of straight intervals L ⊂ ∆ with ∂L ⊂ ∂∆. Let us endow
each L with the hyperbolic metric dL. For any two points x, y ∈ ∆, we let
δ(x, y) = dL(c, y), where L is the the interval of our family L passing through x
and y. Notice that δ(x, y) is comparable with ‖x − y‖ on any compact subset of
int∆ (in particular, on the image g(∆)).
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Any L ∈ L is projectively mapped by g to the interior of some L′ ∈ L.
Moreover, g(L) has a uniformly bounded hyperbolic diameter in L′. By the 1D
Schwarz Lemma, g is uniformly contracting from the hyperbolic metric of L to the
hyperbolic metric of L′. Hence δ(gnx, gny) → 0 uniformly exponentially, implying
that

(19.18) ‖gnx− gny‖ → 0 uniformly exponentially for x, y ∈∆.

Hence g has a unique fixed point u ∈ int∆, and gnx→ u uniformly exponentially
for x ∈ ∆. This fixed point is a positive eigenvector u > 0 corresponding to a
positive eigenvalue r > 0.

Let us normalize A so that r = 1, (i.e., let us replace A with A/r). Then (19.18)
translates to the property An → P exponentially fast, where P is the projection
onto the line through u with KerP = {x ∈ Rn : Anx → 0}. It follows that the
spectral radius r0 of A | KerP is < 1. Moreover, r0 = max{|λ| : λ ∈ specAr{r}}.

Now all the conclusions follow (with any ρ > r0 and c(w)u = Pw). �

The difference r − r0 in the above proof is called the spectral gap: it controls
the rate of convergence of the (normalized) An to the projection P .

Perron-Frobenius Theorem (Irreducible case). For an irreducible matrix
A of period p, we have:

(i) The spectral radius r ≡ r(A) is a simple eigenvalue.

(ii) The corresponding eigenvector u can be selected positive.

(iii) The boundary spectrum is obtained from r by rotating it by the cyclic group

λ 7→ e(l/p)λ, l ∈ Z/pZ.

(iii) There exists ρ ∈ (0, r) such that for any w ∈ Rn,

1

n

n−1∑

k=0

Akw = c(w)rnu+O(ρn)

Proof. The proof illustrates the averaging method widely used in the Repre-
sentation Theory.

By rescaling A, we reduce the result to the case r = 1. Let us consider the
Spectral Decomposition into the primitive components,

Rd =

p−1⋃

l=0

Pl,

and let u ∈ P0 be the positive invariant vector for Ap constructed in the primitive
case. Then for any ε := e(m/p), m ∈ Z/pZ, the vector

um :=

p−1∑

l=0

ε−lAlu

is a positive eigenvector corresponding to the eigenvalue ε.
We leave the reader to supply the rest of the argument. �

Exercise 19.122. Deduce from the above the general form of the Perron-
Frobenius Theorem: For any non-negative matrix A ≥ 0, the spectral radius r ≡
r(A) itself is an eigenvalue of some multiplicity m. The corresponding basis of
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eigenvectors uk ∈ Rd, k = 1, . . . ,m, can be selected positive. The boundary spec-
trum is the union of k r-scaled cyclic groups of some orders pk,

specb(A) =

m⋃

k=0

{e(l/pk) r : l ∈ Z/pkZ}.

19.19.4. Stochastic matrices. A non-negative matrix P = (pij) is called sto-
chastic if all its rows pi := (pij)j are probability distributions:

∑

j

pij = 1 ∀ i,

i.e., all the pi belong to the probability simplex ∆. Equivalently, the unit vector
1 := (1 . . . 1) is invariant under P .

Exercise 19.123. The spectral radius of a stochastic matrix is equial to 1.

Lemma 19.124. Any irreducible non-negative matrix A with spectral radius 1
is conjugate to a stochastic matrix.

Proof. By the Perron-Frobenius Theorem, A has a positive invariant vector
(ui) ∈ Rd+. Let U be the diagonal matrix with the diagonal elements ui. Then

U−1AU = (u−1i aijuj)

is the desired stochastic matrix. �

19.19.5. Weighted permutations. Let us introduce an important example of an
irreducible matrix. A matrix A ≥ 0 is called a weighted permutation if its graph
ΓA is a permutation σ of vertices: aij 6= 0 iff j = σ(i). Such a matrix has a block
structure with the blocks corresponding to the cycles of σ. The multiplier of a cyclic
weighted permutation is defines as

λ(A) =
∏

j=σ(i)

aij

Exercise 19.125. If A is a p× p weighted permutation matrix then

r(A) = p
√
λ(A).

A Markov chain is called a permutation iff its matrix A is a weighted permuta-
tion (with all the weights being equal to 1).

Notes

Section “General Dynamics and Ergodic Theory” of the bibliography lists sev-
eral introductory text books in these areas: Halmos (for the first reading in the
Ergodic Theory) [Ha2] Brin-Stuck [BS] (for first reading in the Hyperbolic The-
ory), Katok-Hasselbatt [KaH] (for a broad variety of topics), supplemented with
more advanced sources: Kornfeld-Sinai-Fomin [KSF], Pollicott [Po], and Walters
[Wa].

The Denjoy Distortion Estimate (Exercise 19.69) appeared in the classical work
[Den] (see Notes to §30 for more comments).

A general exploration of expanding maps was initiated in Shub’s thesis [Shu]
(though of course, Fatou studied “expanding Julia sets”). Theorem 19.79 on the
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analytic/singular dichotomy is due to Shub and Sullivan [ShuS]. It is related to
the last step of the proof of the Mostow Rigidity Theorem.

Markov partitions for general expanding endomorphisms were constructed by
Krzyzewski [Krz] (following earlier work by Adler et al, Sinai, and Bowen for
hyperbolic automorphisms).

The balanced measures for toplogical Markov shifts appeared in Parry [Par].
The general notion of measure-theoretic/topological attractor of §19.7 was in-

troduced by Milnor [M1].



CHAPTER 3

Dynamical plane I: basic objects

20. Holomorphic dynamics: Fatou and Julia sets

Below

f ≡ fc : z 7→ z2 + c

unless otherwise is stated. Dynamical objects will be labeled by either f or c, what-
ever is more convenient in a particular situation (for instance, Df (∞) ≡ Dc(∞),
J (fc) ≡ Jc by default). We will also use interchangably notation like Jf ≡ J (f).
Moreover, the label can be skipped altogether if f is not varied.

In this parametrization of the quadratic family, the variable “c” plays two
different roles: the parameter and the critical value. Sometimes, when we want to
emphasize the particular meaning, we use notation v := f(0) for the critical value.

20.1. Critical points and values. First note that fn is a branched covering
of C over itself of degree 2n. Its critical points and values have a good dynamical
meaning:

Exercise 20.1. The set of finite critical points of fn is
n−1⋃

k=0

f−k(0). The set of

critical values of fn is {0k ≡ fk0}nk=1.

Note that there are much fewer critical values than critical points!
We let

(20.1) Critnf ≡ Critn(f) :=

n−1⋃

k=0

f−k(0), n = 0, 1, . . . ,∞

be the set of critical points of iterated f . Let

Pf := orb v, Pf ≡ clPf = orb v

be the post-valuable sets1 of f . They are forward invariant and contain the crit-
ical value of f . (Of course, we will often skip the label f in the notation.) The
corresponding postcritical sets are defined respectively as

orb 0 = P ∪ {0}, orb 0 = P ∪ {0}.
The iterate fn is an unbranched covering over the complement of {fk0}nk=1, so

all the iterates are unbranched over Cr P.

1If confusion can arise, then we call Pf the closed post-valuable set (and similarly for the
postcritical sets).

277
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Corollary 20.2. Let V be a topological disk which does not contain points
0k ≡ fk(0), k = 1, 2, . . . , n. Then the inverse function f−n has 2n single-values
branches f−ni that univalently map V onto pairwise disjoint topological disks Ui,
i = 1, 2, . . . , 2n.

These simple remarks explain why the forward orbit of 0 plays a very special
role. We will have many occasions to see that this single orbit is responsible for the
complexity and variety of the global dynamics of f .

However, f has one more critical point overlooked so far:

20.2. Looking from infinity. Extend f to an endomorphism of the Riemann
sphere Ĉ. This extension has a critical point at ∞ fixed under f . We will start
exploring the dynamics of f from there. The first observation is that Ĉ r DR is f -
invariant for a sufficiently big R, and moreover fnz →∞ as n→∞ for z ∈ ĈrDR.
This can be expressed by saying that CrDR belongs to the basin of infinity defined
as the set of all escaping points:

Df (∞) = {z ∈ Ĉ : fnz →∞ as n→∞} =
∞⋃

n=0

f−n(Ĉ r DR).

Proposition 20.3. The basin of infinity Df (∞) is a completely invariant do-
main containing ∞.

Proof. The only non-obvious statement to check is connectivity of Df (∞).
To this end let us show inductively that the sets Un = f−n(ĈrDR) are connected.
Indeed, assume that Un is connected while Un+1 is not. Consider a bounded com-
ponent V of Un+1. Then the restriction f : V → Un is proper and hence surjective
(Corollary 1.105). In particular f would have a pole in V – contradiction. �

20.3. Basic Dichotomy for Julia sets. We can now introduce the funda-
mental dynamical object, the filled Julia set

Kf ≡ K(f) := Ĉ rDf (∞).

Proposition 20.3 implies that K(f) is a completely invariant compact subset of C.
Moreover, it is full, i.e., it does not separate the plane (since Df (∞) is connected).

Exercise 20.4. (i) The filled Julia set consists of more than one point.
(ii) Each component D of intK(f) is simply connected.

The filled Julia set and the basin of infinity have a common boundary, which
is called the Julia set,

Jf ≡ J (f) := ∂K(f) = ∂Df (∞).

Figures in this section show several representative pictures of the Julia sets Jc ≡
J (fc) for different parameter values c.

Generally, topology and geometry of the Julia set is intricate, and it takes an
effort to put a hold on it. However, the following rough classification will give us
some guiding principle:

Theorem 20.5 (Basic Dichotomy). The Julia set (and the filled Julia set) is
either connected or Cantor. The latter happens if and only if the critical point
escapes to infinity: fn(0)→∞ as n→∞.
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Proof. As in the proof of Proposition 20.3, let us consider the increasing
sequence of domains Un = f−n(Ĉ r DR) exhausting the basin of infinity. Assume
first that the critical point does not escape to ∞. Then f : Un+1 → Un is a
branched double covering with the only branched point at ∞. By the Riemann-
Hurwitz formula, if Un is simply connected then Un+1 is simply connected as well.
We conclude inductively that all the domains Un are simply connected. Hence
their union, Df (∞), is simply connected as well, and its complement, K(f), is
connected. But the boundary of a full connected compact set is connected. Hence
J (f) is connected, too.

Assume now that the critical point escapes to infinity. Then 0 belongs to some
domain Un. Take the smallest n with this property. Adjust the radius R in such
a way that the orbit of 0 does not pass through TR = ∂U0. Then 0 6∈ ∂Un−1,
and hence ∂Un−1 is a Jordan curve. Let us consider the complementary Jordan
disk D ≡ D0 = C r Un−1. Since f(0) ∈ Un−1, f is unbranched over D. Hence
f−1(D) = D1

0 ∪ D1
1, where the D1

i ⋐ D are disjoint topological disks conformally
mapped onto D. The disks D1

0 and D1
0 form a Bernoulli family of tiles in the sense

of §19.92.
Take now the f -preimages of D1

0 ∪ D1
1 in D1

0. We obtain two Jordan disks
D2

00 and D2
01 with disjoint closures conformally mapped by f onto D1

0 and D1
1

respectively. Similar disks, D2
10 and D2

11, we find in D1
1 (see Figure 20.1).

Iterating this procedure, we will find that f−n(D) is the union of 2n Jordan
disks Dn

i0i1...in−1
such that Dn

i0...in−1
is compactly contained in Dn−1

i0...in−2
and is

conformally mapped by f onto Dn−1
i1...in−1

.
Since D1

0 ∪D1
1 is compactly contained in D, the branches of the inverse map,

f−1 : D1
j → D2

ij , are uniformly contracting in the hyperbolic metric of D (by the
Schwarz Lemma). Since the domains Dn

i0i1...in−1
are obtained by iterating these

branches, they uniformly exponentially shrink as n → ∞. Hence the filled Julia
set K(f) = ⋂ f−n(D) is a Cantor set. Of course, the Julia set J (f) coincides with
K(f) in this case. �

Remark 20.6. The above proof also shows that in the case when J (f) is a
Cantor set, the map f is expanding on it: ‖Df(z)‖ ≥ ρ > 1 for any z ∈ J (f), with
respect to the hyperbolic metric on the disk D ⊃ J (f).

The Basic Dichotomy gives us the first glimpse of how the behavior of the
critical point may influence the global dynamics.

Since neither Cantor nor connected sets (containing more than one point) can
have isolated points, we conclude:

Corollary 20.7. Both K(f) and J (f) are perfect sets.

When the Julia set is Cantor, there is an explicit symbolic model for the dy-
namics of f on it. Namely, the partition J = (J ∩D1

0) ⊔ (J ∩D1
1) constructed in

the proof of Theorem 20.5 is a Bernoulli generator for f | J . So by Exercise 19.52
we conclude:

Corollary 20.8. If the Julia set J (f) is Cantor then the dynamics on it is
topologically conjugate to the one-sided Bernoulli shift σ2 : Σ+

2 → Σ+
2 with two

states.
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D2
01

D2
10

0

D

D1
1

D2
11D2

00

D1
0

c

Figure 20.1. Generating a Cantor Julia set.

Figure 20.2. The filled Julia set of z2+ε for small ε is a quasidisk.
It contains an attracting fixed point inside.
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Figure 20.3. Cauliflower: the filled Julia set of z2 + 1/4. It con-
tains a parabolic fixed point 1/2: the prominent cusp on the right.

For this reason, the set of parameters c ∈ C for which the Julia set Jc is Cantor
is called the shift locus. The complementary set of parameters, M, is called the
connectedness locus or the Mandebrot set. It will be a central object of study in
this book (see Ch. 5).

20.4. Real quadratic family.

20.4.1. Two real shift loci. In the case of real parameter values c, the Bernoulli
coding of Jc becomes particularly nice:

Exercise 20.9. Consider a quadratic polynomial fc : z 7→ z2 + c with a real c.
Let J ≡ J (fc).

(i) If c < −2 then J is a Cantor set on the real line. In this case the Bernoulli
generator for fc consists of

J 0 = J ∩ {z : Re z < 0} and J 1 = J ∩ {z : Re z > 0}.
picture

(ii) If c > 1/4 then J is a Cantor set disjoint from the real line. In this case
the Bernoulli generator for fc consists of

J 0 = J ∩ {z : Im z > 0} and J 1 = J ∩ {z : Im z < 0}.
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Figure 20.4. Basilica: the filled Julia set of z2 − 1. It has a
superattracting cycle {0,−1} of period 2.

Figure 20.5. Douady rabbit: his head and two ears form the
immediate basin for a superattracting cycle of period 3.



20. HOLOMORPHIC DYNAMICS: FATOU AND JULIA SETS 283

Figure 20.6. Dendrite: the Julia set of z2 + i. Here the critical
point is preperiodic with period 2.

We see, in particular, that for c ∈ R r [−2, 1/4], the map fc has no invariant
intervals on the real line.

20.4.2. Maximal invariant interval. The following material relies on the notions
from §19.8.1.

Exercise 20.10. For c ∈ [−2, 1/4], the map fc has an invariant interval. The
maximal invariant interval has a form Ic = [−βc, βc], where βc is an orientation
preserving fixed point of fc. Moreover, this point is either repelling or parabolic,
i.e. f ′c(βc) ≥ 1 (it is parabolic only for c = 1/4). The orbits of x ∈ R r Ic escape
to ∞. Finally, the Julia set Jc is connected, and Ic is its real slice:

Ic = Jc ∩ R = Kc ∩ R.

Putting Exercises 20.9 and 20.10 together, we obtain:

Corollary 20.11. For real c, the Julia set Jc is connected if and only if
c ∈ [−2, 1/4].

Remark 20.12. In Exercise 20.18 we will identify the smallest invariant interval
Tc for c < −1.

Exercise 20.13. For a quadratic polynomial f , assume intK 6= ∅. If a compo-
nent D of intK meets R then its real slice D ∩ R is an interval.
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Figure 20.7. Cantor dust.

20.4.3. Unimodal maps. The quadratic maps fc : Ic → Ic, c ∈ [−2, 1/4], give
us examples of unimodal interval maps. A unimodal interval map f : I → I is a
continuous map that has exactly two intervals of monotonicity, and hence, f has
exactly one extremum in int I. Let us make a few default conventions/assumptions
(that will be assumed unless otherwise is explicitly stated):

– f is real analytic in a neighborhood of I;
– The extremum of f is located at the origin, which is the only critical point of f ;

– 0 is non-degenerate: f ′′(0) 6= 0;

– Any initial unimodal map2 under consideration is normalized so that 0 is the
minimum point of f . So the critical value v := f(0) is the global minimum of f .

Slightly abusing terminology, we say that a unimodal map f is proper if f(∂I) ⊂
∂I, i.e., one of the boundary points, β ∈ I, is fixed, while the other is its preim-
age. Note that the β-fixed point must have a positive multiplier ρ, and under our
convention β > 0.

We say that a proper unimodal map (and its β-fixed point) is repulsive if β is
locally repelling in the exterior of I,3 i.e, there exists ε > 0 such that

∀ x ∈ (β, β + ε) ∃ n ∈ Z+ s.t. fnx > β + ε.

2A typical example of a “non-initial” unimodal map is a restricted iterate of another map.
3The role of this assumption will become clear when we study quadratic-like renormalization.
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α α′β′ α α′ β

v v

Figure 20.8. Orientation reversing attracting fixed point α,
with f2 depicted on the right-hand side.

Then necessarily ρ ≥ 1, and sufficiently ρ > 1 or ρ = 1 and the Taylor expansion
of f near β looks like

(20.2) f(x) = x+ a(x− β)2 + . . . with a > 0.

A non-repulsive proper unimodal map will also be referred to as attractive.

A proper unimodal map has a dynamical symmetry: σ : x 7→ x′, where f(x) =
f(x′), so under our conventions, I = [β′, β]. We will be mostly dealing with even
unimodal maps, so σ is the usual central symmetry x 7→ −x. In fact, in what
follows we will assume that f is even unless otherwise is explicitly stated. In this
case, I = [−β, β].

20.4.4. Fixed points. Let us now return to the quadratic family. The boundary
parameter values c = 1/4 and c = −2 play a special role in the one-dimensional
dynamics (both real and complex).

Exercise 20.14. The map f ≡ f1/4 : z 7→ z2 + 1/4 is singled out among
the quadratic maps fc, c ∈ C, by the property that it has a double fixed point
α = β = 1/2, i.e., f(β) = β, f ′(β) = 1. In this case, fnx→ β for all x ∈ I.

The Julia set of f1/4 is a Jordan curve depicted on Figure 20.3 (see §26.1 for
an explanation of some features of this picture). It is called the cauliflower, and
the map fc : z 7→ z2 + 1/4 itself is sometimes called the cauliflower map.

Let us take a look at what happens as c crosses 1/4:

Exercise 20.15. For any c < 1/4, the map fc has two fixed points αc < βc.

(i) The point αc is attracting for c ∈ (−3/4, 1/4), and repelling for c < −3/4. It is
orientation preserving for c ∈ (0, 1/4), and it is a flip for c < 0.

(ii) For c ∈ (−3/4, 1/4), fnc x→ αc for all x ∈ int I (see Figure 20.8).

(iii) The multiplier ρ : c 7→ f ′c(α) is an orientation preserving diffeomorphism

ρ : (−3/4, 1/4)→ (−1, 1).
We say that the saddle-node bifurcation occurred at c = 1/4 and the superat-

tracting bifurcation occurred at c = 0.
The above fixed points, αc and βc, will be called α- and β-fixed points respec-

tively. They play quite a different dynamical role. In §24.4.2 a similar classification
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of the fixed points will be given for any quadratic polynomial with connected Julia
set.

20.4.5. Period doubling bifurcation. This section will give us the first glimpse
of a fundamental phenomenon that will play a central role throughout this book.

Exercise 20.16. (i) For parameters c < −3/4 near −3/4, the map fc has an
attracting cycle γc of period 2.

(ii) This attracting cycle persists on the parameter interval (−5/4,−3/4) and its
multiplier ρc ≡ ρ(γc) is an orientation preserving diffeomorphism from this interval
onto (−1, 1).
(iii) ρc < 0 for c < −1 (so the cycle γc is a flip) and ρc < −1 for c < −5/4.

Exercise 20.17. For c ∈ [−5/4, 0), we have:

(i) The interval I ≡ Ic = [−αc, αc] is a periodic interval of period 2, i.e., f2(I) ⊂ I,
and moreover, f(I) ∩ I = {α} (see Figure 20.9).

(ii) The restriction f2 | I is a unimodal map; this map is repulsive iff c < −3/4.
(iii) For c ∈ (−5/4,−3/4), all the orbits in int I converge to the attracting cycle γ.

(iv) Any orbit in int I eventually lands in I, i.e., for any x 6= ±β, we have fnx ∈ I
for some n ∈ N.

Moreover, Ic remains periodic until much smaller parameter c∗ < −5/4 – which
one?

We will call the map f−3/4 that has a flip parabolic fixed point (and the corre-
sponding doubling bifurcation parameter c = −3/4) Myrberg.

Let us conclude with a useful remark:

Exercise 20.18. Let us consider a real quadratic map f ≡ fc, c < −1, that has
a flip cycle of period two. Then the critical point 0 lies in between v and f(v), and
the interval T ≡ Tc := [v, f(v)] is invariant. Thus, this is the smallest invariant
interval containing 0. Moreover, any orbit in int I eventually lands in T .

20.4.6. Chebyshev map and its saw-like model. The parameter c = −2 is spec-
ified by the property that the second iterate of the critical point is fixed under fc:
0 7→ −2 7→ 2 7→ 2 (see Figure 20.10). The corresponding map f−2 ≡ Ч is called
Chebyshev or Ulam-Neumann (in the dynamical setting). The Julia set of this map
is unusually simple:

Exercise 20.19 (Chebyshev map). Let Ч ≡ f−2 : z 7→ z2 − 2.

(i) Zhukovsky map Ж : (C∗,T) → (C, [−2, 2]), z 7→ z + 1/z semiconjugates f0 :
z 7→ z2 to Ч.

(ii) The interval I = [−2, 2] is completely invariant under Ч, i.e., Ч−1(I) = I.
(iii) J (Ч) = I.
(iv) The map h : ω 7→ 2 sin

πω

2
conjugates the saw-like map Λ (19.13) to Ч | I.

(v) The map Ч| I is nicely semi-conjugated to the one-sided Bernoulli shift σ :
Σ → Σ. Namely, there exists a natural semi-conjugacy h : Σ → I such that
cardh−1x = 1 for all x ∈ I except countable many points (preimages of the fixed
point β = 2 under iterates of f). For these special points, cardh−1(x) = 2.
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Figure 20.9. Periodic interval of period 2, with f2 depicted on
the right-hand side.

(vi) The measure

dµ =
dx√
4− x2

is Ч-invariant and ergodic.

(vii) Generalize the above discussion to higher degree Chebyshev polynomials (see
§2.10.1) .

20.5. Fatou set. The Fatou set is defined as the complement of the Julia set:

Ff ≡ F(f) := Ĉ r J (f) = Df (∞) ∪ intK(f).
Since K(f) is full, all components of intK(f) are simply connected. Only one of
them can contain the critical point 0. Such a component D0 (if exists) is called
critical or central. Its image f(D0) contains the critical value c = f(0); it is called
valuable.



288 3. DYNAMICAL PLANE I: BASIC OBJECTS

g0 f
x = 2 sin πω

2

f0

Zh

Σ σ

h

Figure 20.10. Doubling, Chebyshev, saw-like, and shift maps.

Let U be one of the components of intK. Since intK is invariant, it is mapped
by f to some other component V . Moreover, f(∂U) ⊂ ∂V since the Julia set is
also invariant. Hence f : U → V is proper, and thus surjective. Moreover, since
V is simply connected, f : U → V is either a conformal isomorphism (if U is not
critical), or is a double branched covering (if U is critical).

The Fatou set can be also characterized as the set of normality (and was actually
classically defined in this way):

Proposition 20.20. The Fatou set F(f) is the maximal set on which the family
of iterates fn is normal.

Proof. On Df (∞), the iterates of f locally uniformly converge to∞, while on
intK(f) they are uniformly bounded. Hence they form a normal family on F(f).
On the other hand, if z ∈ J (f), then the orbit of z is bounded while there are
nearby points escaping to∞. Hence the family of iterates is not normal near z. �

Thus, the family of iterates (fn)n∈N is locally equicontinuous on the Fatou set,
implying that points x ∈ F(f) are Lyapunov stable. We will see in §21.5 that this
characterizes the Fatou set. This gives a good sense of the Fatou set as the regular
(≡ non-chaotic) part of the dynamical plane.

20.6. Preimages of points.
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Proposition 20.21. Let f : z 7→ z2 + c. If c 6= 0, then for any neighborhood
U intersecting J (f) we have:

orbU :=
∞⋃

n=0

fn(U) = C.

If c = 0 and U 6∋ 0 then orbU = C∗.

Proof. By the Montel Theorem, C r orbU contains at most one point. If
there is one, a, then f−1a = {a}. Hence a is the critical point of f , i.e., a = 0.
Moreover, f(a) = a, so c = 0. �

This result immediately yields:

Corollary 20.22. For any point z ∈ C, except z = 0 in case f : z 7→ z2, we
have:

cl

∞⋃

n=0

f−nz ⊃ J (f).

Corollary 20.23. If J ⊂ J is a non-empty backward invariant closed subset
of J then J = J . If K ⊂ K is a non-empty full backward invariant closed subset
of K then K = K.

Together with Exercise 19.4, the above Proposition also yields:

Corollary 20.24. Any polynomial f is topologically transitive on its Julia set.

20.7. Inverse branches.

20.7.1. Normality and Koebe control.

Lemma 20.25 (Normality Lemma). Given a domain U ⊂ C, the family of
inverse branches f−ni |U that are well defined on U is normal.4

Proof. Since normality is a local property, we can assume that U is bounded.
Take R so big that U ⊂ DR and f−1(DR) ⊂ DR. Then f−n(U) ⊂ DR for all n ∈ N

and in particular, f−ni (U) ⊂ DR for all the inverse branches under consideration.
So, this family is normal by the Little Montel Theorem. �

This allows us to control the distortion of the inverse branches (which also
follows directly from the Koebe Distortion Theorem):

Corollary 20.26. Under the above circumstances, let D(z, r) ⋐ U and

mod(U rD(z, r)) ≥ µ > 0.

Then the inverse branches f−ni have a bounded distortion on D(z, r) and map it
onto ovals of bounded shape (around the f−ni (z)). The bounds depend only µ.

4Here U is allowed to intersect the postcritical set.
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20.7.2. Shrinking Lemma.

Lemma 20.27. Let U ⊂ D(∞) be a domain in the basin of ∞, and let f−ni |U
be an infinite family of inverse branches that are well defined on U .5 Then for any
set V ⋐ U , diam(f−ni (V ))→ 0 as n→∞.

Proof. Select a base point z ∈ V . By the Koebe control of the inverse
branches, the pullbacks f−ni (V ) have a bounded shape around points f−ni (z). So
it is sufficient to show that the inner radii around these points go to 0. But this is
obvious since these points go to the boundary of D(∞) (the Julia set). �

Shrinking Lemma. Let U ⊂ C be a domain intersecting the Julia set J (f),
and let f−ni |U be an infinite family of inverse branches that are well defined on U .
Then for any set V ⋐ U , diam(f−ni (V ))→ 0 as n→∞.

Proof. Since the family of inverse branches f−ni is normal on U , it is sufficient
to show that diam(f−ni (V ))→ 0 for some domain V ⋐ U . But since U intersects J ,
it intersects the basin D(∞) as well, and the conclusion follows from Lemma 20.27.

�

20.7.3. Formation of monotonicity intervals. Let us consider a real quadratic
polynomial f ≡ fc with c ∈ [−2, 1/4], and let I ≡ Ic be it invariant interval from
Exercise 20.10. We let CritnR ≡ CritnR(f) := Critn(f) ∩ R be the set of real critical
points of fn.

For n ∈ Z+ and x ∈ IrCritnR, let Ln(x) ⊂ R be the maximal interval containing
x on which fn is monotone. The boundary points of Ln(x) belong to CritnR ∪ ∂I.
By (20.1), for each endpoint a ∈ ∂Ln(x) that does not belong to ∂I, there exists
an integer k ∈ [0, n−1] such that fka = 0, so the interval fk(L) “grabs” the critical
point 0 and “carries it forward” to the image Mn(x) := fn(Ln(x)).

20.7.4. Inverse branches for real maps. For an interval M ⊂ R we let M◦ be
its interior rel the real line. By Corollary 20.2, there is a well defined inverse branch

f−n : C(M◦n(x))→ C

that maps Mn(x) to Ln(x).

Lemma 20.28. The image of the half-plane H+ under the above branch of f−n is
contained in one of the half planes H+ or H− (depending on whether fn : Ln(x)→
Mn(x) is orientation preserving or reversing). Similarly for the half-plane H−.

Proof. Since fn(R) ⊂ R, we have f−n(C r R) ⊂ C r R. All the more, any
inverse branch of f−n maps the half-plane H+ inside C r R. The orientation rule
comes from the fact that fn preserves orientation of C. �

There is a nice way to visualize these branches. Let us color the half-plane H+

in black while keeping H− white. Then the complement C r f−n(C r R) assumes
the checker-board coloring illuminating the corresponding branches.

5If J is connected then any topological disk in D(∞) would serve for all inverse branches.
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20.7.5. Pullback of the real space. Let now consider an R-symmetric polynomial
f ≡ fc. Assume we have two pairs of real intervals, (M,L) and (M ′, L′), such
that fn monotonically maps (M ′, L′) onto (M,L). Then the inverse branch f−n :
(M,L) → (M ′, L′) admits an extension to a conformal embedding f−n : C(M) →
C(M ′). Applying Lemma 6.18, we obtain:

Corollary 20.29. Under the above circumstances,

modR(M,L) ≥ δ > 0 =⇒ modR(M
′, L′) ≥ ε(δ) > 0.

Furthermore, Corollary 7.2 of the Symmetric Schwarz Lemma and Koebe The-
orem yields:

Lemma 20.30. Let fn : L′ → L be a monotonic map between two real open
intervals viewed as hyperbolic lines (see §2.4.5). Then fn expands the hyperbolic
metric:

‖Dfn(x)‖hyp > 1 ∀ x ∈ L′.
If fn(L′) ⋐ intL with modR(L : fn(L′)) ≥ δ > 0, then the expansion is uniform,
i.e., the above norm is ≥ ρ(δ) > 1, and the map fn has a uniformly bounded
distortion:

Dfn(x)

Dfn(y)
| ≤ C(δ) ∀ x, y ∈ L′.

20.8. Expanding (hyperbolic) sets. The map f is tremendously contract-
ing near the critical point 0, and under iteration this contraction propagates through
the postcritical set. The following lemma is the first indication that otherwise the
map f tends to be expanding:

Lemma 20.31. Let c 6= 0. Then any component of C r Pf is a hyperbolic
domain. Let z, f(z) ∈ C r Pf , and let Ω ∋ z, V ∋ f(z) be the components of
C r Pf containing the corresponding points. Assume Ω intersects f−1(Pf ). Then
f is strictly expanding with respect to the hyperbolic metrics of Ω and V :

‖Df(z)‖hyp > 1.

Proof. If CrPf is not hyperbolic, then Pf consists of a single point, c. But
then f(c) = c and hence c = 0.

Let Ω′ be the component of f−1(V ) containing z. Since Pf is forward invariant,
Ω′ ⊂ Ω. Moreover, Ω′ ⊂ Ωrf−1(Pf ), so by assumption, Ω′ is strictly smaller than
Ω. Since V does not contain the critical value c, the map f : Ω′ → V is a covering.
The conclusion now follows from Corollary 7.1. �

The notion of expanding circle map introduced in §19.13 admits the following
natural generalization. A compact f -invariant set Z ⊂ C is called expanding or
hyperbolic6 (and also, f is called expanding/hyperbolic on Z) if there exist constants
C > 0 and ρ > 1 such that

(20.3) |Dfn(z)| ≥ Cρn for any z ∈ Z, n ∈ N.

Of course, we can define the expanding property with respect to another Riemann-
ian metric ‖ · ‖ on Z. Since all such metrics are equivalent, the expanding property
is independent of a particular choice of the metric.

For instance, a Cantor Julia set J (f) of a quadratic polynomial f is always
expanding (see Remark 20.6). Lemma 20.31 yields a useful general criterion:

6Should not be confused with hyperbolicity of a Riemann surface.
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Corollary 20.32. Let O ⊃ Pf be a forward invariant compact set (e.g.,
Pf itself). Assume that a component Ω of C r O intersects f−1(O). Then any
f -invariant compact set Z ⊂ Ω is expanding.

20.9. Higher degree polynomials. The above basic definitions and results
admit a straightforward extension to higher degree polynomials

f : z 7→ a0z
d + a1z

d−1 + · · ·+ ad, d ≥ 2, a0 6= 0,

with obvious adjustments. For instance, the exceptional cases in Proposition 20.21
are polynomials affinely conjugate to z 7→ zd.

The following point should be kept in mind though: the Basic Dichotomy is
not valid any more in the higher degree case. Instead, there is the following partial
description of the topology of the Julia set:

• The Julia set J (f) (and the filled Julia set K(f)) is connected if and only all
the critical points ci are non-escaping, i.e., ci ∈ K(f).
• If all the critical points escape to ∞, then J (f) is a Cantor set on which the

dynamics is conjugate to the Bernoulli shift with d symbols.7 However, the reverse
is not true anymore, e.g., there are cubic polynomials with one non-escaping critical
point whose Julia sets are Cantor. The dynamics is not expanding on these Julia
sets.

Note that the Basic Dichotomy is still valid in the case of unicritical polyno-
mials, that is, the ones that have a single critical point. Any such polynomial is
affinely conjugate to z 7→ zd + c, where c is defined uniquely up to multiplication
by e(1/(d− 1)).

Project 20.33. Work out the basic dynamical definitions and results in the
case of higher degree polynomials.

In the theory of quadratic maps fc, higher degree polynomials still appear as
the iterates of fc. It is useful to know that they have the same Julia set:

Exercise 20.34. Show that K(fn) = K(f) for any polynomial f .

Let Critf be the set of critical points of f . Then similarly to the quadratic
case, we will use notation

(20.4) Critnf :=
n⋃

k=0

f−k(Critf ), Pf :=
∞⋃

k=1

fk(Critf ), Pf ≡ clPf

for the set of critical points of the iterates of f (including n = ∞) and for the
post-valuable sets, respectively.

In the discussion below, we will often refer to polynomials of degree two as just
“polynomials”. If we want to emphasize that some results hold for arbitrary degree,
we will do it explicitly.

7The latter result is non-trivial, but it is easy to show that some iterate of f is conjugate to
the Bernoulli shift.
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Notes. The Chebyshev map (§20.4.6) was first considered in the dynamical
context by Ulam and von Neumann [UvN] who observed numerically that it ex-
hibits a chaotic behavior on its invariant interval I (which is related to the existence
of the absolutely continuous invariant measure µ on I). This was probably the first
occasion of using computers in dynamics.

The doubling bifurcation (§20.4.5) was discovered by Myrberg in the 1970s
[Myr1].

21. Periodic motions

“Periodic solutions is the only opening through which we can try to penetrate
to the domain that was viewed unaccessible” (Poincaré).

21.1. Rough classification of periodic points by the multiplier. Con-
sider a periodic point α of period p. The local dynamics near its cycle α = (fnα)p−1n=0

depends first of all on its multiplier

ρ = (fp)′(z) =
p−1∏

n=0

f ′(fnα) (compare §19.5).

The point (and its cycle)8 is called attracting if |ρ| < 1 (compare §19.7). A particular
case of an attracting point is a superattracting one when ρ = 0. In this case, the
critical point 0 belongs to the cycle, and we sometimes call it

0 ≡ {fn(0)}p−1n=0 ≡ {0n}p−1n=0.

When we want to emphasize that an attracting periodic point is not superattracting,
we call it simply attracting.

A periodic point is called repelling if |ρ| > 1, and neutral if ρ = e(θ), θ ∈ R/Z.
In latter case, θ is called the rotation number of α. Local dynamics near a neutral
cycle depends delicately on the arithmetic of the rotation number. A neutral point
is called parabolic if the rotation number is rational, θ = p/q, and is called irrational
otherwise. An irrational periodic point can be of Siegel and Cremer type, to be
defined below. Compare §19.8.1.

We will consider these cases one by one. We first analyze the dynamics locally,
near the periodic point in question, and then globalize it to the basin (such a
globalization will be called semi-local). For the local analysis, it is convenient to
put the fixed point at the origin and consider a holomorphic map

(21.1) f : z 7→ ρz + a2z
2 + . . .

nearby. We will often refer to this object as a holomorphic germ near 0 since we are
interested in its local properties, which allows us to restrict its domain of definition
(compare §50.1.)

Further semi-local analysis of periodic motion will be carried in §23.

21.2. Attracting cycles.

8All the terminology introduced for periodic points applies to their cycles, and vice versa.
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21.2.1. Fundamental annulus. Let α be an attracting cycle. The orbits of all
nearby points uniformly converge to α and, in particular, are bounded. It follows
that attracting cycles belong to the Fatou set F(f). The rate of convergence is ex-
ponential in the simply attracting case and superexponential in the superattracting
case.

For a simply attracting periodic point α, we say that a piecewise smooth (open)
disk P ∋ α is a ( attracting) petal of α if f |P is univalent and f(P ) ⋐ P . (For
instance, one can take a small round disk D(α, ε) as a petal.) Then the annulus
A = P r fp(P ) is called a fundamental annulus of α.

In the superattracting case, a petal is a smooth disk P ∋ α such that fp :
P → fp(P ) is a branched covering of degree d (with a single critical point at α),
and f(P ) ⋐ P . (For instance, one can let P be the component of f−p(D(α, ε))
containing α.) The corresponding fundamental annulus is P r fp(P ).

Exercise 21.1. Being (super-)attracting/repelling/neutral is a topologically in-
variant property of a germ: If two germs f and f̃ are topologically conjugate and f
is (super-)attracting (resp., neutral or repelling) then so is f̃ .

The corresponding statement is false over the reals: e.g., real germs x 7→ x/2
and x 7→ x−x3 are topologically conjugate near the origin: see Exercise 19.25 (iii).

21.2.2. Basin of attraction. The basin of attraction of an attracting cycle α is
the set of all points whose orbits converge to α:

D(α) = Df (α) = {z : fnz → α as n→∞.}
Exercise 21.2. Show that the basin D(α) is a completely invariant union of

components of intK(f).
The union of components of D(α) containing the points of α is called the

immediate basin of attraction of the cycle α. We will denote it by D•(α) ≡ D•f (α).
The component of D•(α) containing α will be denoted D•(α) ≡ D•f (α).

Exercise 21.3. (i) The immediate basin of an attracting cycle α consists of
exactly p components, where p is the period of α.

(ii) Show that it can be constructed as follows. Let P0 be a petal of a point α ∈ α and
let Pn be defined inductively as the component of f−p(Pn−1) containing α. Then

P0 ⊂ P1 ⊂ P2 ⊂ . . . and D•(α) =
∞⋃

n=0

Pn.

21.2.3. Critical point in the basin. We will now state one of the most important
facts of the classical holomorphic dynamics:

Theorem 21.4. The immediate basin of attraction D•f (α) of an attracting cycle
α contains the critical point 0. Moreover, if α is simply attracting then orb(0)
crosses any fundamental annulus A.

Remark 21.5. Of course, the assertion is trivial when α is superattracting as
0 ∈ α in this case.

Proof. Otherwise fp would conformally map each component D of the im-
mediate basin onto itself. Hence it would be a hyperbolic isometry of D, despite
the fact that |(fp)′(α)| < 1.



21. PERIODIC MOTIONS 295

To prove the second assertion (which would also give another proof of the
first one), let us consider a petal P0 containing some point α ∈ α, and let us
define Pn inductively as the component of f−p(Pn−1) containing α (compare with
Exercise 21.3 above). Then P0 ⊂ P1 ⊂ P2 ⊂ . . . . If none of these domains contains
a critical point of fp, then the all the maps fp : Pn → Pn−1 are isomorphisms and
all the Pn are topological disks. Hence their union, P∞, is a topological disk as
well, and fp : P∞ → P∞ is an automorphism. Hence it is a hyperbolic isometry
contradicting the fact that α is attracting.

Hence some Pn contains a critical point of fp. Take the first such n (obviously,
n ≥ 1). Then Pn−1rfp(Pn−1) contains a critical value of fp, which is contained in
orb(0). Applying further iterates of fp, we will bring it to the fundamental annulus
P 0 r fp(P0). �

Remark 21.6. The above argument proves a more general statement for proper
attracting basins. Let f : (D,α) → (D,α) be a holomorphic endomorphism of a
hyperbolic Riemann surface which has an attracting fixed point α. Then f has a
critical point. (The second assertion concerning the fundamental annulus also
holds.)

Corollary 21.7. A quadratic polynomial can have at most one attracting
cycle. If it has one, all other cycles are repelling.

Proof. The first assertion is immediate. For the second one, notice that under
the circumstances, the postcritical set Pf is a discrete set accumulating on the
attracting cycle α. Hence it does not divide the complex plane, and 0 ∈ C r Pf .
Applying Lemma 20.31, we conclude that |ρ(β)| = ‖Dfq(β)‖hyp > 1 for any other
periodic point β of period q. �

Of course, the period of the attracting cycle can be arbitrary big. A quadratic
polynomial is called hyperbolic if it either has an attracting cycle, or if its Julia set is
Cantor. (The unifying property is that for hyperbolic maps, orb(0) converges to an
attracting cycle in the Riemann sphere.) For instance, the doubling map z 7→ z2,
the basilica map z 7→ z2−1 (see Figure 20.4), and the rabbit map (see Figure 20.5)
are all hyperbolic. Though dynamically non-trivial, it is a well understood class of
quadratic polynomials (see §25).

In what follows, we will usually mark an attracting cycle

α ≡ (fnα)p−1n=0 ≡ (αn)
p−1
n=0

so that the immediate basin D0 ≡ D•(α) contains the critical point 0. This domain
and various associated objects will be called central. For instance, the attracting
periodic point α ≡ α0 ∈ D0 is “central”.

The immediate basin Dv ≡ D1 ≡ D(α1) containing the critical value v, and
associated objects (e.g., the periodic point αv ≡ α1 ≡ f(α) ∈ Dv) will be called
valuable.

21.2.4. Real basin of attraction. Let us now consider a real quadratic polyno-
mial f = fc, c ∈ [−2, 1/4], that has an attracting cycle α = (αk)

p−1
k=0 ∈ C. Then in

fact α is real since fn(0)→ α.
Let DR(α) ⊂ I be the real attracting basin of α. Of course, it is open, so it

is the disjoint union of open intervals. The real immediate basin D•R(αk) of αk is
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the component of DR(α) containing αk, and the real immediate basin D•R(α) is the
union of the D•R(αk).

Corollary 21.8. (i) We have: D•R(αk) = D•(αk) ∩ R.

(ii) The real immediate basin D•R(α) contains the critical point 0.

Proof. Assertion (i) follows from Exercise 20.13. Together with Theorem 21.4,
it implies (ii). �

21.3. Parabolic cycles.

21.3.1. Local expansions. Let us consider a parabolic germ

(21.2) f : z 7→ e(p/q) · z + ak+1z
k+1 + . . . , k ≥ 1, ak+1 6= 0,

with rotation number θ = p/q ∈ R/Z near the origin. If θ = 0, we call f (and the
corresponding parabolic point) primitive; otherwise we call it satellite.

Exercise 21.9. If fq = id then f is locally conformally conjugate to the rota-
tion z 7→ e(p/q) · z. Otherwise, fq admits a local expansion

fq(z) = z + bk+1z
k+1 + . . . , k ≥ 1, bk+1 6= 0,

with k = ql for some l ∈ Z+. Moreover,

fqnz = z + n bk+1z
k+1 + . . . .

We call l the order of degeneracy of f at 0. In the case l = 1, the parabolic
germ f is called non-degenerate. In case when fq = id we can formally let l = ∞
(of course, this is impossible if f is a polynomial of degree d ≥ 2).

21.3.2. Leau-Fatou Flowers. An open Jordan disk P is called an attracting petal
for f if:

• 0 ∈ ∂P ;
• fq(P ) ⊂ P and fq|P is univalent;
• 0 is the only point where ∂P and ∂(fqP ) touch;
• fqnz → 0 as n→∞ locally uniformly in P .

Given such a petal, the set P r f(P ) is called an attracting fundamental crescent
Ca.

Exercise 21.10. Show that the last condition in the definition of the petal
follows from the first three.

We say that a petal P has a γ-wedge at 0 if both local branches of the boundary
∂P r { 0} have tangent lines at 0 that meet at angle 2πγ. A bisector Li of such
a petal is a smooth curve landing at 0 that divides the γ-wedge into two (γ/2)-
subwedges. We say that an orbit (zn) is asymptotic to the bisectors of the petals
if there is the union of q bisectors Li cyclically permuted by f such that for any
ε > 0, the points zn are eventually trapped in the union of the ε-wedges around
the Li.

Two attracting petals are called equivalent if they overlap9.

9At the moment, it is not evident that this is an equivalence relation, but the next theorem
shows that it is.
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Figure 21.1. Attracting flower of a parabolic point.

Theorem 21.11 (Flower Theorem). For a parabolic germ (21.2) which is not
conformally conjugate to a rotation, there is a choice of disjoint lq petals Pi with
wedge 1/ql at 0 such that the flower Φ ≡ Φa :=

⋃
Pi is invariant under rotation by

1/ql and under f . The orbits of points z ∈ Φ converge to 0 locally uniformly and
asymptotically to the bisectors of the petals. Moreover, for any γ′ ∈ (0, 1/ql), there
is a similar flower Φ′ ⊂ Φ with wedge γ′ at 0 in which convergence to 0 is uniform.

Vice versa, if some orbZ converges to 0 without direct landing at 0 then even-
tually it lands in any flower Φ′.

The smaller flowers Φ′ and the corresponding petals will be called uniformly
attracting.

Proof. The proof will be split in several cases. The main analysis happens in
the following one:

The germ f is primitive and non-degenerate:

(21.3) f : z 7→ z + az2 + . . . , a 6= 0.

Conjugating f by complex scaling ζ = az we make a = 1.

Let us move the fixed point to∞ by inversion Z = −1

z
. It brings f to the form

(21.4) F : Z 7→ Z + 1 +O(
1

Z
)

near ∞. It is obvious from this asymptotical expression that any right half-plane

(21.5) Qt = {Z : ReZ > t}
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F

z 7→ −

C/Z

f

1
z

Figure 21.2. Parabolic petal in the non-degenerate case and the
corresponding Écalle-Voronin cylinder.

with t > 0 sufficiently big is invariant under F , and in fact

(21.6) F (Qt) ⊂ Qt+1−ε,

where ε = ε(t)→ 0 as t→∞. So, such a half-plane provides us with a petal with
wedge 1/2 at ∞. Moreover, for any ε > 0 eventually

(21.7) ReZn ≥ ReZ + (1− ε)n, ImZn ≤ εn, where Zn ≡ FnZ,
so the orbits in Qt converge to∞ locally uniformly and asymptotically horizontally.
(Note that the horizontal direction is the bisector of the petal P at ∞).

Vice versa, if Zn →∞ without direct landing at ∞, then due to asymptotical
expression (21.4) we eventually have ReZn+1 ≥ ReZn+1−ε. Hence ReZn → +∞
and orbZ eventually lands in the half-plane Qt.

Now we would like to enlarge Qt to a petal P with the full wedge 1 at ∞. To
this end let us consider two logarithmic curves

Γ± = {Y = ±C log(t−X + 1) +R)}, X ≤ t, where Z = X + iY.

If R is big enough then Γ± lie in the domain where the asymptotics (21.4) applies.
If C is big enough then the half-slope of these curves is bigger (in absolute value)
than the slope of the displacement vector F (Z) − Z. It follows that F moves the
curves Γ± to the right, and the region P ⊃ Qt bounded by these curves and the
segment of the vertical line ReZ = t in between is mapped univalently into itself.
This is the desired petal with wedge 1 at ∞.

A petal Q′ with an intermediate angles γ′ ∈ (0, 1) can be obtained as the wedge
{| arg(Z− t′)| < 2πγ′} centered at a sufficiently big real point t′ ∈ R+. It is easy to
see (as for the half-planes Qt above) that convergence is uniform in such a wedge,
and that all orbits converging to ∞ eventually land in it.
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Let f be a general primitive parabolic germ:

(21.8) f : z 7→ z + bzk+1 + . . . with k ≥ 1, b 6= 0.

Again, conjugating f by a complex scaling ζ = λz, where λk = b, we make b = 1.
Let us now use a non-invertible change of variable ζ = zk. A formal calculation

shows that it conjugates f to a multi-valued germ

g : ζ 7→ ζ + ζ2 +O(|ζ|2+1/k)

where the residual term is given by a power series in ζ1/k. (Such an expression is
called Puiseux series.) Making now a change of variable Z = −1/z, we come up
with a multi-valued germ

(21.9) G : Z 7→ Z + 1 +O(1/|Z|1/k)
near ∞. Let us consider any single-valued branch of this germ on the slit plane
C r R−. Then the same considerations as in the non-degenerate case show that
G has desired petals. Lifting these petals to the z-plane provides us with desired
attracting flowers Φa for f .

The satellite parabolic case with rotation number p/q is reduced to the above
by considering fq. �

Notice that in the half-plane model (21.9), the attracting fundamental crescent
Ca becomes a vertical topological strip cl(G(Qt))rQt.

21.3.3. More on the local dynamics. The above picture provides us with a sim-
ple description of small orbits near 0:

Exercise 21.12. Let f be a parabolic germ near 0. There is an ε > 0 such
that if orb z of some point z 6= 0 stays in the ε-neighborhood of 0 then this orbit is
eventually trapped in the attracting flower Φa, and thus, fnz → 0 locally uniformly
near 0.

Exercise 21.13. Let f be a primitive non-degenerate parabolic germ (21.3).
Then for any orbit zn → 0, except for the stationary one, we have:

zn ≍
1

n
, |zn+1 − zn| ≍

1

n2
.

What is the convergence rate in the degenerate case (21.8)? For a satellite parabolic
germ (21.2)?

Exercise 21.14. (i) For a parabolic germ with zero rotation number (21.8),
there is a smooth invariant curve γ landing at 0, and any such curve is a bisector
of an attracting petal.

(ii) For a parabolic germ with rotation number p/q, there is a smooth periodic curve
γ landing at 0; moreover, any such curve has period q and is a bisector of an
attracting petal.

Applying the above discussion to the local inverse f−1, we obtain repelling
petals, repelling Leau-Fatou flowers Φr, repelling fundamental crescents Cr, etc.

Exercise 21.15. Show that Φr can be obtained from Φa by rotating through
angle 1/(2q) (measured in revolutions).
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petal

attracting repelling

petal

Figure 21.3. Repelling crescent and rectangle for a non-
degenerate parabolic point with multiplier 1.

It follows that the union Φa ∪ Φr ∪ {0} is a neighborhood of 0, which gives
us full understanding of the local dynamics near a parabolic point. In particular,
it provides us with two-sided small orbits that converge to 0 in both positive and
negative time.

Removing from repelling fundamental crescent Cr an attracting flower Φa, we
obtain a repelling fundamental rectangle ∆r (see Figure 21.3). It is a nice funda-
mental domain for the space of backward orbits converging to the parabolic point.
We will refer to the boundary intervals of ∆r contained in ∂Cr as vertical sides of
∆r.

Exercise 21.16. (i) A parabolic germ is never topologically conjugate to a
hyperbolic one (attracting or repelling).

(ii) Let Q ∋ 0 be a locally completely invariant compact set for a parabolic germ
f . Then there is no qc map h : (C, Q, 0) → (C, Q̃, 0) that conjugates f |Q to a
hyperbolic germ f̃ restricted to Q̃.

The above discussion leads to a complete topological (and in fact, quasiconfor-
mal) classification of parabolic germs:

Problem 21.17. Show that two parabolic germs (21.2) are locally topologically
(and in fact, qc) conjugate if and only if they have the same rotation number p/q
and the same order of degeneracy l.

21.3.4. Real parabolic germs. In conclusion, let us take a look at a real parabolic
germ

(21.10) f : (R, 0)→ (R, 0), z 7→ ρz + bzk+1 + . . . , ρ ∈ {±1}, b ∈ R∗.

It is primitive or satellite depending on whether ρ = 1 or ρ = −1. In the latter
case, the points flip form one side of 0 to the other under the dynamics.

Exercise 21.18. For a real parabolic germ, the Leau-Fatou flower of f is R-
symmetric. Each ray R± is a bisector of an attracting or repelling petal P±.

If both of the above petals P± are attracting then f (and its parabolic point)
is called parabolic-attracting (on the real line). In this case, fnx→ 0 for all real x
near 0. Similarly, if both petals are repelling then f is called parabolic-repelling. If
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one of the petals is attracting while the other is repelling then f is called parabolic-
semi-attracting. In this case, orbits are attracted to 0 on one side and are repelled
on the other. It is possible only in the primitive case.

Exercise 21.19. (i) Classify the local topological (quasisymmetric) dynamics
for real germs (21.10) according to ρ, k, and sign b.

(ii) Show that a real parabolic germ is never qs conjugate to a repelling or attracting
germ (even on one side of 0).

21.3.5. Écalle-Voronin cylinders. Let us take an attracting petal P . The return
map g := fpq transforms one boundary component of the fundamental crescent
P r f(P ) to the other, so the quotient Cyl ≡ Cylf := P/g is a topological cylinder
called Écalle-Voronin cylinder. A priori, there are several options for the conformal
type of Cylf : it can be isomorphic to an annulus A(r,R), or to the punctured disc
H/ < z + 1 >≈ D∗, or to the bi-infinite cylinder C/ < z + 1 >≈ C∗. In fact, the
latter happens:

Lemma 21.20. The Écalle-Voronin cylinder Cylf is isomorphic to the bi-infinite
cylinder.

Proof. Notice first that the cylinder Cyl = P/ < g > is independent of the
petal P in the equivalence class, so we can make any convenient choice. Let us
use for this purpose the half-plane Q ≡ Qt (21.5) near ∞. Then the fundamental
crescent QrF (Q) becomes a vertical strip S whose boundary curves stay distance
∼ 1 apart, by (21.4). Moreover, the right-hand boundary curve Y 7→ F (t + iY )
is almost vertical, so each straight interval IY := [t + iY, F (t + iY )] cuts S into
two half-strips. Projecting these intervals to the cylinder Cyl ≈ S/F , we obtain a
horizontal foliation Γ on S by circles that we also denote IY .

Let Cyl± be the half-cylinders obtained by cutting Cyl by the circle I0. It is
enough to show that

(21.11) modCyl± ≡ W(Γ|Cyl±) =∞.
Let us deal with Cyl+ for definiteness. Let us further cut the cylinder on some

big height H > 0 by the circle IH , and call the corresponding finite cylinder Cyl+H .
Put any conformal metric ρ = ρ(z)|dz| on Cyl+H with

(21.12)
∫

IY

ρ dlY = lρ(IY ) ≥ Lρ(Γ|Cyl+H) ≥ 1 for any Y ∈ [0, H],

where dlY is the Euclidean length element along IY . Since the circles IY are
almost horizontal, we have for the Euclidean area form dm ≥ (1/2) dlY dY . Hence,
integrating (21.12) over dY gives us:

∫

C+
H

ρ dm ≥ 1

2
H.

By the Cauchy-Schwarz Inequality (compare (6.1)), we obtain:

Hmρ(Cyl
+
H) ≍ area(Cyl+H)

∫
ρ2 dm ≥

(∫
ρ dm

)2

≥ 1

4
H2.

Taking the infimum over all admissible ρ, we obtain mod(Cyl+H) ≥ cH with c > 0

independent of ρ. So, mod(Cyl+H)→∞ as H →∞, and we are done. �
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Exercise 21.21. Show that the return map fpq : D → D to the immediate
parabolic basin D ⊃ P has zero displacement: inf

z∈D
disthyp(z, f

pqz) = 0.

Exercise 21.22. Let us glue the boundary components of the strip
S = {z : 0 ≤ Im z ≤ 1} by the map R → R + i, x 7→ λx + i, where λ > 1. Show
that the quotient S/ ∼ is a cylinder of finite modulus.

21.3.6. Polynomial case: parabolic basin and the critical point. Let us now go
back to quadratic polynomials, so f ≡ fc. Consider a parabolic periodic point α
with period p and rotation number p/q.

Proposition 21.23. Any parabolic point α belongs to the Julia set J .

Proof. Let us give two proofs for this simple assertion.
As we have seen (Exercise 21.9), there is a k ≥ 2 such that the kth Taylor

coefficient of the iterates fpqn at α grows as n→∞. By the Cauchy estimate, it is
impossible if the family of iterates is bounded near α.

Another way is to apply the local dynamical picture near α: existence of a
repelling flower implies Lyapunov instability near α. �

Let us now apply general notions from §19.7 to our setting. The parabolic realm
and the parabolic basin of a parabolic cycle α are defined as follows:

R(α) ≡ Rf (α) := {z : fnz → α as n→∞}, D(α) ≡ Df (α) := intR(α).

Exercise 21.24. Let α be a parabolic cycle of a polynomial f . Then:

(i) D(α) = R(α)rOrb−(α) ≡ {z : fnz → α but fnz 6∈ α ∀ n ∈ N};
(ii) The basin D(α) is a completely invariant union of components of intK;

(iii) Among these components there are pql components attached to α and permuted
by f , while all others are preimages of these.

The union of these pql components is called the immediate parabolic basin of
α. It will be denoted as D•(α) ≡ D•f (α). Each of these components is periodic
with period pq. So, the immediate basin comprises l cycles of periodic components.

As in the attracting case, we have:

Theorem 21.25. The immediate parabolic basin D•(α) of a parabolic cycle
contains a critical point. In fact, each cycle of components of D•(α) contains a
critical point.

Proof. LetD be a component of D•(α). If it does not contain critical points of
g := fpq, then g : D → D is an (unbranched) covering, and hence an automorphism
of D (since D is simply connected). Since the orbits of g in D escape to infinity
(of D) and D ≈ D is hyperbolic, the quotient D/ < g > is isomorphic to either an
annulus A(r,R) (if g is hyperbolic) or to the punctured disc D∗ (if g is parabolic),
contradicting Lemma 21.20. �

As in the hyperbolic case, we now conclude:

Corollary 21.26. A quadratic polynomial f can have at most one parabolic
cycle α. Moreover, this cycle is non-degenerate: there is a unique cycle of petals
attached to it. (Thus, there are pq petals attached to α, where p is the period of α
and p/q is its rotation number.)

If f has a parabolic cycle, then all other cycles are repelling.
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Such a quadratic polynomial is naturally called parabolic.
As in the hyperbolic case, we call the immediate basin D0 ≡ D(α) ∋ 0 (and

all associated object) central, while we call the immediate basin D1 ≡ f(D0) ∋ c
(and all associated objects) valuable. In particular, the parabolic point α ∈ D0 is
central, while αv ≡ α1 ∈ D1 is valuable.

In conclusion, let us mention one consequence of Exercise 21.12:

Proposition 21.27. Let f be a parabolic quadratic polynomial with a parabolic
cycle α. There exists an ε > 0 such that for any orb z in the Julia set J that
does not land in α, there exists an infinite sequence of moments nk such that
dist(fnkz,α) ≥ ε.

In other words, the transit map through the ε-neighborhood of α is well defined
for all orbits in the Julia set that do not land in α.

21.3.7. Real parabolic basin. Now, the discussion of attracting cycles for real
maps (§21.2.4) can be carried to the parabolic case. Let f = fc, c ∈ [−2, 1/4], be a
real polynomial that has a parabolic cycle α = {αk}p−1k=0 ∈ C. Then α is real since
fn(0)→ α.

The multiplier of α is either 1 or −1, and accordingly, we call α (and f it-
self) primitive or satellite (≡flip) parabolic (see §§19.8.1, 21.3.1). These cases are
dynamically quite different:

Exercise 21.28. In the primitive parabolic case, α is locally topologically semi-
attracting, while it is locally topologically attracting in the satellite case.

Similarly to §21.3.6, let us consider the real parabolic realm and the real parabolic
basin of α:

RR(α) = {x ∈ I : fnx→ α}, DR(α) = intRR(α).

Obviously, RR(α) = R(α)∩R, but the situation with the real basin is more subtle.
Being open, DR(α) ⊂ I is the disjoint union of open intervals. The real imme-

diate parabolic basin D•R(αk) of αk is the component of DR(α) such that clD•R(αk)
contains αk, and the real immediate parabolic basin D•R(α) is the union of the
D•R(αk).

Exercise 21.29. (i) In the primitive case, α ∈ RR(α)rDR(α) and

DR(α) = D(α) ∩ R.

(ii) In the satellite case, α ∈ DR(α) and

DR(α) = RR(α) = (D(α) ∩ R) ∪Orb−(α).

(iii) The real immediate basin D•R(α) contains the critical point 0. Moreover,

0 6∈ Orb−(α).

21.4. Repelling cycles. Let us now consider a repelling cycle α = (fkα)p−1k=0.
Nearby points escape (exponentially fast) from a small neighborhood of α, which
implies that the family of iterates fn is not normal near α. Hence repelling periodic
points belong to the Julia set. In fact, as we are about to demonstrate, they are
dense in the Julia set, so that the Julia can be alternatively defined as the closure
of repelling cycles. It gives us a view of the Julia set “from inside”.

But first, let us now show that almost all cycles are repelling:
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Lemma 21.30. A quadratic polynomial may have at most two non-repelling
cycles.

Proof. Let α◦ be a neutral periodic point of period p with multiplier ρ◦ of
a quadratic polynomial f◦ : z 7→ z2 + c◦. Due to Corollary 21.26, we can assume
that ρ◦ 6= 1. Then by the Implicit Function Theorem, the equation fp(z) = z has a
local holomorphic solution z = αc assuming value α◦ at c◦. The multiplier of this
periodic point, ρc = (fpc )

′(αc) is also a local holomorphic function of c. In fact, it is
a global algebraic function. So, if it was locally constant then it would be globally
constant, and the map f0 : z 7→ z2 would have a neutral cycle. Since this is not
the case, the multiplier is not constant, and hence near c◦ it assumes all values in
some neighborhood of ρ◦. In particular, it assumes values with |ρ| < 1. Moreover,
if near c◦

ρ(c) = ρ◦ + a(c− c◦)k + . . . , a 6= 0,

then the set {c : |ρ(c)| < 1} is the union of k sectors that asymptotically oc-
cupy 1/2 of the area of a small disk D(c◦, ε). It follows that if we take three of
such multiplier functions, then two of them must have overlapping sectors, so that
the corresponding two cycles can be made simultaneously attracting, contradicting
Corollary 21.7. �

Theorem 21.31. The Julia set is the closure of repelling cycles.

Proof. Let us first show that any point of the Julia set can be approximated
by a periodic point. Let z ∈ J (f) be a point we want to approximate. Since the
Julia set does not have isolated points (see Corollary 20.7), we can assume that z is
not the critical value. Then in a small neighborhood U ∋ z, there exist two branches
of the inverse function, φ1 = f−11 and φ2 = f−12 . Since the family of iterates is not
normal in U , one of the equations, fnz = z, fnz = φ1(z), or fnz = φ2(z), has a
solution in U for some n ≥ 1 (by the Refined Montel Theorem). If it is an equation
of the first series, we find in U a periodic point of period n (maybe, not the least
one). Otherwise, we find a periodic point of period n+ 1.

Since by Lemma 21.30, almost all periodic points are repelling, we come to the
desired conclusion. �

A quadratic polynomial is called periodically repelling if all of its cycles (in C)
are repelling.

21.5. Topological exactness (leo property). We know from Corollary 20.24
that any polynomial is topologically transitive on its Julia set. In fact, it enjoys
stronger mixing properties:

Proposition 21.32. Any polynomial f is topologically exact, and hence topo-
logically mixing, on its Julia set.

This follows from a slightly sharper statement:

Lemma 21.33. Let f : z 7→ z2 + c, and let Q be a compact subset of C for
which we assume that in case c = 0, Q 6∋ 0. Then for any neighborhood U ⊂ C

intersecting the Julia set J (f), we have fn(U) ⊃ Q for all n sufficiently big.

Proof. Enlarging Q if needed, we can assume without loss of generality that
Q = DR for c 6= 0 and Q = A[R−1, R] for c = 0, where R is so big that f(Q) ⊃ Q.
Then it is enough to show that fn(U) ⊃ Q for some n ∈ N.
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By Theorem 21.31, U contains a repelling periodic point α of some period p.
Hence, U contains a little disk D ∋ α such that fp(D) ⊃ D.

Let Dk = fk(D). By the higher degree version of Proposition 20.21 applied to

fp (see the discussion in §20.9), we have:
⋃

m∈N
Dpm ⊃ Q. Since

D ⊂ Dp ⊂ D2p ⊂ . . . ,
one of these sets, say Dpm, contains Q. All the more, fpm(U) ⊃ Q. �

As we have noticed in §20.5, the dynamics on the Fatou set is Lyapunov stable.
We see now that the dynamics on the Julia set is :yapunov unstable. Thus, we
have:

Proposition 21.34. The Fatou set coincides with the set of Lyapunov stable
points.

The above lemma also implies a refined version of the Shrinking Lemma:

Exercise 21.35. Assume there is a family of inverse branches f−nk : Dk → C

with bounded dilatation, where nk →∞ and Dk are round disks with bounded radii
centered at some points of the Julia set. Then diam(f−nk(Dk))→ 0 as k →∞.

21.6. Siegel and Cremer cycles.

21.6.1. Lyapunov criterion. Let us start with a local situation. Let us consider
a germ f : (C, 0)→ (C, 0)

(21.13) f : z 7→ e(θ)z + b2z
2 + . . .

with irrational rotation number, θ ∈ (R/Q)/Z.
The germ f (and its fixed point 0) is called linearizable or Siegel if it is

conformally conjugate to the rotation by θ, i.e., there exists a conformal map
φ : (U, 0) → (Dr, 0) from a neighborhood of 0 to a disk Dr, normalizaed so that
φ′(0) = 1, such that

(21.14) φ(fz) = e(θ)φ(z).

The variable ζ = φ(z) is called the linearizing coordinate for f .

Proposition 21.36. A fixed point is Siegel iff it is Lyapunov stable.

Proof. Obviously, Siegel points are Lyapunov stable.
Vice versa, if 0 is stable then it has an arbitrary small invariant neighborhood.

Filling it in, we obtain a small simply connected invariant neighborhood U ∋ 0. It
can be conformally mapped onto a disk Dr by the Riemann map φ : (U, 0)→ (Dr, 0),
normalized so that φ′(0) = 1. Then g := φ◦f ◦φ−1 is a holomorphic endomorphism
of the unit disk fixing 0, with |g′(0)| = |e(θ)| = 1. By the Schwarz Lemma,
g(z) = e(θ)z. �

In the polynomial case, linearizability can be characterized in terms of the
Fatou-Julia Dichotomy:

Proposition 21.37. (i) For a polynomial f , a neutral periodic point α is Siegel
iff α ∈ F .

(ii) In the Siegel case, let D be the component of F containing α. Then fp |U is
conformally conjugate to the rotation of D by θ (where p is the period of α and θ is
its rotation number).
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Proof. The first assertion follows from Propositions 21.34 and 21.36. To prove
the second one, consider the Riemann mapping φ : (D,α) → (D, 0). Applying the
Schwarz Lemma in the same way as in the proof of Proposition 21.36, we concude
that φ ◦ fp ◦ φ−1 is the rotation of D by θ. �

The component D of F(f) containing a Siegel point is called a Siegel disk.

We will see later on that a quadratic polynomial can have at most one non-
repelling cycle (see Theorem 28.13). If it has one, it can be non-contradictory
classified as either hyperbolic, or parabolic, or Siegel, or Cremer.

21.6.2. Existence of Cremer points. Let us show that Cremer cycles indeed
exist:

Proposition 21.38. In the family fθ : z 7→ e(θ)z + z2, θ ∈ R/Z, the origin 0
is the Cremer fixed point for a generic rotation number θ.

Proof. Let us consider the set Λ ⊂ R/Z of rotation numbers θ for which
0 ∈ J (fθ). We have Λ = Λp⊔ΛC , where Λp is the set of parabolic (i.e., is rational),
rotation numbers, while ΛC is the set of Cremer (i.e., irrational) numbers.

We will show that Λ is of type Gδ. Since Λp is dense, Λ is a dense Gδ, so
rotation numbers θ ∈ Λ are generic by definition. Of course, removing a countable
subset preserves genericity, so the conclusion would follow.

To prove that Λ is Gδ, let us consider a function

d : R/Z→ R≥0, d(θ) = dist(0,J (fθ)).
Then Λ is the set of zeros of d. We will show that d is upper-semicontinuous. Since
the set of zeros of a non-negative upper semicontinuous function is of type Gδ, it
will complete the proof.

So, take an ε > 0 and let d(θ◦) = d◦. Then by Theorem 21.31, there is a
repelling periodic point α◦ ∈ J◦ such that |α◦| < d◦ + ε. But repelling periodic
points persist under perturbations: for any θ near θ◦, the map fθ has a repelling
periodic point αθ continuously depending on θ (see Lemma 33.3 below for this
easy property). Hence |αθ| < d◦ + 2ε for all nearby θ’s. As d(θ) ≤ |αθ|, the
semicontinuity follows. �

Existence of Siegel points will be shown in §23.2.

21.6.3. Postcritical set.

Proposition 21.39. (i) If D is a Siegel disk then ∂D ⊂ ω(0).
(ii) If α is a Cremer point then α ∈ ω(0).

Proof. (i) If D 6⊂ ω(0) then there is a disk W intersecting ∂D but disjoint
from ω(0). Then all inverse branches of f−n are well defined in W . Take a point
z ∈ W ∩D, let z ≡ z0, z−1, z−2, . . . be its backward orbit that stays in D, and let
f−n :W →W−n be the corresponding inverse branches. By the Shrinking Lemma,
|Df−n(z)| → 0 as n → ∞. However, this is impossible as f−p|D is conformally
equivalent to the disk rotation (where p is the period of D).

(ii) The proof is similar. If there were a disk W ∋ α disjoint from ω(0), then
the Shrinking Lemma would imply that |Df−n(α)| → 0 as n→∞. �

It immediately follows that orb 0 is infinite in the Siegel case.
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Exercise 21.40. Show that orb 0 is infinite in the Cremer case as well.

21.6.4. Perez-Marco hedgehog. An ε-small orbit near a fixed point α is an orbit
contained in Dε. We can talk about two-sided and one-sided small orbits.) If
an ε-small orbit exists for any ε > 0, we say that “there are small orbits near α".
Obviously, there are small two-sided orbits near any Siegel point, and by the Flower
Theorem, there are such orbits near any parabolic point. In this section we will
construct small orbits near any Cremer point.

Let us begin with the one-sided case. Let

(21.15) f : z 7→ ρz + az2 + . . .

be a holomorphic germ near 0 univalent on Dr. For 0 < ε < r, let Kε
+ ≡ Kε

+(f) be
the connected component of {z : fnz ∈ Dε, n = 0, 1, . . . } containing 0. In other
words, Kε

+ is the maximal forward invariant connected subset of Dε containing 0.
Let Dε ≡ Dεf be the component of intKε

+(f) containing 0.

Exercise 21.41. (i) For an attracting germ f as above, all forward orbits in
Dε converge to 0 (in this case Dε is called the immediate basin of attraction of 0
for the germ f in Dε.)

(ii) For an attracting germ f , Dε stretches all the way to the boundary circle Tε
(i.e., Tε ∩ clDε 6= ∅).
(iii) For a neutral germ f , the set Kε

+ stretches all the way to the boundary circle
Tε.

Remark 21.42. Taking the union of the hulls Kε
+ over all ε < r, we obtain an

invariant connected subset Kr
+ ⊂ Dr that stretches all the way to Tr. However,

this set is not closed, so formally speaking, it is not a hull.

Before going to the proof of the existence of the two-sided small orbits, recall
from §19.8.4 the structure of circle homeomorphisms with rational rotation number.

Lemma 21.43. Let g : T → T be a real analytic orientation preserving circle
diffeomorphism with a rational rotation number p/q. Then for any ρ > 1 there
exists a completely invariant open set U ⊂ A(1/ρ, ρ) such that U ∩ T = T r Per(g)
and U ∪ T is connected. Moreover, all orbits in V converge to periodic cycles in T

in both negative and positive times.

Proof. Let us consider a component I = (a−, a+) of T r Per(g) (see Exer-
cise 19.33). Then for any x ∈ I, we have gqnx → a+ as n → +∞. Hence a+ is
either attracting or parabolic. In either case, x belongs to the attracting basin of
a+, which is open in C. Hence for any point x ∈ I there is a neighborhood V whose
forward orbit is contained in A(1/ρ, ρ) and the domains gqn(V ) uniformly converge
to a+ as n→ +∞.

Replacing f with f−1, we obtain a similar statement for a− in the negative
time. In this way we obtain a neighborhood V ∋ x whose full orbit is contained in
A(1/ρ, ρ) and the gqn(V ) uniformly converge to a± as n→ ±∞.

Covering a fundamental interval J ⊂ I with finitely many such neighborhoods
Vk, we construct a completely invariant open set UI in A(1/ρ, ρ) whose trace by T

is equal to the orbit of I and T ∪ UI is connected (and all orbits in UI converge to
the boundary periodic cycles of

⋃
gnI in both negative and positive times). Doing

this for all components I of T r Per(g), we obtain a desired open set. �
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Let Kε ≡ Kε(f) be the connected component of the two-sided non-escaping
set {z : fnz ∈ Dε, ∀ n ∈ Z} containing 0. In other words, Kε is the maximal
completely invariant connected subset of Dε containing 0.

Theorem 21.44. Let f : z 7→ e(θ)z + az2 + . . . be a neutral holomorphic germ
near 0 univalent on Dr. Then for any 0 < ε < r, the set Kε is a completely
invariant hull that stretches all the way to the boundary circle Tε.

Proof. We fix an ε ∈ (0, r) and will not necessarily emphasize dependence of
various objects on it, e.g., K ≡ Kε.

Obviously, K is compact. By the Maximal Principle, K is full, so it is a hull
or a singleton. We need to show that it stretches all the way to Tε.

Let us first consider the parabolic case, θ = p/q. In this case, K contains
the intersection Φa ∩ Φr of local attracting and repelling Leau-Fatou flowers (see
§21.3.2), so it is a hull (rather than a singleton). Assume by contradiction that
K ⊂ Dε.

Let us consider the Riemann mapping φ : C r K → C r D and define the
external map g := φ ◦ f ◦ φ−1 in an outer neighborhood Ω+ := φ(Dε r K) of
T. It is a conformal map, proper near T. Hence it extends continuously to T

(see Proposition 2.60), and then it extends by reflection to a continuous map in a
symmetric neighborhood Ω of T which is conformal off T. Since T is removable (see
§16), g is conformal on the whole Ω, so it restricts to an analytic diffeomorphism
of T.

As we know from Exercise 21.14 (applied to f−1), there is a curve γ ⊂ Φr

landing at 0 which is f−1−periodic with period q, f−q(γ) ⊂ γ. Moreover, the
curves f−n(γ), n = 0, . . . , q−1, represent different homotopy classes in CrK rel 0
(since attracting petals separate any two of these curves). Let δ = φ(γ). Then δ is
g−1−periodic with period q, implying by Lemma 8.18 that it lands at a q-periodic
point α ∈ T. So, g has a rational rotation number.

By Lemma 21.43, there is a completely invariant open set U ⊂ Ω+ such that
T∪U is connected. Let V := φ−1(U). The setK∪V is connected. Indeed, U i∩T 6= ∅
for each component Ui of U . Hence V i ∩ K 6= ∅ for each component Vi of V. It
follows that all the sets Vi ∪K, and hence their union, V ∪K, are connected.

Thus, K ∪ V is a completely invariant connected set contained in Dε, contra-
dicting the definition of K (as the maximal connected completely invariant subset
of Dε). This completes the proof in the case of rational θ.

In general, consider any sequence of parabolic maps fn : Dr → C converging
to f (uniformly on compact subsets of Dr) and the corresponding sequence of
completely invariant compact connected sets 0 ∈ Kn ⊂ Dε stretching all the way to
Tε. Any Hausdorff limit K ′ of this sequence inherits all of these properties. Filling
in its holes, if necessary, we turn K ′ into a hull K, supplying us with a desired
hedgehog for f .

�

Though it is not obvious, the hedgehog Kε is uniquely determined by being a
completely invariant hull in the disk Dε touching its boundary [PM2].

Remark 21.45. Similarly, one can associate a canonical hedgehog KU to any
Jordan disk U ∋ 0 such that f is univalent in some neghborhood of U .
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21.6.5. Appendix: associated circle diffeomorphism. Let us uniformize the com-
plement of the hedgehog by the complement of the unit disk, φ : C rK → C r D.
Then the map f : e(θ)z + z2 + . . . in an outer neighborhood of K is conjugate to
a proper map g in an outer neighborhood of T. The latter extends to an analytic
diffeomorphism of T, for which we keep the same notation g (compare §41.1.2). As
Perez-Marco has demonstrated, this map is a very useful tool for understanding
local dynamics near a Cremer point. Let us mention one application.

Lemma 21.46. The map g : T→ T has rotation number θ.

Proof. Approximation of fθ with parabolic maps fpn/qn
leads to approxima-

tion of f with circle diffeomorphisms with rotation numbers pn/qn. �

It led Perez-Marco to a new proof of the topological invariance of the rotation
number of a Cremer point (see [PM1]):

Naishul’s Theorem. Topologically conjugate neutral germs have the same
rotation number.

21.7. Periodic components. The notions of a periodic component of F(f)
and its cycle are self-explanatory. It is classically known that such a component is
always associated with a non-repelling periodic point:

Theorem 21.47. Let U = (Ui)
p
i=1 be a cycle of periodic components of intK(f).

Then one of the following three possibilities can happen:

• U is the immediate basin of an attracting cycle;
• U is the immediate basin of a parabolic cycle α ⊂ ∂U of some period q|p;
• U is the cycle of Siegel disks.

Proof. Take a component U of the cycle U, and let g = fp. By the Schwarz
Lemma, g|U is either a conformal automorphism of U , or it strictly contracts the
hyperbolic metric disthyp on U . In the former case, it is either elliptic, or otherwise.
If g is elliptic then U is a Siegel disk. Otherwise the orbits of g converge to the
boundary of U .

Let us show that if an orbit (zn = gnz), z ∈ U , converges to ∂U , then it
converges to a g-fixed point β ∈ ∂U . Join z and g(z) with a smooth arc γ, and
let γn = fnγ. By the Schwarz Lemma, the hyperbolic length of the arcs γn stays
bounded. Hence they uniformly escape to the boundary of U . Moreover, by the
relation between the hyperbolic and Euclidean metrics (Lemma 7.7), the Euclidean
length of the γn shrinks to 0. In particular,

(21.16) |g(zn)− zn| = |zn+1 − zn| → 0 as n→∞.
By continuity, all limit points of the orbit (zn) are fixed under g. But g, being a
polynomial, has only finitely many fixed points. On the other hand, (21.16) implies
the ω-limit set of the orbit (zn) is connected. Hence it consists of a single fixed
point β.

Moreover, the orbit (ζn) of any other point ζ ∈ U must converge to the same
fixed point β. Indeed, the hyperbolic distance between zn and ζn stays bounded
and hence the Euclidean distance between these points shrink to 0.

Thus either U is a Siegel disk, or the g-orbits in U converge to a g-fixed point
β, or the map g : U → U strictly contracts the hyperbolic metric and its orbits
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do not escape to the boundary ∂U . Let us show that in the latter case, g has an
attracting fixed point α in U .

Take a g-orbit (zn), and let dn = disthyp(z0, zn). Since g is strictly contracting,

disthyp(zn+1, zn) ≤ ρ(dn) disthyp(zn, zn−1),

where the contraction factor ρ(dn) < 1 depends only on disthyp(zn, z0). Since the
orbit (zn) does not escape to ∂U , this contraction factor is bounded away from 1
for infinitely many moments n, and hence disthyp(zn+1, zn) → 0. It follows that
any ω-limit point of this orbit in U is fixed under g.

By the strict contraction, g can have only one fixed point in U , and hence any
orbit must converge to this point. Strict contraction also implies that this point is
attracting.

We still need to prove the most delicate property: in the case when the orbits
escape to the boundary point β ∈ ∂U , this point is parabolic. In fact, we will show
that g′(β) = 1. Of course, this point cannot be either repelling (since it attracts
some orbits) or attracting (since it lies on the Julia set). So it is a neutral point
with some rotation number θ ∈ [0, 1). The following lemma will complete the proof.

Lemma 21.48 (Necklace Lemma). Let f : z 7→ ρz+a2z
2+ . . . be a holomorphic

map near the origin, and let |ρ| = 1. Assume that there exists a domain Ω ⊂ C∗

such that all iterates fn are well-defined on Ω, f(Ω) ∩ Ω 6= ∅, and fn(Ω) → 0 as
n→∞. Then ρ = 1.

Proof. Consider a chain of domains Ωn = fnΩ converging to 0. Without loss
of generality we can assume that all the domains lie in a small neighborhood of
0 and hence the iterates fn|Ω are univalent. Fix a base point a ∈ Ω such that
f(a) ∈ Ω, and let

φn(z) =
fn(z)

fn(a)
.

These functions are univalent, normalized by φn(a) = 1, and do not have zeros. By
the Koebe Distortion Theorem (the version given in Exercise 4.14(ii)), they form
a normal family. Moreover, if ρ 6= 1 then any limit function φ of this family is
non-constant since φ(f(a)) = ρ 6= 1 = φ(a). Therefore, the derivatives φ′n |Ω are
bounded away from 0, and hence dist(1, ∂Ωn) ≥ ε > 0 for all n ∈ N. It follows that

dist(fn(a), ∂Ωn) ≥ ε rn, n ∈ N,

where rn = |fn(a)|.
On the other hand, f acts almost as the rotation by θ near 0, where θ = arg ρ ∈

(0, 1). Since this rotation is recurrent (see Exercise 19.31) and θ 6= 0, there exists
an l > 0 such that

dist(fn+l(a), fn(a)) = o(rn) as n→∞.

The last two estimates imply that Ωn+l ∩ Ωn 6= ∅ for all sufficiently big n.
Thus, the chain of domains Ωn, . . . ,Ωn+l closes up, and their union form a

“necklace” around 0. Take a Jordan curve γ in this necklace, and let D be the
disk bounded by γ. Then fn(γ) → 0 as n → ∞. By the Maximum Principle,
fN (D) ⋐ D for some N . By the Schwarz Lemma, |ρ| < 1 – contradiction. �
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Notes. Classical Theorem 21.4 on existence of a critical point in the attracting
basin (due to Fatou and Julia) plays a fundamental role in the field. It is valid for a
general rational function f of degree d and implies that f may have at most 2d− 2
(the number of critical points) attracting cycles. In particular, a polynomials of
degree d may have at most d− 1 finite (in C) attracting cycles.

Lemma 21.30 on the number of non-repelling cycles is due to Fatou: it gives
the twice bigger bound than was anticipated.

Existence of non-linearizable neutral points (“Cremer maps”) was demonstrated
by Pfeiffer in 1917 [Pf]. The work of Cremer [Cr] appeared two decades later. The
Perez-Marco hedgehogs appeared in [PM1]. A more topological proof was recently
given in [FLRT]: instead of the Riemann Mapping Theorem, it makes use of the
Brouwer Translation Theorem for plane homeomorphisms (see [Fr]).

Description of the dynamics in an invariant Fatou component (Theorem 21.47)
is a version of the Denjoy-Wolff Theorem on the holomorphic dynamics in the disk
(see [Va, §43]). The Necklace Lemma (and its proof given in this book) is due to
Fatou [F3, §54]. There is a more topological proof of this lemma that suggested
the name Snail Lemma commonly used these days (see [M2, §16]).

22. Postcritical set as the global attractor

22.1. Remark on wandering domains. Consistently with the general ter-
minology of §19.1, a component D of the Fatou set F(f) is called wandering if
fnD ∩ fmD = ∅ for any natural n < m. Such components will also be referred to
as “wandering domains”.10

In §29.2, we will prove that wandering domains do not exist. Here we will make
an observation that implies this in some special cases (but it will not be used in
the general argument.)

Proposition 22.1. If D is a wandering domain then, ω(z) ⊂ ω(0) for any
z ∈ D.

Proof. Let rn be the inner radius of the fn(D) around fnz.

Since area fn(D)→ 0, we have rn → 0.

By the Koebe 1/4−Theorem this implies that

(22.1) |Dfn(z)| → 0 as n→∞.

Assume now that ω(z) 6⊂ ω(0). Then there is an open disk W intersecting
ω(z) but disjoint from ω(0). Let f−n be the iterated inverse branches on W that
send fnz back to z. By the Normality Lemma, 20.25, they form a normal family,
implying boundedness of the derivatives |Df−n(fnz)|, which contradicts (22.1). �

10One can consider more general “wandering domains”, not necessarily full components of
F(f). Such domains can certainly exist (in the basins of attracting and parabolic points). We
hope this slight terminological inconsistency will not cause a problem.
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22.2. Global measure-theoretic attractor. The following result is a man-
ifestation of the leading role of the critical point in global holomorphic dynamics:

Theorem 22.2. If the Julia set J (f) has positive area then fnz → ω(0) for
a.e. z ∈ J (f).

Proof. For any point ζ ∈ J r cl(orb v)), there is a disk D(ζ, 2ε) disjoint
from orb v. Then all the inverse branches f−ni are well defined on this disk. By
the Koebe Distortion Theorem, they have an absolutely bounded distortion on the
twice smaller disk: ∣∣∣∣

Df−ni (ζ ′)

Df−ni (ζ)

∣∣∣∣ ≍ 1 ∀ ζ ′ ∈ D(ζ, ε).

Moreover, by the Shrinking Lemma,

diam(f−ni (D(ζ, ε))→ 0 as n→∞
uniformly in i.

Thus, the pullbacks ∆n
i := f−ni (D(ζ, ε)) are shrinking ovals of bounded shape

mapped by fn onto D(ζ, ε) with bounded distortion. Let D(ζ ′, δ) ⊂ D(ζ, ε) r J
be a gap in the Julia set. Then its pullbacks f−ni (D(ζ ′, δ)) ⊂ ∆n

i are gaps in J
of definite size (i.e., their inner radii are comparable with diam∆n

i , uniformly in
(n, i)).

Let now X := {z ∈ J : ω(z) 6⊂ ω(0)}. Then for any z ∈ X, ω(z) 6⊂ cl(orb v),
so there is a point ζ ∈ ω(z) r cl(orb v). Hence there is a sequence nk → ∞ such
that fnkz ∈ D(ζ, ε/2).

Let ∆nk be the fnk−pullback of D(ζ, ε) around z. By the previous discussion,
it is a shrinking sequence of ovals of bounded shape around z that contain definite
gaps in J . Hence J is porous at z (as defined in §19.18), so z is not a density point
for J . By the Lebesgue Density Theorem, areaX = 0. �

With the notion of global measure-theoretic attractor in hands (§19.7), we
obtain:

Corollary 22.3. Under the above circumstances, the global measure-theoretic
attractor of f | J is contained in ω(0).

Remark 22.4. This result is a strating point for exploring the area of the
Julia set. In particular, it implies that areaJ (f) = 0 for hyperbolic, parabolic and
postrictically preperiodic maps (compare §§25.5, 26.5, 27.1.1).

Notes. Proposition 22.1 on wandering domains is due to Fatou [F2, §30].
In Holomorphic Dynamics, the global measure-theoretic attractor (§22.2) ap-

peared in [L6]. It was one of the first applications of the Koebe Distortion Theorem
to measurable dynamics. Besides having immediate consequences in the area prob-
lem (see §§25.5, 26.5, 27.1.1) it was the starting point for the study of real 1D
attractors by A. Blokh and the author (see §46).

23. Remarkable functional equations

Study of certain functional equations was one of the main motivations for the
classical work in holomorphic dynamics. By means of these equations the local
dynamics near periodic points of different types can be reduced to the simplest
normal form. But it turns out that the role of the equations goes far beyond local
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issues: global solutions of the equations play a crucial role in understanding the
dynamics.

We will start with the local analysis and then globalize it (though sometimes
one can go the other way around). For the local analysis we put the fixed point
at the origin and consider a holomorphic germ (21.1) near the origin. The key
question is whether f can be locally conjugated to its linear part

Lρ : C→ C, z 7→ ρz.

If so, tha map f is called locally linearizable, or else: the corresponding germ is
called linearizable (compare §21.6). However, in the parabolic case, the question
assumes a more subtle form...

23.1. Linearizing coordinate in the attracting case. Let us start with
the easiest case of a (simply) attracting (i.e., with 0 < |ρ| < 1) fixed point. The
topological picture is particularly simple as all these maps are topologically, and in
fact quasiconformally, equivalent.

23.1.1. Local qc classification.

Exercise 23.1. Show that any two attracting linear maps Lρ and Lρ′ with
0 < |ρ|, |ρ′| < 1 are globally quasiconformally conjugate. However, if ρ 6= ρ′ then
the conjugacy is not differentiable at 0.

Proposition 23.2. Any two (simply) attracting holomorphic maps (21.1) are
locally quasiconformally conjugate.

Proof. Let f , f̃ be two attracting holomorphic maps in question, both defined
in some disk D2r. Let us consider fundamental annuli A = D

r
r f(Dr) and Ã =

D
r
r f̃(Dr).
Start with taking any diffeomorphism h : A→ Ã equivariant on Tr , i.e., such

that h(fz) = f̃(h(z)) for any z ∈ Tr.
By means of the dynamics, lift h to a diffeomorphism h1 : f(A)→ f̃(A), i.e., let

h1(f(z)) = f̃(h(z)) (which is not a problem as f is invertible). Since h was selected
equivariant on ∂A, h1 matches with h on ∂(f(A)). By qc removability of smooth
curves (Gluing Lemma) we obtain a qc homeomorphism H1 : A∪ f(A)→ Ã∪ f̃(Ã)
that extends h and is equivariant on A. Moreover, since f and f̃ are conformal, h1,
and hence H1, have the same dilatation as h.

Let An =

n⋃

k=0

fk(A), and let Ãn be the similarly annulus for f̃ . Note that

⋃
An = D∗r =

⋃
Ãn.

Proceeding as above, we consecutively construct a sequence of qc homeomor-
phisms Hn : An → Ãn equivariant on An−1 and extending Hn−1 from the latter
without increasing dilatation. Taking the union of these annuli, we obtain an equi-
variant qc homeomorphism H : D∗r → D∗r .

By qc removability of isolated points, we extend it to a desired qc conjugacy
Dr → Dr between f and f̃ . �

Thus, in the attracting case, the value of the multiplier ρ does not have any
significance form the point of view of topological dynamics.
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Exercise 23.3. Show that the above conjugacy can be selected smooth in a
punctured neighborhood of 0.

However, there is an obstruction for smoothness at the origin, as the multiplier
is a smooth invariant: If a conjugacy between two maps (21.1) is differentiable at
0, then the maps have the same multiplier ρ (see Proposition 19.6; compare with
§19.8.1).

23.1.2. Local conformal linearization. In fact, the multiplier is the only ob-
struction for smooth, and in fact, for conformal, conjugacy. Indeed, any map (21.1)
can be conformally linearized near the origin (compare with Exercise 19.29):

Theorem 23.4 (Linearization Theorem). Consider a holomorphic map (21.1)
near the origin. Assume 0 < |ρ| < 1. Then there exists an f -invariant Jordan disk
V ∋ 0, r > 0, and a conformal map φ : (V, 0) → Dr with φ′(0) = 1 satisfying the
equation:

(23.1) φ(fz) = ρφ(z)

The above properties determine uniquely the germ of φ at the origin.

The above function φ is called the linearizing coordinate for f near 0 or the
Königs function. The linearizing equation (23.1) is also called the Schröder equation.
It locally conjugates f to its linear part z 7→ ρz.

Proof. The linearizer φ can be given by the following explicit formula:

(23.2) φ(z) = lim
n→∞

ρ−nfnz.

To see that the limit exists (uniformly near the origin), let zn = fnz, z0 ≡ z,
notice that zn = O(|zρ|n) uniformly near the origin, and take the ratio of the two
consecutive terms in (23.2):

ρ−n−1zn+1

ρ−nzn
= ρ−1

ρzn(1 +O(|zn|))
zn

= 1 +O(|zρn|).

Hence

φ(z) = z

∞∏

n=0

ρ−n−1zn+1

ρ−nzn
= z(1 +O(|z|))

uniformly near the origin, and the conclusion follows.
Obviously, φ is a linearizer. Its uniqueness follows from the exercise below. �

Exercise 23.5. Show that if a holomorphic germ f near the origin commutes
with the linear germ z 7→ ρz, 0 < |ρ| < 1, then f is itself linear.

Remark 23.6. We see that the conjugacy φ is constructed by going forward
by the iterates of f and then returning back by the iterates of the corresponding
linear map. This method of constructing a conjugacy between two maps will be
used on several other occasions: see (23.7) and Project 23.41.

Let us note in conclusion that the Königs function φ = φf depends holomor-
phically on f :

Lemma 23.7. Let fλ(z) : z 7→ ρ(λ)z+a2(λ)z
2+ . . . be a holomorphic family of

local maps with attracting fixed point 0. Then the Königs function φλ(z) depends
holomorphically on λ.



23. REMARKABLE FUNCTIONAL EQUATIONS 315

Proof. The above proof shows that convergence in Königs formula (23.2) is
locally uniform over λ. Hence the limit is holomorphic in (λ, z). �

23.1.3. Fundamental torus. Take a little disk D := Dε around 0. It is invariant
under f , and the quotient of D under the action of f is a conformal torus T2

f . It

can be obtained by taking a fundamental annulus Af := D r f(D) and gluing its
boundary components by the dynamical relation [identifying a point z ∈ ∂D to
f(z) ∈ ∂(f(D))].

The torus T2
f is naturally partially marked: its fundamental group Γ = π1(T

2
f )

has a marked generator corresponding to a little circle around 0, compare §2.6.3.
The second generator of Γ is represented by a proper arc γ in the fundamental
annulus Af connecting two dynamically related points. Given the endpoints, such
an arc is defined up to a twist by n ∈ Z revolutions.

By the Linearization Theorem, 23.4, the action of f on D is conformally equiv-
alent to the linear action of Lρ : ζ 7→ ρ ζ on D∗. Hence T2

f is conformally equivalent
(as partially marked torus) to T2

ρ = D∗/Lρ, so ρ is the modulus of T2
f , see §2.6.3.

By means of the universal covering map z 7→ e(z), the torus T2
ρ is identified

with the quotient C by the lattice generated by two translations α : z 7→ z + 1 and

β : z 7→ z +
2πi

log ρ
. Moreover, the 2πi-ambiguity in the choice of log ρ corresponds

to the twist ambiguity in the choice of the second generator.

In case of an attracting periodic point α of period p, we can apply the above
discussion to fp near α to obtain the corresponding fundamental torus T2

f,α.

23.1.4. Extension to the immediate basin. Next, we will extend the Königs func-
tion to the immediate basin of attraction:

Proposition 23.8. Let f be a polynomial with attracting periodic point α.
Then the Königs function φ analytically extends to the immediate basin D ≡ D•(α),
and it satisfies there Schröder functional equation (23.1). Moreover, the map φ :
D → C is a branched covering of infinite degree, branched on D∩Crit∞f . The fibers
of φ are petit orbits of f |D.

Proof. We can assume without loss of generality that α is fixed, f(α) = α.
The immediate basin D is exhausted by an increasing nest of domains

P0 ⊂ P1 ⊂ P2 ⊂ . . .

where P0 is a domain for the local solution of (23.1) and Pn+1 is the component of
f−1(Pn) containing α (compare proof of Theorem 21.4). Then we can consecutively
extend φ from Pn to Pn+1 by means of the Schröder equation:

φn+1(z) = ρ−1φn(fz), z ∈ Pn+1.

Since the maps f : Pn+1 → Pn are branched coverings, all the extensions
φn : Pn → ρ−nφ(P0) are branched coverings, and hence the limiting map φ : D → C

is a branched covering as well. As deg(f |Pn) > 1 eventually for all n (once the Pn
contain a critical point of f), we have deg φn →∞.

Moreover, any critical point of φn+1 is either a critical point of f or else an
f -preimage of a critical point φn.

The last assertion is also easily supplied, consecutively for the maps φn. �
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So, in the quadratic case, f : z 7→ z2+ c, the map φ branches on (f |D)−pm(0),
where p is the period of α. Moreover, the critical points of φ are simple in this case,
and its critical values are ρ−n φ(0), n = 0, 1, . . . .

23.1.5. Cycles of curves. Periodic curves landing at periodic points play a key
role in the Polynomial Dynamics. Let us take a first glance at this phenomenon.

Exercise 23.9. For any attracting linear map Lρ : (C, 0) → (C, 0), there is a
proper invariant ray R : R+ → C∗ (going from 0 to ∞) .

As simple as it is, this fact is somewhat counterintuitive when arg ρ 6= 0 mod 2π,
as it may look like the twist by arg ρ is not compatible with the invariance of the
ray. What it really implies that an invariant curve spirals around the origin. This
phenomenon is in the heart of the spiralling nature of Julia sets, clearly visible on
the pictures.

Lemma 23.10. For any attracting germ f (21.1) there exists an invariant curve
landing at 0.

Proof. Let D := Dε for a small ε, and let A := Drf(D) be the corresponding
fundamental annulus. Connect a point z ∈ ∂D to its image f(z) ∈ ∂(fD) by an

arc γ properly embedded into A, and let R :=
∞⋃

n=0

fn(γ).

Alternatively, the lemma follows from the previous Exercise by linearization
(Proposition 23.2). �

An arc γ landing at 0 is called periodic with period q (under an attracting map
(21.1)) if the curves fn(γ), n = 0, 1, . . . , q − 1, meet only at 0, and fq(γ) ⊂ γ.
Let us call these curves γk, k ∈ Z/qZ, labeling them in a cyclic order around 0
(see §1.3.3). Being an orientation preserving local homeomorphism, f preserves
this order, so it induces a rotation of this cycle of curves: f(γk) ⊂ γk+p. Under
these circumstances, p/q is called the combinatorial rotation number of the cycle of
curves.

Lemma 23.11. For any attracting map f (21.1), 0 < |ρ| < 1, and any rational
p/q ∈ Q/Z, there exists a cycle of curves γk landing at 0 with combinatorial rotation
number p/q.

Proof. For the linear map L ≡ Lp/q : z 7→ e(p/q) z, we can let γ = R+. Since
any attracting map f is locally conjugate to L (Proposition 23.2), the conclusion
follows. �

Exercise 23.12. Construct such a cycle of curves directly, without using Propo-
sition 23.2.

Exercise 23.13. (i) Two disjoint invariant curves, γ0 and γ1, can be connected
by an arc δ : [0, 1] → C with δ(i) ∈ γi for i = 0, 1, whose interior is disjoint from
the γi and such that f(δ) ∩ δ = ∅ (a “bridge” between γ1 and γ2).

(ii) For a cycle of curves γk, there exists a Jordan disk D such that ∂D intersects
each γk at a single point and f(D) ⋐ D.

A cycle of curves (fkγ) as above naturally projects to a simple closed curve
γ in the fundamental torus T2

f . It represents some homology class [γ] ∈ H1(T
2
f ).

This homology group is naturally realized as the lattice in C spanned by α = 2πi
and β = log ρ (or equivalently: α = 1, β = log ρ/2πi).



23. REMARKABLE FUNCTIONAL EQUATIONS 317

Exercise 23.14. If a cycle of curves (fkγ) has combinatorial rotation number
p/q then [γ] = qβ − pα (for an appropriate choice of log ρ).

23.2. Existence of Siegel disks. We will now give a simple proof of existence
of Siegel disks in the quadratic family. Here it will be convenient to put a fixed
point at the origin and to normalize the quadratic term so that fλ(z) = λz + z2.

Proposition 23.15. In the quadratic family fλ(z) = λz + z2, λ = e(θ) with
θ ∈ R/Z, the map fλ is linearizable for Lebesgue almost all rotation numbers θ.

Proof. The idea is to construct Siegel disks as limits of attracting petals. To
this end we need to control the size of the latter. By Proposition 23.8, the Königs
map φλ is unbranched over the disk Dr, where r ≡ rλ = |φλ(−λ/2)| . Hence there
exists a petal Dλ ∋ 0 containing the critical point −λ/2 on its boundary which is
univalently mapped by φλ onto Dr.

By Lemma 23.7, the function λ 7→ φλ(−λ/2) is holomorphic on the unit disc
D. Let us show that it is also bounded, and in fact rλ < 2. Indeed, it is trivial to
check that the filled Julia set K(fλ) is contained in the disc D2. Hence

Dλ ⊂ intK(fλ) ⊂ D2.

But then rλ < 2 by the Schwarz Lemma applied to the inverse function

(23.3) ψλ = φ−1λ : (Drλ , 0)→ (Dλ, 0), ψ′λ(0) = 1.

By the Fatou and Riesz’-Privalov Theorems (see Appendix §8.4) the function
g(λ) := φλ(−λ/2) has non-vanishing radial limits

ḡ(θ) = lim
ρ→1

g(ρ e(θ)) for almost all θ ∈ R/Z.

Let us finally show that for such a θ, the map fλ with λ = e(θ) is linearizable
on the disk of radius r̄ := |ḡ(θ)|/2 > 0. Indeed, the family of functions ψλ (23.3)
with λ = ρ e(θ) is well defined, normalized, and normal (by the Little Montel) on
the disk of radius r̄ (as long as ρ is sufficiently close to 1 ). Then any limit function
ψ conjugates the θ-rotation of Dr̄ to fλ |ψ(Dr̄). �

So, in the family fθ : z 7→ e(θ) z+z2, θ ∈ R/Z, almost all germs are renormaliz-
able (by the above Proposition), while generic germs are not (by Proposition 21.38).
It is a striking illustration of the difference between probabilistic and topological
viewpoints!

23.3. Natural extension. In this section, we will apply the natural extension
construction from §19.16.3 to polynomial maps (not necessarily of degree two). It
will give us an extra insight into the idea of global linearization.

Let us consider a polynomial f : C → C, and let f̂ : Ĉ → Ĉ be its natural
extension.11 For a neighborhood U of z, let Û = Û(ẑ) = (U−n)∞n=0 be the pullback
of U along ẑ, i.e., U−n−1 is defined inductively as the component of f−1(U−n)
containing z−n−1. Let us call the pullback Û regular if the maps f : U−n−1 → U−n
are eventually univalent. In this case Û is called a local leaf of ẑ.

A point ẑ ∈ X̂ is called regular if it is contained in some local leaf. Let Rf
be the space of regular points in Ĉ. Path connected components of Rf are called
global leaves. We let L(ẑ) be the global leaf though a point ẑ ∈ Ĉ.

11Note that in this section, Ĉ stands for the natural extension space , rather than the Riemann

sphere.
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We define the intrinsic topology on a global leaf L ⊂ Rf by letting all the
regular pullbacks Û(ẑ) be the basis of neighborhoods of points ẑ ∈ L. Moreover, if
f : U−n−1 → U−n are univalent for n ≥ N , then the projection

π−N : Û → U−N , ẑ 7→ z−N

is homeomorphic, and we take it as a local chart on L. Transition maps between
such local charts are given by iterates of f , so that, they turn L into a Riemann
surface.

Exercise 23.16. Show that:

(i) the projections π−n : L → C (19.17) are holomorphic;

(ii) the critical points of π : L → C are the backward orbits ẑ = (z−n)∞n=0 passing
through critical points of f (such orbits are called “critical”); find the degree of
branching of π at ẑ;

(iii) the set of critical values of π : L → C is contained in the post-valuable set Pf .
(iv) For any ẑ, f̂ restricts to a conformal isomorphism L(ẑ)→ L(f̂ ẑ).

We call Rf the regular leaf space for f . The map f̂ : Rf → Rf is an isomor-
phism of the regular leaf space (i.e., it is a homeomorphism that conformally maps
leaves to leaves).

Lemma 23.17. Let Ĉf = π−1(Pf ). Then the map L r Ĉf → L r Pf is a
covering.

Proof. Let z ∈ Cr Ĉf and let U ⊂ Cr Pf be a little disk around z. Then

π−1(U) =
⊔

ẑ∈π−1z

Û(ẑ),

where each local leaf Û(ẑ) projects univalently onto U . �

23.4. Global leaf of a repelling point. Local theory near a repelling pe-
riodic point α can be immediately reduced to the above local theory near an at-
tracting point by taking the local inverse of fp (where p is the period of α). In
particular, repelling germs are also locally linearizable:

Corollary 23.18. Consider a holomorphic germ (21.1). Then there exist
Jordan disks V ⋑ V ′ ∋ 0 such that f(V ′) = V , r > 0, and a conformal map
φ : (V, 0)→ Dr with φ′(0) = 1 satisfying the equation:

(23.4) φ(fz) = ρφ(z), z ∈ V ′.
The above properties determine uniquely the germ of φ at the origin.

As in §23.1.3, we can proceed by defining the fundamental torus T2
f,a ≈ T2

ρ =

C∗/Lρ for fp near α, where Lρ : z 7→ ρz. (Note that T2
ρ ≈ T2

1/ρ.) We can
also consider “invariant curves” γ landing at 0, though strictly speaking γ is not
invariant but rather f(γ) ⊃ γ. When we need to emphasize this detail, we call γ
essentially invariant. With a similar convention, we can consider cycles of curves
γ ≡ (fk(γ))q−1k=0 for f . Each cycle γ is endowed with its combinatorial rotation
number p/q (which is equal to the negative of the combinatorial rotation number
of γ under f−1).



23. REMARKABLE FUNCTIONAL EQUATIONS 319

However, as we have already seen, the global effect of repelling points on the
dynamics is completely different from that of attracting points. In particular, as
we will show momentarily, the inverse of the linearizing coordinate for a repelling
point admits a global extension to an entire function.

Assume that f : C→ C is a polynomial with a repelling fixed point α. Let us
consider the inverse linearizing function ψ : (Dr, 0) → (V, α), ψ = φ−1. It satisfies
the functional equation

(23.5) ψ(ρz) = f(ψ(z)), z ∈ Dr/|ρ|.

It allows us to extend ψ holomorphically to the disk D|ρ|r by letting ψ(ζ) =
f(ψ(ζ/ρ)) for ζ ∈ D|ρ|r. Repeating this procedure, we can consecutively extend
f to the disks D|ρ|nr, n = 1, 2, . . . , so that in the end we obtain an entire function
ψ : C→ C satisfying (23.5). This funcion is called Poincaré.

The natural extension gives a nice dynamical way to construction the Riemann
surface L of the inverse (multivalued) function φ = ψ−1. Namely, it can be inter-
preted as the global leaf L(α̂) of the fixed point α̂ = (α, α, α, . . . ) ∈ Ĉ of f̂ . More
precisely, let us consider the space of inverse orbits of f converging to the fixed point
α:

L = {ẑ = (z−n)
∞
n=0 ∈ Ĉ : z−n → α}.

The map f lifts to an invertible map f̂ : L → L,
Since z−n → 0, z−n ∈ V for all n ≥ N . Selecting U so small that U−N ⊂ V ,

we see that U−n ⊂ V for all n ≥ N , and hence all the maps f : U−n−1 → U−n
are univalent for n ≥ N . Thus, Û is regular for a sufficiently small U . Hence L is
contained in a leaf of Rf .

Exercise 23.19. Show that L is a full leaf of Rf .
The following statement shows that L is the indeed the Riemann surface for φ:

Proposition 23.20. The maps ψ and φ lift to mutually inverse conformal
isomorphisms ψ̂ : (C, 0) → (L, α̂) and φ̂ : (L, α̂) → (C, 0) conjugating z 7→ ρz to f̂
and such that π ◦ ψ̂ = ψ.

Proof. For u ∈ C, we let ψ̂(u) = (ψ(u/ρn))∞n=0 ∈ L.
Vice versa, if ẑ = (z−n)∞n=0 ∈ L then eventually z−n ∈ V , so that the local

linearizer φ is well defined on all z−n, n ≥ N . Let now φ̂(ẑ) = ρnφ(z−n) for any
n ≥ N . It does not depend on the choice of n since φ|V conjugates f to z → ρz.

We leave to the reader to check the stated properties of these maps. �

Let K̂(f) = π−1(K(f)).

Lemma 23.21. Assume K(f) is connected. Let U be a component of Lr K̂(f).
Then U is simply connected, so that, the projection π : U → Df (∞) is a universal
covering.

Proof. Since K(f) is connected, Pf ⊂ K(f). By Lemma 23.17, U → Df (∞)
is a covering map. Since Df (∞) is conformally equivalent to D∗, U is either con-
formally equivalent to D∗ or is simply connected. But in the former case U would
be a neighborhood of ∞ in L ≈ C, so that, K̂(f) would be bounded in L. It is
impossible since K̂(f) is f̂ -invariant, and by Proposition 23.20 f̂ | L is conjugate to
z 7→ ρz with |ρ| > 1. �
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Corollary 23.22. Under the circumstance of the previous lemma, assume
U is periodic with period q, i.e., f̂q(U) = U . Then f̂q : U → U is conformally
conjugate to a hyperbolic automorphism T : z 7→ 2qz of H.

Proof. The Böttcher isomorphism B : Df (∞) → C r D (see §23.5.2 below)
lifts to an isomorphism B̂ : U → H between the universal coverings. It conjugates
f̂q|U to a lift of z 7→ z2

q

by the exponential exp : H→ CrD, which is the desired
hyperbolic automorphism. �

Thus, the quotient

A := U/f̂q =

(
q−1⋃

k=0

f̂k(U)

)
/f̂

is an annulus of modulus π/(q log 2). Moreover, it is naturally embedded into the
quotient torus T2

f,a = L∗/f̂ ≈ T2
ρ. The equator E of A is represented by a periodic

curve γ landing at 0 with period q. This curve has some combinatorial rotation
number p/q. By Exercise 23.14, E represents a cycle in H1(T

2
ρ) with coordinates

(q,−p) in the basis (log ρ, 2πi). We will make use of these remarks in §24.6.

23.5. Superattracting points and Böttcher coordinates.

23.5.1. Böttcher equation.

Theorem 23.23. Let f : z 7→ zd + ad+1z
d+1 + . . . be a holomorphic map near

the origin, d ≥ 2. Then there exists an f -invariant Jordan disk V ∋ 0, r ∈ (0, 1),
and a conformal map B : (V, 0)→ (Dr, 0) satisfying the equation:

(23.6) B(fz) = B(z)d.

The above properties determine uniquely the germ of B at the origin, up to post-
composition with rotation z 7→ e(1/(d−1)) · z (so, it is unique in the quadratic case
d = 2). Moreover, it can be normalized so that B′(0) = 1.

The map B is called the Böttcher function, or the Böttcher coordinate near
0. Equation (23.6) is called the Böttcher equation. In the Böttcher coordinate the
map f assumes the normal form z 7→ zd.

Proof. The Böttcher function can be given by the following explicit formula:

(23.7) B(z) = lim
n→∞

dn
√
fnz,

where the value of the dnth root is selected so that it is tangent to the id at ∞.
Obviously, this function, if exists, satisfied the Böttcher equation. So, we only need
to check that the limit exists.

Let zn = fnz, where z0 ≡ z. Then

dn+1√zn+1

dn
√
zn

=
dn+1
√
zdn(1 +O(zn))

dn
√
zn

= dn+1
√
(1 +O(zn) = 1 +O

( zn
dn+1

)
.

Hence

B(z) = lim
n→∞

dn
√
zn = z

∞∏

n=0

dn+1√zn+1

dn
√
zn

= z

∞∏

n=0

(
1 +O

( zn
dn+1

))
= z(1 +O(z)),

where the last product is convergent uniformly at a superexponential rate.
Finally, uniqueness of the Böttcher function follows from the exercise below. �
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Exercise 23.24. Let d ≥ 2. Show that there are no conformal germs commut-
ing with g : z 7→ zd near the origin, except rotations

z 7→ e(k/(d− 1)) · z, k ∈ Z/(d− 1)Z.

Let us now consider a quadratic polynomial fc near ∞. Since ∞ is a super-
attracting fixed point of f of degree 2, the map fc near ∞ can be reduced in the
Böttcher coordinate to the map z 7→ z2 (Theorem 23.23). Thus, there is a Jordan
disk V = Vc ⊂ C whose complement C r V is fc–invariant, some R > 1, and a
conformal map Bc : Cr V → Cr DR satisfying the Böttcher equation:

(23.8) Bc(fcz) = Bc(z)
2.

Moreover, Bc(z) ∼ z as z →∞.
In this situation, explicit formula (23.7) assumes the

(23.9) Bc(z) = lim
n→∞

(fnc (z))
1/2n , |z| > R,

where R is sufficiently big and the root in the right-hand side is selected in such a
way that it is tangent to the identity at ∞.

Next, we will globalize the Böttcher function Bc.

23.5.2. Connected case: Böttcher vs Riemann.

Theorem 23.25. Let fc : z 7→ z2 + c be a quadratic polynomial with connected
Julia set. Then the Böttcher function admits an analytic extension to the whole
basin of ∞. Moreover, it conformally maps Dc(∞) onto the complement of the unit
disk and globally satisfies (23.8).

Proof. We will skip label c from the notations. Let, as usually, f0(z) = z2.
Let Un = Ĉ r f−nV . Then U0 ⊂ U1 ⊂ U2 ⊂ . . . and

⋃
Un = Dc(∞). Since

the filled Julia set K(f) is connected, the domains Un are topological disks and the
maps f : Un+1 → Un are double coverings branched point at ∞ (recall the proof
of Theorem 20.5).

Let ∆n = Ĉ r DR1/2n . By Lemma 3.11, the Böttcher function B : U0 → ∆0

admits a lift B̃ : U1 → ∆1 such that f0 ◦ B̃ = B ◦ f (see Figure 23.5.2). But the
Böttcher equation tells us that B : U0 → ∆0 is a lift of its restriction B : f(U0)→
f0(∆

0). If we select B̃ so that B̃(z) = B(z) at some finite point z ∈ U0, then these
two lifts must coincide on U0, i.e., B̃ |U0 = B. Thus, B̃ is the analytic extension
of B to U1. Obviously, it satisfies the Böttcher equation as well.

In the same way, the Böttcher function can be consecutively extended to all
the domains Un and hence to their union, Dc(∞). �

Thus, the Böttcher function provides us with the Riemann mapping from Cr

K(f) to the complement of the unit disk. Given the intricate fractal structure of
the Julia set, this is quite remarkable that its complement can be uniformized in
this explicit way!

One can also go the other way around and construct the Böttcher function by
means of uniformization:

Exercise 23.26. Let f ≡ fc be a quadratic polynomial with connected Julia
set. Then the basin of infinity Df (∞) is a conformal disk. Uniformize it by the
complement of the unit disk, ψ : (C r D,∞) → (Df (∞),∞), normalized at ∞ so
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Figure 23.1. Lift of the Böttcher function.

that ψ(z) ∼ ρz with ρ > 0. Prove (without using the Böttcher Theorem) that ψ
conjugates f0 : z 7→ z2 on Cr D to f on Df (∞) (and that ρ = 1).

Exercise 23.27. Prove that in the connected case, D(∞) is the maximal do-
main of analyticity of the Böttcher function B.

Given two quadratic polynomials, fc and fb, with connected Julia sets, the
composition

(23.10) h : Dc → Db, h ≡ hcb := B−1b ◦Bc,
provides us with a conformal conjugacy between fc and fb on their basins of infinity.
We call it the Böttcher conjugacy. In particular, for b = 0, the Böttcher conjugacy
hc0 : Dc → Cr D can be identified with the Böttcher function Bc itself.

Let us finish with a curious consequence of Theorem 23.25. The capacity of a
connected compact set K ⊂ C is defined as the radius R of the disk DR such that
the domain C rK can be conformally mapped onto C r DR by a map tangent to
id at ∞.

Corollary 23.28. Let fc : z 7→ z2 + c. Then the capacity of the filled Julia
set Kc is equal to 1.

23.5.3. Cantor case: Böttcher position of the critical value. In the disconnected
case the Böttcher function B ≡ Bc cannot be any more extended to the whole basin
of ∞, as it branches at the critical point 0. However, B can still be extended to a
big invariant region Ω ≡ Ωc containing 0 on its boundary.

Theorem 23.29. Let f ≡ fc : z 7→ z2 + c be a quadratic polynomial with
disconnected Julia set. Then the Böttcher function B ≡ Bc admits the analytic
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extension to a domain Ω ≡ Ωc bounded by a “figure eight” curve branched at the
critical point 0. Moreover, B maps Ω conformally onto the complement of some
disk DR with R > 1. The inverse map extends continuously to a map CrDR → Ω
which is one-to-one except that it maps two antipodal points ±Re(θ) ∈ TR to 0.

Proof. Since 0 ∈ Df (∞), the orb(0) lands at the domain V of the Böttcher
function near ∞. By shrinking V , we can make fn0 ∈ ∂V for some n > 0. Then
there are no obstructions for consecutive extensions of B to the domains

Uk = Ĉ r f−kV , k = 0, 1, . . . , n

(in the same way as in the connected case). All these domains are bounded by real
analytic curves except the last one, Un, which is bounded by a figure eight curve
branched at 0. This is the desired domain Ω.

The last statement follows from the theory of prime ends (see Exercise 8.14)
and the symmetry of the figure-eight with respect to the origin. �

Since the critical value c belongs to ∂Un−1 ⊂ Ω (in the notation of the above
proof), the expression Bc(c) is well-defined (provided the Julia set Jc is discon-
nected). It gives the Böttcher position of the critical value as a function of the
parameter c. This function will play a crucial role in what follows.

In case when Kc is connected, we let Ω ≡ Ωc be the whole basin of infinity,
Ωc := Dc(∞). In either case, formula (23.9) remains valid globally (by construction
of the extension):

(23.11) Bc(z) = lim
n→∞

(fnc (z))
1/2n , z ∈ Ωc,

where the root in the right-hand side is selected to be tangent to the identity at∞.
For a point z ∈ Ω, the polar coordinates (r, θ) of B(z) are called the external

coordinates of z.
Let us consider the logarithmic differential of B in Ω,

ω ≡ ωc := i
dB

B
, i.e., ω(z) dz := i

B′(z)
B(z)

dz.

It is an Abelian differential which is nicely transformed under the dynamics:

(23.12) f∗ω = 2ω, i.e., f ′(z)ω(fz) = 2ω(z)

(since f∗(logB) = 2 logB by the Böttcher equation). By means of this functional
equation, ω can be extended to an Abelian differential on the whole basin D(∞)
(denoted in the same way). It has simple zeros at 0 and all its iterated preimages,
i.e., its zero divisor is equal to Crit∞f . It supplies D(∞) r Crit∞f with a (Euc(1))
flat structure, turning it to a translation surface (see §2.7.5).

23.5.4. External rays and equipotentials. Foliations by external rays and equipo-
tentials, introduced in the general context (see §8.3) have a good dynamical meaning
on the basin of ∞.

The map f0 : z 7→ z2 on C r D has two invariant foliations, by the straight
rays going to ∞ and by round circles centered at the origin. (Note that the latter
foliation is dynamically defined: see the hint to Exercise 23.24.) We will label the
rays by their angles θ ∈ R/Z and the circles by their radii r > 1 or by their “heights”
t = log r ∈ R+. So,

Rθ0 = {re(θ) : r ∈ R+}, Er0 ≡ Et0 = {re(θ) : θ ∈ R/Z}, t = log r,
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where the subscript 0 suggests affiliation to the map f0. Note that

f0(Rθ0) = R2θ
0 and f0(Et0) = E2t0 .

If we now take an arbitrary quadratic polynomial f ≡ fc, then by means of
the Böttcher function B ≡ Bc, the above two foliations can be transferred to the
domain Ω ≡ Ωc ⊂ Dc(∞), supplying it with the foliation by external rays and
equipotentials. The rays naturally labeled by the corresponding external angles θ,
while the equipotentials are labeled by the equipotential radii r or heights t. Let
Rθ ≡ Rθc stand for the external ray of angle θ and let Er ≡ Erc or Et ≡ Etc stand for
the equipotential of height t = log r. (We will also use notation Rθ(t) ≡ Rθ(r) for
the point on the ray Rθ whose equipotential level is equal to t = log r.)

Note that these foliations can also be interpreted as vertical and horizontal
foliations of the Abelian differential ω (23.12). (The factor “i" in the definition of
ω was introduced in order to make the rays “vertical”.)

If K(f) is connected then Ω = D(∞), so the whole basin of infinity is foliated
by the external rays and equipotentials.

In the disconnected case, we can pull the two foliations in Ω back by the iterates
of f to obtain singular foliations on the whole basin of ∞. Equivalently, we can
consider the vertical and horizontal foliations of the Abelian differential ω. (See
§2.7.5.)

These foliations have simple singularities located at the zeros of ω, i.e., on
the set Crit∞f . Horizontal leaves are relatively compact in D(∞), and are either
simple closed curves or loops of figure-eights. Vertical leaves can either go to ∞
in the positive direction or else crash at a singular point. The former will still be
called external rays, the latter will be referred to as separatrices. In the negative
direction, any vertical leaf either goes to the Julia set or crashes at a singular point.

Note that any external ray is the maximal non-singular extension of a ray
defined earlier in Ω. There are at most countably many rays that crash at iterated
preimages of the 0. Two rays landing at the critical point 0 will be called the critical
rays. The particularly important ray going through the critical value will be called
the valuable ray (its external angle will be also called “valuable”). Of course, it
contains the (coinciding) images of the critical rays.

The union of all external rays is a simply connected domain Ω̂ ≡ Ω̂c ⊃ Ωc
obtained by removing from Dc(∞) the closures of all separatrices.

Problem 23.30. The Böttcher function B analytically extends to a single val-
ued function on the whole domain Ω̂ that univalently maps it onto a the complement
of a “Levin-Sodin hedgehog” obtained by attaching to D countably many “needles”

Nk := {reiθk: : 1 ≤ r ≤ Rk}.

of shrinking length (i.e., Rk → 0) attached to a dense set of points e(θk) ∈ T. What
are the values of θk and Rk?

The figure-eight that bounds Ω will be called the critical figure-eight or the
critical equipotential.

For r = et > Bc(0), we let

Ωc(r) ≡ Ωc(t) = {z : |Bc(z)| > r},
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B

Figure 23.2. Levin-Sodin hedgehog.

and call it a superpotential disk of radius r, or of height t. The complementary
Jordan disk Σc(r) ≡ Σc(t) = C r Ωc(r) will be called a subpotential disk of radius
r, or of height t.

23.6. Dynamical Green function.

23.6.1. Brolin Formula. The Green function of a quadratic polynomial f = fc
near ∞ can be introduced as follows:

(23.13) G(z) ≡ Gc(z) = log |Bc(z)|,
where Bc is the Böttcher function of fc. The Green function is harmonic wherever
the Böttcher function is defined (since the Böttcher function never vanishes) and
has a logarithmic singularity at ∞ [compare §10.9]:

G(z) = log |z|+ o(1).

In the connected case, (23.13) defines the Green function in the whole basin
Dc(∞). In the disconnected case definition (23.13) can be used only on a subdomain
of Dc(∞), say on the complement of the Levin-Sodin hedgehog [which contains the
critical superpotential domain Ωc, see (23.11)]. However, in either case the Green
function satisfies the equation:

(23.14) G(fz) = 2G(z).

This equation can be obviously used in order to extend the Green function har-
monically to the whole basin of ∞. Let us summarize simple properties of this
extension:

Exercise 23.31. (i) In the connected case the Green function does not have
critical points. In the disconnected case, its critical points are simple saddles located
at the critical points of the iterated f (i.e., on the set Crit∞f ).
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Figure 23.3. Dyadic grid.

(ii) Equipotentials are the level sets of the Green function, while external rays (and
their preimages) are its gradient curves.

(iii) The Brolin formula holds:

(23.15) G(z) = lim
n→∞

1

2n
log |fnz|, z ∈ D(∞).

(iv) Extension of the Green function by 0 through the filled Julia set K(f) gives a
continuous subharmonic function on the whole complex plane.

(v) The Julia set is Dirichlet regular.

These properties show that the dynamical Green function G is indeed the Green
function of D(∞) with the pole at∞ as was defined in the general context in §10.9.
Moreover, the dynamical notion of external rays and equipotentials matches with
the general one.

We also see that though the Böttcher function B is not globally defined, its
absolute value |B| = expG admits a continuous extension to the whole plane sat-
isfying the functional equation |B(fz)| = |B(z)|2. In what follows, we assume that
|B| is extended this way.

23.6.2. Dyadic grid. Let us fix some r = et > 1, and consider the annulus
A(1, r] cut along the real line, ∆0 = A(1, r] r (1, r]. Let us pull it back by the
dynamics of f0 : z 7→ z2; let ∆n

ī
≡ ∆n

i0...in−1
be the pullback under the branch of

f−n0 : Cr R+ → C that maps T r {1} to the dyadic interval In
ī

(see §19.12).
It provides us with the tiling of each annulus A(1, r1/2

n

) by 2n rectangles ∆n
ī

such that

(23.16) ∆n+1
i0...in

⊂ ∆n
i0...in−1

and f0(∆
n+1
i0...in

) = ∆n
i1...in .

Let now f be a quadratic polynomial with connected Julia set. Taking the
pullback of the above grid under the Böttcher map, Dn

ī
:= B−1(∆n

ī
), we obtain

the corresponding tilings of external annuli neighborhoods of the Julia set. Since
B is equivariant, the behavior of this grid under the dynamics and the inclusion is
the same as in (23.16).

This grid gives a useful dynamical picture for f in the external neighborhood
of the Julia set.

23.6.3. Holomorphic dependence on parameters. Let Λ be a domain in C. Let
us consider a holomorphic family of superattracting germs over Λ,

fλ(z) = zd + ad+1(λ) z + . . . , λ ∈ Λ,
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meaning that (λ, z) 7→ fλ(z) is a holomorphic function in two variables on some
domain in Λ × C. For each λ ∈ Λ, let us normalize the corresponding Böttcher
functions Bλ so that B′λ(0) = 1.

Proposition 23.32. Under the above circumstances, ∀ λ0 ∈ Λ ∃ δ > 0 such
that (λ, z) 7→ Bλ(z) is well defined and holomorphic in the bidisk Dδ(λ0)× Dδ.

Proof. Let us go back to the explicit formula (23.7) for the Böttcher function.
All the estimates that prove convergence in this formula are locally uniform in (λ, z).
Hence the limit is holomorphic in both variables. �

Remark 23.33. The parameter domain Λ can be an arbitrary complex mani-
fold, even infinite-dimensional. The proof is the same. (Alternatively, one can use
that holomorphicity can be detected by one-dimensional slices.)

Let us apply the above Proposition to the quadratic family. Let

(23.17) D ≡ D(∞) = {(c, z) ∈ C2 : z ∈ Dc(∞)}.
Exercise 23.34. The set D(∞) is a domain in C2.

Lemma 23.35. The fibered Green function G : (c, z) 7→ Gc(z) is continuous on
D.12

Proof. The orbits of (fnc z)n∈N, (c, z) ∈ D, escape to ∞ at a locally uniform
rate, which implies that convergence in the Brolin formula (23.15) is locally uniform
on D. �

Let

Ω = {(c, z) ∈ C2 : z ∈ Ωc} = {(c, z) ∈ D : Gc(z) > Gc(0)}.
Corollary 23.36. The set Ω is open in C2.

Corollary 23.37. The Böttcher function Bc(z) is holomorphic on Ω.

Proof. By Proposition 23.32, Bc(z) is holomorphic in some neighborhood of
the line at infinity, C × {∞} ⊂ C × Ĉ. Its extension to Ω is obtained by several
liftings by the fibered dynamics

(23.18) f : C2 → C2, (c, z) 7→ (c, fc(z)).

Since f is holomorphic on Ω, these liftings are holomorphic as well. �

23.7. Fatou coordinates in parabolic petals.
23.7.1. Linearization. A parabolic germ f cannot be generally linearized in

the whole neighborhood of a parabolic point, but it can be linearized in the petals.
Below we let T be the translation z 7→ z + 1.

Theorem 23.38. Let f : z 7→ z + aq+1z
q+1 + . . . be a parabolic germ near 0.

Then in any attracting direction there exists an attracting petal P and a conformal
isomorphism φ : P → Π from P onto a T -invariant domain Π (which can be selected
as the right half-plane) satisfying the Abel functional equation

(23.19) φ(fz) = φ(z) + 1.

This function is unique up to a translation φ + a (and up to restricting/enlarging
its domain).

12In fact, this function is pluriharmonic on D, i.e., its restrictions to one-dimensional holo-
morphic curves in D are harmonic.
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In other words, φ conformally conjugates f |P to the translation z 7→ z + 1 on
the right half-plane.

We will outline three proofs for this result that give different insights into its
nature.

Proof 1: Conformal viewpoint. Let us consider the projection of the petal
onto the Écalle-Voronin cylinder, p : P → Cyl = P/ < f >. As was shown in
Lemma 21.20, the latter is conformally isomorphic to the C/T . Let i : Cyl→ C/Z
be an isomorphism.

Let us consider the universal covering π : C→ Cyl = C/T of the cylinder, with
the generating deck transformation T . Then i lifts to a map φ : P → C conjugating
f |P to T |φ(P ). ⊔⊓

Proof 2: Quasiconformal viewpoint. Let us go back to the proof of Lemma 21.20.
Consider the fundamental strip S for the F -action in the right half-plane Q. Its
boundary components are related by F which is close to the horizontal translation
T : z 7→ z + 1. Let us first straighten this strip:

Exercise 23.39. The strip S can be mapped onto the straight strip
{0 ≤ Re z ≤ 1} by a qc homeomorphism h0 which is equivariant on ∂S, i.e.,
h0(Fz) = h0(z) + 1 for z in the left-hand boundary component of S.

Now h0 can be equivariantly extended to the whole half-plane Q by letting
h(Fnz) = h0(z) + n for z ∈ S. We obtain a qc homeomorphism h : Q → Π ≡
{Re z ≥ 0} conjugating F |Q to the translation T |Π. Since F is conformal, the
push-forward conformal structure µ = h∗(σ) is T -invariant. Pulling it back by the
translations T−n, n ∈ N, we extend µ to a T -invariant conformal structure on the
whole plane C. (We will keep the same notation for it.)

By MRMT (see §14), there is a qc homeomorphism ψ : C→ C that solves the
Beltrami equation µ = ψ∗(σ). Conjugating T by ψ, we obtain a conformal automor-
phism acting freely on C. Hence it is a translation. Normalizing ψ appropriately,
we make this translation equal to T , so ψ ◦ T ◦ ψ−1 = T .

The composition ψ ◦ h is the desired solution of the Abel equation. ⊔⊓

Exercise 23.40. Show that the solution of the Abel equation depends continu-
ously on f . (Defining topologies is part of the exercise.)

23.7.2. Proof 3: Analytic viewpoint. In the non-degenerate case, consider the
conjugate map F : Z 7→ Z + 1 +O(1/|Z|) near ∞ (21.4).

Project 23.41. (i) Show that the forward orbits of F have the following
assymptotics in the right-half plane {ReZ > R}:

Fn(Z) ∼ n+ a log n+Φ(Z), n→ +∞,
where Φ(Z) ∼ Z is univalent.

(ii) Show that Φ is a solution of the Abel equation

Φ(F (Z)) = Φ(Z) + 1.

(iii) Derive the degenerate case from the non-degenerate one.
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φα

H

φr

Figure 23.4. The “upper” horn map for a non-degenerate para-
bolic germ.

23.7.3. Horn map and Écalle-Voronin moduli. Since a parabolic germ is locally
invertible, we can conside, along with the linearizing coordinate φa on the attracting
flower Φa, a linearizing coordinate φr on the repelling one, satisfying the same
functional equation

φr(f
qz) = φr(z) + 1.

Since neigboring petals in the flowers Φa and Φr overlap, we can consider 2ql com-
positions Ĥi = φa ◦φ−1r defined on the components of Φa ∩Φr. As the Ĥi commute
with the translation by 1, they descend to partial maps between the cylinders,

Hi : C/Z ≈ Cylir → Cylia ≈ C/Z (see Figure 23.4).

As each Hi is defined near an appropriate end of the corresponding repelling cylin-
der, it is called the horn map. Mapping the cylinders to C∗ by the exponential map
e, we conjugate the Hi to 2ql germs hi near 0.

If f is replaced with a conformally conjugate germ then the germs hi do not
change (up to complex scalings), so they provide us with functional invariants
for the conformal conjugacy. Taking their Taylor coefficients, we obtain Écalle-
Voronin moduli for conformal classes of parabolic germs. In fact, they provide us
with a complete conformal classification of parabolic germs.
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Project 23.42. Complete the theory of conformal classification of parabolic
germs, including the realization theorem for a parabolic map with given horn maps.

Exercise 23.43. Show that a parabolic germ can be embedded into a local holo-
morphic flow iff the gluing maps are id (up to scaling). Such a germ is conformally
equivalent to the Möbius one, z 7→ z/(1− z). What is the corresponding flow?

23.7.4. Globalization. As in the attracting-repelling cases, in the polynomial
case, the Fatou coordinates (and hence the horn map) can be globalized leading to
a nice transcendental map (see Figure 23.5):

Problem 23.44. Let f ≡ fc be a quadratic polynomial with a parabolic periodic
point α. Let D•(α) be the immediate basin of α containing the critical point 0.
Then:

(i) The attracting Fatou coordinate φa for α extends to a branched covering D•(α)→
C of infinite degree, branched with degree two over φa(0)− N.

(ii) The inverse repelling Fatou coordinate φr extends to a branched covering φ−1r :
C→ C, branched with degree two over the post-valuable set P ≡ orb v.

(iii) The horn map H extends to a branched covering DomH → C of infinite degree
branched, with degree two, over a single point φa(v) = φa(0) modZ. Here DomH
is a punctured disk representing the upper end of the cylinder. The corresponding
map h extends to a holomorphic map on a topological disk Domh = e(DomH)∪{0}
fixing 0.

Notes. The Linearization Theorem for simply attracting and repelling fixed
points is due to Schröder [Schr] and Koenigs [Ko]. This result inuagurated the
beginning of Holomorphic Dynamics.

Existence of linearizable neutral points (and hence, “Siegel disks”) was demon-
strated by Siegel in 1942 [Si]. A simple proof in the quadratic case (Proposi-
tion 23.15) is due to Yoccoz.

As the name adequately suggests, the local theory for superattracting germs
was developed by Böttcher [Bot]. The global extension of the Böttcher funcion and
the associated external objects (coordinates, rays and equipotentials) appeared in
Douady & Hubbard’s Orsay Notes [DH2].

The linearizing coordinates for parabolic maps were constructed by Leau [Leau]
and Fatou [F3, Ch. VII]. The local conformal classification of parabolic gemrs
was carried by Écalle [Ec] and Voronin[Vo]. This theory proved to be of great
importance for understanding the phenomenon of parabolic implosion see [D4, Lav,
Sh1].

The regular leaf space of the natural extension (§23.4) was introduced in [LMin].

24. Periodic ray configurations

24.1. Motivating problems. Consider a quadratic polynomial f ≡ fc with
connected Julia set. As we know (Theorem 23.25), its basin of infinity is uniformized
by the Böttcher map B : Df (∞) → C r D, which conjugates f to z 7→ z2. If the
Julia set was locally connected then by the Carathéodory-Torhorst Theorem the
inverse map φ := B−1 would extend continuously to the unit circle T. This would
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Figure 23.5. The cauliflower horn map.

give a representation of f | Jf as a quotient of the the doubling map θ 7→ 2θ mod 1 of
the circle R/Z ≈ T. This observation immediately leads to the following problems:

1) Describe explicitly equivalence relations on the circle corresponding to all
possible Julia sets;

2) Study the problem of local connectivity of the Julia sets.

It turns out that the first problem can be addressed in a comprehensive way.
The second problem is very delicate. However, even non-locally connected examples
can be partially treated due to the fact that many external rays always land at some
points of the Julia set. This is the main theme of the following discussion.

24.2. Landing of rational rays. We say that an external ray Rθ lands at
some point z of the Julia set if Rθ(t) → z as t → 0. Two rays Rθ/2 and Rθ/2+1/2

will be called “preimages" of the ray Rθ. Obviously, if some ray lands, then its
image and both its preimages land as well.
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An external ray Rθ is called rational if θ ∈ Q/Z, and irrational otherwise.
Dynamically the rational rays are characterized by the property of being either
periodic or preperiodic:

Exercise 24.1. Let R ≡ Rθ.
If θ is irrational then the rays fn(R), n = 0, 1, . . . , are all distinct.

Assume θ is rational: θ = q/p, where q and p are mutually prime. Then

(i) If p is odd then R is periodic: there exists a p such that fp(R) = R.

(ii) If p is even then R is preperiodic: there are p and r > 0 such that fr(R) is a
periodic ray of period p, while the rays fk(R), k = 0, 1, . . . , r − 1, are not periodic.

How to calculate p and r?

Let Rθ[t1, t2] = {Rθ(t) : t1 ≤ t ≤ t2} be the arc of the ray Rθ between
equipotentials of level t1 and t2.

Lemma 24.2. Let f be a quadratic polynomial with connected Julia set. Then
the Euclidean length of any arc Rθ[t, 2t] goes to 0 as t→ 0, uniformly in θ.

Proof. Endow the basin D ≡ Df (∞) with the hyperbolic metric ρ. By com-
pactness, the hyperbolic length of any arc R[t0, 2t0] with 1 ≤ t0 ≤ 2 is squeezed in
between some constants 0 < l < L.

For any t ∈ (0, 1), select n ∼ log 1/t ∈ N so that 2nt ∈ [1, 2). Since g : D → D
is a covering map, it locally preserves ρ. Hence the hyperbolic length of any ray
arc Rθ[t, 2t] is also squeezed in between l and L.

But all these arcs accumulate on the Julia set as t→ 0, uniformly in θ, and the
conclusion follows from the relation between the hyperbolic and Euclidean metrics
(Lemma 7.7). �

Theorem 24.3. Let f be a polynomial with connected Julia set. Then any
periodic ray R = Rp/q

f , p/q ∈ Qodd/Z, of some period p lands at some repelling or
parabolic point of f of a period dividing p.

Proof. As the ray R is periodic, it is invariant under some iterate g = fp. Let
d = 2p. Consider a sequence of points zn = R(1/dn), and let γn be the sequence of
arcs on R bounded by the points zn and zn+1. Then g(γn) = γn−1.

By Lemma 24.2, the Euclidean length of these arcs goes to 0 as n→∞. Hence
the limit set of the sequence {zn} is a connected set consisting of the fixed points
of g. Since g has only finitely many fixed points, this limit set consists of a single
g-fixed point β (which is f -periodic with a period dividing p). It follows that the
ray R lands at β ∈ J (f) (compare with the proof of Theorem 21.47).

Since β ∈ J (f), it can be either repelling, or parabolic, or Cremer. But the
latter case is excluded by the Necklace Lemma, 21.48. �

Corollary 24.4. For a polynomial with connected Julia set, any preperiodic
ray R = Rp/2rq

f , where p/q ∈ Qodd/Z and r > 0, lands at some repelling or
parabolic preperiodic point of f . Moreover, its preperiod is equal to r.

Proof. To justify the last assertion, it is enough to show that for r = 1, our
ray cannot land at any periodic point α. Otherwise the map fp (fixing α) would
not be locally injective near α. �
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Figure 24.1. Construction of a landing ray.

24.3. Inverse Theorem: periodic points are landing points. It is less
obvious that, vice versa, any repelling or parabolic point is a landing point of at
least one ray:

24.3.1. Repelling case.

Theorem 24.5. Let f be a polynomial (of any degree d ≥ 2) with connected
Julia set. Then any repelling periodic point α is the landing point of at least one
periodic ray. Moreover, there are only finitely many rays Rθ landing at α, and all
of them are periodic with the same period. (In particular, in the quadratic case, all
angles θ are rational with odd denominator.)

Proof. Replacing f with its iterate, we can assume without loss of generality
that α is a fixed point (albeit, f is not quadratic anymore but some polynomial of
degree d ≥ 2).

Let us consider a small disk D := D(α, r) around α which is univalently mapped
by f onto a strictly bigger disk D′ := f(D) ⋑ D so that |f ′(z)| ≥ ρ > 1 for all
z ∈ D. We let f−1 be the inverse branch in D′ fixing α. The disks Dn := f−n(D),
n = 0, 1, . . . form a nest shrinking to α.

Let ε = dist(D, ∂D′). By Lemma 24.2, there is a t0 > 0 such that Rθ[t, 2t] < ε
for any θ ∈ R/Z and any t ≤ t0.

Let us now consider any point Rθ(t) ∈ D with t ≤ t0. By our choices,
Rθ[t, 2t] ⊂ D′. Then Rθ1 [t/2, t] := f−1(Rθ[t, 2t]) ⊂ D. Let us extend this ray
arc to a ray arc Rθ1 [t/2, 2t]. For the same reason as above, Rθ1 [t, 2t] ⊂ D′, and
hence Rθ1 [t/2, 2t] ⊂ D′.

Let us now take the preimage of this ray arc, Rθ2 [t/4, t] ⊂ D, and extend it to
a ray arc Rθ2 [t/4, 2t]. For the same reason, it is contained in D′. Proceeding in the
same way, we inductively construct a sequence of ray arcs Rθn [t/2n, 2t] ⊂ D′ such
that

(24.1) Rθn [t/2n, t/2k] ⊂ Dk, k = 0, 1 . . . , n− 1,
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and Rθn+1 [t/2n+1, t] = f−1(Rθn [t/2n, 2t]). Let θ ∈ R/Z be the limit for a subse-
quence θn(j). By continuity of the Böttcher coordinate, for any τ ∈ (0, 2t), the ray

arcs Rθn(j) [τ, 2t] ⊂ D′ uniformly converge to Rθ[τ, 2t]. By (24.1),

Rθ(0, t/2k] ⊂ Dk, k = 0, 1, . . .

Hence the ray Rθ lands at α.

Finiteness of the number of landing rays comes from the interplay between the
doubling dynamics at infinity and an invertible local dynamics near α.

Namely, let us consider the set Θ ⊂ R/Z of the angles θ of all the rays Rθ
landing at α. It is invariant under the d-adic circle map T ≡ Td : R/Z → R/Z,
where d = deg f . Let Θ0 ⊂ Θ is the subset of angles θ constructed above (i.e.,
the set of all limit angles of the sequence (θn)). By Exercise 19.3, Θ0 is a closed
T−invariant subset of R/Z, on which T is surjective. (Note that at this point it is
unclear whether Θ itself is a closed.)

Since f is a local diffeomorphism near α, the map T : Θ → Θ is injective.
Hence its restriction to Θ0 is bijective. But this map is expanding. By Exercise
19.37, Θ0 is finite. Thus, T : Θ0 → Θ0 is a permutation of a finite set, so all its
points are periodic.

Finally, let us show that all other angles θ ∈ Θ are periodic with the same
period. Let us first consider any finite T -invariant subset Θ′ ⊂ Θ. As a subset of
R/Z, it is cyclically ordered. Moreover, this cyclic order coincides with the natural
cyclic order of the corresponding rays Rθ, θ ∈ Θ′ (see §1.3.3). But since f is an
orientation preserving local homeomorphism near α, its restriction to this set of
rays preserves its cyclic order. By Exercise 1.127, all angles θ ∈ Θ′ have the same
period q.

It follows that any T -periodic angle θ ⊂ Θ has period q. Since the d-adic map
has only finitely many periodic points of a given period, Θ contains only finitely
many periodic angles. Let Θper be this finite set.

Assume that some θ ∈ Θ is not periodic. Let I be the component of
(R/Z) r Θper containing θ. Then I ∩ Θ is an open interval in Θ in the sense
of §1.11. Let g := T q. Since g|Θ preserves the cyclic order and fixes ∂I ∈ Θper, the
set I ∩Θ is invariant under g, and the restriction of g to this set is monotonically
increasing.

Assume for definiteness that θ < g(θ). Then by monotonicity,

θ < g(θ) < g2(θ) < . . . ,

and the whole orbit (gn(θ)) is contained in I ∩Θ. Then it converges to some fixed
point θ0, which is impossible since θ0 is repelling for g. The Theorem is proved. �

24.3.2. Parabolic case. A similar result is valid in the parabolic case:

Theorem 24.6. Let f be a polynomial (of any degree d ≥ 2) with connected
Julia set. Then any parabolic periodic point α is the landing point of at least one
periodic ray. Moreover, there are only finitely many rays Rθ landing at α, and all
of them are periodic with the same period. They are permuted with combinatorial
rotation number p/q equal to the rotation number of α.

Proof. Replace f with its iterate fpq that turns α into a fixed point with
multiplier 1. Let us consider a repelling petal P ′, and let f−1 : P ′ → P be the
inverse branch of f that maps it to a smaller petal P . Let us also consider an
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attracting flower Φ ≡ Φa overlapping with these petals so that P ′rΦ is a repelling
fundamental rectangle ∆ ≡ ∆r defined in §21.3.3 (see Figure 21.3). Let ε > 0
be the distance between the vertical sides of this rectangle, and let a level t0 be
selected as in the repelling case.

We can now follow the argument of the repelling case replacing the fundamental
annulus D

′
rD with the repelling fundamental rectangle ∆. The key observation is

that if we have a point Rθ(t) ∈ P with t ≥ t0, then the ray arc Rθ[t, 2t] is contained
in P ′. Indeed, Rθ[t, 2t] ∩ P ′ is contained in P ′ r Φ (since Φ ⊂ Kf ). Hence, if the
Rθ[t, 2t] escaped from P ′ then it would cross both vertical sides of ∆, which is
impossible since it has length < ε.

Hence we can apply f−1 to the arc Rθ[t, 2t], to obtain a ray arc Rθ1 [t/2, t];
then extend it to a ray arc Rθ1 [t/2, 2t] ⊂ P ′. The argument now proceeds as in the
repelling case.

The only special remark is that the combinatorial rotation number of α is equal
to its rotation number p/q as a parabolic point. Indeed, the rays land at α with
certain slopes (see Exercise 21.14). The combinatorial rotation number of the rays
is equal to the rotation number of the slopes, and the latter is equal to p/q. �

24.3.3. Cantor case.

Proposition 24.7. Let f ≡ fc : z 7→ z2 + c be a quadratic polynomial with
Cantor Julia set, i.e., c ∈ C rM. Then any external ray Rθ that does not crash
at a precritical point lands at some point of J (f).

Proof. Let E be the critical equipotential, i.e., the figure-eight centered at 0.
There are two critical rays that crash at 0. All other rays cross E at regular points
and get trapped in the body Ω of this figure-eight. It contains two figure-eights of
the next level, E0 and E1, centered at the first preimages of 0, z0 and z1. If a ray
enters Ω but does not crash at zi, it crosses one of these figure eights, say Ei, at
its regular point, and gets trapped in its body Ωi. In turn, each Ωi contains two
figure-eights of the second level, Ei0 and Ei1, and so on. (See Figure 24.2.)

If a ray does not crash at any of the pre-critical points, then it consecutively
crosses figure-eights Ei0...in−1

of all levels at their regular points and gets trapped
in the corresponding bodies. Since the dynamics on the Julia set is expanding,

diam Ei0...in−1
= O(λ−n) with some λ > 1,

implying that such a ray lands at some point of J . �

24.4. Fixed points and their combinatorial rotation number.

24.4.1. Combinatorial rotation number. Let us now consider a polynomial f of
degree d with connected Julia set. Let a be its repelling or parabolic fixed point,
and let Ri ≡ Rθi be the rays landing at a. The set of angles Θ(a) = {θi} ⊂ T is
called the ray portrait of a. It is invariant under the map Td : θ 7→ d θ.

Lemma 24.8. (i) The ray portrait Θ(a) is rotated by Td with some rotation
number p/q, called the combinatorial rotation number of a.

(ii) If a is parabolic with rotation number γ then its combinatorial rotation number
coinsides with γ.

Proof. (i) The map f , being an orientation preserving local homeomorphism
near a, preserves the cyclic order of the rays Ri (see §1.3.3). Hence Td preserves
the cyclic order of the corresponding angles θi, implying the conclusion.
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Figure 24.2. Crashing and landing rays for a Cantor Julia set.

(ii) In the parabolic case, the rays have distinct asymptotic slopes ηi at a which
are rotated with rotation number γ. �

For a repelling or parabolic cycle a = (ak)
p−1
k=0 the combinatorial rotation num-

ber of a (and of each periodic point ak) is defined by considering the ak as fixed
points of fp (the answer is independent of k).

24.4.2. The α− and β− fixed points of a quadratic polynomial. Let us now
assume that f = fc is a quadratic polynomial z 7→ z2 + c with connected Julia set.
It turns out that the two fixed points of f (which are statically indistinguishable)
play very different dynamical role.

The polynomial f has only one invariant ray, R0. By Theorem 24.3, this
ray lands at some fixed point called β; moreover, this point is either repelling or
parabolic with multiplier 1 (the last property follows from Lemma 24.8 (ii)). The
ray R0 is the only ray landing at β (for any other ray would be also invariant by
Lemma 24.8 (i)).

Remark 24.9. In the locally connected case, it immediately follows that β is
non-dividing, i.e., removing it from J does not disconnect the latter. In fact, it is
always true (compare with Corollaries 32.7 and 9.8).

For c 6= 1/4, fc has the second fixed point called α. It is either attracting, or
neutral, or repelling. If α is repelling or parabolic, then by Theorems 24.5 and 24.6
it is a landing point of some periodic ray R = Rθ. Since θ 6= 0 mod 1, the period q

of this ray is greater than 1. Of course, all the rays Ri = f i(R), n = 0, 1, . . . , q− 1,
also land at α, so α is the dividing fixed point.

By Lemma 24.8 the ray portrait Θ(α) ⊂ T is a rotation cycle for the doubling
map θ 7→ 2θ. By Proposition 24.27 (from the Appendix), it is in fact, a single
rotation cycle. Hence the rays Ri are cyclically permuted by f with a combinatorial
rotation number p/q. This rotation number, ρcom(fc) ≡ ρcom(c), is also called the
combinatorial rotation number of f (or of the corresponding parameter c).
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Figure 24.3. Configuration of α-sectors with rotation number 2/5.

In §37.4 we will describe the set of parameters with a given combinatorial
rotation number.

24.4.3. Configuration of α-sectors. The rays Ri divide the plane into q sectors
Si, i = 0. . . . , q−1, which cut off arcs ωi at the circle at infinity. We study these arcs
in Lemma 24.25 from the Appendix. Recall that the longest of these arcs, labeled
ω0 ≡ ωq, is called critical, while the shortest, ωch ≡ ω1, is called characteristic or
valuable. The corresponding sectors, S0 ≡ Sq and Sch ≡ S1, will be called in the
same way.

Lemma 24.10. For i = 1, . . . , q− 1, the map f univalently maps the sectors Si
onto Si+1. The critical sector S0 contains the critical point 0, while the character-
istic sector Sch contains the critical value c = f(0).

Proof. Let Si be the compactification of the sector Si at infinity obtained by
attaching the arc ωi to Si. This is a topological triangle. For i = 1, . . . , q − 1, the
boundary of Si is homeomorphically mapped onto the boundary of Si+1. By the
Argument Principle, the whole triangle Si is homeomorphically mapped onto Si+1.
Hence there are no critical points in these Si, so that, 0 ∈ S0. �

Let α′ = −α; this is the second preimage of the fixed point α. There are q

rays R′i landing at α′ symmetric to the rays Ri, so that, f(R′i) = Ri+1, i ∈ Z/qZ.
Altogether, the rays Ri and R′i partition the plane into q − 1 pairs of symmetric
sectors Si, S′i, i = 1, . . . , q−1 (bounded by two rays each) and a central strip Π ∋ 0
bounded by two pairs of symmetric rays.

Lemma 24.11. The central strip Π is mapped onto the characteristic sector Sch

as a double branched covering.

Proof. Each pair of symmetric rays that bound Π is mapped homeomorphi-
cally onto a characteristic ray that bound Sch, so we have a 2-to-1 map ∂Π→ ∂Sch.

Let Π be the compactification of Π by two symmetric arcs η and η′ at infinity
(where the arc η appears in the proof of Lemma 24.25). Each of these arcs is
mapped homeomorphically onto the characteristic arc ω1.
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We see that the boundary of Π is mapped to the boundary of Sch as a double
covering, and the conclusion follows. �

The above lemmas could also be derived from the following assertion:

Exercise 24.12. Let a point a ∈ J be the landing point of two rays Rθ1 and
Rθ2 . Assume that the critical value v does not lie on the corresponding cut-line
L := Rθ1 ∪ Rθ2 ∪ {a}, and let Sch be the component of C r L containing v. Then
the preimage f−1(L) comprises two cut-lines that divide C into three domains. The
central one (containing 0) is mapped onto Sch with degree two. The other two are
mapped univalently onto the other component of Cr L.

Generalize this assertion to a configuration of q rays landing at a.

Finally, let us slightly accelerate the dynamics on the sector S0, by letting

(24.2) F |Π = fq, F |S′i = fq−i, i = 1, . . . , q− 1.

This map is a double branched covering of the strip Π over the sector S0 and is
a conformal isomorphism of each lateral sector S′i onto S0. It is Bernoulli in the
sense that its range S0 is tiled by its domains Π and the S

′
i (compare §19.11.3).

24.4.4. Spine and skeleton. In this section we assume that the Julia set J ≡
J (f) is connected and locally connected. Then by the Carathéodory-Torhorst The-
orem the inverse Böttcher function φ ≡ B−1 : CrD→ D(∞) admits a continuous
extension to a function C r D→ D(∞) ∪ J (denoted in the same way). It follows
that every ray Rθ lands at some point zθ := φ(e(θ)) ∈ J .

Let us consider the co-fixed point β′ ≡ −β. The legal arc σ ≡ σf := [β, β′] is
called the spine of K. As usual, we let σ◦ ≡ (β, β′) be the intrinsic interior of the
spine. It turns out that the spine and its preimages capture all cut-points in K.

Remark 24.13. For this discussion, the choice of the spine in the interior
components of K can be made in an arbitrary way.

Lemma 24.14. Assume the Julia set J ≡ J (f) is connected and locally con-
nected. Then a point a ∈ J belongs to σ◦ if and only of there are two rays, Rθ0 and
Rθ1 , landing at a such that the dyadic expansions for θ0 and θ1 begin with different
digits (0 and 1 respectively).

Proof. Let us consider the arc Γ composed of the spine and two rays, R0 and
R1/2. It is the line R properly embedded into C, so by the Jordan Theorem, its
complement is the union of two open topological half planes, Π±.

Let us also consider the following set: X := D ∪ R. By Theorem 9.28, the
inverse Böttcher map admits a continuous extension to a map

φ̂ : (C, X)→ (C, K ∪R0 ∪R1/2).

Since K∪R0∪R1/2 ⊃ σ, the images of the half-planes, φ̂(H±), are contained in the
half-planes Π±. But φ̂(H+) is the union of rays Rθ with θ = (0 ε2 . . . ) ∈ (0, 1/2),
while φ̂(H−) is the union of rays Rθ with θ = (1 ε2 . . . ) ∈ (1/2, 1),

It follows that Rθ0 lands in Π+, while Rθ1 lands in Π−. Hence the common
landing point must lie in the intersection (Π+ ∩Π−) ∩ K, which is the spine.

Vice versa, Exercise 9.24 implies that any point of J ∩ σ◦ is a cut-point that
can be accessed from both Π+ and Π−. �
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Taking preimages of the spine σ, we obtain the skeleton of f ,

Sk ≡ Skf :=
∞⋃

n=0

f−n(σ); Sk◦ :=
∞⋃

n=0

f−n(σ◦).

It is an infinite “tree-like” set in the Julia set containing all cut-points of J :

Proposition 24.15. Assume the Julia set J ≡ J (f) is connected and locally
connected. A point a ∈ J is a cut-point if and only if it belongs to the skeleton
Sk◦, i.e., iff fna ∈ σ◦ for some n ∈ N.

Proof. The “if” part follows directly from Lemma 24.14.

Vice versa, if a ∈ J is a cut-point then by definition there are at least two rays,
Rθ± , landing at a. The dyadic expansions of the corresponding angles, θ±, differ
at some place n ∈ N. Then the dyadic expansions for 2nθ+ and 2nθ− mod 1 differ
at the first place. By Lemma 24.14, fna ∈ σ◦. �

24.4.5. Real case. In the case of f ≡ fc with real c, we have (compare §20.4.2):

(i) The zero-ray R0 is the ray (β, 0) in R landing at the β-fixed point;

(ii) The spine σ is the maximal invariant interval I = [β, β];

(iii) The skeleton Sk is the set of points in J eventually landing in R.

Note that all these notions make sense even if the Julia set is not locally con-
nected. In the locally connected case, we have:

Proposition 24.16. Assume that f is real-symmetric and J (f) is locally con-
nected.13 Then all cut points of J land in I◦ ≡ (β, β).

24.5. General periodic ray configurations.
24.5.1. Sectors and strips. More generally, let us consider a repelling or par-

abolic periodic cut-point α and its cycle α = (αn ≡ fnα)p−1n=0. Then there is at
least two (and at most finitely many, by Theorems 24.5 and 24.6) rays Ri(αn),
i = 0, . . . , r − 1, landing at each αn. Each configuration

R(αn) := {αn} ∪
⋃

i

Ri(αn)

is an open star properly embedded into C. Under fp, the rays Ri(αn) are permuted
with some rotation number p/q.

The union
R ≡ R(α) :=

⋃

n

R(αn)

is called the ray configuration of α. Clearly, it is f -invariant.
Let Si(αn), i = 0, 1, . . . , r−1, be the complementary sectors to the star R(αn),

labeled so that

• S0(αn) ∋ 0; this sector is called critical;

• The ray Ri(αn) oriented from αn to ∞ is the positively oriented boundary ray
of Si(αn).

Note that the angular size of S0(αn) at infinity is > 1/2, while all other sectors
have angular size < 1/2 (compare with Lemma 24.10). Let Sv(αn) be the sector
Si(αn) containing the critical value f(0). It is called valuable.

13In fact, it is known that J ≡ J (fc) is locally connected for all c ∈ [−2, 1/4].
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Exercise 24.12 implies that each non-critical sector Si(αn) is mapped univa-
lently by f onto some non-valuable sector Sj(αn+1) of twice bigger angular size
(and any non-valuable sector can be obtained in this way). The image of any crit-
ical sector S0(αn) covers twice the valuable sector Sv(αn+1) and covers once its
complement. The preimage Π(αn) := f−1(Sv(αn+1)) ∋ 0 is a 0-symmetric topo-
logical strip bounded by the rays landing at αn and two symmetric rays landing at
α′n ≡ −αn.

The sector Sch of the smallest angular size is called characteristic. We will see
momentarily that it is unique, but for the moment let us select one and label the
periodic points αn so that α1 is the vertex of Sch.

Lemma 24.17. (i) The characteristic sector Sch is the innermost valuable sector
among the Sv(αn) (in particular, it is uniquely defined).

(ii) Sch is disjoint from R.

(iii) There is a topological strip Πch contained in Sch such that fp : Πch → Sch is a
double branched covering.

(iv) The images fm(Πch), m = 1, . . . , pq, are pairwise disjoint, and the maps

f : fm(Πch)→ fm+1(Πch), m = 0, 1, . . . , pq− 2,

are univalent, while f : fpq−1(Πch) → Sch is a double branched covering. (Note
that fpq−1(Πch) = Π(α0).)

Proof. (i) If Sch = Sj(α1) were not valuable then it would be the univalent
image of a sector Si(α0) of twice smaller angular size, contradicting the definition
of Sch.

Furthermore, any two valuable sectors Sv(αn) are nested. Hence Sch is the
innermost valuable sector, which determines it uniquely.

(ii) If Sch∩R(α) 6= ∅ then Sch would contain some sector Si(αn), n 6= 1, which
would necessarily have a smaller angular size.

(iii)–(iv) Let Π1 ≡ Sch, L1 := ∂Sch, and let L−m ⊂ R(α−m) be the lift of Lch

under fm+1 passing through α−(m+1), m = 0, 1, . . . , pq − 2 (where −m in α−m is
taken mod p). Let Π−m be the pullback of Π0 ≡ Π(α0) by fm attached to L−m. In
other words, it is the appropriate component of Cr f−(m+1)(R) attached to L−m.

Since R is forwards invariant, the configurations f−m(R) form an increasing
sequence of sets. Hence any two components Π1, Π0, . . . ,Π−(pq−2) are either disjoint
or nested. Assume there are two nested components: Π−m ⊃ Π−n for some −1 ≤
m < n ≤ pq − 2. Since L−m 6= L−n, the domain Π−m would contain L−n ⊂ R.
Applying fm+1, we conclude that Sch would intersect R, contradicting (ii).

Let us take one more pullback, Πch := Π−(pq−1). It is contained in Sch since
it is mapped onto Sch under fpq, which preserves orientation of Lch = ∂Sch =
∂Πch ∩ ∂Sch. Hence Πch is disjoint from all the Π−m, m = 0, 1, . . . , pq− 2 as well.

It follows that all the domains Π−m, m = 1, . . . , pq−1, are disjoint from Π0 ∋ 0,
so they do not contain 0. Hence the corresponding maps f : Π−m → Π−(m−1) are
all univalent, and so is their composition fpq−1 : Πch → Π0. As f : Π0 → Sch is a
double branched covering, we conclude that fpq : Πch → Sch is a double branched
covering, too.

Note finally that Πch is a topological strip as it is bounded by two properly
embedded lines, Lch and L′ch, where L′ch is the other lift of Lch under fpq : Πch →
Sch. �
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The rays R±ch on boundary of the sector Sch, their landing point αch ∈ α, the
topological line Lch = ∂Sch = R+

ch ∪ R−ch ∪ {αch}, and the strip Πch, are all called
characteristic or valuable. We label the periodic points αn so that α1 = αch.

The strip Π0 = f−1(Sch) ∋ 0 is called critical or central. Let us also consider
a set Υ := f−1(Πch) ⊂ Π0. If f(0) ∈ Πch then Υ is bounded by four cut-lines that
are pairwise asymptotic at ∞. We call it a central ameba .

Exercise 24.18. If f(0) ∈ Πch then the map fpq : Υ→ Π0 is a double branched
covering.

24.5.2. Periodic ray portraits. A (periodic) ray portrait Θ ⊂ T is a finite set
of periodic angles with the same period decomposed into unlinked subsets Θn,
n = 0, . . . , p− 1, of cardinality r ≥ 2 each (so |Θ| = pr) that are rotated under the
doubling map T : T→ T.

To each cut-cycle α corresponds a ray portrait Θ(α) by taking the set of angles
of the ray configuration R(α). The unlinked subsets Θn(α) correspond to the rays
landing at the same point αn ∈ α.

We will show later on that vice versa, any perioic ray portrait can be realized
as a portrait of a ray configuration for some quadratic polynomials fc, and will
describe the corresponding set of parameters c (see the Wake Theorem in §37.3).

24.5.3. QC geometry of ray configurations. Given a ray configuration R ≡
R(α) as above, let us truncate it by some equipotential E(t). We obtain a cell
decomposition C of the subpotential domain Σ ≡ Σ(t).

Given two maps f and f̃ , we say that the respective cell decompositions, C and
C′ have the same combinatorics if there exists a homeomorphism h : Σ → Σ̃ that
maps cells to cells respecting the boundary Böttcher marking. We say that they
are qc equivalent if this map can be selected to be quasiconformal.

Exercise 24.19. (i) If the cycle α is repelling then the cells of the corresponding
cell decomposition are quasidisks.

(ii) If two cell decompositions C and C̃ (associated with repelling cycles) are combi-
natorially equivalent then they are qc equivalent.

24.6. Yoccoz Inequality. Let us consider a holomorphic repelling germ

f : z 7→ ρz + az2 + . . . , |ρ| > 1,

Assume it has a cycle of (open) topological sectors Si centered at 0, i ∈ Z/qZ,
which is rotated under f with combinatorial rotation number p/q. Precisely, this
means:

• The sectors Si are pairwise disjoint.

• If they are labeled according to their cyclic order around 0, then f(Si) = Si+p

near 0 (where the equality between sectors is understood in the sense of “sectorial
germs”).

Let S ≡ S0. Then the quotient S/fq is a conformal annulus. Call it A.

Lemma 24.20. Under the above circumstances, we have:

modA ≤ 2π log |ρ|
|q log ρ− 2πip|2 ,

for an appropriate branch of log ρ.
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Proof. Let r > 0 be so small that f maps the disk Dr biholomorphically onto
the image, and f(Dr) ⋑ Dr. Then the quotient annulus A is naturally embedded
into the quotient torus T2 := D∗r/f .

By means of the exponential map exp : C → C∗, this torus is represented as
C/Γ, where Γ is the lattice generated by translations by β := log ρ and α := 2πi.
Moreover, β and α represent a basis in the first homology group H1(T

2). In this
basis, horizontal curves of the annulus A represent the class qβ−pα ∈ H1(T

2) (with
an appropriate choice of log ρ), see Exercise 23.14.

Now Proposition 6.25 implies the desired estimate. �

Corollary 24.21. There is a choice of log ρ that belongs to the round disk

∆ ⊂ {Reµ ≥ 0} of diameter d =
2π

q2 modA
which is tangent to the imaginary axis

at point 2πi p/q.

Proof. The estimate of the above lemma can be re-written as
|µ− 2πi p/q|

cos θ
≤ d,

where µ = log ρ and θ = arg(µ−2πi p/q). The conclusion follows from the following
elementary fact: �

Exercise 24.22. The equation r = d cos θ in the polar coordinates describes
the circle based upon [0, d] as a diameter.

Let us now go back to the quadratic case.

Lemma 24.23. Let f be a quadratic polynomial with connected Julia set, and let
α be a repelling periodic point of period p with combinatorial rotation number p/q.
Then the corresponding fundamental torus T2

f,α contains a p/q-annulus A with

modA =
π

p q log 2
.

Proof. See Corollary 23.22 and remarks afterwards. �

Putting this together with Corollary 24.21, we obtain:

Corollary 24.24. Under the circumstances of the above lemma, there is a

choice of log ρ that belongs to the round disk ∆ ⊂ {Reµ ≥ 0} of diameter d =
p log 4

q
which is tangent to the imaginary axis at the point 2πi p/q.

24.7. Appendix: Rotation sets for the doubling map. Let us analyze
rotation cycles for the doubling map T : θ 7→ 2θ mod 1.

Lemma 24.25. Let Θ be a rotation cycle for T with rotation number p/q. Then
complementary arcs ωi to Θ (counted according to the action of T starting with the
shortest one) have lengths 2i−1/(2q − 1), i = 1, . . . q.

Proof. Recall from §1.11 that a rotation of a cyclically ordered finite set Θ
preserves the relation “κ is next to θ”. In case when the order on Θ is induced from
the ambient oriented circle T, this relation amounts to saying that the positive
arc14 (θ, κ) is complementary to Θ. Thus, for any complementary arc (θ, κ), the

14There are two arcs in T with endpoints θ and κ. “Positive” is the one whose orientation
from θ to κ coincides with the orientation induced from T.
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arc (T (θ), T (κ)) is also complementary to Θ. It follows that T |Θ can be extended,
arc by arc, to an orientation preserving homeomorphism T̃ : T → T. Moreover,
if a complementary arc ω = [θ, κ] is less than the half-circle then T |ω itself is an
orientation preserving homeomorphism, so we let T̃ |ω = T in this case.

Since T is not a homeomorphism of T, this surgery should be non-trivial on
some complementary arc ωi. Hence, among the complementary arcs ωi there should
be one (and of course, only one) which is longer than the half-circle. Let us call it
ω0 = [θ0, κ0].

This arc is the union of the half-circle ξ = (θ0, θ
′
0] and the arc η = (θ′0, κ0) of

length ε/2, where θ′0 = θ0+1/2 is the point symmetric with θ0. Moreover, the arc ξ
is bijectively mapped under T onto the whole circle T, while η is homeomorphically
mapped onto a complementary arc (θ1, κ1) = ω1. We see that |ω1| = ε.

Since each complementary arc ωi, i = 1, . . . , q−1, is shorter than the half-circle,
it is mapped under T homeomorphically onto the arc ωi+1, and |ωi+1| = 2|ωi|.
Hence |ωi| = 2i−1ε, i = 1, . . . , q. Since q = 0 in Z/qZ, we obtain an equation

1 + ε

2
= |ω0| = |ωq| = 2q−1ε,

which gives us the desired value of ε. �

The arc ω0 which is longer than the half-circle is called major. The shortest
arc ω1 is called characteristic.

Exercise 24.26. Show that the major arc ω0 contains the fixed point θ = 0.

Proposition 24.27. For the doubling map T : θ 7→ 2θ on T and any rational
p/q ∈ Q/Z, there exists a unique rotation cycle Θp/q ⊂ T with rotation number
p/q.

Proof. Let Θ be a rotation cycle with rotation number p/q. Let us consider
its characteristic arc ω1 = (θ, κ). Since κ is next to θ in Θ, we have: κ = 2lθ mod 1
with

(24.3) lp = 1 in Z/qZ.

On the other hand, κ = θ + 1/(2q − 1) by Lemma 24.25. Hence

(24.4) (2l − 1) θ = 1/(2q − 1) mod 1.

Since θ is T -periodic with period q, 2qθ = θ mod 1, so

(24.5) θ = t/(2q − 1) with some t ∈ Z.

Plugging this into (24.4), we come up with an equation

(24.6) (2l − 1) t = 1 mod 2q − 1.

Since l and q are mutually prime by (24.3), so are 2l − 1 and 2q − 1. Hence (24.6)
has a unique solution mod 2q − 1. This proves uniqueness of the rotation cycle.

To prove existence, let us go backwards as follows:

– first find l satisfying (24.3);

– then take the solution t ∈ Z of (24.6);

– define the angle θ by (24.5), so that, (24.4) is satified;

– and finally let κ = 2lθ, ω1 = (θ, κ), so that, we have: |ω1| = 1/(2q − 1).
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Figure 24.4. Rotation set with rotation number 2/5.

Then ω2 = T l(ω1) is the arc of length 2/(2q − 1) adjacent to ω1; ω3 = T 2l(ω1)
is the arc of length 4/(2q−1) adjacent to ω2, etc., up to the arc ωq = T l(q−1)(ω1) of
length 2q−1/(2q − 1) > 1/2. Since the total length of these arcs is equal to 1, their
closures tessellate the whole circle T, so Θ = orb θ is a rotation cycle for T l with
rotation number 1/q. By (24.3) we have: T |Θ = (T l)p|Θ, so T |Θ has rotation
number p/q. �

As we know from Exercise 19.37, there are no infinite closed T -invariant subsets
Θ ⊂ T such that the restriction T |Θ is invertible. However, an “almost invertible”
scenario can happen:

Problem 24.28. Prove that for any irrational θ ∈ (R r Q)/Z, there exists a
unique closed T -invariant set Θ ≡ Θθ ⊂ T such that for any η ∈ Θ, the map

orbT η → T, Tnη 7→ n θ mod 1

is cyclic order preserving. Moreover:

• T |Θ is is one-to-one except for two opposite points γ and γ′ = γ + 1/2;

• Θ is contained in one of the half-circles bounded by γ and γ′; the other half-circle
contains the fixed point θ = 0;

• Θ is a Cantor set and there exists a Devil Staircase map T → T (collapsing
complementary to Θ intervals to points) that semi-conjugates T |Θ to the circle
rotation η 7→ η + θ mod 1.

Thus, for any rotation number θ ∈ R/Z, we have one rotation set Θθ ⊂ T such
that T |Θθ is almost a rotation by angle θ. Moreover, the doubling map preserves
the cyclic order on Θθ.
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Exercise 24.29. Show that an invariant set Θ ⊂ T is a rotation set under the
doubling map iff one of the gaps in Θ has angular size ≥ 1/2.

Let us finish with introducing special rotation sets for iterates of the doubling
map (which appear naturally in the renormalization context). Assume there exist
p ≥ 2 and two disjoint closed arcs I1 and I2 in T satisfying assumptions of Exer-
cise 19.60 for the iterate T p. Then we obtain a T p-invariant Cantor set K ⊂ I1∪ I2
and the associated Devil K-Staircase map h : T → T semiconjugating T p|K to
the circle doubling map. It provides us with a natural one-to-one correspondence
between cycles of period > 1 for T p|K and for T . Since h is monotonically non-
decreasing, we obtain a one-to-one correspondence between rotation cycles for
T p|K of period > 1 and those for the doubling map. We call such cycles tuned
rotation cycles. We conclude:

Corollary 24.30. Under the above circumstances, for any non-zero p/q ∈
(Q/Z)∗, there exist a unique tuned rotation cycle Θp/q ⊂ K for T p with rotation
number p/q.

Exercise 24.31. Extend the above discussion of irrational rotation sets (Prob-
lem 24.28) to tuned ones.

Notes

According to Milnor [M2], Theorems 24.5 and 24.6 (on rays landing at periodic
points) are due to Douady. The proof given here is more recent: it appeared in
[BeL].

Description of the ray portraits (§24.4 and §24.5) is due to Douady & Hubbard
[DH2] and Lavaurs [Lav]. See also [M5].

The Yoccoz Inequality (§24.6) appeared in [H2]. Its Kleinian group counterpart
had been already known to Bers. See also Pommerenke and Levin.

Rotation sets for the doubling map (§24.7) was a folklore in the early 1980s. A
written account (in the general higher degree case) appeared in [G, GM]. See [Z]
for recent developments.

Notes to Chapter 3

Local Holomorphic Dynamics was founded in the second half of the XIXth–
early XXth century by Schröder [Schr] and Koenigs [Ko] (attracting case), Leau
[Leau] (parabolic case), and Böttcher [Bot] (superattracting case). It was focused
on solving the corresponding functional equations. See [Al] for a comprehensive
account of the early history of the field.

The founder of the Global Holomorphic Dynamics is Pierre Fatou. His first
note in this field appeared as early as 1906 [F:CR06]. He observed there that a
Cantor set can appear as the boundary of the basin of attraction of a fixed point. A
comprehensive theory started to emerge one decade later, announced in two 1917
Comptes Rendus notes [F:CR17] (in particular, the “Julia set” appeared in the
second of these notes under the name of the set F of irregular points). They
followed in 1919–20 by fundamental Memoires [F1, F2, F3] . Solving of functional
equations was considered to be so central at that time that the whole set of memoirs
was called accordingly.
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The main tool of the theory was Montel’s theory of normal families developed
in the turn of the 20th century [Mo1]. Irregular points had been introduced by
Montel in this general context, as points where a sequence of meromorphic functions
fails to be normal.

Meanwhile, some pieces of the theory, accompanied with a detailed study of
some examples, were developed by Julia [J:CR17, J:CR18, J]. This work won
the Grand Prix de l’Academie des Sciences (1918).

See [Au] for a historical account of the above events.

Note on the names. It seems that Douady is responsible for a significant
portion of the names for various objects in contemporary Holomorphic Dynam-
ics, including basilica, cauliflower, rabbit, Mandelbrot set and its limbs, Misiurewicz
point, Hubbard tree,... A few exceptions include Julia set (see [Au] for the history),
Fatou set [Bl], kneading sequence [MT], Baker domain [EL1], witch’s broom [M2],
parabolic wake [At],.... In this book we mostly use commonly accepted terminol-
ogy, though some adjustments would be historically well justified (like Leau-Fatou
coordinates, Pfeifer-Cremer points or Arnold-Herman rings).



CHAPTER 4

Dynamical plane II: fine structures and models

25. Hyperbolic maps

In the next several sections, we will take a closer look at some special important
classes of quadratic polynomials: hyperbolic, parabolic, and preperiodic.

25.1. Definition revisited.

Exercise 25.1. If the Julia set J is expanding then it is repelling in the fol-
lowing sense: there exists an ε > 0 such that for any point z in the Fatou set F
there exists an n ∈ N such that dist(fnz,J ) > ε.

Theorem 25.2. Let f be a quadratic polynomial with connected Julia set J .
Then f is expanding on J if and only if f has an attracting cycle α. Moreover, in
this case all points z ∈ intK are attracted to the cycle α.

Taking into account Remark 20.6, we see that a quadratic polynomial f is
hyperbolic in the sense of §21.2.3 if and only if its Julia set J is hyperbolic (≡
expanding) – so, the terminology is consistent.

Proof. Assume f has an attracting cycle α = (αk)
p−1
k=0. Take a small invariant

neighborhood U =
⋃
Uk ⋐ F of α. Let n be the first moment when fn(0) lands

in U , and moreover, let fn(0) ∈ Uk. Let Vi be the pullback (see §19.1) of Uk
containing f i(0), k = 0, 1, . . . , n− 1, V =

⋃
Vk, and let

Ω′ = Cr (U ∪ V ), Ω = f−1(Ω′).

Then Ω ⊂ Ω′, Ω 6= Ω′, and f : Ω → Ω′ is a covering map. By Corollary 7.1,
‖Df(z)‖ > 1 for any z ∈ Ω, in the hyperbolic metric of Ω′. Since J is compactly
contained in Ω′, there exists λ > 1 such that ‖Df(z)‖ ≥ λ, z ∈ J , so f is expanding
on J with respect to this hyperbolic metric. Since the hyperbolic and the Euclidean
metrics over the Julia set J ⋐ Ω′ are equivalent, f is expanding with respect to
the latter as well.

Remark 25.3. This assertion also follows from the Shrinking Lemma (§20.7.2).

Vice versa, assume J is connected and expanding. The former implies 0 ∈ K
while the latter implies 0 6∈ J . Thus, 0 ∈ intK, and in particular, intK 6= ∅.

Let D be a component of intK. Then we have two possibilities: either D is
wandering, i.e., fn(D)∩ fm(D) = ∅ for n > m ≥ 0, or it is eventually periodic, i.e.,
there exist n ≥ 0 and p ≥ 1 such that fn(D) = fn+p(D).

If J is expanding then there exists an ε > 0 such that

(25.1) |Dfn(z)| > 1 when dist(z,J ) < ε.

347
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In the wandering case, the iterates fn(D) are eventually contained in an ε-
neighborhood of J . Then by (25.1), area(fn+1D) > area(fnD) for n big enough,
which is impossible as the total area of K is finite.

If D is eventually periodic, we can assume without loss of generality that it is
actually periodic. Then by (25.1), there is a domain D′ ⋐ D such that fp(D′) ⋐ D′.
By the Schwarz Lemma, D′ contains an attracting periodic point. Since f can have
only one attracting cycle, the conclusion follows. �

25.2. Local connectivity of the Julia set.

Theorem 25.4. Let f be a hyperbolic quadratic polynomial. If the Julia set
J is connected then it is locally connected. Moreover, the Böttcher uniformization
B−1 : Cr D→ CrK admits a Hölder continuous extension to the boundary.

Proof. We will prove directly that the inverse Böttcher function B−1 extends
Hölder continuously to T.

It is convenient to lift f0 : Cr D→ Cr D to the doubling map T : θ 7→ 2θ on
H+ by means of the exponential e(z) = e2πiz. Let φ := B−1 ◦ e, so

φ ◦ T = f ◦ φ.
For z ∈ R, let D+(z, ε) := D(z, ε) ∩H+.

Since f is hyperbolic, we can select ε0 < 1/4 so that the strip

Π := {0 < Im z < ε0}
is mapped by φ to an annulus A := φ(Π) contained in the neighborhood of J
where |Df−1(z)| ≤ 1/λ < 1 for any branch of f−1. Note also that f−1(A) ⊂ A
since T−1(Π) ⊂ Π.

Let n0 be such that 2−n0 < ε0. For any z ∈ R and n ∈ N, let us consider
the half-disk D+ := D+(z, 2

−(n+n0)). Then the blown-up half-disk Tn(D+) =
D+(T

nz, 2−n0) is contained in Π, so the image φ(Tn(D+)) is contained in A. It
follows that any branch of f−n contracts φ(Tn(D+)) by factor λ−n. But for an
appropriate inverse branch, we have:

f−n(φ(Tn(D+))) = φ(D+).

Thus,

diam(φ(D+)) = O(λ−n) = O((diamD+)
κ), where κ =

log λ

log 2
,

and the conclusion follows. �

We can now refer to general properties of lc hulls (see Exercise 1.33 and Propo-
sition 9.21) to conclude:

Corollary 25.5. Given a hyperbolic map f with connected Julia set, let Di

be the components on intK (arbitrary labeled). Then each Di is a Jordan disk, and
diamDi → 0.

Since f acts as the doubling map T : θ 7→ 2θ mod 1 on the external angles, we
also obtain:

Corollary 25.6. For a hyperbolic map with connected Julia set, the Böttcher
uniformization extends to a semi-conjugacy B−1 : T→ J between the doubling map
T and f | J . Moreover, B−1(e(θ)) ∈ J is the landing point of the external ray Rθ.
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25.3. Blaschke model for the immediate basin.

25.3.1. Conjugacy. As above, let α = (αk)
p−1
k=0 be an attracting cycle of f with

the central periodic point α0. By Corollary 25.5, the immediate basin D0 ∋ 0 of α0

is a Jordan disk. Let us uniformize it by the unit disk, ψ : (D0, α0) → (D, 0). By
the Conformal Schönflies Theorem, ψ extends to a homeomorphism ψ : D0 → D.
Let

g = ψ ◦ fp ◦ ψ−1 : D→ D

Proposition 25.7. If the Riemann mapping ψ is appropriately normalized,
then

g(z) = z
z + ρ

1 + ρ̄z
,

where ρ ∈ D is the multiplier of the attracting cycle α.

Proof. Consider first an arbitrary uniformization ψ : (D0, α0)→ (D, 0). The
map g : D → D is a double branched covering of the disk fixing 0 and preserving
the unit circle T. A general form of such a map is

(25.2) g(z) = λz
z − a
1− āz , with |λ| = 1

(see Exercise 3.3). Replacing ψ with λψ results in replacing g(z) with λg(z/λ)
killing the coefficient λ in front of the Blaschke product (and replacing a with λa).

Since the multiplier is invariant under conformal conjugacies, we have:

ρ = g′(0) = −a ≡ ρ.
�

Remark 25.8. In fact, we did not need to know that D0 is a Jordan disk to
conclude that g is the above Blaschke map. It would follow from the property that
g : D→ D is proper.

Corollary 25.9. In the superattracting case (when 0 is periodic), the return
map fp : D0 → D0 is conformally conjugate to f0 : z 7→ z2 on D.

In this case, the punctured disk D∗0 is foliated by the internal rays and equipo-
tentials corresponding, under the Riemann map ψ : D0 → D, to the radii and circles
centered at 0 (compare §9.2.3). They form two orthogonal invariant foliations of
D∗0 .

Let us finally mention that the above discussion carries through for other im-
mediate basins Dk ≡ D(αk), k = 1, . . . , p − 1, with the critical point, f−(p−k)(0),
playing the role of 0.

25.3.2. Hyperbolicity of the Blaschke map. The Blaschke map g is an example
of a hyperbolic rational map (with the Julia set T).

Lemma 25.10. Blaschke map g (25.2) has the following properties:

(i) gnz → 0 in D; gnz →∞ in Cr D;

(ii) g : T→ T is expanding.

Proof. Since g preserves the unit disk D, the family of iterates gn is normal
on D (by the Little Montel Theorem). Since 0 is an attracting cycle, gnz → 0 near
0. By normality, gnz → 0 on the whole disk D.
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As g : D→ D is a double branched covering, by the Riemann-Hurwitz Formula,
it has a unique critical point in D. Let v ∈ D be the corresponding critical value;
gnv → 0.

By T-symmetry, g has a critical value, 1/v̄ ∈ C r D and gn(1/v̄)→∞ . Since
g : Ĉ → Ĉ is a degree two rational function, it has at most two critical values.
Thus, v and 1/v̄ are the only critical values of g.

Let us consider the post-valuable set Pg = orb v ∪ orb(1/v̄) ∪ {0,∞}. Let Ω′

be its complement, and Ω = g−1(Ω′). Since Pg is forward invariant, Ω ⊂ Ω′. Since
Ω′ does not contain the critical values, g : Ω → Ω′ is an unramified degree two
covering. By Corollary 7.1 of the Schwarz Lemma, g : T→ T is an expanding circle
map. �

Putting this together with Proposition 19.67, we conclude:

Corollary 25.11. Any Blaschke map g : T→ T (25.2) is quasisymmetrically
conjugate to the doubling map f0|T.

Exercise 25.12. Any Blaschke product (25.2) admits a restriction to a double
covering V → V ′ between two T-symmetric annuli V ⋐ V ′.

Like any expanding circle map of degree two (see Lemma 19.61), the Blaschke
map g has a unique fixed point on T (of course, this is obvious algebraicly, too).
Coming back to our hyperbolic quadratic polynomial f , we conclude that the return
map fp : D0 → D0 has a unique fixed point β0 ∈ ∂D0. This point is called the root
of D0, or the central root of f .

Any other component D of the full basin D(α), is conformally mapped under
some iterate fn onto D0 inducing a homeomorphism fn : ∂D → ∂D0. The point
βD ∈ ∂D corresponding to β0 under this homeomorphism is called the root of D.
According to our general convention (see §21.2.3), βv = f(β0) ∈ ∂Dv is called the
valuable root.

25.3.3. A couple of remarks. The conjugacy between the Blaschke maps, albeit
quasisymmetric, has low regularity. Indeed, by Proposition 19.79, we have:

Corollary 25.13. The (orientation preserving) conjugacy h : T→ T between
two different Blaschke maps g and g̃ (25.2) is singular.

Exercise 25.14. Let us consider a more general Blaschke map

g : D→ D, z 7→ e(θ)
z − a
1− āz

z − b
1− b̄z , |a| < 1, |b| < 1.

If g has a fixed point α ∈ D (e.g., for small b) then:

(i) It is (dynamically) expanding on the unit circle T;

(ii) It preserves the Poisson measure dmα(ζ) = P (α, ζ) dm(ζ) on T, see (10.5);

(iii) It is conjugate to a Blaschke map (25.2) by a Möbius automorphism h : D→ D.

25.4. Bounded distortion, quasi-self-similarity, and qc geometry.

25.4.1. Bounded distortion and dynamical quasi-self-similarity. The following
property provides a fundamental tool in the study of hyperbolic maps:

Lemma 25.15. For any hyperbolic polynomial f , there exists an ε0 > 0 such
that for any ε ∈ (0, ε0), any point z ∈ J (f), and any n ∈ N, all the inverse branches
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f−ni are well defined in the disk D(z, ε), have an absolutely bounded distortion:
∣∣∣∣
Df−ni (ζ)

Df−ni (z)

∣∣∣∣ ≍ 1 ∀ ζ ∈ D(z, ε),

and shrink at a uniformly exponential rate:

diam f−ni (D(z, ε)) = O(λ−n)

(with the constant depending on f only).

Proof. Follows immediately from the fact that cl(orb v) ∩ J = ∅, the Koebe
Distortion Theorem, and the expanding property of f | J (compare with the proof
of Theorem 22.2). �

Exercise 25.16. Prove the above distortion bounds following the method of
Lemma 19.68 instead of the Koebe Distortion Theorem.

A slight modification of Lemma 25.15 shows that hyperbolic Julia sets in small
scales look roughly the same as they do in moderate scales:

Exercise 25.17. Let f be a hyperbolic quadratic map. Then there exist ε > 0
such that for any z ∈ J (f) and ρ ∈ (0, ε) there is n ∈ N such that fn univalently
and with bounded distortion maps the disk D(z, ρ) onto an oval of size of order ε
and of bounded shape around fnz. (All constants depend on f .)

Corollary 25.18. Connected hyperbolic Julia sets J (fc) do not have cusps
neither from outside (i.e., from D(∞)) no from inside (i.e., from components
of intK).

25.4.2. QC geometry. As the next application of distortion bounds, let us treat
the geometry of the components of intK:

Proposition 25.19. For a hyperbolic map f , all components Di of intK(f)
are K-quasidisks, with a uniform K.

Proof. Let us begin with the central component D0 ∋ 0 of the immediate
basin. By Proposition 25.7, the Riemann mapping ψ : D0 → D conjugates f | ∂D0

to the restricted Blaschke product g|T. Both of these maps are expanding (by
Definition (20.3) and Lemma 25.10). By repeating the argument of Lemma 19.67,
we see that ψ : ∂D0 → T is quasisymmetric (Exercise!), so ∂D0 is a quasicircle.

Any other component Di of intK(f) is univalently mapped onto D0 by some
iterate fn. By Lemma 25.15, fn : ∂Di → ∂D0 is a homeomorphism with a bounded
distortion, so the Di are all K-quasicircles with a uniform K. �

Corollary 25.20. There is a qc homeomorphism h0 : (C,D0, 0) → C,D, 0)
conjugating fp| ∂D0 to the doubling map f0|T.

Proof. By Proposition 25.19, the Riemann mapping φ : (D0, 0) → (D, 0) ad-
mits a qc extension to the whole plane. By Proposition 25.7, it conjugates the
return map fp| D0 to a Blaschke map g|D. By Corollary 25.11, g|T is quasisym-
metrically conjugate to the doubling map f0|T. Since the latter conjugacy admits a
qc extension to the whole plane (by the Ahlfors-Beurling Theorem), the conclusion
follows. �
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25.4.3. Structure of maps with attracting fixed point. Let us consider, in partic-
ular, a hyperbolic map f ≡ fc that has an attracting fixed point. (Such a c beloings
to the main hyperbolic component of the Mandelbrot set: see Exercise 33.2 below).

Recall the notion of qc welding from §15.4.

Proposition 25.21. Let f has an attracting fixed point, and let D0 be its
immediate basin. Then the Julia set J ≡ J (f) coincides with ∂D0. Moreover, it
is a quasicircle obtained by qc welding by means of a homeomorphism h : T → T

conjugating a Blaschke map g to f0.

Proof. Since f : D0 → D0 is a double branched covering, f−1(D0) = D0.
Hence f−1(∂D0) = ∂D0, implying (by Corollary 20.23) that ∂D0 = J . Now Propo-
sition 25.19 implies that J is a quasicircle.

By Proposition 25.7, f | D0 is conformally conjugate to a Blaschke map g, while
by Theorem 23.25, f | ĈrD0 is conformally conjugate to f0 | ĈrD. Moreover, since
∂D0 is a Jordan curve, all the conjugacies extend continuously to the boundary.
Hence f is the qc welding by means of the map h : T → T conjugating g |T to
f0 |T. �

Under the above circumstances, f is called the (qc) mating between the Blaschke
map g : D→ D and the square map f0 : Ĉ r D→ Ĉ r D.

Remark 25.22. Proposition 25.21 can be seen is several other ways. One
follows from the Attracting-Superatttracting QC Surgery turning f into f0 (see
§25.8 below). Another one follows from the Structural Stability Theory (developed
in §36 below) implying that the Julia set Jc moves holomorphically over the main
hyperbolic component of the Mandelbrot set.

These approaches would bipass Proposition 25.19, and in fact, the latter can be
then derived from Proposition 25.21 by means of the Renormalization (see §28.4.3)
and Straightening (see §40). (Of course, it would be much more sophisticated
approach than the one we have carried above, but it would also provide us with an
instructive insight into the matter.)

25.5. Porosity and area of the Julia set. Theorem 22.2 on the gobal
measure-theoretic attractor immediately implies that areaJ (f) = 0 for any hy-
perbolic f . Here is a sharper statement:

Proposition 25.23. Any hyperbolic Julia set J (f) is uniformly porous in all
scales. Hence it has zero area. Moreover, if J (f) ⊂ R then it has zero length.

Proof. By Lemma 25.17, any small scale disk D(z, ρ) with z ∈ J can be
mapped with bounded distortion onto a moderate scale oval of bounded shape.
Since the latter contains a definite gap, the former contains one as well. �

Exercise 25.24. Generalize Proposition 25.23 (along with Lemma 25.15 and
Exercise 25.17) to arbitrary invariant hyperbolic sets Q ⊂ J .

25.6. Hubbard tree for a superattracting map. We will now attach to
any superattracting quadratic polynomial a topological object called a (geometric)
Hubbard tree. It will be eventually shown (see Theorem 35.1) that these polynomials
(and there are countably many of them) are fully classified by their Hubbard trees.
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25.6.1. Definition and first properties. Let f = fc be a superattracting qua-
dratic polynomial, so its critical point 0 is periodic with some period p ∈ Z+.
Let 0k = fk(0), k = 0, 1, . . . , p − 1, 0 = {0k}p−1k=0, and let Dk be the component
of intK ≡ intK(f) containing 0k. By the last part of Theorem 25.2, intK coin-
cides with the basin of α, so for any component D of intK there exists a unique
n = n(D) ∈ N such that fn univalently maps D onto D0. Let us mark in D the
preimage of 0 under this map and call it the center 0D of D (in particular, 0k is
the center of Dk). This makes K a pointed lc hull.

By Exercise 9.23, any two points z, ζ in K can be connected by a unique legal
arc [z, ζ]. Let us consider the legal hull T ≡ Tf of the points 0k. When 0 is a
fixed point (i.e., p = 1), then T = {0} is trivial, so in what follows we will assume
that p > 1. Then by Exercise 9.26, T is a topological tree called the (geometric)
Hubbard tree. Let b = {bj} be the set of its branch points. Let us also mark on T
the points 0k.

Proposition 25.25. We have:

(i) The marked Hubbard tree (T ,0∪b) is invariant under f ; hence all branch points
of T are (pre-)periodic; moreover, f : T → T is surjective.

(ii) The critical value v = c is a tip of T ; the critical point 0 is not a branch point
of T .

Proof. (i) Let us take the legal path γk = [0, 0k] ⊂ T connecting 0 to another
0k, k = 1, . . . , p − 1. Since int γk 6∋ 0, γk does not contain symmetric points
(Exercise 9.25). Hence f is injective on γk, which implies that f(γk) is the legal
arc connecting 01 to 0k+1 (where 0p ≡ 0). Since T is legally convex, f(γk) ⊂ T .
Since T =

⋃
γk (being a tree), and similarly, f(T ) = ⋃ [01, 0k] =

⋃
f(γk), the first

assertion follows.

(ii) Since T =
⋃
[0k, 0j ], all the tips of T are contained in the cycle 0. So, one

of the points 0k must be a tip. But if 0k with k 6= 0 (mod p) is not a tip then
0k+1 is not either, since the map f : T → T near any non-critical point is a local
emebdding. Thus, if 01 is not a tip then none of the 0k are – contradiction. �

Remark 25.26. The above argument shows that there is an l ∈ [1, p] such that
the tips of T are exactly the points 0k, k = 1, . . . , l.

25.6.2. Attracting basin.

Lemma 25.27. The basin D(0) ∩ T is dense in the Hubbard tree T .

Proof. Otherwise, there is an arc L ⊂ T such that all the images fn(L) are
disjoint from the immediate basin D0, and in particular, they do not contain 0.
Then all the iterates fn : L→ T are embeddings.

Let us consider the hyperbolic metric on C r 0, and define the corresponding
“hyperbolic distance” on each component J of T r 0 as follows. For x, y ∈ J , a
smooth path γ connecting x to y in Cr 0 is called admissible if it can be retracted
to [x, y] ⊂ T in Cr 0 rel the endpoints. Then we let

(25.3) dhyp(x, y) = inf
γ
lhyp(γ),

where γ runs over all admissible paths connecting x to y.
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Note that if the images x′ = f(x) and y′ = f(y) also lie in the same component
J ′ of T r0, then any admissible path γ′ connecting x′ to y′ lifts by f to an admissible
path γ connecting x to y. By Corollary 7.1, lhyp(γ′) > lhyp(γ), which implies that

(25.4) dhyp(x
′, y′) ≥ λ dhyp(x, y),

with λ ≥ λ(ε) > 1, provided x′ and y′ stay ε-away from 0.
It follows that for the above arc L = [a, b] ⊂ T , we have dhyp(fna, fnb) → ∞

(exponentially fast), which is of course impossible. �

Lemma 25.28. If two components of the immediate basin D•(0) do not have
disjoint closures then they touch at the root points.

Proof. By invariance of the immediate basin, we can assume that one of the
components in question is valuable, D1 ∋ v. Proposition 25.25(ii) implies that
D1 ∩ T is a closed internal ray with endpoints v and b ∈ ∂D1. Since it is invariant
under fp, we conclude that fp(b) = b, so b is the root D1. �

Let us consider the cycle (βk)
l−1
k=0 of the root β0 ∈ ∂D0. We see that the com-

ponents Dk of the immediate basin D•(α) are organized into l bouquets Bk sharing
the root βk. Each bouquet comprises q = p/l components cyclically permuted by
f l with some combinatorial rotation number p/q (independent of the bouquet).
Moreover, the bouquets have disjoint closures.

If all the components Dk have disjoint closures (i.e., the bouquets Bk com-
prise one component each: q = 1) then the hyperbolic map f is called primitive.
Otherwise, it is called satellite.

25.6.3. Markov tiling. If we puncture out all the points 0k and bj , from the
Hubbard tree T , the rest will be disjoint union of topological intervals J◦s . Their
closures Js form a tiling J of T .

Proposition 25.29. The tiling J is Markov. It generates a natural semi-
conjugacy h : ΣA → T r D(0). This semi-conjugacy is one-to-one over all points
of T rD(0) except for the branch points b ∈ b and their dynamical preimages.

Proof. Let Js, Jt ∈ J and f(J◦s ) ∩ Jt 6= ∅. Since J◦s 6∋ 0, f homeomorphically
maps J◦s onto an interval in the tree T . Since the tiling boundary 0 ∪ b is forward
invariant, ∂(f(Js)) ∩ J◦t = ∅. Since J◦t does not contain branch points, f(Js) ⊃ Jt.
It proves the Markov property.

The map f is expanding on the tiles with respect to the hyperbolic metric,
see (25.4). Hence there exists a natural semi-conjugacy h : ΣA → T r D(0) (see
Exercise 19.92). The only points over which h may fail to be one-to-one are common
points of different tiles (which are, in this case, only branch points of T ), and their
dynamical preimages. �

Exercise 25.30. Let Jv ∈ J be the valuable interval ending at the critical
value v. Then it can be reached in the Markov graph ΓA (see Appendix, §19.19)
from any other interval Js ∈ J.

See §25.6.13 for more properties of this Markov chain.
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25.6.4. The α−fixed point.

Lemma 25.31. The legal path γ connecting the critical point 0 to the critical
value 01 = c contains the α−fixed point of f .

Proof. The image δ := f(γ) is the legal path connecting c to 02 ≡ f(c). Let
us orient γ from 0 to c, and respectively, orient δ from c to 02. Since the critical
value c is a tip of T (Proposition 25.25) these orientations are opposite near c.

Note that the inclusion δ ⊂ γ is impossible, since in this case a topological
interval, γ, is mapped by f to itself, so it would contain a fixed point which is
attracting at least on one side (as long as we know that the fixed points are isolated,
which is certainly the case for polynomials).

If δ ⊃ γ then the inverse branch f−1 : δ → γ maps a topological interval, δ, to
a smaller interval γ, so it has a fixed point α ∈ γ.

Otherwise, δ ∩ γ = [c, α], where α is a branch point of T . Let us show that
this point is fixed under f . If this is not the case, then γ contains a point α−1 6= α
such that f(α−1) = α. Let us consider two cases:

Case a): α−1 ∈ (0, α). Then the image α1 := f(α) 6= α is a point of the path
(α, 02) that branches off γ. Let us consider the topological interval I0 = [α, α1] ⊂
[α, 02]. It is oriented away from the critical point 0 (in the sense that the path [0, α]
is disjoint from I0). Hence I0 extends the intervals I−1 := [α−1, α] beyond α to
form the interval [α−1, α1].

Then the interval I1 ≡ [α1, α2] := f(I0) ⊂ T extends I0 = f(I−1) beyond α1

to form the interval [α, α2] oriented away from 0 as well. Attaching to it the next
iterate I3 ≡ [α2, α3] := f2[α, α1], we obtain a bigger interval [α, α3] with the same
property, etc. Note that we will never hit the critical point (since the intervals
[α, αn] grow away from it in the Hubbard tree), so the intervals in question will
never be folded under f . In this way, we obtain infinitely many branch points
αn = fn(α) of T , which is impossible.

Case b): α−1 ∈ (α, c). Then the interval I0 = [α, α1] is contained in [α, c].
However, it cannot be contained in [α, α−1], for otherwise the latter interval would
be invariant under f ; and then it would contain a semi-attracting fixed point or
a semi-attracting cylce of period two. Hence α1 ∈ (c, α−1) and then [α, α2] is an
interval that branches off γ. Moreover, the interval [α−1, α] contains a preimage
α−2 of α−1. Thus, the interval [α−2, α2] is a concatenation of [α−2, α] and [α, α2].
Applying to it the iterates of f2, we obtain, as in Case a), a chain of intervals
containing infinitely many branch points.

Finally, since α ∈ γ◦, it is dividing, so it is identified with the α−fixed point
introduced in §24.4.2. �

25.6.5. Body and limbs of T . Recall from §9.1.5 the notion of branches and
limbs of T at a point z ∈ T (note that the Hubbard tree is naturally centered at 0).
Ler Li be the limbs attached to the α−fixed point, i = 1, . . . , q − 1, and let L′i be
the symmetric1 lateral limbs attached to α′ (if exist). Let us also consider the body
B of T , which is the closure of the component of T r {α, α′} containing 0.

1Meaning that Li and L′

i have symmetric local branches at α and α′ respectively.
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Exercise 25.32. The limbs of the Hubbard tree can be labeled so that

• For i ∈ {1, . . . , q− 2}, F embeds Li and L′i to Li+1;

• F embeds Lq−1 and L′q−1 to B ∪⋃L′i;
• F maps B to L1 ≡ Lv; moreover, this map is an embedding on each branch of T
at 0.

In case when there are two branches at 0 (i.e., 0 is not a tip), we say that
F : B → Lv is a folding map. Note that this notion can be applied to general
maps between trees. In case of an interval maps, it is equivalent to (topological)
unimodality.

More generally, we can consider the Hubbard branches Li ≡ Li(α) at a repelling
periodic point α ∈ T of some period p (where L0 ≡ B the corresponding body while
Li, i 6= 0, are the limbs) .

Lemma 25.33. Each sector Si ≡ Si(α) centered at α contains exactly one Hub-
bard branch Li ≡ Li(α). Thus the number of Julia branches at α (equal to the
number of external rays landing at α) is equal to the valence of T at α (which is
the number of Hubbard branches at α).

Proof. Otherwise there is a sector Si that does not contain postrcritcal points.
Then it can be univalently pulled back to itself by an appropriate branch of f−pq.
Then Si is invariant under fpq contradicting the leo property of the Julia set. �

25.6.6. Extended Hubbard tree. The extended Hubbard tree I ≡ T ef is the legal
hull of the cycle 0, the non-dividing fixed point β, and the co-fixed point β′ = −β.

Exercise 25.34. (i) Show that I = Tf ∪ σf (where σ ≡ σf is the spine) and
that T ef is f -invariant.

(ii) Describe how the spine σ is located with respect to the Hubbard tree T , i.e.,
given a Hubbard tree T , construct the extended Hubbard tree I.

Exercise 25.35. Show that any point z ∈ I, except for β and β′, eventually
lands on T ∩ σ, i.e., there exists an n ∈ N such that fnz ∈ T ∩ σ.

It follows, in particular, that the skeleton of f can be obtained by taking preim-
ages of the Hubbard tree:

Sk ≡
∞⋃

n=0

f−n(σ) =
∞⋃

n=0

f−n(T ).

Notice that the branch points of Sk are preimages of the branch points on I and
the centers of the Dk. As the former have the same valence as the corresponding
points on I, while the latter have infinite valence but lie outside the Julia set, we
conclude (using Lemma 25.33) that the Hubbard tree fully captures branching of
the Julia set:

Corollary 25.36. For a superattracting polynomial f , any branch points ζ of
J (f) is a preimage of a periodic branch point z of the extended Hubbard tree I.
The number of rays landing at ζ is equal to the valence of z in I.

Exercise 25.37. The β−fixed point does not belong to T .



25. HYPERBOLIC MAPS 357

25.6.7. α−rotational type. Let us say that T is of α−rotational type if the
Hubbard tree T does not contain the co-fixed point α′. In this case, the body
B coincides with the central branch L0 ∋ 0 of T , implying that f(L0) ⊂ L1. It
follows that the branches Li at α are cyclically permuted by f (Exercise 25.32).
Under these circumstances, the branches at α are also called (extended satellite)
little Hubbard trees T ek ≡ Ik. We see that they touch at the α−fixed point, but
otherwise disjoint, cyclically permuted by the dynamics, and altogether cover the
whole Hubbard tree T .

The simplest examples of such a tree is a star centered at α whose branches
are permuted with rotation number p/q. The corresponding quadratic polynomials
are the centers of the hyperbolic components of the Mandelbrot set attached to the
main cardioid (see §§33.5, 37.4 below).

Exercise 25.38. Show that that each little satellite Hubbard tree Ik is the
legal hull of the α−fixed point and the postcritical points 0k+qn that belong to the
correspodning sector Sk (bounded by two rays landing at α).

25.6.8. Non-rotational type: puzzle. Let us now consider an (α−)non-rotational
Hubbard tree T ∋ α′. In this case, let us consider further preimages of α′ in the
extended Hubbard tree I: namely, let A(n) := f−n(α), n ∈ N (where f stands for

the action on I). They tessellate I into subtrees I(n)k called puzzle trees of depth

n. For the moment, they are labeled arbitrary, ecccept that we let I(n) ≡ I
(n)
0 ∋ 0

be the central puzzle tree, while I(n)v ≡ I
(n)
1 ∋ v be the valuable one. [Since 0 and

v are separated by the α−fixed point (Lemma 25.31), these trees are well defined.]
These tilings I(n) satisfy the following easy to check but crucial properties:

Exercise 25.39. (i) The tilings I(n) are nested: each puzzle tree I(n) of depth
n is tesselated by some puzzle trees I(n+1)

k of depth n+ 1.

(ii) This nest is invariant in the following sense: Any tile (I(n)k , ∂I
(n)
k ) of depth n > 1

with marked boundary is properly2 mapped by f to some marked tile (I(n−1)j(k) , ∂I
(n−1)
j(k) )

of depth n− 1.

(iii) The above map is a proper embedding if I(n)k is off-central (k 6= 0) and is a
proper folding map otherwise (for k = 0).

Let us define the Principal Nest of Hubbard trees, I0 ⊃ I1 ⊃ . . . as follows:
I0 := I(0), and In+1 is defined inductively as the pullback of In under the first
return of the critical orbit to In.

Exercise 25.40. Show that:

(i) It is indeed a nest;

(ii) The first return map gn : In → In−1 is a proper folding map.

(iii) In+1 ⋐ In for n sufficiently big.

See §31 for a detailed discussion of the Yoccoz puzzle and its Principal nest for
the whole Julia set. The interval case, which is a special case of Hubbard tree, will
be discussed in §31.11.

In the following two sections, we will proceed with analyzing the non-rotational
type.

2In the adjusted sense of §50.3.2.
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25.6.9. Relative exactness.

Lemma 25.41. In the non-rotational case, we have:

(i) There is a moment n ∈ Z+ such that fn stretches some interval [α, γ] ⊂ [α, 0)
onto [α, α′] ⊂ T .

(ii) There is a sequence of iterated preimages of α, γk ∈ A(nk) converging to α
(with γ0 ≡ γ), such that γk+1 ∈ [α, γk) and fnk+1−nk homeomorphically stretches
[α, γk+1] onto [α, γk].

Proof. (i) Since T ∋ α′, there is an n such that [α, 0n) ∋ α′, implying the
assertion.

(ii) Let γ0 := γ, n0 := n, and let us define γ1 ∈ [α, γ) as the preimage of γ of
smallest possible depth n1 > n0 and closest to α among such. Then fn1−n0 maps
[α, γ1] onto [α, γ0], while the intermediate iterates fm[α, γ1], m = 0, 1 . . . , n1−n0−1,
do not contain γ0. All the more, they do not contain 0, so the map fn1−n0 : [α, γ1]→
[α, γ0] is homeomorphic.

Proceed inductively to construct further preimages γk. �

Let us now consider the closure of the grand backward orbit of the α−fixed
point:

A− := Orb−(α) = cl
∞⋃

n=0

A(n).

Lemma 25.42. In the non-rotational case, we have:

(i) For any local branch T of T at α, there is an n ∈ N such that fn(T ) = T .

(ii) The set A− is perfect.

(iii) For any interval V ⊂ I that intersects A− there is an n ∈ N such that
fn(V ) = T .

Proof. (i) Since the local branches at α are cyclically permuted (Exercise 25.32),
we can assume that T ⊂ [α, 0]. Then Lemma 25.27 (density of the basin) together
with Lemma 25.41(ii) imply that T contains some component of the basin D(0)∩T .
Moreover, this component is homeomorphically mapped by some fm onto the cen-
tral component D0∩T ∋ 0. Hence fm(T ) ∋ 0. Since the orbit of 0 spans the whole
tree T , we conculde that

p−1⋃

n=0

fn(T ) ⊃ T .

Finally, let us consider a neighborhood V :=

q−1⋃

n=0

fn(T ) of α in T , where q is the

valence of α (we use Exercise 25.32) once again). Since α is repelling, fq(V ) ⊃ V ,
provided T is sufficiently small. It follows that fn(V ) ⊃ T , as desired.

Assertions (ii) and (iii) readily follow. �

We refer to property (iii) above as relative (topological) exactness of f (rel the
complement of A−) or relative leo property.

Exercise 25.43. What happens in the α−rotational case?
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25.6.10. Little Hubbard trees. The set I r A− is an open invariant subset of
I whose components are (open) subtrees of I. Let I1k be the closures of these
components containing the postcritical points 0k, respectively. They are permuted
by the dynamics with some period p1 dividing p. We call them (extended) little
Hubbard trees. (According to our general convention, the little Hubbard tree I1 ≡
I10 ∋ 0 is the central one, while I11 ≡ I1v ∋ v is the valuable one.) Lemma 25.42(ii)
implies:

Corollary 25.44. In the non-rotational case, the little Julia trees I1k are pair-
wise disjoint.

This allows us to define the valence of a little Hubbard tree I1k as the number
of components I r I1k .

Lemma 25.45. In the non-rotational case, we have:

(i) The valuable Hubbard tree I1v has valence one.

(ii) The central Hubbard tree, I10 , has valence two. Moreover, the boundary points
of I1 (rel I) are β1 ≡ β1

0 and (β1)′ ≡ (β1)′, where β1 is a periodic point of period
p1, while (β1)′ is the symmetric point.

(iii) Any other little Hubbard tree has valence one or two.

Proof. Let us collapse all the components of T rA− to points (a “devil stair-
case” construction). We obtain a tree with the induced action by f (an “abstract
Hubbard tree”: compare §25.6.12 below ). We can now follow the proof of Propo-
sition 25.25 to get (i) and (iii). Moreover, it leaves only options of valence one or
two for the central Hubbard tree. Let us show that it is decided in favor of “two”.

Since the valuable tree I1v has valence one, it has a single boundary point β1
v

and this point must be fixed by the return map fp1 . Its preimages are the only
boundary points for the central tree I1, so I1 has only one or two boundary points.
If there was only one, β1, then there would be only one branch T of I attached
to β1. But this branch could not contain both points α and α′, contradicting the
property I ∋ α′.

Finally, as β1 and (β1)′ are 0-symmetric, one of them, β1
0 , is fixed for the

corresponding return map fp1 , while the other one, (β1
0)
′, is co-fixed. Moreover,

since the little trees I1k , k = 0, . . . , p1 − 1, are disjoint, p1 is the smallest period of
β1
0 . �

Corollary 25.46. In the non-rotational case, the central Hubbard tree I1 is
the convex hull of the postcritical points 0p1i, i = 0, 1, . . . , p/p1−1, and the boundary
points β1, (β1)′.

Proof. If a tree I is spent by some points 0k then any subtree I ′ is spent by
the points 0k contained in I ′ and the boundary points of I ′. �

Taking the convex hull of the points 0k contained in I1 we obtain the little
(unextended) Hubbard tree T 1 ⊂ I1. Its images T 1 := F k(T 1), k = 0, 1, . . . , p1,
form a cycle of little (unextended) Hubbard trees.

Exercise 25.47. Show that the principal Hubbard trees shrink to the little Hub-
bard tree:

⋂
In = I1.
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25.6.11. Nest of little trees. If the Hubbar tree T 1 is non-trivial (i.e., contains
more than one point 0), we can apply the above construction to it, and obtain little
Hubbard trees I2 ⊃ T 2 of level two, of some period p2, etc. In this way we obtain
the nest of the central Hubbard trees,

(25.5) T ≡ T 0 ⊃ I1 ⊃ T 1 · · · ⊃ In ⊃ T n = {0}.
of some periods 1 ≡ p0 | p1 | . . . | pn ≡ p. A tree T k, k > 0, is classified as satellite
or primitive depending on whether it is rotational in T k−1 or not.

A tree T is called prime if n = 1.

Exercise 25.48. The following properties are equivalent:

• T is prime.

• T does not contain a strictly smaller periodic subtree T ′ ∋ 0 spanned by several
(more than one) marked points 0k which are not cut by the α−fixed point.

• The iterated preimages of the α−fixed point are dense in the complement of the
basin D(α).

This nest of little Hubbard trees will be later linked to the nest of little Julia
sets of quadratic-like renormalizations (compare §31.10). In the interval case, it
will be discussed in §30.7.

25.6.12. Abstract Hubbard tree. An abstract Hubbard tree (with periodic critical
point) is a topological tree T endowed with the following data:

(i) Marked points 0 ≡ 00, . . . , 0p−1 such that all the tips of T are marked. The
point 0 is called critical or central, while v ≡ 01 is called valuable.

(ii) Cyclic order of local branches at any vertex. This is equivalent to the choice of
an embedding T → C up to isotopy.

(iii) A continuous Hubbard map F ≡ FT : (T , (0k)) → (T , (0k+1)) (where k ∈
Z/pZ) such that the restrictions of F to the branches T± at 0 are injective. This
map is determined uniquely up to Thurston equivalence: F ∼ F̃ if there exists a
homeomorphism3 h : (T , (ck))→ (T̃ , (c̃k)) such that h−1 ◦ F̃ ◦ h is homotopic to F
rel (ck).

According to our general convention, a “topological tree" is considered up to a
homeomorphism h : T → T̃ respecting the above data, i.e., (h(0k)) = (0̃k) and h
preserves the cyclic order of local branches.

Exercise 25.49. Show that such an h is a Thurston equivalence, i.e., it con-
jugates F to F̃ up to homotopy rel 0.

Similarly to Proposition 25.25, we have:

Proposition 25.50. The valuable point v is a tip. The center 0 has valence at
most two.

Thus, 0 is is not a branch point for T : It is either a tip or a a regular point.
In the latter case, 0 is a folding point for F , i.e., F is two-to-one covering of a
punctured neighborhood of 0 over a one-sided punctured neighborhood of v.

3Here we mark with tilde objects associated with F̃ .
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We can now carry out an abstract construction of the extended Hubbard trees I,
whose geometric counterpart was discussed in §25.6.6. It is obtained by attaching
to T the abstract spine σ = [β, β′].

25.6.13. Markov (revisited) and piecewice linear models. Like for an actual qua-
dratic map on its Hubbard tree, we can naturally associate to an abstract Hubbard
map F : T → T a Markov matrix A ≡ AT and the corresponding Markov chain
σA. Obviously, A is independent of the particular map F in the Thurston class.

Exercise 25.51. For a prime Hubbard tree we have:

(i) In the α−rotational case, the Markov matrix A is a cyclic permutation.

(ii) In the non-rotational case, the Markov matrix A is primitive.

Incorporating the last assertion into the Perron-Forbenius Theorem, we con-
clude that in the prime non-rotational case the Markov matrix A has a unique
leading eignevalue λ > 1 to which corresponds a unique (up to scaling) positive
eigenvector.

Exercise 25.52. The matrix A has leading eigenvalue 1 iff all the little Hubbard
trees (25.5) are satellite. In this case, the corresponding Markov graph (see §19.19)
is a graph of a map.

We say that under these circumstances, the Hubbard tree T (and the corre-
sponding quadratic polynomial) is of molecule type.

Notice next that a Thurston class can be represented by a piecewise linear
map. For instance, realize each Markov tile Js (i.e., the closure of a component
of T r (b ∪ 0)) as the unit interval and make the map linear on each of these
components.

Exercise 25.53. Show that the Markov chain σA is nicely (in what sense?)
semi-conjugate to this piecewise linear map.

The Perron-Frobenius theory allows us to make a better choice of a piecewise
linear model. Namley, let us realize the Is as the intervals of length ls that represent
the leading eigenvector for the transpose to the Markov matrix A = (ats):∑

lt · ats = λ · ls.
On this tree the Hubbard map admits a piecewise linear model with the constant
slope λ > 1:

Exercise 25.54. Any prime non-rotational superattracting Thurston class can
be modeled by a unique piecewise linear leo map with constant slope λ > 1.

25.6.14. Real case. In the case when the Hubbard tree is an interval (which
corresponds to real polynomials), we obtain a saw-like model for a superattracting
unimodal map:

Exercise 25.55. Let f be a superattracting real quadratic map. Then:

(i) The Hubbard tree T is the interval [v, v1] ≡ [01, 02] containing all postcritical
points.

(ii) The topological Markov chain σA is naturally semi-conjugate to the dynamics
on T rD(0). Modify the construction so that the dynamics on T rD(0) is actually
conjugate to a Markov chain σB.
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(iii) In the prime α−rotational case, A is a cyclic permutation matrix of order 2.

(iv) In the prime non-rotational case, A is primitive and f on T is naturally modeled
by a leo saw-like map with constant slope λ > 1.

25.7. Characteristic rays and Topological Model for a superattract-
ing map.

25.7.1. Characteristic rays, strips, and associated objects. We keep assuming
that f is a superattracting quadratic polynomial. As the Julia set J (f) is locally
connected (Theorem 25.4), it can be modeled by a geodesic lamination L ≡ Lf in
the disk (see §9.4). Next, we will give an explicit description of this lamination.

Let us consider the immediate basin D1 ≡ D(v) of the critical value, and let
β1 be its root, i.e., the fixed point of the return map fp : D1 → D1. Proposition
25.25 (ii) implies that {β1} = T ∩D1 (since T ∩D1 is a single point invariant under
fp). In particular, β1 lies in the arc (0, v) of the Hubbard tree, so it is a cut-point
for the Julia set J . It allows us to apply the theory of ray configurations developed
in §24.5.

Let q ≥ 2 be the number of external rays landing at β1. These rays divide
the complex plane into q sectors. By Proposition 25.25 (ii), the sector Sch that
contains the basin D1 ∋ v is the innermost valuable sector, so it is characteristic
in the sense of §24.5.1. According to our convention, all associated objects are also
called “characteristic” or “valuable”:

• the characteristic rays R±ch = Rθ± that bound Sch, as well as their angles,

0 < θ− < θ+ < 1;

• the characteristic cut-line Lch := R+
ch ∪R−ch ∪ {β1}; and

• the characteristic geodesic (or leaf)4 γch ≡ γch(f) in D ≈ H2 connecting the
characteristic angles θ− and θ+ (which is also referred to as a minor leaf).

Lemma 25.56. The critical value v = c is the only point of the cycle 0 contained
in the characteristic sector Sch.

Proof. Assume there exists another postcritical point 0n, 1 < n < p, in Sch.
Let γ ⊂ K be the legal path connecting 0n to the root β1. Since β1 is the only
intersection point of K and Lch, γ is contained in Sch. Then it ends with the internal
radius of D1 connecting v to β1, for otherwise γ would be separated from D1 by a
ray landing at β1 (while by definition, Sch does not contain such rays). It follows
that v ∈ int γ contradicting the property that v is a tip of the Hubbard tree. �

The characteristic leaf Lch lifts by f to two symmetric critical leaves, L0 and
L′0, respectively passing through the root β0 and the co-root β′0 of D0. They bound
an (open) topological strip Π0 containing D0. Moreover, f : Π0 → Sch is a double
branched covering, and 0 is the only point of 0 contained in Π0 (by Lemma 25.56).

Pulling Π0 further along 0, we obtain strips Πn ⊃ Dn, n = 1, . . . , p − 1 with
the properties that 0n is the only point of 0 contained in Πn and fp−n univalently
maps Πn onto Π0. In particular, we obtain the characteristic strip Πch ≡ Π1 ⊃ D1

contained in Sch. Moreover, fp : Πch → Sch is a double branched covering.
The characteristic strip slices two arcs, Ich1 and Ich2 , at the circle at infinity,

each of which is homeomorphically mapped by T p onto the characteristic arc Jch

4We will sometimes refer to a cut-line as a “leaf” as well.
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sliced by Sch. This puts us into the context of Lemma 19.60 yielding a T p-invariant
Cantor setK ⊂ Īch1 ∪Īch2 and a DevilK-Staircase semiconjugacy h : K → T between
T p|K and the doubling map T . This Staircase has a clear dynamical meaning:

Lemma 25.57. Under the above circumstances, the Cantor set K consists of the
angles θ ∈ R/Z whose rays Rθ land on ∂D1. The natural projection K → ∂D1 is a
Devil K-Staircase semi-conjugating T p|K to fp| ∂D1 (while the latter is conjugate
to the doubling map by the Riemann uniformization).

25.7.2. Topological model. Let us lift γch to a pair of 0-symmetric geodesics in
D, γ0 and γ′0, that separate γch from 1 ∈ T. Let σ be the diameter of D connecting
e(θ+/2) to −e(θ+/2). Now, let us pull the geodesics γ0 and γ′0 further back under
the iterated doubling map T : T → T (see Appendix, §32.5.1). We say that a
geodesic γch in D generates a geodesic lamination L if all its pullbacks under the
iterated doubling map T are pairwise disjoint, and their closure is equal to L.

Theorem 25.58. For a superattracting quadratic polynomial f , the character-
istic geodesic γch generates the lamination Lf that gives a model for the Julia set
J of f as a quotient of T. The dynamics on J is modeled by the quotient of the
doubling map T : T → T (with the inverse Böttcher map B−1 : T → J semi-
conjugating T to f). Accordinglty, the filled Julia set K admits the pinched disk
model corresponding to Lf .

Proof. Let us consider a leaf L of the lamination Lf comprising a pair of rays,
R1 and R2, landing at the same cut point a ∈ T and bounding a minimal sector S
(so there are no other rays in this sector landing at a). By Lemma 25.27, a can be
approximated by components D−k of the basin D(0), preimages of the immediate
basin D0. There are two possibilities:

(i) a ∈ ∂D−k for some component D−k ⊂ S. Iterating forward, we can assume
that a ∈ ∂Dv. But since the critical value v is not a branch point of T (Propo-
sition 25.25), the immediate basin Dv intersects the Hubbard tree T at a single
point, its root. But then L itself is the characteristic leaf Lch.

(ii) There is a sequence of components D−k ⊂ S of order nk → ∞ converging
to a along the Hubbard tree. Let L−k be the corresponding preimages of the
characteristic leaf Lch landing at the roots of D−k. As k → ∞, these curves
converge to some curve L−∞ comprising two rays in S landing at a. But L is the
only such a curve, so L−∞ = L.

In either case, L is approximated by preimages of the leaf Lch. By Proposi-
tion 24.15, so is any leaf of the lamination Lf . �

The geodesic γ0
5 divides the circle T into two semi-circles T± producing a

coding of angles θ ∈ T by binary sequences ε̄.

Exercise 25.59. Two angles are equivalent in the above lamination model,
θ ∼
K
θ′, iff they have the same itinerary: ε̄ = ε̄′.

Remark 25.60. A more general discussion of combinatorial models for Julia
sets will be given in §32. In particular, the above lamination should be compared
with Lθ from §32.1.2.

5This choice is arbitrary: the geodesic γ′0, can be selected instead.
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Figure 25.1. Geodesic lamination for the Basilica.

Proposition 25.61. For a hyperbolic quadratic polynomial f , the characteristic
angles θ± determine the Hubbard tree T , and the other way around.

Proof. By Theorem 25.58, the characteristic angles determine the topological
model for the filled Julia set, which in turn, determines the Hubbard tree T .

Vice versa, from the Hubbard tree T , we can recover the extended Hubbard
tree I (Exercise 25.34). The orbit fn(R±ch), n = 0, 1, . . . , l−1, of each characteristic
ray can be encoded by a binary sequence (εn)

l−1
n=0 according to whether fn(R±ch)

lies above or below the spine σ. Extending this sequence periodically (to the right),
we obtain the dyadic expansion of the corresponding angle θ±. �

Exercise 25.62. Describe the Basilica and Douady Rabbit laminations depicted
on Figures 25.1 and 25.2. Relate then to the corresponding Julia sets depicted on
Figures20.4 and 20.5. Show that each of these laminations comprises only pullbacks
of the characteristic leaves (i.e., no non-trivial accummulation leaves exist).

Problem 25.63. (i) Show that the last property of Exercise 25.62 holds if and
only if the corresponding hyperbolic map is of prime satellite type.

(ii) Show that the laminatoin comprises countably many leaves iff the corresponding
hyperbolic map is of molecule type.

Problem 25.64. Let βk = fk−1(βch) be the cycle of the characteristic repelling
point βch ∈ ∂Dv, k = 1, . . . , p. Then there exists a Green puzzle piece Pk around
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Figure 25.2. Geodesic lamination for the Douady Rabbit.

each point βk whose external rays are preimages of the characteristic rays and such
that fp univalently maps Pk onto a strictly bigger disk fp(Pk) ⋑ Pk.

25.7.3. Markov partition of the Julia set. Let us consider a 0-symmetric dipole
cut-line L passing through the periodic point α0 and its symmetric α′0 ≡ −α0 which
is composed of two external rays Rθ∓/2 (landing at ±α0 respectively) and the legal
arc in D0 connecting ±α0. Let L−n, n = 0, . . . , p − 1, be the pullback of L under
the branch of f−n that maps D0 to D−n (where p is the period of the characteristic
rays).

Exercise 25.65. The cut-lines L−n do not cross each other6 and cut the Julia
set into pieces that form a Markov partition. Moreover, the corresponding Markov
coding is one-to one, except over the iterated preimages of α0. Over the latter, it is
q-to-1, where q is the number of rays landing at α.

25.8. Attracting-superattracting surgery. We will now describe a qc surgery
that turns a hyperbolic polynomial f ≡ fc to a superattracting one, f◦. It will be
our first encounter with this method; many more are to come. See §29.1 below for
a general idea of the method.

6they can touch, though
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25.8.1. Surgery. By Corollary 25.20, there is a homeomorphism

(25.6) h0 : (D0, 0)→ (D, 0)

that admits a qc extension to the whole plane and conjugates the return map
fp| ∂D0 to the doubling map f0 : z 7→ z2 on the unit circle T. Any other component
D of the basin Df is univalently mapped onto D0 by some fn with n = nD > 0, so
we can mark the “center” 0D ∈ D as the preimage of 0 by fn. We can also mark
the “root” βD ∈ ∂D, the preimage by fn of the root β0 of D0 (which is the fixed
point of the return map fp : ∂D0 → ∂D0). For any D 6= D0, let us consider the
Riemann mapping

hD : (D, 0D, βD)→ (D, 0, 1).

Then

(25.7) hD = hf(D) ◦ f

since both maps are the Riemann mappings D → D normalized in the same way.
For any component Dk of the immediate basin, k = 0, . . . , p − 1, we let 0k ≡ 0Dk

and βk ≡ βDk
.

Notice also that

(25.8) f | ∂D0 = h−11 ◦ (f0|T) ◦ h0.

Indeed, using notation
◦∏

for the composition read from the right to the left, we
have:

f0|T = h0 ◦ (fp| ∂D0) ◦ h−10 =

◦∏

0≤k≤p−1
hk+1 ◦ (f | ∂Dk) ◦ h−1k = h1 ◦ (f | ∂D0) ◦ h−10 ,

where the last equality follows form (25.7)
Let us now replace f : D0 → D1 with F ≡ Ff := h−11 ◦ (f0|D) ◦ h0. Formula

(25.8) shows that F matches with f on ∂D0. Hence by letting F = f on the
complement of D0, we obtain a global double branched covering C→ C. Moreover,

(25.9) F p|D0 = h−10 ◦ (f0|D) ◦ h0
since F p|D0 is equal to

fk−1 ◦ (F | D0) =




◦∏

1≤k≤p−1
h−1k+1 ◦ hk


 ◦ h−11 ◦ (f0|D) ◦ h0 = h−10 ◦ (f0|D) ◦ h0.

So, the return map to D0 is topologically superattracting, with the superattracting
cycle 0 = (0k)

p−1
k=0.

Notice finally that the superattracting basin DF (0) coincides with the attract-
ing basin Df (α), and the set of the centers 0D is completely invariant under F .

25.8.2. Superattracting model.

Proposition 25.66. For a hyperbolic quadratic polynomial f ≡ fc, let F ≡ Ff
be the quasiregular map obtained from f by the above surgery. Then F is conjugate
to a superattracting polynomial f◦ ≡ fc◦ by a qc map h coinciding with the Böttcher
conjugacy on the basin of ∞.
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Proof. We will follow the notation from the above surgery construction. Let
us consider a conformal structure ν0 := h∗0(σ) on D0. Since h0 : D0 → D conjugates
the return map F p| D0 to f0|D, where the latter is holomorphic, the structure ν0
is F p-invariant.

Let us spread ν0 around the whole basin D ≡ DF (0) by the dynamics. Namely,
any other component D of the basin D, is univalently mapped onto D0 under some
iterate of Fn = fn, n = nD ∈ Z+. Let νD = (Fn)∗(ν0) = (fn)∗(ν0) be the
corresponding conformal structure on D. Since f is holomorphic, νD has the same
dilatation as ν0.

Putting these structures together, we obtain a conformal structure ν with
bounded dilatation on the whole basin D. Moreover, it is invariant under F . Indeed,
by construction, νD = F ∗(νF (D)) for any component D 6= D0, while ν0 = F ∗(ν1)
by the F p-invariance of ν0 (where ν1 ≡ νD1

).
Let us now extend ν to the whole plane C by letting ν = σ outside D. Since

F = f is holomorphic outside D, we obtain an invariant conformal structure with
bounded dilatation on the whole plane C.

By the Measurable Riemann Mapping Theorem, there is a qc map h : (C, 0)→
(C, 0) such that ν = h∗(σ). Moreover, h is conformal on Df (∞). Normalized to be
tangent to id at ∞, h conjugates F to a superattracting polynomial f◦ ≡ fc◦ . �

25.8.3. Attracting Hubbard tree and characteristic rays. With the set of centers
0D ∈ DF (0) = Df (0) in hands, we can define legal arcs, the spine and the Hubbard
tree T ≡ TF ≡ Tf in the same way as for a superattracting quadratic polynomial.
We call T an attracting Hubbard tree. It is a subset of K(F ) = K(f) which is
invariant under the quasiregular map F but not under the map f itself.

Since F is topologically conjugate to the superattracting model f◦, all the
properties from §25.6.1 (which are purely topological) are valid for Tf as well. They
can also be easily proved directly in the f -plane, and in particular, we suggest to
the reader to check directly the analogue of Lemma 25.27:

Exercise 25.67. Prove without using the superattracting model f◦ that the
basin D ∩ T is dense in the attracting Hubbard tree T .

We also see that the root β1 of D1 ∋ v is a cut point for Jc, and we can
define the characteristic (valuable) rays R± ≡ Rθ± landing at β1 for f as in the
superattracting case. Since the conjugacy between F and f◦ is Böttcher on the
basin of ∞, the characteristic angles θ± for the map f and its superattracting
model f◦ are the same.

25.9. Real hyperbolic polynomials. The results of this section are an
easy adaptation of the above complex results and arguments to the real symmetric
setting, so we will present them as a series of exercises.

Let us consider a real-symmetric quadratic polynomial f = fc : x 7→ x2+c with
c ∈ [−2, 1/4] ≡MR. It has an invariant interval I ≡ Ic = [−β, β], where β ≡ βc is
the fixed point with positive multiplier. The map f is called (real) hyperbolic if it has
a real attracting cycle α = (αn)

p−1
n=0. Our remark in §21.2.4 shows that this notion

is consistent with the complex one: A real quadratic polynomial fc : I → I with
c ∈MR is real hyperbolic iff its complexification fc : C→ C is complex hyperbolic.

There is one noteworthy difference between the real and complex situations. In
the complex case all simply attracting germs are locally topologically equivalent,
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while in the real case, there is an obvious topological invariant: the sign of the
multiplier (see §19.8.1).

Let JR(f) := IrD(α) = J (f)∩R be the “real Julia set”. Since JR(f) ⊂ J (f),
the dynamics on JR(f) is expanding.

Exercise 25.68. For a real hyperbolic quadratic map fc, c ∈ [−2, 1/4], the real
Julia set JR(f) ⊂ I is nowhere dense, and in fact, uniformly porous in all scales.
Thus, ω(x) = α for an open dense set of x ∈ I of full measure.

Let us now consider the superattracting case:

Exercise 25.69. Let fc be a superattracting real polynomial, so fp(0) = 0.
Then:

(i) the Hubbard tree Tf is the interval [v, v1] containing all the points

0k, k = 0, 1, . . . , p− 1.

(ii) The dynamics on J (f)∩Tf = JR(f)∩Tf is conjugate to a Topological Markov
Chain.

(iii) In the prime case, this Markov chain is primitive for p > 2 and a singleton for
p = 2 (rotational case).

In fact, the last statement is valid for general hyperbolic maps:

Exercise 25.70. Let f be a hyperbolic real quadratic polynomial. Then the
dynamics on JR(f) ∩ Tf is conjugate to a topological Markov chain (with the same
specifications as in the previous section).

Exercise 25.71. (i) For real hyperbolic maps, describe nest of little Hubbard
trees (25.5) in terms of the kneading theory;

(ii) Describe the corresponding real Julia set.

Note finally that in the real hyperbolic case, the attracting-superattracting
surgery can be done in the R-symmetric way (beginning with an R-symmetric
qc homeomorphism h0 (25.6)). Then the superattracting quasiregular map F is
R-symmetric as well, making the real Julia sets JR(f) and JR(f◦) (from Propo-
sition 25.66) topologically equivalent. In particular, this remark reduces Exer-
cise 25.70 to 25.69.

26. Parabolic maps

Parabolic maps are quite similar to hyperbolic ones, and can be well controlled.
The reason is that the place where the map loses hyperbolicity is precisely localized:
it is the parabolic cycle itself. In this section, we will summarize basic property of
parabolic maps emphasizing differences with hyperbolic ones, while leaving various
details to the reader.

Let us start with the simplest and most important example:
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Figure 26.1. Domain P .

26.1. Cauliflower. Recall that this is the name for the quadratic polynomial
f ≡ f1/4 : z 7→ z2 + 1/4 (and its Julia set depicted on Figure 20.3) corresponding
to the cusp c = 1/4 of the Mandelbrot set (see §33.3 below). This is the only
quadratic map that has a parabolic fixed point (at 1/2) where two fixed points, α
and β, merge. We will use both notations for this fixed point. (Informally, when
it is viewed from inside of the cauliflower, it is α, while viewed from outside, it
becomes β.)

26.1.1. Jordan property.

Theorem 26.1. The cauliflower Julia set J ≡ J1/4 is a Jordan curve.

It happens that 1/4 is a real parameter, so the cauliflower map is R-symmetric,
which helps to analyze its dynamics. In particular, it follows from the dynamical
description on R (Exercise 20.14) that J ∩ R = {±α}. Taking one more preimage,
we obtain: J ∩ iR = ±i

√
3/2, where the latter are two preimages of −α.

Exercise 26.2. There exists an (open) R-symmetric smooth rectangle P as
depicted on Figure 26.1 whose boundary intersects J at three points, α and ±i

√
3/2

and which is invariant under the inverse branch of f−1 fixing α.

Lemma 26.3. We have:
⋂
f−n(P ) = {α}, where f−n are the iterates of the

inverse branch from Exercise 26.2.

Proof. The family of inverse branches f−n is normal on P . Since f−nx→ α
for x ∈ P ∩R, f−nz → α for all z ∈ P , locally uniformly on P . Since f(P r{α}) ⊂
P , f−nz → α locally uniformly in a neighborhood of P r {α}. The convergence
is also locally uniform on P near α, since a relative neighborhood of α in P is
contained in a uniformly repelling petal. Hence f−nz → α uniformly on P , and the
conclusion follows. �
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Corollary 26.4. The cauliflower is weakly locally connected at α.

Proof. It follows from Exercise 9.16 that J ∩ P is connected. Hence so are
all J ∩ Pn where Pn := f−n(P ) (with the above inverse branches). Note Pn can
be included into an open Jordan disk Qn ∋ α such that Qn ∩ J = Pn ∩ J and
diamQn → 0 (just “thicken” Pn slightly near α), which implies the desired. �

Proposition 26.5. The cauliflower J is locally connected.

Proof. It is enough to prove that J is weakly locally connected at any point.
Since it is true at α, it is also true at all iterated preimages of α. For any other point
z ∈ J , there is a sequence nk → ∞ such that fnkz → ζ 6= α. Let us consider the
exterior dyadic grid ∆n

ī
in CrD from §23.6.2 and transfer it by the Böttcher map

to CrK. Call the corresponding exterior dyadic tiles Qn
ī
. Lemma 26.3 implies that

there is a tyle Q ≡ Q
n

ī ∋ ζ disjoint from α. Then all the inverse branches f−ni are
well defined in a neighborhood of Q. By the Shrinking Lemma, diam f−nk(Q)→ 0
so the exterior dyadic tiles around z shrink. It follows that the inverse Böttcher
function B−1 : CrD→ CrK extedns continuously to the Julia set J , and we are
done. �

Now, by Proposition 24.16, all cut-points of the cauliflower J belong to Sk◦ =⋃
f−n(−β, β). But this interval is contained in the Fatou set, so there are no cut

points at all. As a hull without cut-points must be a Jordan disk, this completes
the proof of Theorem 26.1.

Note, however, that cauliflower is not a quasidisk as it contains a petal at
α with the cusp. This geometrically distinguishes the cauliflower from hyperbolic
maps fc with an attracting fixed point (i.e., for c inside the main cardioid, see §33.3
below).

26.1.2. Dyadic dynamics on the Julia set. Proposition 26.5, together with The-
orem 23.25 and the Conformal Schönflies Theorem, imply that the Böttcher func-
tion extends to a homeomorphism B : J → T conjugating f ≡ f1/4 to the doubling
map T : T→ T. This produces a dyadic coding of J , which can be also described
directly as follows.

Let us consider the fixed and co-fixed points for f , β = 1/2 and β′ = −1/2.
They partiton the Jordan curve J into the upper and the lower arcs I0 and I1.
Each of these arcs is almost homeomorohically mapped onto the whole curve J
(i.e., its interior is mapped homeomorphically onto the punctured curve J r {β}).
Thus, they form a Bernoulli partition of J that leads to a coding h : J → T semi-
conjugating f to T (compare §19.13.2). Moreover, the proof of Proposition 26.5 (or
continuity of B−1 : T → J ) shows that the corresponding dyadic intervsls shrink,
implying that h is a homeomorphism (obviously, coinciding with the extension
of B).

We let β0 ≡ β, β1 ≡ β′, and for n ≥ 2, we let βni1...in−1
, ik ∈ {0, 1}, be the

fn-preimages of β dynamically labeled according to the partition of J into the
upper and lower arcs, J0 = J ∩H+, J1 = J ∩H−. These points correspond to the
dyadic points m/2n of order n on T (m is odd), so we will refer to them as dyadic
points of order n on J (where β and β′ are the dyadic points of order 0 and 1,
respectively).

Exercise 26.6. In the above discussion, the dynamical coding βni1...in−1
corre-

sponds to the binary expansion [i1 . . . in−1 1] of m/2n.
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Let us summarize the above discussion:

Proposition 26.7. The cauliflower dynamics on the Julia set, f : J → J , is
topologically conjugate to the doubling map T : T→ T.

Corollary 26.8. The cauliflower dynamics on the Julia set is expansive.

26.1.3. Cauliflower checkerboard. Let us now descrie a dynamical checkerboard
tesselation of the cauliflower that helps to visualize its dynamics. Let us tessellate
the interior of the filled Julia set, K◦ ≡ intK1/4 into two symmetric tiles,

T 0
0 := K◦ ∩H+ and T 0

1 := K◦ ∩H−

cut off by the invariant horizontal interval γ0 := [β′, β] = K ∩ R. They form an
unbranched Bernoulli tiling of K◦ (see §19.11.3): each intT 0

i is univalently mapped
by f onto

K◦ r [v, β) ⊃ intT 0
0 ∪ intT 0

1 , where v = 1/4, β = 1/2.

Taking the dynamical pullbacks of this tiling, we obtian a nest of tilings T n of
K◦ by dynamical dyadic tiles Tni0...in−1

, ik ∈ {0, 1}. The limit T ∞ of these tilings
form a tesselation of K◦ by tiles T∞

ī
, where ī ∈ Σ2 ends with 0̄ := (000 . . . ) or

1̄ := (111 . . . ) (see Figure 23.5 and Exercise 26.10 below).

It is instructive to look closer at several first steps of this process. For in-
stance, the tesselation T 1 is obtained by cutting K◦ into four symmetric tiles by
the horizontal and vertical intervals, γ0 and γ1 := K◦ ∩ iR. The full preimage
Γ2 := f−1(γ1) comprises two proper arcs γ2i ⊂ T 0

i in K◦, i ∈ {0, 1}, crossing γ1

at precritical points c1i , respectively. The arc γ2i lands at the consecutive dyadic
points β3

ij ∈ J , j ∈ {0, 1}, of order 3. By cutting the previous four tiles by these
arcs, we obtain eight tiles of the tessellation T 2.

In general, let Γn = f−n(γ0). It is a finite lamination in K◦ comprising 2n−1

proper arcs γni1...in−1
, ik ∈ {0, 1}, landing at pairs of consecutive dyadic points on

J of order n + 1. Altogether, they form a 4-valent tree Γ that tessellates K◦ into
limiting checkerboard tiles T∞

ī
.7

Two most prominent tiles of this tessellation, T0̄ ≡ T00... and T1̄ ≡ T11...,
attached to the real interval [0, β], are f -invariant. Color them black and white.
All others are univalent pullbacks of these: they inherit the corresponding coloring
from their parents, turning the tessellation into a checkerboard.

Exercise 26.9. Justify inductively the above description, labeling the objects
dyadically so that:

(i) For n ≥ 2, the arc γni1...in−1
, ik ∈ {0, 1}, of the lamination Γn lands at the pair

of two consecutive dyadic points βn+1
i1...in−1in

∈ J of order n+ 1, in ∈ {0, 1}.
(ii) γni1...in−1

, n ≥ 2, contains two precritical points of order n, which can be labeled
cni1...in−1in

, in ∈ {0, 1}.
(iii) γn+1

i1...in−1in
crosses γni1...in−1

at the precritcal point cni1...in−1in
, and it does not

cross any other arcs of level ≤ n + 1. Thus, each arc γni1...in−1
of order n ≥ 1

intersects only three arcs of the tree Γ.

7In what follows, “γni1...in−1
for n = 1” will mean “γ1”.
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Exercise 26.10. (i) The invariant tile T∞0̄ has vertices β, c0 ≡ 0, c10, c
2
0, . . .

(countered clockwise). Its closure intersects the Julia set J at a single point, β.
Similarly, for the invariant tile T∞1̄ .

(ii) Two tiles, T∞i1...in−110̄
and Ti1...in−101̄ are attached to the dyadic point βni1...in−1

in J .

(iii) List the edges of any tile as above.

There is a quick recepie for labeling our tree Γ. Let us call 0 the root of Γ and
orient Γ from the root towards the Julia set. Let e10 ⊂ γ10 be the edge of Γ that
starts at the root and gows up, while e11 ⊂ γ11 be the edge that goes down. They
end at the vertices c10 and c11 respectively. If we turn right from a vertex c1i we label
the corresponding edge as e2i0, while we label it e2i1 if we turn left. Then the edge
e2ij ends at the vertex c2ij . By turning left or right at these vertices, we obtain edges
e3ijk ending at the vertices c3ijk. And so on. In this way we will label all the compact
edges8 of Γ as eni1...in , and will recover the labeling of all the vertices cni1...in .

It us instructive to look at the above picture in another coordinate system:

Exercise 26.11. (i) Show that the cauliflower map is conformally conjugate
to the map z 7→ z + 1/z + 1.

(ii) Depict the cauliflower tessellation in this coordinate.

26.2. Parabolic Blaschke model for the return map. Let now f ≡ fc
be a parabolic quadratic polynomial, let α = (αk ≡ fkα)p−1k=0 be its parabolic cycle
with rotation number θ = p/q and multiplier ρ = e(θ), and let D ≡ D0 be the
component of the immediate basin D(α) containing 0 (see Theorem 21.25). We
can label points αk so that α ∈ ∂D. Note that the Leau-Fatou flower attached to
α comprises q petals (see Corollary 21.26) and the period of D is equal to pq.

26.2.1. Parabolic Blaschke model. In the parabolic case, it is more convenient
to uniformize the basin D ≡ D(α) by the upper half-plane model sending α to ∞.
Let

φ : (D, 0, α)→ (H+, i,∞)

be such an uniformization, and let

g = φ ◦ fpq ◦ φ−1 : H+ → H+

be the corresponding model for the first return map to D. Exercise 3.3 implies:

Exercise 26.12. The uniformization φ can be normalized so that

(26.1) g(z) = z − 1

z
.

We will refer to the map g as the parabolic Blaschke map. It is an example of
a parabolic rational map (with the Julia set T).

Lemma 26.13. The parabolic Blaschke map g (26.1) has the following proper-
ties:

(i) gnz →∞ in H±;

(ii) g : T → T is topologically conjugate to the doubling map T (and hence is
expansive).

8Notices that we refrained from going straight, keeping non-compact edges unlabeled: the
reader is welcome to create his/her own labeling system for those ones.
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In case of the cauliflower map f ≡ f1/4, the parabolic basin D(α) is a Jordan
domain on which f is conformally conjugate to the parabolic Blaschke map g, while
the basin of infinity D(∞) = Ĉ rD(α) is a Jordan disk on which f is conformally
conjugate to the square map f0 : Ĉ r D → Ĉ r D. The gluing between these two
models is fulfilled by a circle homeomorphism h : T→ T conjugating g |T to f0 |T.
Thus, we can say that f is the mating between the parabolic Blaschke map on
D and the square map on Ĉ r D by means of the homeomorphism h. However,
as the cauliflower is not a quasidisk, this mating is not quasiconformal (see also
Exercise 21.19).

26.2.2. Parabolic spine. Notice that the imaginary axis iR+ is invariant under
the parabolic Blaschke map g, contains the critical point (i), and lands at the
parabolic point (∞) and its preimage (0). The corresponding arc Γ is f -invariant
and contains the critical point 0. Moreover, it lands at the parabolic point α ∈ ∂D
and the co-parabolic point α′ ≡ −α. Indeed, let γ be the arc of Γ bounded by 0
and v. Then fn(γ)→ α by definition of the parabolic basin. So, the “positive end”
of Γ lands at α. By symmetry, the “negative end” lands at α′.

Hence the closure of Γ if a closed invariant arc containing the critical point. It
is called the parabolic spine for f :

σpar ≡ σpar
f := cl(φ−1(iR+)) = φ−1(iR+) ∪ {±α}.

Notice that for the cauliflower map f1/4, the parabolic spine coincides with

I = [−1/2, 1/2] ≡ [−β, β].

26.2.3. Blaschke maps of 2nd type. We have seen two types of degree two
Blaschke maps maps g : D → D: with an attracting fixed point inside D, and
maps g : H+ → H+ with a parabolic point on ∂H+. There are two more type of
Blaschke maps:

Problem 26.14. Show that the map

g : (Ĉ,H+)→ (Ĉ,H+), g : z 7→ z + 1− 1

z
,

is a double branched covering of H+ over itself. It has a parabolic fixed point at ∞
such that fnz →∞ without landing at ∞ for all z ∈ Ĉ except a Cantor set J ⊂ R̂.
The restriction g| J is an expanding map topologically conjugate to the Bernoulli
shift σ2. (Of course, J is the Julia set of this rational map.)

Problem 26.15. Work out a similar problem for Blaschke maps

g : (Ĉ,H+)→ (Ĉ,H+), g : z 7→ λz − 1

z
, where λ > 1,

with an attracting fixed point at ∞.

The dynamical structure of Blaschke maps can be compared with the structure
of Fuchsian groups described in §2.4.8.

26.3. Local connectivity of general parabolic Julia sets.

Exercise 26.16. There is a shrinking nest of Green puzzle pieces (Pnk )n∈N
around each parabolic point αk, k = 0, . . . , p− 1.

Theorem 26.17. The Julia set J (f) of a parabolic quadratic polynomial is
locally connected.
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Proof. Local connectivity at each parabolic point αk follows from Exercise 26.16.
The rest of the argument follows the lines of the Cauliflower case (Lemma 26.5). �

As in the hyperbolic case, we immediately conclude:

Corollary 26.18. For a parabolic map, the inverse Böttcher map

B−1 : Cr D→ CrK
extends to a continuous map T → J (denoted in the same way) semi-conjugating
the doubling map T to f | J . Moreover, B−1(e(θ)) ∈ J is the landing point of the
external ray Rθ.

Corollary 26.19. Given a parabolic map f , let Di be the components of
intK (arbitrary labeled). Then any component Di of intK is a Jordan disk, and
diamDi → 0.

As in the cauliflower case, the return map fpq : D0 → D0 admits the parabolic
Blaschke model:

Corollary 26.20. The Riemann mapping φ : D0 → D can be normalized so
that g := φ ◦ fpq ◦ φ−1 : H+ → H+ becomes the parabolic Blaschke map (26.1).

Corollary 26.21. The conformal map ψ : (D0, 0, β0) → (K1/4, 0, 1/2) conju-
gates the return map fpq| D0 to the cauliflower map f1/4| K1/4.

26.4. Bounded distortion and quasi-self-similarity.

26.4.1. Bounded distortion. The following self-similarity property allows us to
control the geometry of parabolic maps at arbitrary small scales near almost all
points:

Lemma 26.22. For any parabolic polynomial f , there exists an ε > 0 such that
for any point z ∈ J (f) whose orbit does not land in the parabolic cycle α, there
exists an infinite sequence of moments nk such that the inverse branches

f−nk : (∆k, znk
)→ (Dk, z)

are well defined in the disk ∆k := D(znk
, ε) (where zn ≡ fnz), have an absolutely

bounded distortion:
|Df−nk(ζ)|
|Df−nk(znk

)| ≍ 1 ∀ ζ ∈ ∆k,

and Dk := f−nk(∆k) are shrinking ovals of absolutely bounded shape around z.

Proof. The local picture of the Leau-Fatou flower (see Proposition 21.27) im-
plies existence of ε0 > 0 with the property that for any point z ∈ J (f) whose
orbit does not land in the parabolic cycle α, there exists an infinite sequence
of moments nk such that dist(znk

,α) ≥ ε0. Since fn(0) → α, it follows that
dist(znk

,Pf ) ≥ 2ε > 0 for some ε > 0. Hence the desired inverse branches of f−nk

are well defined in D(znk
, 2ε), and the Koebe Distortion Theorem completes the

proof. �

Lemma 26.23. (i) For any ε > 0, the first transit map through the ε-neighborhood
of the parabolic cycle α is expanding on the Julia set.

(ii) The Julia set is uniformly porous at all points in all scales.



26. PARABOLIC MAPS 375

Proof. (i) Combine the above lemma with the Shrinking Lemma.

(ii) Porousity at the parabolic points follows from the Leau-Fatou Flower pic-
ture. For any other point z ∈ J and any sufficiently small scale ε > 0, take the first
moment n such that the outer radius of ∆n := fn(D(z, ε) centered at zn is at least
ε0 or the first moment n when ∆n contains a parabolic point (whichever happens
first. If ∆n does not contain parabolic points, then the disk D(zn, ε0) (where the
Julia set is uniformly porous) can be univalently and with a bounded distortion
pulled back to z, implying the desired. If ∆n contains a parabolic point, take one
pullback of it, ∆n−1 ∋ zn−1. The Julia set is still porous at this oval while it does
not anymore contain parabolic points, so the previous argument can be applied to
it. �

26.5. Area of parabolic Julia set. Applying Lemma 26.23 and the Lebesgue
Density Points Theorem, or Theorem 22.2 and Proposition 21.27, we obtain:

Proposition 26.24. For any parabolic quadratic polynomial f , areaJ (f) = 0.

26.6. Parabolic Hubbard tree. We will now attach a Hubbard tree Tf to
any parabolic quadratic polynomial f . To this end we will turn it, by means of
a surgery, to a topological superattracting map F . This surgery is similar to the
attracting-superattracting surgery from §25.8, except that it is not quasiconformal
this time.

26.6.1. Parabolic-attracting surgery. By Proposition 26.12 and Lemma 26.13,
the return map fpq to the boundary of the immediate basin D0 is topologically
conjugate to the doubling map f0 : z 7→ z2 on the unit circle T. Let us extend this
conjugacy to a homeomorphism

(26.2) h0 : (D0, 0)→ (D, 0).

Using this homeomorphism, we can do a surgery exactly as in §25.8 turning f
to a topological double branched covering F coinciding with f on C r D0 with a
superattracting periodic point of period p at 0.

Exercise 26.25. Work out details.

We let a := (F k0)p−1k=0 be the superattracting cycle of F . Notice that DF (a) =
Df (α). Below we will refer to this basin as D.

We will see below that there is a hyperbolic quadratic polynomial f̃ which is
topologically conjugate to F (see Exercise 35.28). However, this conjugacy cannot
be quasiconformal (by Exercise 21.16(ii))). In the primitive case one can say even
more:

Exercise 26.26. If the parabolic cycle under consideration has multiplier 1,
then there are no qc homeomorphisms H : (C,J (f))→ (C,J (f̃)).

26.6.2. Parabolic Hubbard tree. With the set of centers cD in hands, we can
define legal arcs, the spine and the Hubbard tree TF for F in the usual way. We
call Tf ≡ TF the parabolic Hubbard tree.

The first properties from §25.6.1 readily extend to this case. It is noteworthy
that the root of the parabolic component D0 ∋ 0 is our parabolic periodic point
α ≡ α0. Indeed, it is the only fixed point for the return map F pq : D0 → D0
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(coinciding with fpq on the boundary ∂D0). Accordingly, the root of D1 ∋ v is
α1 ≡ f(α).

Less straightforward is the parabolic version of Lemma 26.27:

Lemma 26.27. The basin D ∩ T is dense in the model Hubbard tree T of a
parabolic map f .

Proof. Let us consider the postcritical set P ≡ Pf = orb 0 ∪ α and the
associated hyperbolic metric on CrP . As in Lemma 26.27, it induces a hyperbolic
distance on each component of T r D•. The map f expands this metric, and the
expansion is uniform away from α ⊂ D•.

For an arc L ⊂ T rD•, we let dhyp(L) stand for the hyperbolic distance (25.3)
between the endpoints of L. The above expanding property implies that if there
an arc L as above such that dhyp(L) ≥ ε > 0 then

dhyp(f(L)) ≥ λ · dhyp(L), where λ = λ(ε) > 1.

Hence dhyp(fn(L)→∞.
Moreoover , there is a subsequence of momenbts nk →∞ such that the intervals

fnk(L) stay a definite distance away from the postcritical set Pf . Indeed, in the
primitive case the boundary of the basin D• is repulsive, while in the satellite case
P ⋐ D•.

It follows that the Euclidean length of the intervals fn(L) goes to ∞ as well,
which is of course impossible. �

By definition, the parabolic Hubbard tree T is invariant under the quasiregular
superattracting map F . In fact, with a bit of extra care, it can be also made
invariant under the original parabolic map f . Recall that the initial conjugacy h0
(26.2) is the composition of the conformal isomorphism φ : (D0, σ0)→ (K1/4, I1/4)
and a homeomorphism H : K1/4 → D conjugating f1/4| J1/4 to f0|T. By selecting
the latter R-symmetric, we make the spine of F in D0 invariant under fpq, implying
the desired.

26.7. Characteristic rays and Topological Model for parabolic maps.
We can now define all the characteristic objects for a parabolic map f : the char-
acteristic rays R±ch landing at the parabolic root α1 of the immediate component
D1 ∋ v, the characteristic sector Sch ⊃ D1 bounded by these rays, and the charac-
teristic geodesic γch in D. It leads to a topological model for f on D(∞)∪J in the
same way as in the hyperbolic case:

Theorem 26.28. For a parabolic quadratic polynomial f , the characteristic
geodesic γch generates the lamination Lf that gives a model for the Julia set J of
f as a quotient of T. The dynamics on J is modeled by the corresponding quotient
of the doubling map f0 : T → T (with the inverse Böttcher map B−1 : T → J
semi-conjugating f0 to f). Accordinglty, the filled Julia set K admits the pinched
disk model corresponding to Lf .

In particular, we obtain:

Corollary 26.29. Let f be the quadratic polynomial that has a parabolic fixed
point with multiplier e(p/q). Then the Julia set J is modeled by the quotient of the
doubling map f0 : T → T by the lamination Lp/q generated by the characteristic
geodesic of the rotation set Θp/q ⊂ T. The filled Julia set K is modeled by the
corresponding pinched disk.
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26.8. Real parabolic maps. Let us now continue the discussion of real par-
abolic maps that began in §21.3.7. In this case, we define the real Julia set as the
complement to the parabolic basin, JR(f) := IrD(α). Exercise 21.29 implies that
in the primitive parabolic case, JR = J ∩ R, while in the satellite parabolic case,
JR = (J ∩ R)rOrb−(α).

Exercise 26.30. Let f : I → I be a real parabolic quadratic polynomial. Then:

(i) The dynamics on JR ∩ [v, v1] is conjugate to a Topological Markov Chain.

(ii) lengthJR = 0, so the orbits of almost all points x ∈ I converge to the parabolic
cycle.

Note in conclusion that the parabolic-attracting surgery can be done in the
R-symmetric way showing that the real parabolic Julia sets JR is topologically
equivalent to the corresponding hyperbolic one.

27. Other special classes

27.1. Critically preperiodic (Misiurewicz) maps.

27.1.1. First observations. A quadratic polynomial f is called (critically) prepe-
riodic or Misiurewicz if 0 itself is not periodic but orb 0 lands in some cycle α (i.e.,
fn(0) ∈ α for some n ∈ Z+). In this case, α is called the postcritical cycle.

The simplest and most popular example is the Chebyshev map z 7→ z2 − 2.
The next one is z 7→ z2 + i (see Figure 20.6).

Postcritically preperiodic maps are the closest relatives of hyperbolic maps, and
good part of the theory can be obtained by adapting the corresponding hyperbolic
ideas.

Exercise 27.1. For a preperiodic map:

(i) All cycles are repelling;

(ii) The filled Julia set has empty interior (and thus, J = K ∋ 0);

(iii) The Julia set has zero area.

27.1.2. Associated orbifold. In fact, any preperiodic map f is expanding with
respect to some metric that has finitely many cone singularities, so f can be viewed
as an orbifold expanding map.9

As a model, let us take one more glance at the Chebyshev map T : z 7→ 2z2−1
(affinely equivalent to f−2 : z 7→ z2 − 2). It satisfies the functional equation

T (Cos z) = Cos 2z, where Cos z := cos 2πz.

The function Cos : (C,Z)→ (C,±1) is the orbifold universal covering over the
orbifold with the underlying space C and two cone singularities of order 2 at points
±1. The Euclidean metric on C pushes down to the flat orbifold metric on C with
cone singularities at ±1 with angle π.

The map T infinitesimally expands this metric by 2 at all points except 0 and
±1 (where the differential of T can be interpreted only in the orbifold sense).

In general, to any preperiodic map f we can associate a Riemann orbifold Of
by assigning weight 2 to all post-valuable points z ∈ orb v, and weight 1 to the rest.

9We refrain from calling f an “orbifold hyperbolic map” as it can suggest that the corre-
sponding orbifold, rather than the map, is “hyperbolic”.
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Lemma 27.2. The orbifold O ≡ Of is hyperbolic for all critically preperiodic
quadratic polynomials f ≡ fc except the Chebyshev map (for which O is parabolic).
In the hyperbolic case, the multivalued inverse map f−1 lifts to a single-valued
holomorphic map G ≡ f̂−1 of the universal covering Ô ≈ D. Moreover, this lift is
non-invertible.

D ←−
G

D

π ↓ ↓ π

C −→
f

C

Proof. Let k = |Pf | be the size of the post-valuable set. Then k > 2, unless f
is Chebyshev. Hence the Euler characteristic of O is negative, χ(O) = 1− k/2 < 0,
so O is hyperbolic. Moreover, O is good by Theorem 2.93. Hence its universal
covering is isomorphic to D.

Furthermore, f−1 admits local lifts to D everywhere (Exercise 1.112). By the
Monodromy Theorem, it admits a global lift G to D. As G has critcal points (at
the fiber points over v = c), it is non-invertible. �

By the Schwarz Lemma, for any preperiodic quadratic f (except for Chebyshev)
the inverse map f̂−1 : D→ D is contracting with respect to the hyperbolic metric.
Hence ‖Df(z)‖hyp > 1 for any z ∈ Cr orb 0, where the norm is taken with respect
to the orbifold hyperbolic metric).

Exercise 27.3. Show that for any R > 0 there exists ρ > 1 such that

‖Df(z)‖hyp ≥ ρ for all z ∈ DR r orb 0.

27.1.3. J is a dendrite.

Theorem 27.4. The Julia set of a Misiurewicz map is locally connected; hence
it is a dendrite.

Proof. It follows the lines of the proof of Theorem 25.4 using the orbifold
expansivity (Exercise 27.3). Namely, show that the inverse Böttcher map B−1 :
C r D̄ → C r J is Hölder continuous in any annulus A(1, R), R > 1, from the
Euclidean metric on the domain to the orbifold metric in the target. �

Exercise 27.5. Any two points in a Misiurewicz dendrite can be separated by
a cut-line through some preimage of a postcritical periodic point.

27.1.4. Hubbard tree. The Hubbard tree T ≡ Tf for a preperiodic map f is
defined in the same way as for a superattracting one, as the legal hull of 0 ≡ orb(0)
(which is a finite subset of J ). Note that since the filled Julia has empty interior,
any two points of J can be connected by a unique arc in J , so the adjective “legal”
is actually redundant in this context. Let β be the set of branch points of T . We
mark on T the points of 0 and β.

Similarly to the superattracting case, we have:

Exercise 27.6. (i) The marked Hubbard tree (T ,0 ∪ β) is invariant under f ;
hence all branch points of T are (pre-)periodic; moreover, f : T → T is surjective.

(ii) The critical value v = c is a tip of T ; the critical point 0 is a regular point.
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As in the superattracting case (§25.6.11), we say that the Hubbard tree T for a
Misiurewicz map is prime if it does not contain a non-trivial strictly smaller subtree
T ′ ⊂ T containing 0 and invariant under some iterate fp, p > 1.

Exercise 27.7. Show that the following properties are equivalent:

(i) The Hubbard tree is prime;

(ii) The preimages of the α−fixed point are dense in T ;

(iii) The dynamics on T is topologically exact (leo).

Project 27.8. Develop a theory of little Hubbard trees leading to an analogue
of nest (25.5):

(27.1) T ≡ T 0 ⊃ I1 ⊃ T 1 · · · ⊃ In ⊃ T n,
where the return map fp : T n → T n is topologically exact (and with relarive exact-
ness for intermediate trees).

If we puncture out all the points 0k ∈ 0 and bj ∈ β from the Hubbard tree T ,
the rest will be disjoint union of topological intervals J◦s . Their closures Js form a
tiling J of T .

Problem 27.9. (i) The tiling J is Markov. In the prime case, the Markov
matrix A is primitive.

(ii) It generates a natural semi-conjugacy h : ΣA → T . This semi-conjugacy is one-
to-one over all points of T except the points of 0 ∪ b and their iterated preimages.

(iii) If T is prime then f | T is conjugate to a piecewise-linear model with constant
slope.

(iv) Translate tree structure (27.1) into a combinatorial structure of the matrix A.

27.1.5. Topological model. Since the critical value v = c is a preperiodic point
for a Misiurewicz map f , there are finitely many characteristic (or valuable) rays
Rich ≡ Rθich landing there. As in the hyperbolic case (§25.7), they generate a nice
topological model for the map:

Problem 27.10. Let f be a Misiurewicz quadratic polynomial, and let R be
the periodic rays configuration landing at the postcritical cycle. It generates a com-
pletely invariant lamination L whose pinched disk model is topologically conjugate
to f | J . This lamination is determined by any characteristic angle θi as well as by
the abstarct Hubbard tree of f .

Let us now lift any characteristic ray Rich to a cut-line Li through the critical
point. Select any of them, L ≡ Li. The corresponding geodesic γ ≡ γi ⊂ D̄ divides
the circle T into two semi-circles T± producing a coding of angles θ ∈ T by binary
sequences ε̄.

Exercise 27.11. Two angles are equivalent in the above lamination model,
θ ∼
J
θ′, iff they have the same itinerary: ε̄ = ε̄′.

Exercise 27.12. Describe the topological model for z 7→ z2 + i.
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27.1.6. Real Misiurewicz maps. Specifying the above discussion to the interval
situation, we obtain:

Exercise 27.13. Let f be a postcritically preperiodic real quadratic map. Then:

(i) The Hubbard tree T is the interval [v, v1] containing all postcritical points.

(ii) The dynamics on T is naturally semi-conjugate (in fact, “almost conjugate”) to
a Topological Markov Chain. In the prime case, the corresponding Markov matrix
A is primitive.

(iii) If T is prime then f | T is a topologically exact map conjugate to a saw-like
model with constant slope.

In the interval situation, the liittle trees of the nest (27.1) are periodic intervals.
Moreover, the return map fp : T n → T n to the deepest interval is topologically

exact. Let A :=

p−1⋃

k=0

fk(T n). It is the measure-theoretic attractor for our map:

Problem 27.14. (i) Show that for a.e. x ∈ I, there is an n ∈ N such that
fnx ∈ A.

(ii) ω(x) = A for a.e. x.

(iii) The restriction f | A is ergodic with respect to the Lebesgue measure.

A general theory of attractors for real quadratic maps will be developed in §46.

Theorem 27.15. Any real postcritically preperiodic quadratic map f : I → I is
stochastic: it has a unique acim dµ = ρ dm. Moreover, suppµ = A and the density
ρ is real analytic outside post-valuable points, i.e., on I r P. At the post-valuable
points, ρ has (1/

√·)-singularities.

Proof. The proof is modeled on the expanding circle case (Theorem 19.76).
Namely, formula (19.2) for the densities ρn of the push-forward measures implies
the following analogue of (19.11):

(27.2) ρn(y) =
∑

x∈g−ny

εn(x)

Dgn(x)
=

2n∑

i=1

δn,i(y)Dg
−n
i (y),

where the εn and δn,i are the signs of the corresponding derivatives. Moreover, all
the branches g−ni are well defined on each Markov interval Js and extend analyt-
ically to the upper and lower half-planes. By the Koebe Distortion Theorem, we
obtain oscillation bounds (19.12) on any smaller subinterval J ′s ⋐ Js, and in fact,
on the whole disk D(J ′s) based on J ′s. Together with the normalization condition,
it implies uniform bounds, and hence normality, for the ρn on Dn(J

′
s).

Thus, we can take limits for Cezaro averages to obtain densities of invariant
measures. What we need to check is that these limits are not identically vanishing
on the intervals int Js. But otherwise the corresponding limiting measure would
concentrate on the postcritical cycle α. So, we have to estimate the mass of the
ρn dm near α = (αn)

p−1
n=0:

Exercise 27.16. Show that ρn(y) ≍ 1/
√
|y − αk| near each point αk.

The conclusion follows. �
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See Theorem 46.20 for a more general criterion, supplied with a different proof.

Now, the Ergodic Theorem implies that the above acim dµ = ρ dx governs the
behavior of almost all points:

Corollary 27.17. For a Misiurewicz map f , almost all orbits are equidis-
tributed with respect the the absolutely continuous invarinat measure µ, i.e., for
a.e. x ∈ I and for any continuous test function φ ∈ C(I) we have:

1

N

N−1∑

n=0

φ(fnx)→
∫
φ(x)ρ(x) dx.

Corollary 27.18. For a Misiurewicz map f , almost points x ∈ I have a
positive Lyapunov exponent:

(27.3)
1

N

N−1∑

n=0

log |Dfnx| →
∫

log |Df(x)| ρ(x) dx > 0 as N →∞.

Proof. The (1/
√·)−asymptotics of the density ρ near singularities implies

that log |x| is intergable with respect ot µ. Hence the Ergodic Theorem is applicable
to this function: for a.e. x ∈ I, we have

1

N

N−1∑

n=0

log |fnx| →
∫

log |x| ρ(x) dx > 0 as N →∞.

Since log |Df(x)| = log |x|+ log 2 for a quadratic map f ≡ fc, the last limit trans-
lates into the existence of the Lyapunov exponent (27.3). Its positivity follows from
the expanding property for the orbifold metric (or from the Shrinking Lemma). �

The last two Corollaries motivate the name of stochastic. Indeed, typical orbits
of our maps are moving in a random fashion over the phase space (albeit governed
by a measure) and enjoy exponentilly fast instability. The Chebyshev map was our
first stochastic example. Misiurewicz maps provide us with a countable supply of
stochastic parameters ci in the quadratic family.

Project 27.19. Fill in omitted details in this section (§27.1). Develop a more
complete theory along the lines of the hyperbolic theory.

27.2. Subhyperbolic maps. A quadratic polynomial f which is neither hy-
perbolic nor parabolic is called subhyperbolic postcritically non-recurrent if its crit-
ical point is non-recurrent: 0 6∈ ω(0).

Theorem 27.20. Let f be a subhyperbolic quadratic polynomial. Then 0 ∈ J
and the critical orbit eventually lands in some hyperbolic set K ⊂ J . Moreover,
the filled Julia set K has empty interior (so K = J ), all periodic points of f are
repelling, and areaJ = 0.

Lemma 27.21. Under assumptions of Theorem 27.20, there exist an ε0 > 0
such that any pullback D ≡ D0, D−1, D−2, . . . of any disk D = D(z, ε0) hits the
critical point at most once.

Proof. Let ∆ ≡ ∆(t) ⊃ K be the subpotential domain of a small level t > 0.
It is contained in an ε-neighborhood of the filled Julia set K with ε = ε(t) → 0 as
t→ 0. Endow ∆ with the hyperbolic metric.
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Let d = d(ε) be the hyperbolic distance from 0 to orb(v). Since 0 is non-
recurrent, d > 0.

Claim 1. d(ε)→∞ as ε→ 0.

Indeed, if 0 ∈ J then 0 is ε-close to ∂∆, and the Claim follows from the blow-up
property of the hyperbolic metric near the boundary (Lemma 7.7).

Assume 0 ∈ F , and let D be the component of F containing 0. By assumption,
D is neither attracting nor parabolic. It cannot be a Siegel disk either since the
latter does not contain critical points. By Classification of periodic components
(Theorem 21.47), D is not periodic.

Hence all components fn(D), n ∈ Z+, are different from D. It follows that
any path connecting 0 to orb(v) must cross J and hence must pass ε-close to some
point of ∂∆. The conclusion follows again from Lemma 7.7.

Let us say that a disk D(z, δ) ⊂ Ω is protected if the twice bigger disk D(z, 2δ)
is still contained in Ω. For any n ∈ N and C > 0, let us consider the following
properties

Property Diamε[C, n]. For any protected disk D ⊂ Ωε and any pullback

(27.4) D ≡ D0, D−1, . . . , D−n,

all the disks D−k, k = 0, 1, . . . , n, have hyperbolic diameter in Ωε bounded by C.

Property Degε[n]. Any pullback (27.4) as above hits the critical point at most
once.

We will prove inductively the following:

Claim 2. There exist an absolute C > 0 and ε = ε(f) > 0 such that Properties
Diamε[n,C] and Degε[n] are satisfied for all n ∈ N.

We will do it in two shots:

a) First, let us show that for any C > 0 there exists an ε = ε(C, f) > 0 such
that

Diamε[C, n− 1] =⇒ Degε[n].

By Claim 1, we can select an ε > 0 so that d(ε) > 2C, so 0 stays 2C away from
orb v. On the other hand, by assumption

diamhypD−k < C for k = 0, 1, . . . n− 1.

So, if one of these disks, say D−m, contains 0, then

(27.5) D−m ∩ orb v = ∅ and D−m ∩D−k = ∅ for k = 0, . . . ,m− 1.

It follows from the latter that only one of the disks D−k can contain 0. If non of
them do, then Degε[n] is obvious. If D−(n−1) 6∋ v, then D−n 6∋ 0, and the conclusion
follows again. Finally, if D−(n−1) ∋ v then D−m ∋ fn−1−m(v) contradicting (27.5).

b) Let us now show that there exists an absolute C > 0 such that

∀ ε > 0 Degε[n] =⇒ Diamε[C, n].

For any protected disk D ≡ D(z, δ), all disks D(ζ, δ/2) centered at points ζ ∈ D
are also protected. By the assumption, any pullback of order n of any such disk
hits the critical point at most once. Hence the pullbacks of order n of the twice
smaller disk D(ζ, δ/4) have an absolutely bounded hyperbolic diameter (by some
absolute constant C0).
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Furthermore, the disk D can be covered by an absolute number N of such
disks D(ζ, δ/4). Therefore, any pullback of D of order n can be covered by at most
2N pullback disks (where 2 is the degree bound of the pullback from Assumption
Degε[n]), so its hyperbolic diameter is bounded by 2NC0. �

Corollary 27.22. Let f be a subhyperbolic postcritically non-recurrent poly-
nomial. Then for any δ > 0 there exists an ε > 0 such that any fn-pullback D−n
of any disk D(z, ε) centered at z ∈ J satisfies: diamD−n < δ.

Corollary 27.23. Let f be a subhyperbolic polynomial. Then any compact
invariant set K ⊂ J that does not contain 0 is hyperbolic.

Remark 27.24. See Lemma 45.7 for a related statement in the Puzzle context.

Proof. Let δ := dist(0,K) > 0, and then find ε from the previous Corollary.
Then for any z ∈ K and any n ∈ N, the fn-pullback ∆n(z) of the disk D(fnz, ε)
to z is univalent. By the Shrinking Lemma, diam∆n(z)→ 0 as n→∞ uniformly
in z ∈ K, implying that |Dfn(z)| → ∞ as n→∞ uniformly in z ∈ K. �

Proof of Theorem 27.20. Since our map is not hyperbolic, its Julia set is
connected, so 0 ∈ K.

The main assertion of the Theorem (that orb 0 lands in a hyperbolic set) follows
from Corollary 27.23 applied to K := cl(orb v).

Our map does not have attracting and parabolic cycles by assumption. It does
not have Cremer points either. Indeed, by Proposition 21.39, a Cremer point would
belong to ω(0), making it repelling by the first assertion.

For a similar reason, there are no Siegel disks. Indeed, if D is a Siegel disk then
∂D would be contained in ω(0) by Proposition 21.39, which is hyperbolic by the
first assertion. But if z ∈ D is sufficiently close to ∂D then the whole orb z stays
close to ∂D. By hyperbolicity of ∂D, it would imply that

|Dfn(z)| → ∞ as n→∞,
which cannot happen inside a Siegel disk.

We conclude that all periodic points of f are repelling, and consequently (by
Classification Theorem 21.47), f does not have periodic bounded Fatou compo-
nents.

Similarly, we can deal with wandering components using Lemma 22.1. By
that Lemma, ω(z) ⊂ ω(0) for any z ∈ D. Since ω(0) is hyperbolic, |Dfn(z)| → ∞,
provided orb z does not pass through 0. On the other hand, by (22.1), |Dfn(z)| → 0
at any point z ∈ D – contradiction.

It follows that intK = ∅, and hence 0 ∈ J .
Finally, let us show that areaJ = 0. Let

K = {z : dist(fnz, ω(0)) ≤ 1

2
dist(0, ω(0)), n = 0, 1, . . . }.

It is a compact invariant set that does not contain 0. By Corollary 27.23, it is
hyperbolic, and hence has zero area (see Exercise 25.24). It follows that the set
∞⋃

n=0

f−n(K) has zero area as well. On the other hand, by Theorem 22.2, this set

has full area in J . ⊔⊓
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27.3. Cremer maps: wild Julia sets. Cremer maps provide us with first
wild examples of non-locally-connected Julia sets:

Proposition 27.25. The Julia set J (f) of any Cremer quadratic polynomial
f is not locally connected.

Proof. Without loss of generality we can assume that the Cremer point α is
fixed. Let φ : CrD→ D(∞) be the Riemann uniformization of the basin of ∞. If
the Julia set is locally connected then φ extends continuously to a surjective map
Cr D→ D(∞) (where D(∞) = D(∞) ∪ J ).

Let X := φ−1(α) ⊂ T, and let δ > 0. By continuity of φ, any point ζ ∈ D(∞)
sufficiently near α has a φ-preimage z ∈ C r D which is δ-close to X. In turn, the
latter has an f0-preimage z−1 ∈ CrD which is (δ/2)-close to X. Let ζ−1 := φ(z−1).
Then f(ζ−1) = ζ, and by continuity of φ, ζ−1 is close to α. Thus, ζ−1 = f−1(ζ),
where f−1 is the local inverse branch of f near α.

Taking further iterated preimages of z−1, we construct a backward orbit (z−n) ⊂
C r D for f0 whose projection (ζ−n) := (φ(z−n)) to C is the orbit of ζ under the
local branch f−1. It follows that α is Lyapunov stable for f−1 | D(∞).

Let us show that it is Lyapunov stable on a full ε-neighborhood of α.10 As J
is lc, diamDk → 0, where Dk are components of intK (see Exercise 1.33). Hence
for all but finitely many Dk, we have:

Dk ∩ D(α, ε/2) 6= ∅ =⇒ Dk ⋐ D(α, ε).

For such a Dk, we have the Lyapunov stability by the Maximum Principle. Which
leaves us only finitely many “big” Dk to deal with. By shrinking ε if needed, we
can assume that all these big domain Dk contain α on the boundary. Take one of
these domain, D ≡ Dk. Assume D is (pre-)periodic; then without loss of generality
it can be assumed to be periodic. Then by Theorem 21.47 it is contained in an
attracting or parabolic basin, or is a Siegel disk. But the former two cases are
excluded by Theorem 25.2 and Lemma 26.23, while in the latter case, there are no
fixed points on ∂D (since in the lc case, the dynamics on the boundary of a Siegel
disk is conjugate to an irrational rotation). Finally, if D is wandering then it has a
“small” iterate f−n(D), and the conclusion follows again.

So, α is Lyapunov stable under f−1. Hence f−1 is locally linearizable near α,
and then so is f . Contradiction. �

Remark 27.26. For another class of a wild Julia sets, see Example 45.21.

Notes to §§25–27

Local connectivity of hyperbolic, parabolic, and postcritically finite Julia sets
was proved in the Orsay Notes. The general postcritically non-recurrent case (The-
orem 27.20) is due to Mañé [Mane] (with further refinements and simplifications
by Carleson-Jones-Yoccoz [CJY] and Shishikura & Tan Lei [ShTL]). Non-local-
connectivity of Cremer Julia sets (Prop. 27.25) was observed independently by
Douady & Sullivan (see [Bl, Theorem 10.14]) and the author (see [L1, Exam-
ple 1.9]).

10For the reader who is willing to accept at this point the complete description of the dynamics
on the Fatou set (Theorem 29.11 below), let us mention that intK = ∅ in the Cremer case, so no
further considerations are needed.
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First remarks on the area of Julia sets (for sufficiently expanding Cantor sets)
were made by Fatou [F2, p. 42]. Propositions 25.23, 26.24 and Exercise 27.1
(inspired by Fatou’s remarks) follow from [L6].

Makov partitions for hyperbolic Julia sets were constructed by Guckenheimer
and Jakobson around 1970 [Gu3, Ja2].11 It was revisited in [Ja3, PS] with the idea
of a coding tree. Coding trees became a basis for a sophisticated algebraic theory of
Iterated Monodromy Groups launched by Bartholdi, Grigorchuk, and Nekrashevich
in the 2000s (see [BGN, N]).

Hubbard trees appeared in the Orsay Notes [DH2] (announced in [D1]). See
also Poirier [Poir]. The theory of pinched disk models and geodesic laminations
for Julia sets was designed by Douady & Hubbard (see [D3]) and Thurston [Th1]
(see Notes to §32 for a more detailed description).

The attracting-superattracting surgery was introduced by Douady and Hub-
bard [DH2] as a tool for the Multiplier Theorem. The parabolic-attracting surgery
is based upon a similar idea but it cannot be performed quasiconformally. However,
it can be done by means of David surgery (or rather, inverse to it): see Haïssinsky
[Has1, Has2]. Quite a general theory of David attracting-parabolic surgery has
been recently developed in [LMMN].

The idea of mating based on qc welding (as discussed in §25.4.3) goes back
to Bers in the context of quasi-Fuchsian groups [Bers1]. It was adapted to Dy-
namics by Sullivan [S2]. A much more general and sophisticated construction was
proposed by Douady and Hubbard [D2]. Matings of two quadratic polynomi-
als were analyzed (making use of the Thurston Realization Theorem) by Tan Lei
[TL2].

Bullet and Penrose discovered in the 1990s that algebraic correspondences can
lead to matings between polynomials and Kleinian groups [BP, BL]. Recently,
it was discovered that such kind of matings are produced in abundance by the
dynamics of the Schwarz reflections in quadrature domains [LLMM1, LLMM2].
Moreover, they are often related to the David surgery [LMMN]. A simplest ex-
ample of such a mating, produced by the Schwarz reflection in the deltoid, leads
to the mating of z2 with the modular group. It can also be described as the David
welding by means of the Minkowski ? function from Exercise 19.106.

Stochasticity of postcritically preperiodic maps (Theorem 27.15) was proved by
Ruelle [R]. The proof given here, implying analyticity of the density, is due to
Ognev [O]. It was generalized to critically non-recurrent maps by Misiurewicz: see
Theorem 46.20 and the associated Notes.

28. Quadratic-like maps and renormalization: first glance

28.1. The concept.

28.1.1. Definition. The notion of a quadratic-like map is a fruitful generaliza-
tion of the notion of a quadratic polynomial.

Definition 28.1. A quadratic-like map f : U → U ′ (abbreviated as “ql map”)
is a holomorphic double branched covering between two conformal disks U and U ′

in C such that U ⋐ U ′.

By the Riemann-Hurwitz Theorem, any quadratic-like map has a single critical
point, which is of course non-degenerate. We normalize f so that the critical point

11Recall that Markov partitions actually exist for general expanding maps [Krz].
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sits at 0 (unless otherwise is explicitly stated). Note that any quadratic polynomial
f = fc restricts to a quadratic-like map f : f−1(DR)→ DR whose range is a round
disk of radius R > |f(0)|. More canonically, for any r > |Bf (0)| (where Bf is the
Böttcher function for f), the restriction of f to the subpotential domain Σf (r) (see
§23.5.4) provides us with a quadratic-like map f : Σf (r)→ Σf (r

2).

From now on (unless otherwise is explicitly stated) we will make the following

Technical Conventions: For any quadratic-like map f : U → U ′, we assume that
the domains U and U ′ are 0-symmetric12 and that f is even , i.e, f(z) = f(−z) for
all z ∈ U . Moreover, we assume that both domains are quasidisks.

Note that the last assumption can be secured by the following elementary ad-
justment of f :

Exercise 28.2. Take any 0-symmetric topological disk V ′ ∋ f(0) such that
U ⊂ V ′ ⊂ U ′, and let V = f−1(V ′). Then the map f : V → V ′ is quadratic-like.
(Of course, V ′ can be chosen so that its boundary is real analytic.)

More generally, we say that f is an adjustment of f̃ if there is a sequence of ql
maps f = f0, f1, . . . fn = f̃ such that each fk+1 is an elementary adjustment of fk
or the other way around.

Sometimes we will refer to a ql map satisfying the above Technical Conventions
as conventional. Such a map f extends continuously to U , so we can assume this
without loss of generality.

The annulus A = U
′
rU is called the fundamental annulus of f . (We will refer

in the same way to the corresponding open and semi-open annuli as well.)
A degenerate quadratic-like map f is a holomorphic double branched covering

between two conformal disks U and U ′ in C such that U ⊂ U ′, but U is not
compactly contained in U ′. So, we do not have a “space” in between U and U ′ and
the fundamental annulus degenerates. In this case, the domain of f may not be
adjusted so that it becomes a nice Jordan disk.

28.1.2. Space of ql maps. Let Q′ stand for the space of ql maps f : (U, 0) →
(U ′, v), perhaps degenerate, endowed with the Carathéodory topology (with the
critical point 0 marked). In this topology, a sequence of maps fn : (Un, 0) →
(U ′n, vn) converges to a ql map f : (U, 0) → (U ′, v) if the pointed domains (Un, 0)
Carathéodory converge to (U, 0) and fn → f uniformly on compact subsets of U
(see §7.7).

We let Q be the subspace of Q′ consisting of genuine ql maps.

Exercise 28.3. If a sequence of maps fn ∈ Q′ converges to a genuine ql map
f ∈ Q then the maps fn are eventually genuine ql. Moreover,

limmodAn = modA,

where the An and A are the corresponding fundamental annuli.

12Of course, if f is even then U is automatically 0-symmetric.
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28.1.3. Julia set. The notion of quadratic-like map does not fit to the canonical
dynamical framework, where the phase space is assumed to be invariant under the
dynamics. In the quadratic- like case, some orbits escape through the fundamental
annulus (i.e., fnz ∈ A for some n ∈ N), and we cannot iterate them any further.
However, there are still a plenty of non-escaping points, which form a dynamically
significant object. The set of all non-escaping points is called the filled Julia set of
f and is denoted in the same way as for polynomials:

K(f) = {z : fnz ∈ U, n = 0, 1, . . . .}
By definition, the Julia set of f is the boundary of the filled Julia set: J (f) =
∂K(f). Dynamical features of quadratic-like maps are very similar to those of
quadratic maps (in §40.2 we will see a good reason for it):

Exercise 28.4. Check that all dynamical properties of quadratic polynomials
established in in §§20–21 are still valid for quadratic-like maps. In particular,

(i) The filled Julia set K(f) is a completely invariant full compact subset of U .

(ii) Basic dichotomy: J (f) and K(f) are either connected or Cantor; the former
holds if and only if the critical point is non-escaping: 0 ∈ K(f).
(iii) Any periodic component of intK(f) is either in the immediate basin of an
attracting/parabolic cycle, or is a Siegel disk.

(iv) fn has 2n fixed points counted with multiplicity. In particular, f has two fixed
points counted with multiplicity, and one cycle of period two (which can merge with
one of the fixed points).

(v) f can have at most one attracting or parabolic cycle.

(vi) adjustments from Exercise 28.2 do not change the filled Julia set.

For a degenerate ql map f : U → U ′, we can still define the filled Julia set
Kmax(f) as the set of non-escaping points but this set may be non-compact. More-
over, there could be better candidates for this role, e.g., there could exist a com-
pletely invariant hull K ⋐ U (non necessarily equal to Kmax). In fact, existence of
such a hull gives an intrinsic criterion for non-degeneracy (see Lemma 41.3 below).

Let us mention several important properties which are still valid in the degen-
erate case:

Exercise 28.5. Let a f : U → U ′ be a ql map, perhaps degenerate.

(i) If f has an attracting cycle α, then f acts properly on the basin D(α) and the
latter contains the critical point 0. Thus, f may have at most one attracting cycle.

(ii) If Q ⋐ U is an invariant compact set which is disjoint from ω(0), then f is
expanding on Q.

(iii) fn has 2n fixed points counted with multiplicity.

28.1.4. External rays and fixed points. Let us define a vertical arc for a quadratic-
like map f : U → U ′, as a proper arc in the annulus U ′rK going from the inner to
the outer end, i.e., an arc R : (0, 1]→ U

′
rK such that R(t) ∈ U rK for t ∈ (0, 1),

R(1) ∈ ∂U ′, and R(t)→ J as t→ 0. (Compare §6.3.1.)
A vertical arc R is called periodic with period p if fp(R ∩ Un) = R, where

Un := f−n(U). Similarly to Theorem 24.3, we have:

Exercise 28.6. Any periodic vertical arc R of period p lands at some periodic
point β ∈ J (of periodic dividing p). This point is either repelling or parabolic.
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In particular, any invariant vertical arc R lands at some fixed point β ∈ J .

Exercise 28.7. The β-fixed point captured in this way is independent of the
arc R.

More generally, us consider a foliation F0 by vertical arcs of the fundamental
annulus A = U

′
r U , and pull it back under the dynamics. We obtain vertical

foliations Fn := (fn)∗(F0) in the annuli An := f−n(A) that concatenate into a
single vertical foliation F in U

′
r K. The leaves of F play a role of external rays

for a ql map in question, and we will often refer to them as such (they depend on
the choice of the initial foliation F0, but the results are usually robust with respect
to this choice.)

Exercise 28.8. Prove the analogue of Theorem 24.5 for ql maps.

In particular, we conclude that, like in the polynomial case, the second fixed
point, called α, is either non-repelling, or dividing.

Remark 28.9. In §40.2 we will prove a Straightening Theorem that will reduce
the whole theory of Topological Dynamics for ql maps (as partly outlined above)
to that for polynomials.

28.1.5. Real ql maps. Let us consider a quadratic-like map f : U → U ′ with
real symmetric domains U and U ′. Since these domains are simply connected, their
real slices

UR := U ∩ R and U ′R := U ′ ∩ R

are open intervals; moreover, UR ⋐ U ′R. If additionally, the map f is real, i.e.
f(UR) ⊂ U ′R, then it is naturally called a real-symmetric (or just real) quadratic-
like map. Note also that according to our Conventions, f extends continuously to
∂U , in particular to ∂UR, and we have f(∂UR) ⊂ ∂U ′R.

For a real-symmetric quadratic-like map f , we let KR ≡ KR(f) := K(f)∩R be
the real slice of its filled Julia set. We also call it I ≡ I(f).

Exercise 28.10. For a real-symmetric quadratic-like map f : U → U ′ with
connected Julia set K(f), the real slice I ≡ KR(f) is a closed interval compactly
contained in UR. Moreover, the restriction f : I → I is a proper unimodal map
(see §20.4.3), and its boundary fixed point β ∈ ∂I is either repelling or parabolic
with positive multiplier: f ′(β) ≥ 1. If f ′(β) > 1, then there exists a second fixed
point α ∈ int I. If it is non-attracting then it has a negative multiplier.

Following our conventions, we let QR be the space of real ql maps.

The above notions naturally extend to the case of degenerate ql maps. As in
the non-degenerate case, we have:

Exercise 28.11. Let f : U → U ′ be a real ql map, perhaps degenerate, that has
an attracting cycle α. Then α ⊂ R.

Naturally, Q′R will stand for the real slice of the space of perhaps degenerate ql
maps.
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28.2. Uniqueness of a non-repelling cycle. We will now give the first
illustration of how useful the notion of a quadratic-like map is. It exploits the
flexibility of this class of maps: small perturbations of a quadratic-like map are still
quadratic-like (on a slightly adjusted domain):

Exercise 28.12 (compare Exercise 28.2). Let f : U → U ′ be a quadratic-
like map with the fundamental annulus A. Take a 0-symmetric smooth Jordan
curve γ′ ⊂ A generating H1(A), and let V ′ be the domain bounded by γ′. Assume
f(0) ∈ V ′. Let φ be a bounded holomorphic function on U , and let g = f + φ,
V = g−1V ′. If ‖φ‖∞ is sufficiently small then g : V → V ′ is a quadratic-like map.

Theorem 28.13. Any quadratic-like map (in particular, any quadratic polynomial)
can have at most one non-repelling cycle.

Proof. Assume that a quadratic-like map f : U → U ′ has two non-repelling
cycles α = (αk)

p−1
k=0 and β = (βk)

q−1
k=0. Let µ and ν be their multipliers. Take two

numbers a and b to be specified below.
Using the Interpolation formulas, find a polynomial φ (of degree 2p + 2q −

1) vanishing at points αk and βk, such that φ′(α0) = a, φ′(β0) = b, while the
derivatives of φ at all other points αk and βk (k > 0) vanish.

Let fε = f + εφ, where ε > 0. Then α and β are periodic cycles for fε with
multipliers

λε = λ+ aε
∏

k>0

f ′(αk) and µε = µ+ bε
∏

k>0

f ′(βk)

respectively. Since |λ| ≤ 1 and |µ| ≤ 1, parameters a and b can be obviously
selected in such a way that |λε| < 1 and |µε| < 1 for all sufficiently small ε > 0.
Thus, the cycles α and β become attracting for fε. But for a sufficiently small ε,
the map fε is quadratic-like on a slightly adjusted domain containing both cycles
(see Exercise 28.12). As such, it is allowed to have at most one attracting cycle
(Exercise 28.4 (v)) – contradiction. �

This result together with Exercise 28.4 (iii) immediately yields:

Corollary 28.14. Any quadratic-like map (in particular, any quadratic polynomial)
can have at most one cycle of components of intK(f).

28.3. Polynomial-like maps. A polynomial-like map of degree d is a holo-
morphic branched covering f : U → U ′ of degree d between two nested conformal
discs U ⋐ U ′ ⊂ C. The basic theory of quadratic-like maps developed above extends
to the higher degree case in the straightforward way (with the same differences as
in the case of polynomials: e.g., the Basic Dichotomy is not valid any more).

Exercise 28.15. Develop a basic theory of polynomial-like maps.

As in the polynomial case, the primary reason why we need higher degree
polynomial-like maps in this book is because they appear as iterates of quadratic-
like maps:

Exercise 28.16. Let f : U ′ → U be a quadratic-like map such that fn(0) ∈ U
for some n ∈ Z+. Let Un := f−n(U). Then the map fn : Un → U is a polynomial-
like map of degree 2n. In particular, if K(f) is connected then the iterates
fn : Un → U are polynomial-like for all n ∈ Z+.
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28.4. Quadratic-like renormalization.

28.4.1. Definition. The primary motivation for introducing quadratic-like maps
comes from the idea of renormalization, which is a central idea in contemporary
theory of dynamical systems.

A quadratic-like map f : U → U ′ is called (ql) renormalizable with period p if

(R1) There is a topological disk V ∋ 0 such that all the domains

f i(V ), i = 0, 1, . . . , p− 1,

are contained in U , and the map g := (fp : V → fp(V )) is quadratic-like;

(R2) The filled Julia set K(g) (or, equivalently the Julia set J (g)) is connected;

(R3) Non-Cutting Assumption is satisfied: the images

Ki := f i(K(g)), i = 1, . . . , p− 1,

can touch K0 := K(g) only at the β-fixed point of the latter.

The sets Ki, i = 0, 1, . . . , p− 1, are called the little filled Julia sets (while their
boundaries Ji are naturally called little Julia sets). If they are actually disjoint,
then the renormalization is called primitive. Otherwise it is called satellite. See
Figure 28.1 and Figure 28.2.

The quadratic-like map g : V → V ′ is called a pre-renormalization of f . The
renormalization Rpf will be defined later on the level of “quadratic-like germs” by
allowing to adjust and to rescale the domains of g (see §40.5.2). We will often refer
to g itself as “a renormalization of f ”, g = Rpf , unless a careful distinction between
ql maps and germs is needed. Hopefully it will not lead to a confusion (though there
are many choices of a pre-renormalization g with a given renormalization period p).

A quadratic polynomial f = fc is called renormalizable if it restricts to a renor-
malizable quadratic-like map. It is equivalent to saying that there is a quadratic-like
map g = (fp : V → V ′) with properties (R1)–(R3) listed above.

28.4.2. Julia bouquets. Let us consider the union of all little Julia sets:

K :=

p−1⋃

i=0

Ki = orbK, where K ≡ K(g), Ki := f i(K).

Exercise 28.17. Let β ∈ K be the β-fixed point of g, and let s = p/q be its
period. Then K consists of s connected components

Bm =

q−1⋃

i=0

Km+is, m = 0, . . . , s− 1,

where for each m, the little Julia sets Km+is form a bouquet rooted at their common
fixed point βm := fm(β).

28.4.3. Douady-Hubbard (DH) renormalization. Assume that f has a repelling
periodic cut-cycle α. In §24.5 we discussed the associated ray portrait R ≡ R(α)
and showed that it produces a double branched covering fp : Πch → Sch from the
characteristic strip Πch to the characteristic sector Sch ∋ v ≡ f(0) (where p is the
period of the rays in R(α)). We will now proceed to show that under some extra
assumptions this makes f renormalizable. We will freely use notions and notation
from §24.5.
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Figure 28.1. Domain for a degenerate primitive renormalization
of period 4.

Select your favorite equipotential level t > 0, and let t′ = 2pt. Let W be the
strip Πch truncated by the equipotential Et, and let W ′ be the sector Sch truncated
by the equipotential Et′ . We obtain two nested topological disks, W ⊂ W ′, such
that fp : W → W ′ is a double branched covering. So, it is a degenerate quadratic-
like map: the only problem is that W and W ′ have a common piece of boundary
(the truncated characteristic leaf Lch = R+

ch ∪R−ch ∪ {αch}).
Exercise 28.18. Draw the degenerate renormalization picture for the rabbit,

airplane, and other favorite hyperbolic maps of yours.

To fix this problem, let us slightly thicken these domains, see Figure 28.3.
Namely, one can replace the characteristic line Lch with a nearby line Γ comprising
pieces of two nearby rays bridged by a transverse arc δ selected so that fq(δ)∩δ = ∅
(see Exercise 23.13). Let Ω′ ⊃ W ′ be the disk bounded by an arc of Γ and arc of
the equipotential Et′ . Pulling it back under fp, we obtain a domain Ω ⊃W .

Exercise 28.19. Show that Ω ⋐ Ω′, and the map fp : Ω→ Ω′ is quadratic-like.
Moreover, its filled Julia set is contained in W .

This quadratic-like map is a potential valuable renormalization of f . To bring
it to the critical point, let us consider preimages V := f−1(Ω) and V ′ := f−1(Ω′).

Lemma 28.20. Assume f(0) ∈W ∪ {αch}. Then:
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Figure 28.2. Domain for a degenerate satellite renormalization
of period 2.

(i) The map g = (fp : V → V ′) is quadratic-like;

(ii) The (filled) Julia set K(g) is contained in the central ameba Υ = f−1(Πch);

(iii) If K(g) is connected then g is a pre-renormalization of f .

Proof. The first two assertions follow from Exercise 28.19. For the last asser-
tion, we only need to check the Non-Cutting Assumption for the little Julia sets.
Two see this, notice that the strips fn(Υ), n = 0, 1, . . . , p − 1, can touch only at
points of the cycle α, which are the β-fixed points for the little Julia sets. �

We refer to g as the DH (pre-)renormalization associated to the ray portrait
R. Accordingly, the map f is called DH renormalizable.

Problem 28.21. The above renormalization is primitive if and only if q = 1.
In this case, there are exactly two rays landing at each periodic point αn ∈ α. If the
renormalization is satellite then the rays landing at any αn are cyclically permuted
under fp (with rotation number p/q).

Exercise 28.22. Assume f is DH-renormalizable with the pre-renormalization
g. Then its little Julia set K(g) is obtained by chopping off a family of disjoint
sectors rooted at the β-fixed point β(g) and all its preimages under the iterates of
g. All these sectors are univalent pullbacks (under iterates of fp) of a single sector
rooted at β(g).
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Figure 28.3. Thickening.

Applying the above discussion to the ray portrait R(β) of the root cycle of a
hyperbolic map (see §25.7.1), we obtain:

Proposition 28.23. Any hyperbolic ql map f with an attracting cycle of period
p > 1 is renormalizable with period p. Its renormalization Rpf is a hyperbolic ql
map with an attracting fixed point.

28.4.4. Parabolic case. Good part of the above discussion is still valid in the
case when the cut-cycle α is parabolic. Then the corresponding ray portrait R(α)
produces in the same way a valuable degenerate ql map fp : W → W ′ called
a degenerate renormalization of f . In the primitive case (when the immediate
parabolic basins do not touch), this map can still be thickened to a ql map (since
fp is repelling in the exterior neighborhood of W near αch), producing its DH
renormalization. However, in the satellite case, there are attracting petals in the



394 4. DYNAMICAL PLANE II: FINE STRUCTURES AND MODELS

complement of W, which makes thickening impossible. We leave to the reader filling
in details of this discussion:

Exercise 28.24. Let f be a parabolic quadratic polynomial, and let p be the
period of external rays landing at the parabolic cycle. Then f is DH renormalizable
with period p if and only if the cycle is primitive. In this case, the renormalization
Rpf is a ql map with a parabolic fixed point.

In the satellite case, we say that f is almost renormalizable or renormalizbale∗

with period p.

Exercise 28.25. Let f be DH renormalizable with respect to a cut-cycle α =
(αk)

p−1
k=0, and let K be the corresponding little Julia set. Show that α0 is the only

periodic point in K which is not a cut-point for K but a cut-point for the big Julia
set K.

28.4.5. Renormalization combinatorics: first encounter. Each DH renormal-
ization comes together with certain combinatorial data. It accounts for the renor-
malization period p and the “positions” of the little Julia sets Ki in the big one,
K ≡ K(f). The simplest way to record it at this stage is by prescribing the periodic
ray portrait Θ ≡ Θ(α) of the cut-cycle α defining the renormalization.

Later on we will introduce several other ways to record the renormalization
combinatorics, by prescribing a superattracting parameter c◦, or a Hubbard tree
T , or a little Mandelbrot copy M (see §37.11.2).

28.4.6. Immediately renormalizable maps. Let us now apply the above discus-
sion to the ray portrait R ≡ R(α) of the fixed cut-point α (assuming it is repelling
or primitively parabolic). This configuration divides the plane into q sectors Si as
described in §24.4.3. (Here we will use notation from that description.)

Let us also consider the symmetric configuration of rays, R′ ≡ R(α′) landing
at α′. These two configurations together divide the plane into the central strip Π0,
the above q− 1 sectors Si, i = 1, . . . , q− 1, and the symmetric sectors S′i ≡ S−i.

In this case, the recipe of §28.4.3, can be slightly refined. Select your favorite
height t > 0 and let t′ = 2qt. Consider the subpotential domains Σ ≡ Σ(t) and
Σ′ ≡ Σ(t′), and let

(28.1) Y := cl(Π0 ∩ Σ), Y ′ := cl(S0 ∩ Σ′)

Note that these sets are puzzle pieces in the sense of §9.1.1. Moreover, fq : Y → Y ′

is a degenerate quadratic-like map. It can be thickened to a quadratic-like map

(28.2) g = (fq : V → V ′),

with the little (filled) Julia set

(28.3) K• ≡ K(g) = {z : fnqz ∈ Y, n = 0, 1, 2, . . . }.
This Julia set is connected if and only if the critical orbit does not escape from Y :

(28.4) fnq(0) ∈ Y, n = 0, 1, . . .

In this case, the map f is called immediately renormalizable with the (pre-) renor-
malization g. Since the little Julia sets K•i := f i(K•) touch at α, the immediate
renormalization is of satellite type.

Moreover, the union of the little Julia setsK•i form the Julia bouquet centered at
α. The Hubbard tree of this renormalization type is the star with q edges cyclically
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Figure 28.4. Bouquet of little Julia sets for an immediately renor-
malizable map with rotation number 2/5. On the right is the cor-
responding Hubbard tree.

permuted with rotation number p/q, the marked points being the tips of the star
(see Figure 28.4).

This is the first renormalization possible at all:

Lemma 28.26. Assume f is renormalizable with some period p (not necessarily
the smallest one), little Julia set K ∋ 0, and associated little Julia sets Ki = f i(K),
i = 0, . . . , p− 1. Then

(i) Each little Julia set Ki is contained in the strip Π0 or one of the sectors S±j,
j = 1, . . . , q− 1. In particular, K ⊂ Π0 and K1 ⊂ Sch.

(ii) If f is immediately renormalizable then p is a multiple of q and K ⊂ K•.
(iii) If p = q then f is immediately renormalizable and K = K•.

Proof. (i) Assume some Ki is not contained in one of the sets on the list.
Then it crosses the ray portrait R ∪R′ at one of the points α, α′, so one of these
two points is a cut-point for Ki. Applying fq−i, we see that α is a cut-point for
K. But then K1 crosses K at α, contradicting the Non-Cutting Assumption (R3)
of the definition of renormalization.

(ii) If f is immediately renormalizable, then for any n ∈ N, we have fnq(0) ∈ Π0,
while fnq+i(0) ∈ Si, i = 1, . . . , q− 1. Let us show that the same inclusions hold for
the whole little Julia sets:

(28.5) fnq(K) ⊂ Π0, fnq+i(K) ⊂ Si, n ∈ N, i = 1, . . . , q− 1.

Otherwise, some little Julia set f l(K) would be contained in some sector S
′
i,

i = 1, . . . , q− 1. But by (i), f l(0) does not belong to S′i, so it must be equal to α′.
Applying f , we obtain f l+1(0) = α.

But then all further iterates fm(K), m ≥ l+ 1, contain α as well. By (i), they

are contained in Π0 ∪
q−1⋃

i=1

Si and hence cannot go back to S
′
i. This is a contradiction

with periodicity of f l(K), which proves (28.5).
It immediately implies that p is a multiple of q, and the inclusion K ⊂ K•

follows from (28.3).
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(iii) If p = q then by (i) we have:

fqn(0) = fpn(0) ∈ K ⊂ Π0, n = 0, 1, . . .

By definition (28.4), f is immediately renormalizable. By (ii), K ⊂ K•.
Let us consider the thickened quadratic-like map g := (fq : V → V ′) (28.2).

Then K• = K(g), while K is a g−completely invariant subhull of K(g). The only
such a subhull is K(g) itself. �

Exercise 28.27. The little Julia sets Ki do not contain the β-fixed point of f .

28.4.7. Canonical Julia nest. Lemma 28.26 concerning immediate renormaliza-
tion can be generalized to an arbitrary DH renormalization:

Exercise 28.28. Let R(α) be a periodic ray portrait associated with a cut-
cycle α of period r, and let q be the period of the rays in R(α). Assume f is
renormalizable with some period p > r, with a pre-renormalization g and little Julia
sets

Ki, i = 0, . . . , p− 1, where K ≡ K0 ∋ 0.

Then:

(i) Each little Julia set Ki is contained in the (closed) central ameba Υ or in one of
the strips f j(Πch), j = 0, . . . , q − 2 (in particular, K ⊂ Υ, K1 ⊂ Πch). Moreover,
p ≥ q.
(ii) If f is also DH renormalizable with respect to R(α), with the pre-renormalization
gα and the little Julia set Kα, then p is a multiple of q and

K ⊂ Kα.

(iii) If p = q then f is DH renormalizable with respect to R(α), K = Kα, and g
coincides with gα on K.

Let 1 = p0 < p1 < . . . be the full sequence of DH renormalization periods for
f (which can be finite or infinite). The ratios qn := pn/pn−1 are called relative
renormalization periods (letting q0 = 1).

If the sequence (pn) has “length” at least N (i.e., the period pN is well defined)
then f is N times DH renormalizable. In particular, if it has infinite length then f
is infinitely DH renormalizable. If it has zero length (no non-trivial periods) then
f is DH non-renormalizable.

Corollary 28.29. Let (pn) be the sequence of all DH renormalization periods
of a map f . Then:

(i) For each n, the little (filled) Julia set K [n] of period pn is canonically defined.

(ii) These sets are nested:

(28.6) K(f) ≡ K [0] ⊃ K [1] ⊃ K [2] ⊃ . . .

(iii) Each pn is a multiple of pn−1.

(iv) For n < N , the map fn := Rpnf is renormalizable with period qn+1 = pn+1/pn,
and

Rqn+1
fn = fn+1.
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We will refer to Rp1f as the first DH renormalization of f , and we will usually
reserve notation Rf for this one. Then Rpnf = Rnf is the n-fold DH renormaliza-
tion of f .

If f is infinitely renormalizable with a bounded sequence (qn) of relative periods
then we say that f is of bounded type, or f has a bounded combinatorics.

Remark 28.30. Later on, we will show that any ql renormalization is of DH
type (see Theorem 31.22), so (pn) is in fact the full sequence of renormalization
periods and the nest (28.6) is the full nest of little Julia sets.

The (full DH) renormalization combinatorics of f is the sequence (finite or infi-
nite) of the ray portraits Θ[n] that describe the combinatorics on all renormalization
levels n = 0, 1 . . . (see §28.4.5). In the finitely renormalizable case, it is actually
determined by the combinatorics Θ[N ] of the deepest level N . In the infinitely
renormalizable case, it is a new combinatorial data:

(28.7) (Θ[0],Θ[1], . . . )

Note that it is often more instructive to record the combinatorics of the relative
(rather than absolute) renormalizations: see §43.4.

28.4.8. Postcritical impression Of . Assume f is infinitely DH renormalizable
with periods pn and little filled Julia sets K [n]. Let

(28.8) K
[n]
i := f i(K [n]), i = 0, 1, . . . , pn − 1; O ≡ Of :=

∞⋂

n=0

pn−1⋃

i=0

K
[n]
i .

(Compare with the real case (30.13) below.)
For the sequence q = (qn) of relative renormalization periods, let us consider

the adding machine τq on the q-adic ring Zq = lim
←−

Z/pnZ (see §19.16.2).

Exercise 28.31. There is a continuous map π : O → Zq semi-conjugating f | O
to the adding machine τq. Each fiber of π is either a hull or a singleton. Moreover,
O is a Cantor set if and only if π is a homeomorphism.

Exercise 28.32. Assume f is infinitely renormalizable. Then:

(i) Periodic points do not belong to O;

(ii) All periodic points are repelling;

(iii) intO = ∅.

28.4.9. Area of little Julia sets. We will now show that the little Julia sets
dynamically capture the full area of the filled Julia set K:

Lemma 28.33. Assume f is renormalizable with period p and the little (filled)
Julia set K ∋ 0. Then area(K rOrbK) = 0.

Proof. Let fp : U → U ′ be a quadratic-like renormalization of f with the
Julia set K and the fundamental annulus A = U

′
r U .

Since K ≡ orbK ⊃ P, Theorem 22.2 on the Global Measure-Theoretic Attrac-
tor implies that ω(z) ⊂ K for almost all z ∈ K. Since the little Julia sets form a
cycle of period p, there is a sequence n(j) → ∞ (with gaps at most p) such that
dist(zn(j),K)→ 0 (recall that zn ≡ fnz). It follows that zn(j) ∈ U for j sufficiently
big (we can assume that this holds for all j).
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Assume first that the renormalization is primitive. Then the renormalization
domains can be selected so that A ∩ K = ∅, so dist(A,K) ≥ ε > 0. Since
dist(zn,K) < ε for n sufficiently big, we conclude that eventually zn 6∈ A.

On the other hand, zn(j) ∈ U . If zn(j) 6∈ K then fpm(zn(j)) ∈ A for some m,
and we arrive at a contradiction.

Assume now that the renormalization is satellite. We can also assume without
loss of generality that it is the first renormalization, so f is immediately renormal-
izable. Then the little Julia sets Ki form a bouquet touching K at its β-fixed point,
so the annulus A cannot be selected disjoint from K. However, if ω(z) 6∋ β then
it can be selected disjoint from ω(z), implying that eventually zn 6∈ A. This is all
needed to carry the above argument.

Assume finally that β ∈ ω(z) ⊂ P. If orb z does not land in K then there is
a sequence of moments n(j) → ∞ such that zn(j)+1 → β and zn(j) ∈ S′i, where
S′i is a lateral sector attached to β′. (Note that zn(j)+1 ∈ Si+1 where i + 1 is
taken mod the number q of rays landing at β.) Then there is a sequence m(j) ∈ N

such that zn(j)+1+m(j) belongs to the central sector S0 and stays a definite distance
away from β but within the range of its local linearizing coordinate. It follows that
there is an r > 0 independent of j such that Dr(zn(j)+1+m(j)) ⊂ S0 and this disk
can be univalently pulled back with a bounded distortion to an oval Dj ⊂ Si+1 of
bounded shape around zn(j)+1 whose size is comparable with its distance to β and
which contains a gap in J of definite size. Taking its pullback by f , we obtain an
oval D′j ⊂ S′i of bounded shape around zn(j) whose size is comparable with its
distance to β′ and which also contains a gap in J of definite size. This oval is well
separated from K ⊃ P, so by the Koebe Theorem it can be pulled back to z with
a bounded distortion. It follows that J is porous at z. By the Lebesgue Density
Points Theorem, the set of such points has zero area. �

28.4.10. Appendix: Tuned rotation cycles. Let us consider a ray configuration
R ≡ R(β) landing on a cut-cycle cycle β. In Lemma 24.17 we introduced a
degenerate ql map fp : Πch → Sch from a strip Πch onto the characteristic sector
Sch. Let Shch = (θ−, θ+) ⊂ T be the shadow of Sch at infinity (see §9.1.1). Its
preimage T−p(Sch) under the iterated doubling map is the shadow Sh(Πch) of the
strip Πch. It comprises two open intervals on T; let I0 and I1 be their closures.
Under T p each of these intervlas is mapped injectively onto the closed characteristic
shadow Shch = [θ,−θ] ⊃ I0 ∪ I1. This brings us to the situation considered in
Exercise 19.60 and Lemma 24.30. Consequently, we obtain a T p-invariant Cantor
set K ⊂ I0 ∪ I1 on which T p is monotonically semi-conjugate to T . Moreover, we
obtain:

Lemma 28.34. Under the above circumstances, for any non-zero p/q ∈ (Q/Z)∗,
there exists a unique tuned rotation cycle Θp/q(R) ⊂ Sh(Πch) for T p with rotation
number p/q. Moreover, any finite T p-invariant set Θ ⊂ Sh(Πch) on which T p

preserves the cyclic order coincides with one of these tuned rotation cycles.

We will refer to such a cycle as the tuned rotation cycle with rotation number
p/q associated with the ray configuration R.

Assume the multiplier of β is not equal to 1. Then by Exercise 28.5 the degen-
erate ql map fp : Πch → Sch has a unique fixed point αch ∈ Πch (generating a cycle
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α of period p for f).13 Assuming α is either repelling or parabolic with non-zero
rotation number, let R(α) = {Rθk}θk∈Θ, Θ ≡ Θ(α) ⊂ Πch, be the ray configuration
landing at α.

Lemma 28.35. Under the above circumstances. the set Θ(α) is the tuned rota-
tion cycle with rotation number p/q ∈ Q∗odd, where p/q is the combiantorial rotation
number of α (and the corresponding cycle α).

Proof. The map fp : R(α)→ R(α) is a cyclic order preserving permutation
of the rays. Hence the induced map T p : Θ → Θ preserves the cyclic order on
Θ. As Θ ⊂ Sh(Πch), Lemma 28.34 tells us that Θ is a tuned rotation cycle with
some rotation number p/q ∈ Q∗odd. By definition, this number is equal to the
combinatorial rotation number of α (and of the corresponding cycle α). �

Assuming that our ray portrait makes f renormalizable, we obtain the following
corollary from Lemma 9.5:

Lemma 28.36. Let g : Πch → Sch be a (degenerate) pre-renormalization of f
(assoiciated with a ray portrait R) whose α-fixed point is either repelling or parabolic
with multiplier different from 1. Then the number of accesses to α from C r K(f)
and from CrK(g) is the same (and equal to q, the denominator of the combinatorial
rotation number).

Proof. Let Af and Ag be the sets of accesses to α from C r K(f) and from
CrK(g) repectively. By Lemma 9.5, there is a natural injection i : Af → Ag.

By Lemma 28.35, Af is identified with the tuned rotation set Θp/q(R). More-
over, the map g|R = fp|R acts on the image i(Af ) as a p/q-rotation.

By thickening g to a ql map, we can apply to it the discussion of §28.1.4. It
implies (see Exercise 28.8) that the configuration Ag is cyclically permuted under g.
Hence it does not contain smaller invariant subconfigurations, so i(Af ) = Ag. �

Notes. The notion of quadratic-like (and more generally: polynomial-like)
map was introduced by Douady and Hubbard in their fundamental paper [DH3].
The application to the sharp bound on the number of finite non-repelling cycles
for polynomials (by d − 1, see Theorem 28.13) was given in [D1]. An analogous
bound (by 2d− 2) for rational maps is much harder to prove; it was established by
Shishikura [Sh3] by means of qc surgery. (See also Epstein [Ep] for an algebra-
geometric approach to this result.)

The idea of quadratic-like renormalization also appeared in [DH3] (without
using this term). It became a basis for the Complex Renormalization Theory. The
Non-Cutting Assumption was coined down by McMullen [McM1, §7.3].

29. Topological Dynamics on the Fatou set

29.1. Quasiconformal deformations.

13Note that the root βch of Sch is the other fixed point of the thickened ql map fp : Ω → Ω′,
but it is not contained in Πch.



400 4. DYNAMICAL PLANE II: FINE STRUCTURES AND MODELS

29.1.1. Pullbacks. Consider a K-quasiregular branched covering f : S → S′

between Riemann surfaces (see §14.9). Then any conformal structure µ on S′ can
be pulled back to a structure ν = f∗(µ) on S. Indeed, as quasiregular maps are
differentiable a.e. on S with non-degenerate derivative and are absolutely contin-
uous, we can let ν(z) = (Df(z)−1)∗(µ(fz)) for a.e. z ∈ S (compare with the last
paragraph of §11.2). This structure has a bounded dilatation:

‖ν‖∞ + 1

‖ν‖∞ − 1
≤ K ‖µ‖∞ + 1

‖µ‖∞ − 1
.

If f is holomorphic then in any conformal local charts near z and f(z) we have:

(f∗µ)(z) =
f ′(z)
f ′(z)

µ(fz).

An obvious (either from this formula or geometrically) but crucial remark is that
holomorphic pullbacks preserve dilatation of conformal structures. (Compare with
the discussion in §§11.1–11.2.)

29.1.2. QC surgeries and deformations. Consider now a quasiregular (quasi-
holomorphic) map f : Ĉ→ Ĉ preserving some conformal structure µ on Ĉ. By the
Measurable Riemann Mapping Theorem, there is a qc homeomorphism hµ : Ĉ→ Ĉ

such that (hµ)∗(µ) = σ. Then fµ = hµ ◦ f ◦ h−1µ is a quasiregular map preserving

the standard structure σ on Ĉ. By Weyl’s Lemma, fµ is holomorphic outside its
critical points. Since the isolated singularities are removable, fµ is holomorphic
everywhere, so that it is a rational endomorphism of the Riemann sphere. Of
course, deg fµ = deg f . Since hµ is unique up to post-composition with a Möbius
map, fµ is uniquely determined by µ up to a Möbius conjugacy.

Thus, a qc-invariant view of a rational map of the Riemann sphere is a quasireg-
ular endomorphism f : (S2, µ) → (S2, µ) of a qc sphere S2 that preserves some
conformal structure µ. This provides us with a powerful tool of holomorphic dy-
namics: the method of qc surgery. The recipe is to cook by hand a quasiregular
endomorphism of a qc sphere with desired dynamical properties. If it admits an
invariant conformal structure, then it can be realized as a rational endomorphism
of the Riemann sphere.

It may happen that f itself is a rational map preserving a non-trivial conformal
structure µ. Then fµ is called a qc deformation of f . If f is polynomial, then let us
normalize hµ so that it fixes ∞. Then f−1µ (∞) =∞ and hence the deformation fµ
is polynomial as well. If f : z 7→ z2 + c is quadratic then let us additionally make
hµ fix 0. Then 0 is a critical point of fµ, so that

(29.1) fµ(z) = t(µ)z2 + b(µ), t(µ) ∈ C∗.

Composing hµ with complex scaling z 7→ t(µ)z, we turn this quadratic polynomial
to the normal form z 7→ z2 + c(µ).

29.1.3. Holomorphic dependence. Assume now that µ = µλ depends holomor-
phically on parameter λ. By Theorem 14.6, the map hλ ≡ hµ(λ) is also holomorphic
in λ. However, the inverse map h−1λ is not necessarily holomorphic in λ.

Exercise 29.1. Give an example.

It is a miracle that despite it, the deformation fλ ≡ fµ(λ) is still holomorphic
in λ!
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Lemma 29.2. Let fλ = hλ ◦ f ◦h−1λ , where f and fλ are holomorphic functions
and hλ is a holomorphic motion (of an appropriate domain). Then fλ holomorphi-
cally depends on λ.

Proof. Taking ∂λ̄-derivative of the expression hλ ◦ f0 = fλ ◦ hλ, we obtain:

0 = ∂λ̄hλ ◦ f0 = f ′λ ◦ ∂λ̄hλ + ∂λ̄fλ ◦ hλ = ∂λ̄fλ ◦ hλ.
To complete the proof, we need to verify (in the first place) that fλ(z) belongs
to the Sobolev class W 1,1

loc in the λ-variable as z gets frozen. Indeed, the map
λ 7→ h−1λ (z) with a frozen z can be interpreted as the holonomy map from the
cross-section {z = const} to {λ = λ◦} (along the lamination corresponding to the
holomorphic motion hλ). By Lemma 17.6, this map is quasiregular. Hence the map
χz(t, λ) = ht ◦ f◦ ◦ h−1λ (z), for z and t fixed, is qr in λ as well (as a composition
of a qr and qc maps). Thus, it belongs to the Sobolev class W 1,1

loc in λ . On the
other hand, it is holomorphic in t. It follows that is restriction to the line {t = λ}
belongs to W 1,1

loc as well (which can be checked by taking smooth approximations
to χz in W 1,1

loc ). �

Corollary 29.3. Consider a quadratic map f : z 7→ z2 + c0. Let µλ be a
holomorphic family of f -invariant Beltrami differentials on C. Normalize the solu-
tion hλ : C→ C of the corresponding Beltrami equation so that the qc deformation
fλ = hλ ◦ f ◦ h−1λ assumes a form fλ : z 7→ z2 + c(λ). Then the parameter c(λ)
depends holomorphically on λ.

Proof. Consider first the solution Hλ : C → C of the Beltrami equation
that fixes 0 and 1. It conjugates f to a quadratic polynomial of form (29.1).
By Lemma 29.2, its coefficients t(λ) and b(λ) depend holomorphically on λ. The
complex rescaling Tλ : z 7→ t(λ)z reduces this polynomial to the normal form with
c(λ) = t(λ)b(λ), and we see that c(λ) depends holomorphically on λ as well. �

29.1.4. Invariant extensions of conformal structures. In applications, we usu-
ally start with an invariant conformal structure on a smaller Riemann surface and
extend it to an invariant conformal structure on an ambient one. It can be done
under very general circumstances.

Let S be a Riemann surfaces endowed with a holomorphic equivalence relation
R, and let U be an open subset of S. Let Ũ stand for the R−saturation of U
(see §29.4). For all practical purposes, the reader can think of the grand orbit
equivalence relation for a holomorphic map f , so Ũ is just the grand orbit of U .

Lemma 29.4. Any R-invariant conformal structures µ on U ∪ (Sr Ũ) admits
a unique R-invariant extension µ̃ to S. Moreover Dilµ = Dil ν.

In particular, if U is a fundamental domain for Ũ , then any conformal struc-
tures µ on U admits a unique R-invariant extension µ̃ to S, and Dilµ = Dil ν.

Proof. Since the set of critical points of R is at most countable, while the
desired conformal structure has to be only measurable, we do not need to define it
at the critical equivalence classes.

Let ζ◦ ∈ Ũ be a point in a regular equivalence class. By definition of the
saturation Ũ , it has an R-equivalent point z◦ ∈ U , hence there exists a local
section φ of R such that φ(z◦, ζ◦) = 0. Since the class of ζ◦ is regular, we can
locally express z near z◦ as ψ(ζ) with a function ψ holomorphic near ζ◦. Let
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µ̃ = ψ∗(µ) near ζ. This definition is independent of the choice of the local section
φ since µ|U is R-invariant. �

Corollary 29.5. Any R-invariant conformal structure µ on U admits a unique
R-invariant extension µ̃ to S such that µ coincides with the standard structure σ
on S r Ũ . Moreover, Dil µ̃ = Dilµ.

In particular, if U is a fundamental domain for Ũ , then any conformal structure
µ on U admits a unique R-invariant extension µ̃ to S such that µ = σ on S r Ũ ,
and Dil µ̃ = Dilµ.

We will refer to the extension given in this Corollary as canonical.

Corollary 29.6. Let X ⊂ Ĉ be a wandering measurable set for a rational
map f : Ĉ → Ĉ such that all the iterates fn|X, n ∈ N, are injective. Then any
conformal structure µ on X admits the canonical f -invariant extension µ̃ to the
whole sphere, and Dil µ̃ = Dilµ.

29.2. No Wandering Domains Theorem. The definition of a wandering
domain was given in §22.1.

Theorem 29.7. A quadratic polynomial f has no wandering domains.

The rest of the section will be devoted to the proof of this theorem. The idea is
to endow a wandering domain D with a 3-parameter family of conformal structures
µλ, λ ∈ R3, then to promote it to a family of f -invariant conformal structures on
the whole Riemann sphere Ĉ, and to consider the corresponding qc deformation fλ
of f . With some care this deformation can be made efficient, i.e., the map λ 7→ fλ
can be made injective. But this is certainly impossible since a 3D parameter domain
cannot be embedded into C.

Let us now supply the details. Since D is wandering, only one domain Dn =
fnD, n ∈ N, can contain the critical point 0. By replacing D with fn+1D, we can
eliminate this possibility.

So, assume orbD does not contain 0. Then all the maps f : Dn → Dn+1

are conformal isomorphisms (being unbranched coverings over simply connected
domains, see Exercise 20.4). Hence D is a fundamental domain for its saturation
OrbD by the grand orbit equivalence relation.

Let us now consider an arbitrary conformal structure µ0 on D (as always,
µ0 is assumed to be measurable with bounded dilatation). By Corollary 29.6, µ0

canonically extends to an invariant conformal structure µ on the whole sphere Ĉ,
and moreover Dilµ = Dilµ0.

Exercise 29.8. Work out details of this canonical extension (without making
references to general statements of §29.4).

By the Measurable Riemann Mapping Theorem, there exists a qc map hµ :

Ĉ→ Ĉ such that µ = h∗µσ. Let

fµ = hµ ◦ f ◦ h−1µ : Ĉ→ Ĉ.

By Corollary 29.3, hµ can be normalized so that fµ : z 7→ z2 + cµ is a quadratic
polynomial holomorphically depending on µ.

We will now make a special choice of a 3-parameter family µ = µλ of the
initial conformal structures on D to ensure that the qc deformation fλ is efficient.
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Namely, we let µλ = (ψλ)∗σ, where ψλ : D → D is a smooth 3-parameter family
of diffeomorphisms that extend to the ideal boundary ∂iD, and the family λ 7→ ψλ
is efficient in the quotient Aut(D)rDiff+(∂

iD).14

Exercise 29.9. Construct such a family of diffeomorphisms.

Since the real dimension of the parameter space is bigger than 2, by the Implicit
Function Theorem, there exists a one-parameter family of conformal structures µt
(within our 3-parameter family) such that ct ≡ const. Let us take a base point τ
in this family. Then ft = fτ for all t, and hence the homeomorphisms Ht = ht ◦h−1τ
commute with fτ .

Exercise 29.10. Let Ht : Ĉ → Ĉ be a one-parameter family of homeomor-
phisms commuting with a quadratic polynomial f such that fτ = id for some pa-
rameter τ . Then Ht| J(f) = id for all t.

Since ∂D ⊂ J(fτ ) (here ∂D is the ordinary boundary, not the ideal one), we
conclude that Ht|∂D = id for all t. Hence ht| ∂D = hτ | ∂D and, in particular,
ht(D) = hτ (D) =: ∆.

Note now that since (ψt)∗σ = µt|D = (ht)
∗σ, the map ht ◦ ψt : D → ∆ is

conformal. Hence the map

ψ−1t ◦ h−1t ◦ hτ ◦ ψτ : D → D

is a conformal automorphism of D. But on ∂D it coincides with ψ−1t ◦ ψτ . By the
Carathéodory Prime Ends theory, these two maps have the same extension to the
ideal boundary ∂iD, contradicting the efficiency of ψt.

The theorem is proved.

29.3. Complete picture of the dynamics on the Fatou set. Putting
together No Wandering Domains Theorem and Theorem 21.47, we obtain:

Theorem 29.11. For any point z ∈ F(f), orb z either converges to an attract-
ing or parabolic cycle, or else lands in a Siegel disk.

29.4. Appendix: Holomorphic equivalence relations. Holomorphic equiv-
alence relations provide an adequate general set-up for various situations we face.
However, we do not exploit it in a serious way, but just use it occasionally as a
convenient language.

Let S be a Riemann surface, and let R be an equivalence relation on S with
countable classes. We say that R is holomorphic if there exists a countable family
Φ of holomorphic functions φn(z, ζ) in two variables such that two points z, ζ ∈ S
are R-equivalent if and only if φn(z, ζ) = 0 for some φn ∈ Φ. The functions φn are
called local charts of R. We assume that local charts φn are primitive in the sense
that they are not powers of other holomorphic functions, φn 6= ψk for k ≥ 2. If a
local chart has a form z = h(ζ) for some holomorphic function h then it is called a
local section of R.

For instance, orbits of a discrete subgroup Γ ⊂ AutS (e.g., consider a Fuchsian
group acting on D) form a holomorphic equivalence relation. For the context of this
book, the most important type of a holomorphic equivalence relation is the grand
orbit relation generated by a holomorphic map f , e.g., by a rational endomorphism

14In other words, ψλ = φ◦ ψ̃λ ◦φ−1, where φ : D → D is the Riemann uniformization and ψ̃λ

is a family of diffeomorphisms D̄ → D̄ such that ψt|T 6=M ◦ψλ|T for any t 6= λ, M ∈ PSL#(2,R).
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of the Riemann sphere Ĉ (but we will also deal with partially defined maps). More
generally, one can consider algebraic equivalence relations generated by composing
various branches of a global algebraic function f(z, ζ) = 0.

Remark 29.12. Even more generally, one can consider relations generated by
holomorphic pseudo-groups or pseudo-semigroups.

A critical point of R is a point z◦ such that ∂zφn(z◦.ζ◦) = 0 for some local
chart φn ∈ Φ. A critical equivalence class is a class containing a critical point.
Since the local charts are primitive, the critical points of any section are isolated,
and hence altogether there are at most countably many critical points. Non-critical
points are called regular.

Any equivalence relation on S can be restricted to a subset D ⊂ S. An open
subset D is called a fundamental domain for R if the restriction R to D is trivial
(in other words, D contains at most one point of any equivalence class) while its
restriction to the closure D̄ is complete (i.e., any equivalence class crosses D̄).
Under these circumstances, the closure D̄ will also be referred to as a “(closed)
fundamental domain” for R.

The R-saturation D̃ of a set D ⊂ S is the union of all equivalence classes that
cross D.

Terms “fundamental domain for f ”, “f -saturation of D” etc. mean the cor-
responding objects for the grand orbit equivalence relation generated by f . For
instance, f -saturation of a set X is its grand orbit OrbX :=

⋃

n∈N
f−n(orbX).

Exercise 29.13. A domain D ⊂ S is a fundamental domain for a map f
restricted to the f -saturation of D if and only if D is wandering and the iterates
fn|D are injective, n ∈ N.

Exercise 29.14. Show that the saturation of an open subset by a holomorphic
equivalence relation is open.

A conformal structure on S (or a more general tensor field) is calledR-invariant
if it is invariant under all local sections near regular points.

29.5. Notes. Sullivan’s No Wandering Domains Theorem for rational func-
tions appeared in [S1]. Since then, it appeared in every basic text book on the
subject. Besides establishing this important fact, it introduced to Holomorphic
Dynamics the powerful method of quasiconformal deformations.

The method was upgraded to quasiconformal surgery by Douady and Hubbard
[D1, D2, DH2] who found numerous striking applications for it (some of which
are described in this book). It was further developed by Shishikura [Sh3], followed
by many other people. See the book by Branner and Fagella [BF] (containing
contributions by other people) with a thorough introduction to the method and its
various applications.

Our exposition of the No Wandering Domains Theorem extends without changes
to the case of higher degree polynomials. For rational functions, the proof is ex-
actly the same for simply connected components of F(f) but some extra analysis
is needed to rule out multiply-connected domains (that can be actually done by a
direct geometric argument, attributed to N. Baker, that avoids qc deformations).

The No Wandering Domains Theorem is analogous to the Ahlfors Finiteness
Theorem for Kleinian groups [Ah2]. It manifested a deep connection between the
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Iteration Theory of rational functions and the Theory of Kleinian groups, which
became known as the Sullivan Dictionary. Remarkably, Fatou anticipated this
connection. On p. 22 of [F4], he wrote: “L’analogie remarqueé entre les ensembes
de points limites des groupes kleineens et ceux qui sont constitués par les frontières
des régions de convergence des itérées d’une fonction rationnelle ne parait d’ailleurs
pas fortuite et il serait probablement possible d’en faire la syntèse dans une théorie
générale des groupes discontinus des substitutions algrébriques“.

Note that wandering domains appear in Transcendental Dynamics. The first
example of an entire function with a wandering domain was given by Baker in the
1970s [Ba2]. More examples were constructed in the early 1980s by Eremenko-
Lyubich [EL2, EL3] and Herman [He1]. In particular, [EL2, EL3] contains an
example of an oscillating wandering domain (accumulating on some finite point).
Recently, Bishop has developed a qc surgery techniques that allowed him to con-
struct new interesting oscillating examples [Bi].

As periodic components are concerned, entire functions may exhibit one more
type, Baker domains, where the orbits converge to ∞ (see [F5, Ba1, EL3]). How-
ever, they do not appear in the class of functions with bounded singular set [EL3].
(This class has recently drawn quite a bit of attention, see [Bi, Re2].)

However, there is a nice class of transcendental functions of finite type, or
Speizer class, (including λez and λ sin z) that enjoy exactly the same description of
the dynamics on the Fatou set as their polynomial counterparts [EL2, EL4] (see
also [BaR, GK]).

Note in conclusion that the field of Holomorphic Dynamics can be extended be-
yond Iteration of holomorphic maps and actions of Kleinian groups, incorporating
Holomorphic Foliations [Ve, GM, IY]15 & Laminations [Can, S6, LMin], Alge-
braic Correspondences [BP, BL, LLMM2], and Schwarz reflections in quadrature
domains [LLMM1, LLMM3]. Fatou’s dream is getting fulfilled!

30. Topological dynamics of real quadratic maps

In this section we will describe topological dynamics for a real quadratic poly-
nomial f ≡ fc, c ∈ MR ≡ [−2, 1/4], restricted to its maximal invariant interval
I ≡ Ic = [−βc, βc] (see Exercise 20.10). We will prove that f has a unique topolog-
ical attractor At that describes the ω-limit set of a generic point x ∈ I. Moreover,
At is either a limit cycle, or a solenoid (a Feigenbaum attractor), or a cycle of
transitive intervals. The geometric foundation for this description is provided by
Real a priori Bounds and No Wandering Intervals Theorem. A notion of Real
Renormalization will emerge naturally.

30.1. Classes of maps.

30.1.1. Class G and Epstein class E. Though our main theme is the quadratic
family, we will develop the theory for real, perhaps degenerate, quadratic-like maps.
The reason is essentially the same as the one that motivated introduction of ql maps
in the first place: iterates of quadratic polynomials are not quadratic any more, but
their appropriate restrictions can be quadratic-like. Passing to limits, these maps
may degenerate, leading to various classes of degenerate ql maps.

Recall from §28.1.5 that Q′R stands for the space of ql maps f : U → U ′,
perhaps degenerate, endowed with the Carathéodory convergence. We will also use

15In [GM], the method of qc deformations was applied to holomorphic foliations.
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notation G′ for this space. A map f : U → U ′ of class G′ restricts to a unimodal
map f : UR → U ′R, where UR = U ∩ R, U ′R = U ′ ∩ R are the real slices of the
corresponding domains. As f extends continuously to the closure of UR, it has a
well defined invariant interval

I ≡ I(f) := {x : fnx ∈ UR, n = 0, 1, . . . },
its “real filled Julia set”.

Let G be the space of maps f : U → U ′ of class G′ such that I ⋐ U ′R.

Exercise 30.1. Let f : U → U ′ be a map of class G′. Then:

(i) The restriction f | I is a proper unimodal map;16

(ii) f ∈ G iff I ⋐ UR;

(iii) If f ∈ G then f | I is repulsive.

Furthermore, let E′ be the subspace of G′ for which U ′ = C(U ′R) ≡ Cr(RrU ′R),
and let E stands for the similar subspace of G. These classes are called Epstein.

Note that any quadratic polynomial fc with connected Julia set restricts to a
map of Epstein class with UR being an arbitrary open 0-symmetric interval con-
taining Ic. With this remark in mind, we view all fc, , c ∈MR, as maps of Epstein
class.

30.1.2. Real modulus. For a map f : I → I of class G, we let

modR f :=
dist(∂U ′, I)
|I| ,

so for f ∈ E, we have: modR f = modR(U
′
R : I) (see §6.3.5).

For µ > 0, we let

G(µ) := {f ∈ G : modR f ≥ µ},
and similarly we define the Epstein subclass E(µ).

Exercise 30.2. (i) Any map f ∈ G(µ) is conformally equivalent to a map f̃
of Epstein class E(ν) with ν = ν(µ) > 0.

(ii) The conjugacy has a bounded distortion on I depending only on µ.

(iii) The distortion goes to 0 in small scales with the rate depending on µ only.

This remark reduces the theory of real ql maps (perhaps degenerate) to maps
of Epstein class.

30.1.3. Compactness.

Lemma 30.3. For any µ > 0, the space of unimodal maps f : I → I of class
G(µ) (or of E(µ)) is compact in the C∞-topology.

Proof. Let us represent our maps f : U → U ′ as h ◦ f0, where f0(z) = z2 and
h is a conformal diffeomorphism from V = f0(U) ⊃ [0, 1] onto U ′. Note that the
map f0 is quasisymmetric in the sense that

dist(z, I) > ε > 0 =⇒ dist(f0(z), [0, 1]) > δ(ε) > 0.

16If ∂I ⊂ ∂UR, our definitions do not require f to be real analytic in a real neighborhood of
I, but in all occurrences of such maps (as almost renormalizations of maps of class G) this will
be the case.
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It follows that mod(V r [0, 1]) ≥ ν(µ) > 0. Therefore, the family of diffeomor-
phisms h is compact in the Carathéodory topology, implying that the family of
their restrictions to [0, 1] is C∞-compact. �

30.1.4. Inverse branches. Given an R-symmetric topological disk U and an
open interval I ⊂ U , we let

U(I) := U r (Rr I)

be the corresponding slit domain (compare (2.8)).

Lemma 30.4. Let f : U → U ′ be a map of class G, and let I ⊂ U , I ′ ⊂ U ′ be
two open intervals . Assume for some n ∈ Z+, I is diffeomorphically mapped under
fn onto I ′. Then there is an R-symmetric domain V ⊂ U(I) containing I which is
conformally mapped by fn onto U ′(I ′).

Proof. First, let n = 1. Since U ′(I ′) does not contain the critical value v,
the inverse map f−1 : I ′ → I extends to the whole domain U ′(I ′). Its image is the
desired domain V .

The general case follows from the Telescoping Lemma. �

Lemma 30.5. Let f : U → U ′ be a map of class G, and let I ⊂ U , I ′ ⊂ U ′

be two open intervals, where I ∋ 0 is 0-symmetric. Assume for some n ∈ Z+, the
image f(I) is contained in an interval J which is mapped diffeomorphically under
fn−1 onto I ′. Then there is an (R, 0)-symmetric domain V ⊂ U(I) containing I
such that fn : V → U ′(I ′) is a double branched covering.

Proof. By Lemma 30.4, there is a domain W ⊂ U ′(J) which is conformally
mapped under fn−1 onto U ′(I ′). Then V := f−1(W ) is the desired domain. �

30.2. Regular dynamics. The theory that we have already developed for
real hyperbolic, parabolic and critically preperiodic quadratic polynomials can be
easily extended to class G.

30.2.1. Hyperbolic case. A map f : U → U ′ of class G is called hyperbolic if it
has an attracting cycle α. For such a map, we naturally define the real basin

DR(α) := {x ∈ UR : fnx→ α},

the real immediate basin D•R(α), and the real Julia set JR(f) := I rDR(α).

Exercise 30.6. For a hyperbolic map f ∈ G, the real immediate basin of
an attracting cycle contains the critical point 0. Hence f can have at most one
attracting cycle, and this cycle is real.

The following assertion generalizes Exercise 25.68 to class G:

Exercise 30.7. Any real hyperbolic map f ∈ G is expanding on its real Julia
set JR(f). It follows that JR(f) is nowhere dense in I, and in fact, uniformly
porous in all scales. Thus, ω(x) = α for an open set of x ∈ I of full measure.
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30.2.2. Parabolic case. A map f ∈ G is called parabolic if it has a parabolic
cycle α. Again, we naturally define the real parabolic basin

DR(α) := int{x ∈ UR : fnx→ α},
the real immediate parabolic basin D•R(α), and the real Julia set JR(f) := IrDR(α)
(see §26.8).

Exercise 30.8. For a parabolic map f ∈ G, the real immediate basin of a
parabolic cycle contains the critical point 0. Hence f can have at most one parabolic
cycle, and this cycle is real.

Exercise 30.9. For any real parabolic map f ∈ G and any ε > 0, we have:

(i) The first transit map through the ε-neighborhood of α is expanding on the real
Julia set JR(f);
(ii) JR(f) is nowhere dense in I, and in fact, uniformly porous in all scales.

(iii) ω(x) = α for an open set of x ∈ I of full measure.

30.2.3. Regular maps. So, in both hyperbolic and parabolic cases, almost all
orbits converge to a cycle. Such a dynamics (and the corresponding map f : I → I)
is called regular. Thus, we have:

Theorem 30.10. A unimodal map f : I → I of class G is regular if and only
if it is either hyperbolic or parabolic.

In conclusion, let us give a more general version of Exercises 30.7 and 30.9. Let
us say that an invariant compact set K ⊂ I is parabolic under a unimodal map
f : I → I if K does not contain the critical point but contains a parabolic cycle
of f .

Exercise 30.11. Let f : I → I be a unimodal map of class G, and let K ⊂ I
be a hyperbolic or parabolic set for f . Then lengthK = 0.

30.2.4. Misiurewicz case.

Exercise 30.12. Following the lines of §27.1.6, develop a measure-theoretic
theory of dynamics for Misiurewicz maps of class G.

The conclusion of the theory is that Misiurewicz maps of class G are stochastic.

30.3. Fixed points. Given a map f : I → I of class G, let β ≡ βg be its
boundary fixed point with multiplier ρ(β) = f ′(β). (Note that β > 0 under our
standing convention that 0 is the minimum point.) Since I is repulsive, ρ(β) ≥ 1
(compare §20.4.3).

Many elementary properties of real quadratic maps (see §20.4) extend to this
bigger class, and in particular, we have:

Lemma 30.13. (i) If ρ = 1 then int I is the real immediate basin of β.

(ii) If ρ > 1 then int I contains exactly one fixed point, α ≡ αf .
(iii) If α is attracting then int I is its real immediate basin.

(iv) If α is non-attracting then ρ(α) ≤ −1.
Moreover, I is the only invariant interval on which f is proper and repulsive.
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Proof. (i) By Exercise 28.5 (iii), f has at most two real fixed points counted
with multiplicity. If ρ = 1 then β is a multiple point, so there are no other fixed
points in I. Since f(β′) = β > β′, we conclude that f(x) > x for all x ∈ [−β, β).
Hence fnx→ β for all x ∈ I, and the conclusion follows.

(ii) In this case, f(x) < x for x ∈ int I near β. Since f(β′) > β′, there should
be a fixed point in between.

We leave the rest as an Exercise. �

We say that a map f ∈ G is Myrberg if its α-fixed point is parabolic with
multiplier −1.

30.4. Forward orbits of intervals.

30.4.1. Wandering intervals and homtervals. According to the general termi-
nology, an interval L ⊂ I is called wandering if fn(L) ∩ fm(L) = ∅ for m > n ≥ 0.
A wandering interval is viewed to be trivial if its orbit converges to a cycle. We
consider wandering intervals of all types: open, semi-open, and closed.

An interval S is called periodic of period p ∈ Z+ if fp(S) ⊂ S, while the
intervals fn(S), n = 0, 1, . . . , p− 1 have pairwise disjoint interiors. In this case, the
union

⋃
fn(S) is called a cycle of intervals.

Lemma 30.14. Let L be a non-wandering interval. Then L+ :=

∞⋃

n=0

fn(L) is a

finite union of intervals. Hence fm(L) is eventually absorbed by a cycle of intervals
contained in L+.

Proof. Since L is non-wandering, there exist n ∈ Z+ and p ∈ N such that
fn(L) ∩ fn+p(L) 6= ∅. Applying the iterates of fp, we see that

fn+kp(L) ∩ fn+(k+1)p(L) 6= ∅ for k = 0, 1, 2, . . . .

Hence S :=

∞⋃

k=0

fn+kp(L) is an interval. Obviously, it is invariant under fp. Taking

the component of
p−1⋃

n=0

fn(S) containing S, we obtain a desired periodic interval of

some period dividing p. �

An interval L ⊂ I is called homterval if all iterates fn : L → I, n ∈ N, are
monotone. Again, we consider homtervals of all types.

A homterval is called maximal if it is not contained in the interior of a bigger
one. Taking the closures of all open maximal homtervals, we obtain all closed
maximal homtervals.

Exercise 30.15. (i) Maximal open homtervals are components of

I rOrb−(0)

(So, maximal closed homtervals are the closures of those components.)

(ii) Any open homterval is contained in a unique maximal open homterval.

(iii) If L is a maximal homterval such that 0 6∈ ∂L then f(L) is also a maximal
homterval.

There is a close relation between homtervals and wandering intervals:
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Exercise 30.16. (i) If L is an open homterval, then either L is wandering or
it is contained in the basin of a non-repelling cycle.

(ii) If L is a wandering interval then some iterate fn(L) is a homterval.

(iii) If L is a non-trivial wandering homterval then the maximal homterval (of either
type) containing L is also a non-trivial wandering interval.

30.4.2. Orbits of intervals around α. Recall that for c ∈ MR ≡ [−2, 1/4), fc
has a unique fixed point in I◦c , called αc, and for c < 0 this point has negative
multiplier (Exercise 20.15). Recall also that for c ∈ [−2,−3/4), the map fc has
a periodic cycle of period 2, and for c ∈ [−2,−1] it has negative multiplier (see
Exercise 20.18). In the latter case, Tc = [c, f(c)] ≡ [v, f(v)] is the minimal (closed)
invariant interval containing 0. More generally, we have:

Exercise 30.17. For a map f ∈ G, assume the α-fixed point is repelling
and there are no attracting cycles of period 2 with non-negative multiplier (so
c ∈ [−2,−1) in the quadratic case). Then the interval [α, 0] is monotonically
mapped under f2 onto a bigger interval, [α, f(v)]. Moreover, f2(x) > x for all
x ∈ (α, 0].

Lemma 30.18. For a map f ∈ G, assume the α-fixed point is repelling and there
are no attracting cycles of period 2 with non-negative multiplier. For any interval
L = [α, α+ ε] ⊂ [α, 0], there exists an m ∈ N such that f2m monotonically maps L
onto an interval containing [α, 0].

Proof. Exercise 30.17 implies that all points x ∈ (α, 0] eventually escape the
interval (α, 0] under the iterates of f2. Hence f2m(L) ⊃ [α, 0] for some m ∈ N. For
the smallest such m, the map f2m|L is monotonic. �

Corollary 30.19. Under the above circumstances, for any interval L ⊂ I
containing α (maybe, on the boundary) we have fn(L) ∪ fn+1(L) ⊃ T ≡ [v, f(v)]
for some n ∈ N. If intL ∋ α then fn(L) ⊃ T for some n ∈ N.

Proof. Let α ∈ ∂L. Since α has a negative multiplier, we can assume without
loss of generality that L lies on the right of α. By the above lemma, f2m(L) ⊃ [α, 0]
for some m. Applying two more iterates, we obtain the desired.

The last assertion follows by considering two halves of L,

L+ = L ∩ {x ≥ α} and L− = L ∩ {x ≤ α}.
�

In conclusion, let us identify the smallest invariant interval for f ∈ G (compare
Exercise 20.18):

Exercise 30.20. Let f : I → I be a map of class G that has a cycle of period 2
with negative multiplier. Then T ≡ Tf := [v, f(v)] is the smallest invariant interval
of f containing the critical point 0. Moreover, for any x ∈ int I, there exist an n
such that fnx ∈ T .

30.5. Wandering intervals approach 0. If J is a wandering interval the
|fn(J)| → 0 and hence the limit set ω(x) is independent of a point x ∈ J . Let us
call it ω(J).

Lemma 30.21. If J is a wandering interval then ω(J) ∋ 0.
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Proof. If ω(J) 6∋ 0 then eventually the intervals Jn = fn(J) stay away from 0;
without loss of generality, we can assume that it is so from the very beginning:

(30.1) dist(fn(J), 0) > 2ε0 > 0, n ∈ N.

We can also assume that:

• The endpoints of J are not precritical;

• |Jn| < ε0/K for all n ∈ N and
∑ |Jn| < 1/(K + 1),

where K is a big absolute constant, to be specified below;

• J is a maximal homterval: see Exercise 30.16.

Let us consider an interval L attached to J of the same length as J . Since
L ∪ J is not a homterval, some interval int fN (L) = intLN contains 0. By (30.1),
|LN | ≥ ε0 ≥ K |JN | at that moment. Let us take the first moment n ≤ N for which
|Ln| ≥ K |Jn|. Then

(30.2)
|Ln|
|Jn|

≥ K = K
|L|
|J |

On the other hand,
n∑

k=0

|Lk ∪ Jk| ≤ (K + 1)

n∑

k=0

|Jk| ≤ 1,

so by the Denjoy Distortion Estimate (Exercise 19.69), the distortion of fn on
L ∪ J is bounded by some absolute constant K0. So, if K > K0 then we arrive at
a contradiction with (30.2). �

30.6. Maximal periodic interval. Let us now identify the maximal (closed)
periodic interval I ′ (of the smallest period p > 1) around the critical point. We
let I0 = [α,−α].

Proposition 30.22. For a map f ∈ G, assume the fixed point α is either
repelling or parabolic with multiplier −1 (so c ∈ [−2,−3/4] in the quadratic case).

(i) If f2(0) ∈ I0 then p = 2 and I ′ = I0. Moreover, f2 | I ′ is a proper unimodal
map.

Otherwise, let us consider the set A− = Orb−(α).

(ii) If A− 6∋ 0 then p > 2 and I ′ = S, where S is the connected component of IrA−
containing 0. Moreover, fp | I ′ is a proper unimodal map.

(iii) If A− ∋ 0 then there are no periodic intervals around 0 of period p > 1.

Proof. Note first that I ′ is 0-symmetric since a periodic interval remains such
after symmetrization. Next,

(30.3) α 6∈ int fn(I ′), n = 0, 1, . . . , p− 1,

since otherwise int fn+1(I ′) ∩ int fn(I ′) ∋ α, contradicting the definition of a peri-
odic interval. Hence I ′ ⊂ I0.

(i) We have: f(I0) = [v, α], so f(I0) ∩ I0 = {α}. Moreover, if v1 ≡ f(v) ∈ I0
then

f2(I0) = f [v, α] = [α, v1] ⊂ I0.
We conclude that in this case, I0 is a periodic interval of period 2, and as we have
noticed above, it is the maximal one. The last assertion, on the proper unimodality,
is obvious.
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(ii) Let Sn be the component of I rA− containing fn(S). Since I rA− is an
open invariant set, the Sn are open intervals and f(Sn) ⊂ Sn+1.

If the intervals Sn are pairwise disjoint then S is a wandering interval with
ω(S) 6∋ 0, contradicting Lemma 30.21. Hence Sn = Sn+p for some n ≥ 0, p > 0.
Let us select the smallest n and p with these properties. If n > 0, then Sn is
a periodic homterval, i.e., fp : Sn → Sn is a homeomorphism. Then it contains
an attracting or neutral periodic point a of period p or 2p (see Exercise 19.30).
Furthermore, the real immediate basin D•R(a) is contained in Sn since ∂Sn ⊂ A−,
and the latter does not intersect any basin (note that α is repelling in the case
under consideration). But then Sn must contain a critical point (see Exercises 30.6
and 30.8) – contradiction.

Hence n = 0, so S is a periodic interval itself, and so is I ′ = S. Finally,

f(I ′) ⊂ [v, α], f2(I ′) ⊂ [−α, v1],

so both of these intervals are disjoint from int I ′ ⊂ int I0. It follows that p ≥ 3.

Let us now check that g := fp | I ′ is a proper unimodal map. Since

fn(I ′) ∩ int I ′ = ∅,

all the maps f : fn(I ′)→ fn+1(I ′), n = 1, . . . p− 1, are diffeomorphisms, implying
that g is unimodal. Moreover, since the set A− is forward invariant, the boundary
∂I ′ is g-invariant, so g is proper.

(iii) In this case, the iterated preimages of α accumulate on 0. Hence for any
interval L ∋ 0, there is an m ∈ N such that int fm(L) ∋ α. By (30.3), L cannot be
periodic of period p > 1. �

30.7. Real renormalizations.

30.7.1. Definition. A map f ∈ G is called really renormalizable if f has a
repulsive periodic interval S ∋ 0 in I of period p > 1.

If we drop the repulsiveness condition then we say that f is almost renormal-
izable or, for brevity, renormalizable∗. In this case, ∂S must contain a parabolic
periodic point with multiplier 1. (However, as we will discuss momentarily, the
reverse is not true: even when ∂S contains a parabolic point, f may be genuinely
renormalizable.)

Remark 30.23. These notions are designed to match the corresponding com-
plex ones. In the purely real theory, the repulsiveness of I ′ is not usually required
for the map to be renormalizable.

As in the complex situation, real renormalization comes with its combinatorics:
the order in which the intervals Sk ≡ fk(S), k = 0, 1, . . . , p− 1, appear on the real
line. More formally speaking, it is a permutation (km)p−1m=0 of p symbols such that
k = km if the interval Sk appears m’s from the left. (This can also be formulated
naturally in terms of the kneading theory, compare §37.11.3 .)

Exercise 30.24. Show that being renormalizable∗ with a given combinatorics
is a closed condition in the space G.
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30.7.2. First renormalization. For a renormalizable map, Proposition 30.22
supplies us with the biggest periodic interval I ′ of some period p > 1. Let
g = fp : I ′ → I ′ be the corresponding return map. As it is proper, it has a
boundary fixed point βg ∈ ∂I ′ with some multiplier ρg ≥ 1.

Lemma 30.25. (i) If f : I → I is a renormalizable∗ map of class G, then the
return map g : I ′ → I ′ is its first renormalization∗ of class G.

(ii) The renormalization∗ is not genuine iff it is doubling with parabolic fixed point
βg. In this case, f is Myrberg: its α−fixed point αf is parabolic with multiplier −1
(so c = −3/4 in the quadratic case). Moreover, βg = αf .

(iii) In the genuinely renormalizable case, if βg is parabolic then it is non-degenerate
as in (20.2) from §20.4.3.

Proof. (i) We know that g : I ′ → I ′ is a proper unimodal map. Let us show
that it belongs to class G.

Let I ′n ⊃ fn(I ′) be the pullback of I ′ under fp−n, n = 1, . . . , p. Then each
map fp−n : I ′n → I0 is a diffeomorphism, and the inverse branch f−(p−n) : I ′0 → In
admits an analytic extension to the whole domain U ′. Let Un := f−(p−n)(U ′) and
let V := f−1(U1). Then fp : V → U ′ is a ql map, perhaps degenerate, that gives
us an analytic extension of g : I ′ → I ′. Moreover, I ′ ⋐ V ⊂ U ′, implying that g is
a map of class G.

(ii)–(iii) If p = 2 then case (i) of Proposition 30.22 holds, so I ′ = I0 = [α,−α],
where α ≡ αf , and g = f2 | I0. We see that βg = α and g′(βg) = f ′(α)2.

If α is repelling then clearly g is repulsive on I ′, so our renormalization∗ is
genuine. Otherwise, α is parabolic with multiplier −1, so f is Myrberg. In this
case, it attracts under f the whole real neighborhood of itself, so I ′ is attractive
under g, and our renormalization∗ is not genuine.

If p > 2, then we are in case (ii) of Proposition 30.22, and hence βg 6= αf . Since
int I ′ is a component of I r A−, iterated preimages of αf accumulate on βg. It
follows that g cannot be attracting on the exterior of I ′. Hence it must be repulsive
(independently of whether βg is repelling or parabolic).

In the case of parabolic βg, each cycle of parabolic-attracting petals must con-
tain the critical point. Hence there is only one such a cycle (of period 1 under g),
so βg is non-degenerate. �

For a really renormalizable map f ∈ G, the return map g : I ′ → I ′ is called
the first real pre-renormalization of f . The first renormalization of f is obtained
by rescaling I ′ to the unit size:

(30.4) Rf : I→ I, Rf(x) = σ−1g(σx), with σ = ±|I ′|,

where the sign of σ is selected so that 0 is the minimum point of Rf .
A similar terminology applies to the renormalizable∗ situation.

Remark 30.26. This distinction between “pre-renormalization” and “renormal-
ization” becomes important when R is considered as an operator in the space of
unimodal maps. This viewpoint will not play a role until volume III, so meanwhile
we will often skip the prefix “pre-” in our terminology.
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30.7.3. Further renormalizations. If the renormalization Rf is itself renormal-
izable, we say that f is twice really renormalizable. Then we obtain the second real
pre-renormalization f2 : I2 → I2 and the corresponding second real renormaliza-
tion R2f : I→ I. Proceeding this way, we can define n-times renormalizable maps,
their pre-renormalizations fn = fpn : In → In and renormalizations Rnf : I → I.
If this happens for all n ∈ Z+, we say that f is infinitely renormalizable.

If some Rnf is a Myrberg map, then it has a doubling renormalization∗ Rn+1f ,
and the latter is not renormalizable∗ anymore. In this case, f is only n times
renormalizable, but n + 1 times renormalizable∗. We will still use notation fn+1 :
In+1 → In+1 and Rn+1f for the last (pre-)renormalization∗.

The sequence of renormalizations∗ fn captures return maps to all interesting
periodic intervals:

Theorem 30.27. Let f ∈ G, and let fn : In → In be its real renormalizations∗.

(i) Then all of these renormalizations, except perhaps the last one, are genuine. If
the last one, fN is not, then the previous map fN−1 is a Myrberg (and in particular,
the last renormalization, fN = RfN−1, is doubling).

(ii) Any proper return map g : T → T to a periodic interval T coincides with
some fn.

Proof. (i) follows from Lemma 30.25.

(ii) Let pn be the periods of the In, and let p be the period of T . Since the
sequence (pn) is strictly increasing, there is the biggest n such that pn ≤ p. The
corresponding renormalization interval In is the smallest one containing T .

If p > pn, then by Proposition 30.22, T = In+1 and g = fn+1, contradicting
the choice of n. Hence pn = p, and then T = In since In is the only fn-invariant
interval on which fn is proper. �

30.7.4. Real vs complex renormalizations. The following statement shows that
for real ql maps, notions of real and complex renormalizations match:

Proposition 30.28. Let f : U → U ′ be a real-symmetric quadratic-like map.
Then f is DH renormalizable∗ with some period p if and only if its restriction
to the real line is really renormalizable∗ with the same period p. Moreover, the
real renormalization∗ of f is obtained by taking the real slice of the corresponding
complex renormalization∗.

The complex renormalization∗ can be thickened to the genuine one iff the cor-
responding real renormalization∗ can. It is the case, unless f is Myrberg (and, in
particular, the renormalization R is doubling).

Proof. We let K ≡ K(f), so I = K ∩ R.

Assume f is DH renormalizable∗ with period p, and let fp : Ω → Ω′ be its
degenerate ql renormalization associated with a periodic cut-point α (as in §28.4.3).

Since f is real-symmetric, g ≡ fp : Ω → Ω
′
is a degenerate ql map associated

with a periodic cut-point ᾱ (where “bar” stands for the complex conjugacy). Since
the DH renormalization∗ with period p is canonically defined (Corollary 28.29), the
point α is real and the domains Ω, Ω′ are real-symmetric.

Hence the little filled Julia set K′ ≡ K(g) is also real-symmetric, with the real
slice I ′ = [α,−α]#. The interval I ′ is a periodic interval of period p such that
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fp | I ′ is a proper unimodal map with the fixed point α ∈ ∂I being repelling or
parabolic. Hence it is the real renormalization∗ of f : I → I with period p.

Vice versa, assume that the map f : I → I is really renormalizable∗ with
period p, and let g ≡ fp : I ′ → I ′ be the corresponding renormalization. Then
I ′ = [β,−β]#, where β is either repelling or parabolic periodic point. In either case,
we obtain the associated R-symmetric ray portrait R(β) and the corresponding R-
symmetric puzzle piece Ω′ ∋ 0.

Since I ⊂ K, the rays under consideration do no cross I, implying that Ω′R =
I ′. Since f is really renormalizable∗ fpn(0) ∈ I ′, n = 0, 1, . . . . All the more,
fpn(0) ∈ Ω′, n = 0, 1, . . . , implying that f is DH renormalizable∗ with period p.

Finally, g : Ω→ Ω′ can be thickened to a genuine ql renormalization unless α is
a satellite parabolic point. On the other hand, g : I ′ → I ′ belongs to class G unless
α is a flip parabolic point. But for real maps, α is satellite parabolic iff it is flip
parabolic. Thus, the complex renormalization∗ is genuine (after the thickening)
iff the real one is. �

c

30.8. Structure of non-renormalizable∗ interval maps.

30.8.1. No wandering intervals. Trivial wandering intervals obviously exist.
However, we have:

Lemma 30.29. Let f : I → I of class G be a non-renormalizable∗ interval map
with both fixed points repelling. Then:

(i) All periodic points of f are repelling;

(ii) f does not have wandering intervals (equivalently: f does not have homtervals).17

Proof. (i) By assumption, both fixed points of f are repelling. But so is any
periodic point of period p > 1, for otherwise the immediate basin of this point
would be a cycle of intervals of period p > 1 containing 0 (see Exercises 30.6 and
30.8), and the map would be renormalizable.

Thus, f does not have trivial wandering intervals.

(ii) Let L be a non-trivial wandering interval. Without; loss of generality,
we can assume that L is a maximal wandering homterval (see Exercises 30.15
and 30.16).

By Lemma 30.21, the orbit of L accumulates on 0. Let us consider the moments
0 = m0 < m1 < m2 < . . . of closest approached of the orbL to 0, i.e., for any
k ∈ Z+, the interval fmk(L) lies closer to 0 than fmk−1(L), while all the intervals
fn(L), n = mk−1 + 1, . . .mk − 1, lie farther away. Then fmk(L)→ 0.

Since |fmk(L)| → 0, we can take a further subsequence Z = (mk(j)), satisfying

(30.5) |fmk(L)| < |fmk−1(L)| for mk ∈ Z.
Let us use notation Lk and Uk respectively for the intervals fmk(L) and fmk−1(L)
with mk ∈ Z, i.e., satisfying (30.5). We let U ′k = −Uk be the symmetric interval.
Since the intervals f(Lk) and f(U ′k) = f(Uk) are disjoint, the intervals Lk and U ′k
are disjoint as well. So, we obtain three disjoint intervals, Uk, Lk and U ′k, such that
L lies in between Uk and U ′k

17In the presence of a non-repelling fixed point, f has still only trivial wandering intervals.
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Let us consider the smallest 0-symmetric interval Sk ⊃ Lk containing Uk. Let
H±k be the components of Sk r Lk. By (30.5),

(30.6) |H±k | ≥ |Uk| > |Lk|.
Let us now pull the interval Sk back along the orbit (fn(L))mk

n=0. We obtain a
pair of intervals (Qk, L) mapped under fmk to (Sk, Lk).

Lemma 30.30. The map fmk : Qk → Sk is a homeomorphism.

Proof. Otherwise, there exists a moment n < mk such that fn(Qk) ∋ 0. Let
V be the smallest 0-symmetric interval containing fn(L). Since Uk ≡ fmk−1(L) is
closer to 0 than any other interval fn(L) with n < mk, V contains Sk, and hence
fn+1(Qk) ⊃ f(V ) ⊃ f(Sk). It follows that

Sk = fmk−n−1(fn+1(Qk) ⊃ fmk−n(V ) ⊃ fmk−n(Sk).

Thus, Sk is invariant under fmk−n. But non-renormalizable∗ maps with both fixed
points repelling do not have periodic intervals around 0 of period > 1. �

Since L is a maximal homterval, the intervals Qk shrink to L. Let W±k be the
preimages of the H±k under fmk : Qk → Sk. Then |W±k | → 0. Together with (30.6)
this contradicts Corollary 20.29. �

30.8.2. Topological exactness (leo property).

Proposition 30.31. Let f : I → I be a non-renormalizable map of class G with
both fixed points repelling. Then its restriction to the minimal invariant interval T
is topologically exact (and hence topologically transitive).

Proof. For any interval L ⊂ T , we need to find an n ∈ N such that fn(L) = T .
If intL ∋ α, this is the content of Corollary 30.19. Since f is non-renormalizable,
the preimages of α accumulate on 0, so the conclusion holds if L ∋ 0.

By Lemma 30.29, f does not have homtervals. Hence for any interval L, we
have fn(L) ∋ 0 for some n ∈ N, and the conclusion follows. �

Corollary 30.32. For a non-renormalizable∗ map f : I → I of class G with
both fixed points repelling, we have:

(i) For any x ∈ T , the grand backward orbit Orb−(x) is dense in T ;

(ii) The set of periodic points is dense in T .

Proof. (ii) We see that for any interval L ⊂ T , fn(L) ⊃ L for some n ∈ N.
Then L contains a periodic point of period n (not necessarily minimal), by the
Intermediate Value Theorem. �

30.9. Renormalizable case: real hyperbolic sets.

Proposition 30.33. Let f : I → I be a renormalizable∗ map of class G, and
let g ≡ fp : I ′ → I ′ be its first renormalization∗. Assume that the boundary fixed
point β′ ∈ ∂I ′ of g is repelling. Then:

(i) The set Q := {x ∈ T : fnx 6∈ int I ′, n = 0, 1, 2, . . . } is hyperbolic;

(ii) The restriction f |Q is topologically conjugate to a Markov shift σA;

(iii) The restriction of f to Q ∩ T is topologically exact (leo property);

(iv) All orbits eventually land either in the cycle orb T ′ or in Q.
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Together with Proposition 25.23 (or rather its version for class G) this implies:

Corollary 30.34. Under the above circumstances, almost all orbits eventually
land in the cycle of I ′.

Proof. (i) Let T ′ ⊂ I ′ be the minimal invariant interval of g, and let

(30.7) Υ′ := Orb T ′ ≡
p−1⋃

k=0

fk(T ′) ⊂
p−1⋃

k=0

fk(I ′) ≡ orb I ′ =: O′.

This is a forward invariant compact set containing the postcritical set Pf . Moreover,
Ω′ := CrΥ′ is connected and f−1(Υ′) is strictly bigger than Υ′ (e.g., f−1(Υ′)rΥ′

contains the intervals that are 0-symmetric with int(fk(T ′)), k 6= 0). By Corol-
lary 20.32, Q ⊂ Ω is hyperbolic.

(ii) The doubling case is elementary (see Exercise 30.35 below), so assume that
p > 2. Let Li be the components of Ir intO′, and let Xi = Li∩Q. Since ∂I ∪∂O′
is forward invariant and since 0 ∈ intO′, the sets Xi form a Markov partition of
Q: each Xi is mapped homeomorphically onto the union of some of them. The
conclusion follows from Lemma 19.92.

(iii) For p > 2, this follows from the exactness of f | T rel I ′ (Lemma 25.42).
The doubling case is trivial: see Exercise 30.35 below.

(iv) By definition, all orbits eventually land either in O′ or in Q. By Exer-
cise 30.20, the former orbits eventually land in Υ′. �

Exercise 30.35. Show that the above hyperbolic set Q is either the β−fixed
point and its preimage β′ (in the doubling case) or a Cantor set (otherwise). More-
over, in the latter case, the corresponding Markov matrix A has spectral radius
r(A) > 1.

Exercise 30.36. Prove that the above results remain true when the g-fixed
point β′ is parabolic (except that Q is not hyperbolic anymore).

30.10. Structure of at most finitely renormalizable maps. Summariz-
ing the above results, we obtain a good topological description of maps that are at
most finitely renormalizable:

Theorem 30.37. Let f : I → I be a map of class G which is exactly n times
renormalizable∗, n ∈ N. Let g = fp : I ′ → I ′ be its last renormalization∗, and
T ′ ⊂ I ′ be its smallest invariant interval. Then

(i) either g has a non-repelling fixed point, and int I ′ is its immediate basin of
attraction,

(ii) or else g is topologically exact (leo) on T ′, and hence f is topologically transitive
on the corresponding cycle of intervals, At ≡ At

f := orb T ′.
Moreover, the set

Q := {x : fnx 6∈ int I ′, n = 0, 1, 2, . . . }
is a Cantor set of zero length on which the dynamics is topologically conjugate to
a Markov chain. If the g(β′) 6= 1, where β′ ∈ ∂I ′ is the boundary fixed point of g,
then Q is hyperbolic.

Exercise 30.38. Under the above circumstances, the point β′ is f -periodic with
period p or p/2. The letter happens iff Rn−1f is renormalizable with period two.
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We will refer to T ′ as a leo periodic interval.

Corollary 30.39. The cycle At of the leo periodic interval T ′ is the unique
topological attractor of f , i.e., ω(x) = At for a generic point x ∈ I.

30.11. Renormalization Filtration. Let us summarize the structural infor-
mation accumulated so far.

Assume that a map f ∈ G is exactly N times renormalizable, where N ∈ [0,∞].
Then we have two intertwined nests of periodic intervals

(30.8) I ≡ I0 ⊃ T 0 ⊃ I1 ⊃ T 1 · · · ⊃ IN ⊃ T N

of periods pn such that gn := fpn | In is the n-fold (pre-)renormalization of f . (In
the case of N =∞, the nests are infinite). The pn are the renormalization periods
of f . Moreover, the pn+1 are multiples of the pn, and the ratios qn+1 := pn+1/pn
are the relative renormalization periods of f . Note that Rnf is renormalizable with
period qn+1 (compare §28.4.7).

The orbits of these intervals form two intertwined nests of cycles of intervals,

On := orb In and Υn := orb T n.
All orbits in intOn eventually land in Υn. For n < N , the orbits of Υn that never
land in int In+1 form an invariant compact set Qn+1 on which the dynamics is
topologically conjugate to an irreducible Markov chain. It is called the basic set
of level n. In the doubling case (qn+1 = 2) Qn+1 is a repelling periodic cycle;
otherwise it is a Cantor set. Moreover, the dynamics on this Cantor set expanding,
except when n = N and f has a primitive parabolic point. (Notice that Q0 is the
β−fixed point.)

If N <∞ then Υn is either contained in the immediate basin on an attracting
or a parabolic cycle, or else, it is a cycle of a leo interval. Notice that in the former
case, the parabolic cycle can be satellite (flip), in which case it belongs to intΥn

and RNf is renormalizable∗ with period 2.
This structure will be called the Renormalization Filtration.

30.12. Real a priori bounds.

30.12.1. Extensions. Let us consider a renormalizable∗ map f ∈ G with a
renormalization∗ g : I0 → I0 of period p (not necessarily the first one). Let

Ik := fk(I0), k = 1, . . . , p.

Note that I1 and I2 are the extreme intervals among the Ik (in the sense of the
order on R). For k 6= 1, 2, let Îk be the maximal open interval containing Ik but
not containing other intervals Ij , j 6= k (i.e., it is the convex hull of two intervals
int Ij that lie next to Ik). For an integer k ∈ [1, p], let ∆k ∋ v be the pullback of
Îk under fk−1.

Lemma 30.40. Each map

fk−1 : (∆k, I1)→ (Îk, Ik), k = 1, . . . , p,

is a diffeomorphism.
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Proof. Otherwise, there exists a moment m ∈ [0, k−2] such that fm(∆k) ∋ 0.
But then fm(∆k) contains one-half, I+ or I−, of the interval I0 (say, I+). Then

(30.9) fm+1(∆k) ⊃ f(I+) = I1.
Applying fk−m−2, we conclude that Îk ⊃ Ik−m−1, contradicting the definition
of Îk. �

Corollary 30.41. For any integer j ∈ [1, p− 1], the map

fp−j : Ij → Ip
admits a diffeomorphic extension with range Îp.

Proof. This extension is given by fp−j : f j−1(∆p)→ Îp. �

30.12.2. Map dependent bounds.

Real a priori bounds. Let f ∈ G(µ) be a renormalizable map with period p
(not necessarily the smallest one), and let g = fp : I0 → I0 be its renormalization.
Then:

(i) g ∈ G(ν), with ν > 0 depending only on µ.

(ii)

(30.10) modR(Îj : Ij) ≥ δ(µ) > 0, j = 0, 1, . . . , p− 1,

where modR is defined by (6.2).

(iii) The maps fp−j : Ij → Ip are diffeomorphisms with bounded distortion (that
depends on µ only).

Proof. Due to Exercise 30.2, we can assume without loss of generality that f
belongs to Epstein class E(µ).

Let Il be a minimal length interval in the cycle (Ik)p−1k=0. Assume first that
l 6= 1, 2. Then we have the well defined enlargement Îl, and by the minimality
property,

(30.11) modR(Îl : Il) ≥ 1.

By Lemma 30.40, the map f l−1 : I1 → Il extends to a diffeomorphism f l−1 :
∆l → Îl. By Corollary 6.18, the space of (30.11) around Il can be pulled back to
an absolute space around a valuable interval I1:

modR(∆
l : I1) ≥ ε > 0.

Since each monotonicity branch of f is κ(µ)-qs (and f is even),18 this space
can be pulled further back to a definite space around I0:
(30.12) modR(Î0 : I0) ≥ δ0(µ) > 0.

If l ∈ {1, 2} then let Îl be the convex hull of Il and int Ij , where Ij is the
interval next to Il. Pulling it back by f l, which is κ(µ)-qs, we obtain (30.12) once
again.

By Corollaries 6.18 and 30.41, the space around I0 can be pulled back to a
space around any Ij , yielding (30.10). This proves (i) and (ii).

Assertion (iii) follows from the Koebe Distortion Theorem. �

18Under these circumstances, we will somewhat loosely say that f itself is κ-qs.
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Let L :
⋃

i

∆i → I0 be the first landing map to I0. Here the intervals ∆i are

the pullbacks of I0 corresponding to the first landings fmx ∈ int I0 of points x ∈ I
(that ever land). The intervals ∆i have disjoint interiors.

Exercise 30.42. Under the above circumstances, we have:

(i) Each branch L : ∆i → I0 admits an extension to a diffeomorphism ∆̂i → Î0.
(ii) The branches L : ∆i → I0 have a bounded distortion (depending only on µ in
the Real A Priori Bounds statement).

See §§31.2 and 31.11 below for a related discussion of the first landing maps in
the puzzle context.

30.12.3. Beau bounds. Let us say that Real Beau Bounds are valid over class
G if there exists an absolute ν > 0 with the following property: For any µ > 0 there
exists N = N(µ) such that for any (n ≥ N)−times renormalizable map f ∈ G(µ),
the renormalization Rnf belongs to G(ν).

Real Beau Bounds. Real Beau Bounds are valid over class G. In particular,
the bounds are absolute over the quadratic family.

Proof. Let us go back to the proof of real a priori bounds in the previous
section. First, due to Exercise 30.2(iii), we can still assume that f belongs to the
Epstein class E(µ).

Next, notice that the bounds are absolute as long as |I0| < ε|I| with some
ε > 0 depending only on µ. Indeed, dependence of the bounds on µ appears only
through (30.12), which depends only on the qs-dilatation of f l | I0, l ∈ {1, 2}. The
latter is small as long as I0 is sufficiently small rel I (depending on µ only).

Finally, |In| ≤ σ|In−1| with some σ = σ(µ) ∈ (0, 1). Hence |In| ≤ ε · |I| for
n ≥ log ε/ log σ, and the conclusion follows. �

In global terms, beau bounds can be formulated as follows:

Class G contains an absorbing compact subset K, so, for any compact subset
Y ⊂ E there is an N such that for any (n ≥ N)−renormalizable map f ∈ Y , we
have Rnf ∈ K.

Remark 30.43. There is a version of a priori bounds for non-renormalizable
maps: see §46.2 below.

30.13. Infinitely renormalizable maps.

30.13.1. Intersection of nested cycles of intervals. Assume that a map f ∈ G

is infinitely renormalizable.
Let Ink := fk(In), k = 0, 1, . . . , pn − 1, so these intervals (for a given n) form a

cycle Onf of period pn containing the postcritical set Pf . The intersection of these
cycles,

(30.13) Of :=

∞⋂

n=0

Onf

is an invariant compact set containing the postcritical set Pf as well. We will
show that these two sets actually coincide, and have empty interior (so they are
Cantor). By the following observation, this amounts to showing that f does not
have wandering intervals.
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Lemma 30.44. Any component of intOf is a non-trivial wandering interval.

Proof. Let J be a component of intOf . Then for any n ∈ N, J is contained
in some periodic interval Inkn of period pn. Hence the intervals fm(J) ⊂ Inkn+m,
m = 0, 1, . . . , pn − 1, are pairwise disjoint. Since pn →∞, J is wandering.

If J was trivial, it would be contained in the basin D(α) of some non-repelling
cycle of some period q. But then periodic intervals Inkn would be eventually con-
tained in D(α) as well, which is impossible for pn > q (exercise). �

Note in conclusion that the set Of is the real slice of the postcritical impression
Of (28.8), so according to our notational conventions, O ≡ OR, and we can refer
to O as the real postcritical impression.

30.13.2. Solenoids. We will derive the absence of wandering intervals from the
real a priori bounds.

Lemma 30.45. A real infinitely renormalizable map f ∈ G does not have wan-
dering intervals.

Proof. Let J be a wandering interval. Without loss of generality, we can
assume that J is a maximal (open) homterval (see Exercise 30.15). Let Tn be
the intervals of monotonicity of the iterates fn containing J . They form a nest
shrinking to J (see Exercise 30.16).

For any n ∈ N, let us consider the periodic interval In ∋ 0. Since ∂In consists
of a periodic point and its fpn -preimage, the intervals Jm ≡ fm(J) do not intersect
∂In. So, either Jm ⊂ int In or Jm ∩ In = ∅ (for any m).

By Lemma 30.21, ω(J) ∋ 0, implying that for any n ∈ N there exists an m ∈ N

such that Jm ⊂ In. Let m = mn be the first such landing moment.
By Exercise 30.42, the map fm : J → Jm admits an extension to a diffeomor-

phism fm : ∆̂n → În. Let ∆n be the pullback of In under this diffeomorphism.
By the real a priori bounds (30.10) and Koebe, the maps fm : ∆n → In have

a bounded distortion. Hence
|∆n r J |
|J | ≍ |I

n r Jm|
|Jm|

.

However, the left-hand side goes to 0 as n → ∞ (since the intervals ∆n shrink to
J), while the right hand side is bounded by 1 from below (since Jm is contained in
one-half of the interval In). �

For the relative renormalization periods qn = pn/pn−1, let us consider the
adding machine τq on the adic ring Zq (see §19.16.2).

Corollary 30.46. (i) The set Of (30.13) is a Cantor set coinciding with the
postcritical set P ≡ Pf . In particular, P ∋ 0.

(ii) The dynamics on P is topologically conjugate to the adding machine τq (odometer).
In particular, f | P is minimal, so the orbit of any point x ∈ P is recurrent and dense
in P.

The sets Of = Pf are called solenoids. At the same time, they could also be
called the adding machines or odometers, as well as Feigenbaum attractors (see next
section).

Project 30.47. Lemma 30.45 can be proved without using a priori bounds,
along the lines of Lemma 30.29. Try to work it out.
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30.13.3. Feigenbaum attractor. We are ready to prove that P ≡ Pf is a unique
attractor for f , in both topological and measure-theoretic sense:

Theorem 30.48. Let f ∈ G be infinitely renormalizable. Then ω(x) = P ∋ 0
for a.e. x ∈ I and for a generic x ∈ I.

Proof. Let On be the cycle of intervals
pn−1⋃

k=0

Ink of level n (compare (30.7)).

By Proposition 30.33 and Corollary 30.34, each set Xn := {x : ω(x) ⊂ On} is
everywhere dense and has full Lebesgue measure. Hence the intersection

⋂

n

Xn = {x : ω(x) ⊂ P}

is a set of full Baire category and full Lebesgue measure. Thus, ω(x) ⊂ P for a
generic x ∈ I and for a.e. x ∈ I.

Since the dynamics on P is minimal (by Corollary 30.46),

ω(x) ⊂ P =⇒ ω(x) = P.

The conclusion follows. �

For this reason, the sets Of = Pf are also called Feigenbaum attractors.

30.13.4. Bounded geometry. An infinitely renormalizable map with bounded
combinatorics is called Feigenbaum.

Theorem 30.49. Let f ∈ G be a real Feigenbaum map. Then the attractor
Of = Pf is a Cantor set with bounded geometry.

Proof. We let T n be the smallest periodic interval of level n and T nk :=
fk(T n), k = 0, 1, . . . , pn − 1.

By the Real A Priori Bounds (i), the sequence of the renormalizations {Rnf}∞n=0

belongs to a class G(ν) with some ν > 0, and is hence pre-compact. Since the con-
dition of being renormalizable with a bounded combinatorics is closed (by Exercise
30.24), the configurations of intervals T n+1

k inside the T n, n ∈ N, form a pre-
compact family as well. Since the intervals T n+1

k do not touch each other (for a
given n), these configurations have a bounded geometry.

By means of the Real A Priori Bounds (iii), this property spreads around to
all intervals T nj : inside each of them, the configuration of the intervals T n+1

k has a
bounded geometry (uniformly over (n, j)). �

Since Cantor sets with bounded geometry have zero measure (see Exercise
19.117), we conclude:

Theorem 30.50. For any real infinitely renormalizable map f ∈ G,

lengthPf = 0.

30.14. Topological Structure of unimodal maps.
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30.14.1. No Wandering Intervals. Putting together Exercises 30.7 (hyperbolic
case) and 30.9 (parabolic case), Lemmas 30.29 (at most finitely renormalizable case)
and 30.45 (infinitely renormalizable case), we obtain the following fundamental
result:

No Wandering Intervals Theorem. A map f : I → I of class G does
not have non-trivial wandering intervals. In particular, an irregular map f (in the
sense of §30.2.3) of class G does not have wandering intervals at all.

Corollary 30.51. For an irregular map f : I → I of class G, the set Crit∞

of precritical points is dense in I.

30.14.2. Topological attractors: classification. Topological attractors were de-
fined in §19.7. Putting together Exercises 30.7 (hyperbolic case) and 30.9 (parabolic
case), Corollary 30.39 (at most finitely renormalizable case) and Proposition 30.48
(infinitely renormalizable case), we obtain a compete description of topological at-
tractors for quadratic polynomials:

Theorem 30.52. Any unimodal map f : I → I of class G has a unique
topological attractor At ≡ At

f attracting generic orbits: ω(x) = At for all x ∈ I
except for a set of first Baire category. Moreover, At is either an attracting or
parabolic cycle, or a cycle of a leo periodic interval, or a Feigenbaum attractor.

30.14.3. Topological structure of PerR(f). Let PerR(f) stand for the set of
real periodic points of a map f ∈ G, and let Ω(f) be the set of strongly non-
wandering points (which is the negation of the “weakly wandering” property intro-
duced in §19.1):

ΩR(f) = {x ∈ I : for any nbd V ∋ x ∃ y ∈ V, n ∈ Z+ s.t. fny ∈ V }
i.e., ΩR(f) is the maximal set with the property that any neighborhood intersecting
it contains a returning point.

Exercise 30.53. ΩR(f) is a closed invariant set containing all recurrent (and
hence all periodic) points.

Putting together the Renormalization Filtration structure (§30.11) and Theo-
rem 30.52, we obtain:

Theorem 30.54. Let f ∈ G be N time renormalizable map, n ∈ [0,∞]. Then:

(i) ΩR(f) = PerR(f) = At ∪
N−1⋃

n=0

Qn, where At it the global topological attractor for

f described in Theorem 30.52, and each basic set Qn is an invariant compact set
on which the dynamics is topologically conjugate to an irreducible Markov chain.

(ii) Each basic set Qn is expanding, except of QN in the case when f has a primitive
parabolic point.

(iii) The closure of real repelling periodic points is equal to ΩR(f) with the attracting
or parabolic flip cycle removed (if exists: the latter is topologically attracting).

In §30.12 we defined the real Julia set JR(f) for a regular map f ∈ G. A
natural version for an irregular map f ∈ G would be the set of points whose orbits
land in ΩR(f). This definition looks quite satisfactory for finitely renormalizable
maps, but is more problematic for infinitely renormalizable ones:
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Exercise 30.55. The orbit of a point x ∈ I is Lyapunov unstable iff it lands
in one of the basic sets Qn or in the leo periodic interval (if exists).

Also, even in the “satisfactory” cases there are some issues. Namely, for any
irregular real polynomial f = fc, except one special case (which one?)

– the “real Julia set” JR(f) is not the real slice of the complex one, J (f);
– JR(f) does not coincide with the closure of repelling periodic points.

So, we will refrain from attempting to select an “official” definition for the “real
Julia set”.

Exercise 30.56. Let f : I → I be an irregular map of class G. Show that for
any ε > 0 there exists δ > 0 such that for any interval J ⊂ I of length ≥ ε we have:

|fn(J)| ≥ δ, n = 0, 1, 2, . . . .

30.15. Appendix: Negative Schwarzian derivative. Condition of nega-
tive Schwarzian derivative plays an important role in the one-dimensional dynamics.
The first observations is that the maps x 7→ axd + c, d ∈ (1,+∞) (and in partic-
ular, real quadratic polynomials!) have negative Schwarzian derivative. So, any
C3-map has this property near a non-degenerate critical point. Moreover, by the
Chain Rule, the composition of two functions with negative Schwarzian derivative
inherits this property. Hence the condition it is dynamically natural: all the iter-
ates of a map with negative Schwarzian derivative inherit this property. Moreover,
it allows one to control, in a uniform way, distortion of the iterates (similarly to
what the Schwarz Lemma and the Koebe Distortion Theorem provide for us in the
holomorphic case): below we formulate several statements to this effect (when we
assume that Sg > 0, think of the inverse of a map with Sf < 0).

30.15.1. Distortion Control.

Minimum Principle. Let f : I → I ′ be a C3 interval diffeomorphism with
Sf < 0. Then |f ′| does not have local minima in int I. Thus, the infimum of |f ′|
is attained on the boundary of I.

Proof. Assume |f ′| attains a local minimum minimum at 0 ∈ int I. As re-
placing f with af + b does not affect the Schwarzian derivative, we can normalize
f so that f(0) = 0, f ′(0) = 1. Then the Taylor expansion of f at 0 begins as
f(x) ∼ x − bx3 with b > 0 (to ensure Sf(0) < 0). But then f ′(x) ∼ 1 − 3bx2,
making 0 a local maximum point for f ′. �

Lemma 30.57. For a diffeomorphism f as above, any fixed point α ∈ int I is
topologically repelling.

Proof. Without loss of generality we can assume that f is orientation preserv-
ing. If α is not topologically repelling then 0 < f ′(α) ≤ 1, and on each non-repelling
side of α there is a non-attracting fixed point β, f ′(β) ≥ 1. If f ′(α) = 1 then by
the Minimum Principle f ′(x) > 1 for all x ∈ (α, β), making |f(β)−f(α)| > |β−α|.
If f ′(α) < 1 then there are non-attracting fixed points β, β′ on both sides of α,
contradicting the Minimum Principle. �

Corollary 30.58. A diffeomorphism f as above, can have at most one fixed
point in int I.
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Schwarz Contraction Property. Let g : I ′ → I be a C3 interval diffeo-
morphism. Let us supply I and I ′ with the hyperbolic metrics. Then g is strictly
contracting iff Sg > 0.

Proof. Let us first show the macroscopic contraction:

(30.14) for any interval J ′ ⋐ int I ′, lhyp(g(J
′)) < lhyp(J

′).

Since affine changes of variable do not affect the sign of the Schwarzian derivative,
we can assume without loss of generality that I = I ′ = I ≡ [−1, 1] and that f is
orientation preserving. Since Möbius changes of variable do not effect it either, we
can assume that the left endpoints of J ′ and g(J ′) are placed at 0.

By Corollary 30.58, ±1 and 0 are the only fixed points of g, and 0 is topologically
attracting (as Sg > 0). Hence g(x) < x on (0, 1) implying (30.14).

Let us now show the infinitesimal contraction:

‖Df(x)‖hyp < 1 for all x ∈ I ′.
Again, normalize g as above with x placed at 0. Then g((1/2) ‖) ⊂ (ρ/2) I with
some ρ < 1. Since the map ρ−1 g : (1/2) I→ (1/2) I contracts the hypebolic metric
of (1/2) I, we conclude that ‖Dg(0)‖hyp ≤ ρ.

�

Notice that if I = [a, d], J = [b, c] ⋐ int I then

lhyp(J) = log
(c− a)(d− b)
(b− a)(d− c) = log

(
1 +
|J |
|L|

)
+ log

(
1 +
|J |
|R|

)
,

where L = (a, b), R = (c, d). So, the Schwarz Contraction Property tells us that
maps with positive Schwarzian derivative contract certain cross-ratios (which is
natural to expect, as maps with vanishing Schwarzian derivative, being Möbius,
preserve cross-ratios). Similarly, such maps contract or expand five other possible
cross-ratios that can be formed from four points {a, b, c, d}.

Koebe Distortion Property. Let f : I → I ′ be a C3 interval diffeomor-
phism with Sf < 0. Let J ′ ⊂ I ′ be a subinterval such that both components of
I ′ r J ′ have length ≥ ε|I ′|. Then

|f ′(x)|
|f ′(y)| ≤ C(ε) ∀x, y ∈ J ≡ f−(J ′).

Proof. As in the proof of the Schwarz Contraction Property, let us normalize g
so that it is orientation preserving, I = I ′ = I, and x = 0. Let y > 0 for definiteness.
By Lemma 30.57, g(x) < x for x > 0 near 0 and g′(0) ≤ 1. Moreover, since the
hyperbolic length of [x, y] in I is bounded by L(ε), we have y ≤ l = l(ε) < 1.

If g′(z) < g′(y) for some z ∈ (y, 1), then g′ would have a maximum point in
(0, 1), contradicting the Minimum Principle. So, g′(z) ≥ g′(y) on [y, 1], implying
that g′(y) ≤ 1/(1− l) (since the image of [l, 1] is contained in [0, 1]). �

Finally, let us recall class UR from §7.2.1:

Lemma 30.59. Any diffeomorphism g : I ′ → I of class UR has positive Schwarzian
derivative.

Proof. By Corollary 7.2, g contracts the hyperbolic metric, so Sg > 0 by the
Schwarz Contraction Property. �
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30.15.2. S-unimodal maps. A C3 unimodal map f : I → I is called S-unimodal
if Sf(x) < 0 outside the critical point. The above piece of analytical theory allows
one to develop the dynamical theory of S-unimodal maps to the same extent as the
the theory of real quadratic polynomials. It starts with the following result:

Singer Theorem. Let f be a proper S-unimodal map that has an attracting
or parabolic cycle α = (fnα)p−1n=0. Then the immediate basin D•(α) is non-empty
and contains the critical point.

Corollary 30.60. An S-unimodal map has at most one non-repelling cycle.

Proof. Assume α is attracting. Then the immediate basin I := D•(α) is
an open interval. If D•(α) does not contain 0, then the return map fp to I is a
diffeomorphism with negative Schwarzian derivative and with an attracting fixed
point inside, contradicting Lemma 30.57.

Assume now α is parabolic. If it is topologically repelling then the inverse
map g = f−p near α is strictly contracting (by the Schwarz Contraction Property),
making the cycle α repelling (rather than parabolic) for f . The contradiction
implies that the immediate basin I ≡ D•(α) is a non-empty open interval.

If D•(α) does not contain the critical point, then the return map F := fp to I
is a diffeomorphism. After replacing F with F 2 if needed, we can assume that F | I
is orientation preserving. Then each β ∈ ∂I is a fixed point with F ′(β) ≥ 1, while
F ′(x) < 1 at some point x ∈ int I, contradicting the Minimum Principle. �

Project 30.61. Develop a dynamical theory of S-unimodal maps.

One can go further and develop a theory for C2 unimodal maps with a power-
type critical point (i.e., of the form φ(xd) with d ∈ (1,+∞), where φ is a local C2

diffeomorphism). It is done by combining the negative Schwarzian property of the
power map near the critical point with a Denjoy distortion control away from it.
One subtlety to be aware of is that there is no Singer Theorem in this generality,
and in fact, a C2 unimodal map can have infinitely many attracting cycles.

Project 30.62. Develop a dynamical theory of C2 unimodal maps.

Notes. The topological structure of non-invertible one-dimensional maps was
first analyzed by Myrberg [Myr1, Myr2] and Sharkovsky [Sha2] in the 1960s.
It was further refined in the 1970-80s by Guckenheimer [Gu1], Misiurewicz [Mi1],
Jonker and Rand [JR], van Strien [vS], Blokh [B1, B2], and others. The Structural
Theorem (30.54) summarizes these developments in the unimodal case, emphasizing
the Renormalization viewpoint.

The No Wandering Intervals Theorem is due Guckenheimer [Gu1]. In [L6] it
was generalized to multimodal maps with negative Schwarzian derivative and non-
degenerate critical points. A key idea of [L6] was distortion bounds along pullbacks
of intervals (that were introduced there under the name of “chains of intervals”).
Further generalizations appeared in [BL4] and [MMS].

Real a priori bounds, with an application to the measure of the Feigenbaum
attractor, were first proved in the doubling case by Guckenheimer [Gu2]. The gen-
eral combinatorics was treated independently by Blokh-Lyubich [BL3] and Sullivan
(see [MvS]). Their importance for the Renormalization Theory was articulated by
Sullivan in the late 1980s.
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In fact, Real One-Dimensional Dynamics was originated in Poincaré’s thesis
[Poi2] in the context of circle homeomorphisms. Further important step was made
by Denjoy [Den] who proved absence of wandering intervals for C2-circle diffeo-
morphisms (and gave an example of a C1-diffeomorphism that has a wandering
interval). As we have already mentioned, the Denjoy Distortion Estimate (Exer-
cise 19.69) appeared in that work. Lemma 30.21 (asserting that ω(J) ∋ 0) is an
adaptation of Denjoy’s machinery to unimodal maps.

The condition of negative Schwarzian derivative was introduced to Dynamics
by Singer [Si]. The Minimum Principle and the Singer Theorem appeared in the
same paper. At about the same time, the Schwarzian derivative was used by
Herman (without calling it by name) in the context of circle diffeomorphisms [He3].
The machinery was further developed by Yoccoz [Y2], Guckenheimer [Gu2] (the
Koebe Distortion Principle appeared here), Swiatek [Sw], de Melo & van Strien
[MvS], and became the standard analytic tool in the area. (Albeit, it is not needed
for polynomial dynamics as the classical Schwarz Lemma and Koebe Distortion
Theorem do the job.)

The smooth dynamical theory was essentially reduced to the S-unimodal theory
in the work of Oleg Kozlovski [Koz] who showed that an appropriated first return
map around the critical point has negative Schwarzian derivative.

31. Yoccoz puzzle and its Principal Nest

Kids know well the “puzzle game" of cutting a picture into small pieces and
then trying to put them back together. Such a game can be played with dynamical
pictures like Julia sets and the Mandelbrot set as well. It turned out to be a very
efficient way to describe the combinatorics of the corresponding dynamical systems
and to control their geometry.

Our standing assumption will be that both fixed points of f are repelling.

31.1. Description of the puzzle. Let us fix some parameter wake Wp/q

attached to the main cardioid, and let c ∈ Wp/q, f ≡ fc. (Note that c is allowed to
lie outside the Mandelbrot set.)

The puzzle game starts by cutting the complex plane with the α-rays Ri,
i = 1, . . . q, landing at the α-fixed point (see §24.4.3). They are cyclically permuted
by the dynamics. As usually, we let

R ≡ R(α) := {α} ∪
q⋃

i=1

Ri.

This configuration divides the plane into q (open) sectors Si as described in Lemma
24.10, where S0 ∋ 0 is the critical sector, and S1 ≡ Sch ∋ v ≡ f(0) is the character-
istic, or valuable, one.

As in §28.4.6, let us select some equipotential E ≡ E(0) = Et of height t > 0
surrounding the critical value v (which is not automatic as we do not assume that
J is connected). Let Σ(0) ∋ f(0) be the (closed) subpotential disk bounded by E .
It is tiled by q (closed) topological triangles

Y
(0)
i = Σ(0) ∩ Si, i = 0, 1, . . . , q− 1,

called puzzle pieces of depth 0 (see Figure 31.1).
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Y 1
2

Y 1
1

Q1

Q2

Z1
2

Z1
1

α′α ×

1 +
2q

1 +
q

0
1

V 0

Y 0

Figure 31.1. Initial puzzle.

We label them so that Y (0) ≡ Y
(0)
0 ∋ 0 and Y

(0)
i+1 = f(Y

(0)
i ) ∩ Σ(0), where i is

considered mod q. (We will refer to ftr(Y
(0)
i ) := f(Y

(0)
i ) ∩ Σ(0) as the truncated

image of Y (0)
i .) The puzzle piece Y (0) is naturally called critical, while its truncated

image Y (0)
v ≡ Y (0)

1 ∋ v is called valuable. We let R(0) := R ∩ Σ(0).
Take now the pullback Y(1) of Y(0) by f as follows. Let Σ(1) = f−1(Σ(0)) be the

subpotential disk bounded by the equipotential E(1) := Et/2. Cut it into pieces by
the configuration R(1) := f−1(R(0)) comprising 2q (arcs of) external rays landing
at the points α and α′ = −α. We obtain a tiling of Σ(1) by 2q−1 closed topological
disks Y (1)

i called puzzle pieces of depth 1 (2q − 2 lateral triangles and one central
6-gone). We label them in such a way that

Y (1) ≡ Y (1)
0 ∋ 0, Y

(1)
i ⊂ Y (0)

i , i = 0, 1, . . . , q− 1,

and we let

(31.1) Zi := −Y (1)
i , i = 1, . . . , q− 1.

Again, the puzzle piece Y (1) is called critical, while its truncated image

Y (1)
v ≡ Y (1)

1 = ftr(Y
(1)) := f(Y (1)) ∩ Σ(1)

is called valuable. (It contains the critical value v as long as the latter belongs to
Σ(1).) See Figure 31.1.

Lemmas 24.10 and 24.11 imply that

(31.2) f(Y (1)) = Y
(0)
1 ; f(Y

(1)
i ) = f(Zi) = Y

(0)
i+1, i = 1, . . . , q− 1,
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where Y
(0)
q ≡ Y (0). Moreover, the map f : Y (1) → Y

(0)
1 is a double branched

covering, while all other maps, f : Y
(1)
i → Y

(0)
i+1 and f : Zi → Y

(0)
i+1, i = 1, . . . , q− 1,

are univalent.
If f(0) ∈ intΣ(1) rR(1), we can take the next pullback of Y(1) by f to obtain

puzzle Y(2) of depth 2 supported on the disk Σ(2) := f−1(Σ(1)) cut by the config-
uration R(2) := f−1(R(1)) of (arcs of) the external rays landing at the points of
f−2(α), etc.

In general, if fn(0) ∈ intΣ(0) rR then we define the puzzle Y(n) as the n-fold
pullback of Y(0). It is a tiling of the subpotential disk Σ(n) := f−n(Σ(0)) bounded
by the equipotential E(n) := E(t/2n) obtained by cutting Σ(n) by the configuration

R(n) := f−n(R) of the external rays landing at the points of f−n(α). The tiles Y (n)
i

of Y(n) are called puzzle pieces of depth n. Among these puzzle pieces there is one,
Y (n) ≡ Y

(n)
0 , whose interior contains the critical point 0. It is called critical. Its

truncated image Y (n)
1 ≡ ftr(Y

(0)) := f(Y (0)) ∩ Σ(n) is called valuable. (It contains
the critical value f(0) as long as f(0) ∈ Σ(n).)

Exercise 31.1. Draw all possible puzzles in the wake W1/3 up to depth 4.

Assume n ≡ depthP > 0, and let P ′ ⊃ P be the puzzle piece of depth n − 1
containing P . We say that P is protected if P ⋐ P ′. For instance, on the first level,
Z-pieces (31.1) are protected, Zi ⋐ Y (0), while the pieces Y (1)

i , i = 0, 1, . . . , q − 1,

are not (as they touch the corresponding pieces Y (0)
i ⊃ Y

(1)
i of zero depth along

external rays of R).
A Jordan disk D ⋐ C is called nice if intD ∩ fk(∂D) = ∅, k = 0, 1, 2, . . . It is

called very nice if D ∩ fk(∂D) = ∅, k = 1, 2, . . .
The following lemma summarizes obvious but crucial properties of the puzzle

pieces (that can be viewed as axioms of the puzzle):

Lemma 31.2. (i) Puzzle pieces of depth n are closed Jordan disks with piecewise
analytic boundary (“polygons”) that meets K(f) at points of f−nα.

(ii) Under f , every puzzle piece Y (n)
i of depth n > 0 is mapped onto some puzzle

piece Y (n−1)
j of depth n − 1. This map is univalent if Y (n)

i is off-critical, and is a

double covering if Y (n)
i is critical (i.e., if i = 0).

(iii) Any two puzzle pieces P and Q are either nested or have disjoint interiors.19

In the latter case, if P ∩Q 6= ∅ then P ∩Q ∩ K is a singleton.

(iv) Markov Property: If f(Y (n)
i ) intersects intY

(n)
j then f(Y

(n)
i ) ⊃ Y

(n)
j . Hence

ftr(Y
(n)
i ) is tiled by several puzzle pieces Y (n)

j .

(v) Any puzzle piece P is nice. If P is protected then it is very nice.

Proof. (i) By definition, any intY
(n)
i is the closure of a component of some

f−n(intY (0)
j ). But for a polynomial map, the full preimage of an open Jordan disk

is a disjoint union of Jordan disks. Since each Y (0)
j is a piecewise analytic triangle,

each Y (n)
i is a piecewise analytic polygon. Its boundary meets K at points of f−nα

since the boundary of Y (0)
j meets K at α.

19Observe also that P ∩ intQ 6= ∅ =⇒ intP ∩ intQ 6= ∅ since P = cl(intP ).
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(ii) Since intY
(n)
i is a component of some f−1(intY (n−1)

j ), the map f : Y
(n)
i →

Y
(n−1)
j is a branched covering. Since both pieces are simply connected, the conclu-

sion follows from the Riemann-Hurwitz formula.

(iii) Since f(R) = R, we have: f−n(R) ⊃ f−(n−1)(R), n = 1, . . . . It follows
that the tiling Y(n) is a refinement of Y(n−1)|Σ(n). This implies the first assertion.

For the second assertion, observe that if P ∩Q 6= ∅ then P ∩Q comprises two
arcs of external rays meeting at a point of J . (Compare Remark 9.3.)

(iv) It is obvious for n = 0, so let n > 0. Then by property (ii), f(Y (n)
i ) =

Y
(n−1)
k for some k. By property (iii), Y (n−1)

k contains Y (n)
j .

(v) By definition, any puzzle piece P = Y
(n)
i is a component of Σ(n) r f−n(R),

so ∂P ⊂ ∂E(n) ∪ f−n(R). The iterated images fk(E(n)), k = 1, 2, . . . , are disjoint
from Σ(n), while the iterated images of f−n(R) are contained in itself. The first
assertion follows.

For the second assertion, notice that the above iterated images are in fact
disjoint from the interior of any puzzle piece of depth n− 1. �

Exercise 31.3. Two different symmetric puzzle pieces, Q and Q′ = −Q, are
disjoint, unless they touch at 0 (which is possible only when orb 0 lands at α).

We say that two puzzle pieces P and Q are essentially equal if P ∩K = Q∩K.
In other words, they are different only by the equipotential level of their boundary
arcs. Similarly, we say that P is an essential pullback of Q if P is essentially equal
to a pullback of Q. For instance, puzzle pieces of depth one, Y (1)

i (in particular, the
Zj), are all essential pullbacks of Y (0). We also say that a family of puzzle pieces
Pi form an essential tiling of a puzzle piece Q if the Pi have disjoint interiors and⋃
Pi ∩ K = Q ∩ K. For instance, any puzzle piece Y (n)

j of depth n is essentially

tiled by the puzzle pieces if Y (n+1)
i of depth n+ 1 contained in Y (n)

j .

If the Julia set is connected and orb 0 does not land at α, then all puzzles Y(n)

are well defined, forming finer and finer tilings of nested neighborhoods Σ(n) of the
filled Julia set K that nicely behave under the dynamics. In the rest of the section,
we will describe how these puzzles capture the recurrence of the critical orbit.

If we consider below a puzzle Y(n), we assume without mentioning that fn(0) ∈
Σ(0) r R, so that Y(n) is well defined. (Not to be distracted by these details, we
suggest the reader to assume in the first reading that the Julia set is connected and
orb 0 does not land at α, so the above assumptions hold for all n ∈ N.)

For n ∈ N, let ∂Y(n) := f−nα be the set of pre-α points of order n. These are
exactly boundary points of puzzle pieces of depth n that belong to the Julia set J .
Let ∂Y :=

⋃
∂Y(n).

For z ∈ J r ∂Y(n), there is a unique puzzle piece of depth n containing z, and
we will use notation Y (n)(z) for this piece. For z ∈ ∂Y(n), we use notation Y (n)(z)
for the union of all puzzle pieces containing z. It is a topological disk, and we will
still refer to it as a “non-elementary” puzzle piece.

31.2. First Landing and Return maps.
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31.2.1. Pullbacks and the First Landing map. Consider a puzzle piece P of
depth n ≥ 1 and a point z such that fmz ∈ intP for some m ≥ 0. The pullback
of P along the orbit {fkz}mk=0 (as defined in §19.1) is the puzzle piece Q of depth
n+m containing z. Notice that since the map fm : Q→ P is proper, z ∈ intQ.

The map fm : Q→ P is a branched covering of degree 2t, where t is the number
of critical puzzle pieces among fkQ, k = 0, 1, . . . ,m− 1. In particular, if there are
no critical puzzle pieces among them, then fm : Q→ P is univalent.

Within this section, §31.2.1, we keep notation z, P , Q, n, and m for the objects
just described.

Lemma 31.4. If P is protected then so is Q. If additionally m > 0, then

Q ∩ ∂P = ∅.
Proof. Let P ′ ⋑ P be the puzzle piece of depth n− 1 = depthP − 1, and let

Q′ ⊃ Q be the puzzle piece of depth n+m− 1 = depthQ− 1. Then

fm : (Q′, Q)→ (P ′, P ).

Since the first map is proper, Q ⋐ Q′.

Assume Q ∩ ∂P 6= ∅. Applying fm, we obtain that P ∩ fm(∂P ) 6= ∅, contra-
dicting the very nice property of Lemma 31.2 (v). �

Lemma 31.5. Let fmz be the first landing of orb z in intP . Then:

(i) The puzzle pieces fk(Q), k = 0, 1, . . . ,m, have pairwise disjoint interiors.

(ii) If P is protected then the puzzle pieces fk(Q), k = 0, 1, . . . ,m, are pairwise
disjoint.

Proof. (i) Assume int fk(Q) ∩ int f l(Q) 6= ∅ for some 0 ≤ k < l ≤ m. By
Lemma 31.2 (iii), fk(Q) ⊂ f l(Q). Applying fm−l, we obtain fs(Q) ⊂ P , where
s = m − (l − k) < m. In particular, fsz ∈ int fs(Q) ⊂ intP , contradicting the
choice of m as the first landing time of orb z in intP .

(ii) Assume now fk(Q) ∩ f l(Q) 6= ∅ for some 0 ≤ k < l ≤ m. Then by
(i), fk(Q) ∩ ∂(f l(Q)) 6= ∅. Applying fm−l, we obtain fs(Q) ∩ ∂P 6= ∅, where
s = m− (l − k) < m, contradicting Lemma 31.4. �

Under the above circumstances, the map fm : Q→ P is called a branch of the
first landing map to P , while Q is called a component of the first landing domain.
Notice that this terminology is slightly inconsistent since for a point z ∈ ∂Q, m does
not have to be the moment of the first landing in P (it may land in ∂P earlier).
Hopefully, this would not lead to a confusion. In case when P is protected, the
terminology is unambiguous.

Corollary 31.6. (i) If the puzzle piece P is critical then any branch
fm : Q→ P of the first landing map is univalent.

(ii) If fm : Q → P is a branch of the first landing map to P , where Q is critical
(while P is arbitrary), then fm−1 : f(Q)→ P is univalent.

Lemma 31.7. Let Q1 and Q2 be two different components of the first landing
map to a piece P . Then intQ1 ∩ intQ2 = ∅. Furthermore, if orb 0 does not land at
α and P is protected then Q1 ∩Q2 = ∅.
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Proof. It is easy to see that Q1 and Q2 cannot be nested, implying that
intQ1 ∩ intQ2 = ∅.

Furthermore, let fm1 : Q1 → P and fm2 : Q2 → P be the corresponding
branches of the first landing map. If m1 6= m2, say m1 < m2, then fm2−m1 is
a domain of the first landing map to P intersecting ∂P , which contadicts Lemma
31.4. Otherwise, there is a moment k ∈ [1,m1 = m2] such that fk(Q1) = fk(Q2),
so W1 := fk−1(Q1) and W2 := fk−1(Q2) are different symmetric puzzle pieces.
The conclusion follows from Exercise 31.3. �

Putting all the above branches together, we obtain the (full) landing map

(31.3) L ≡ LP f :
⊔
Qi → P

(usually comprising infinitely many branches). One of the components Qi is the
original piece P on which L = id. (In case when P ∋ 0, it is naturally called critical
or central and is labelled as Q0.)

Moreover, DomL =
⊔
intQi is naturally embedded into C, while the bound-

aries ∂Qi may overlap creating a slight ambiguity for L to be defined on
⋃
Qi ⊂ C.

In case of a protected P , the whole DomL is embedded into C.
When P is critical then any off-critical component Qi 6= P of DomL is mapped

by f univalently onto another component, Qj . As for the critical component, the
map f : P → f(P ) is of course a double branched covering, and we have:

Exercise 31.8. f(P ) ∩DomL is the union of some components Qj, j 6= 0.

31.2.2. First Return map.

Lemma 31.9. Let z ∈ P , and let fmz, m > 0, be the first return of orb z to
intP . Let V ∋ z be the pullback of P under fm. Then:

(i) V ⊂ P and the puzzle pieces fk(V ), k = 1, . . . ,m, have pairwise disjoint interi-
ors.

(ii) If additionally P is protected, then V ⋐ P
and the puzzle pieces fk(V ), k = 1, . . . ,m, are pairwise disjoint.

Proof. (i) Note that due to the nice property of Lemma 31.2 (v), z ∈ intP .
Hence V ∩ intP 6= ∅, implying that the puzzle pieces V and P are nested. Since V
is a deeper puzzle piece than P , we conclude that V ⊂ P .

Since the image Q := f(V ) is a component of the first landing domain to intP ,
Lemma 31.5 (i) yields disjointness of the interiors of the puzzle pieces in question.

(ii) If P is protected then Lemma 31.5 (ii) implies in the similar way disjointness
of the above puzzle pieces.

Moreover, V ⋐ P by Lemma 31.4. �

Under the above circumstances, the map fm : V → P is called a branch of the
first return map to P , while V is called a component of the first return domain.
(Once again, for an unprotected P this terminology may be slightly inconsistent.)

It is particularly important to consider returns to critical puzzle pieces:

Corollary 31.10. If the puzzle piece P is critical then a branch fm : V → P
of the first return map is a double branched covering or univalent depending on
whether V is critical or not.
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Putting all the above branches together, we obtain the (full) first return map

(31.4) T ≡ TP f :
⊔
Vi → P

(usually comprising infinitely many branches). As in the case of L, the boundaries
∂Vi may overlap creating a slight ambiguity for T , but if P is protected then there
is no ambiguity.

If 0 returns to intP then it is contained in one of the domains Vi. We label it V0
and call critical or central. We will also call it the first kid of P . The corresponding
branch T : V0 → P is a double branched covering. It is also called critical or central.
All off-central branches T : Vi → P are univalent.

Remark 31.11. If 0 does not return to intP then f is a Misiurewicz map which
is already well understood (see §27.1). So, in what follows we usually assume that
0 returns to all puzzle pieces (“combinatorial recurrence”).

Note that by definitions,

(31.5) T = L ◦ f | DomT,

and DomT coincides with the preimage of DomL under the double branched cov-
ering f : P → f(P ). Together with Exercise 31.7 and Lemma 31.7, this implies:

Corollary 31.12. The components Vi ⊂ P of the first return domain have
disjoint interiors. If P is protected then the components themselves are pairwise
disjoint.

Proof. One remark is due: Two symmetric pullbacks Vi andV ′i of some non-
valuable component Qj ⊂ f(P ) are disjoint by Exercise 31.3. �

31.3. Generalized renormalization.

31.3.1. Generalized quadratic-like maps. Let {Qi} be a finite or countable fam-
ily of disjoint (closed) Jordan disks compactly contained in a (closed) Jordan disk
P .20 We call a map g :

⋃
Qi → P a (generalized ) polynomial-like map if

• g : Qi → P is a branched covering of finite degree which is univalent on all but
finitely many Qi;

• All the domains Qi are visited by the critical orbits.

The DH polynomial-like maps correspond to the case of a single disk Q0.

We define the filled Julia set K(g) as the set of all non-escaping points.

Let us say that a polynomial-like map g is of finite type if its domain consists
of finitely many disks Qi.

A generalized polynomial-like map is called generalized quadratic-like if it has
a single (and non-degenerate) critical point. In such a case we will assume, unless
otherwise is stated, that 0 is the critical point, and label the discs Qi in such a way
that Q0 ∋ 0.

The main example of a generalized ql map is the first return map g :
⋃
Qi → P

to a protected critical puzzle piece P restricted to the union of those disks Qi that
intersect orb 0 (assuming that 0 returns to P ). If 0 is not escaping under g, then g
is called the generalized renormalization of f on P .

We will see that in many interesting cases, g is a map of finite type. For the
moment, let us make just a simple observation:

20Recall from §50.3.1 that this means that Qi ⊂ intP .
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Exercise 31.13. The generalized renormalization of f on P is of finite type if
and only if one of the following properties holds:

(i) any point z ∈ orb 0 returns back to P in bounded time;

(ii) any point z ∈ Pf returns back to P in bounded time.

31.3.2. Itineraries for the first landing map. Let us consider the first return
map T :

⊔
Vj → P to some critical puzzle piece P of positive depth. Let z ∈

DomT r V0 be a point whose orbit lands in intV0, and let T lz ∈ intV0 be the first
landing point. Then

(31.6) T kz ∈ Vi(k), i(k) 6= 0, k = 0, 1, . . . , l − 1,

and

(31.7) ī ≡ īl(z) := (i(0), i(1), . . . , i(l − 1))

is called the landing itinerary for z. By the Telescoping Lemma, there is a puzzle
piece Dl(z) ∋ z univalently mapped by T l onto P . Hence Dl(z) ∋ z contains a
puzzle piece Q ≡ Ql(z) ≡ Q(̄i), intQ ∋ z, univalently mapped onto V0. This
is a component of the first landing domain LV0

T . On V0 itself, we naturally let
LV0

T := id with the empty itinerary (∅). Altogether, these components form the
domain for the first landing map:

(31.8) DomLV0
T =

⊔
Q(̄i),

where the union is taken over all possible itineraries ī = (i(0), . . . , i(l− 1)), l ∈ Z+,
i(k) 6= 0, together with (∅).

Since T is the first return map to P , we have (LV0
T )(z) = (LV0

f)(z) for any
z ∈ P whose orbit lands in V0. In particular, DomLV0

T = P ∩ DomLV0
f .21 By

Exercise 31.7, components Qī have disjoint interiors. If V0 is protected then the
whole components are pairwise disjoint (Lemma 31.7).

31.3.3. Renormalization of a generalized ql map. Given the first return map
T :
⋃
Vi → P to a critical puzzle piece P , let us take a closer look at the formation

of the first return map to the central puzzle piece V0.
Assuming the critical point returns to intP , we have a well defined critical

component P ′ ≡ V0 ∋ 0. Let us consider the first return map to P ′,

T ′ ≡ TP ′f :
⋃
V ′i → P ′.

Similarly to (31.5), we have:

T ′ = L′ ◦ T |V0, where L′ ≡ LP ′T.

Hence DomT ′ is equal to the full preimage of DomL′ by the double branched
covering T : P ′ → P . By (31.8), DomT ′ is decomposed into pullbacks of the
components Q(̄i). One of these components, Q(̄iv), is valuable: it contains the
critical value T (0). It has only one pullback, the central component V ′0 . Any other
component Q(̄i) has two pullbacks, V ′

ī,ε
, ε = ±1. Thus,

DomT ′ = V ′0 ⊔
⊔

ī6=ī(v)

⊔

ε=±1
V ′ī,ε.

21The latter should be understood as the union of components of DomLV0
f contained in P .

Components that touch P along the boundary but do not overlap with intP should be disregarded.
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Moreover, is V0 is protected, then all these components are disjoint.
If the critical orbit is not escaping under T ′, then the restriction of T ′ to the

union of puzzle pieces V ′i that meet orb 0 is the generalized renormalization of T on
P ′. (This will be our default choice of “the generalized renormalization" of T unless
P ′ is explicitly selected in a different way.) Note also that for the above discussion
it is sufficient to know the restriction of T to the the union of puzzle pieces Vi that
meet orb 0, so the generalized renormalization acts on generalized ql maps (with
non-escaping critical point).

31.3.4. Koebe space. To control distortion of the branches of landings and re-
turns, we need an extension of these branches to bigger domains:

Lemma 31.14. Let P be a critical puzzle piece and let P ′ ⊂ P be its first kid.
Let L′ : Q′ → V ′ be a branch of the first landing map to P ′. Then there is a disk
QK ⊃ Q′ such that L′ extends to a univalent map LK : QK → P .

Proof. Let us consider the first return map T to P (31.4), where P ′ = V0.
Let L : Q → P be the branch of the first landing map to P with Q ⊃ Q′, and let
W := L(Q′). Then L′ = (T l|W ) ◦ (L|Q′) for some l ∈ N.

Let (i(0), . . . , i(l − 1)), i(k) 6= 0, be the itinerary of W through DomT , i.e.,

T k(W ) ⊂ Vi(k), k = 0, . . . , l − 1, while T l(W ) = V0.

Then L(Q) ⊃ Vi(0) and T (Vi(k)) ⊃ Vi(k+1), k = 0, 1, . . . , l − 1, and the conclusion
follows from the Telescoping Lemma. �

31.4. First escaping moment n. By (31.2), fq(0) ∈ Y (0). So, if fq(0) ∈ U1,
there are two options: either fq(0) ∈ Y (1) (central return) or fq(0) ∈ Zi for some
i ∈ {1, . . . , q − 1} (non-central return). In the former case, if f2q(0) ∈ Σ(1), we
obtain the same options: either f2q(0) ∈ Y (1) or f2q(0) ∈ Zi for some i, etc. So,
either the critical point always returns to Y (1),

(31.9) fnq(0) ∈ Y (1), n = 0, 1, . . . ,

or else there exists the escaping moment n ∈ Z+ such that

(31.10) fnq(0) ∈ Zi for some i ∈ {1, . . . , q}
(provided fnq(0) ∈ Σ(1)).

If option (31.9) takes place , the map f is immediately renormalizable in the
sense of §28.4.6. Moreover, its little Julia set K (28.3) consists of all points that
never escape from Y (1), and the family of all little Julia sets,

Km = fm(K), m = 0, . . . , q− 1,

form a bouquet centered at α.

As we will see (Theorem 43.1) the set of parameters c ∈ Wpar
p/q for which fc

is immediately renormalizable assemble a little copy Mp/q of the Mandelbrot set
attached to the main cardioid.

31.5. Principal Nest. We are now ready to introduce the Principal Nest of
critical puzzle pieces,

(31.11) V 0 ⊃ V 1 ⊃ V 2 ⊃ · · · ∋ 0,

and associated double coverings gn : V n → V n−1.
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Assume f is not immediately renormalizable, and let n be the first escaping
moment (31.10). We let V0 ∋ 0 be the pullback of Zi along the orbit {fk}qnk=0.
Since Zi is protected, so is V 0

Exercise 31.15. Show that V 0 is the most shallow (i.e., of the smallest depth)
protected critical puzzle piece.

Assume inductively that we have defined the nest up to V n−1. If the orb(0)
never returns to intV n−1 then the construction stops here. Otherwise consider the
first return f ln0 of the critical point back to intV n−1. Let V n be the pullback of
V n−1 along this orbit and let gn = f ln : V n → V n−1. By Corollary 31.10, this map
is a double covering. Being pullbacks of a protected piece, all the V n are protected.
By Lemma 31.9 (ii), V n+1 ⋐ V n for all n ∈ N. This completes the construction.

We call V n the principal puzzle piece of level n (pay attention to the difference
between the “level” and the “depth”).

Whenever the principal piece V n−1 is well defined, we introduce the principal
first landing map to V n−1:

(31.12) Ln−1 :
⋃

i

Qnj → V n−1,

and the principal first return map gn to V n−1:

(31.13) gn :
⋃

i

V ni → V n−1,

where the components V ni are labeled so that V n0 = V n (if exists). By Lemma
31.9(ii), the components V ni are pairwise disjoint and V ni ⋐ V n−1. By (31.5),

(31.14) gn |V ni = Ln−1 ◦ f |V ni .
The Principal Nest is infinite if and only if orb 0 visits all critical puzzle pieces.

In this case, restricting the maps gn to the union of puzzle pieces V ni that meet
orb 0, we obtain the sequence of the principal generalized renormalizations. (We
will use the same notation gn :

⋃
V ni → V n−1 for them).

Topological annuli An := V n−1r intV n (which could be degenerate) are called
principal annuli. (Their open or semi-closed counterparts are also called so.)

Note finally that one can consider similar nests beginning with any other critical
piece V 0, as long as

(31.15) V 0
⋑ V 1.

Such a nest will be referred to as the Principal nest beginning with V 0. Here is a
natural choice:

Exercise 31.16. Show that (31.15) implies V n−1 ⋑ V n for any n ∈ Z+ (as
long as the Principal Nest is defined). Show that (31.15) is satisfied for V 0 :=
Y (1+(n−1)q). (Recall that the above choice was V 0 = Y (1+nq).)

31.6. Central cascades and primitive renormalization.

31.6.1. Central cascades. There are two different combinatorial possibilities on
every level which are important to distinguish. The return of the critical point to
level n− 1 (and the level itself) is called central if gn(0) ∈ intV n (see Figure 31.2).
In this case, the critical orbit returns to level n − 1 at the same time as to level
n, so that ln = ln+1 and gn+1 : V n+1 → V n is just the restriction of gn to V n+1.
Central returns indicate the fast recurrence of the critical orbit.
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Figure 31.2. Central and non-central returns.

If N +1 consecutive levels, m− 1, m,. . . , m+N − 1, are central then the nest

(31.16) V m−1 ⊃ V m ⊃ · · · ⊃ V m+N−1

is called a central cascade of length N+1. In this case, glm0 ∈ V m+N and the maps

gm+k : V m+k → V m+k−1, k = 1, . . . , N + 1,

are just the restrictions of gm to the corresponding puzzle pieces.
If this cascade is maximal then the levels m− 2 and m+N are non-central. In

this case, N +2 is equal to the escaping time it takes for the critical orbit to escape
V m under the iterates of gm:

gkm(0) ∈ V m+N−k+1 r V m+N−k+2, k = 1, . . . , N + 2.

If the return to level m− 1 is non-central (N = −1), we will formally consider
{V m−1} to be a “central cascade” of length 0. With this convention, the whole
principal nest is decomposed into consecutive maximal central cascades. In fact,
one of these cascades, the last one, can have infinite length,

(31.17) V m−1 ⋑ V m ⋑ . . . ,

in which case the critical point never escapes V m under the iterates of gm. As we
will see momentarily, this happens exactly in the primitively renormalizable case.

31.6.2. Primitive renormalization.

Theorem 31.17. Let f ≡ fc be a quadratic polynomial with connected Julia set
and both fixed points repelling. Assume f is not immediately renormalizable. Then
f is either non-renormalizable or primitively renormalizable. Moreover,

(i) f is primitively renormalizable if and only if its Principal Nest is infinite and
ends up with an infinite central cascade (31.17). In this case the map

g ≡ gm = (f lm : V m → V m−1)

is a pre-renormalization of f with period p = lm.

(ii) This renormalization is of DH type.

(iii) This is the first renormalization of f , i.e., if h : V → V ′ is another pre-
renormalization with some period q, then q is a multiple of p and K(h) ⊂ K(g).
(iv) If q = p then K(h) = K(g).

Proof. (i) Assume f is renormalizable with period q, a pre-renormalization
h : V → V ′, and the little (filled) Julia setK ≡ K(h). The Non-Cutting Assumption
(R3) from §28.4 implies that K 6∋ α. Hence K ⊂ Y 0. It follows that K is contained
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in any critical pullback of Y 0. But Zi is a pullback of Y 0, while all the pieces V m,
m = 0, 1, . . . , are pullbacks of Zi, Hence

(31.18) K ⊂
⋂
V m.

Consequently, for any m ∈ Z+, we have: fq(0) ∈ K ⊂ V m−1, so lm ≤ q, where
lm is the first return time of the critical point to V m−1. Thus, the sequence (lm)
eventually stabilizes, so all the returns are eventually central.

Vice versa, if the Principal Nest is well defined and ends up with an infinite
central cascade (31.17), then g : V m → V m−1 is a quadratic-like map with non-
escaping critical point. Moreover, by Lemma 31.9, all the pieces

fk(V m), k = 1, . . . , lm,

are pairwise disjoint, so g is a primitive pre-renormalization of f .

(ii) Let V be the set of vertices of V m−1. Let us define a map σ : V → V as
follows. For a vertex v ∈ V, consider two edges e1 and e2 of V m−1 attached to v,
and the corresponding external rays R1 and R2, and let L ≡ L(v) := R1∪R2∪{v}
be the leaf comprising these two rays. There exists exactly one vertex v′ ∈ V m

such that the similar leaf L′ := L(v′) separates L from 0. We let σ(v) = g(v′).
Any map of a finite set has a periodic point, so let us consider a periodic vertex

v, σs(v) = v. Then there exists a vertex v1 ∈ V m−1+s such that L1 separates L
from 0 and gs(L1) = L, where L1 = L(v1).

Let Π be the strip bounded by L and L1. It can be univalently lifted by gs

to a strip Π1 attached to Π along L1. Moreover, this strip is bounded by the leaf
L1 and a leaf L2 := L(v2), where v2 is a vertex of V m−1+2s such that gs(v2) = v1.
Similarly, Π1 can be univalently lifted to a strip Π2 attached to Π1 and bounded by
the leaf L2 and a leaf L3 := L(v3), where gs(v3) = v2, etc. In this way, we obtain
a chain of strips Πk attached one to another, bounded by leaves Lk = L(vk) and
Lk+1 = L(vk+1), where vk is a vertex of V m−1+pk, and such that gs univalently
maps Πk+1 onto Πk.

Let γ be an arc in Π connecting v to v1. It is lifted by gs to an arc γ1 in Π1

connecting v1 to v2 In turn, γ1 is lifted by gs to an arc γ2 in Π2 connecting v2 to
v3, etc. In this way, we obtain a chain of arcs γk in Πk attached one to another
and such that gs homeomorphically maps γk+1 onto γk. They concatenate a curve
Γ invariant under the relevant branch of g−s. The standard argument using the
hyperbolic metric in V m−1 r K(g) shows that this curve lands at some periodic
point β of K(g). Moreover, the leaves Lk converge to a leaf L(β) through β. So, β
is a cut-point for the big Julia set K(f).

In fact, β is the g-fixed point, for otherwise the ray configuration of its cycle
β would not have the structure described in §24.5.1. (The central component of
CrR(β) ∪R(β′) would not be a strip, compare Exercise 28.25.)

Thus, the period of β under f is equal to p. By Exercise 28.28 (iii), f is DH
renormalizable with respect to R(α), and the corresponding DH renormalization is
equal to g.

(iii) If f is renormalizable with period q and a pre-renormalization h : V → V ′,
then by (31.18) we have:

K(h) ⊂
⋂
V m = K(g),

so g is the first renormalization of f .
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(iv) follows from Exercise 28.28 (iii). �

In case of a non-renormalizable map, we say that the critical point is combina-
torially recurrent if it visits the interiors of all critical puzzle pieces (or equivalently,
if the Principal Nest is infinite).

Let us define the height of f as the number of the maximal central cascades
in the principal nest. We see that f is renormalizable if and only if it has finite
height.

Thus, the principal nest provides an algorithm to decide whether the map in
question is renormalizable, whether this renormalization is satellite or primitive,
and to capture this renormalization.

Exercise 31.18. If f is a DH renormalizable quadratic-like map, then all its
generalized renormalizations gn are of finite type.

On the negative side, the puzzle provides us with dynamical information only
up to the first renormalization level. If we wish to penetrate deeper, we need to cut
the little Julia sets into pieces and to go through the corresponding principal nest.
This will be discussed in §31.9.

31.7. Initial Markov tiling. In this section we will construct a Markov tiling
of Y (0) that captures combinatorics of the return of the critical orbit to the first
piece V 0 of the Principal Nest.

31.7.1. Returns to Y 0. Let Pi be a finite or countable family of topological discs
with disjoint interiors, and g : ∪Pi → C be a map such that the restrictions g|Pi
are branched coverings onto their images. This map is called Markov if g(Pi) ⊃ Pj
whenever int g(Pi) ∩ intPj 6= ∅. A Markov map is called unbranched if all the
restrictions g|Pi are one-to-one onto their images. (Compare §19.14.2.)

A Markov map is called Bernoulli if there is a topological disc D such that
g(Pi) ⊃ D ⊃

⋃
Pj for all i. Any such a D will be called a range of g. Similarly we

can define an unbranched Bernoulli map. (Compare §19.11.3.)
Let us consider the initial puzzle pieces of level one, the critical (central) one,

Y (1), and the lateral ones, Z(1)
i = −Y (1)

i , attached to α′, i = 1, . . . , q−1 (see §31.1).
Recall that they are labeled dynamically:

f(Y (1)) =
ess
Y

(1)
1 , f(Z

(1)
i ) =

ess
Y

(1)
(i+1), i = 1, . . . , q− 2, f(Z

(1)
q−1) = Y (0).

Let us now truncated these puzzle pieces by appropriate equipotentials and accel-
erate this dynamics as in §24.4.3:

Y 1 := Y (1) ∩ Σ(q), Z1
i := Z

(1)
i ∩ Σ

(q−i)
i ,

(31.19) F |Y 1 = fq, F |Z1
i = fq−i, i = 1, . . . , q− 1.

This map is a double branched covering of the critical piece Y 1 over Y 0 and is a
conformal isomorphism of each lateral piece Z1

i onto Y 0. So, it is a Bernoulli map
with range Y 0. Moreover, F (Y 1) double covers Y 1 and all the puzzle pieces Z1

i

(recall Remark 1.107 for the technical meaning of the term “covers”). If F (0) ∈ Y 1

(central return) then the pullback of Y 1 by this map is the initial critical (central)
piece Y 2 ≡ Y (2q) of level two, while each Z1

i has two univalent pullbacks, initial
off-critical pieces Z2

ij of level two, j ∈ {0, 1} (see Figure 31.3 and Remark 31.19
below)
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Figure 31.3. Initial tiling (p/q = 1/3, n = 2).

Now, F (Y 2) double covers all these puzzle pieces. If we again have a central
return, (i.e., F (0) ∈ Y 1 and hence F (0) ∈ Y 2) then the degree two pullback of Y 2 by
F gives us the initial critical piece of level three, Y 3, while the univalent pullbacks
of the Zij produce four off-critical initial pieces Z3

ijk of level three, k ∈ {0, 1}.
Repeating this procedure n − 1 times (where n is the first escaping moment

from §31.4) we obtain the initial critical (central) nest

(31.20) Y 1 ⊃ Y 2 ⊃ . . . ⊃ Y n

and a family of off-critical puzzle pieces

(31.21) Zmij , m ∈ {1, . . . ,n}, i ∈ {1, . . . , q− 1}, j ∈ {0, 1}m−1.
As an outcome, we obtain the tiling

(31.22) Y 0 =
ess
Y n ∪

n⋃

m=1

⋃

ij

Zmij .

Moreover, Fn(0) ∈ Z1
i for some i ∈ {1, . . . , q− 1}, and hence

(31.23) F (0) ∈ Zn
ij for some j ∈ {0, 1}n−1.

Let us accelerate this dynamics further on the pieces Zmij by setting

(31.24) G|Zmij = Fm.

This map carries univalently each puzzle piece Zmij onto Y 0.

Remark 31.19. Let us finish with a comment on the labeling of the Zmij by
dyadic sequences j ∈ {0, 1}m−1, which was not specified so far. Here is a natural
way. Let us consider the central strip Π from §24.4.3. Since K∩Π is a hull containing
{α, α′} = ∂Π∩K, the complement ΠrK comprises two domains, Π0 and Π1, repre-
senting the upper and lower ends of Π. This allows us to encode the orbit Fn(Zmij ),
n = 0, . . . ,m−2 dynamically by dyadic sequences j ∈ {0, 1}m−1. Interpreting these
sequences as binary representations of numbers j ∈ {0, 1, . . . , 2m−1 − 1}, we come
up with labeling the pieces in question by dyadic angles θj = (2j + 1)/2j ∈ R/Z.
Notice that the cyclic order of these angles corresponds to the cyclic order of the
pieces Zmij induced by the cyclic order of the external rays that bound these pieces.

31.7.2. Escape from Y 1. Let us look closer at the central piece Y n. Its image
under F = fq two-to-one covers all the initial pieces of level n. The pullback of Zn

ij

from (31.23) gives us exactly V 0 ∋ 0, the first puzzle piece in the Principal Nest
(31.11). The pullbacks of the other pieces Zn

ij provide some off-critical pieces

Zn+1
ij , i ∈ [1, q− 1], j ∈ {0, 1}n, (ij) 6= (ij).

Finally, we have two univalent pullbacks Q1 and Q2 of Y n. Altogether, these pieces
essentially tessellate the piece Y n:

(31.25) Y n =
ess
V 0 ∪ (Q1 ∪Q2) ∪

⋃

ij

Zn+1
ij .
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Let us extend map (31.24) to an accelerated (branched) Markov map

(31.26) G : V 0 ∪ (Q1 ∪Q2) ∪
n+1⋃

m=1

⋃

ij

Zmij → Y 0,

by letting G|V 0 and G|Zn+1
ij equal to Fn+1, while G|Qk = F . Under this map,

each piece Zmij is mapped univalently onto Y 0, each piece Q1, Q2 is mapped univa-
lently onto Y n, while the piece V 0 is two-to-one mapped onto Y 0 (with branching
at 0).

31.8. Solar system. We will now describe a Bernoulli scheme which per-
forms a transit from the bottom to the top of a central cascade. Such transits will
be treated as single steps of the generalized renormalization procedure (cascade
renormalization).

Consider a central cascade (31.16) and let g = gm : V m → V m−1. Then the
restrictions

g : V k r V k+1 → V k−1 r V k, k = m, . . . ,m+N − 1,

are double branched coverings. Pull the non-central puzzle pieces V mi ⊂ V m−1rV m
from the top annulus to the consecutive annuli V k−1 r V k. We obtain a family of
puzzle pieces W k

j ⊂ V k−1 r V k such that gk−m univalently maps W k
j onto some

puzzle piece V mi ≡Wm
i (see Figure 31.4).

x

m− 1

m

m+ 1

m+N

m+N + 1

Figure 31.4. Solar system

Let us consider the following map:

(31.27) Gm :
⋃

W k
j → V m−1, G |W k

j = gm ◦ gk−m.
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Figure 31.5. Fibonacci combinatorics

This map is (unbranched) Bernoulli in the sense that it univalently maps each
domain W k

j onto V m−1 (see §19.11.3). Together with the Telescoping Lemma, this
picture implies:

Lemma 31.20. (i) Each branch of any first landing map

Lk :
⋃
Qki → V k, k = m, . . . ,m+N − 1,

admits a univalent extension onto V m−1.

(ii) Each double covering

gn : V n → V n−1, n = m, . . . ,m+N,

can be represented as hn ◦ f = φn ◦ f0, where hn and φn are univalent maps with
range V m−1.

(iii) A similar representation hn,i ◦ f = φn,i ◦ f0 holds for each univalent branch
gn,i : V

n
i → V n−1, i 6= 0.

Note that in the last statement, both maps f |V ni and f0 |V ni are univa-
lent. However, they can still have big nonlinearity [if diamV ni is big compared
to dist(V ni , 0)].

31.8.1. Fibonacci combinatorics. Let us say that the nth level is Fibonacci if it
is non-central (so, gn(0) 6∈ V n) but g2n(0) ∈ V n. So, under gn the critical point
leaves the central piece V n but then immediately returns back to it: this is the
fastest combinatorial recurrence in the non-central case.

The following property justifies the name:

Exercise 31.21. Let tn be the return time of 0 to V n under the original map f .
Assume we have two Fibonacci levels in a row, n and n+1. Then tn+1 = tn+ tn−1.
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31.9. Puzzle associated with a more general ray configuration. The
key property we need for initiating the puzzle is to have an invariant ray configura-
tion cutting the Julia set into several pieces. Above we used the first available one,
R(α). Instead, we could start with any periodic ray configuration R ≡ ⋃R(αi)
associated with some repelling cut-cycles αi.22 Let Y[R] be the corresponding puz-
zle. This puzzle captures the biggest among little Julia sets K that are not cut by
R (if exists). If such a K does not exist, we say that f is non-renormalizable with
respect to R. The whole theory comes through without essential changes except
the specific construction of the first protected puzzle piece V 0 (see §31.5).

Assume now that f is n times DH renormalizable with little (filled) Julia sets
K [m] = K(Rmf), m = 0, 1, . . . , n. Let αm, βm ∈ Km be their α−,β−fixed points,
and let αm,βm ∈ K(f) be the corresponding f -cycles. Assume both fixed points
αn and βn of Rnf are repelling. Then we can start with a ray configuration

R :=

n⋃

m=0

R(αm) ∪R(βm)

The corresponding puzzle tilings of the big Julia set K(f) induce tilings of the
little Julia set K [n] that are exactly the same as the standard puzzle tilings of K [n]

viewed as the Julia set of the renormalization Rnf . So, if Rnf is not immediately
renormalizable, then it has a protected puzzle piece as constructed in §31.5, which
provides us with a protected puzzle piece V 0[n] for the big puzzle Y[n] := Y[R]. It
originates the principal nest

(31.28) V 0[n] ⊃ V 1[n] ⊃ . . .
which is

• either finite (if f is combinatorially non-recurrent with respect to Y [n]),

• or captures the next little Julia set K [n+1] ⊂ K [n] (if f is n+ 1 times renormal-
izable, with the (n+ 1)st renormalization being priitive),

• or has infinitely many non-central levels (if f is exactly n times renormalizable).

We say that the puzzle Y[n] is associated with the nth renormalization level.
(Note that it is the puzzle for the original map rather than its renormalization!)

In the infinitely renormalizable case, we let Y[∞] :=
⋃Y[n].

31.10. Canonical Julia nest (revisited). Finally, we can identify all the
renormalizations as DH, so that the canonical Julia nest described in §28.4.7 will
become the full nest of little Julia set associated with various renormalizations. It
will also provide us with the complex counterpart of Theorem 30.27.

Theorem 31.22. Any renormalization of a quadratic polynomial f is of DH
type.

Proof. Let p be a renormalization period with little filled Julia set K. Let
1 < p1 < p2 < . . . be the DH renormalization periods with the nest of little Julia
sets

(31.29) K(f) ≡ K [0] ⊃ K [1] ⊃ K [2] ⊃ . . .
given by Corollary 28.29.

22We can also use non-cutting cycles as well if convenient for some reason, though they would
not contribute to the refinement procedure.
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Take the biggest n such that pn ≤ p. Let fn : Wn → W ′n be the degenerate ql
map that produces K [n]. By Exercise 28.28 (ii), p is a multiple of pn and K ⊂ Kn.

If p > pn, then by Theorem 31.17 (iii) (or rather, by its ql version applied to
Rnf , see §31.9), K = K [n+1] and p = pn+1, contradicting the choice of n.

So, p = pn, and then K = K [n] by Exercise 28.28 (iii). �

Thus, in Corollary 28.29 we can skip “DH” to obtain the canonical nest of little
Julia sets, one for each renormalization period pn:

(31.30) K(f) ≡ K [0] ⊃ K [1] ⊃ K [2] ⊃ . . . .
Moreover, if f is n times renormalizable, and the α-fixed point of the last

renormalization Rnf is satellite parabolic, then we can complete this sequence
with the defenerate renormalization Rn+1f (which is a cauliflower ql map).

31.11. Real Puzzle and its Principal Nest. Assume now that f is a real
ql map.23 Recall that I = [−β, β], where β is the fixed point of f with multiplier
f ′(β) ≥ 1. The other fixed point is called α. Assume both of them are repelling.
Then α has a negative multiplier f ′(α) < −1 (see Exercises 28.4 (iv) and 28.10).

The real puzzle YR is just the slice of the complex puzzle. It starts with a
tessellation Y(0)

R of I into three intervals Y (0)
R,i , the central interval Y (0)

R ≡ Y
(0)
R,0 =

[−α, α] and two components of IrintY
(0)
R . The further tessellations Y(n)

R = {Y (n)
R,i }

are defined as the pullbacks of Y(0)
R under the iterates fn.

As in the complex situation, an interval J is called nice if

fn(∂J) ∩ int J = ∅, n = 0, 1, . . . ,

and very nice if fn(∂J) ∩ J̄ = ∅, n = 0, 1, . . . . One can also define protected real
puzzle pieces in the same way as in the complex situation.

The real puzzle has the same basic properties as the complex one:

Exercise 31.23. For any f ∈ QR, we have:
(i) Real puzzle pieces of depth n are closed intervals whose boundary points belong
to f−nα.

(ii) Under f , every real puzzle piece Y (n)
R,i of depth n > 0 is mapped to some puzzle

piece Y (n−1)
R,j of depth n − 1. This map is a diffeomorphism if Y (n)

R,i is off-critical,

and is properly univalent if Y (n)
R,i is critical (i.e., if i = 0).

(iii) Any two real puzzle pieces P and Q are either nested or have disjoint interiors.

(iv) Markov Property. If f(Y (n)
R,i ) intersects intY

(n)
R,j , let Y nR,ij := Y

(n)
R,i ∩ f−1(Y

(n)
R,j ).

Then the map f : Y
(n)
R,ij → Y

(n)
R,j is either properly unimodal or a homeomorphism

depending on whether intY
(n)
R,i ∋ 0 or otherwise.

(v) Any real puzzle piece P is nice. If P is protected then it is very nice.

Recall from §§28.4.6 and 31.4 the notion of immediately renormalizable maps.
In the real case, there is only one immediately renormalizable combinatorics, the
simplest one:

23In fact, the discussion can be easily adapted to more general classes of real unimodal maps,
incuding class G.
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Exercise 31.24. The following properties of a real ql map f : I → I are
equivalent:

(i) f is immediately renormalizable;

(ii) f is doubling renormalizable;

(iii) f2(0) ∈ Y (1)
R ≡ [α, α′].

Moreover, if f is not immediately renormalizable then:

a) f2(0) ∈ (α′, β], i.e., the first escaping moment n is equal to 1 (see §31.4);

b) If f2(0) 6= β (i.e., f is not Chebyshev) then orb 0 eventually returns to Y (0)
R .

The Real Principal Nest is the real slice of the complex one. It is the nest of
intervals

(31.31) I0 ⊃ I1 ⊃ . . .
such that In+1 is inductively defined as the pullback of In under the first return
map of the critical point to int In. As in the complex situation, the choice of
the initial interval I0 is flexible. Our default choice will be I0 := [α,−α] ≡ Y

(1)
R

(compare Exercise 31.16).
As in the complex situation, the Principal Nest is infinite if and only if orb 0

visits all critical puzzle pieces (combinatorial recurrence).
Slicing complex first landing maps (31.3), we obtain (principal ) real first landing

maps

(31.32) Ln :
⊔
Jni → In

to the intervals In, where {Jni } is a family of intervals with disjoint interiors mapped
diffeomorphically onto In. One of these intervals coincides with In itself, call it
Jn0 . Another one contains the critical value f(0); call it Jn1 . Moreover, for n ≥ 1,
the intervals Jni are pairwise disjoint.

We can also consider real first return maps24

(31.33) gn :
⊔
Ini → In−1,

to the intervals In−1. Then gn = Ln ◦ f , and in particular

(31.34) gn| In = hn ◦ f | In, where hn ≡ Ln| Jn1 .

Theorem 31.25. Let a map f : I → I be non-renormalizable and let the critical
point be combinatorially recurrent. Then the Principle Nest shrinks: |In| → 0,
and so do all the domains of the first landing maps:

max
i
|Jni | → 0.

Proof. The first assertion follows from Corollary 30.32 (which is a conse-
quence of the topological exactness of the restriction f | T ). Exactness of f | T also
implies shrinking of the intervals Jni contained in T . To see this in general, notice
that the intersection of a non-shrinking nest of intervals Jni would be a homter-
val. �

24It would be consistent to call real puzzle pieces V n
R,i

, but we prefer a simpler notation.
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Finally, we can define a real central cascade of the Principal Nest,

(31.35) Im−1 ⊃ Im ⊃ · · · ⊃ Im+N−1

as the slice of a complex one. It is instructive to distinguish two types of cas-
cades, Chebyshev (or Ulam-Neumann) and parbolic or (saddle-node), depending on
whether the return is high (i.e., int(gm(Im)) ∋ 0) or low. In the former case, the
return maps gm : Im → Im−1 with long central cascades are perturbations of
Chebyshev maps, while in the latter case, they are perturbations of parabolic maps
with multiplier 1.

Exercise 31.26. Transfer the discussion of §31.6 to the real case.

Exercise 31.27. Review §§25.6.7–25.6.12 on Hubbard trees from the viewpoint
of the interval theory just developed.

Notes

On a brief history of the puzzle see Notes to §45.
The canonical nest of ql renormalizations and little Julia sets appeared in

[McM1]. However, it was not identified with the DH renormalizations or with
the renormalizations corresponding to the puzzle. It seems that a complete ac-
count of this folklore story provided by Theorem 31.17 has never been recorded
before.

32. General combinatorial theory

In the first half of this section, we will discuss several models for the Julia
set: lc, combinatorial, critical, and puzzle models. It could look confusing at first
glance, but luckily, they all coincide under mild assumptions.

In the second half, we will discuss the Kneading Theory.

32.1. Various models.

32.1.1. LC model. In §9.4.2 we described a general locally connected model
Klc for a hull K ⊂ C. It is obtained by taking the quotient of (C,D) by the clean
geodesic lamination Llc generated by all cut-lines of K.

Applying this construction to the dynamical setting, we obtain a lamination
Llc(f) and a lc model Klc ≡ Klc(f) for the filled Julia set (and in particular, for
the Julia set Jlc ≡ Jlc(f)). All these objects are endowed with dynamics:

Exercise 32.1. The lamination Llc is completely invariant under the doubling
map T . The map f : (C,K,J ) → (C,K,J ) induces a natural topological double
branched covering Flc : (R2,Klc,Jlc) → (R2,Klc,Jlc). The map f is naturally
semi-conjugate to Flc.

32.1.2. Critical model. Let us say that a ray Rθ (and its angle θ) is valuable
if it converges to the puzzle end E(v) of the critical value. (In particular, any ray
landing at v is valuable.) As we know from Exercise 9.10 or from Lemma 32.37
(from Appendix), there is at least one valuable ray Rθ. Let γθ = (e(θ/2),−e(θ/2))
be the corresponding diameter in D. Taking the closure of its pullbacks and
cleaning it up, we obtain a lamination Lcrit(f) := Lθ (see Appendix), to which we
refer as the critical lamination of f . We let Fcrit ≡ Fθ be the corresponding model
for f .
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32.1.3. Combinatorial model. Let f ≡ fc, c ∈ M, be a quadratic polynomial
with connected Julia set. Let us associate to f a geodesic lamination in D in the
following way. For any periodic or pre-periodic cut-point a ∈ J , let us consider all
the rays Rθi landing at a. By definition of a cut-point, there exist at least two such
rays, and by Theorem 24.5, there exist only finitely many of them.

Mark points e(θi) ∈ T on the unit circle and consider their hyperbolic convex
hull in D. We obtain a hyperbolic ideal polygon Pa ⊂ D. The boundaries of all these
polygons form the rational (geodesic) lamination LQ(f) of f . Its closure Lcom(f)
is the combinatorial (geodesic) lamination. Obviously, it is completely invariant, so
the doubling map projects to a topological double branched covering

Fcom : C/Lcom → C/Lcom.

The quotient Kcom := D/Lcom is called the combinatorial filled Julia set of f .
Respectively, the quotient Jcom := T/Lcom is the combinatorial Julia set of f . The
doubling map acts on each of them as a topological double branched covering.

Obviously, Llc ≻ Lcom, so Flc is naturally semi-conjugate to Fcom.
Two maps f and f̃ (and the corresponding parameters c and c̃) are called

combinatorially equivalent if they have the same rational geodesic laminations:
LQ(f) = LQ(f̃) (or equivalently, Lcom(f) = Lcom(f̃)). In other words, they have
the same landing pattern for the rational external rays.

Note that if the Böttcher conjugacy h : D(∞) → D̃(∞) extends continuously
to the Julia sets, then the maps f and f̃ are combinatorially equivalent. In par-
ticular, by the J -Stability Theorem 36.2, for any component ∆ of intM, any two
parameters c ∈ ∆ and c̃ ∈ ∆ are combinatorially equivalent.

Exercise 32.2. If two quadratic polynomials f and f̃ are topologically conju-
gate, then they are combinatorially equivalent.

32.1.4. Combinatorial laminations R[n]. Let us consider a periodic ray con-
figuration R ≡ R(α) of some cut-cycle α. It generates a completely invariant
lamination L(R) as described in §25.7.2 for hyperbolic maps (see also §32.5.1 from
the Appendix below). Namely, take the characteristic leaf γch of this configuration
and pull it back under the doubling map exactly as in the hyperbolic case. Taking
the closure of all these leaves, we obtain the desired lamination.

Lemma 32.3. Assume that a quadratic polynomial f is DH renormalizable with
respect to a periodic ray configuration R ≡ R(α) (as described in §28.4.3). Then the
lamination L(R) corresponds to the actual lamination of cut-lines for f . Moreover,
none of these cut-lines cut through the little Julia sets.

Proof. Let Rθ± be the characteristic rays for R (landing at the characteris-
tic periodic point αch ∈ α). Let us consider a continuum concatenated of a ray
Rθ−/2 landing at the central periodic point α0 ∈ α, the little Julia set K, and the
symmetric ray Rθ−/2+1/2 landing at α′0. It corresponds to the diameter σ in D

connecting ±e(θ−/2).
Since the preimages of the characteristic cut-line Lch = Rθ− ∪Rθ+ ∪αch do not

cut through K, the corresponding leaves in D do not cross the diameter σ. This is
exactly the condition that determines the pullbacks of γch (see §25.7.2). �

Under the circumstances of Lemma 32.3, we can also consider the lamination
Lcom(f ;R) defined as the closure of all rational cut-lines through (pre-)periodic
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points that do not belong to little Julia sets corresponding to the ray configuration
R. We call it the combinatorial lamination associated with the configuration R.

Remark 32.4. As we will see later (Proposition 32.9), the above two lamina-
tions actually coincide: Lcom(f ;R) = L(R). We will also see in §37.3 that any
periodic ray portrait R corresponds to some hyperbolic map f◦, so the quotient of
D by the corresponding lamination L(R) gives a topological model for K(f◦). The
original map f will be interpreted as the “tuning” of f◦ by some quadratic map fd
(related to the renormalization of f), see §43.4.

If f is n+1 times renormalizable with R generating the (n+1)st renormalization

(where n ∈ N), we will use notation L[n]
com ≡ L[n]

com(f) for Lcom(f ;R), and will refer
to it as the combinatorial lamination of (renormalization) level n.

32.1.5. Puzzle model. Finally, let us consider the puzzle Y [n] of some renor-
malization level n. Vertical sides of the corresponding puzzle pieces belong to a
completely invariant family of cut-lines. The corresponding hyperbolic geodesics
form a completely invariant geodesic lamination L[n]

puz called the puzzle lamination
of level n. The corresponding double branched covering

Fn : (R2,K[n]
puz)→ (R2,K[n]

puz).

is called the puzzle model for f of (renormalization) level n.
In this way, we obtain an increasing family of laminations. Their limit

Lpuz := cl
⋃
L[n]
puz

is called the puzzle lamination for f . The corresponding quotient

Fpuz : (R
2,Kpuz)→ (R2,Kpuz), where Kpuz := D/Lpuz,

is called it the puzzle model for f . It is a topological double branched covering of
the plane.

Obviously, Lcom ≻ Lpuz.

Lemma 32.5. If f is periodically repelling then the lamination Lpuz is polygonal.

Proof. By No Wandering Gaps Theorem (see Appendix), a non-polygonal
gap eventually lands in a cycle O of gaps of some period p. By Proposition 32.41,
O contains a central gap Q such that 0 ∈ Q. But then fp(Y ) ⊃ Y for any critical
puzzle piece Y , which is false for periodically repelling maps.

�

32.2. Comparison of different models. In the previous section we have
associated to any quadratic polynomial f several completely invariant laminations:

Lcrit and Llc ≻ Lcom ≻ Lpuz.

Here we will show that under fairly general conditions, all these laminations coin-
cide.
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32.2.1. Lcom vs Lpuz. Let us start by showing that the puzzle generates the
whole lamination Lcom, meaning that any leaf of Lcom can be approximated by
leaves corresponding to the vertical puzzle boundary.

Lemma 32.6. (i) Assume both fixed points of f are repelling. Let a ∈ J be a
periodic point of f that does not belong to any little Julia set. Then

diamY (m)(a)→ 0.

(ii) Assume f is n times renormalizable (n ≥ 1). Let a ∈ J be a periodic point of
f that does not belong to any little Julia set K [n]

i of renormalization level n. Then
a is repelling and

diamY [n−1](m)(a)→ 0 as m→∞.
(iii) Assume f is exactly n times renormalizable (n ≥ 1), with both fixed points of
Rnf repelling. Then any periodic point a is repelling and

(32.1) diamY [n](m)(a)→ 0 as m→∞.

(iv) If f is infinitely renormalizable, then for any periodic point a there exists a
renormalization level n ∈ N such that (32.1) holds.

Proof. (i) Let p be the period of a. Let us first show that there exists a non-
critical piece Y ≡ Y m(a) such that f−p univalently maps Y into itself, where f−p

is the branch of the inverse map fixing p.
Assume f is renormalizable. Let K be its little Julia set of top level, of period

q, and let K :=

q−1⋃

i=0

f iK) be its orbit . Then for any neighborhood U ⊃ K, there

exists a puzzle piece Y (m) ⊃ K such that the set Y(m) :=

q⋃

i=0

f i(Y (m)) is contained

in U . (Note that this is true in both satellite and primitive cases.) Since a 6∈ K, the
set Y(m) is disjoint from orb a for m big enough. It follows that the piece Y (m)(a),
and its pullbacks along orb a, are disjoint from Y (m), so Y (m)(a) has the desired
property.

If f is non-renormalizable, let is consider the principal return maps gn = f ln :
V n → V n−1. Since the pieces fk(V n), k = 0, 1, . . . , ln − 1, are pairwise disjoint,
these domains do not contain periodic points of period < ln. But ln → ∞ in the
non-renormalizable case, implying that for n big enough,

orb a ∩
ln⋃

k=0

fk(V n) = ∅.

Moreover, V n−1 = Y (m) for some m. It follows that the piece Y (m)(a), and its
pullbacks along orb a, are disjoint from V n, implying the desired.

We can now slightly thicken the puzzle piece Y ≡ Y (m) to an open disk D ⊃ Y
such that f−p(D) ⋐ D (compare §28.4.3). Applying the Schwarz Lemma, we
complete the proof.

The proof of (ii) follows the same lines as (i) in the renormalizable case, using
that the puzzle pieces Y [n−1](m) shrink (as m → ∞) to the little Julia set K [n] of
renormalization level n.
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The proof of (iii) follows the same lines as (i) in the non-renormalizable case,
using the puzzle Y[n] instead of Y[0].

In case (iv), a does not belong to the little Julia sets of some renormalization
level n (see Exercise 28.32), so the conclusion follows from (ii). �

Corollary 32.7. (i) Repelling periodic points are perfectly rigid and well
branched.

(ii) Yoccoz puzzle pieces associated with any periodic ray portrait R(α) are perfect.

Proof. By the above lemma, for any repelling periodic point β, there is a
shrinking nest of puzzle pieces Pm(β) whose interior contains β (these pieces could
be finite unions of Yoccoz puzzle pieces that have β as a vertex). Hence β is rigid.
It has only finitely many accesses by Theorem 24.5. Hence it is well branched by
Corollary 9.13.

The initial puzzle pieces Y (0)
i are obtained by cutting a subpotential domain

with the rays of R(α). The corresponding pieces of K are connected because the

points of α are well branched. Hence the puzzle pieces Y (0)
i are perfect. The deeper

puzzle pieces are perfect as pullbacks of the Y (0)
i .

Returning back to the repelling point β, we see that it is perfectly rigid since
the puzzle pieces Pm(β) are perfect. �

Lemma 32.8. Assume f is periodically repelling. Then:

(i) If a puzzle impression P∞ ≡ P∞(E) (in the general sense of §9.1.3) is periodic,
then P∞ is a periodic point.

(ii) The lamination Lcom is polygonal (and hence maximal).

Proof. (i) It is similar to the proof of the previous lemma. Let p ∈ Z+ be the
period of our impression, so fp(P∞) ⊂ P∞. It follows (as in Exercise 28.32) that

P∞ is not contained in the little Julia sets K [n]
i of sufficiently big renormalization

level n. As in the proof of Lemma 32.6 (i), it implies existence of a Yoccoz puzzle
piece P ⊃ P∞ which is univalently mapped under fp onto itself. By thickening
it and applying the Schwarz Lemma, we conclude that P∞ contains a repelling
periodic point a and the corresponding pullbacks f−pn(P ) ∋ a shrink to a.

(ii) Assume the lamination Lcom has a non-polygonal gap Q. It corresponds to
some puzzle end E. By the No Wandering Gaps Theorem (32.40), Q is preperiodic,
so we can assume without loss of generality that it is periodic (of some period p).
By (ii), Q is a periodic point a. By (i), the corresponding puzzle end is polygonal
(maybe degenerate) – contradiction. �

Proposition 32.9. (i) If both fixed points of f are repelling and f is non-
renormalizable then the whole lamination Lcom is generated by the puzzle Y.

(ii) If f is n times renormalizable (n ≥ 1) then the tuned lamination L[n−1]
com is

generated by the puzzle Y[n− 1]:

L[n−1]
com = L[n−1]

puz .

(iii) If f is exactly n times renormalizable, with both fixed points of Rnf repelling,
then the whole lamination Lcom is generated by the puzzle Y[n]:

Lcom = L[n]
puz ≡ Lpuz.
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(iv) If f is infinitely renormalizable then the lamination Lcom is generated by
Y[∞]:

Lcom = Lpuz.

Proof. (i) Let a ∈ J be any periodic point. Lemma 32.6 (i) implies that a
can be separated by a puzzle cut-line from any other point z ∈ J . Hence any ray
landing at a can be approximated by puzzle cut-lines. Taking iterated pullbacks
of all these rays, we obtain the family of all rational Green cut-lines. By definition,
the corresponding hyperbolic geodesics generate Lcom.

(ii) Take any periodic point a ∈ J that does not belong to the little Julia

sets K [n]
i of renormalization level n. Lemma 32.6 (ii) implies, in the same way as

above, that any ray landing at a can be approximated by cut-lines of the puzzle
Y[n− 1]. Iterated pullbacks of all these rays form the family of all rational Green

cut-lines that do not intersect the K [n]
i . By definition, the corresponding hyperbolic

geodesics generate L[n−1]
com .

(iii) In this case, the rays landing at any periodic point a ∈ J are generated
by the puzzle Y[n].

(iv) In this case, any periodic cycle a is repelling and lies outside some little
Julia set K [n] (see Exercise 28.32). Hence the rays landing at a are generated by
the puzzle Y[n]. �

32.2.2. All the laminations are the same.

Theorem 32.10. Let f ≡ fc be a periodically repelling quadratic polynomial
with connected Julia set (i.e., c ∈M). Then:

(i) There exist at least one and at most finitely angles θ ∈ (RrQodd)/Z such that
Lcom(f) = Lθ. These angles are the external angles of the valuable dynamical rays
Rθ. Moreover, if f is not critically preperiodic then there exists at most two such
angles.

(ii) All of the above lamination coincide: L(f) := Lcrit = Llc = Lcom = Lpuz.

(iii) The lamination L(f) is polygonal.

Remark 32.11. We will see later (Theorem 47.15) that any polygonal lamina-
tion Lθ can be realized as Lcom for some quadratic polynomial.

Proof. By Proposition 32.9, Lcom = Lpuz. By Proposition 32.5, the latter is
polygonal. Hence it is maximal among clean laminations. Since Llc ≻ Lpuz, these
two laminations coincide as well.

Let us show that Lcrit = Lcom. Let θ be a valuable angle, and let I0 be the
puzzle impression of the critical puzzle end. Since both rays Rθ/2 and Rθ/2+1/2

accumulate into I0, the union

Γθ := Rθ/2 ∪ I0 ∪Rθ/2+1/2

is connected.
Let L = Rφ ∪ {a} ∪ Rψ be a cut-line through any periodic point a ∈ J . Since

a is rigid, it is not contained in I0. It follows that L is disjoint from Γθ, and hence
the pairs {e(φ), e(ψ)} and {e(θ/2),−e(θ/2} are unlinked in T. Hence the geodesics
γθ and (e(φ), e(ψ)) are disjoint in D.
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Thus, γθ is disjoint from all periodic leaves of Lcom, and hence from their
iterated pullbacks, which form LQ. As the closure of LQ is Lcom, we conclude that
γθ is unlinked with Lcom. By Proposition 32.5, the latter is polygonal, so there are
two possibilities:

a) Lcom has a leaf passing though 0;

b) Lcom has a polygonal central gap Q0;

In case a), the central leaf must coincide with γθ. Then by Lemma 32.38,
Lθ ≻ LQ and hence Lθ ≻ Lcom.

In case b), γθ is a diagonal of Q0. By No Wandering Gaps Theorem, any gap
Q in Lcom is an iterated preimage of Q0. Since the gaps are dense in L, so are the
iterated preimages of γθ.

Remark 32.12. In case when Q0 has > 4 sides, f is critically preperiodic, and
the whole desired structure follows from the results of §27.1.

In either case, Lcrit ≡ Lθ = Lcom. �

Corollary 32.13. Let f be a periodically repelling quadratic polynomial with
locally connected Julia set. Then it is topologically conjugate to its combinatorial
model Fcom. This combinatorial model coincides with Fθ where θ is any valuable
angle. Moreover, if f is not critically preperiodic then there exists at most two
valuable angles.

32.3. Cantor case. Let us now consider a quadratic polynomial f ≡ fc with
Cantor Julia set J , so c ∈ C rM. As was discussed in §23.5.3 and §24.3.3, it has
a well defined valuable ray Rθ landing at v = c whose preimages, two symmetric
critical rays ±Rθ/2 crashing at 0, form a proper topological line L. Moreover, the
further pullbacks of L form lines through the points of Crit∞ comprising pairs of
crashing rays. All other rays safely land at some points of J .

Note that if θ 6∈ Qodd/Z (so the critical rays are not periodic), then the separa-
trices landing at 0 do not crash anymore, so they are safely land at some points of
J . Further pullbacks of these separatrices (landing at the precritical points) have
the same property.

Let us partition the unit circle T ⊂ C into two (open) half-circles T0 and T1

by the diameter connecting ±e(θ/2), where T0 ∋ 1 (if θ = 0 or 1/2 then let T0 be
the upper half-circle).

For an angle γ ∈ R/Z that does not land at θ under the iterates of the doubling
map T , we can define the itinerary of γ rel this partition:

ε̄(γ) = (ε0, ε1, . . . ), where εn ∈ {0, 1}, Tnγ ∈ Tεn .

Let

Pn := Cr

n⋃

m=0

f−m(Rθ).

Exercise 32.14. Let P 1
0 and P 1

1 be components of P1 ≡ C r L. The set Pn
consists of 2n components Pnε0...εn−1

, εm ∈ {0, 1}, naturally labeled (for n ≥ 1) by
dyadic sequences according to their itineraries through P 1

0 and P 0
1 .

The following assertion describes the landing pattern of regular rays:

Proposition 32.15. Under the above circumstances, two regular rays Rγ and
Rγ′

land at the same point of J iff ε̄(γ) = ε̄(γ′).
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Proof. Since the rays Rγ and Rγ′

are regular, they are disjoint from the
preimages of L. Hence each of them is contained in some component of Pn, Pn and
P ′n respectively. Since they land on J , while L is disjoint from J , the closure of
our rays are contained in the same components. So, if they land at the same point
of J , then Pn = P ′n for any n ∈ N, which is equivalent for them to to having the
same itineraries: ε̄(γ) = ε̄(γ′).

Let D ≡ D0 be the (open) subpotential disk through the critical value v = c.
Its preimage is the union of two disks D0

1 and D1
1, bounded by the figure-eight loops

through 0. They are separated by the cut-line L, so D0
ε ⊂ P 1

ε , ε ∈ {0, 1} (where
P 1
0 and P 1

1 are the components of C r L). Further preimages of these disks are
organized into disks Dn

ε0,...εn−1
according to their itineraries through D1

0 ⊂ P 1
0 and

D1
1 ⊂ P 1

1 , so Dn
ε0...εn−1

⊂ Pnε0...εn−1
. (See the proof of Theorem 20.5 and Exercise

32.14.)
If the raysRγ andRγ′

have the same itineraries ε̄ = (ε0ε1 . . . ) then they belong
to the same component Pnε0...εn−1

and hence land in the same disk Dn
ε0...εn−1

. It
follows that they land at the same point

aε̄ :=
⋂
Dn
ε0...εn−1

∈ J .
�

32.4. Kneading Theory.

32.4.1. Kneading data and conjugacy. Let us now consider a real map f : I → I
of class G′. Assume for definiteness that its critical point is the minimum. The
kneading data for f is the order of postcritical points 0n, n = 0, 1, . . . , on the real
line.

Two periodically repelling maps f and f̃ of class G′ are called R-combinatorially
equivalent if they have the same kneading data, i.e., the map h : 0n 7→ 0̃n is
monotonic (with respect to the order induced from the real line).

Obviously, if two such maps f, f̃ ∈ G′ are topologically conjugate on the real
line then they are R-combinatorially equivalent. The inverse statement is also true:

Proposition 32.16. Two periodically repelling real maps of class G′ are
R-combinatorially equivalent if and only if they are topologically conjugate on the
real line.

Proof. Let f and f̃ be two periodically repelling maps with the same kneading
data.

Let us consider the tiling Pn of I by the monotonicity intervals of fn (ob-
tained by dividing I by the critical points of fn). Assume inductively that there
is a homeomorphism hn : (I,Pn) → (Ĩ, P̃n) respecting these tilings, and let us
construct hn+1.

Let us take a monotonicity interval J ∈ Pn, and as usually let Jn ≡ fn(J). If
int Jn 6∋ 0 then we let hn+1 | J = hn | J . Otherwise 0 divides Jn into two intervals
J±n whose pullbacks J± to J under fn are monotonicity intervals for fn+1.

The interval Jn is bounded by post-valuable points vi and vj with i, j ∈
[0, . . . , n− 1], or by the fixed boundary point β ∈ ∂I. To simplify notation, assume
that the latter is not involved. Since f̃ has the same kneading data, the correspond-
ing interval J̃n = [ṽi, ṽj ] also contains 0 in its interior, so we obtain similar intervals
J̃±n and J̃±. Moreover, the kneading data determines the order of the intervals J±n
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on the real line and the orientation of the landing maps J± → J±n , and hence the
order of the intervals J± as well. It follows that J̃± have the same order in R as
J±. Hence there exists a homeomorphism hn+1 : J → J̃ coinsiding with hn on ∂J
and such that hn+1(J

±) = J̃±. Doing this on every interval J , we construct the
desired hn+1.

By the No Wandering Intervals Theorem, the monotonicity intervals J ∈ Pn
and J̃ ∈ P̃n shrink as n → ∞. Hence the homeomorphism hn uniformly converge
to a homeomorphism h (see Exercise 19.50). Since the hn are equivariant on the
respective boundaries ∂Pn, h is a conjugacy. �

Let us now consider a superattracting map f ∈ G′ with the superattracting
cycle (0n)

p−1
n=0. Its kneading data is the interval Tf = [v, v1] with the marked

superattracting cycle (up to a natural equivalence relation), which coincides with
the (abstract) Hubbard tree of f . As above, two such maps with the same kneading
data are called R−combinatorially equivalent.

Exercise 32.17. Two superattracting maps f, f̃ ∈ G′ are R-combinatorially
equivalent iff they are topologically conjugate on the real line.

We refrain from extending the notion of R−combinatorial equivalence to more
general real hyperbolic and parabolic maps as there are nuances (indicated in the
Exercises below) that would make it somewhat cumbersome and inclompatible with
its complex counterpart.

Exercise 32.18. Let f and f̃ be two real hyperbolic (but not superattracting)
maps of class G′ with the same kneading data, whose attracting cycles have periods
p, p̃ and multipliers ρ, ρ̃′, respectively.

(i) If sign ρ = sign ρ̃ then p̃ = p, and the maps f , f̃ are topologically conjugacte on
the real line.

(ii) If ρ > 0 > ρ̃ then p̃ = 2p.

Exercise 32.19. Let f be a real parabolic map of class G′ whose parabolic cycle
has period p and multiplier ρ ∈ {±1}, and let f̃ ∈ G′ be another map with the same
kneading data that has a non-repelling cycle of period p̃ and multiplier ρ̃.

(i) If ρ = 1 then f̃ is parabolic or hyperbolic with p̃ = p and ρ̃ > 0. Moreover, f & f̃

are topologically conjugate iff f̃ is parabolic.

(ii) If ρ = −1 then f̃ is parabolic or hyperbolic such that
either p̃ = p, ρ̃ < 0, and f & f̃ are topologically conjugate on the real line,
or else p̃ = 2p and ρ̃ > 0.

Remark 32.20. Note that Case (i) corresponds ot the saddle-node bifurcation,
while Case (ii) corresponds to the doubling bifurcation.

32.4.2. Itineraries. Let f ∈ G′. Let us partition the interval I as

I = I− ⊔ I+ ⊔ {0},
where I− < I+ are the components of I r {0} (Intrinsically, I− is specified as the
component whose orientation is reversed by f ; it is “valuable”: I− ∋ v.) This allows
us to encode any orbit (xn ≡ fnx)∞n=0 by a sequence of three symbols, ± and 0.

ε̄(x) := (ε0(x), ε1(x), . . . ),
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where εn(x) = ± or 0 depending on whether xn ∈ I± or xn = 0. It is called the
itinerary of x.

The itinerary depends equivariantly on the point: ε̄(fx) = σ(ε̄(x)), where
σ : (ε0, ε1, . . . ) 7→ (ε1, ε2, . . . ) is the symbolic shift.

We let

(32.2) ε̄N (x) := (ε0(x), ε1(x), . . . , εN−1(x))

be the initial itinerary of length N .

Exercise 32.21. (i) Points whose N -itineraries ε̄N (x) contain 0 are pre-critical
points of order ≤ N − 1, i.e., the critical points of fN .

(ii) If ε̄N (x) = ε̄N (y), where ε̄N (x) does not contain 0, then x and y belong to the
same (open) monotonicity interval of fN .

(iii) For two different points x and y, ε̄(x) = ε̄(y) if and if x and y belong to the
same (open) homterval.

Let Σ be the total space of sequences of three symbols, ± and 0, as above.
Let us endow Σ with the twisted lexicographic order as follows. Take two different
sequences ε̄ = (εn), δ̄ = (δn). LetN be the first place where εN 6= δN , and let k < N
be the number of “−” in the sequence ε̄N = δ̄N . Then ε̄ > δ̄ if (−1)kεN > (−1)kδN .
(Thus, the rule is lexicographic in the case of even k, and reverse in the odd one.)
This order is designed so that the itinerary depends monotonically on the point:

Exercise 32.22. For two points x, y that do not belong to the same homterval,
x < y if and only if ε̄(x) < ε̄(y).

For a finite sequence (32.2), we let

(32.3) ε̄perN = (ε0, ε1, . . . , εN−1)
per

be its periodic extension.

Exercise 32.23. If the itinerary of some point x is a periodic sequence ε̄perp

with the smallest period p, then x converges to a cycle of minimal period p or 2p
(where x can be periodic itself).

32.4.3. Kneading sequence. The kneading sequence Knf is defined as the valu-
able code

Knf := (kn1, kn2, . . . ), where knm := εm(0) = εm−1(v),

with the convention that it stops with the first appearance of 0. Thus, the kneading
sequence keeps track of the itinerary of v through the intervals I± until the possible
landing at 0. It is finite if and only if f is superattracting, in which case

Knf = (kn1, . . . , knp−2, 0)

where p is the period of 0.

Lemma 32.24. Kneading data determines the kneading sequence, and the other
way around.

Proof. The first statement is obvious. To see the reverse, notice that by the
equivariance of the coding, the kneading sequence determines the itineraries of all
the postcritical points 0n, n ∈ N. By Exercise 32.22, this determines their order on
the real line. �
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32.4.4. Kneading model. For a given map f : I → I, let us say that a sequence
ε̄ ∈ Σ is admissible if

σn(ε̄) ≤ σ(Knf ), n = 0, 1, . . .

Remark 32.25. Notice that σn+1(ε̄) ≤ σ(Knf ) =⇒ σn(ε̄) ≥ Knf , n ∈ N.

We let Σf be the space of admissible sequences for f .

Proposition 32.26. A sequence ε̄ ∈ Σ is admissible iff it is the itinerary ε̄(x)
of some point x ∈ T .

Proof. Obviously, any sequence ε̄(x), x ∈ T = [v, v1], is admissible.
Vice versa, let us show inductively that any finite admissible sequence

(ε0, ε1 . . . εN−1) with εn 6= 025 is represented by some monotonicity interval of fN .
Take some admissible sequence ε̄ = (ε0, ε1 . . . εN ) of order N + 1. Since σ(ε̄) is an
admissible sequence of order N , by induction it is represented by some monotonicity
interval J ⊂ T .

Assume ε0 = −1. Since the image of I− = (v, 0) monitonically covers the whole
interval T ⊃ J , I− contains a pullback of J representing the desired monotonicity
interval.

Assume ε0 = 1. Let δ̄ = (1, δ1, . . . δN ) be the initial code for v1. Then w ε̄ ≤ δ̄
implies that (ε1 . . . εN ) ≤ (δ1 . . . δN ) It follows that the left end-point of J lies to
the left of v2 = f(v1). But then the monitonic image f(I+) = (v, v2) overlaps with
J , and the conclusion follows. �

In particular, the kneading sequence itself must be admissible:

σn(Knf ) ≤ σ(Knf ), n = 0, 1, . . .

We will see later (Theorem 33.9) that vice versa, any admissible kneading sequence
Kn is realizable for some quadratic polynomial.

We let Knadm be the space of admissible kneading sequences.
The twisted lexicographic order induces an order on kneading sequences. We

say that a kneading sequence Kn1 as stronger than Kn2, Kn1 ≻ Kn2, if Kn1 < Kn2
(or, equivalently σ(Kn1) > σ(Kn2)). By Proposition 32.26, the stronger a kneading
sequence is, the larger its kneading model.

Exercise 32.27. Show that the ordered set of admissible kneading sequences
has two extreme points, the strongest one (− + + + + . . . ) (corresponding to the
Chebyshev combinatorics) and the weakest one (++++ . . . ) (corresponding to the
cauliflower combinatorics).

Exercise 32.28. Let Kn ∈ Σ, and let orb+(Kn) be the set of its positive orbit
points σm(Kn) > 0, i.e., such that Knm+1 = + (and similarly, orb−(Kn) is the set
of negative orbit points). Show that admissibility of Kn is equivalent to unimodality
of the shift σ on orb(Kn), i.e., σ is monotonically increasing on the set orb+(Kn)
and monotonically decreasing on orb−(Kn).

Endow the space of three symbols ±, 0 with (non-Hausdorff) topology whose
non-trivial open subsets are {+} and {−}. Then endow Σ, and hence each Σf , with
the corresponding weak topology.

25We leave to the reader to adjust the argument to the case when εn = 0 for some n.
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Exercise 32.29. The itinerary map ε̄ : I → Σf monotonically semi-conjugates
f to the shift σ : Σf → Σf . Its fibers are either singletons or maximal homtervals.

32.4.5. Real combinatorial equivalence vs complex one. For real quadratic poly-
nomials we have introduced two notions of combinatorial equivalence. Let us now
show that they match:

Proposition 32.30. Two periodically repelling or superattracting real qua-
dratic polynomials f ≡ fc and f̃ ≡ fc̃ (c, c̃ ∈MR) are R−combinatorially equivalent
if and only if they are combinatorially equivalent.

Proof. In the superattracting case, this folllows from the corresponding state-
ment for general Hubbard trees (see Theorem 25.58 and Proposition 25.61).

In the periodically repelling case, we know from §32.1.2 and Theorem 32.2.2
that the combinatorial lamination is generated by the pullbacks of the critical di-
ameter γθ. The corresponding point on the model Julia set Jcom is the critical
point for the model map F . It lies on the spine σcom of Jcom corresponmding to
the dialmeter I ⊂ D. Moreover, the dynamics of F on σcom is unimodal.

Every point z ∈ Jcom belongs to some leaf. The endpoints of the landing leaves
give us combinatorial external angles for z.

Exercise 32.31. The external angles of a point x ∈ σcom determine its itinerary
on the spine σcom, and the other way around.

In particular, the valuable angle θ determines the kneading sequence, and the
other way around.

�

From now on, we will sometimes allow ourselves to skip “R” in the notion of
combinatorial equivalence.

Exercise 32.32. Develop the kneading theory for continuous unimodal maps.
An interesting particular case are saw-like maps.

32.5. Appendix: Invariant geodesic laminations.

Under construction

32.5.1. Invariance. For two points a, b ∈ T, we let (a, b)# be the (non-oriented)
geodesic in D with endpoints a and b.

Here we will use notation T for the “doubling map” z 7→ z2 of T. Given a
non-diameter geodesic γ = (a, b)#, let T̂ (γ) := (T (a), T (b))#. In other words,
this action is induced by the diagonal action of the doubling map on the torus T2,
(a, b) 7→ (T (a), T (b)). (If γ = (−a, a)# is a diameter then we let T̂ (γ) = {T (a)} ⊂ T

be a “degenerate geodesic”.)
More generally, we can consider any convex subset Q of D with totally geodesic

boundary, and define T̂ (Q) as the convex hull of T (∂IQ) in D (or a singleton in T,
in case when Q is a single diameter).

A geodesic lamination L in D is called T - invariant if for any non-diameter leaf
γ = (a, b)#, the geodesic T̂ (γ) is also a leaf of L.

Example 32.33. (i) Any single diameter γθ = (e(θ/2),−e(θ/2), θ ∈ R/Z, is an
invariant lamination on its own right.
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(ii) The next simplest example is provided by a periodic ray portrait R, which
is a finite lamination whose leaves are cyclically permuted under T . Namely, let us
consider a finite sets Θ ⊂ T of period q decomposed into the union of p unlinked
subsets Θi of cardinality r ≥ 2 cyclically permuted under T . (So, q = pr.) Consider
convex hulls Qi of the Θi. Assume the Θi are rotation sets under T p. Then
the boundary geodesics of the Qi’s form a finite invariant lamination R (compare
§24.5).

Exercise 32.34. Why is it needed for the Θi in the above Example to be rota-
tion sets?

Proposition 32.35. Gaps are dense in any invariant geodesic lamination ex-
cept LЧ.

Proof. Otherwise, suppL contains a saturated rectangle Π = (I, J), where I
and J are disjoint intervals on T (see Exercise 2.70). If none of the leaves in Π is
a diameter, then the intervals I1 := T (I) and J1 := T (J) are disjoint, and there
is a rectangle Π1 ⊂ D foliated by leaves with endpoints in I1 and J1. The length
of the intervals doubles, so this operation can be applied only finitely many times.
Eventually we obtain a rectangle as above containing a diameter as a leaf. Cut this
rectangle into two sub-rectangles by the diameter and apply T̂ to any of them. We
obtain a foliated topological sector in the support of L. Iterating it further, we will
eventually obtain a domain containing a foliated half-disk. One more iterate turns
into the full foliated disk. This foliation has two ideal singular points, a, b ∈ T,
whose set is invariant under T .

Let us show that these points cannot form a cycle of period two. Indeed, one
of them, say a, is the image of the diameter leaf γ of L. This leaf should end at b,
for otherwise a would have three preimages on T under T . But then γ crosses the
leaves of L near b.

Hence one of the singular points a, b is fixed and the other is its preimage. This
is the picture of the Chebyshev foliation. �

A lamination is called symmetric if it is invariant under the central reflection
z 7→ −z of D. A lamination is called completely T -invariant if:

• It is invariant and symmetric;

• For any leaf γ, there exists a leaf λ such that T̂ (λ) = γ;

• Any gap in L is mapped by T̂ onto a gap or a leaf.
The simplest example of a completely invariant lamination is the Chebyshev

one, LЧ (see §2.5) (called so because T acts on the quotient of D/LЧ as the Cheby-
shev map).

A systematic way of producing completely invariant laminations is by dynamical
saturations of invariant laminations:

Lemma 32.36. Let L0 be an invariant lamination containing a diameter γθ,
θ ∈ R/Z. Then L0 can be pulled back to laminations Ln := (T̂ ∗)n(L0), and

L := cl

∞⋃

n=0

Ln

is a completely invariant lamination.
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Proof. Consider any geodesic δ = e(φ), e(ψ))# of L, where φ 6= ψ mod 1.
Then one of these angles is different from θ, so assume φ 6= θ mod 1. Then each
preimage of φ under T , φ′ = φ/2 and φ′′ = φ′ + 1/2, is different mod 1 from
both θ′ ≡ θ/2 and θ′′ ≡ θ′ + 1/2. Moreover, the points e(φ′) and e(φ′′), being
0-symmetric, lie on the opposite sides of the diameter γ ≡ γθ.

If ψ 6= θ as well, then for the same reason, the preimages e(ψ′) and e(ψ′′) of
e(ψ) lie on the opposite sides of γ. Hence there is a unique way to connect e(φ′)
to either e(ψ′) or e(ψ′′) in D so that the corresponding geodesic is disjoint from γ.
This gives us one lift of δ. The other lift is 0-symmetric to the first one.

In case ψ = θ, we connect each e(θ′) and e(θ′′) to both e(φ′) and e(φ′′), to
obtain four lifts of δ.

If we have to geodesics δ1 and δ2 of L, then their lifts are unlinked. Indeed,
let λk be a lift of δk, k = 1.2. They are obviously unlinked If they lies in different
components D r γ. If they lie in the same component and are linked, then their
images T̂ (λk) = δk would be linked as well.

Thus, the lifts of all the leaves of L form a lamination, which we call T̂ ∗(L).
Since L is invariant, T̂ ∗(L) ≻ L.

Iterating this procedure, we obtain an increasing sequence of pullback lamina-
tions (T̂ ∗)n(L), so their union is a pre-lamination. By Exercise 2.75, its closure is
a genuine lamination. �

In particular, we can produce a completely invariant lamination from a single
diameter γθ = (e(θ/2,−e(θ/2))#) viewed as an invariant lamination. We call this
completely invariant lamination Lθ.

We say that a complete geodesic γ is unlinked with L if it is disjoint from
suppL.

Lemma 32.37. For any symmetric lamination L, there exists a diameter γθ
which is either a leaf of L or is unlinked with L.

Proof. The origin 0 ∈ D either belongs to suppL or to a gap Q. In the former
case, 0 belongs to some leaf γ of L, which is necessarily a diameter. In the latter
case, the ideal boundary ∂IQ is symmetric since L is such. Then any diameter
(a,−a) with a ∈ ∂IQ is contained in Q and hence is unlinked with L. �

Lemma 32.38. Let us consider a diameter γ ≡ γθ, θ ∈ R/Z. Assume that a
periodic ray portrait R is disjoint from γ. Then for any leaf δ of R, there exists a
sequence of pullbacks (T̂ ∗)nk(γ) converging to δ.

Lemma 32.39. For any completely invariant lamination L, there exists a con-
tinuous map T̂L : (C,D)→ (C,D) with the following properties:

(i) T̂L is an extension of the doubling map T : T→ T;

(ii) T̂L collapses some diameter γθ from Lemma 32.37 to a singleton e(θ) ∈ T, and
it homeomorphically maps each semi-disk Dr γθ onto Dr {e(θ)}.
(iii) L is invariant under T̂L.

(iv) The map T̂L descends to a topological double branched covering F : (R2,K)→
(R2,K), where (R2,K) ≈ (C/L,D/L).
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32.5.2. No Wandering Gaps. A gap Q of a completely invariant lamination L
is called wandering if all its forward iterates T̂n(Q) are pairwise disjoint gaps.

Theorem 32.40. A completely invariant geodesic lamination does not have
wandering gaps.

Proof to be added

Thus, some iterate T̂n(Q) of a gap Q is either a periodic gap or a leaf. In the
latter case, there is a smaller iterate T̂m(Q), m < n, which is either a 0-symmetric
rectangle or a triangle based on a diameter of D. To understand the former case,
we need to classify periodic gaps.

32.5.3. Periodic gaps.

Proposition 32.41. Let L be a completely invariant geodesic lamination, and
let Q be a periodic gap in L of period p that does not contain 0. Then the ideal bound-
ary ∂IQ is a rotation set for T p. In particular, some iterate T̂n(Q), 0 ≤ n < p, is
a “central” gap containing 0 in its boundary.

32.5.4. Rotational laminations. Any rotation set with irrational rotation num-
ber (see §24.7) gives rise to a rotational lamination Lθ corresponding to the diameter
(e(θ/2),−e(θ/2)).

Problem 32.42. Let Θθ be the rotation set from Problem 24.28. Let G ⊂ D be
the hyperbolic converx hull of Θθ, and let Gi be its pullbacs under T .

(i) Show that the Gi are attached one to another along geodesics forming a tree of
domains.

(ii) Show that the Gi are the gaps of the lamination Lθ, and the latter consists of
the geodesic boundaries of the Gi,.

(iii) Formulate the corresponding assertions for the tuned rotational laminations.

Notes. The Milnor-Thurston Kneading Theory was developed in the mid 1970s
but was not published until one decade later [MT]. Its preliminary version had
been developed by Metropolis, Stein & Stein [MeStSt] (1973). In fact, the knead-
ing sequences for hyperbolic parameters had been already introduced by Myrberd
one decade earlier [Myr2].

Combinatorial theory of Julia sets was initiated by Douady and Hubbard (prob-
ably, inspired by the Kneading Theory); its foundations appeared in the fundamen-
tal Orsay Notes [DH2]. It was further detailed and refined by their scientific school
(Lavaurs, Tan Lei, Schleicher, and others), and by Milnor with his school (Poirier,
Kiwi, and others).

Geodesic laminations were introduced by Thurston in the mid-1980s. (For al-
most three decades this work had existed only as a preprint, until it finally appeared
in [Th1].) In particular, it contains the analysis of quadratic invariant laminations.
Good part of the theory was generalized to the higher degree case by Kiwi [Ki]
(based on the 1997 Stony Brook thesis). However, Thurston’s No Wandering
Gaps Theorem turned out to be special for the quadratic case, as Blokh and Over-
steegen demonstrated [BO1].



CHAPTER 5

Parameter plane

33. Definition and first properties

33.1. Notational convention. Recall that we usually label the objects cor-
responding to a map fc by c, e.g., Jc = J (fc), Per(fc) = Perc. We often use
notation c◦ ≡ ◦ for a base parameter, so that f◦ = fc◦ , J◦ = Jc◦ , etc.

33.2. Connectedness locus and polynomials c 7→ fnc (0). The Mandelbrot
set presents at one glance the whole dynamical diversity of the complex quadratic
family fc : z 7→ z2+ c. Figures 0.1 and 0.2 from Preface show this set and its blow-
ups in several places.1 It is remarkable that all this intricate structure is hidden
behind the following one-line definition.

Recall the Basic Dichotomy for the quadratic maps: the Julia set Jc is either
connected or Cantor (Theorem 20.5). By definition, the Mandelbrot setM consists
of those parameter values c ∈ C for which the Julia set Jc is connected. It is
equivalent to saying that the orbit of the critical point

(33.1) 0 7→ c 7→ c2 + c 7→ (c2 + c)2 + c 7→ . . .

1The reader can also find cosmic-style animations of M on the YouTube.

Figure 33.1. Mandelbrot set.
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is not escaping to ∞. Let us denote the nth polynomial in (33.1) by υn(c), so that
υ0(c) ≡ 0, υ1(c) ≡ c, and recursively

(33.2) υn+1(c) = υn(c)
2 + c.

Note that deg vn = 2n−1.
Though the polynomials υn are not iterates of a single polynomial, they behave

in many respects similarly to the iterated polynomials:

Exercise 33.1 (Simplest properties of M). Prove the following properties:

(i) If |υn(c)| > 2 for some n ∈ N then υn(c)→∞ as n→∞. Hence M⊂ D2.

(ii) υn(c)→∞ locally uniformly on CrM. Hence M is compact.

(iii) CrM is connected. HenceM is full and all components of intM are simply
connected.

(iv) The set of normality of the sequence (υn) coincides with Cr ∂M.

One says that the critical point 0 is active for a parameter c◦ if the sequence of
polynomials (υn(c)) is not normal near c◦, and is passive otherwise. We see that the
set of active parameters coincides with ∂M. For an active parameter, the behavior
of the critical orbit highly sensitive to perturbations.

In the above discussion, one can already see a similarity between the Man-
delbrot set (representing the whole quadratic family) and a filled Julia set of a
particular quadratic map. It is just the first indication of a deep relation between
dynamical and parameter objects.

33.3. Dependence of periodic points on c. What immediately catches
the eye in the Mandelbrot set is the main cardioid with the cusp at c = 1/4. The
cardioid bounds a domain ∆0 of parameter values c such that fc has an attracting
fixed point (the main hyperbolic component).

Exercise 33.2. Show that the main cardioid ∂∆0 is given by the equation

c =
1

2
e(θ)− 1

4
e(2θ) =

1

2
ρ− 1

4
ρ2, 0 ≤ θ < 1,

where ρ = e(θ) is the multiplier of the neutral fixed point of fc. The main cardioid
has 3/2-cusp at 1/4.

Let us now take a look at how periodic points move with parameter:

Lemma 33.3. Let f◦ has a cycle (αk)
p−1
k=0 of period p with multiplier ρ◦ 6= 1.

Then for nearby c, the maps fc have a cycle (αk(c))
p−1
k=0 holomorphically depending

on c. Its multiplier ρ(c) holomorphically depends on c as well.

Proof. Consider an algebraic equation fpc (z) = z. For c = c◦ it has roots
z = αk, k = 0, . . . , p− 1 (and maybe others). Since

d(fpc (z)− z)
dz

∣∣∣∣
c=c◦, z=αk

= ρ◦ − 1 6= 0,

the Implicit Function Theorem yields the first assertion. The second assertion
follows from the formula for the multiplier:

ρ(c) = 2p
p−1∏

k=0

αk(c).

�
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Thus, periodic points of fc as functions of the parameter are algebraic functions
branched at parabolic points only.

33.4. Hyperbolic components: first observations. A parameter value
c ∈ C is called hyperbolic/parabolic/Siegel etc if the corresponding quadratic poly-
nomial fc is such.

Proposition 33.4 (Hyperbolic components). The set H of hyperbolic param-
eter values is the union of CrM and some set of components of intM.

Proof. By definition, C rM ⊂ H. Also, the property to have an attracting
cycle is stable (see Lemma 33.3 ), hence H ∩M ⊂ intM.

Take now some hyperbolic parameter c◦ ∈ M and let ∆◦ be the component
of intM containing c◦. Let us show that ∆◦ ⊂ H. The map f◦ has an attracting
cycle of some period p. By Theorem 21.4, this cycle contains a point α0 such that

υpn(c◦) ≡ fpn◦ (0)→ α0 as n→∞.
It is easy to see (Exercise!) that for nearby c ∈ ∆ we have:

υpn(c) ≡ fpn◦ (0)→ α0(c) as n→∞,
where α0(c) is the holomorphically moving attracting periodic point of fc
(Lemma 33.3). But the sequence of polynomials υpn(c), n = 0, 1, . . . , is normal in
∆ (Exercise 33.1, (iv)). Hence it must converge in the whole domain ∆ to some
holomorphic function α̃(c) coinciding with α0(c) near c0. By analytic continuation,
α̃(c) is a periodic point of fc with period dividing p.

Moreover, the cycle of this point attracts the critical orbit persistently in ∆. It
is impossible if this cycle is repelling somewhere. Indeed, a repelling cycles can only
attract an orbit which eventually lands on it. This property is not locally persistent
since otherwise it would hold for all c ∈ C (while it is violated, say, for c = 1).

If α̃(c) was neutral for some c ∈ ∆, then it could be made repelling for a nearby
parameter value. Thus, α̃(c) is attracting for all c ∈ ∆, so that ∆ ⊂ H. �

Corollary 33.5. Neutral parameters lie on the boundary of M.

Proof. Let c◦ be a neutral parameter, i.e., the map f◦ has a neutral cycle.
This parameter can be perturbed to make the cycle attracting. If c◦ belonged to
intM then by Proposition 33.4 it would be hyperbolic itself – contradiction. �

Exercise 33.6. (i) Any parameter c ∈ ∂M can be approximated by superat-
tracting parameters.

(ii) Misiurewicz parameters form a countable dense subset of ∂M.

A component Λ of intM is called hyperbolic if it consists of hyperbolic param-
eter values. Otherwise Λ is called queer. The reason for the last term is that it
is generally believed that there are no queer components. In fact, it is a central
conjecture in contemporary Holomorphic Dynamics:

Conjecture 33.7 (Density of Hyperbolicity). There are no queer components.
Hyperbolic parameters are dense in C.

Because of Exercise 33.6 (i), the second part of the conjecture would follow
from the first one. It is also referred to as the Fatou Conjecture. See §38 for a
further discussion.)
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33.5. Primitive and satellite hyperbolic components.

Proposition 33.8. Let ∆ be a hyperbolic component of period n of M, let
p/q 6= 0 mod 1, and let rp/q ∈ ∂∆ be a parabolic parameter with rotation number
p/q. Then there is a hyperbolic component ∆′ of period nq attached to ∆ at rp/q.

Proof. We let c◦ ≡ rp/q, f◦ ≡ fc◦ , and gc = fnc . Let α◦ be a parabolic fixed
point for g◦. Since g′

◦
(α◦) 6= 1, nearby maps gc have a fixed point αc depending

holomorphically on c. Making a change of variable z 7→ z − αc, we obtain a
holomorphic family of quadratic polynomials that fix 0; we keep the same notation
fc for this family and its n-fold iterate gc.

By Corollary 21.26, g◦ has q parabolic petals attached to 0 that are cyclically
permuted by g◦. Hence near the origin we have:

gq
◦
(z)− z = bq+1z

q+1 + . . . , bq+1 6= 0.

So 0 is a fixed point of multiplicity q + 1 for g◦, and hence nearby maps gc have
q + 1 simple fixed points. One of them is 0 which is also fixed by fc. Others are
permuted by fc. In fact, they form a single cycle of order q since f ′c(0) ≈ e(p/q)
and hence fc cannot have small cycles of order less than q.

The multiplier ρc of this cycle is a non-constant algebraic function of c equal
to 1 at c◦. Hence there is a parameter domain attached to c◦ in which our cycle is
attracting. It is contained in the desired hyperbolic component ∆′. �

A hyperbolic component ∆′ that was born from another hyperbolic component
by the period n-tupling bifurcation described in Proposition 33.8 is called satellite.
All other hyperbolic components ofM are called primitive. They appear as a result
of a saddle-node bifurcation. (See §§35.9.1 and 35.9.2 for a detailed discussion.)

Parabolic points on ∂∆ with multiplier 1 are called the roots of ∆. (In fact, we
will see below (Theorem 35.3) that any hyperbolic component has a single root.)
In particular, the bifurcation point rp/q is the root of the satellite component ∆′.

As we will see later (see §35.9), the type of a component can be easily recognized
geometrically: satellite components are bounded by smooth curves, while primitive
components have cusps at their roots.

33.6. Real quadratic family. Exercise 20.10 and its Corollary describe the
real slice of the Mandelbrot set:

MR :=M∩ R = [−2, 1/4].
Moreover, for these parameters, the quadratic map fc restricts to the maximal
invariant interval Ic,
(33.3) fc : Ic → Ic, x 7→ x2 + c, c ∈ [−2, 1/4].
We refer to this family as the real quadratic family.

33.6.1. Real hyperbolic windows. A real hyperbolic window ∆R ⊂ [−2, 1/4] is a
component of the set of real hyperbolic parameters c. It is the real slice of some
hyperbolic component ∆ of intM. (Since this component ∆ is R-symmetric and
simply connected, ∆ ∩ R is an (open) interval.)

The real version of the Fatou Conjecture asserted that the hyperbolic windows
are dense in [−2, 1/4]. It was confirmed in the 1990s (see §38.3 for a further dis-
cussion).
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33.6.2. Real quadratic family is full. The following result partly explains the
universal role played by the real quadratic family in the unimodal dynamics:

Theorem 33.9. Any admissible kneading sequence Kn is realizable for some
real quadratic polynomial: Kn = Knc for some c ∈ [−2, 1/4].

Let us do it in a more general framework of real analytic families. A family
(fλ)λ∈L of real unimodal maps fλ : Iλ → Iλ over a parameter interval L is called
real analytic if

• The interval Iλ depends continuously on λ (i.e, its endpoints move continuously
with λ);

• The map (λ, x) 7→ fλ(x) admits a real analytic extension to a neighborhood of⋃

λ∈L
Iλ in R2.

We call it non-trivial if the kneading sequence Knλ ≡ Kn(fλ) is not identically
constant for λ ∈ L.

Exercise 33.10. (i) Superattracting parameters are isolated in any non-trivial
real analytic family of unimodal maps.

(ii) If λ◦ is superattracting, then Kn◦ = (ε1 . . . εp−10)per, and for λ near λ◦,

Knλ = (ε1 . . . εp−1, δ, δ)
per for some δ ∈ {±}

(where δ stays constant on each side of λ◦).

(iii) Kn◦ is the only admissible kneading sequence squeezed in between

(ε1 . . . εp−1−)per and (ε1 . . . εp−1 +)per.

(iv) If λ◦ is not superattracting, then the kneading function Kn : λ 7→ Knλ is
continuous at λ◦.

Intermediate Value Theorem. Let (fλ)λ∈L be a real analytic family of
unimodal maps fλ ∈ G′. Let Kn0 and Kn1 be the kneading sequences for maps
f0 and f1 respectively; assume Kn0 6= Kn1. Then any intermediate admissible
sequence ε̄ ∈ (Kn0,Kn1)# is realizable as Knλ for some λ ∈ L.

Proof. Let us assume the contrary and apply, as in the case of the classical
IVT, the dyadic subdivision method. It provides us with a shrinking nest of closed
dyadic intervals In with the property that ε̄ ∈ (Knn0 ,Knn1 )#, where the Knni are
the kneading sequences at the endpoints of the In. (Let us assume for definiteness
that Kn0 < Kn1; then the procedure can be designed so that Knn0 < Knn1 .)

Let
⋂
In = {λ◦} and let Kn◦ be the corresponding kneading sequence. Let

Kn+ := lim inf
λցλ◦

Knλ, Kn− := lim sup
λրλ◦

Knλ.

Then Kn− ≤ Kn◦ ≤ Kn+ and Kn− ≤ ε̄ ≤ Kn+. Let us now consider two cases:

a) Assume f◦ is not superattracting. Then the kneading function λ 7→ Knλ
is continuous at λ◦. Hence both sequences (Knn0 ) and (Knn1 ) converge to Kn◦
implying that Kn− = Kn◦ = Kn+. As ε̄ is squeezed in between Kn− and Kn=, it
must be equal to Kn◦ as well.
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b) Assume f◦ is superattracting. Then Kn◦ = (ε1 . . . εp−10)per, and

Knδ = (ε1 . . . εp−1, δ)
per, Kn−δ = (ε1 . . . εp−1,−δ)per for some δ ∈ {±}.

Since Kn◦ is the only admissible sequence squeezed in between such two sequences,
we again conclude that ε̄ = Kn◦. �

A family (fλ)λ∈L of unimodal maps is called full if any admissible kneading
sequence Kn ∈ Kn is realizable in this family: there exists λ ∈ L such that Kn =
Knλ.

Corollary 33.11. Let (fλ)λ∈L be real analytic family of unimodal maps fλ ∈ G′.
If it contains the extremal kneading sequences Knmax = (−++++) and Knmin =
(−−−−), then it is full. In particular, the real quadratic family is full.

33.6.3. Real structural stability. Let us consider a real analytic family (fλ)λ∈L
of unimodal maps fλ : Iλ → Iλ over a parameter interval L. A map f◦ ≡ fλ◦

(and
the corresponding parameter λ◦ ∈ L) is called (really) structurally stable in this
family if for any λ ∈ L sufficiently close to λ◦, the map fλ is topologically conjugate
to f◦, and moreover, the conjugacy hλ : I◦ → Iλ can be selected continuously in λ
(in the uniform topology). By definition, the set of structurally stable parameters
is open in Λ. The complementary closed set is called the (real) bifurcation locus.

Theorem 33.12. For any real analytic family (fλ)λ∈L of unimodal maps, the
set of structurally stable parameters is dense in L. Any non-parabolic bifurcation
parameter can be approximated by a superattracting one.

Proof. Non-superattracitng hyperbolic parameters are structurally stable, so
assume that λ◦ is neither hyperbolic nor parabolic. Then the corresponding knead-
ing sequence Kn◦ is infinite and aperiodic. If the kneading sequence Knλ is locally
constant near λ◦ then the nearby maps fλ admit the same model as f◦ (see §32.4.4),
and hence are topologically conjugate to the latter. On the other hand, for the
kneading sequence to change, one of the postcritical points fpλ(0) must cross 0,
creating a superattracting parameter nearby. �

A queer interval is a connected component L0 ⊂ L of the set of structurally
stable parameters on which the maps fλ are not hyperbolic. Equivalently, L0 is
the maximal open parameter interval on which the kneading function Knλ is an
aperiodic constant.

Corollary 33.13. The Real Fatou Conjecture is equivalent to the absence of
queer intervals in the real quadratic family.

33.7. Kneading model for the real quadratic family. Let us now describe
the kneading model for the whole real quadratic family. Consider the ordered space
Knadm of admissible kneading sequences and blow-up periodic non-superattracting
ones to intervals. We obtain the kneading parameter interval Kn. The kneading
model for the real quadratic family is the family of the combinatorial models for
all unimodal maps (see §32.4.4) parametrized by Kn. The following statement
summarizes our knowledge so far:

Proposition 33.14. The quadratic family naturally projects onto its combina-
torial model.
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A much deeper result asserts that this projection is monotonic (Theorem 37.33)
and even a deeper one asserts that it is one-to-one (which is equivalent to the Real
Fatou Conjecture).

Exercise 33.15. Build up a “topological model” for the real quadratic family
by “blowing up” periodic kneading sequences to intervals.

34. Connectivity of M
34.1. Uniformization of CrM. In this section we will prove the first non-

trivial result about the Mandelbrot set. The strategy of the proof is quite remark-
able: it is based on the explicit uniformization of the complement CrM by CrD.
Recall from Theorem 23.29 that for c ∈ CrM, we have a well-defined function

(34.1) ΨM(c) := Bc(c),

where Bc is the Böttcher function for fc extended to the domain Ωc bounded by
the critical figure-eight equipotential.

Theorem 34.1. The Mandelbrot set M is connected. The function ΨM con-
formally maps CrM onto Cr D. Moreover, it is tangent to the identity at ∞:

ΨM(c) ∼ c as c→∞.
We immediately obtain the parameter analogue of Corollary 23.28:

Corollary 34.2. The Mandelbrot set has capacity 1.

34.2. Basic Phase-Parameter Relation. Before passing to a proof of The-
orem 34.1, let us make a couple of comments on its significance. Formula (34.1)
reveals a remarkable relation between the dynamical and parameter planes of the
quadratic family: The Riemann position ΨM(c) of a parameter c ∈ CrM coincides
with the Böttcher position Bc(c) of the corresponding critical value c ∈ CrJ (fc).

Recall from §23.5.3 that the polar coordinates of Bc(z) are called the (dynam-
ical) external coordinates of a point z ∈ Ωc. Similarly, the (parameter) external
coordinates of a point c ∈ CrM are defined as the polar coordinates of ΨM(c).

We see that the parameter external coordinates of a point c ∈ CrM coincide
with its dynamical external coordinates (in the fc−dynamical plane).

Similarly to the dynamical situation (see §23.5.4), we can now introduce pa-
rameter equipotentials Erpar ≡ Etpar (where t = log r) and parameter external rays
Rθpar by pulling back round circles (of radius r) and radial rays (of angle θ) by
means of ΨM. We obtain two (non-singular) foliations in C rM. We conclude
that

• For c ∈ Rθpar we have c ∈ Rθc ;
• For c ∈ Erpar we have c ∈ Erc .

We use notation θ(c) and r(c) = et(c) for the external angle and radius/height
of a parameter c ∈ CrM.

Also, as in §23.5.4, we define parameter subpotential disks of radius r (or, of
height t = log r) as

Σpar(r) ≡ Σpar(t) := {c : |ΨM(c)| ≤ r},
where we let |ΨM| ≡ 1 on M.

Let us finish with a crucial observation:
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Figure 34.1. Uniformization of the Mandelbrot set.

Lemma 34.3 (Criterion of ray crashing). A dynamical ray Rθc crashes at some
precritical point if and only if c ∈ CrM and θ(c) = Tnθ for some n ≥ 1 (where T
is the doubling map).

Proof. A dynamical ray Rθc crashes at a precritical point of order n ∈ N

iff Tnθ is a critical angle, or equivalently, Tn+1θ is the valuable angle. By the
Phase-Parameter Relation, the latter is equal to θ(c). �

34.3. An elementary proof of connectivity. We will give two proofs of
Theorem 34.1. The first proof is short and elementary. The second proof, though
longer and more demanding, illuminates the deeper meaning of formula (34.1) and
the idea of qc deformations (see §34.5). Yet another proof will be provided in a
more general context of quadratic-like families (see Corollary 42.4 below).

The first proof is based upon the explicit formula (23.11) for the Böttcher
coordinate. It will imply that the function ΨM (34.1) is a holomorphic branched
covering of degree 1.

Step 1: analyticity. By Corollary 23.37, the Böttcher function Bc(z) is holo-
morphic on Ω = {(c, z) : z ∈ Ωc}. Hence its restriction to the diagonal {z = c} is
holomorphic on CrM. But this is our function ΨM.
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Step 2: behavior at ∞. Let vn = fnc (c). Then vn+1 = v2n(1+O(1/vn)), so there
is a function δ(v) = O(1/v) such that

((1− δ(vn))vn)2 ≤ (1− δ(vn))vn+1 < (1 + δ(vn))vn+1 ≤ ((1 + δ(vn))vn)
2,

Iterating these estimates backwards, we see that

2n
√
vn = c(1 +O(1/c)) as c→∞.

It follows that ΨM(c) = c(1 +O(1/c)) ∼ c as c→∞, so ΨM extends holomorphi-
cally to ∞, and is tangent to id at ∞.

Step 3: properness. Let us show that the map ΨM : CrM→ CrD is proper:

|ΨM(c)| → 1 as c→ ∂M.

Let us define n(c) ∈ N ∪ {∞} as the last moment n such that vn(c) ∈ D3. By
Exercise 33.1(i), n(c) = ∞ iff c ∈ M. Moreover, n(c) → ∞ as c →M. Otherwise
there would exist N ∈ N and a sequence ck → c ∈ M such that vN (ck) ∈ C r D3,
implying that vN (c) ∈ Cr D3 – contradiction.

Let us take a small neighborhood U of M such that Kc ⊂ D3 for c ∈ U
(equivalently, n(c) > 0 for c ∈ U). Since the Green function is continuous on Ω,

L := sup{Gc(z) : (c, z) ∈ U × T3} <∞.
Since z 7→ Gc(z) is subharmonic on the whole plane C for any c, by the Maximal
Principle we have Gc(z) ≤ L for (c, z) ∈ U × D3. Hence

Gc(c) =
Gc(vn(c)(c))

2n(c)
≤ L

2n(c)
→ 0 as c→M.

It follows that |Bc(c)| = eGc(c) → 1 as c→M (c ∈ CrM) as was asserted.

Conclusion. Thus, the map ΨM : C rM → C r D is a branched covering, so
that, it has a well-defined degree. But ΨM

−1(∞) = {∞}, and by Step 2, ΨM has
local degree 1 at ∞. Hence degΨM = 1, and we are done.

34.4. Böttcher fibration, motion and foliation. In this section we will
describe an interesting geometric structure hidden behind the above argument.

34.4.1. Equivariance of a holomorphic motion. Let us first introduce some gen-
eral notions.

A holomorphic motion hc : X◦ → Xc of a set X ⊂ C over a parameter domain
∆ is called equivariant if

(34.2) hc(f◦(z)) = fc(hc(z))

whenever both points z and f◦(z) belong to X◦. If the Xc are fc-invariant, this
just means that the maps hc conjugate f◦|X◦ to fc|Xc. (Of course, we can apply
this terminology not only to the quadratic family.)

Notice that the equivariance property (34.2) means that the associated lami-
nation (see §17.1) is invariant under the fibered dynamics

f : (c, z) 7→ (c, fc(z)).



470 5. PARAMETER PLANE

34.4.2. Böttcher fibration of Ω. Recall from §23.6.3 that D ≡ D(∞) ⊂ C2 is
the union of the basins Dc(∞) over all c ∈ C, and Ω =

⋃
Ωc ⊂ D is the subdomain

for which Gc(z) > Gc(0). Let us introduce the fibered Böttcher function

(34.3) B : Ω→ Cr D, (c, z) 7→ Bc(z).

Since B′c(z) 6= 0 for z ∈ Ωc, B is a holomorphic submersion on Ω whose fibers

(34.4) Lb = {(c, z) ∈ C2 : z ∈ Ωc and Bc(z) = b}
are local holomorphic graphs over the parameter plane. Hence they form a holo-
morphic foliation B of Ω. We will call it the Böttcher fibration.

Notice that due to the Böttcher equation, the Böttcher fibration is invariant
under the fibered dynamics f .

We also consider the diagonal line in Ω:

(34.5) Γ := {(c, c) : c ∈ CrM},
associating to a parameter c the corresponding critical value v = c.

Lemma 34.4. (i) For any b ∈ C r D, the Böttcher fiber Lb is the graph of a
holomorphic function φb : Σ

◦
par(r)→ C with r = |b|2 (where Σ◦par(r) ≡ intΣpar(r)).

(ii) For any r > 1, the fibers Lb with |b| > √r restrict to an equivariant biholomor-
phic motion of the superpotential domains Ωc(

√
r) over Σ◦par(r).

(iii) The diagonal Γ is a global transversal to B that intersects every fiber once.

Proof. (i) As we have already observed, each Böttcher fiber Lb is a local
holomorphic graph over the parameter plane. Let us show that it extends over the
whole subpotential disk Σ◦par(r) with r = |b|2. Indeed, for any c ∈ Σ◦par(r), we have:

|Bc(0)| =
√
|Bc(c)| =

√
|ΨM(c)| < √r = |b|,

so the image Bc(Ωc) = {ζ : |ζ| > |Bc(0)|} contains C r D|b|. Hence there exists
a unique z ∈ Ωc such that Bc(z) = b. Thus, Lb crosses once every vertical fiber
{c} × C over c ∈ Σ◦par(r), implying that it is a graph over the whole disk Σ◦par(r).

Remark 34.5. At the same time, Lb cannot be extended any further. Indeed,
for any c ∈ ∂Σpar(r), we have

|Bc(0)| =
√
|ΨM(c)| = √r = |b|.

Then |Bc′(0)| > |b| for some c′ near c, so the Böttcher function Bc′ does not assume
value b in Ωc′ . By definition, Lb is not defined over c′.

(ii) By the above result, the fibers Lb with |b| > √r restrict to holomorphic
graphs over Σ◦par(r). Thus, they form leaves of a holomorphic motion of the
domains Ωc(

√
r) over Σ◦par(r). This motion is biholomorphic (i.e., transversally

holomorphic) since its leaves form a holomorphic fibration over D√r given by the
Böttcher function B.

(iii) Intersections of a Böttcher fiber Lb (34.4) with the diagonal Γ (34.5) are
solutions of equationBc(c) = b (since condition c ∈ Ωc(0) is automatically satisfied).
By Theorem 34.1, this equation has a unique solution for every b ∈ C r D. Thus,
the diagonal Γ crosses once every leaf Lb of the Böttcher fibration of Ω, implying
that it is a global transversal to B. �
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Σpar(r)

Figure 34.2. Böttcher fibration.

For any c◦ ∈M, let us consider the Böttcher holonomy

h◦ : Ω→ {c} × (CrK◦}
by sliding any point (c, z) ∈ Ω along the fiber L ∋ (c, z) of B to its unique intersec-
tion point with the vertical fiber {c◦}×C. It is given explicitly as B−1

◦
◦Bc, so for

c ∈M, it coincides with the Böttcher conjugacyDc → D◦ defined above (see (23.10)
in §23.5.2). In particular, for c◦ = 0, the Böttcher holonomy h0 : Ω → C r K0 is
identified with the Böttcher map B : Ω→ Cr D itself.

From this point of view, the Riemann map ΨM : CrM→ CrD is interpreted
(up to identification {0} × D0 ≈ Cr D) as a composition of two maps:

• the lift of CrM to the transversal Γ, c 7→ (c, c),

• and the Böttcher holonomy h0 restricted to Γ, i.e.,

h0 : (c, c) 7→ (0, Bc(c).

34.4.3. Böttcher foliation of D.

Proposition 34.6. The Böttcher fibration B of Ω extends to a non-singular
holomorphic foliation (denoted in the same way) of the whole domain D. Its leaves
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are branched coverings over the parameter plane with simple branched points at the
precritical locus

(34.6) Crit∞ := {(c, z) : z ∈ Crit∞(fc)}.
Proof. Since the initial Böttcher fibration B of Ω is f -invariant, its pullback

f∗(B) extends itself to a holomorphic foliation of f−1(Ω), possibly singular. Since
f is a local biholomorphism outside the zero section 0 := {(c, 0) : c ∈ C}, the
pullback f∗(B) can be singular only at 0.

Let us show that B is non-singular at these points either. Let L = {z = φ(c)}
be a local leaf of B through a point (c0, c0). Its pullback f∗(L) is given by equation

(34.7) z2 + c = φ(c) near (c0, 0).

Since the diagonal Γ = {(c, c)} is transverse to L, we have φ′(c0) 6= 1, so the
holomorphic curve (34.7) is a graph of a holomorphic function c = ψ(z2), where
ψ′(0) 6= 0. Thus, it is non-singular holomorphic curve double branched over the
parameter plane.

Moreover, leaves near L form a holomorphic family Lb = {z = φb(c)}, so by
the IFT their pullbacks form a local holomorphic foliation.

Applying further f∗-pullbacks (which are local biholomorphisms at the points
of interest), we extend f∗(B) to the whole domain D.

To see that the leaves of the extended foliation are branched coverings over the
first coordinate, it is sufficient to check the path lifting property. Let γ : [0, 1]→ C

be a c-path such that γ[0, 1) lifts to a path γ̂ in a leaf L. We need to check that
γ̂ is compactly contained in D. But L is contained in an equipotential set of
the fibered Green function G : (c, z) 7→ Gc(z) whose intersection with any tube
{|c| < R} is compactly contained in D. �

34.4.4. Böttcher motion of rays. Given a parameter domain Λ ⊂ C, let us
consider all graphs of holomorphic functions φ : Λ → C whose images belong
to leaves of the Böttcher foliation B. These graphs cannot cross since B is non-
singular. Hence they form a holomorphic motion, called the Böttcher motion over Λ.
In case when Λ is simply connected, the Böttcher motion over Λ comprises all the
leaves of B that are unbranched over Λ.

Lemma 34.7. Assume for some θ ∈ R/Z and some parameter domain Λ ⊂ C,
we have

(34.8) θ(c) 6= Tnθ for any n ≥ 1 and c ∈ ΛrM
(where θ(c) stands for the external angle of c). Then the external ray Rθc never
crashes for c ∈ Λ and moves holomorphically under the Böttcher motion over Λ,

hc : Rθ◦(t) 7→ Rθc(t), t ∈ R+.

Proof. By Lemma 34.3, conditions (34.8) is equivalent to saying that the
external ray Rθc never crashes for c ∈ Λ. Hence the maps hc, c ∈ Λ, are well
defined. Since the fibered Böttcher function B remains constant (≡ et+2πiθ) on the
sets

Ot := {hc(Rθ◦(t)) : c ∈ Λ}, t ∈ R+,

each Ot belongs to a leaf Lt of the Böttcher foliation. Moreover, hc = B−1c ◦ B◦,
where Bc is the extension of the Böttcher function to the domain Ω̂c (see Problem
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23.30), implying that hc is holomorphic in c. So, Ot is a graph of a holomorphic
function z = φt(c) contained in Lt. The conclusion follows. �

Let

(34.9) Ω̂ =
⋃

c∈C
Ω̂c,

where Ω̂c ⊂ Dc(∞) are the domains mapped by Bc onto the complements of the
Levin-Sodin hedgehogs (see Problem 23.30).

Problem 34.8. Show that

(i) Ω is a domain in C2;

(ii) The fibered Böttcher function B extends to Ω̂ as a single-valued holomorphic
submersion;

(iii) The relative boundary of Ω̂ in D(∞)rCrit∞ is a 3D real analytic manifold.

34.4.5. Extended Phase-Parameter Relation. Let a set Xc ⊂ Dc(∞) moves
holomorphically under the Böttcher motion over a pointed parameter domain (Λ, c◦),
where c0 ∈ X◦. If every leaf Lz, z ∈ X◦, of this motion crosses the diagonal
Γ = {(c, c) : c ∈ Λ} then we have a phase parameter map ψ : X◦ → Λ that asso-
ciates to a point z ∈ X◦ the parameter c ∈ Λ with the same external coordinates
(i.e., (c, c) ∈ Lz).

Lemma 34.9. Under the above circumstances, assume the set {c : (c, c) ∈ Xc}
is compactly contained in Λ. Then the phase-parameter map ψ extends to a qs
homeomorphism of X◦ onto the image.

Proof. Lemma 34.4 implies that the diagonal Γ is transverse to the given
Böttcher motion intersecting once every leaf. It follows that it is transversal to the
extended motion of Xc as well, for otherwise it would have multiple intersections
with nearby Böttcher leaves. The conclusion follow from Lemma 17.14. �

34.5. Second proof of connectivity.
34.5.1. Step 1: QC deformation. The idea is to deform the map by moving

around the Böttcher position of its critical value. To this end let us consider a two
parameter family of diffeomorphisms ψω,q : C r D → C r D written in the polar
coordinates as follows:

ψ = ψω,q(r, θ) = (rω, θ + q log r), ω > 0, q ∈ R.

In terms of complex variable a = reiθ ∈ CrD and complex parameter λ = ω + iq,
Reλ > 0, this family can be expressed in the following concise form:

(34.10) ψλ(a) = |a|λ−1a.
This family commutes with f0 : a 7→ a2: ψ(a2) = ψ(a)2, and acts transitively on

CrD, i.e., for any a◦ and a in CrD, there exists a λ, such that ψλ(a◦) = a. (Note
also that ψλ are automorphisms of Cr D viewed as a multiplicative semigroup.)

Take now a quadratic polynomial f◦ ≡ fc◦ with c◦ ∈ C rM. Let us consider
its Böttcher function φ◦ : Ω◦ → CrD◦, where Ω◦ ≡ Ωc◦ is the complement of the
figure eight equipotential (see §23.5.3) and D◦ ≡ DR◦

is the corresponding round
disk, R◦ > 1. Take the standard conformal structure σ on CrD and pull it back
by the composition ψλ ◦ φ◦. We obtain a conformal structure µ = µλ in Ω◦. Since
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ψλ commute with f0 while the Böttcher function conjugates f◦ to f0, the structure
µ is invariant under f◦.

Let us pull this structure back to the preimages of Ω◦:

µn |Ωn = (fn
◦
)∗(µ),

where Ωn
◦

= f−n
◦

Ω◦. Since µ is invariant on Ω◦, the structures µn+1 and µn

coincide on Ωn
◦
, so that they are organized in a single conformal structure on

⋃
Ωn

◦
=

Cr J(f◦). Extend it to the Julia set J(f◦) as the standard conformal structure.
We will keep notation µ ≡ µλ for the conformal structure on C we have just con-

structed. By construction, it is invariant under f◦. Moreover, it has a bounded di-
latation since holomorphic pullbacks preserve dilatation: ‖µλ‖∞ = ‖(ψλ)∗(σ)‖∞ <
1.

By the Measurable Riemann Mapping Theorem, there is a qc map hλ : (C, 0)→
(C, 0) such that (hλ)◦(µλ) = σ. By Corollary 29.3, hλ can be normalized so that it
conjugates fλ to a quadratic map fc ≡ fc(λ) : z 7→ z2 + c(λ). Of course, the Julia
set fc is also Cantor, so that c ∈ CrM.

This family of quadratic polynomials is the desired qc deformation of f◦.
34.5.2. Step 2: Analyticity. We have to check three properties of the map ΨM :

CrM → CrD: analyticity, surjectivity, and injectivity. Let us take them one by
one.

It is obvious from formula (34.10) that the Beltrami differential

νλ = (ψλ)
∗(σ) = ∂̄ψλ/∂ψλ

depends holomorphically on λ. Hence the Beltrami differential (f◦)∗(νλ) on Ω◦ also
depends holomorphically on λ (see Exercise 14.24). Pulling it back by the iterates
of f◦ and extending it in the standard way to J(f), we obtain by Lemma 14.23 a
holomorphic family of Beltrami differentials µλ on C. By Corollary 29.2, c(λ) is
holomorphic on λ as well.

34.5.3. Step 3: Surjectivity. Note that the map ψλ ◦ φ◦ ◦ h−1λ conformally con-
jugates the polynomial fc ≡ fc(λ) near ∞ to f0 : z 7→ z2. By Theorem 23.23, these
properties determine uniquely the Böttcher map φc of fc, so that φc = ψλ ◦φ◦ ◦h−1λ
with c = c(λ). Since hλ conjugates f◦ to fc, we have: hλ(c∗) = c and hence

ΨM(c) = φc(c) = ψλ ◦ φ◦(c◦) = ψλ(a◦),

where a◦ is the Böttcher position of the critical value of f◦. Since the family {ψλ}
acts transitively on CrD, any point a ∈ CrD can be realized as ΨM(c) for some
c = c(λ).

34.5.4. Step 4: Injectivity. We have to check that if

(34.11) φc(c) = a = φc̃(c̃)

for two parameter values c and c̃ in CrM, then c = c̃. We let f ≡ fc, φ ≡ φc, f̃ ≡
fc̃, φ̃ ≡ φc̃. Similarly, we will mark with “tilde” the dynamical objects associated
with f̃ that naturally correspond to dynamical objects associated with f .

Let R =
√
|a|. Then the maps φ−1 and φ̃−1 map C r D̄R onto the domains

Ω ≡ Ωc and Ω̃ ≡ Ωc̃ respectively. Moreover, they extend continuously to the
boundary circle mapping it onto the boundary figures eight Γ = ∂Ω and Γ̃ = ∂Ω̃,
and this extension if one-to-one except that

φ−1(±√a) = 0 = φ̃−1(±√a).
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Hence the conformal map h = φ̃−1 ◦ φ : Ω→ Ω̃ admits a homeomorphic extension
to the closure of its domain:

h : (cl(Ω), 0)→ (cl(Ω̃), 0).

Consider a domain Ω0 = f(Ω) (exterior of the equipotential passing through c)
and the complementary Jordan disk ∆0 = C r Ω0. We will describe a hierarchical
decomposition of ∆0 into topological annuli Ani , n = 1, . . . , i = 1, 2, . . . , 2n. Let
Ωn = f−nΩ0 (so that Ω ≡ Ω1). The boundary ∂Ωn consists of 2n−1 disjoint figures
eight. The loops of these figures eight bound 2n (closed) Jordan disks ∆n

i . The
map f conformally maps ∆n

i onto some ∆n−1
j , n ≥ 1. Let Ani = ∆n

i ∩ cl(Ωn+1).
These are closed topological annuli each of which is bounded by a Jordan curve and
a figure eight. They tile ∆0 r J(f). The map f conformally maps Ani onto some
An−1j , n ≥ 1.

Let us lift h ≡ h1 to conformal maps Hi : A
1
i → Ã1

i :

(34.12) Hi |A1
i = (f̃ |Ã1

i )
−1 ◦ h ◦ (f |A1

i ).

Since h is equivariant on the boundary of Ω1 r Ω0, it matches with the Hi on
∂∆1

i . Putting these maps together, we obtain an equivariant homeomorphism h2 :

cl(Ω2)→ cl(Ω̃2) conformal in the complement of the figure eight Γ:

h2(z) =

{
h(z), z ∈ Ω1,

Hi(z), z ∈ A1
i .

Since smooth curves are removable (recall §16), h2 is conformal in Ω2 r {0}. Since
isolated points are removable, h2 is conformal in Ω2. Thus h admits an equivariant
conformal extension to Ω2.

In the same way, h2 can be lifted to four annuli A2
i . This gives an equivariant

conformal extension of h to Ω3. Proceeding in this way, we will consecutively obtain
an equivariant conformal extension of h to all the domains Ωn and hence to their
union ∪Ωn = Cr J(f).

Since the Julia set J(f) is removable (Theorem 16.11), this map admits a
conformal extension through J(f). Thus, f and f̃ are conformally equivalent, and
hence c = c̃.

This completes the second proof of Theorem 34.1.

35. Hyperbolic components of M
In this section we will prove that a hyperbolic quadratic polynomial is uniquely

determined by its Hubbard tree and the multiplier of its attracting cycle. In
other words, hyperbolic components of intM can be labeled by Hubbard trees (or
equivalently, by characteristic angles θ−), while each of them can be conformally
parametrized by the attracting multiplier.

35.1. Combinatorial Rigidity for superattracting maps. Here is our
first rigidity result:

Theorem 35.1. If two superattracting quadratic polynomials fc and fc̃ have the
same abstract Hubbard tree T , or equivalently, if they have the same characteristic
angles θ±,2 then c = c̃.

2See Proposition 25.61.
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We let f ≡ fc, f̃ ≡ fc̃, D(∞) ≡ Df (∞), K ≡ K(f), etc, and we label the
corresponding objects for f̃ with “tilde”. By our assumption, T = T̃ .

Let us split the proof in several steps.

Step 1: From the Hubbard tree T to the extended Böttcher conjugacy

(35.1) h : D(∞) ∪ J → D̃(∞) ∪ J̃ .
By Theorem 25.58, the inverse Böttcher map B−1 : C r D → D(∞) admits an

extension to a homeomorphism ((C,D)/ ∼
K
)→ (C,K) semi-conjugating the quotient

of f0 : z 7→ z2 on C r D to f on D(∞) ∪ J . Moreover, its fibers are completely
determined by the Hubbard tree T (by Thoerem 25.58 and Proposition 25.61).
Hence the Böttcher conjugacy on the basins,

h = B̃−1 ◦B : D(∞)→ D̃(∞),

extends to a homeomorphism h : C→ C that conjugates f to f̃ on their Julia sets.
(Of course, the latter is automatic by continuity.)

Step 2: Conformal extension of conjugacy (35.1) to D(c). Let D0 be the
immediate basin of 0 for f . We know that it is a Jordan disk (Corollary 25.5), and
the Riemann mapping φ : (clD0, 0)→ (D, 0) (appropriately normalized) conjugates
the return map fp : clD0 → clD0 to f0 : z 7→ z2 on D.

The normalized Riemann mapping φ̃ : clD0 → D conjugates f̃p| cl D̃0 to the
same map f0 on D. Hence the composition h0 = φ̃−1 ◦ φ : clD0 → cl D̃0 conjugates
fp | clD0 to f̃p| cl D̃0.

We claim that this map h0 continuously matches on ∂D0 with the conjugacy
h from (35.1). Indeed, both of them conjugate fp| ∂D0 to f̃p| ∂D̃0. Hence the
composition h−1 ◦ h0 : ∂D0 → ∂D0 commutes with fp| ∂D0. But the latter map is
topologically equivalent to z 7→ z2 on T, which has the trivial commutator (Propo-
sition 19.58). Hence h−1 ◦ h0 | ∂D0 = id, and the claim follows.

Let us now consider another component D of intK. Since intK is equal to the
basin of 0 (Theorem 25.2), there is n = nD ∈ Z+ such that fn conformally maps
clD onto clD0. Let f−nD : clD0 → clD stand for the inverse map. Then we let

(35.2) hD = f̃−nD ◦ h0 ◦ fn : clD → cl D̃.

Moreover, hD matches continuously on ∂D with h. Indeed, since h is a conju-
gacy on the whole Julia set, we have

h| ∂D = f̃−n ◦ (h| ∂D0) ◦ fn : ∂D → ∂D̃.

Comparing this with (35.2), taking into account that h| ∂D0 = h0, yields h| ∂D =
hD.

Thus, we have extended h conformally and equivariantly to all the components
Di of intK. Since diamDi → 0, this extension is a global homeomorphism (see
Exercise 1.34), and Step 2 is accomplished.

Step 3: Dynamical qc removability of J . We will now show that the conjugacy
h just constructed is quasiconformal.

Lemma 35.2. Let f and f̃ be two hyperbolic quadratic polynomials, let U and
Ũ be neighborhoods of their Julia sets, and let h : (U,J )→ (Ũ , J̃ ) be a homeomor-
phism conjugating f to f̃ near the Julia sets. If h is K-qc on U rJ then h is K-qc
on U .
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Proof. We will use definition of quasiconformality in terms of the circular
dilatation, see Proposition 12.14. It is enough to check that the image h(D) of a
sufficiently small disk D := D(z, ρ), z ∈ J , has a bounded shape around h(z). To
this end, we will make use of the quasi-self-similarity of J and J̃ (Exercise 25.17).
According to that lemma, for all sufficiently small ε ≥ ρ > 0 there exists an n such
that fn maps D univalently onto an oval V of size of order ε and bounded shape
around zn = fnz. Since h is a homeomorphism, h(V ) is an oval whose inner and
outer radii (around h(zn)) are squeezed in between r(ε) > 0 and R(ε)→ 0 as ε→ 0.
If R(ε) is sufficiently small then there exists an inverse branch f̃−n on h(V ) with
bounded Koebe distortion such that f̃−n(h(zn)) = h(z). Hence f̃−n(h(V )) = h(D)
has a bounded shape around h(z), and quasiconformality of h follows.

By Proposition 25.23, the Julia set J has zero area. Hence it does not con-
tribute to the dilatation of h, i.e., Dilh = Dil(h| (U r J )) = K. �

Step 4: The conjugacy h is affine. As the conjugacy h is conformal on Cr J ,
Lemma 35.2 implies that it is 1-qc on C. By Weyl’s Lemma, it is conformal on C,
so it is affine. Since no two different maps in the quadratic family (fc) are affinely
conjugate, Theorem 35.1 follows: c = c̃.

Thus, superattracting parameters c ∈ M can be labeled by their Hubbard trees
T or equivalently, by their characteristic angles θ−.

35.2. Multiplier Theorem and the centers of hyperbolic components.

35.2.1. Statement. Let us pick a favorite hyperbolic component ∆ of the Man-
delbrot set M . For c ∈ ∆, the polynomial fc has a unique attracting cycle
αc = {αk(c)}p−1k=0 of period p. By Lemma 33.3, the multiplier ρ(c) of this cycle
holomorphically depends on c, so that we obtain a holomorphic map ρ : ∆→ D. It
is remarkable that this map gives an explicit uniformization of ∆ by the unit disk:

Theorem 35.3. The multiplier map ρ : ∆→ D is a conformal isomorphism.

Corollary 35.4. Any hyperbolic component ∆ of intM contains a unique
superattracting parameter c∆.

The superattracting parameter c∆ is called the center of ∆.

Corollary 35.5. For any real hyperbolic window ∆R ⊂ [−2, 1/4], the multi-
plier function ρ : ∆R → (−1, 1) is a real analytic diffeomorphism.

Corollary 35.6. For any p ∈ N, there exist 2p−1 hyperbolic components of
intM of some period q|p.

Proof. The centers of hyperbolic components of some period q|p are roots of
equation fpc (0) = 0, which is a polynomial equation of degree 2p−1. All we need to
check is that it has simple roots.

Consider the center c◦ of some hyperbolic component of period q|p. For c near
c◦, let αc be the attracting periodic point holomorphically moving with c such
that α◦ = 0. Letting φn(c, z) := fnc (z), we have: αc = φq(c, αc) = φp(c, αc).
Differentiating at c◦, we obtain:

(35.3)
dαc
dc

(c◦) = ∂cφp (c◦, 0) + (fp
◦
)′(0) · dαc

dc
(c◦) = ∂cφp (c◦, 0).
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Let us now consider dependence of the multiplier ρc = (fqc )
′(αc) ≡ ∂zφq (c, αc)

on c. By the Multiplier Theorem,
dρc
dc

(c◦) 6= 0. On the other hand,

dρc
dc

(c◦) = ∂c∂zφq (c◦, 0) + (fq
◦
)′′(0) · dαc

dc
(c◦) = (fq

◦
)′′(0) · dαc

dc
(c◦)

since ∂zφq (c, 0) = (fqc )
′(0) ≡ 0. Hence

dαc
dc

(c◦) 6= 0.

Going back to (35.3), we conclude that ∂cφp (c◦, 0) 6= 0, implying that c◦ is a
simple root of equation φp (c, 0) = 0. �

Exercise 35.7. Calculate the number of hyperbolic components of intM of
exact period p.

The Multiplier Theorem is in many respects analogous to Theorem 34.1 on
connectivity of the Mandelbrot set. The latter gives an explicit dynamical uni-
formization of CrM, which the unbounded hyperbolic component in the quadratic
family3; the former gives the dynamical uniformization for any bounded hyperbolic
component in this family. The ideas of the proofs are also similar.

We already know that ρ is holomorphic, so for the Multiplier Theorem we need
to verify that it is surjective and injective. The first statement is easy:

Exercise 35.8. The multiplier map ρ : ∆→ D is proper and hence surjective.
In particular, ∆ contains a superattracting parameter value.

We will give several insights into the Multiplier Theorem. The first one is
provided by the theory of holomorphic motions (see §17).

35.2.2. Böttcher motion over ∆.

Proposition 35.9. Let ∆ be a component of intM with a base point c◦. Then
there exists an equivariant biholomorphic motion hc : D◦(∞)→ Dc(∞) of the basin
of infinity over ∆.

Proof. Let Bc : Dc(∞) → C r D be the Böttcher-Riemann uniformization
of the basin of infinity (see Theorem 23.25). It is a holomorphic function in two
variables on the domain {(c, z) : c ∈ ∆, z ∈ Dc(∞)} (Corollary 23.37). It follows
that the Böttcher conjugacy hc = B−1c ◦ B◦ is a biholomorphic motion of Dc over
∆. Since the maps Bc conjugate fc to z 7→ z2, this motion is equivariant. �

Exercise 35.10. Show that an equivariant biholomorphic motion of the basin
of ∞ over ∆ is unique.

Now the First λ-lemma implies:

Corollary 35.11. For any component ∆ of intM, there is a unique equi-
variant holomorphic motion hc : D◦(∞) ∪ J◦ → Dc(∞) ∪ Jc over ∆ which is
biholomorphic on Dc(∞).

Under the above circumstances, the biholomorphic motion hc : D◦(∞) →
Dc(∞) of the basin of infinity is called the Böttcher motion.

It follows that the filled Julia sets of all the maps fc within one hyperbolic
component (c ∈ ∆) have the same pinched disk model (in the sense of §9.4). In

3Recall the definition of hyperbolicity given in §21.2.3.
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particular, it is the same for a superattracting parameter c◦ ∈ ∆. As Theorem 25.58
shows, the latter can be explicitly described in terms of the characteristic angles
θ±. Moreover, the conjugacy hc respects the roots of components of intK as well
as the Böttcher coordinates on the basins D(∞). Hence the rays landing at the
valuable roots have the same angles for fc and f◦ ≡ fc◦ . Let us now define the
characteristic rays Rθ±c (and the corresponding characteristic angles θ±) for fc in
the same way as in the superattracting case (i.e., as the rays landing at the valuable
root β1 that enclose a sector containing the immediate valuable basin D1). We see
that these rays are the same for all maps fc, c ∈ ∆.

Notice that at this stage we have already obtained Corollary 35.4. Indeed, as
all superattracting parameters in ∆ have the same characteristic angles, by the
Rigidity Theorem, 35.1, there is only one such a parameter, the center c∆ of ∆.

35.2.3. Injectivity of the multiplier ρ : ∆ → D. It is based on the following
rigidity result (compare with Theorem 35.1):

Theorem 35.12. Let fc and fc̃ be two hyperbolic quadratic maps. Assume that
the Böttcher conjugacy

h : Dc(∞)→ Dc̃(∞), h = B−1c̃ ◦Bc,
extends to a homeomorphism Dc(∞) ∪ Jc → Dc̃(∞) ∪ Jc̃. If the attracting cycles
of these maps have the same multiplier ρ ∈ D then c = c̃.

Proof. For ρ = 0, it is part of Theorem 35.1 (beginning Step 2 of the proof).
For an arbitrary ρ ∈ D, it follows the same lines, except that the model for the return
map fp : D(0)→ D(0) is a general Blaschke map g : D→ D (see Proposition 25.7)
rather than the quadratic map z 7→ z2.

Continuous matching of h and h0 on ∂D(0) in the proof of Step 2 is secured by
the fact that the circle map g|T, being expanding (Lemma 25.10), does not have
non-trivial automorphisms (Corollary 19.63.).

We leave details to the reader. �

35.2.4. Conclusion. Together, Proposition 35.9 and Theorem 35.12 imply the
Multiplier Theorem. So, for any hyperbolic parameter c ∈ intM , there exists a
unique superattracting parameter c∆ that belongs to the same hyperbolic compo-
nent ∆ of intM as c. By definition, the Hubbard tree of fc is the abstract Hubbard
tree of f∆ ≡ fc∆ .

Corollary 35.13. A hyperbolic quadratic polynomial fc, c ∈ M, is uniquely
determined by its Hubbard tree and the multiplier of the attracting cycle. The geo-
desic lamination that models Kc coincides with the lamination for f◦ described by
Theorem 25.58.

The uniformization ρ : ∆→ D induces a foliation of ∆ by (parameter) internal
rays corresponding to straight radii re(θ), 0 ≤ r < 1, in D. For c ∈ ∆̄, arg ρ(c) is
called the internal angle of c. Since ∆ is a Jordan disk, the internal ray of angle
θ ∈ [0, 1) lands at the neutral parameter c(θ) ∈ ∂∆ such that f ≡ fc(θ) has a neutral
periodic point α ≡ αθ fixed under fp and such that (fp)′(α) = e(θ). Moreover, if
θ 6= 0 then p is the smallest period of α and θ is its rotation number. For θ = 0, α
may have a smaller period p/k < p with rotation number j/k, j ∈ Z/kZ, (j, k) = 1
(see §33.5). This happens when ∆ is a satellite hyperbolic component.

The parameter r∆ := c(0) ∈ ∂∆ for which θ = 0 is called the root of ∆.
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Since in the real case the Hubbard tree is reduced to the kneading sequence,
we obtain:

Corollary 35.14. Any real hyperbolic quadratic polynomial fc, c ∈ MR, is
uniquely determined by its kneading sequence and the multiplier of the attracting
cycle.

35.3. Attracting multiplier as a conformal modulus. Let us select a
hyperbolic component ∆ of intM, and puncture it a the center: ∆∗ := ∆r {c∆}.
Given a base point c◦ ∈ ∆∗, we will describe a qc deformation fc ≡ fc(τ) of the
map f◦ ≡ fc◦ that provides us with an explicit interpretation of the attracting
multiplier ρ = ρ(c) of fc as a conformal modulus in ∆. It gives us a new insight
into the Multiplier Theorem, and in fact can be used to give an alternative proof
for it.

We will produce this qc deformation by deforming the fundamental torus of f◦.

35.3.1. Deformation of the fundamental torus. Let us briefly recap the notion
of fundamental torus from §23.1.3.

Take a little disk D = D(α◦, ε) around an attracting periodic point α◦ of f◦.
It is invariant under g◦ ≡ fp◦ and the quotient of D∗ := Dr {α◦} under the action
of g◦ is a conformal torus T◦. Its fundamental group has one marked generator
corresponding to a little circle around α◦.

By the Linearization Theorem, 23.4, the action of g◦ on D is conformally
equivalent to the linear action of ζ 7→ ρ◦ζ. Hence the partially marked torus T◦
is conformally equivalent to T2

ρ◦ , so ρ◦ is the modulus of T◦. (In what follows we
identify T◦ with T2

ρ◦ .)
Let us select a holomorphic family of deformations ψτ : T2

ρ◦ → T2
ρ of T◦, where

τ =
1

2πi
log ρ ∈ H. For instance, ψτ can be chosen to be linear in the logarithmic

coordinate log ζ:
x+ yτ0 7→ x+ yτ ; (x, y) ∈ R2.

This gives us a complex one-parameter family of Beltrami differentials ντ = ψ∗τ (σ)
on T0.

Exercise 35.15. Calculate ντ explicitly (for the above linear deformation).

35.3.2. QC deformation of f◦. We can lift ντ to the diskD and then pull it back
by iterates of f◦. This gives us a family of f◦−invariant Beltrami differentials µτ on
the attracting basin D(α◦). These Beltrami differentials have a bounded dilatation
since the pullbacks under holomorphic maps preserve dilatation. Extend the µτ
by 0 outside the attracting basin (keeping the notation). We obtain a family of
measurable f◦−invariant conformal structures µτ on the Riemann sphere. Solving
the Beltrami equation (hτ )∗(µτ ) = σ (with an appropriately normalization) we
obtain a qc deformation of f◦:

(35.4) fc(τ) = hτ ◦ f◦ ◦ h−1τ : z 7→ z2 + c(τ),

where c(τ) depends holomorphically on τ (see Corollary 29.3). Moreover, this
deformation is conformal on the basin of ∞.

Exercise 35.16. Show that

(i) The attracting multiplier of fc(τ) is equal to ρ = e(τ).
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(ii) c(τ) is invariant under the translation τ 7→ τ + 1 and hence it depends only
on ρ.

Thus, this qc deformation gives a natural uniformization

D∗ → ∆∗, λ 7→ c(λ)

which is inverse to the multiplier function c 7→ ρ(c). As a bi-product, we obtain
(compare §36.5):

Theorem 35.17. All maps fc, c ∈ ∆∗, are qc equivalent, and the conjugacy is
conformal on the basin of ∞.

35.4. Attracting-superattracting surgery revisited. Let ∆ be a hyper-
bolic component centered at c∆, and let c ∈ ∆. Let f ≡ fc and f∆ ≡ fc∆ .

Recall from §25.8 the surgery that turns a hyperbolic map f into a quasiregular
map F coinciding with f on CrD0. In turn, F is qc conjugate to a superattracting
map f◦, and moreover, the conjugacy h is Böttcher on the basin of∞. In this brief
section, we will identify f◦ with f∆.

Lemma 35.18. Under the above circumstances, f◦ = f∆.

Proof. As we noticed in §25.8.3, the characteristic angles θ± for f and f◦
coincide. But by Corollary 35.11, this is also true for f and f∆. Since the char-
acteristic angles determine the superattracting parameter (by Theorem 35.1), the
conclusion follows. �

35.5. Saddle-node bifurcation. The saddle-node bifurcation for a fixed point
in a real one-parameter family of maps is represented on Figure 35.1. The simplest
family exhibiting this scenario is

(35.5) fε(x) = −ε+ x+ x2.

For ε > 0, it has an attracting-repelling pair of real fixed points α = −√ε and
β =
√
ε. Note also that the whole interval [α, β) is contained in the basin of α (see

Figure 35.1).
For ε = 0, they merge into a parabolic fixed point (α = β = 0) with multiplier

1, which then evaporates into the complex plane for ε < 0. (Compare with Exercise
20.15.)

In the complexified family, the attracting-repelling pair exists inside the car-
dioid obtained by applying ε = λ2 to the disk λ-disk D(−1/2, 1/2). (Compare with
the main cardioid of the Mandelbrot set, Exercise 33.2.) For ε = 0, these points
merge into a parabolic fixed point with multiplier 1, which then split into two re-
pelling fixed points outside the cardioid. Moreover, the cardioid has a 3/2-cusp at
its root 0.

More generally, let us consider an analytic family of germs near 0,

(35.6) fε(z) = f0(z)− b ε(1 + εφε(z)),

where f0(z) = z+z2+ . . . is a non-degenerate parabolic germ, φε(z) is holomorphic
in two variables in some bidisk D2

r, and b 6= 0. We will call such a family a generic
saddle-node unfolding (of a non-degenerate parabolic germ).

The germ fε has two fixed points

α(ε) ∼ −
√
bε and β(ε) ∼

√
bε.
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Figure 35.1. Real saddle-node bifurcation.

The multipliers of these points are equal to 1±2
√
bε+O(ε) respectively, so if b > 0

then for small positive ε > 0, α is attracting while β is repelling (assuming the
principal branch of

√· is selected). The following statement shows that for these ε,
the immediate attracting basin of α contains β on the boundary.

Exercise 35.19. In a family (35.6) with b > 0, for ε > 0 sufficiently small,
there is an invariant round disk contained in the basin of α and containing β on
the boundary.

35.6. Satellite bifurcation. A hyperbolic component ∆ of intM which is
not primitive is called satellite. In this case, the parabolic cycle αr at the root
point has a smaller period than the attracting cycle αc inside ∆. Let us study this
scenario.

Let us consider a germ g0 with a degenerate parabolic point,

(35.7) g0(z) = z + aq+1z
q+1 + . . . , aq+1 6= 0.
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As usual, it can be normalized so that aq+1 = 1. Include it into a generic holomor-
phic one-parameter family fixing 0:

(35.8) gε(z) = (1 + bε)z + zq+1 + ε(a1(ε)z + a2(ε)z
2 + · · ·+ aq+1(ε)z

q+1 + . . . ),

where b 6= 0 and a1(ε) = O(ε). Then gε has q fixed points besides 0: α1(ε), . . . , αq(ε)
– such that

(35.9) αk(ε) ≍ q
√
bε

near 0.

Exercise 35.20. Show that these fixed points correspond to all qth roots of
unity.

Assume now that we have a holomorphic family fε of maps that have a holo-
morphically moving fixed point α(ε) such that for for ε = 0 it is parabolic with
rotation number p/q 6= 0 mod 1. Then the family

gε(z) := fqε (z + α(ε))− α(ε)
is of form (35.8). If it is generic then for ε near 0, the maps gε have q extra fixed
points (35.9).

Exercise 35.21. Show that the extra gε-fixed points form an fε-cycle of period
q. Moreover, the multiplier of this cycle is ≍ ε.

Thus, the parabolic fixed point α “gives birth” to a cycle of order q. This
scenario is called a satellite bifurcation of order q. In case q = 2 and q = 3 it is also
referred to as a period doubling and tripling bifurcation respectively.

Exercise 35.22. In a family (35.8) with b > 0, for ε > 0 sufficiently small,
there is a round disk contained in the basin of the cycle α and containing 0 on the
boundary.

35.7. Robustness of landing of local invariant curves. The following
lemma shows that landing of a local invariant curve is a robust property under
special parabolic-repelling perturbations:

Lemma 35.23. Let us consider a parabolic germ

f0 : z 7→ z + azk+1 + . . . with k ≥ 1, a 6= 0.

Let γ0 be a topological arc contained in a local repelling petal P with wedge 1 at the
origin (see Theorem 21.11) whose endpoints are related by f0. Let f : z 7→ ρz+ . . .
be a perturbation of f with ρ > 1, and let γ be a nearby arc whose endpoints are
related by f . Then

⋃

n∈N
f−n(γ) is a curve landing at 0 (where f−n are the iterates

of the local inverse branch of f).

Proof. By a power change of variable Z = z−1/k, the parabolic germ f0 can
be brought to a Puiseux form (21.9)

G0 : Z 7→ Z + 1 +O(1/|Z|1/k)
near infinity. Applying the same change of variable to f , we bring it to a Puiseux
form

G : Z 7→ ρ−kZ +O(1).
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In this coordinate, the petal P becomes a half-plane Q = {Z : ReZ < −t}. It
is invariant under G−1 and the iterates G−n converge to ∞ on Q. The conclusion
follows. �

35.8. Roots of hyperbolic components. Let ∆ be a hyperbolic component
of intM of period p. Let r ≡ r∆ ∈ ∂∆ be the root of ∆. Let us consider the
dynamical characteristic rays Rθ±r at r. The following lemma shows that these rays
are stable under perturbations into ∆:

Lemma 35.24. There exists a parameter c ∈ ∆ near r such that the rays Rθ±c
are the characteristic rays for fc.

Proof. For any level t > 0, if c is sufficiently close to r then the rays Rθ±c [t,∞)

closely follow the Rθ±r [t, ,∞). Hence for t small enough, the fundamental arc
Rθ±c [t, 2p0t] is trapped in the repelling petal of fr (where p0 is the period of the
parabolic point of fr (which can be smaller than p). By Lemma 35.23, the rays
Rθ±c [t, 2p0t] land at the repelling point βc that bifurcated from the parabolic point.

For the same reason, the whole ray portrait Rr persists under this perturbation,
so we obtain a ray portrait Rc with the same combinatorics. In particular, by
Lemma 24.17 we obtain the characteristic strip Πcch mapped by fpc with degree two
onto a bigger strip. Such a map has two fixed points in Π̄cch, which we identify with
the attracting periodic point αc ∈ Πcch and the repelling periodic point βc ∈ ∂Πcch.
Since the immediate basin of αc is contained in Π

c

ch, the fpc -fixed point on its
boundary must be βc.

We conclude that the rays Rθ±c are characteristic for fc. �

Together with the results of §35.2.2, this implies:

Corollary 35.25. Under the above circumstances, the angles θ± are charac-
teristic for any c ∈ ∆.

We say that two hyperbolic components, ∆1 and ∆2, touch4 at some point c◦
if c◦ ∈ ∆̄1 ∩ ∆̄2.

Corollary 35.26. No two hyperbolic components can touch at their roots.

Proof. Otherwise, by Corollary 35.25 there would be two hyperbolic com-
ponents with the same characteristic angles at their centers. But by the Rigidity
Theorem 35.1 the characteristic angles at the center determine the hyperbolic
component – contradiction. �

As the characteristic angles determine the dynamical model for the Julia set
(Theorems 25.58 and 26.28), we conclude:

Theorem 35.27. For the root r of a hyperbolic component ∆ and any c ∈ ∆,
the Böttcher conjugacy

hc ≡ B−1c ◦Br : Dr → Dc
extends to a conjugacy Jr → Jc.

In fact, up to a modification on the central component D0, the above conjugacy
is globally dynamical:

4It would be more consistent, but less concise, to talk about touching of the closures of these
components.
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Exercise 35.28. Under the circumstances of the above theorem, the Böttcher
conjugacy hc extends to a conjugacy between the superattracting quasiregular map F
constructed in §26.6 and the polynomial fc∆ centered at ∆. However, this conjugacy
is not quasiconformal.

35.9. Bifurcations in the quadratic family.

35.9.1. Saddle-node bifurcations. Let us consider a parabolic parameter c◦ ∈
M of period p with multiplier 1. Let α◦ be one of its parabolic point. By Corol-
lary 21.26, the parabolic map fp◦ has only one attracting petal at α◦, and hence it
is non-degenerate at α◦.

Lemma 35.29. Under the above circumstances, the family fpc (z) is a generic
saddle-node unfolding of the parabolic map fp◦ .

Proof. Let us translate the parameter c◦ and the parabolic point α◦ at 0,
and then normalize the quadratic term to be 1. The family fpc (z) assumes a form

gε(ζ) = a0(ε) + (1 + a1(ε))ζ + (1 + a2(ε))ζ
2 + . . . ,

where ai(0) = 0. We need to show that a0(ε) ≍ ε.
Note first that both a0 and a1 cannot identically vanish, for otherwise the fixed

points α(ε) and β(ε) would blow up as ε → 0. It follows that the fixed points
behave as εn/2 with some n ∈ N. If n is even then α and β are two regular local
branches of the fixed point locus. These points would become attracting at some
hyperbolic components Λα and Λβ rooted to 0, contradicting Corollary 35.26.

If n > 1 is odd then the multiplier of these fixed points would also behave
1 + qεk/2 with some odd k > 1. In this case, there are two sectors of wedge 2π/k
centered at 0 where the multiplier would become < 1 in absolute value. These
sectors would be local germs of two hyperbolic components rooted at 0, again
contradicting Corollary 35.26.

Hence the fixed points behave as
√
ε, which is possible only when a0(ε) ≍ ε. �

Corollary 35.30. Under the above circumstances, ∂∆ has a 3/2-cusp at the
root r.

So, any parabolic parameter r with multiplier 1 is the root point of exactly one
hyperbolic component Λ of intM. Moreover, the period p of the attracting cycle
αc for c ∈ Λ is equal to the period of the parabolic cycle αr at the root. Such a
hyperbolic component is called primitive.

35.9.2. Satellite bifurcations. Let us go back to the quadratic family fc. As-
sume f◦ ≡ fc◦ has a parabolic periodic point α◦ of period p with rotation number
p/q 6= 0 mod 1.

Lemma 35.31. Under the above circumstances, the family fpc entertains a
generic satellite bifurcation at c◦ of order q.

Proof. By the Implicit Function Theorem, the periodic point α(c) moves
holomorphically with c near c0, so we can consider a local holomorphic family

gc(z) := fpc (z + α(c))− α(c)
near 0. The origin is a parabolic fixed point for g◦ with rotation number p/q, so by
Corollary 21.26, it has q petals attached to 0. Hence gq has a local expansion (35.7).
Moreover, ∂cg|c=c◦ 6= 0 since otherwise there would be two hyperbolic components
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that touch at their roots, contradicting Corollary 35.26. Thus, gc is a generic
family of (35.8) kind to which the discussion of §35.6 is applicable. �

36. Structural stability

In §33.6.3 we showed that structural stability is generic in the real quadratic
family. Here we will establish a similar result for the complex quadratic family.

36.1. Statement of the result. Let us give the definition of structural sta-
bility in our setting. A map f◦ : z 7→ z2 + c◦ (and the corresponding parameter
c◦ ∈ C) is called structurally stable if for any c ∈ C sufficiently close to c◦, the map
fc is topologically conjugate to f◦, and moreover, the conjugacy hc : C→ C can be
selected continuously in c (in the uniform topology on the Riemann sphere Ĉ). By
definition, the set of structurally stable parameters is open. In this section we will
prove that it is dense:

Theorem 36.1. The set of structurally unstable parameters is equal to the
boundary of the Mandelbrot set together with the centers of hyperbolic components.
Hence the set of structurally stable parameters is dense in C. Moreover, any struc-
turally stable map f◦ is quasiconformally conjugate to all nearby maps fc.

Notice that parameters c◦ ∈ ∂M are obviously unstable since the Julia set J◦
is connected, while the Julia sets Jc for nearby c ∈ C rM are disconnected. The
centers of hyperbolic components are also unstable since the topological dynamics
near a superattracting cycle is different from the topological dynamics near an
attracting cycle (the grand orbits on the basin of attraction are discrete in the
latter case and are not in the former).

The proof of stability of other parameters will occupy §36.2 – §36.6. The
desired conjugacies will be constructed as equivariant holomorphic motions. Since
by the Second λ-lemma, holomorphic motions are quasiconformal in the dynamical
variable, the last assertion of Theorem 36.1 will follow automatically.

36.2. J -stability. Let us first show that the Julia set Jc moves holomorphi-
cally outside the boundary ofM. (Strictly speaking, this step is not needed for the
proof of Theorem 36.1 given below, but it gives a good illustration of the method.)

A map f◦ : z 7→ z2 + c◦ (and the corresponding parameter c◦ ∈ C) is called
J -stable if for any c ∈ C sufficiently close to c◦, the map fc| Jc is topologically
conjugate to f◦| J◦, and moreover the conjugacy hc : J◦ → Jc depends continuously
on c.

Theorem 36.2. The set of J -stable parameters is equal to Cr ∂M and hence
is dense in C. Moreover, the corresponding conjugacies hc : J◦ → Jc form a
holomorphic motion of the Julia set over the component of Cr ∂M containing c◦.

Proof. Parmeters c◦ ∈ ∂M are obviously J -unstable as the Julia set J◦ is
connected while the Julia sets Jc get disconnected for nearby c ∈ CrM.

Let C be the component of intM containing c◦. By Corollary 33.5, C does not
contain neutral parameters, and hence all periodic points are persistently hyperbolic
over C, either repelling or attracting. Hence they depend holomorphically on c ∈
C. Since C is simply connected (Exercise 33.1 (iii)), these holomorphic functions
c 7→ α(c) are single valued. Moreover, they cannot collide since collisions could
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occur only at parabolic parameters. Thus, they provide us with a holomorphic
motion hc : Per◦ → Perc of the set of periodic points.

This holomorphic motion is equivariant. Indeed, if

c 7→ α(c) = hc(α)

is a holomorphically moving periodic point then c 7→ fc(α(c)) is also a holomorphi-
cally moving periodic point. Hence fc(α(c)) = hc(f◦(α)) and we obtain:

fc(hc(α)) = fc(α(c)) = hc(f◦(α)).

By the First λ-lemma, this holomorphic motion extends to a continuous equi-
variant holomorphic motion of the closure of periodic points, which contains the
Julia set. Moreover, this motion is automatically continuous in both variables (λ, z),
and hence provides us with a family of topological conjugacies between J◦ and Jc
continuously depending on c. �

Exercise 36.3. An equivariant holomorphic motion of the Julia set is unique.

36.3. Bifurcation locus. The set of J -unstable parameters is called the bi-
furcation locus. So, for the quadratic family, it is equal to the boundary of the
Mandelbrot set, ∂M. It can also be described in several other ways:

Proposition 36.4. The bifurcation locus ∂M coincides with the following sets:

(i) The set parameters for which the critical point 0 is active;

(ii) The closure of parabolic parameters;

(iiI) The accumulation set for superattracting parameters;

(iv) The closure of Misiurewicz parameters.

Proof. (i) This follows from Exercise 33.1 (iv). However, the reader can
entertain himself by relating directly the J -instability to activity of the critical
point (rather than checking that both properties occur on ∂M).

(ii) We know by Corollary 33.5 that the parabolic parameters belong to ∂M.
On the other hand, if c◦ ∈ ∂M is not approximated by neutral parameters, then
the proof of Theorem 36.2 shows that c◦ is J -stable.

Properties (iii) and (iv) follow from Exercise 33.6. �

Problem 36.5. For a generic parameter c ∈ ∂M, the orbit of the critical point
is dense in the Julia set Jc.

36.4. Motion over a queer component. Recall Proposition 35.9 asserting
that the basin of infinity Dc(∞) moves biholomorphically over any component ∆
of intM.

If ∆ ≡ Q is a queer component then C = Dc(∞) for any c ∈ Q, and so, we
obtain the Structural Stability Theorem in this case:

Corollary 36.6. For a queer component Q of intM, there is a unique equi-
variant holomorphic motion hc : C→ C over Q which is biholomorphic on Dc(∞).
Hence all parameters c ∈ Q are structurally stable.
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36.5. Motion of an attracting basin. For a hyperbolic parameter c, let
αc = (fkc (αc))

p−1
k=0 be the corresponding attracting cycle. Recall that D(αc) stands

for its basin. Also, we use notation ∆∗ for a punctured hyperbolic component (see
§35.3).

Proposition 36.7. Let ∆ be a hyperbolic component of intM, and let c◦ ∈ ∆∗.
Then there is an equivariant smooth holomorphic motion of the attracting basin
D(αc) over some neighborhood of c◦.

Proof. Let us consider the maps fpc near their fixed points αc. Lemma 23.7
implies that there is a neighborhood Λ ⊂ ∆∗ of c◦ and an ε > 0 such that the
inverse linearizing coordinate φ−1c (z) for fpc is holomorphic on Λ × Dε. Let Vc =
φ−1c (Dε) ∋ αc, and let us consider a fundamental annulus Ac = cl(Vc r fc(Vc)).

By Theorem 21.4, the critical orbit orbc(0) must cross Ac. By adjusting ε and
shrinking Λ if needed, we can ensure that it does not cross ∂Ac. Then it crosses
Ac at a single point υn(c) = fnc (0) ∈ intAc, where n ∈ N is independent of c. Its
position in the linearizing coordinate, ac = φc(υn(c)) ∈ A(ε, ρcε) ≡ Ac, depends
holomorphically on c (here ρc is the multiplier of αc).

Let Qc = ∂Ac ∪ {ac}. Let us define a smooth equivariant holomorphic motion
h of a small neighborhood of Qc over Λ as follows: hc = id near the outer boundary
of A◦, hc : z 7→ ρcz/ρ◦ near the inner boundary of A◦, and hc : z 7→ acz/a◦
near a◦. By Lemma 17.1, this motion extends to a smooth motion of the whole
plane over some neighborhood of c◦ (we will keep the same notation Λ for this
neighborhood). Let us restrict the motion to the fundamental annulus Ac (keeping
the same notation hc for it). By Lemma 17.10 (in the simple case when there are
no critical points), this motion can be first extended to the forward orbit of Ac,
(providing us with an equivariant holomorphic motion of Dε).

We can now transfer it using the linearizing coordinates to a holomorphic mo-

tion of Vc, then extend it to an invariant neighborhood Vc =

p−1⋃

k=0

fkc (Vc) of α, and

finally we can use Lemma 17.10 to pull this motion back to all preimages of Vc (the
assumption of Lemma 17.10 on the critical values is secured by the property that ac
is a leaf of the motion h). It provides us with the desired equivariant holomorphic
motion of the basin D(αc). �

Corollary 36.8. Let ∆ be a hyperbolic component of intM, and let c◦ ∈ ∆∗.
Then there is an equivariant holomorphic motion of the whole plane C over some
neighborhood of c◦ which is biholomorphic on Dc(∞). Hence all parameters c ∈ ∆∗

are structurally stable.

Proof. Since for C = cl(Dc(∞)∪D(αc)) for c ∈ ∆, Propositions 35.9 and 36.7,
together with the First λ-lemma yield the desired. �

36.6. Motion of the Cantor set. Let us finally deal with the complement
of M.

Proposition 36.9. Let c◦ ∈ C rM. Then there is an equivariant smooth
holomorphic motion of the basin of infinity, Dc(∞), over some neighborhood of c◦.

The proof is similar to the one given in the attracting case, using the Böttcher
coordinate in place of the linearizing coordinate. To implement it, we need a rota-
tionally equivariant Extension Lemma:
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Lemma 36.10. Let R > r > 1 and let z ∈ A(r,R). Let φ be a holomorphic
function on a domain (Λ, λ◦) with φ(λ◦) = z. Then there is a smooth holomorphic
motion Hλ of the whole complex plane C over some neighborhood Λ′ of λ◦ such that

(i) Hλ(z) = φ(λ);
(ii) Hλ = id on Cr A(r,R) = id;
(iii) The Hλ commute with the rotation group ζ 7→ e(θ) ζ.

Proof. Let τ(λ) = φ(λ)/z, and let hλ(ζ) = τ(λ)ζ. This motion satisfies
requirements (i) and (iii). To make it satisfy (ii) as well, we will use a smooth
cut-off function φ : R → R supported on a small neighborhood of |z|. Then the
motion

Hλ(ζ) = φ(|ζ|)hλ(ζ) + (1− φ(|ζ|)) ζ
satisfies all the requirements. �

Proof of Proposition 36.9. Let us consider the Böttcher coordinate Bc of fc near
∞. Since it depends holomorphically on c, there is a neighborhood U ⊂ C rM
of c◦ and an R > 1 such that the function (c, z) 7→ B−1c (z) is holomorphic on
U × (Cr DR).

Let Vc = B−1c (C r DR). By adjusting R and U if necessary, we can ensure
that the orbc(0) does not cross the boundary of the fundamental annulus Ac =
Vcr fc(Vc). Then there is a unique n > 0 such that υn(c) = fnc (0) ∈ intAc. Let us
mark the corresponding point ac = Bc(υn(c)) in the annulus A ≡ A(R,R2).

Applying lemma 36.10, we find a rotationally equivariant holomorphic motion
Hc : A→ A such that Hc(a◦) = ac and Hc = id on ∂A.

Exercise 36.11. Show that this holomorphic motion extends to a holomorphic
motion Hc : Cr DR → Cr DR commuting with z 7→ z2.

Let us now transfer Hc by means of the Böttcher coordinate to a holomorphic
motion hc : Vc → Vc, hc = B−1c ◦ Hc ◦ B◦. This motion is equivariant, Bc ◦ f◦ =
fc ◦ Bc, and has vn(c) as one of its leaves. By Lemma 17.10, it can be lifted to
a holomorphic motion of f−1c (Vc) that has υn−1(c) as its leaf. Moreover, by the
equivariance of the original motion hc, the new motion coincides with hc on V◦
which implies that it is equivariant. Then we can lift it further to f−2(Vc), and so
on: in this way we will exhaust the whole basin of ∞. ⊔⊓

Since C = Dc(∞) for c ∈ C rM, Proposition 36.9 (together with the First
λ-lemma) yields:

Corollary 36.12. Let c◦ ∈ CrM. Then there is an equivariant holomorphic
motion of the whole plane C over some neighborhood of c◦. Hence all parameters
c ∈ CrM are structurally stable.

Corollaries 36.6, 36.8 and 36.12 cover all types of components of Cr ∂M, and
together prove the Structural Stability Theorem, 36.1.

36.7. Invariant line fields and queer components.

36.7.1. Definition. Informally speaking, a line field on C is a family of tangent
lines l(z) ∈ TzC depending measurably on z ∈ C.

Here is a precise definition. Any line l ∈ C passing through the origin is
uniquely represented by a pair of centrally symmetric points e(±θ) ∈ T in the unit
circle, or by a single number

(36.1) ν = e(2θ) ∈ T, θ ∈ R/(Z/2).
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The space of these lines form, by definition, the one-dimensional projective line
PR1, and (36.1) provides us with its parametrization by the angular coordinate
(and shows that PR1 ≈ T).

Let us now consider the projective tangent bundle over C,

PT(C) = C× PR1

parametrized by C× (R/(Z/2)). A line field on C is a measurable section of PT(C)
defined on some set X ⊂ C of positive area called its (measurable) support. In
terms of the angular coordinate, we obtain a measurable function X → R/(Z/2),
z 7→ θ(z).5 In the circular coordinate ν, we obtain a measurable function X → T.
In what follows, we will always extend ν by 0 to the whole plane.

Exercise 36.13. Show that a line field on a Riemann surface S is given by a

Beltrami differential ν(z)
dz̄

dz
with |ν(z)| ∈ {0, 1}.

A line field on a set J ⊂ C is a line field on C whose support is contained in J .
If such a non-trivial line field exists then area J > 0.

A line field is called invariant (under a holomorphic map f) if it is invariant
under the natural action of f on the projective line bundle: l(fz) = Df(z) l(z),
or in the angular coordinate, θ(fz) = θ(z) + arg f ′(z) mod 1/2, or in the Beltrami
coordinate, f∗ν = ν (where the pullback is understood in the sense of Beltrami
differentials).

If an invariant line field l is supported on a set X then we can pull it back by the

dynamics6 to obtain an invariant line field supported on the set X̃ =

∞⋃

n=0

f−n(X).

Hence we can assume in the first place that l is supported on a completely invariant
set: this will be our standing assumption.

36.7.2. Existence criterion.

Proposition 36.14. Let Q be a queer component of intM. Then any map fc,
c ∈ Q, has an invariant line field on its Julia set. In particular, areaJ (fc) > 0.

Vice versa, if fc has an invariant line field on its Julia set then c belongs to a
queer component of intM.

Proof. Take some c◦ ∈ Q. By Corollary 36.6, there is an equivariant holo-
morphic motion hc over (Q, c◦) which is biholomorphic on Dc(∞). Let us consider
the corresponding Beltrami differentials µc = ∂̄hc/∂hc, c ∈ Q. Each µc vanishes on
D◦(∞), however µc 6= 0 for c 6= c◦ (for otherwise, by Weyl’s Lemma the map hc
would be affine, contrary to the fact the quadratic maps fc and f◦ are not affinely
conjugate). Hence area(suppµc) > 0 for any c 6= c◦, and all the more, areaJ◦ > 0.
Moreover, since µc is f◦-invariant, the normalized Beltrami differential νc = µc/|µc|
(where we let νc = 0 outside suppµc) is also f◦-invariant, and hence determines an
invariant line field on the Julia set J◦.

Vice versa, assume f◦ has an invariant line field on J◦ given by an invariant
Beltrami differential ν◦. For any λ ∈ D, the Beltrami differential λν◦ is also f -
invariant. Let hλ : (C, 0) → (C, 0) be the solution of the corresponding Beltrami

5As always, a measurable function is considered up to an arbitrary change on null-sets.
6The pullback would fail at the critical point but we can always remove its grand orbit (as

any other completely invariant null-set) from X̃.
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equation tangent to the identity at infinity. Then the map hλ ◦ f◦ ◦ h−1λ is a
quadratic polynomial fσ(λ) : z 7→ z2 + σ(λ) (see §29.1.2). By Corollary 29.3, the
map σ : D→ C is holomorphic. Since the line field is non-trivial, σ is not identically
constant. Hence its image covers a neighborhood of c◦ contained in intM. So, it
is contained in some component Q of intM. Since areaJ (f◦) > 0, the map f◦ is
not hyperbolic (see Proposition 25.23), so Q must be queer. �

Thus, the Fatou Conjecture, 33.7, is equivalent to the following one:

Conjecture 36.15 (No Invariant Line Fields). No quadratic polynomial has
an invariant line field on its Julia set.

36.7.3. Uniqueness and ergodicity. As a line field l(z) is rotated by angle 2πα
with α ∈ R/(Z/2), the corresponding Beltrami differential is multiplied by λ =
e(2α) ∈ T. Of course, if the original line field was f -invariant then so is the rotated
one.

Lemma 36.16. A quadratic polynomial can have at most one, up to rotation,
invariant line field on its Julia set.

This will follow from the ergodicity (recall §19.6.5) of the action of f on the
measurable support of any invariant line field.

Lemma 36.17. Let f be a quadratic polynomial, and let l(z) be an invariant
line field on J(f). Then the action of f on supp l is ergodic.

Proof. Assume that supp l admits a disjoint decomposition X1 ⊔ X2 into
two measurable invariant subsets of positive measure. Then the restriction of l
to these sets gives us two invariant line fields li with disjoint supports. Let νi be
the corresponding Beltrami differentials. Then we can consider a complex two-
parameter family of Beltrami differentials νλ = λ1ν1 + λ2ν2, where λ = (λ1, λ2) ∈
D2. Since ‖νλ‖∞ < 1 for each λ, we can solve the corresponding Beltrami equations
and obtain a two parameter family of qc maps hλ : (C, 0) → (C, 0) tangent to
the identity at infinity. Then the maps hλ ◦ f◦ ◦ h−1λ form a family of quadratic
polynomials fσ(λ) : z 7→ z2 + σ(λ) (see §29.1.2).

By Proposition 14.5, the map σ : D2 → C we have obtained this way is contin-
uous (in fact, by Corollary 29.3, it is holomorphic). Hence it cannot be injective:
there exist λ 6= κ in D2 such that σ(λ) = σ(κ). Then the map φ = h−1κ ◦ hλ
commutes with f◦. But the only conformal automorphism of D◦(∞) commuting
with f◦ is the identity (see Exercise 23.24). Hence hλ = hκ implying that λ = κ –
contradiction. �

Proof of Lemma 36.16. Assume we have two invariant line fields given by
Beltrami differentials νi. Let Xi = supp νi. Notice that due to our convention, both
differences, X1rX2 andX2rX1, are completely invariant sets. If area(X2rX1) > 0
then an invariant Beltrami differential ν which is equal to ν1 on X1 and is equal
to ν2 on X2 r X1 has a non-ergodic support, contradicting Lemma 36.17. Hence
area(X2 r X1) = 0, and for the same reason area(X1 r X2) = 0, so that the set
Y = X1 ∩X2 can be taken as a measurable support for both differentials.

By Lemma 36.17, f acts ergodically on Y . But the ratio ν2/ν1 is an invariant
function on Y . By ergodicity, it is equal to const a.e. on Y , and we are done. ⊔⊓



492 5. PARAMETER PLANE

36.7.4. Dynamical uniformization of queer components. We can now construct
a dynamical uniformization of any queer component Q by a Beltrami disk. (Com-
pare with the uniformizations of hyperbolic components of Cr ∂M given by The-
orems 34.1 and 35.3.)

For a base map f◦, let us select an invariant line field on J◦ given by an f -
invariant Beltrami differential ν◦. Then the Beltrami disk {λν◦}λ∈D generates a
holomorphic family of quadratic polynomials fσ(λ) : z 7→ z2 + σ(λ) (see the proof
of the second part of Lemma 36.14). This is the desired uniformization:

Queer Theorem. The map σ : (D, 0)→ (Q, c◦) is the Riemann mapping.

Proof. The map σ is a holomorphic embedding for the same reason as in
the proof of Lemma 36.17. Let us show that it is surjective. Let c ∈ Q. By
Corollary 36.6, the map fc is conjugate to f◦ by a qc homeomorphism hc which is
conformal outside J◦. Let µc = ∂̄hc/∂hc be the Beltrami differential of hc, and let
νc = µc/|µc|. Since the latter differential determines an invariant line field on J◦,
Lemma 36.16 yields:

suppµc = supp νc = supp ν◦.

Since the differential µc is f◦-invariant, the ratio µc/ν◦ is an f -invariant function.
By ergodicity, it is const a.e., so that µc = λν◦ for some λ ∈ D. It follows that
c = σ(λ), and we are done. �

36.8. Quasiconformal classification of the quadratic maps. We can now
give a complete classification of the quadratic maps up to qc conjugacy:

Theorem 36.18. Any qc class in the parameter plane C of the quadratic family
is one on the following list:

• the complement of the Mandelbrot set;
• a hyperbolic component of intM punctured at the center;
• a queer component of intM;
• the center of a hyperbolic component;
• a single point of the boundary of M.

The first three types of maps are qc deformable, the last two are qc rigid.

Proof. By the Structural Stability Theorem, 36.1, each of the above listed
sets is contained in some qc class. What we need to show that they belong to
different qc classes.

Assume it is not the case: let c◦ and c be two parameters in different sets but in
the same qc class. Then the quadratic polynomials f◦ and fc are conjugate by a qc
map h. Let µ = ∂̄h/∂h be the Beltrami differential of h, and let r = 1/‖µ‖∞. Let
us consider the Beltrami disk {λµ : |λ| < r} and the corresponding qc deformation

fσ(λ) : z 7→ z2 + σ(λ)

of f◦ (see Corollary 29.3). Then σ : Dr → C is a holomorphic map such that
σ(0) = c◦ and σ(1) = c. In particular, it is not identically constant and hence its
image U is a domain in C. But U is not contained in a single component of intM,
so it must intersect ∂M, and hence it must intersect C rM. Thus, U contains
quadratic maps of both dichotomy types: with connected as well as Cantor Julia
sets, which is impossible as all the maps in U are topologically conjugate. �
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37. Limbs and wakes of the Mandelbrot set

37.1. Stability of landing.

37.1.1. General condition. Recall that θ(c) stands for the external argument of
c, which can be viewed both dynamically (as the critical value) and parametrically
(as the parameter of a quadratic map).

Lemma 37.1. Assume for some θ ∈ R/Z and some parameter domain Λ ⊂ C,
we have

θ(c) 6= Tnθ for any n ≥ 1 and c ∈ ΛrM.

Assume also that for some c◦ ∈ Λ, the ray Rθ
◦

lands at some point a◦ ∈ J◦. Then
for any c ∈ Λ, the ray Rθc lands at some point ac ∈ Jc holomorphically depending
on c ∈ Λ.

Proof. By Lemma 34.7, the rayRθc moves holomorphically under the Böttcher
motion hc over Λ. By the λ-lemma, hc extends to clRθc . Since clRθ

◦
= Rθ

◦
∪ {a◦},

we have: clRθc = hc(clRθ◦) = Rθc ∪ {hc(a◦)}. Finally, let ac := hc(a◦). �

37.1.2. Rational case: persistence of being repelling.

Lemma 37.2. Assume for some rational θ = p/q ∈ Qodd/Z and some parameter
domain Λ ⊂ C intersecting M, we have:

θ(c) 6∈ orbT θ for any c ∈ ΛrM.

Then for any c ∈ Λ, the landing point ac of Rθc is a repelling periodic point depending
holomorphically on c.

Proof. By assumption, there exists c◦ ∈ Λ ∩ M. By Theorem 24.3, the
dynamical ray Rθ

◦
lands at some periodic point a◦ ∈ J◦. Then by Lemma 37.1, the

ray Rθc lands at some point ac holomorphically depending on c. Since fpc (Rθc) = Rθc
for some p depending only on q, the point ac is necessarily periodic. If somewhere it
stops being repelling then nearby it becomes attracting. But an attracting periodic
point cannot be a landing point of any ray – contradiction. �

Exercise 37.3. Assume for some rational θ = p/q ∈ Qev/Z and some param-
eter domain Λ ⊂ C intersecting M, we have:

θ(c) 6∈ orbT T (θ) for any c ∈ ΛrM.

Then the ray Rθc moves biholomorphically over Λ, and for any c ∈ Λ, its landing
point ac is a repelling preperiodic point depending holomorphically on c.

37.1.3. Stability under small perturbation (repelling case). If a is a repelling
periodic point of period p for a polynomial f then by the Implicit Function Theorem,
a nearby polynomial f̃ has a unique repelling periodic point ã near a. We will refer
to ã as the perturbed a.

Stability Lemma. Assume that a periodic ray R ≡ Rθ(f) of a polynomial
f lands at a repelling periodic point a. Then for f̃ sufficiently close to f , the
corresponding ray R̃ ≡ Rθ(f̃) lands at the perturbed repelling periodic point ã.

Remark 37.4. Let us emphasize that this lemma applies to both connected
and disconnected cases.
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Proof. Without loss of generality we can assume that the point a is fixed and
the ray R is invariant. Let d ≥ 2 be the degree of f .

Let us take a small disk D ≡ D(a, 2ε) such that the local inverse branch g of
f−1 is well defined in D and g(D) ⋐ D. Then the same is true for f̃ sufficiently
close to f .

Let us fix some equipotential level t > 0 such that R(0, d t] ⊂ D(a, ε), and let
γ = R[t, d t] ⊂ D(a, ε).

Let us consider the inverse Böttcher functions B−1
f̃

. Note that even in the

disconnected case, these functions can be analytically extended along any (non-
singular) ray (see Problem 23.30). Moreover, B−1

f̃
depends continuously on f̃ in

the closed-open topology. It follows that if f̃ is sufficiently close to f , then the
ray R̃[t,∞) is well defined and ε-close to the ray R[t,∞). Hence the ray arc
γ̃ := R̃[t, d t] is contained in D for f̃ sufficiently close to f , so the inverse branch g̃
is well defined on γ̃.

Let ẽ := R̃(t), b̃ := R̃(d t) = f̃(ẽ) Since both ẽ and b̃ lie in D, we have: ẽ = g(b̃).
Hence the arc g̃(γ̃) ⊂ D gives an extension of the ray R̃[t,∞) to the ray R̃[t/d,∞).
Repeating this argument, we see that the arcs g̃n(γ̃) give an extension of R̃[0,∞)

to the full ray R̃ landing at ã. �

37.1.4. Parabolic case.

Lemma 37.5. Let r be the root of a hyperbolic component ∆ of intM, and let
Rθ be a dynamical ray landing at the corresponding parabolic root β of f ≡ fr.
Then for any c ∈ ∆, the ray Rθc lands at the corresponding repelling root βc of fc.

Proof. By Corollary 35.11, it is sufficient to prove this for some parameter
c ∈ ∆, so we can consider a small perturbation of r whose attracting cycle αc =
(fnc αc)

p−1
n=0 has a real multiplier. Let d = 2m where m is the period of θ under the

doubling map. We can now proceed as in the Stability Lemma. Namely, the ray
Rθc follows Rθ for long time, so eventually some fundamental arc γc := Rθc [t, d t].
is trapped inside the repelling petal of βc. Then it extends to a ray landing at the
repelling periodic point βc which is a perturbation of β. By Exercises 35.19 and
35.22, βc lies on the boundary of the immediate basin D•(αc). Moreover, it is
fixed under the return map to D(αc), so it is its root. �

Corollary 37.6. Let ∆ be a hyperbolic component rooted at r, and let p/q
be the rotation number of the parabolic point of fr. Then for any c ∈ ∆, the
combinatorial rotation number of the repelling root point βc is equal to p/q.

Proof. By Lemma 37.5, the combinatorial rotation number of the repelling
root βc of fc, c ∈ ∆, is equal to the combinatorial rotation number of the parabolic
root β of fr. But the latter is equal to the rotation number of this parabolic point
(see Theorem 24.6). �

37.2. Landing of rational parameter rays (with odd denominator).
Let Pp ⊂M be the set of parabolic parameters of period p.

Lemma 37.7. Let θ ∈ Qodd/Z, and let p be its period under the doubling map.
Then the rational parameter ray Rθpar lands at some parabolic parameter r ∈ Pq

with q|p.
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Proof. Let Θ = (θi)
q−1
i=0 ⊂ T, i ∈ Z/pZ, be the cycle of θ ≡ θ1 under the

doubling map.
Observe first that for any c ∈ Rθpar, the corresponding dynamical ray Rθc crashes

at some pre-critical point. Indeed, by the Basic Phase-Parameter relation (§34.2),
for c ∈ Rθpar we have c ∈ Rθc . Then 0 ∈ Rθ0c , so, the ray Rθ0c crashes at the critical
point 0. Going backwards along the cycle of rays Rθic , we see that all the dynamical
rays of this cycle crash at some precritical points. In particular, the ray Rθ1c does.

Together with the Stability Lemma, this observation implies that any accu-
mulation point r ∈ M of the parameter ray Rθpar belongs to

⋃

q|p
Pq. Indeed, by

Theorem 24.3, the corresponding dynamical ray Rθr must land at a repelling or
parabolic periodic point βr (with a period q dividing p). If βr were repelling, then
by the Stability Lemma, for c near r the ray Rθc would also safely land at a repelling
periodic point βc, contradicting the above observation.

Finally, the accumulation set ω of the ray Rθpar is either a single point or a

continuum. Since
⋃

q|p
Pq is finite, ω must be a single point {r}, so the ray in

question lands at r. �

37.3. Wake Theorem. Let us consider a parabolic parameter r which is not
the main cusp of M (i.e., r 6= 1/4). Then the corresponding parabolic polynomial
has two dynamical characteristic rays R±r ≡ R

θ±
r (see §26.7). These rays are

periodic with the same period, p. Let ∆ ≡ ∆r be the hyperbolic component rooted
at r (which is unique by Corollary 35.26). For c ∈ ∆, we let:

• αc ≡ αch
c and βc ≡ βch

c be the corresponding characteristic attracting periodic
point and the repelling root of fc.

• Θ± ≡ Θ±(r) := orbT θ± be the corresponding cycles of rays (which can coincide),
and Θ ≡ Θ(r) := Θ+ ∪ Θ− . By Lemma 37.5, we know that for c ∈ Λ, the rays
R±c := Rθ±c are characteristic rays landing at the root point βc.

• Wch
c ∋ c be the characteristic dynamical sector bounded by R±c .

Let is also consider the following parameter objects:

• R±par ≡ R
θ±
par be the corresponding parameter rays.

Theorem 37.8. For any parabolic parameter r 6= 1/4, the parameter rays R±par
land at r. (The sector Wpar

r bounded by R+
par ∪ R−par ∪ {r} and containing ∆r is

called the parameter wake rooted at r.) The root point βc, and the dynamical rays
R±c persist as holomorphically moving objects over the whole wake Wpar

r (and βc
remains repelling throughout). Moreover, Wpar

r 6∋ 0.
Vice versa, if the ray configuration Rr is realized for some parameter c, then

c ∈ Wpar
r ∪ {r}.

Proof. • First, define the wake Wpar ≡ Wpar
r as the component of

(37.1) Cr
⋃

θ∈Θ
cl(Rθpar)

containing ∆r. Then

(37.2) θ(c) 6∈ Θ for any c ∈ Wpar rM.
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Figure 37.1. A parabolic parameter wake Wpar
τ and the corre-

sponding dynamical characteristic wake Wch
c for c ∈ ∆ (in the

satellite case).

By Lemmas 34.7 and 37.2, all the dynamical rays Rθc , θ ∈ Θ, and their landing
points, move holomorphically overWpar. Hence for any c ∈ Wpar, we have naturally
defined “characteristic rays” R±c landing at the “characteristic root” βc that bound
the “characteristic sector” Wch

c . (Here all quotation marks can be removed for
c ∈ ∆.) Moreover, the root βc of this sector remains repelling throughout the wake.

• By (37.2), for c ∈ WparrM, none of the raysRθc , θ ∈ Θ, lands at the critical value
v = c. Hence for all c ∈ Wpar, the critical value v remains inside the dynamical
characteristic sector Wch

c .

• The wake Wpar is bounded by the parameter characteristic rays R±par. Indeed,
let c◦ ∈ ∂Wpar rM and t(c◦) be the equipotential height of c◦ (both: dynamical
and parameter). Let τ = (3/4)t(c◦). Then the dynamical subrays Rθc [τ,∞), θ ∈
Θ, move holomorphically over some neighborhood U of c◦. It follows that they
stay some definite distance d > 0 apart for c ∈ U . Hence, if θ ∈ Θ were not
a characteristic angle then for c ∈ U ∩ Wpar sufficiently close to c◦, the critical
value v = c would be closer to Rθc than to the characteristic rays R±c . But this
is impossible since such a v belongs to the dynamical characteristic sector Wch

c

bounded by the rays R±c , while other rays Rθc , θ ∈ Θ, lie outside this sector (see
Lemma 24.17).

Hence the parameter rays R±par land at the same point, and bound the wake Wpar.

• The parameter rays R±par land at r. Otherwise, r would belong to intWpar. But
then the dynamical root βc would become attracting for some c near r, contradicting
Lemma 37.2.

• Moreover, 0 6∈ Wpar
r since for f0, no two rays land at the same point. This

completes the proof of the first part of the Theorem.

• Vice versa, assume the ray portrait R ≡ Rr is realized for some parameter c. If
the corresponding landing cycle βc is parabolic then by Theorem 35.27 it can be
perturbed to an attracting-repelling pair without changing the ray portrait. It is
sufficient to show that the perturbed c belongs to Wpar

r , so we can assume that βc
is repelling to start with.
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As we know, the ray portrait R persists over the full component W of the set
(37.1) containing c. Also, the critical value v = c belongs to the characteristic
sector Sch

c for all c ∈W . But for c ∈W rM, the Phase-Parameter relation implies
that c must belong to the parameter characteristic sector Wpar

r . Hence W =Wpar
r .
�

The piece of the Mandelbrot set contained in a wakeWpar
r is called an unrooted

limb of M,
L∗r ≡ L∗r (M) :=M∩Wpar

r .

Its closure
Lr ≡ Lr(M) := cl(L∗r ) = L∗r ∪ {r}

is the limb of M rooted at r (compare §9.1.5).
We also say that the above wake and the limb are centered at c◦, where c◦ is the

center of the hyperbolic component ∆, and will sometimes label them accordingly:
W◦ ≡ Wc◦ , L◦ ≡ Lc◦ .

The origin is the natural base point (the center) of M. Following §9.1.5, the
branch of M at r containing 0 is called the body Br of M at r.

Let us now show that any rational parameter ray with odd denominator is
characteristic for its landing point:

Proposition 37.9. For any θ ∈ (Qodd/Z)
∗, the parameter ray Rθ lands at the

parabolic parameter r for which θ is one of two characteristic angles.

Proof. Let us use a counting argument. Take any period p ∈ Z+. By Corol-
lary 35.6, there are 2p−1 hyperbolic components of some period q|p.

Since no two hyperbolic components touch at their roots (Corollary 35.26),
there exists 2p−1 distinct roots of the above hyperbolic components. Each root
r 6= 1/4 has two associated characteristic angles θ±(r). Altogether, we account for
2p − 2 characteristic angles associated with these roots.

On the other hand, the doubling map T : Q/Z → Q/Z has 2p − 1 periodic
angles of some period q|p (which are fixed points of T p). Disregarding θ = 0, we
obtain exactly the same number, 2p − 2, of such periodic points. Hence, each of
them must serve as a characteristic ray for some parabolic point. �

37.4. Main Wakes Decomposition. Let us now specify the above discus-
sion to the main wakes, i.e., the satellite wakes attached to the main cardioid.
Let

• αc be the fixed point of fc holomorphically depending on c ∈ Cr [1/4,+∞) and
such that α0 = 0 (compare §24.4);

• ∆0 stand for the main hyperbolic component of intM bounded by the main
cardioid N0 ≡ ∂∆0;

• For γ ∈ R/Z, c(γ) ∈ ∂∆0 be the boundary point of ∆0 with internal angle γ.

For p/q ∈ (Q/Z)∗, we let

• ∆p/q be the satellite hyperbolic component rooted at c(p/q) (by Corollary 35.26,
it is unique);

• Wpar
p/q be the main p/q-satellite wake rooted at c(p/q) (we also letWpar

0 := CrR0);

• Θ(p/q) ⊂ R/Z be the rotation set for the doubling map T with rotation number
p/q (see Appendix 24.7), and θ±(p/q) ∈ Θ(p/q) be the corresponding characteristic
angles.
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Theorem 37.8, together with Lemma 24.8 (ii), imply:

Corollary 37.10. The wake Wpar
p/q, together with its root c(p/q), is equal to

the set of parameters c for which the combinatorial rotation number of αc is equal
to p/q. The dynamical rays Rθc with θ ∈ Θ(p/q), together with their landing point
αc, move holomorphically under the Böttcher motion over Wpar

p/q.

For p/q ∈ (Q/Z)∗, let us define the main unrooted limb L∗p/q ofM asWpar
p/q∩M

and the main limb Lp/q as L∗p/q ∪ {c(p/q)}.
Theorem 37.11. The Mandelbrot set admits the following decomposition:

M = ∆0 ⊔
⊔

p/q∈(Q/Z)∗
L∗p/q.

Proof. For any parameter c ∈Mr∆0, the fixed point αc has a well defined
rotation number p/q ∈ (Q/Z)∗. By Corollary 37.10, c ∈ Wpar

p/q, and the conclusion
follows. �

For p/q ∈ (Q/Z)∗, let us consider the shadow

Shp/q ≡ Sh(Wpar
p/q) = [θ−(p/q), θ+(p/q)]

of the corresponding wake at infinity (as defined in §9.1.1). Let ShQ∗ be the union
of all these shadows. (We can also define Sh0 as (R/Z)∗.)

Proposition 37.12. The union of the shadows, ShQ∗ , is dense in R/Z. For
any θ ∈ (R/Z)∗ r ShQ∗ , the parameter ray Rθpar lands at some irrational point
c(γ), γ ∈ (R r Q)/Z of the main cardioid N0. Moreover, every irrational point
c(γ) ∈ N0 is the landing point of exactly one ray Rθ, and the corresponding θ lies
in (R/Z)∗ r ShQ∗ .

Proof. Let θ ∈ (R/Z)∗ r ShQ∗ . Theorem 37.11 implies that the ray Rθpar
accumulates on some connected subset ω ⊂ N0 which contains at most one parabolic
point. Hence ω = {cγ} is a single point, so Rθpar lands at cγ . In fact, cγ is not
parabolic for otherwise it would be a landing point of two rays (Rθ and one of
the characteristic rays landing at cγ) that bound an (open) sector S that does not
intersectM (contradicting Lemma 8.18). Furthermore, if (R/Z)r ShQ∗ contained
an interval J then all the rays Rθ, θ ∈ J , would land at the same point cγ , which
is impossible. The conclusions follow. �

Thus, we obtain a natural Devil Staircase projection R/Z→ N0 that collapses
the shadows Shp/q to the corresponding roots c(p/q).

37.5. General Wakes Decomposition. The previous discussion can be gen-
eralized to the satellite limbs attached to any hyperbolic component ∆ of intM.
We will use a similar notation as above, usually keeping ∆ implicit. So, let

• For γ ∈ R/Z, c(γ) ≡ c∆(γ) ∈ ∂∆ be the boundary point of ∆ with internal
angle γ;

• r ≡ r∆ = c(0) be the root of ∆, and Wpar
0 ≡ Wpar

0 (∆) be the parabolic wake
rooted at r;

• For c ∈ ∆, αc ≡ αc(∆) be the valuable attracting periodic point of fc (of period p);
(the same notation will be used for its continuous extension to ∆ and holomorphic
continuation to bigger parameter regions);
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• αp/q ≡ αc(p/q) be the valuable parabolic point for fc(p/q);

• ∆p/q be the satellite hyperbolic component rooted at c(p/q) (by Corollary 35.26,
it is unique);

• Wpar
p/q ≡ Wp/q(∆) be the p/q-parabolic wake rooted at c(p/q);

• Θ(p/q; ∆) ⊂ R/Z be the set of angles θ whose rays Rθc(p/q) land at αp/q. It is a
rotation set under T p.

At the center c◦ of ∆, we can consider characteristic strip Π◦

ch (see §25.7.1) and
the corresponding characteristic intervals Ich1 and Ich2 at the circle of infinity. Since
the ray portrait Rc persists over the wake Wpar

0 ∪{r}, so does the strip; call it Πcch.
Note that the characteristic intervals do not depend on c ∈ Wpar

0 ∪ {r}.

Exercise 37.13. Show that for c ∈ Wpar
0 , the map fp has two fixed points, βc

and αc, in Πcch. If αc is repelling or parabolic with combinatorial rotation num-
ber p/q ∈ (Q/Z)∗ then the external angles of αc form a tuned rotation set under
fp| (Ich1 ∪ Ich2 ) with rotation number p/q.

Thus, the combinatorial rotation number of αc determines the ray portrait of
its cycle. Now, Theorem 37.8, together with Lemma 24.8 (ii), imply:

Corollary 37.14. For any hyperbolic component ∆, the dynamical rays Rθc
with θ ∈ Θ(p/q; ∆), together with their landing point αc, move holomorphically un-
der the Böttcher motion over the satellite wake Wpar

p/q. The wake Wpar
p/q, together

with its root rp/q, is equal to the set of parameters c ∈ Wpar
0 for which the combi-

natorial rotation number of αc is equal to p/q. The characteristic angles θ± of the
wake Wpar

p/q have tuned rotation number p/q.

Let us now define general limbs by letting L∗0 ≡ L∗0(∆) := Wpar
0 (∆) ∩ M

and L0 ≡ L0(∆) := L∗0 ∪ {r}. We will also use notation L∗p/q ≡ L∗p/q(∆) and
Lp/q ≡ Lp/q(∆) for the satellite limbs attached to ∆.

Theorem 37.15. Any limb L0 ≡ L0(∆) admits the following decomposition:

L0 = ∆ ⊔
⊔

p/q∈(Q/Z)∗
L∗p/q.

Proof. Let c ∈ L∗0. If the corresponding periodic point αc is repelling then
it has some combinatorial rotation number p/q ∈ (Q/Z)∗, so by Corollary 37.14 it
must belong to Wpar

Q∗ . If αc is non-repelling then c ∈ ∆. �

Corollary 37.16. For any hyperbolic component ∆, the unrooted limb L∗0(∆)
is connected.

Proof. The unrooted limb L∗0 is obtained by attaching to the unrooted com-
ponent ∆r {r} the limbs Lp/q, p/q ∈ (Q/Z)∗. As all these sets are connected, the
limb L∗0 is connected as well. �

Let Sh0 ≡ Sh(Wpar
0 ) be the shadow of the the wake Wpar

0 at infinity. As in
the fixed point case, for p/q ∈ (Q/Z)∗, let Shp/q ≡ Shp/q(∆) be the shadow of the
satellite wakeWpar

p/q(∆) at infinity, and let ShQ∗ ≡ ShQ∗(∆) be the union of all these
shadows.



500 5. PARAMETER PLANE

Proposition 37.17. For any hyperbolic component ∆, we have:

(i) The shadow ShQ∗ is dense in Sh0.

(ii) For any rotation number p/q ∈ (Q/Z)∗, the parabolic point c(p/q) ∈ ∂∆ is the
landing point of exactly two external rays (its characteristic rays).

(iii) For any θ ∈ Sh0rShQ∗ , the parameter ray Rθpar lands at some point c(γ) ∈ ∂∆
with irrational γ ∈ (R r Q)/Z. Moreover, every irrational point c(γ) ∈ ∂∆ is the
landing point of exactly one ray Rθ, and the corresponding θ lies in Sh0rShQ∗(∆).

(iv) Only the boundary external rays of Sh0 land at the root r.

Proof. Assertion (ii) follows from Corollary 37.16 (applied to ∆p/q). All the
rest is similar to Proposition 37.12. �

Again, we obtain a natural Devil Staircase projection Sh0(∆) → ∂∆ that col-
lapses the shadows Shp/q(∆) to the corresponding roots c∆(p/q).

37.6. Boundaries of hyperbolic components.

37.6.1. Only primitive roots are singular.

Proposition 37.18. If two hyperbolic components of intM touch, then one of
them is obtained from the other by a satellite bifurcation. In the latter case, there
are no other components attached to the bifurcation point.

Proof. Let us consider two hyperbolic components, ∆ and ∆̃, touching at
some point c. By Corollary 35.26, c cannot be the root for both of them, so assume
for definiteness that c is not the root of ∆. Then we have for the corresponding
multiplier: ρ(c) = e2πiθ 6= 1. Now Theorem 37.15 implies:

• If θ is irrational then nothing can be attached to ∆ at c.

• If θ = p/q is rational then the only hyperbolic component attached to ∆ at c is
the one obtained by the satellite p/q-bifurcation, i.e., ∆̃ = ∆p/q. �

We are now prepared to show that the boundaries of hyperbolic components
are non-singular except at primitive roots.

Proposition 37.19. Let ∆ be a hyperbolic component of the Mandelbrot set
rooted at r. Then:

(i) If ∆ is satellite then ∂∆ is a non-singular real analytic Jordan curve;

(ii) If ∆ is primitive then ∂∆ is a real analytic Jordan curve with the only singu-
larities at the root r, where it has a (3/2)-cusp.

Proof. Let us consider the multiplier function ρ : ∆ → D. Since it is a
branch of an algebraic function, the boundary ∂∆ is a piece of a real algebraic
curve {|ρ(z)| = 1} (maybe, singular). Since ∆ is a topological disk, ∂∆ is a Jordan
curve.

Assume c0 ∈ ∂∆ is not the root. Then ρ analytically extends to a neighborhood
of c0. If ρ′(c0) = 0 then ρ−1(D) would consist of several components attached to
c0. Each of them would be a hyperbolic component of the same period as ∆,
contradicting Proposition 37.18.

Hence ρ′(c0) 6= 0, and the IFT implies that near c0 the boundary ∂∆ = ρ−1(T)
is non-singular.
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If ∆ is satellite and c0 = r is its root, then Lemma 35.31 and Exercise 35.21
imply that the multiplier ρ analytically extends to a neighborhood of c0, with
ρ′(c0) 6= 0. By the IFT, ∂∆ is non-singular near c0.

Finally, if ∆ is primitive and c0 = r is its root, then ∂∆ has a (3/2)-cusp at c0
by Corollary35.30. �

37.6.2. The inverse multiplier.

Lemma 37.20. Let ∆ be a hyperbolic component of M, and let ρ : ∆ → D be
the corresponding multiplier function. Then the inverse function τ := ρ−1 extends
to a holomorphic function in a neighborhood of D. Moreover,

• If ∆ is satellite then τ is univalent.

• If ∆ is primitive then τ is univalent outside a neighborhood of 1 ∈ T and has a
simple critical point at ρ = 1.

Proof. Let p be the period of ∆, and let c◦ ∈ ∂∆. Assume first that c◦ is
not the root of ∆. Then ρ(c) extends holomorphically to a neighborhood of c◦. If
c were critical for ρ then there would be another hyperbolic component ∆′ with
the same period p attached to c◦ (such that ρ(∆′) = ρ(∆) locally), which would
contradict Corollary 37.18. Hence ρ extends univalently to a neighborhood of c◦.

Let us now consider the root point c◦ ∈ ∂∆. If ∆ is satellite then again, ρ
extends univalently to a neighborhood of c◦ (Exercise 35.21). If ∆ is primitive then
ρ extends to a univalent function of

√
c− c◦ (Lemma 35.29).

The conclusion follows. �

Corollary 37.21. If ∆ is satellite then ∂∆ is a non-singular real analytic
Jordan curve. If ∆ is primitive then ∆ is a real analytic Jordan curve with the only
singularity at the root, where it has a 3/2-cusp.

37.6.3. MLC outside primitive roots. We are now ready to prove perfect rigidity
(see §9.2.1), and hence local connectivity, of M on the main cardioid.

Lemma 37.22. The limbs Lp/q(∆) attached to any hyperbolic component ∆ of
intM shrink as q→∞.

Proof. Follows from the General Limbs Decomposition (Theorem 37.15) to-
gether with Lemma 9.20. �

Lemma 37.23. (i) The Mandelbrot set is perfectly rigid at its root 1/4.

(ii) Any satellite limb Lr of M is perfectly rigid at its root r.

(iii) Let ∆ be a hyperbolic component rooted at r, and let c be a boundary point of
∆. Assume c 6= r in case when ∆ is a primitive component different from the main
cardioid. Then M is perfectly rigid at c.

Proof. By Lemmas 9.19 and 37.22, M is perfectly rigid at the root 1/4 and
at any irrational point c(θ), θ ∈ (RrQ)/Z, of the main cardioid N0.

Let ∆p/q be a satellite hyperbolic component rooted at a parabolic point c(p/q),
p/q ∈ (Q/Z)∗, and let Lp/q be the corresponding limb. As above, Lemmas 9.19
and 37.22 imply that Lp/q is perfectly rigid at c(p/q). By Lemma 9.20 (iii), M is
perfectly rigid at c(p/q).

Thus, M is perfectly rigid at any point of the main cardioid.
More general assertions of (ii) and (iii) are handled similarly. �
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����

Figure 37.2. MLC on the main cardioid at a parabolic (right)
and an irrational (left) parameters.

37.6.4. Size of the limbs.

Proposition 37.24. For any hyperbolic component ∆ of intM, there exists a
constant C = C∆ such that for any limb Lp/q attached to ∆, we have:

diamLp/q ≤
C

q
.

Proof. Let ρ : ∆→ D be the multiplier function on ∆. By Lemma 37.20, the
inverse function τ = ρ−1 extends to a holomorphic function in a neighborhood of
D.

Let us pull the limbs Lp/q back by τ to an outer neighborhood of T, i.e., consider
components L̃p/q of τ−1(Lp/q) attached to e2πip/q ∈ T. By the Yoccoz Inequality,
these sets have diameters O∆(1/q). Hence, so do their images under ρ. �

Exercise 37.25. If ∆ is primitive then diam∆1/q = O(1/q2).

Proposition 37.26. For any irrational θ ∈ R/Z, there is a single parameter
ray Rη landing at the point c(θ) ∈ C with internal angle θ.

37.7. Growth of entropy.

37.7.1. Real cycles settle forever. Let us now consider a real superattracting
quadratic polynomial f = fc, c ∈ [−2, 1/4] of period p > 0. Its Hubbard tree T
is the interval [v, f(v)] with the marked postcritical set O. As this information is
equivalent to prescribing the (finite) kneading sequence of f , the Rigidity Theorem
35.1 implies:

Corollary 37.27. A finite kneading sequence uniquely determines a real su-
perattracting parameter.

For c > 1/4, the map fc does not have any real periodic points, while for c < −2,
all periodic points are real (see §20.4). So, in between they gradually come to the
real line from the complex plane (by means of saddle-node or doubling bifurcations).
However, theoretically some of them can then disappear before coming back again,
and eventually settling down permanently on the real line. We are now prepared
to show that in reality this scenario does not happen.
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Let us consider a real hyperbolic window (c1, c2) ⊂ [−2, 1/4], endowed with
the multiplier parametrization ρ(c). According to the Multiplier Theorem, ρ :
(c1, c2) → (−1, 1) is a real analytic diffeomorphism, so it is monotonic. However,
the Multiplier Theorem does not tell us whether ρ is increasing or decreasing. The
Wake Theorem does:

Lemma 37.28. For any real hyperbolic window (c1, c2), the multiplier coordinate
ρ : (c1, c2)→ (−1, 1) is monotonically increasing.

Proof. Otherwise ρ(c1) = 1, so c1 is the root of the corresponding hyperbolic
component ∆ ⊃ (c1, c2). Let us consider the corresponding parabolic wake W ⊃ ∆
rooted at c1. It is bounded by an R-symmetric topological line L comprising two
unreal rays. Hence L∩R = {c1}, implying that W∩R = (c1,+∞) ∋ 0. But 0 does
not belong to any wake – contradiction. �

Proposition 37.29. Once a periodic point αc appears on the real line for some
r ∈ [−2, 1/4], it stays real for all c < r. If it becomes repelling for c < r near r,
it will stay repelling forever. If it becomes attracting, it stays attracting over the
corresponding hyperbolic window (t, r), and then turns into repelling forever.

Proof. Let αc has period p in the punctured neighborhood of r. For c = r, it
must merge with another periodic point βc (of period dividing p). So, αr = βr is a
parabolic periodic point for fr with (fpr )

′(αr) = 1.
By Proposition 37.18, there is exactly one hyperbolic component ∆ of period p

rooted at r. Since M is R-symmetric, so is ∆. Hence the real slice ∆ ∩ R is a real
hyperbolic window rooted at r. By Lemma 37.28, ∆ ∩R = (t, r), where ρ(t) = −1.

Let Wr and Wt be the corresponding hyperbolic wakes. The same argument
as for Lemma 37.28 shows that Wr ∩ R = (−∞, r) and Wt ∩ R = (−∞, t).

If the component ∆ is primitive then for c ∈ (t, r), one of the points αc, βc is
attracting (say, αc) while the other is repelling. By Theorem 37.8, βc stays repelling
throughout the whole wake Wr ⊃ (−∞, r), while αc becomes repelling as c crosses
t and stays repelling throughout the wake Wt ⊃ (−∞, t).

If the component ∆ is satellite, then for c ∈ (t, r), αc and βc belong to one
attracting cycle. Applying Theorem 37.8 again, we conclude that this cycle becomes
repelling as c crosses t and stays repelling throughout the wakeWt ⊃ (−∞, t). �

Problem 37.30. Given a period p, describe the first moment when a periodic
point of period p appears in the real quadratic family.

37.7.2. Entropy. For real maps, topological entropy can be defined as the growth
rate for the number of periodic points (see Theorem 48.7):

h(f) = lim
1

n
log |Pern|,

where Pern = {x : fnx = x}.
Proposition 37.29 immediately implies:

Theorem 37.31. As c moves from 1/4 to −2, the topological entropy h(fc)
monotonically changes from 0 to log 2.

Remark 37.32. The entropy function c 7→ h(fc) is an example of the Devil
Staircase: it is constant on the hyperbolic windows, and grows on the complemen-
tary Cantor set (of positive length).
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37.8. Monotonicity of the kneading function c 7→ Kn(c). The space
of kneading sequences is ordered with the twisted lexicographic order defined in
§32.4.2. This allows us to formulate a more complete version of Theorem 37.31 on
the entropy growth (and of the preceding Proposition 37.29):

Theorem 37.33. (i) The level sets of the kneading function c 7→ Kn(c) are
connected (and hence, are either intervals or singletons).

(ii) The kneading sequence Kn(c) depends monotonically on c ∈MR.

Proof. (i) Rigidity of superattracting parameters (Corollary 38.13) implies
that the level set of a finite kneading sequences is a single point.

The level set of a periodic kneading sequence is an open interval with superat-
tracting endpoints (of period p and 2p). It comprises two hyperbolic half-intervals
meeting at a doubling bifurcation point. (There is one exception: the level set of
ε̄ = (+ ++ . . . ) is the interval (0, 1/4].)

Assume Kn(c0) = Kn(c1) for some non-hyperbolic parameters c1 < c0, but
Kn(c) is not constant on the interval [c1, c0]. For the kneading sequence to change,
one of the postcritical points 0p must cross 0, creating a superattracting parameter
c′ ∈ [c1, c0] (compare Theorem 33.12).

Let us consider the first event like this with period ≤ p, so Knp(c) = Knp(c0)
for c ∈ (c′, c0). By the Multiplier Theorem, after the crossing the kneading sequence
must change: Knp(c) 6= Knp(c0) for c < c′ near c′.

But then the points 0n, n = 0, . . . , p should be re-organized back creating
another superattracting parameter c′′ ∈ (c1, c

′) with the same kneading sequence
as for c′. As we already know, this is impossible.

�

37.9. Realization of abstract Hubbard trees.

Theorem 37.34. Any abstract Hubbard tree with a periodic critical point is
realized by a unique superattracting quadratic polynomial fc.

Proof. Uniqueness part is taken care of by Theorem 35.1, so let us deal with
the existence.

The idea for the existence is to extend f to a topological double branched
covering C→ C and to read from it the charcateristic angles of the desired super-
attracting parameter.

Let T ⊂ C be an abstract Hubbard tree endowed with with an F -action. First,
let us extend F to a topological double branched covering F̂ : C → C that looks
like a quadratic polynomial.

To this end, let us embed T into a symmetric tree T ′ ⊂ C and extend F to a
double branched covering T ′ → T (which we denote in the same way). Mark on
T ′ all the points F−1(0) and all the branch points.

In this context, a “ray” R for T (resp., for T ′) means a simple path R+ → CrT
landing at some point of T (resp., of T ′). (Similarly, we can consider “closed rays”.)
A “ray configuration” is a disjoint family of rays.

Let us consider two ray configurations R ⊂ R′, for T and T ′ respectively,
landing at the marked points of the corresponding tree and uniquely representing
every access to them (with respect to the corresponding tree). Together with the
corresponding Hubbard trees, they provides us with two cell decompositions C and
C′ of C such that C′ is a refinement of C. (Thus, vertices for C are the marked points
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Figure 37.3. Extension of a Hubbard map to a double branched
covering F̂ : C → C. Two cells and their respective images are
shadowed.

of T and ∞; its edges are rays of R and arcs of T connecting two neighboring
vertices; and similarly for T ′).

Since F : T ′ → T maps the accesses to T ′ to accesses to T , it can be extended
to a map F̂ : R′ → R mapping each closed ray of R′ homeomorphically to a closed
ray of R. This map further extends to a cell maps F̂ : (C, C′) → (C, C) acting
homeomorphically on the cells and being a global double branched covering.

Let us further adjust F̂ to supply it with “characteristic rays”. To this end, let
us select a point β ∈ T near c1 and adjust the original f on T to make β periodic.
Let us consider two “rays” R±ch landing at β on the opposite sides of T (selected so
that they are disjoint from the previously constructed rays). The union R+

ch ∪R−ch
is homotopically periodic under F̂ rel T . Reading off their itineraries with respect
to the extended Hubbard tree, we obtain the desired chractecteritic angles.
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�

37.10. Misiurewicz rays, wakes and decorations.

37.10.1. Parameter rays. The following result is an analogue of Theorem 37.8,
but it is much easier:

Theorem 37.35. Let c◦ be a Misiurewicz parameter, and let ηj, j = 1, . . . , s,
be the corresponding dynamical valuable angles. Then the parameter rays Rηjpar land
at c◦.

Vice versa, any rational angle η ∈ (Qev/Z) with even denominator is valuable
for some Misiurewicz parameter c◦, so the corresponding parameter ray Rηpar lands
at c◦.

Proof. Let f◦ ≡ fc◦ , α◦ be the postcritical cycle of f◦, and let l ∈ N be the
smallest moment when f l+1

◦
(0) ∈ α◦. Let θi be the external angles of the rays

landing on α◦. By the Stability Lemma, the configuration of rays Rθic , together
with their landing cycle αc, moves holomorphically under the (extended to αc)
Böttcher motion near c◦.

By continuity, for c near c◦,

fnc (0) 6∈ αc ∪
⋃

j

Rθic , n = 0, . . . , l.

Hence the above motion can be pulled back to a motion of the rays Rηjc , together
with their landing point ac, where ac◦ = c◦ (compare Proposition 34.6).

Lemma 34.4 implies that the diagonal Γ = {(c, c)} is transverse to these rays
motion intersecting once every leaf. By the Phase-Parameter relation (Lemma
34.9), we obtain a configuration of parameter rays Rηipar landing at c◦.

Vice versa, given an angle η ∈ Qev/Z, let us consider its orbit Θ := orbT (η)
under the doubling map. Let

Rc :=
⋃

ηi∈Θ
Rηic , Rpar :=

⋃

ηi∈Θ
Rηipar

be the corresponding dynamical and parameter ray portraits. For c ∈ C r clRpar,
the dynamical portrait Rc is well defined (i.e., the rays do not crash) and moves
biholomorphically under the Böttcher motion.

Let c◦ ∈ M be any accumulation point for Rη
par. Let us show that this pa-

rameter is not parabolic.7 Otherwise, let αv be the valuable parabolic point for
f◦ ≡ fc◦ and let Dv be its immediate basin. By Theorem 24.6, the dynamical rays
landing at αv are rational rays with odd denominator, so Rη◦ does not land at αv.
Hence it is separated from the critical value v◦ = c◦ ∈ Dv by some cut-line L◦

through a repelling periodic point. By the Stability Lemma, this cut-line persists
under perturbations: for c near c◦, there is a cut-line Lc near L◦. By continuity,
Lc separates v = c from Rηc , so this ray cannot land at v. On the other hand, it
does for c ∈ Rηpar, which can be selected arbitrary close to c◦ – contradiction.

By Corollary 24.4, the ray Rη◦ lands at some repelling preperiodic point a ∈ Jc.
If a is not pre-valuable then by the Stability Lemma, the pullback-rays Rη/2c

and Rη+1/2
c do not crash for c near c◦. On the other hand, they do for any c ∈ Rηpar,

7Note that in the satellite case, it also follows from Proposition 37.17.
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which accumulate on c◦. This contradiction shows that a is pre-valuable, so f◦ is
postcritically preperiodic.

In fact, η is valuable for f◦. Otherwise Rη◦ can be separated from the critical
value v◦ = c◦ by a cut-line L◦ through an α-prefixed point (since the Julia set
J◦ is a dendrite, see Exercise 27.5). By the Stability Lemma, this cut-line persists
under a perturbation separating the critical value vc = c from the ray Rηc . Hence
vc 6∈ Rηc . �

As an immediate Corollary, we obtain the following Rigidity result:

Corollary 37.36. A preperiodic parameter c is determined by any valuable
angle ηj of fc.

In particular, for any n ∈ Z+, the Mandelbrot set has 2n−1 dyadic tips tMis
n,k

which are the landing points of the dyadic raysR2k−1/2n
par k = 1, . . . , 2n−1. Moreover,

since the β-fixed point has rotation number 0, this is the only ray landing at the
corresponding tip. Note that the first of these tips (corresponding to n = 1) is the

landing point of R1/2
par , which is the Chebyshev parameter −2.

37.10.2. Wakes and decorations. The parameter rays Rηjpar landing at a Misi-
urewicz (preperiodic) parameter c◦ divide the plane into s sectors. The s−1 sectors
that do not contain 0 are called Misiurewicz (or preperiodic) wakes Vk rooted at
c◦. The corresponding limbs of the Mandelbrot set, T Mis

i := (M∩Vk) ∪ {c◦}, are
called Misiurewicz (or preperiodic) decorations rooted at c◦.

Let α◦ be the postcritical repelling cycle for a Misiurewicz map f◦ ≡ fc◦ , and
let R◦ be the corresponding periodic ray portrait. Let l be the smallest natural
number such that f l+1

◦
(0) ∈ α◦.

Exercise 37.37. Under the above circumstances, let Rη±◦ be two consecutive
dynamical rays landing at the critical value v◦ = c◦ and bounding a dynamical wake
WMis

◦
. Let WMis be the corresponding parameter wake bounded by Rη±par. Assume

fn(0) 6∈ WMis
◦

for n = 0, . . . , l. Then the corresponding ray portrait Rc, and its
preimages up to order l, move biholomorphically under the Böttcher motion over
WMis

par .

37.10.3. Well branching.

Proposition 37.38. The Mandelbrot set is well branched at any preperiodic
parameter c◦.

Proof. Let α◦ = (fn
◦
αch
◦
)p−1n=0 be the postcritical cycle for f◦ ≡ fc◦ , f l+1

◦
(0) =

αch
◦

, l ∈ N. Let S◦

j be the sectors rooted at αch
◦

, j ∈ Z/qZ. For any j, approximate
αch
◦

with pre-α points a◦k in such a way that there are cut-lines L◦

k through a◦k
converging to ∂S◦

k . These cut lines persist in some neighborhood of c◦. Since
vl = f l(c) move transversely to αch(c), we can find nearby parameters ck such that
f lck(ck) = ak(c). Since the corresponding parameter cut-lines Lpar

k converges to the
∂Spar

j , there is only one branch of M in Spar
j . �

37.11. Renormalization windows.
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37.11.1. Complex windows. Let us start with a hyperbolic map f◦ = fc◦ of
period p > 1 with the characteristic ray portrait Θ. Let r◦ be the root of the
corresponding hyperbolic component ∆◦ ≡ ∆r◦ ⊂ intM, and let Wpar

◦ ≡ Wpar
r◦ ⊃

∆◦ be the corresponding parameter wake.
In §28.4.3 we constructed, for any c ∈ W◦, a valuable degenerate ql map fpc :

Wc → W ′c, where W ′c ∋ c is a topological triangle bounded by two characteristic
rays and an equipotential of level t′. Let Wpar

◦ (t′) ≡ Wpar
r◦ (t′) be the corresponding

truncated parameter wake bounded by the parameter rays landing at r and the
equipotential of level t′ (see Figure 28.3).

Lemma 37.39. The boundaries of Wc, W ′c move biholomorphically under the
Böttcher motion over the truncated parameter wake Wpar

◦ (t′).

Proof. By Theorem 37.8, the characteristic rays R±c move bi-holomorphically
under the Böttcher motion over the wake Wpar

◦ . Moreover, fp(0) lands in W ′c for
c ∈ Wpar

◦ , so, it does not hit the boundary rays. By Lemma 17.10, two additional
boundary rays of Wc also move holomorphically over Wpar

◦ .
The equipotential story is similar. By Lemma 34.4 (ii), the equipotential Ec(t′)

moves bi-holomorphically over Vpar(t′). Since fpc (0) 6∈ Ec(t′) for c ∈ Wpar
◦ (t′), so

does its fpc -pullback Ec(t). �

Thus, we obtain a holomorphic family fpc : Wc → W ′c of degenerate ql maps
over the truncated parameter wake Wpar

◦ (t′). By the Phase-Parameter Relation,
it yields the parameter domain V◦ ≡ Vpar

◦ (t′) corresponding to Wc. It is called
a renormalization window (rooted at r◦, or centered at c◦). Note that the extra
boundary ∂V◦ r ∂Wpar

◦ (t′) comprises two arcs of rays landing at the Misiurewicz
point t (for which f(0) = α′ch where fp(α′ch) = αch) [compare Theorem 37.35] and
two equipotential arcs of level t = t′/2p. The landing point t is called the tip of V◦,

Proposition 37.40. (i) A map fc, c ∈ V◦, is renormalizable with period p if
and only if

(37.3) fpnc (0) ∈W c, n = 0, 1, . . .

The tip map ft is renormalizable as well.

(ii) The root map fr◦ is renormalizable with period p if and only if the hyperbolic
component ∆◦ is primitive.

(iii) The above parameters constitute all parameters c for which fc is renormalizable
(or almost renormalizable) with combinatorics Θ (as defined in §28.4.5).

Proof. Assertion (i) follows from Lemma 28.20 for the “if” part (including the
tip point) and from Exercise 28.28 (iii) for the “only if” part.

Assertion (ii) follows from Exercise 28.24.

(iii) Since the wake Wpar
◦ (together with its root) consists of all parameters for

which Θ is realizable, our parameters belong to this wake. The previous assertions
tell us which of them are renormalizable (resp.: almost renormalizable). �

Let M◦ be the above set of almost renormalizable parameters (which are gen-
uinely renormalizable, except for the root parameter r◦ in the case when it is
satellite). It is called a little M -copy (centered at c◦ or rooted at r◦). In §43, we
will see that M◦ is indeed, a homeomorphic copy of the big Mandelbrot set M.
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Exercise 37.41. Show that any little copy M◦ is a hull.

37.11.2. Renormalization combinatorics revisited. Recall from §28.4.5 that the
DH renormalization combinatorics is recorded by the ray portrait Θ of the cut-cylce
α defining the renormalization. By Proposition 37.9, the charactreristic parameter
rays of Θ land at the root of some hyperbolic component ∆. So, we can record the
combinatorial data by the center c of this component, or else by the corresponding
Hubbard tree T . [Notice that T can be directly read off from Θ by generating the
completely invariant geodesic lamination LΘ and taking its Hubbard tree (compare
Proposition 25.61).]

Exercise 37.42. (i) Assume f is renormalizable with combinatorics T◦ and
its renormalization g = Rf is superattracting with Hubbard tree T . (Work out the
notion of the Hubbard tree for a hyperbolic ql map.) Describe the Hubbard tree of f .
It is called the tuning of the Hubbard tree T◦ by T .

(ii) Show that the tuning on the level of abstract Hubbard trees is realizable by
quadratic polynomials.

Yet another way of recording the renormalization combinatorics is by the little
M -copy introduced above (§37.11.1). Indeed, the hyperbolic center c determines
such an M , and the other way around. In this way we are reminded of all the maps
that are renormalizable with a given combinatorics.

Accordingly, the full renormalization combinatorics (Θ[0],Θ[1], . . . ) (see §28.4.7)
can be alternatively recorded by a sequence of superattracting parameters,
(c[0], c[1], . . . ) (such that c[n+1] belongs to the little M−copy centered at c[n]), or by
the sequence of the corresponding Hubbard trees (T [0], T [1], . . . ) (such that T [n+1]

is a “tuning” of T [n] by some relative Hubbard tree Tn, see Exercise 37.42) or else,
by a nest of little M -copies M [0] ⊃M [1] ⊃ . . .

Remark 37.43. It is often more instructive to describe the full renormaliza-
tion combinatorics as the string of relative Hubbard trees Tn recording types of
the renormalizations gn+1 = Rngn. Once we know that the “little M -copies” are
actually homeomorphic to M, it will be easy to show that any string (Tn)∞n=0 of
relative renormalization combinatorics is realizable by some quadratic polynomial
(see Proposition 43.10).

37.11.3. Real windows. Let us take the real slice VR
◦

:= V◦ ∩ R of a complex
renormalization window. It is an open interval bounded be the root and tip of V◦,
naturally called an (open) real renormalization window. [We will refer to its closure

VR

◦
as a closed real renormalization window.] Proposition 37.39 implies:

Corollary 37.44. Let f◦ be a real hyperbolic map of period p > 1. Then the
configuration of rays and equipotentials that creates the canonical almost renormal-
ization moves continuously over the real renormalization window VR

◦
.

Remark 37.45. In fact, the rays still move continuously up to the root point.
However, pinching occurs at the tip.

Similarly, we have the real counterpart of Proposition 37.40:

Corollary 37.46. All the maps fc, c ∈ V
R

◦
, are really renormalizable with

period p, where the renormalization can be degenerate at the root parameter.
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Remark 37.47. Recall from §30.7 that even in the real case we require repul-
siveness for the (“non-degenerate”) renormalization.

Proposition 37.48. To any admissible superattracting kneading sequence Kn◦,

corresponds a unique real renormalization window VR

◦
of parameters renormalizable

with combinatorics Kn◦. Moreover, the corresponding renormalizations form a full
unimodal family.

Proof. Since the little copyM◦ is a real symmetric hull, its sliceMR
◦

is a closed

interval. As both endpoints of VR
◦

belong to MR
◦
, we conclude that MR

◦
= VR

◦
. But

all maps in M◦ are renormalizable with the same combinatorics, which for real
maps amounts to the same kneading sequence, Kn◦.

Now, let f◦ : I → I be a superattracting quadratic polynomial with kneading
sequence Kn◦, and let g be any unimodal map. Then we can tune f◦ by g in the
following way.

Let (In)p−1n=0 be the immediate attracting basin for f◦, let β0 be the root of I0,
and let J := Im fp(I0) = [0, β0]#. By rescaling, we can realize g as a unimodal map
I0 → I0 fixing β0; let L := Im g ∋ β0. Then there exists an orientation preserving
diffeomorphism h : (I0, J)→ (I0, L) fixing β0 and such that g = h ◦ fp◦ | I0.

Let us now define f : I → I so that it coincides with f◦ on I r Ip−1 and equal
to h ◦ f on Ip−1. It is a (continuous) unimodal map whose renormalization is g.

Since the quadratic family is full (Theorem 33.9), there is a quadratic polyno-
mial fc with the same kneading sequence as the map f just constucted.

The uniqueness part follows from Corollary 37.27. �

Remark 37.49. a) If g is selected as a map of class G then one can show that
the quadratic polynomial fc is actually topologically conjugate to f . [Though the
latter is not in class G, the results from §32.4.1 (based on §30 and, in particular,
on the No Wandering Intervals Theorem) are still valid.]

b) The Straightening Theorem, 43.1, will imply that in fact, there is a natural

homeomorphism χ : VR

◦
→MR respecting combinatorics.

c) The result is obviously valid (except for the uniqueness part) for any full unimodal
family, not just for the quadratic one.

Exercise 37.50. Specialize the discussion of tuning from Exercise 37.42 to the
real case. How does tuning act on the kneading sequences?

Exercise 37.51. Let us consider a renormalization window centered at c◦ ∈
VR

◦
, and let Kn0 be its kneading sequence. For c ∈ VR

◦
, let g = Rfc be the corre-

sponing renormalization, and let Kng be its kneading sequence.

(i) Describe the kneading sequence Knc of fc in terms of Kn◦ and Kng.

(ii) Describe the kneading model for fc in terms of the model for f◦ and g.

Under the above circumstances, Knc is called the tuning of Kn◦ by Kng,

Knc = Kn◦ ∗Kng.

If a superattracting kneading sequence Knc is indecomposible in such a way (with
Kng being necessarily superattracting as well), it is called prime.
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Adapting further the above complex discussion to the real case, we see that the
full real renormalization combinatorics can be recorded by a sequence of real su-
perattracting parameters, (c[0], c[1], . . . ) (such that c[n+1] belongs to the real renor-
malization window centered at c[n]), or by the sequence of the corresponding su-
perattracting kneading sequences (Kn[0],Kn[1], . . . ) (such that Kn[n+1] is a tuning
of Kn[n] by some relative prime superattracting kneading sequence Knn). (Recall
that kneading sequences are real counterparts of Hubbard trees.) Moreover, the
full renormalization combinatorics can be described as the string of relative prime
superattracting kneading sequences Knn recording types of the consecutive renor-
malizations gn+1 = Rngn.

We are now ready to give a real counterpart of Remark 37.43:

Corollary 37.52. Any sequence (Knn)
∞
n=0 of admissible prime superattracting

kneading sequences is realizable as a full string of relative renormalizaton combina-
torics for some infinitely renormalizable quadratic polynomials fc, c ∈MR.

Proof. Proposition 37.48 provides us with a full unimodal family R1fc over

a renormalization window VR

1 corresponding to the first kneading sequence, Kn1.

Inside this family, we find (see Remark 37.49c) a second window, VR

2 , corresponding
to the relative kneading sequence Kn2, with a full family of renormalizations R2◦R1.

Proceeding indiuctively, we obtain a nest of renormalization windows VR

n, n ∈ N,
corresponding to finite strings of the kneading sequences under consideration. Their
intersection provides us with a desired infinitely renormalizable polynomial. �

Exercise 37.53. (i) What is the keanding sequence of the classical Feigenbaum
map corresponding to the doubling renormalization?

(ii) Generalize it to an arbitrary real Feigenbaum map.

38. Combinatorial Rigidity, MLC, and Density of Hyperbolicity

In this section we will formulate two equivalent versions of the main open prob-
lem in the field: the MLC Conjecture (on the local connectivity of the Mandelbrot
set) and the Combinatorial Rigidity Conjecture. It would imply the Fatou Conjec-
ture on the density of hyperbolicity. Real counterparts of these Conjectures have
been established; they will be among main themes of vol. III.

In this section we will overview various relations, reductions, and advances in
these problems.

38.1. Combinatorial classes. Given a point c◦ ∈M, the combinatorial class
C(c◦) ⊂ M is the equivalence class of quadratic polynomials fc that are combina-
torially equivalent to f◦ ≡ fc◦ . By definition, it is equivalent to saying that f◦
and fc have the same combinatorial laminations, Lcom(fc) = Lcom(f◦), and hence
the same combinatorial models (see §32.1.3). Green puzzle pieces (in the sense of
§9.1) for the Mandelbrot set are called parameter puzzle pieces. Such a piece is
called rational if its vertical boundary consists of arcs of parameter rays landing
at parabolic or Misiurewicz points (which is equivalent to saying that the rays are
rational but we have not yet given a complete proof of this fact (see Lemma 37.7,
Theorems 37.8, 37.35, and Theorem 47.11 below.)

Exercise 38.1. Assume f◦, c◦ ∈M, is periodically repelling. Then:
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(i) The combinatorial class C(c◦) consists of those parameters c that cannot be
separated from c◦ by a cut-line through a parabolic or preperiodic cut-point;

(ii) C(c◦) is closed and ∂C(c◦) ⊂ ∂M;

(iii) C(c◦) is the impression of the rational puzzle end EQ(c◦) of c◦ (in other
words, C(c◦) is the intersection of all rational puzzle pieces containing c◦).

Exercise 38.2. The combinatorial class C(c◦) of an attracting parameter c◦ is
the corresponding hyperbolic component ∆◦ together with its root τ◦ and all irra-
tional parameters on the boundary.8

Lemma 38.3. Assume f◦, c◦ ∈M, is periodically repelling. Then:

(i) For any parameter ray Rθpar accumulating on some point of C(c◦), i.e.,

ω(Rθpar) ∩ C(c◦) 6= ∅,
the lamination Lθ (see §32.5.1) is equal to the combinatorial lamination Lcom(c◦).

(ii) If c◦ is not Misiurewicz then there exist at most two parameter rays converging
to EQ(c◦).

Proof. Since the odd rational rays land at parabolic parameters (Proposi-
tion 37.9), θ ∈ (RrQodd)/Z. Let us show that the diameter γθ = (e(θ/2),−e(θ/2))
is unlinked with all periodic ray portraits of f◦.

By definition, periodic ray portraits are the same over the combinatorial class
C(f◦), so we can replace f◦ with any other map in C(f◦). Since Rθpar accumulates
on some point of C(f◦), we can assume that c◦ ∈ ω(Rθpar). Since f◦ is periodically
repelling, the Stability Lemma ensures that any periodic ray portrait Θ ⊂ Qodd/Z of
f◦ is robust under perturbations. But c◦ can be perturbed to a parameter c ∈ Rθpar,
and we know that periodic ray portraits for such a parameter are unlinked with γθ
(by Proposition 32.15, using that θ 6∈ Qodd/Z). It follows that Θ is unlinked with
γθ. The conclusions follow from Theorem 32.10. �

38.2. Main Conjectures. A map f◦ (and the corresponding parameter c◦ ∈
M) is called combinatorially rigid if C(c◦) = {c◦}.

Combinatorial Rigidity Conjecture. Any periodically repelling quadratic
polynomial fc is combinatorially rigid.

MLC Conjecture. Mandelbrot set is locally connected.

Lemma 38.4. Combinatorial rigidity of a periodically repelling parameter c◦ ∈
M implies weak local connectivity of M at c◦.

Proof. Assume c◦ is rigid. Then By Lemma 38.1 (iii), the rational puzzle
pieces around c◦ shrink. By Corollary 9.9, this implies the desired. �

Exercise 38.5. A more general assertion holds: any prime-end impression
I(E) for M that intersects a combinatorial class C(c◦) is contained in C(c◦).

We will see later (Theorem 47.13) that the above two conjectures are actually
equivalent. Moreover, they imply the Fatou Conjecture:

8The latter shows that the notion of combinatorial class is not so meaningful for attracting
and neutral parameters. To define it in terms of the critical laminations Lθ would make a better
sense.
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Lemma 38.6. The Combinatorial Rigidity Conjecture implies the Fatou Con-
jecture on the density of hyperbolicity.

Proof. If the Fatou Conjecture fails, then there is a queer component ∆ of
intM. By Theorem 36.2, any c ∈ ∆ is J -stable and hence not rigid. �

Let us finish with one measure-theoretic conjecture:

ABM Conjecture. The boundary of the Mandelbrot set has zero area:

area ∂M = 0.

We will give below the reason why it is conceivable (see §47.10).

38.3. Density of Real Hyperbolicity. The real combinatorial class of a
point c◦ ∈ MR is naturally defined as CR(c◦) := C(c◦) ∩ R. According to Proposi-
tion 32.30, it comprises real parameters with the same kneading data.

The Real Combinatorial Rigidity Conjecture asserted that all real periodically
repelling combinatorial classes are singletons. A Real Fatou Conjecture asserted
that hyperbolic parameters are dense inMR. Both assertions have been confirmed:

Density of Real Hyperbolicity. The real combinatorial class of any peridi-
cally repelling parameter c ∈MR is a singleton. Real hyperbolic maps are dense in
MR.

Later in this section (§38.8) we will show that these two assertions are equiva-
lent. The whole Theorem will be proved in vol III.

38.4. Thurston equivalence. Let us consider two quadratic polynomials,
f = fc and f̃ = fc̃, with post-valuable sets P ≡ clP and cl P̃. They are called
Thurston equivalent if there exists a homeomorphism h : (C, clP)→ (C, cl P̃) which
is a conjugacy on the post-valuable sets and that can be lifted (via f and f̃) to
a homeomorphism h1 : (C, clP) → (C, cl P̃) homotopic to h rel P. So, we have a
commjutative diagram

(C, clP) H−→ (C, cl P̃)

f ↓ ↓ f̃

(C, clP) −→
h

(C, cl P̃)

with h and h1 homotopic rel P.
A couple of remarks are due. First, under our circumstances, the Lifting Cri-

terion implies that a homeomorphism h : C → C is liftable if and only if h(c) = c̃.
If so, there are two lifts determined by whether h1(c) = c̃ or h1(c) = −c̃.

Next, since h : clP → cl P̃ is a conjugacy, we have h(c) = c̃, hence h is liftable in
two ways. The above definition requires that if the lift is selected so that h1(c) = c̃,
then h1| P = h| P , and h1 is homotopic to h rel P.

Finally, we can specify an extra regularity (qc, smooth, etc.) of a Thurston
equivalence h.
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38.5. Pullback Argument. Here we will introduce a very useful tool that
allows one to promote a qc map equivariant on the postcritical set to a global qc
conjugacy.

Lemma 38.7. If two quadratic polynomials f = fc and f̃ = fc̃ are Thurston
K−qc equivalent, then the Böttcher conjugacy H : D(∞)→ D̃(∞) admits a K−qc
extension to the whole complex plane which is a conjugacy on the postcritical sets
(and is automatically a conjugacy on the Julia sets).

Proof. For a big level t > 0, let us consider the super- and sup-potential
domains Ω(t) and Σ(t) for f (see §23.5.4). As usual, the corresponding objects for
f̃ are marked with tilde.

Take a quasidisk ∆ containing P, let ∆̃ = h(∆), and select an equipotential
level t > 0 so that ∆ ⋐ Σ(t) and ∆̃ ⋐ Σ̃(t). We can modify h on C r ∆ so that
on Ω(t) it becomes equal to the Böttcher conjugacy H : Ω(t)→ Ω̃(t) (by means of
the quasiconformal interpolation through the annulus Σ(t)r∆, see Lemma 15.19).
Let h′ be the modified map, and let h′1 be its (f, f̃)−lift coinciding with h1 on
f−1(∆) ⊃ f−1(P) ⊃ P. Since h′|Ω(t) = H, its lift h′1|Ω(t/2) is equal to either H
or −H. In the latter case, we can twist h on the annulus Ω(t)r∆ rel its boundary
(i.e., compose h with the twist τ from §1.38) to get the correct lift. Then h′1 becomes
homotopic to h′ rel P ∪ Ω(t).

So, we can assume in the first place that h|Ω(t) = H|Ω(t), h1|Ω(t/2) =
H|Ω(t/2), and h1 is homotopic to h rel P ∪ Ω(t) (and in particular, h1 coin-
cides with h on P ∪ Ω(t)). Moreover, since holomorphic lifts preserve dilatation,
Dilh1 = Dilh =: K.

By the Lift Homotopy Theorem, h1 admits a lift h2 homotopic to h1 (which is a
lift of h) rel f−1(P)∪Ω(t/2) ⊃ P ∪Ω)t/2). In particular, h2| f−1(P) = h1| f−1(P).
Moreover: h2 is globally K-qc and conformal on Ω(t/4).

Repeating this lifting procedure we obtain a sequence of K-qc homeomorphisms
hn : (C, f−n(clP)) → (C, f̃−n(cl P̃)) in the same homotopy class rel P and such
that hn coincides with the Böttcher conjugacy on D(t/2n). In particular, these
maps are normalized at any two points of P. (We can assume that |P| ≥ 2 since in
the case when P is a singleton, c = c̃ = 0, and there is nothing to prove.)

By compactness of the space of normalized K-qc maps, there exists a sub-
sequence hn(k) uniformly converging to a K-qc map coinciding with h on P and
coinciding with the Böttcher conjugacy on the whole basin of infinity. �

Corollary 38.8. Let f = fc and f̃ = fc̃ be two quadratic polynomials with
nowhere dense filled Julia sets. If they are Thurston K−qc equivalent then the
Böttcher conjugacy B : D(∞) → D̃(∞) admits an extension to a global K-qc
conjugacy Φ : C→ C between f and f̃ . Moreover, if f does not have invariant line
fields on its Julia set (in particular, if areaJ (f) = 0) then c = c̃.

Proof. The main assertion is the direct consequence of the lemma. Moreover,
in the absense of invariant line fields on J (f), we have ∂̄ Φ = 0 a.e., so by Weyl’s
Lemma, Φ is conformal on the whole complex plane. Hence it is affine, and the
conclusion follows. �

The above results can be easily adapted to the quadratic-like case. Let us
consider a ql map f : U → V with connected Julia set, nicely adjusted domains,
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P P̃

h2

h1

h1

h

Ω̃(t)Ω(t)

f f̃

Ω(t/2) Ω̃(t/2)

Figure 38.1. One step of the Pullback Argument.

the fundamental annulus A, and the critical value v. Let f̃ : Ũ → Ṽ be a similar
map, with the corresponding objects marked by tilde. Let us define a Thurston
K−qc equivalence between f and f̃ as a global K-qc map

h : (C,P, v, ∂A)→ (C, P̃ , ṽ, ∂Ã)

which is equivariant on P and whose (f, f̃)−lift h′ : U → Ũ is homotopic to h|U
rel P.

Exercise 38.9. Let f and f̃ be two K-qc equivalent ql maps as above. Then:

(i) h can be twisted so that it is homotopic to its lift h′ rel P ∪ ∂A (with dilatation
K0 depending only on K and modA).

(ii) There exists a K0-qc map H : V → Ṽ equivariant on P ∪ (V r intK).
In particular, in the periodically repelling case, we have:

(iii) H : V → Ṽ is a conjugacy.

(iv) If f does not have invariant line fields on the Julia set, then

Dil(H|V ) = Dil(h|A).
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38.6. Rigidity of superattracting polynomials (revisited). As a first
illustration of the Pullback Argument, let us give a different proof of Theorem 35.1.

Lemma 38.10. Let f = fc and f̃ = fc̃ be two superattracting quadratic polyno-
mials. If they are Thurston equivalent then c = c̃.

Proof. Since the postcritical set is finite, the Thurston equivalence can be
assumed smooth, and hence qc, on the whole Riemann sphere. By the Pullback
Argument, the Böttcher conjugacy between f and f̃ extends continuously to the
Julia sets. Since the attracting cycles of our maps have the same multipliers (equal
to 0), the conclusion follows from Theorem 35.12. �

Remark 38.11. Instead of using Theorem 35.12, one could adjust the Pullback
Argument so that it would directly imply the statement. Namely, one can mod-
ify the Thurston equivalence so that is becomes a conformal conjugacy near the
superattracting cycles (similarly to the adjustment near ∞ carried in the proof of
Lemma 38.7). Then the Pullback Argument will turn it into a qc conjugacy which
is conformal outside the Julia set. Since the latter has zero area, it is conformal on
the whole plane.

Lemma 38.12. If two superattracting quadratic polynomials have the same Hub-
bard trees, then they are Thurston equivalent.

Proof. Let us partition the plane by the rays Ri landing at the marked points
of the Hubbard trees, and let R =

⋃Ri. Then the conjugacy hT : T → T̃ can be
extended to the whole plane so that it is the Böttcher conjugacy on R. It further
lifts to a homeomorphism

h1 : (C, f−1(T ∪ R)→ (C, f̃−1(T̃ ∪ R̃)
which is Böttcher on f−1(R). As h1 = h on R, these two maps are homotopic rel
R, all the more rel O. It gives us a desired Thurston equivalence. �

Putting this together with Lemma 38.10, we obtain:

Corollary 38.13. If two superattracting quadratic polynomials, fc and fc̃,
have the same Hubbard tree then c = c̃.

38.7. Combinatorial vs Thurston qc rigidity. Let us say that a param-
eter c ∈ M is Thurston qc rigid if it is not Thurston qc equivalent to any other
parameter c′.

Lemma 38.14. Any boundary parameter c ∈ ∂C(c◦) is Thurston qc rigid.

Proof. Otherwise, by Corollary 38.8 c would have a non-trivial qc class. Then
by Theorem 36.18, c would belong to either a punctured hyperbolic component or
to a queer component of M. In either case, c would belong to the interior of its
combinatorial class, contradicting the assumption. �

Corollary 38.15. Assume fc◦ is periodically repelling. If any two parameters
c, c′ ∈ C(c◦) are Thurston qc equivalent then c◦ is combinatorially rigid.

Proof. For a periodically repelling parameter, the combinatorial class C(c◦)
is closed, so it contains a boundary parameter. �
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Remark 38.16. The above proof can be presented in a a more direct fashion as
an open-closed argument. Indeed, C(c◦) is closed while QC(c◦) is open unless it is a
singleton (by the Beltrami deformation argument from the proof of Theorem 36.18).
So, if C(c◦) = QC(c◦) then C(c◦) must be a singleton.

Exercise 38.17. Show that the “periodically repelling assumption” can be dropped
in the above Corollary.

Due to Corollary 38.15, the Combinatorial Rigidity Conjecture is reduced to
the following one:

Conjecture 38.18. If two periodically repelling quadratic polynomials are
combinatorially equivalent then they are Thurston qc equivalent.

38.8. Real Combinatorial Rigidity and Density of Hyperbolicity. Let
us start with a criterion for the Density of Real Hyperbolicity:

Lemma 38.19. The Real Combinatorial Rigidity is equivalent to the Density of
Hyperbolicity in MR = [−2.1/4].

Proof. Assume the Real Combinatorial Rigidity. Take any non-hyperbolic
parameter c◦ ∈ MR. If it is parabolic then it can obviously perturbed to a hyper-
bolic one. Otherwise CR(c◦) = {c◦} by assumption, so there are nearby parameters
c with different kneading sequences. To pass from Kn(c◦) to Kn(c), one has to pass
through a superattracting parameter.

Vice versa, if the Real Combinatorial Rigidity fails, then there is a non-singleton
non-hyperbolic real combinatorial class CR. By Theorem 37.33, CR is an interval.
Non-density of hyperbolicity follows. �

Let us now consider two real periodically repelling quadratic polynomials, f ≡
fc and f̃ ≡ fc̃, c, c̃ ∈ [−2, 1/4], with postcritical sets clP0 and cl P̃0. According to
Proposition 32.16, if they are combinatorially equivalent then they are topologically
conjugate on the real line. All the more, there is a homeomorphism h : (R, clP0)→
(R, cl P̃0) that restricts to a conjugacy (clP0, 0) → (cl P̃0, 0). If h can be selected
quasisymmetric, we say that the maps are combinatorially qs equivalent.

Lemma 38.20. Let f and f̃ be two periodically repelling quadratic polynomials.

(i) If f and f̃ are combinatorially equivalent then they are Thurston equivalent.

(ii) If the Thurston equivalence h : R→ R can be selected κ-quasisymmetric then f
and f̃ are Thurston K(κ)-qc equivalent on C.

Proof. As always, we can assume that 0 is the minimum for both f and f̃ , so
our combinatorial equivalence h : R→ R is orientation preserving.

(i) First, let us extend h to a homeomorphism C → C (in an arbitrary way).
Since h[v,+∞) = [ṽ,+∞), h can be lifted to a C-homeomorphism in two ways,
±h1 : (C,R, 0)→ (C,R, 0). Let h1 be the lift preserving orientation of R.

Then h1 | P = h | P . Indeed, since h is a conjugacy on P0, h(x) = ±h1(x) for
any x ∈ P (where the sign may a priori depend on x). However, since both h and
h1 are orientation preserving on R and h(0) = 0 = h1(0), we have:

signh(x) = signx = signh1(x),

and hence h(x) = h1(x).
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By Exercise 1.37, h1 is R-symmetrically isotopic rel P to some homeomorphism
h′ : C → C coinciding with h on R. By the Alexander Trick, h′ is isotopic to h
rel R, so the pair (h, h1) provides us with a Thurston equivalence between f and f̃ .

(ii) If h is κ-qs then it admits a K-qs extension to C, where K = K(κ). Its lift
h1 by means of holomorphic maps (f , f̃) will be K-qc as well. Thus, we obtain a
a Thurston K-qc equivalence. �

Corollary 38.21. Let f and f̃ be two real periodically repelling quadratic
polynomials (with connected Julia sets). If they are combinatorially κ-qs equivalent
then the are K(κ)-qc conjugate (with the conjugacy being Böttcher on the basin of
∞).

Proof. Under these circumstances, f and f̃ have nowhere dense filled Julia
sets, so Corollary 38.8 applies. �

Lemma 38.22. Let CR ⊂MR be a periodically repelling real combinatorial class
of quadratic polynomials. If for any two c, c̃ ∈ CR, the polynomials fc and fc̃ are
combinatorially qs equivalent then CR is a singleton.

Proof. Assume otherwise. By Corollary 38.21, any two polynomials fc and
fc̃, (c, c̃ ∈ CR) are qc conjugate. So, they are not qc rigid.

As peridically repelling combinatorial classes are closed, we can take a boundary
parameter c ∈ ∂CR ⊂ ∂M (see Exercise 38.1(ii)). By the last item of Theorem 36.18,
c is qc rigid, and we have arrived at a contradiction. �

38.9. Rigidity for real Feigenbaum maps. According to Proposition 32.30
the renormalization combinatorics of a real Feigenbaum map is determined by its
kneading sequence (described in Exercises 37.50 and 37.53).

Theorem 38.23. There is a unique real Feigenbaum map with a given admis-
sible combinatorics.

Proof. Corollary 37.52 secures existence of such a map. Let CR be the cor-
responding real combinatorial class. By Theorem 30.49, the postcritical sets of all
maps in CR are Cantor sets with bounded geometry. It follows from Exercise 15.8
that all of them are combinatorially qs equivalent, and the conclusion follows from
Lemma 38.22. �

38.10. Notes. The MLC Conjecture was formulated by Douady and Hubbard
[DH2]. It was motivated by a perspective to obtain a precise topological model
for M. The potential model was described by Thurston, in terms of a geodesic
lamination [Th1], and Douady [D3].

The Fatou conjecture was reduced to MLC by Douady and Hubbard [DH2]
(in a different way from presentred above).

The Combinatorial Rigidity Conjecture is a deep dynamical analogue of the
Mostow Rigidity phenomenon in 3D hyperbolic geometry. In fact, the conjecture
has a precise geometric counterpart, known as the Thurston Ending Laminations
Conjecture, now is a theorem, due to Brock, Canary and Minsky [BCM].

The equivalence between the MLC and the Combinatorial Rigidity Conjecture
was a folklore in the 1990s. The first detailed written account was given by Schle-
icher [Sc4].
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According to Dennis Sullivan’s oral communication, the Pullback Argument
was designed by Thurston.

Rigidity Theorem 38.23 for real Feigenbaum maps is due to Sullivan (see
[MvS]).

39. Thurston Realization Theorem

39.1. Statement. Let g : R2 → R2 be a topological double branched covering
of the plane with the critical point at 0. We say that it is critically periodic if
gp(0) = 0 for some p ≥ 1. (As we know, quadratic polynomials with this property
are called “superattracting”, but this term could be misleading in the topological
setting since a periodic critical point can be even repelling.) Let P = (gn(0))p−1n=0.

Similarly to the actual quadratic maps, we can define Thurston equivalence
between such maps (see §38.4). We say that a map g in question is realizable if
there exists a quadratic polynomial fc in the Thurston class of g. By Lemma 38.10,
this realization is unique.

Thurston Realization Theorem. Any critically periodic topological double
branched covering g : C→ C is realizable.

39.2. Proof.

39.2.1. The Teichmüller and Moduli spaces. Without loss of generality, we can
assume that R2 ≈ C is endowed with a qc structure and that g is quasiregular. All
the conformal structures on R2 (or, on the punctured R2) will be assumed to have
a bounded dilatation.

Let us consider the Teichmüller space T = Tg ≈ Tp+1 of the punctured plane
R2 r P. By definition, it is the space of conformal structures µ on R2 r P up
to homotopy. More precisely, let hµ : (R2,P) → (C,Oµ) be the solution of the
Beltrami equation for the structure µ, where Oµ = hµ(P). Two structures µ and
µ′ are equivalent if there is a complex affine transformation φ : (C,Oµ)→ (C,Oµ′)
such that φ ◦ hµ is homotopic to hµ′ rel P. A class τ = [hµ] of equivalent maps
represents a point of T .

The Moduli space M = Mg is the space of embeddings P → C up to affine
transformation. The natural projection π : T → M associates to a class [hµ] ∈ T
the embedding hµ| P ∈ M (up to affine transformation).

39.2.2. Pullback operator. By an affine conjugacy and homotopy rel P, we can
normalize g so that c0 = 0 is its critical point and g(z) = z2 near ∞. Recall that
0k = gk(0), k = 0, . . . , p− 1.

Let us now define the pullback operator g∗ : T → T induced by the pullback
µ 7→ µ′ = g∗(µ) of the complex structures on C. More precisely, let a point τ ∈ T be
represented by a homeomorphism h : (C,P, 0) → (C,Oτ , 0). Then µ = h∗(σ) and
µ′ = (h ◦ g)∗(σ). Let h′ : (C,P, 0) → (C, h′(P, 0)) be the solution of the Beltrami
equation for the conformal structure µ′. Then h′ represents the point τ ′ = g∗(τ).
If h̃ is homotopic to h rel P then the Lift Homotopy Theorem ensures that h̃′ is
homotopic to h̃ rel P, so the operator is well defined. In particular, h′(P) (up to
rescaling) depends only on τ ′, and it can be called Oτ ′ .

Let h(P) = (z0 = 0, z1, . . . , zp−1), h′(P) = (z′0 = 0, z′1, . . . , z
′
p−1), where

zi = h(0i), z′i = h′(0i).
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Composition h ◦ g ◦ (h′)−1 is a holomorphic double branched covering

f : (C,Oτ ′)→ (C,Oτ ),
so it is a quadratic polynomial:

(39.1)

(R2,P, τ ′) −→
h′

(C,Oτ ′ , σ)

g ↓ ↓ f

(R2,P, τ) −→
h

(C,Oτ , σ)

Notice, however, that f does not have a dynamical meaning as h′(P) 6= h(P).
Moreover, we have two independent scaling factors to normalize the maps h and
h′, and there are several useful ways to do so. For instance,

N1: Let z1 = 1 while z′p−1 = i; then f(z) = z2 + 1.

N2: Let z1 = z′1 = 1; then f(z) = (z2 − 1) z2 + 1.

39.2.3. Ambiguity in the Moduli space. The operator g∗ does not descend to the
moduli space M: the Riemann surface (C,Oτ ′) in diagram (39.1) is not uniquely
determined by (C,Oτ ). However, the ambiguity is bounded:

Lemma 39.1. For a given Riemann surface (C,Oτ ), there exists a bounded
(in terms of p = |O|) number of Riemann surfaces (Ĉ,Oτ ′). Moreover, if (C,Oτ )
belongs to a compact subset K of M then (C,Oτ ′) belongs to a compact subset
K′ ⋐M as well.

Proof. Let us use normalization N1 for h and h′, so f(z) = z2 +1. Then the
set f−1(Oτ ) is uniquely defined by Oτ :
(39.2) z′i = ±

√
zi+1 − 1.

Since Oτ ′ ⊂ f−1(Oτ ), we have only finitely many (at most 2p−2) options for Oτ ′ .
The choice of ± signs in (39.2) is determined by the marking z′i = h′(0i), and
formulas (39.2) express the pullback operator g∗ in the local coordinates:

g∗ : (z2, . . . , zp−1) 7→ (z′1, . . . , z
′
p−2).

Let Zτ = Oτ ∪ {∞}. If (C,Oτ ) ∈ K then the points of Zτ are ε-separated in
the spherical metric for some ε = ε(K) > 0 (see Lemma 18.10). But then the points
of Zτ ′ given by (39.2) are ε′-separated for some ε′ > 0 depending only on ε, and
the conclusion follows. �

39.2.4. Fixed points of g∗.

Proposition 39.2. A branched covering g : (R2,P) → (R2,P) is realizable if
and only if the pullback operator g∗ : T → T has a fixed point.

Proof. If g is realizable then by definition there is a superattracting quadratic
polynomial fc with the postcritical setOc and homeomorphisms h and h′ homotopic
rel P such that the diagram is valid:

(R2,P) −→
h′

(C,Oc)
g ↓ ↓ fc

(R2,P) −→
h

(C,Oc)
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Comparing it with diagram (39.1) we see that [h′] = g∗[h]. But [h] = [h′] by
definition of a point in T . So, [h] is a fixed point of g∗.

Vice versa, assume that a homeomorphism h in diagram (39.1) represents a
fixed point of f∗. Then [h′] = [h], which means by definition that after postcom-
posing h′ with a scaling z 7→ λz we have h′ ≃ h rel P. But then the quadratic
polynomial λ−1f is Thurston equivalent to g.

�

39.2.5. Co-differential as a push-forward operator. Recall from §18.5 that the
cotangent space9 T#

τ T to the Teichmüller space T is isometric to the space Q1(Cr

Oτ ) of integrable meromorphic quadratic differentials. So, the co-differential

Dg∗(τ)# : T#
τ ′T → T#

τ T
can be viewed as an operator

Dg∗(τ)# : Q1(CrOτ ′)→ Q1(CrOτ ).
On the other hand, the quadratic map f from diagram (39.1) induces the push-
forward operator between the same spaces:

f∗ : Q1(CrOτ ′)→ Q1(CrOτ )
(see §2.11.3). It turns out that these two operators are the same:

Lemma 39.3. Up to the above isometries, the co-differential of Dg∗(τ)# is equal
to the push-forward operator f∗.

Proof. Let us take a smooth vector field v on Ĉ representing a tangent vector
to T at τ . The differential Dg∗(τ) acts on v as the pullback f∗v. Since the ∂̄-
operator behaves naturally under holomorphic pullbacks, we have ∂̄(f∗v) = f∗(∂̄v).
Using now duality between the pullback and push-forward (Lemma 2.110), we ob-
tain for any quadratic differential q ∈ Q1(Ĉ rOτ ′):

< q, f∗v >=
∫
q · ∂̄(f∗v) =

∫
q · f∗(∂̄v) =

∫
f∗q · ∂̄v =< f∗q, v > .

�

39.2.6. Non-escaping inM creates the fixed point. The previous discussion im-
plies that the pullback operator g∗ is uniformly contracting depending only on the
location of the Riemann surface (C,Oτ ) in the moduli space:

Lemma 39.4. For any compact subset K in M there exists ρ = ρ(K) < 1 such
that ‖Dg#(τ)‖ ≤ ρ for any τ ∈ T such that (C,Oτ ) ≡ π(τ) ∈ K.

Proof. Let us first show that g∗ is a strict infinitesimal contraction. Otherwise
there is a quadratic differential q ∈ Q1(Ĉ r Oτ ′) such that ‖f∗q‖ = ‖q‖. Then by
Lemma 2.109, f∗(q1) = 2q, where q1 = f∗q.

Let N = # poles −# zeros of q (and N1 is the repsective number for q1). As
we know (Exercise 2.105), N = N1 = 4.

On the other hand, if a is a pole (or zero) of q1 which is not the critical value
of f , then both preimages of a under f are poles or zeros (respectively) of q. Hence
N ≥ 2N1 − 2 > N1 – contradiction.

9We use a non-standard notation T# for the cotangent space to avoid confusion with other
appearances of the ∗ in our discussion.
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To show that the amount of contraction depends only on K, we will use
Lemma 39.1. Indeed, it shows that g∗ descends to a correspondence of M of
bounded degree. This correspondence is strictly contracting and hence uniformly
contracting on compact subsets, impying the desired. �

Corollary 39.5. Let τ ∈ T and τn = (g∗)nτ . If π(τn) is non-escaping in M
(i.e., it stays in some compact subset K ⊂ M) then the orbit {τn} converges to a
fixed point.

Proof. In this case, the above lemma implies that dist(τn, τn+1) → 0 expo-
nentially fast. �

39.2.7. Escaping creates an invariant multicurve. We will now analyze the sit-
uation when the Riemann surfaces π(τn) = CrOn escape in the Moduli space. By
Lemma 18.11 and discussion of §6.7, this creates a family of canonical annuli Anγ
on CrOn . labeled by the components of a multicurve Gn on R2 r P. Let

Gn(µ) = {γ ∈ Gn : modAnγ ≥ µ}.
Let us fix some K ≥ 1 such that the first two marked Riemann surfaces in our

orbit, τ and τ ′, are K-qc equivalent. (The best such K is equal to exp distT(τ0, τ1).)

Lemma 39.6. We have Gn+1(µ) ⊂ Gn(µ/K − 2).

Proof. Since the operator g∗ : T → T is contracting in the Teichmüller
metric, we have distT(τn+1, τn) ≤ logK for all n = 0, 1, . . . . Then by definition of
the Teichmüller distance, there exists a K-qc map φn : (C,On+1) → (C,On) such
that φn ◦ hn+1 ≃ hn.

For a curve γ ∈ Gn+1(µ), let us consider the corresponding canonical annulus
An+1
γ ⊂ C r On+1 homotopic to hn+1(γ). Then the annulus φn(An+1

γ ) ⊂ C r On
is homotopic to hn(γ) and modφn(A

n+1
γ ) ≥ µ/K. Hence modAnγ ≥ µ/K − 2 for

the canonical annulus Anγ , so γ ∈ Gn(µ/K − 2). �

For a Jordan curve γ in R2 r P, let us consider the full preimage g−1(γ) in
R2 r g−1(P). It consists of one or two components (depending on whether γ
surrounds the critical value or not). Let us now consider each of these components
as curves in a bigger surface, R2 rP (recall that P ⊂ g−1(P)). If some component
happens to be peripheral (in particular, trivial), we throw it away. We are left with
k ∈ [0, 2] non-peripheral Jordan curves γ′i in R2 rP. Each of these curves is called
a pullback of γ.

For a multicurve G in R2 r P, we let g∗(G) be the multicurve comprising the
pullbacks of all the components of G.

Lemma 39.7. We have: g∗(Gn(µ)) ⊂ Gn+1(µ/2− 2).

Proof. Let γ ∈ Gn(µ), A ≡ Anγ ⊂ C r On be the corresponding canonical
annulus, and let fn : C r On+1 → C r On be the quadratic polynomial from
the diagram (39.1). Then f−1n (A) consists of one or two symmetric annuli A′ ⊂
C r On+1 depending on whether A surrounds the critical value v = f(0) or not.
Moreover, modA′ = (1/2) modA in the former case, and modA′ = modA in the
latter. Hence

modAn+1
γ′ ≥ µ/2− 2,

where γ′ ∈ Gn+1 and hn+1(γ
′) is homotopic to A′. The conclusion follows. �
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Putting Lemmas 39.6 and 39.7 together, we obtain:

Corollary 39.8. We have: g∗(Gn(µ)) ⊂ Gn(µ/2K − 4).

A multicurve G on R2 r P is called invariant if g∗(G) ⊂ G. Let

(39.3) Mn = maxγ∈Gn modAnγ .

Lemma 39.9. Let L > 4K. If Mn > Lp for some n, then for some µ < Lp, the
multicurve Gn(µ) is invariant.

Proof. Let us order monotonically the moduli µn(γ) := modAnγ , γ ∈ Gn, of
the canonical annuli on CrOn (which are bigger than 4L):

µn1 ≥ µn2 ≥ · · · ≥ µnl > 4L, l = ln ≤ p− 2.

If Mn/4L > Lp−2 then µni > Lµni+1 for some i ∈ [1, l] (in case i = l we let
µnl+1 := 4L). Let us take the biggest i like this; then µni+1 ≤ Lp−2. Taking any
µ ∈ (4L,Lp) satisfying

(39.4) Lµni+1 < µ < µni

we see that Gn(µ/L) = Gn(µ). By Corollary 39.8, we have:

g∗(Gn(µ)) ⊂ Gn(µ/2K − 4) ⊂ Gn(µ/L) = Gn(µ).
�

Lemma 39.10. If in Lemma 39.9, L > Kp, then the multicurves Gn+j(µ) are
all the same for j = 0, 1, . . . , p.

Proof. Lemma 39.6 and inequality (39.4) show that for all j = 0, 1, . . . p− 1,
the threshold µ is still squeezed in between µn+ji and µn+ji+1 , so it selects the same
components of the canonical multicurve. �

39.2.8. Transformation rules. To simplify notation, we skip the label “n” and
mark the objects of level n + 1 with prime. For instance, On ≡ O, On+1 ≡ O′,
µ(γ) ≡ µn(γ), µ′(γ) ≡ µn+1(γ).

Lemma 39.11. Let δ′ be a canonical Jordan curve on Cr f−1(O). Then there
is a Jordan curve δ on CrO such that δ′ ≃ f∗(δ). Moreover, d = deg(f : δ′ → δ)
is equal to 2 or 1 depending on whether δ′ surrounds the critical point or not.

Proof. Obviously, the canonical multicurve is invariant under the central sym-
metry z 7→ −z. Hence −δ′ is either essentially disjoint from δ′, or is essentially
equal to it.

Assume the former. Then by replacing δ′ with a homotopic Jordan curve (for
instance, with a closed hyperbolic geodesic in C r f−1(O)) we ensure that −δ′ is
actually disjoint from δ′. It follows that f maps δ′ invectively onto some Jordan
curve δ in CrO.

Let us assume now that −δ′ ≃ δ′. Then we can replace δ′ with a central
symmetric homotopic curve. Restriction of f to such a curve is equivalent to taking
its quotient mod z 7→ −z. So, it is a double covering onto the image, and its image
is a Jordan curve in CrO.

So, δ′ is a lift f∗δ of some Jordan curve δ ∈ CrO. It has degree 2 or 1 over δ
depending on whether δ surrounds the ramification point v = f(0) or not. In the
former case, δ′ surrounds the critical point 0, while in the latter it does not. �
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Lemma 39.12. Under the circumstances of the previous lemma, we have:

d−1µ(δ)− 2 ≤ µ′(δ′) ≤ d−1µ(δ) + 2.

Proof. Let us consider the maximal annulus A = Aδ in CrO homotopic to
δ. It lifts to an annulus A′ in C r f−1(O) homotopic to δ′. Moreover, the map
f : A′ → A is a double covering of degree d, so modA′ = d−1 modA. Hence
the maximal modulus in the homotopy class of δ′ is at least that big, while the
canonical modulus (if non-zero) is by two units smaller.

To go in the opposite direction, let us consider the canonical annulus A′ ≡ Aδ′
in C r f−1(O). Since the the family of canonical annuli is invariant under the
central reflection z 7→ −z, the symmetric annulus −A′ is also canonical. Two cases
can occur:

a) A′ does not surround the critical point. Then by Lemma 39.11, the homotopy
classes [A′] and [−A′] are essentially disjoint. By Lemma 6.39, −A′ is disjoint from
A′, and hence f univalently maps A′ onto its image A.

b) A′ surrounds the critical point. Then the homotopy classes [A′] and [−A′]
coincide. By the uniqueness of the canonical annulus in a given homotopy class
(Theorem 6.38), the actual annuli coincide, so A′ is central symmetric. It follows
that f |A′ is a double covering over its image A.

In either case we have

µ(δ′) = modA′ = d−1 modA ≤ d−1µ(δ) + 2.

�

One can avoid using a deep Theorem 6.38 by replacing it with the following

Exercise 39.13. In Case b) above there exists a central symmetric annulus
B ⊂ A′ such that modB ≥ modA′ − 4.

Exercise 39.14. Generalize the above two lemmas to arbitrary finite degree
branched coverings f : S → T between Riemann surfaces.

39.2.9. Thurston matrix. Let G ≡ Gn be the canonical invariant multicurve on
R2 r P of size l. Let us associate to it the following l × l-matrix T = (tγδ)γ,δ∈Gn

with entries in {0, 1, 1/2}. If [γ] is not a pullback f∗[δ] we let tγδ = 0. Otherwise
we let

tγδ =
1

deg(f : δ′ → δ)

where δ′ is the pullback f∗δ homotopic to γ. Let µ = (µ(γ))γ∈G be the vector of
the canonical moduli.

Lemma 39.15. Under the above circumstances, we have:

µ′ = T · µ+O(1),

where the constant depends only on p and K.

Proof. Let us take a canonical annulus Aγ ⊂ CrO′, γ ∈ G, and uniformize it
by a flat cylinder C = S1× (0, µ(γ)). Let us mark on C the points corresponding to
f−1(O) (which necessarily do not belong to O′). The genuinely horizontal circles
through these points partition C into several (at most p) flat cylinders Cj such that

(39.5) µ′(γ) ≡ mod C =
∑

j

mod Cj .
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Each cylinder Cj represents some homotopy class of a Jordan curve γj on R2 r g−1(P).
If mod Cj ≥ µ+ 2 then by Lemma 39.11, γj is homotopic to a pullback g∗(δj) of a
canonical Jordan curve δj on R2 r P. By Lemma 39.12

(39.6) mod Cj ≤ tγδj µ(δj) + 2.

It follows that µ(δj) ≥ µ and thus δj ∈ G(µ). Putting together (39.6) with (39.5),
we conclude:

µ′(γ) ≤
∑

δ

tγδ µ(δ) + (2 + µ)p.

This provides us with the more delicate bound.
To obtain the opposite bound, let us consider the canonical annuli

Aj ⊂ Cr f−1(O)
representing the cylinders Cj (when exist). Since they are homotopic in C r O′,
their union is contained in some annulus A ⊂ C r O′. Since the Aj are pairwise
disjoint, the Gröztsch Inequality implies:

µ′(γ) ≥ modA− 2 ≥
∑

modAj − 2 ≥
∑

j

tγδj (µ(δj)− 2)

(where the last estimate comes from Lemma 39.12. Thus,

µ′(γ) ≥
∑

δ

tγδ µ(δ)− 2p.

�

39.2.10. Structure of an invariant multicurve. Below we will make use of the
basic Perron-Frobenius Theory, see Appendix §19.19.

Let us consider an invariant multicurve G. Any component γ ∈ G surrounds
some set Pγ ⊂ P of punctures 0i ∈ P. Moreover, since γ is non-peripheral,

k(γ) := #Pγ ∈ [2, p− 1].

Let δ = g∗(γ). Then g maps injectively Pδ to Pγ , and hence k(δ) ≤ k(γ) (so,
k(γ) is a “Lyapunov function” for the pullback).

Assume γ is a recurrent vertex in the graph ΓT of the Thurston matrix. Let us
consider a simple loop (γ ≡ γ0, γ1, . . . , γq−1, γq) in ΓT . By definition, this means:

(i) γm+1 = f∗(γm), m = 0, 1, . . . , q − 1;

(ii) γm and γn are not homotopic for any 0 ≤ m < n ≤ q − 1;

(iii) (gq)∗(γ) ≃ γ rel P.

Let Dm be the Jordan disk bounded by the γm. Then the following properties
hold:

a) All the disks Dm contain the same number k of punctures, and

g(Dm+1 ∩ P) = Dm ∩ P;
b) γm+1 is the only pullback of f∗(γm);

c) The Jordan disksDm ⊂ R2 are (essentially) pairwise disjoint form = 0, 1, . . . , q−
1;

d)
q−1⋃

m=0

Dm ⊃ P.
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Since k(γm+1) ≤ k(γm), m = 0, 1 . . . , q − 1, and k(γq) = k(γ), we conclude that
all these numbers must be equal:

k(γ) = k(γ1) = · · · = k(γq) := k,

which proves a). Moreover, the other component, γ′m+1, of g−1(γm) (if exists) does
not surround any punctures. So it is trivial, and we obtain b).

Let us now consider two curves γm and γn, 0 ≤ m < n ≤ q − 1. Since they
are components of a multicurve, they are essentially disjoint. Replacing them with
homotopic ones (rel P), we can assume that they are disjoint in the first place. Then
the corresponding Jordan disks Dm and Dn in R2 are either nested or disjoint. If
the former holds, say Dm ⊂ Dn, then γm ≃ γn. (Indeed, Dm and Dn contain the
same number of punctures, and hence the annulus Dn rDm does not contain any
punctures.) Contradiction with assumption (ii) proves property c).

To see d), let us now take any point 0i ∈ P and find the smallest m such that
gm(0i) ∈ D0. Then property a) implies that 0i ∈ Dm.

Let us relabel the curves γm so that γ surrounds 0. Then the map g : D0 →
Dq−1 has degree 2, while the other maps g : Dm+1 → Dm have degree 1. Letting
tmn ≡ tγmγn , we conclude that

t0,q−1 = 1/2, tm+1,m = 1,

while all other entries tmn with 0 ≤ m,n ≤ q − 1 vanish. This is a weighted
permutation with spectral radius (1/2)1/q < 1.

AS k((f∗)n(γ)) = k(γ) for some n. the curve γ is periodic: (f∗)p(γ) = γ.
Let nγ be the smallest period of γ. Using a similar argument as above, we see
that the pullbacks γm := (f∗)m(γ), m = 0, 1, . . . , nγ − 1 bound essentially disjoint
Jordan disks Dm in R2. Moreover, the degree of [γm+1]→ [γm] is equal to 2 or 1
depending on whether γm surrounds the critical point or not. It follows that the
spectral radius of the block of the Thurston matrix T corresponding to this cycle
of curves is equal to (1/2)1/nγ .

We see that the recurrent part of the graph ΓT is decomposed into (non-
interacting) cycles of curves with spectral radius less than 1. Consequently, we
obtain

Lemma 39.16. Let
g : (R2,P)→ (R2,P),

be a critically periodic degree two branched covering, and let T be the Thurston
matrix of some invariant multicurve. Then the recurrent part of T is the weighted
permutation with all cycles having multiplier 1/2. Hence the spectral radius of T is
bounded by (1/2)1/p.

39.2.11. Improvement of the canonical moduli. Finally, we can show that if
some Riemann surface Sn = CrOn = π(τn) escapes far away in the Moduli space
then after several more iterates it will come closer. We measure how far Sn escapes
in the moduli space by the maximal canonical modulus Mn = ‖µn‖∞ (39.3).

Lemma 39.17. There exists M (depending on p and K) such that if Mn ≥ M
for some Riemann surface Sn then

Mn+p ≤
3

4
Mn.
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Proof. Lemma 39.16 implies that for M sufficiently big (depending on p and
K), we have:

‖T p · µ‖∞ ≤
1

2
‖µn‖∞ =Mn.

By Lemma 39.9, the threshold µ can be selected so that the multicurves Gn+k(µ)
are all the same for k = 0, 1, . . . , p− 1. Lemma 39.15 implies the claim. �

Notes

Probably, the first rough image of the “Mandelbrot set” M was made by Brooks
and Matelski [BrMa]. A finer image produced by Mandelbrot [Man] sparked a
great interest in this object.

Elementary structure ofM was analyzed by Levin [Le1] by means of the Montel
theory of normal families. In this approach, the boundary ofM appears as the set
of “irregular points” where the sequence of polynomials c 7→ fnc (0) fails to be normal
(similarly to the classical definition of the Julia set).

Theorem 34.1 on the connectivity of M was proved by Douady and Hubbard
[DH1],[DH2, Exposé VIII], with an input from Sibony (see the acknowledgment
in [DH1]), in the early 1980s. The elementary proof given in §34.3 reproduces the
original argument. The Multiplier Theorem is also due to Douady and Hubbard
[DH1],[DH2]. The unifying insight on these results from the Teichmüller theory
viewpoint is due to Sullivan (preprint IHES, 1982); It was further advanced by
McMullen and Sullivan in [McS].

The Phase-Parameter Relation was famously formulated by Douady as a prin-
ciple: You plow in the Dynamical Plane and then harvest in the Parameter Plane.
In the course of this book we will encounter many applications of this principle
(though sometime “harvesting” is harder than “plowing”).

Foundations of the combinatorial theory of the Mandelbrot set were developed
by Douady and Hubbard in the Orsay Notes [DH2], followed by Milnor, and their
schools (by the same participants as the combinatorial theory for Julia sets). In
particular, see [DH1], [DH2, Exposé XIII] and [M5] for the Wake Theorem.

The Fatou Conjecture on Density of Hyperbolicity (33.7) is an interpretation
of several remarks that Fatou made on page 73 of [F2]. First, Fatou observed
that hyperbolicity is preserved under perturbations. Then he conjectured that any
rational map can be approximated by a stable one (compare with Theorem 36.1).
He also suggested that unstable maps form some kind of algebraic set: apparently,
he did not give a close look at this issue. Here is the quotation: “Il est probable,
mais je n’ai pas approfindi la question, que cette propriété appartient à tout les
substitutions generales, c’est-à-dire à celles dont les coefficients ne vérifient aucune
relation particulière. Je signale, dans ce même ordre d’idées, l’intérêt qu’il y aurait
à rechercher les conditions nécessares et suffisantes pour que l’ensembe F varie
d’une manière continue, tant au point de vue de la position de ses points qu’au
point de vue de la connexion des domains dans lesquels il divise le plan, lorsqu’on
fait varier les coefficients de R(z).” (Here R(z) is the iterated rational function and
F is its “Julia set”):

The general theory of hyperbolicity and structural stability developed in the
1960s by Smale, Anosov, and many other people (see [KaH]), greatly clarified
how Fatou’s remarks should be interpreted. Theorem 36.2 on the J-stability was
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independently proven by Mañé-Sad-Sullivan [MSS] and the author [L7]. Formally
speaking, it proves the original Fatou Conjecture.

The reduction of the Fatou Conjecture (on the density of hyperbolicity) to the
No Invariant Line Fields Conjecture appeared in [MSS]. The latter Conjecture
had a precise analogue for Kleinian groups that had been proved by Sullivan [S5].

Theorem 37.31 on the entropy growth was posed as a Conjecture in the preprint
version of the Milnor-Thurston paper[MT]; it became a theorem in the published
version. It was one of the first deep applications of the complex methods (Rigidity
Theorem 35.1 for superattracting maps) to real dynamics. For further devel-
opments in the higher degree case, see [MTr, Rad, BS] and van Strien’s survey
[vS].

Probably, Myrberg was the first who studied hyperbolic windows in the real
quadratic family and alluded to the problem of their density [Myr2]. The Density
Theorem was proven in [L10, GS]; it will be discussed in vol. III.

The Thurston Realization Theorem became accessible to the math community
due to the work of Douady and Hubbard [DH4]. The “spider algorithm” adapting
it to the quadratic case appeared in [HSc1]. Now the theory is available as part of
a recent book [H3].

As the parameter space of higher degree polynomials is multi-dimensional, it
is much more difficult to visualize its bifurcation locus and to develop even a ba-
sic theory for it. The problem is approached from a variety of angles: by either
taking natural one-dimensional slices of the space (see [BKM]) or by modeling it
by a relevant space of geodesic laminations (see [BO2]), of by applying to it the
pluripotential theory of currents (see [DeM, Du]).



CHAPTER 6

Straightening, puzzle, and attractors

40. Straightening

40.1. Geometric adjustments. The notion of a quadratic-like map with the
fixed domain is too rigid, so we allow adjustments of the domains which do not affect
the essential dynamics of the map (see Exercise 28.2). An appropriate adjustment
allows one to improve the geometry of the map:

Lemma 40.1. Consider a quadratic-like map f : U → U ′ with

(40.1) modA ≥ µ > 0

and f(0) ∈ U . Then there exist κ, σ and C depending only on µ such that f admits
an adjustment g : V → V ′ with the following properties:

(i) The new domains V and V ′ are bounded by real analytic κ-quasicircles with
σ-bounded shape around the origin.

(ii) mod(V ′ r V ) ≥ µ/2 > 0.

(iii) g admits a decomposition

(40.2) g = h ◦ f0,
where f0(z) = z2 and h is a univalent function on W := f0(V ) with distortion
bounded C.

Proof. Let us uniformize the fundamental annulus A of f by a round annulus,
φ : A(1/r, r) → A, where r ≥ eπµ ≡ r0. Then γ′ := φ(T) is the equator of A.
Consider the disk V ′ bounded by γ′, and let V = f−1V ′. Since f(0) ∈ V ′, V is a
conformal disk and the restriction f : V → V ′ is a quadratic-like adjustment of f
(see Exercise 28.2).

Restrict φ to the annulus A(1/r0, r0). Take an arc α = [a, b] on T of length at
most δ := (1 − 1/r0)/2. By the Koebe Distortion and 1/4 Theorems in the disk
D2δ(a), we have:

|φ(b)− φ(a)| ≥ |b− a|
4
|φ′(a)|; l(φ(α)) ≤ K |φ′(a)| l(α),

where l stands for the arc length, and K is an absolute constant. Hence γ′ :=
∂V ′ = φ(T) is a quasicircle with the dilatation depending only on r0 = r0(µ).

Applying the same argument to the uniformization of f−1A, we conclude that
its equator γ := ∂V is a quasicircle with bounded dilatation as well.

Since γ and γ′ are 0-symmetric κ-quasicircle, the shape of these curves around
0 is bounded by some constant C(κ) (see Exercise 15.13). This proves (i).

Property (ii) is obvious since mod(V ′ r V ) ≥ modA(1, r0) ≥ µ/2.
529
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Since g is even, it admits decomposition (40.2). Moreover, h admits a univalent
extension to the disk W̃ = f0(U), and

mod(W̃ rW ) = 2mod(U r V ) ≥ µ/2.
The Koebe Distortion Theorem (in the invariant form of Theorem 4.16) completes
the proof. �

In the connected case the above adjustment can be refined further. To make
the statement, it is convenient to normalize f (conjugating it by an appropriate
complex rescaling z 7→ λz) so that it has the following Taylor expansion at the
origin:

(40.3) f(z) = c+ z2 + . . .

(i.e., we have made the coefficient at z2 equal to 1).

Lemma 40.2. Under the circumstances of Lemma 40.1, assume that f has
connected Julia set and is normalized by (40.3). Then f can be adjusted so that it
satisfies properties (i) and (iii) of Lemma 40.1 and also the following two properties:

(ii′) µ ≤ mod(V ′ r V ) ≤ 1, where µ > 0 depends only on µ.

(iv) For some constant ρ ∈ (0, 1) depending only on µ,

ρ ≤ rV ≤ RV ′ ≤ 1/ρ,

where rV and RV ′ are the inner and outer radia of the respective domains around 0.

Proof. (ii′) Let Un := f−nU ′ and let An := Un−1 r Un = f−(n−1)(A).
Without loss of generality we can assume that f satisfies properties (i)–(iii) from
Lemma 40.1. Then the annulus B := A∪A1 is obtained by gluing A and A1 along a
κ−quasicircle, implying that modB ≍ modA with constants depending only on µ
(see Exercise 15.20). Let Bn := f−(n−1)(B).

Since the Julia set is connected, v ≡ f(0) ∈ Un for all n, so the restrictions
f : Un → Un−1 are quadratic-like maps obtained by consecutive adjustments of
f : U → U ′. Since

modBn = modB/2n−1 ≍ modA/2n−1 = modAn,

we can select n in such a way that

2µ ≤ modAn ≤ modBn ≤ 1,

with some µ > 0 depending only on µ.
Let us now adjust f |Un once more as in Lemma 40.1. We obtain a quadratic-

like map g : V → V ′ satisfying property (ii′).

(iv) Assume now that f is normalized by (40.3), so is g. Then in representation
(40.2), g = h ◦ f0, the univalent map h : (W, 0) → (V ′, c) is also normalized:
h′(0) = 1. Since W = f0(V ),

0 < C−1rW ≤ rV ′,v ≤ RV ′,v ≤ CRW ,
where C = C(µ) is the distortion bound from Lemma 40.1. Hence

(40.4) C−1r2V ≤ rV ′,v ≤ RV ′,v ≤ CR2
V .

But since V ′ ⊃ V ∋ v, we have: RV ′,v ≥ RV /2, and by the right-hand side of
(40.4), RV ≥ 1/(2C). Since V has a σ-bounded shape around the origin, the inner
radius rV is also bounded away from 0: rV ≥ 1/(2Cσ).
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On the other hand, if rV = L ≫ 1 then the left-hand side of (40.4) (and
bounded shape of V ) implies that the annulus V ′ r V contains the round annu-
lus whose inner radius is of order L and the outer radius is of order L2, so that
mod(V ′ r V ) ≥ logL−O(1), contradicting property (ii′). �

Under the circunstance of Lemma 40.1, we say that the ql map g has L-bounded
geometry, where L ≥ max{2/µ, κ, σ, C}. Under the circunstances of Lemma 40.2,
we replace 2/µ with 1/µ and say that g has (L, ρ)-bounded geometry. Also, if a ql
map g admits decomposition (40.2), we call it quadratic up to a bounded distortion.

40.2. Douady-Hubbard Straightening Theorem. If the reader attempted
to extend the basic dynamical theory from quadratic polynomials to quadratic-like
maps, quite likely he/she had a problem with the No Wandering Domains Theorem.
The only known proof of this theorem crucially uses the fact that a polynomial of
a given degree depends on finitely many parameters. The flexibility offered by the
infinite dimensional space of quadratic-like maps looks at this moment like a big
disadvantage. It turns out, however, that the theorem is still valid for quadratic-like
maps, and actually there is no need to prove it independently (as well as to repeat
any other pieces of the topological theory). In fact, quadratic-like maps do not ex-
hibit any new features of topological dynamics, since all of them are topologically
equivalent to polynomials (restricted to appropriate domains)!

To state the result precisely, we need a few definitions. Two quadratic-like
maps f and g are called topologically conjugate if they become such after some
adjustments of their domains. Thus there exist adjustments f : U → U ′ and
g : V → V ′ and a homeomorphism h : (U ′, U) → (V ′, V ) such that the following
diagram is commutative:

U −→
f

U ′

h ↓ ↓ h

V −→
g

V ′

In case when one of the maps is a polynomial, we allow to take any quadratic-like
restriction of it.

If the homeomorphism h in the above definition can be selected quasiconformal
(respectively: conformal or affine) then the maps f and g are called quasiconfor-
mally (respectively: conformally or affinely) conjugate. Two quadratic-like maps
are called hybrid equivalent if they are qc conjugate by a map h with ∂̄h = 0 a.e.
on the filled Julia set K(f).

Remark. The last condition implies that h is conformal on the intK(f). On
the Julia set J (f) it gives an extra restriction only if J (f) has positive area.

The equivalence classes of hybrid (respectively: qc, topological etc.) conjugate
quadratic-like maps are called hybrid (respectively: qc, topological etc.) classes.

Straightening Theorem. Any quadratic-like map g is hybrid conjugate to
a quadratic polynomial fc. If J (g) is connected then the corresponding polynomial
fc is unique.

This polynomial fc is called the straightening of g.

The Straightening Theorem immediately reduces the Topological Dynamics for
ql maps to that for polynomials. In particular, we conclude:
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Corollary 40.3. If g : U → U ′ is a quadratic-like map, then:

(i) Repelling periodic points are dense in J (g).
(ii) Iterated preimages of any point z ∈ U , except the superattracting fixed point (if
exists), accumulate on the whole Julia set J (g).
(iii) The Julia set J (g) is the smallest completely invariant compact set (except
for a possible superattracting fixed point). The filled Julia set K(g) is the smallest
completely invariant hull.

(iv) There are no wandering components of intK(g).
(v) If all periodic points of g are repelling then K(g) = J (g).

Remark 40.4. If J (g) is a Cantor set, then the straightening is not unique.
Indeed, by Theorem 36.18, all quadratic polynomials fc, c ∈ CrM, are qc equiva-
lent. Since their filled Julia sets have zero area, they are actually hybrid equivalent.
Hence all of them are “straightenings” of g.

Existence of the straightening will be proven in the next section, while unique-
ness will be postponed until §41.3.

40.3. Construction of the straightening. The idea is to “mate” g near
K(g) with f0 : z 7→ z2 near ∞.

Without loss of generality, we can assume that g is conventional. Take some
r > 1. Consider two closed disks: the disk U

′
endowed with the map g : U → U

′

and the disk Ĉ r Dr endowed with the map f0 : Ĉ r Dr → Ĉ r Dr2 . Let us
view them as two hemi-spheres, S2

0 ≡ U
′

and S2
∞ ≡ Ĉ r Dr (see Figure 40.1).

Glue them together by an orientation preserving equivariant qc homeomorphism
T : A → A[r, r2] between the closed fundamental annuli. Here “equivariance”
means that h respects the boundary dynamical relation (compare §19.4):

(40.5) T (gz) = f0(Tz) for z ∈ ∂U.
Such a map T = Tg is called a tubing of g.

Exercise 40.5. Construct a tubing T (using that g is conventional). Do it so
that DilT is bounded in terms of modA and qc dilatation of the quasicircles ∂U ,
∂U ′.

In this way we obtain an oriented qc sphere

S2 = S2
0 ⊔T S2

∞ ≡ U
′ ⊔T (Ĉ r Dr)

with the atlas of two local charts given by the identical maps φ0 : S2
0 → U

′
and

φ∞ : S2
∞ → Ĉ r Dr. Moreover, these hemi-spheres are quasidisks in S2. For

insttucance, in the local chart φ0 the curve γ := ∂S2
∞ becomes φ0(γ) = ∂U which

is a quasicircle since f is conventional.

Define now a map F : S2 → S2 by letting

F (z) =

{
φ−10 ◦ g ◦ φ0(z) for z ∈ φ−10 U

φ−1∞ ◦ f0 ◦ φ∞(z) for z ∈ S2

∞

(It is certainly quite a pedantic way of writing since the maps φ0 and φ∞ are in fact
identical.) Since T is equivariant (40.5), these two formulas match on γ. Hence F
is a continuous endomorphism of S2. Moreover, it is a double branched covering
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Figure 40.1. Straightening

of the sphere onto itself (with two simple branched points at “0”≡ φ−10 (0) and
“∞”≡ φ−1∞ (∞)).

Since F : S2 → S2 is holomorphic in the local charts φ0 and φ∞, it is quasireg-
ular on S2 r γ. Since γ is a quasicircle, it is removable (Lemma 16.3). Hence F is
quasiregular on the whole sphere.

Exercise 40.6. Let us adjust g so that ∂U is smooth. Then the gluing map T
can be chosen so that S2 is a smooth sphere and the map F is smooth.

We will now construct an F -invariant conformal structure µ on S2 (with a
bounded dilatation with respect to the qc structure of the sphere S2). Start in a
neighborhood of ∞: µ|S2

∞ = (φ∞)∗σ. Since σ is f0-invariant, µ|S2
∞ is F -invariant.

Since φ∞ is qc, µ|S2
∞ has a bounded dilatation.
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Next, look at this structure in the local chart φ0 : S2
0 → U ′, and by means of

Corollary 29.5 extend it canonically to an invariant structure on the whole sphere
S2 with the same dilatation. We will keep the same notation µ for the extension.

Exercise 40.7. Work out details of this canonical extension.

We obtain an F -invariant measurable conformal structure µ with bounded di-
latation on the whole sphere S2. By the Measurable Riemann Mapping Theorem,
there exists a qc map H : (S2, µ) → Ĉ such that H∗µ = σ and normalized so
that H(0) = 0, H(∞) = ∞ and H ◦ φ−1∞ (z) ∼ z as z → ∞. Then the map
f := H ◦ F ◦H−1 is a quadratic polynomial (see §29.1.2) with the critical point at
the origin and asymptotic to z2 at ∞. Hence f = fc : z 7→ z2 + c for some c.

Exercise 40.8. Show that K(f) = H(φ−10 K(g)).

The qc map H ◦φ−10 conjugates g : U → U ′ to a quadratic-like restriction of f .
Moreover, restricting it to K(g), we see that

(H ◦ φ−10 )∗σ = H∗µ = σ,

so H is a hybrid conjugacy between g and the restriction of f . Thus, f is a
straightening of g.

Remark 40.9. The straightening construction of fc was uniquely determined
by the choice of the tubing T : A → A[r, r2]. In fact, one can say more: In the
case of connected Julia set, the straightening is independent of the choice of tubing,
while in the disconnected case, it depends only on the tubing position of the critical
value (see Proposition 41.12 below).

40.4. Addendum to the straightening construction. Here we will refine
the straightening construction in several ways. In particular, we will extend the
tubing to a bigger annulus, through a series of liftings (similarly to the extension
of the Böttcher function carried in §23.5.2).

40.4.1. Tubing equipotentials and rays. The tubing T : A → A[r, r2] plays the
role of the Böttcher coordinate for the (conventional) quadratic-like map g. In
particular, we can use it to define equipotentials and rays for g as pullbacks by
T of the round circles and radial intervals in A[r, r2]. In this way we obtain two
foliations in the fundamental annulus A. There are natural radii/levels assigned
to the equipotentials and external angles assigned to the rays. (For instance, the
boundary equipotential ∂U has radius r and level t = log r.)

By means of the dynamics, we can now extend these foliations to invariant
(singular) foliations in U

′
r K(g). If K(g) is connected then these foliations are in

fact non-singular. In the disconnected case, they have simple “cross-singularities”
at the critical point 0 and its iterated preimages. In this case, the figure-eight
equipotential passing through 0 is called critical. We let Ω ≡ Ωg ⊂ U

′
be the semi-

open topological annulus bounded by this equipotential (which is excluded from
Ω) and the external boundary ∂U ′ (which is part of Ω). In the connected case, we
let Ω ≡ Ωg = U ′ rK(g). (Everything is similar to the polynomial case.)

40.4.2. Equivariant extension of the tubing. Similarly to the Böttcher coordi-
nate, the tubing can be equivariantly extended to the domain Ωg (compare §23.5.2).
It is based on a simple lifting step:



40. STRAIGHTENING 535

Lemma 40.10. Let us consider a nest of two (non-compact) Riemann surfaces
Ω ⊂ Ω′ with boundary. We assume that the boundaries Γ′ := ∂Ω′ and Γ := ∂Ω ⋐

intΩ′ are (disjoint) topological circles, and that A := Ω′ r intΩ is a closed annulus
bounded by Γ and Γ′ (its “inner” and “outer” boundaries respectively). Let g : Ω→
Ω′ be a holomorphic double covering map such that g(Γ) = Γ′.

Consider also another map g̃ : Ω̃ → Ω̃′ with the same properties (all corre-
sponding objects for g̃ are marked with “tilde”). Let h : A → Ã be an equivariant
homeomorphism, i.e., h(gz) = g̃(hz) for z ∈ Γ.

Assume A and Ã do not contain the critical values of g and g̃ (respectively).
Then A1 := g−1(A) and Ã1 := g̃−1(Ã) are annuli attached to A and Ã respectively,
and h extends uniquely to an equivariant homeomorphism H : A ∪A1 → Ã ∪ Ã1.

Moreover, if Γ is a quasicircle (inside Ω′) and h is K-qc then H is K-qc as
well.

Proof. Since A does not contain the critical values of g, A1 is an annulus.
Since g(Γ) = Γ′, A1 is attached to A along Γ, so together they form an annulus
A ∪A1.

By the general lifting theory (see the Lifting Criterion from §1.6.2 and Exercise
1.100), h lifts to a homeomorphism

h1 : A1 → Ã1

in two ways determined by the choice of value of h1 at one point. But since h :
A→ Ã is equivariant, h|Γ is a lift of h|Γ′. Hence the lift h1 can be selected so that
it coincides with h on Γ, and we obtain a single equivariant homeomorphism

H : A ∪A1 → Ã ∪ Ã1.

Uniqueness of such an extension is obvious.
If h is K-qc then so is h1 (since g is holomorphic). If Γ is a quasicircle then H

is K-qc as well (by Lemma 16.3). �

By iterating this lifting construction, we obtain:

Corollary 40.11. Let g : U → U ′ and g̃ : Ũ → Ũ ′ be two (conventional)
quadratic-like maps with fundamental annuli A and Ã. Let h : A → Ã be an
equivariant homeomorphism between the fundamental annuli. If K(g) and K(g̃) are
connected then h extends uniquely to an external conjugacy U ′rK(f)→ Ũ ′rK(g̃).
Moreover, if h is K-qc then so is the extension.

Corollary 40.12. Let T : A → A[r, r2] be a K-qc tubing for g as above.
Then it extends to an equivariant K-qc map Ωg → Dr2 r DR, where R = 1 in the
connected case and R > 1 in the Cantor case.

This extension will be denoted T and called a tubing as well. Its equivariance
means that T (gz) = T (z)2 for z ∈ Ωg ∩ U .

Note that in the Cantor case, we have g(0) ∈ Ωg, so the point T (g(0)) is well
defined. We call it the tubing position of the critical value.

40.4.3. Böttcher coordinate for the straightening. The map B := φ∞ ◦H−1 in
the Straightening construction (see Figure 40.1) is the Böttcher coordinate for f on
Ω(r) := H(S2

∞). Indeed, B|Ω(r) is conformal (since both φ∞ and H transfer the
conformal structure µ|S2

∞ to σ) and B conjugates f to f0 : z 7→ z2.
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Since B(∂Ω(r)) = Tr, ∂Ω(r) = Er is the equipotential of radius r for f . Thus,
we have conjugated g : U → U ′ to f : Σ(r)→ Σ(r2), where Σ(r) is the subpotential
disk of radius r for f (see §23.5.4).

In the Cantor case (with the extended tubing) shows that the tubing position
of the critical value for a ql map g coincides with Böttcher position of the critical
value for its straightening f ≡ fc:
(40.6) Tg(g(0)) = Bc(c).

40.4.4. Dilatation. Finally, let us dwell on an important issue of a bound on
the dilatation of the qc homeomorphism that straightens g.

Lemma 40.13. Let g : U → U ′ be a quadratic-like map with modA ≥ δ > 0.
Then g is hybrid conjugate to a straightening fc by a K-qc map whose dilatation K
depends only on δ.

Proof. Let us first adjust g according to Lemma 40.1 (keeping the same no-
tations for the domains U and U ′).

Let us now follow the proof of the Straightening Theorem. Take a look at
the conformal structure µ|S2

0 in the local chart φ0, i.e., consider the conformal
structure ν = (φ0)∗(µ|S2

0) on U ′. On U ′ rK(g), it is obtained by pulling back (by
the conformal g-dynamics) the structure T ∗(σ) from the fundamental annulus A.
On K(g) it is equal to the standard structure σ. Hence the dilatation of ν is equal
to the dilatation of the tubing T .

The qc map H ◦ φ−10 conjugating g : U → U ′ to f : Σ(r) → Σ(r2) transfers ν
to σ. Hence its dilatation is also equal to DilT . But the latter is bounded in terms
of δ (see Exercise 40.5). �

40.4.5. Standard equipment of ql maps. Due to the Straightening Theorem, we
can equip ql maps with the standard ammunition of quadratic polynomials. Notice
first that the α− and β− fixed points are well defined as long as the Julia set J (g)
is connected: namely, the α−fixed point is specified by being either non-repelling or
dividing repelling. (This charachterization is topologically invariant due to Exercise
21.1.) Moreover, as pointed out in §40.4.1, once we select a tubing, we obtain the
external foliations of rays and equipotentials in U ′rK(g). Under the straightening
conjugacy they are mapped to the corresponding foliations for the polynomial fc.
Since all the conjugacies agree on the Julia set and homotopic rel J (see Corollary
41.9 below), the landing properties of the rays are independent of the particular
choice of the tubing. In particular, the β−fixed point is always the landing point
for the 0-ray (which gives an alternative way to specify this point).

40.5. Quadratic-like germs.

40.5.1. Notion. Let us now introduce a notion that will give us an appropriate
flexibility in changing the domain of a ql map.

A ql map g : W → W ′ is called a ql restriction of a ql map f : U → U ′ if
W ⊂ U and g = f |W . For instance, f̃ can be obtained from f by an elementary
adjustment of the domain (see §28.1.1).

Lemma 40.14. If g is a ql restriction of f then K(g) = K(f).
Proof. Obviously, K(g) ⊂ K(f). Since deg f = deg g, the set K(g) is com-

pletely invariant under f . The conclusion follows from Corollary 40.3 (iii). �
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We say that two ql maps f and f̃ represent the same quadratic-like germ if
there is a sequence of ql maps f = f0, f1, . . . fn = f̃ such that any two consecutive
ones, fk and fk+1, have a common quadratic-like restriction.

Lemma 40.14 implies that any ql germ has a well defined filled Julia set.

Exercise 40.15. Let f and f̃ be two ql maps with connected Julia set. Then
the following are equivalent:

(i) f and f̃ represent the same germ;

(ii) they have the same filled Julia set K and f = f̃ in a neighborhood of K;

(iii) they have a common ql restriction.

Exercise 40.16. Let f : U → U ′ and f̃ : Ũ → Ũ ′ be two ql maps coinciding
near 0 (which is the critical point for both). Let W be the component of U ∩ Ũ
containing 0. If W ∋ f(0) then f |W = f̃ |W is a common ql restriction for these
two maps.

In particular, any quadratic polynomial f defines a ql germ represented by any
ql restriction f : f−1(DR) → DR with R > |f(0)|, or, more canonically, by any ql
restriction f : Σ(r)→ Σ(r2) to a subpotential domain Σ(r) ∋ 0.

40.5.2. Renormalization of germs. In §28.4 we introduced a notion of a renor-
malizable ql map and its pre-renormalization. Here we will revisit this notion
preparing ground to viewing the renormalization f 7→ Rf as an analytic operator
in some infinite-dimensional complex space (of quadratic-like germs considered up
to rescaling).

Theorem 31.22 implies:

Corollary 40.17. Let f : U → U ′ and f̃ : Ũ → Ũ ′ be two ql maps with
connected Julia set representing the same ql germ. If f is renormalizable with period
p, then so is f̃ , and the corresponding pre-renormalizations, g and g̃, represent the
same ql germ.

Thus, we can promote the pre-renormalization to the renormalization acting
on ql germs. Moreover, it is natural to consider the ql germs up to rescaling, i.e.,
up to a conjugacy by z 7→ λz, λ ∈ C∗.1 For instance, one can normalize them so
that the β-fixed point is placed at 1.

For any renormalization period p, this provides us with a well defined renor-
malization operator R = Rp.

The above discussion applies to quadratic polynomials by considering the cor-
responding quadratic-like germs.

Notes. As we already mentioned in Notes to Ch. IV, the notion of polynomial-
like map was introduced by Douady and Hubbard in [DH3]. Basic theory of these
maps, including the Straightening Theorem, was developed in the same paper.
The proof of this theorem was historically the first application of the method of
quasiconformal surgery (see §29.1.2).2

Interesection of domains of ql maps (§40.5.1) was discussed in [McM1, §5.4].
The notion of ql germ was introduced in [L12].

1Recall that 0 is assumed to be the critical point. Without this normalization, one should
consider ql germs up to conjugacy by affine maps z 7→ λz + a.

2We distinguish here “qc surgery” from “qc deformation” that had been introduced ealier.
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41. External structure

41.1. External map. Before passing to the uniqueness part of the Straight-
ening Theorem, let us dwell on an important relation between quadratic-like and
expanding circle maps.

41.1.1. Holomorphic extensions of expanding circle maps. Expanding circle maps
were introduced in §19.13. The basic example is provided by the doubling map
f0 : z 7→ z2. More generally, in §25.3 we encountered Blaschke maps.

We let E ≡ E2 be the class of degree two analytic expanding circle maps g :
T→ T considered up to conjugacy by a circle rotation. We can also view E as the
class of analytic expanding circle maps g normalized so that g(1) = 1.

As we know from Exercise 19.74, any map g ∈ E admits a holomorphic extension
g : V → V ′, where V ⋐ V ′ are two T-symmetric open (for definiteness) annuli with
smooth boundary. Let A := (V

′
r V )rD be the external fundamental annulus for

g.
Given another map g̃ : Ṽ → Ṽ ′ as above, we will mark the corresponding

objects with “tilde”. This following statement is a complex version of Proposition
19.67:

Proposition 41.1. Any two expanding circle maps, g : V → V ′ and g̃ : Ṽ →
Ṽ ′, are conjugate by a T-symmetric qc map h : (V ′, V,T)→ (Ṽ ′, Ṽ ,T). In fact, any
equivariant qc map H : A → Ã between the external fundamental annuli admits a
unique extension to a qc conjugacy h as above. Moreover Dil(h) = Dil(H).

Proof. Consider an equivariant qc map H as above with dilatation K. By
Lemma 40.10 it can be uniquely lifted to an equivariant K-qc homeomorphism
h : V ′ r D → Ṽ ′ r D. By Corollary 13.9, h admits a continuous extension to the
unit circle. Reflecting it to the interior of the disk and then exploiting the Gluing
Lemma (see §13.3), we obtain the desired K-qc conjugacy h : V ′ → Ṽ ′. �

Remark 41.2. a) Using the expanding property of g, one can justify without
using Corollary 13.9 that h |V r D extends continuously to T (and in fact, that it
is Hölder continuous): compare Theorem 25.4 and Lemma 41.5 below.

b) One can modify the above proof in the spirit of the Pullback Argument (see
§38.5) as follows:

• Start with a T-symmetric K0-qc map h0 : (V ′, V ) → (Ṽ ′, Ṽ ) equivariant on ∂A
(and hence on the T-symmetric annulus) with Dil(h0 |A) = K;

• Lift it by the iterated g gluing the lifts to K0-qc homeomorphisms hn : V → Ṽ
which are equivariant and K-qc on the V r g−n(V );

• Pass to a limit.

This turns h0 to the desired K-qc conjugacy.

41.1.2. Connected case. To any quadratic-like map f : U → U ′ one can natu-
rally associate an expanding circle map g ∈ E that captures the “external dynamics”
of f . For this reason g is called the external map of f .

The construction is very simple if the Julia set J (f) is connected. In this case
the domain CrK(f) is simply connected and can be conformally mapped onto the
complement of the unit disk:

ψ : CrK(f)→ Cr D.



41. EXTERNAL STRUCTURE 539

Figure 41.1. Construction of external map.

Let Ω = ψ(U r K(f)), Ω′ = ψ(U ′ r K(f)). These are two conformal annuli with
common inner boundary, the unit circle T, and such that the outer boundary of Ω
is contained in Ω′. Conjugating f by ψ we obtain a holomorphic double covering

g : Ω→ Ω′, g(z) = ψ ◦ f ◦ ψ−1(z) for z ∈ Ω.

By Lemma 5.7 and the Schwarz Reflection Principle, g can be extended to an
expanding circle map.

Since the Riemann map ψ is defined up to post-composition with a rotation
Rθ : z 7→ e(θ)z, θ ∈ R/Z, the circle map g is defined up to conjugacy by Rθ, so it
represents an element of the space E . Acccording to our convention, we normalize
g by putting its fixed point at 1 ∈ T.

Note also that if f is replaced by an affinely conjugate map A−1 ◦ f ◦A, where
A : z 7→ λz, λ ∈ C∗, then the Riemann map ψ is replaced by ψ◦A, and the external
map g remains the same. Thus, to any quadratic-like map f (with connected Julia
set) prescribed up to affine conjugacy corresponds an expanding circle map g ∈ E
well-defined up to conjugacy by rotation.

41.1.3. Genuine vs degenerate ql maps. We will now apply the above construc-
tion to a slightly more general situation to give a criterion when a degenerate ql
map can be restricted to a genuine one (quantitatively).

Proposition 41.3. Let (f : U → U ′) be a ql map, perhaps degenerate. Assume
it has a completely invariant compact hull K ⋐ U . Then f restricts to a genuine ql
map W →W ′ whose filled Julia set is K. Moreover, if mod(U ′ rK) ≥ µ > 0 then
the restriction can be selected so that mod(W ′ rW ) ≥ ν(µ) > 0.

Proof. Note first that 0 ∈ K. Indeed, the map f : U r K → U ′ r K is a
double branched covering between two annuli, so it must be unbranched by the
Riemann-Hurwitz Formula.

Now, the construction of the external map can be applied to this situation ad
verbuatim using the uniformlization ψ : C r K → C r D. It provides as with a
double covering g : (V,T)→ (V ′,T) between two T-symmetric annuli V ⊂ V ′.

Let S′ ⊂ V ′ be the hyperbolic neighborhood of T in V ′ of radius 1, and let
S := g−1(S′). Then S′ is a T-symmetric domain such that g : S → S′ is a
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double covering. Since g strictly expands the infinitesimal hyperbolic metric of V ′,
g−1(S) ⋐ S′.

Letting W := K ∪ ψ−1(S) and W ′ := K ∪ ψ−1(S′), we obtain a desired ql
restriction of f .

The last assertion follows from an observation that the fundamental annulus
S′ r (S ∪ D) depends continuously on g, and the latter varies within a compact
family of maps (see Exercise 7.32). �

41.1.4. General case. In the case of a disconnected Julia set the construction
is more subtle.

Take a fundamental annulus A = U
′
r U bounded by real analytic curves

E = ∂U ′ and I = ∂U . Then f : I → E is a real analytic double covering.
Let µ = modA. Let us consider an abstract double covering ξ1 : A1 → A of

an annulus A1 of modulus µ/2 over A. Let I1 and E1 be the “inner" and “outer"
boundary of A1, i.e., ξ1 maps I1 onto I and E1 onto E. Then there is a real
analytic diffeomorphism θ1 : E1 → I such that ξ1 = f ◦ θ1. This allows us to stick
the annulus A1 to the domain CrU bounded by I. We obtain a Riemann surface
T1 = (C r U) ∪θ1 A1. Moreover, the maps f on I and ξ1 on A1 match to form an
analytic double covering f1 : A1 → A.

This map f1 restricts to a real analytic double covering of the inner boundary
of A1 onto its outer boundary. This allows us to repeat this procedure: we can
attach to the inner boundary of T1 an annulus A2 of modulus 1

4µ, and extend f1 to
the new annulus T2. Proceeding in this way, we will construct a Riemann surface

(41.1) T ≡ TA(f) = lim
−→

Tn := (Cr U) ∪θ1 A1 ∪θ2 A2 . . .

and an analytic double covering F :
⋃

n≥1
An →

⋃

n≥0
An extending f .

The inner end of T can be represented by a puncture or by an ideal circle. But
in the former case, after filling that puncture we would obtain a superattracting
fixed point α (since the map F is a double covering near α). This would contradict
the property that the trajectories of F are repelled from the inner end of T .

Thus, the inner end of T is a circle. Hence T can be uniformized by C r D

(with the inner ideal boundary uniformized by the unit circle T). Now by the
Reflection Principle, this conformal representation of F can be extended to an
analytic expanding endomorphism g ≡ gA : T→ T.

For a given choice of the fundamental annulus A, the map gA : V → V ′ (which
comes together with the domains (V, V ′)) is well-defined up to rotation. Indeed,
by construction, for two such maps gA and g̃A there is a conformal isomorphism
h : C r D → C r D conjugating them on an outer neighborhood of the circle.
Reflecting h to the unit disk, we conclude that h is a rotation conjugating gA and
g̃A near the circle.

Exercise 41.4. (i) Show that in the connected case this construction leads to
the same result as the construction of §41.1.2.

(ii) Show that the external map is equal to z 7→ z2 iff f is a restricted quadratic
polynomial fc.
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41.2. External automorphisms. Let us say that h is an external automor-
phism of an analytic expanding circle map g : (V,T)→ (V ′,T) if h is a homeomor-
phism between external neighborhoods, h : Ω→ Ω′, commuting with g.

Lemma 41.5. Let h be an orientation preserving external automorphism of an
expanding circle map g ∈ E. Then h admits a continuous extension to the circle T

as id.

Proof. (Compare Proposition 19.58.)
Since by Proposition 41.1 all expanding cicle maps of class E are topologically

conjugate near T, we can assume without loss of generality that g = f0 : z 7→ z2.
Let us begin with the real ray R0 = R+rD (or rather: its germ near T). Since

h is an automorphism, the image Γ0 := h(R0) (taken near T) is a g-invariant (in
the sense of germs) curve. By the standard argument (see Theorem 24.3), it must
land at the g-fixed point 1 ∈ T. Thus, h continuously extends to 1 along this ray,
and h(1) = 1.

Let us now consider the respective lifts R1/2, Γ1/2 of R0, Γ0 under f landing
at −1 ∈ T. Since h commutes with g, it maps R1/2 to Γ1/2. Thus, h constinuously
extends to −1 along R1/2 and h(−1) = −1.

Let us now consider dyadic rectangles ∆1
0 and ∆1

1 attached to T obtained by
cutting an annulus A(1, r] (with r > 1 sufficiently close to 1) by the rays R0 and
R1/2 (see §23.6.2). They are mapped by h to respective topological recatngles Π1

0

and Π1
1 obtained by cutting the topological annulus h(A(1, r]) by the rays Γ0 and

Γ1/2. Moreover, since h is orientation preserving, Π1
0 is attached to the upper semi-

circle, while Π1
1 is attached to the lower one, so h “preserves” the upper and lower

external neighborhoods of the circle.
Let us now consider rays R1/4 and R3/4, which are the lifts of R1/2. Respec-

tively, consider curves Γ1/4 and Γ3/4 which are lifts of the curve Γ1/2. Since the
automorphism h preserves the upper and lower external neighborhoods of the circle,
it maps Γk/4 to the corresponding Rk/4, k ∈ {1, 3}. It follows that h constinuously
extends along the rays Rk/4 to points e(k/4) ∈ T fixing both of them. Moreover,
it maps the dyadic rectanges ∆2

i0,i1
to corresponding topological rectangles Π2

i0i1
attached to the same circle arcs.

Proceeding this way, we will conclude that h continuously extends to all dyadic
points e(p/2n) ∈ T mapping the dyadic rectangles ∆n

i0...in−1
to topolgical rectangles

Πni0...in−1
attached to the same dyadic arcs.

Finally, since the diameters of these rectangles go to 0 as n → 0, the map h,
extended as id to the circle, is continuous. �

Lemma 41.6. Under the circumstances of Lemma 41.5, the automorphism h
moves points by a bounded hyperbolic distance:

ρCrD(h(z), z) ≤ R ∀ z near T.

Proof. Since the hyperbolic distances on CrD and on V ′rD are comparable
near T (see Exercise 7.13), we can work with the latter. By Corollary 7.11, the map
g : V r D→ V ′ r D expands this distance. It follows that for any smooth curve γ
in V ′ rD, any lift γ−1i (i = 0, 1) of it by g is hyperbolically shorter than γ.

By Lemma 41.5, any point v ∈ V ′ near T can be connected to ζ := h(v) ∈ V ′
by a Euclideanly short curve γ. Then the lifts γ−1i are also Euclideanly short, while
stay a definite Euclidean distance apart. Aplying Lemma 41.5 once again, we see
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that h(γ−1i ) ∩ γ−11−i = ∅ for both i = 0, 1. On the other hand, by the equivariance
of h, we have h(v−1i ) = ζ−1k for some k = k(i) ∈ {0, 1}. (Here v−1i and ζ−1i are
naturally labeled endpoints of γ−1i .) We conclude that k(i) = i, so γi is bounded
by v−1i and h(v−1i ). It follows that

ρhyp(h(v
−1
i ), v−1i ) ≤ ρhyp(v, h(v)).

Thus, there exists and external annulus Ω◦ ⊂ V ′ r D such that for any point
z ∈ Ω◦ we have:

(41.2) ρhyp(h(z), z) ≤ ρhyp(gz, h(gz)).
Take now an external fundamental annulus S := g−n(A) compactly contained

in Ω◦, and let Ω ⊂ Ω◦ be the external annulus bounded by T and ∂iS. Since
S ⋐ Ω◦, we have

ρhyp(z, h(z)) ≤ R ∀ z ∈ S.
At the same time, for any z ∈ Ω there is an m ∈ Z+ such that zm ≡ gmz ∈ S, while
zk ∈ Ω for k = 0, . . . ,m−1. Then (41.2) applies to all iterates zk, k = 0, . . . ,m−1,
yielding

ρhyp(z, h(z)) ≤ ρhyp(zm, h(zm)) ≤ R,
as asserted. �

Lemma 41.7. Under the circumstance of the above lemmas, the automorphism
h is homotopic to id near T through a family of maps commuting with g.

Proof. Again, without loss of generality we can assume that g = f0. Let us
consider the universal covering e∗ : H → C r D, e∗(z) = e(−z), and let us lift
h to a homeomorphism ĥ : H → H equal to id on R. Then ĥ commutes with the
translation L : ζ 7→ ζ+1 (a deck transformation for e∗) and the doubling T : ζ 7→ 2ζ
(a lift of f0).

Let us now consider a linear homotopy connecting ĥ to id:

ĥt(z) = ĥ(z) + t(z − ĥ(z)), 0 ≤ t ≤ 1.

It commutes with both L and T and hence descends to a homotopy ht commuting
with f0. �

41.3. Uniqueness of the straightening.

41.3.1. Connected case. Let us first show that an “external automorphism” of a
quadratic-like map admits a continuous extension to the Julia set by the identity.

Lemma 41.8. Let f : U → U ′ be a quadratic-like map with connected Julia set.
Let W ⊂ U and W ′ ⊂ U be two (open) annuli whose inner boundary is J (f). Let
h : W → W ′ be an orientation preserving automorphism of f . Then h admits a
continuous extension to a map W ∪J (f)→W ′∪J (f) which is the identity on the
Julia set.

Proof. Consider the Riemann mapping ψ : CrK(f)→ CrD and the external
circle map g : V → V ′, g|V r D = ψ ◦ f ◦ ψ−1. Transfer the annuli W and W ′ to
the g-plane. We obtain two annuli Ω = ψ(W ) and Ω′ = ψ(W ′) in V r D attached
to the unit circle T. The homeomorphism k : Ω → Ω′, k = ψ ◦ h ◦ ψ−1, commutes
with g.
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By Lemma 41.6, the map k moves points near T by a bounded hyperbolic
distance:

ρCrD(k(z), z) ≤ R.
Since the Riemann mapping ψ : C r K(f) → C r D is a hyperbolic isometry, the
same is true for h:

ρCrK(f)(h(z), z) ≤ R for z ∈W near J (f).
By Proposition 7.5, the Euclidean distance |z − h(z)| goes to 0 as z → J (f). It
follows that the extension of h by the identity to the Julia set is continuous. �

Corollary 41.9. Let f and f̃ be two quadratic-like maps, and let h and h′

be two orientaton preserving homeomorphisms conjugating f to f̃ in some neigh-
borhoods of the Julia sets. Then h = h′ on J (f). Moreover, h is homotopic to h′

on an exterior neighborhood real J (f) through a family of conjugacies between f

and f̃ .

Proof. For the last statement use Lemma 41.7. �

Let us now put together the above results:

Theorem 41.10. Let us consider two quadratic-like maps f : U → U ′ and
f̃ : Ũ → Ũ ′ with connected Julia sets. Assume that they are topologically conjugate
near their Julia sets by an orientation preserving homeomorphism ψ : V → Ṽ .
Assume also that we are given an equivariant homeomorphism H : A→ Ã between
the (closed) fundamental annuli of f and f̃ .

Then there exists a unique homeomorphism h : U ′ → Ũ ′ conjugating f to f̃ ,
coinciding with ψ on the Julia set J (f), and coinciding with H on A.

If H is qc, then h|U rK(f) is also qc with the same dilatation. If both H and
ψ are qc, then h is qc, and

Dil(h) = max(DilH, Dil(ψ| K(f)).
In particular, if ψ is a hybrid equivalence, then Dil(h) = Dil(H).

Proof. By the Lifting Construction of Corollary 40.11, H admits a unique
equivariant extension to a homeomorphism h : UrK(f)→ ŨrK(f̃). This extension
continuously matches with ψ on the filled Julia set. Indeed, ψ−1 ◦h commutes with
f on some external neighborhood of K(f). By Lemma 41.8, this map continuously
extends to the filled Julia set as the identity. Hence h continuously extends to the
filled Julia set as ψ.

If H is qc then h|U r K(f) is qc with the same dilatation (Corollary 40.11).
All the rest follows from Bers’ Gluing Lemma (see §13.3). �

Of course, we can always construct an equivariant qc map H between the
fundamental annuli. Hence if two quadratic-like maps are topologically equivalent,
then the conjugacy can be selected to be quasiconformal outside the filled Julia set.
If they are hybrid equivalent, then the dilatation of the conjugacy is completely
controlled by the dilatation of H, which is in turn controlled by the geometry of
the fundamental annuli (see Lemma 40.13). In the polynomial case we can do even
better:
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Corollary 41.11. Consider two quadratic polynomials f : z 7→ z2 + c and
f̃ : z 7→ z2 + c̃ with connected Julia sets. If they are topologically conjugate near
their filled Julia sets by an orientation preserving map h0, then there exists a unique
global conjugacy h : C→ C that coincides with h0 on K(f) and is conformal on the
basin of ∞. If h0 is qc then so is h, and Dilh = Dil(h0| K(f)). If h0 is hybrid then
h = id and f = f̃ .

Proof. By Theorem 23.25, the Riemann-Böttcher map Bf : Df (∞)→ CrD

conjugates f to z 7→ z2, and similarly for f̃ . Hence the Böttcher conjugacy

(41.3) H = B−1
f̃
◦Bf : Df (∞)→ Df̃ (∞)

conformally conjugates f to f̃ on their basins of ∞. By the previous theorem, this
conjugacy matches with the topological conjugacy on the filled Julia set giving us
a desired global conjugacy h.

The qc part of the statement follows from the same theorem. Moreover, if f
and f̃ are hybrid equivalent, then Dil(h) = 0 a.e. on C. By Weyl’s Lemma, h is
conformal and hence affine. As h(0) = 0 and h(z) ∼ z near ∞, we conclude that
h = id.

The uniqueness of h follows from the fact that id is the only conformal auto-
morphism C r D → C r D commuting with z 7→ z2 (and hence (41.3) is the only
conformal isomorphism Df (∞)→ Df̃ (∞) conjugating f to f̃). �

The last statement of the above Corollary gives the uniqueness part of the
Straightening Theorem in the connected case.

41.3.2. Disconnected case.

Proposition 41.12. For a ql map g with disconnected Julia set, the tubing
position of the critical value, Tg(g(0)), determines the straightening fc : z 7→ z2+ c.

Proof. By (40.6), the tubing position of the critical value for g is equal to
the Böttcher position Bc(c) of the critical value for fc. But by Theorem 34.1,
the latter is equal to the Riemann position ΨM(c) of the parameter c. (Recall
that ΨM : C rM → C r D is the Riemann mapping for the complement of the
Mandelbrot set.) As ΨM(c) determines c, the conclusion follows. �

41.4. Mating of fc with g ∈ E. We have associated to any quadratic-like
map f with connected Julia set its straightening fc : z 7→ z2+c and its external map
g : T → T. Recall that quadratic-like maps are considered up to affine conjugacy,
while expanding circle maps are considered up to rotation. We normalize these
maps so that

f(z) = c+ z2 + h.o.t.

near the origin, while g fixes 1. Now we will reverse the above construction pro-
ducing a mating between fc and g:

Proposition 41.13. Given a parameter c ∈M and an expanding circle map g :
(V,T)→ (V ′,T), there exists a unique quadratic-like map f (up to affine conjugacy)
such that fc and g are the straightening and the external map of f , respectively.

Proof. The proof is similar to the proof of the Straightening Theorem, so we
will just sketch it.
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Existence. Let us consider a (conventional) quadratic-like restriction fc : U →
U ′ of our quadratic polynomial (e.g., we can select U as a disk bounded by by some
equipotential of fc). Take some equivariant diffeomorphism h0 : U ′ r U → V ′ r V
and extend it by Lemma 40.10 to an equivariant qc map h : U ′ r K(f)→ V ′ r D.
Now glue two hemi-spheres S2

0 := U ′ and S2
∞ := Ĉ r D by means of h to obtain a

qc sphere S2. Define a map

F : U ⊔h (V rD)→ U ′ ⊔h (V ′ rD)

as fc on U ⊂ S2
0 and as g on V r D ⊂ S2

∞. It is a well defined quasiregular
double branched covering. Moreover, it preserves the conformal structure µ which
is standard on K(f) ⊂ S2

0 and on S2
∞. By means of the Measurable Riemann

Mapping Theorem, F can be turned into the desired quadratic-like map f .

Uniqueness. Assume that two quadratic-like maps f : U → U ′ and f̃ : Ũ → Ũ ′

have the same straightenings and the same normalized external maps. Then they
are hybrid conjugate by a qc map h : U ′ → Ũ ′ near their filled Julia sets, and are
conformally conjugate by a map φ : CrK(f)→ CrK(f̃). By Theorem 41.10, these
two conjugacies match on the Julia set and glue together into a global conformal
(and hence affine) map C→ C. �

Notes. External maps were constructed by Douady and Hubbard [DH3].
Mating of quadratic polynomials with external maps (§41.4) appeared in the same
paper. Note, however, that the discussion in [DH3] was carried on the level of
conformal rather than affine classes. The affine adjustment, more suitable for the
renormalization theory, appeared in [L12].

Proposition 41.3 on ql restrictions is due to McMullen ([McM2, Prop. 4.10]).

42. Quadratic-like families

42.1. Definitions. Let Λ ⊂ C be a domain in the complex plane. A DH
quadratic-like family3 g over Λ is a family of quadratic-like maps gλ : Uλ → U ′λ
depending on λ ∈ Λ such that:

• The tube U = {(λ, z) : λ ∈ Λ, z ∈ Uλ} is a domain in C2;
• gλ(z) is holomorphic in two variables on U.

As usual, we assume that the critical point of each fλ is located at the origin, and
that Uλ and U ′λ are 0-symmetric quasidisks.

We will now make several additional assumptions. The first of them is minor.
We say that g extends beyond U if there exists a domain Λ′ ⋑ Λ and a quadratic-like
family Gλ : Vλ → V ′λ over Λ′ such that for λ ∈ Λ, gλ is an adjustment (see §§28.1.1,
40.1) of Gλ.

We call a quadratic-like family g : Uλ → U ′λ over Λ proper if

• g admits an extension beyond U;
• For λ ∈ ∂Λ, gλ(0) ∈ ∂U ′λ.

Obviously gλ(0) 6= 0 for λ ∈ ∂Λ, so assuming that Λ is a Jordan disk, we have a
well defined winding number of the curve λ 7→ gλ(0), λ ∈ ∂Λ, around 0. We call it
the winding number of g and denote w(g). A proper family g is called unfolded if
w(g) = 1. By the Argument Principle, any proper unfolded quadratic-like family

3Here “DH” stands for “Douady-Hubbard”. Later on (see §47.3), “generalized ql families” will
appear. Until then, there is no ambiguity, and “ql family” will stand for “DH ql family”.
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has a unique parameter value λ◦ such that f◦ ≡ fλ◦
has a superattracting fixed

point, i.e., f◦(0) = 0. We will select λ◦ as the base point in Λ.
Finally, we want the fundamental annulus Aλ = U ′λ r Uλ of gλ to move holo-

morphically with λ. So, assume that there is an equivariant holomorphic motion
hλ : A◦ → Aλ, i.e., such that

hλ(g◦z) = gλ(hλ(z)) for z ∈ ∂U◦.
Moreover, we will make a technical

Assumption H: The motion of any compact subset Q ⊂ U ′
◦
r U◦ extends to a

slightly bigger disk ΛQ ⋑ Λ.

Remark 42.1. Note that the motion of ∂U◦ cannot be extended beyond Λ
since for λ ∈ ∂Λ the boundary curve ∂Uλ pinches at the critical point 0 (becoming
a figure-eight curve).

Denote this holomorphic motion by h. We say that the quadratic-like family g

is equipped with the holomorphic motion h. Sometimes we will use notation (g,h)
for an equipped quadratic-like family.

For equipped families, there is a natural choice of tubing (see §40.3) continuously
depending on λ. Namely, select any tubing T◦ : A◦ → A[r, r2] for the base point,
and then let

(42.1) Tλ = T◦ ◦ h−1λ .

These are tubings since the holomorphic motion hλ is equivariant.
The Mandelbrot set of the quadratic-like family is defined as

M(g) = {λ ∈ Λ : J (gλ) is connected}.
If g is proper, then M(g) is compactly contained in Λ.

Let us finish with a few terminological and notational remarks. Let π : C2 → C

stand for the projection onto the first coordinate. We call a set U ⊂ C2 a tube over
Λ = π(U) ⊂ C if it is a fiber bundle over Λ whose fibers Uλ := U ∩ π−1(λ) are
Jordan disks (either open or closed). For X ⊂ Λ, we let U|X = U ∩ π−1X.

42.2. Restricted quadratic family. In this section we will show that the
quadratic family (fc)c∈C can be naturally restricted to a proper unfolded equipped
quadratic-like family.

Fix some r > 1. Restrict the parameter plane C to the subpotential disk
Σpar ≡ Σpar(r

2) bounded by the parameter equipotential of radius r2 (see §34.2).
According to formula (34.1), this parameter domain is specified by the property
that

c = fc(0) ∈ Σc(r
2) ≡ Σ′c .

(Recall that Σc(ρ) stands for the dynamical subpotential disk of radius ρ, see
§23.5.4). Hence for c ∈ Σpar, fc restricts to a quadratic-like map fc : Σc → Σ′c
, where Σc ≡ Σc(r). These quadratic-like maps obviously form a quadratic-like
family over Σpar, which we will call a restricted quadratic family.

The restricted quadratic family is proper. The first property of the definition is
obvious. The main property, fc(0) ∈ ∂Σ′c for c ∈ ∂Σpar, follows from formula (34.1).
The winding number of this family is equal to 1. Indeed, when the parameter c
runs once along the boundary ∂Σpar, the critical value c = fc(0) runs once around
0 ∈ Σpar.
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The restricted quadratic family is equipped with the Böttcher motion (see
§34.4) of the fundamental annulus. Select 0 as the base point in Σpar and let

(42.2) B−1c : A[r, r2]→ Σ′c r Σc

(note that A[r, r2] = Σ′0 r Σ0). Since the Böttcher function Bc(z) is holomorphic
it two variables (see §23.6.3) {B−1c }c∈Σpar

is a biholomorphic motion.
Finally, note that for any slightly smaller annulus A[ρ, r2], ρ > r, the Böttcher

motion (42.2) extends to a slightly bigger subpotential domain, Σpar(ρ
2) ⋑ Σpar.

Thus, the restricted quadratic family satisfies all the properties required for an
equipped proper unfolded quadratic-like family.

42.3. Straightening of quadratic-like families. The Mandelbrot setM(g)
of any quadratic-like family g can be canonically mapped to the genuine Mandelbrot
setM. Namely, by the Straightening Theorem, for any λ ∈M(g) there is a unique
quadratic polynomial fc(λ) : z 7→ z2 + c(λ), c(λ) ∈ M, which is hybrid equivalent
to gλ. The map χ : λ 7→ c(λ) is called the straightening of M(g).

We know that the straightening is not canonically defined outside the Mandel-
brot set but rather depends on the choice of the tubing. But for equipped families
there is a natural choice given by (42.1). With this choice, the straightening χ
admits an extension to the whole parameter domain Λ, which will still be denoted
by χ.

We can now formulate a fundamental result of the theory of quadratic-like
families:

Theorem 42.2. Let g be a proper unfolded equipped quadratic-like family over
Λ. Endow it with the natural tubing (42.1). Then the corresponding straightening
χ is a homeomorphism from Λ onto Σpar mapping M(g) onto M.

The proof of this theorem will be split into several pieces each of which is
interesting in its own right.

42.4. The critical value moves transversally to h. We say that a holo-
morphic curve Γ ⊂ C2 is a global transversal to a holomorphic motion h if it
transversally intersects each leaf of h at a single point.

Lemma 42.3. Under the assumptions of Theorem 42.2, the graph of the function
λ 7→ gλ(0), λ ∈ Λ, is a global transversal to the holomorphic motion h on U′ rU.

We will also express it by saying that the critical value moves transversally to
h. The moral of this lemma is that in the complex setting the transversality can
be achieved for purely topological reasons.

Proof. Take a point z ∈ A◦ = U ′
◦
r U◦ and consider its orbit

ψz : λ 7→ hλ(z)

under the motion h. By Assumption H of §42.1, for z ∈ U ′
◦
r U◦ the function ψz

admits a holomorphic extension to a slightly bigger parameter domain Λz ⋑ Λ. For
z ∈ ∂U◦, equivariance equation

fλ(ψz(λ)) = ψf◦z(λ)

implies that ψz admits an extension to the domain Λf◦z ⋑ Λ (note that f◦z ∈ ∂U ′◦)
as a multiply valued holomorphic function with only algebraic singularities. Such
a function is continuous up to the boundary of Λ.
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Thus, for any z ∈ A◦, the function ψz admits a continuous extension to Λ.
Moreover,

(42.3) ψz(λ) ∈ U ′λ for any z ∈ U ′
◦
r U◦ and λ ∈ Λ.

For z ∈ U◦rU◦, this follows immediately from Assumption H. To see it for z ∈ ∂U◦,
let us take any intermediate Jordan disk, U◦ ⋐W◦ ⋐ U ′

◦
, and let Wλ be the Jordan

disk bounded by hλ(∂W◦), λ ∈ Λ. Then we have:

• Wλ ⋐ U ′λ for any λ ∈ Λ (by Assumption H);

• ψz(λ) ∈Wλ for any λ ∈ Λ, and by continuity, ψz(λ) ∈Wλ for λ ∈ ∂Λ,

implying (42.3).

Fix now some z ∈ U ′
◦
r U◦ and let ψ ≡ ψz. Since the tube V ≡ U′| ∂Λ is

homeomorphic to the solid torus ∂Λ × D over ∂Λ, the curve λ 7→ ψ(λ), λ ∈ ∂Λ
(which is a “parallel” of the torus V) is homotopic to the “core” λ 7→ 0 of this torus,
i.e., these two curves can be joined by a continuous family of curves

ψt : ∂Λ→ V, 0 ≤ t ≤ 1.

Consider now the curve

(42.4) φ : λ 7→ gλ(0), λ ∈ ∂Λ.
Since g is proper, φ(λ) ∈ ∂Vλ. Hence φ(λ) − ψt(λ) 6= 0 for any t ∈ [0, 1], λ ∈ ∂Λ.
It follows that the curves λ 7→ φ(λ) − ψ(λ) and λ 7→ φ(λ), λ ∈ ∂Λ, have the
same winding number around 0. But the latter number is equal to 1, since g is
unfolded. Hence the former number is equal to 1 as well. By the classical Argument
Principle, the graphs of the functions φ and ψ have a single transverse intersection,
as asserted. �

42.5. External uniformization. In this section we will construct a dynami-
cal (quasiconformal) uniformization of ΛrM(g) which generalizes the uniformiza-
tion of C rM described in §§34.1, 34.2). This construction provides us with an
illustration of the Phase-Parameter Relation between the parameter and dynamical
planes by means of holomorphic motions (compare §17.5). See Figure 42.5.

Let us consider a set P 0 = {λ ∈ Λ : gλ(0) ∈ U ′λ r Uλ} (i.e., the set of
parameters for which the critical point escapes under the first iterate through the
half-closed fundamental annulus A0

λ := U ′λrUλ). Since g is proper, all points in Λ
sufficiently close to ∂Λ belong to P 0. We will show that P 0 is an annulus naturally
homeomorphic to the base fundamental annulus A0

◦
.

To this end consider the graph of the function φ : λ 7→ gλ(0),

Γ = {(λ, z) ∈ C2 : λ ∈ Λ, z = gλ(0)}.
By Lemma 42.3, this graph is a global transversal to the holomorphic motion h of
A0

◦
. Hence there is a well defined holonomy γ0 : A0

◦
→ Γ along the leaves of g,

and it maps A0
◦

homeomorphically onto a topological annulus B0 ⊂ Γ (compare
§17.4.2). Obviously, π(B0) = P 0. Altogether, we have a homeomorphism π ◦ γ0
from A0

◦
onto P 0. It follows, in particular that P 0 is a topological annulus, whose

inner boundary is a Jordan curve π ◦ γ0(∂U◦) in Λ and the outer boundary is ∂Λ.

Let us consider the domain Λ1 = Λr P 0. The restriction of our quadratic-like
family to this parameter domain is not proper any more. To restore this property, we
have to restrict the dynamical domains as well. Let U1

λ = g−1λ Uλ. For any λ ∈ Λ1,
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gλ(0) ∈ Uλ; hence U1
λ is a topological disk and gλ : U1

λ → Uλ is a quadratic-like
map. This gives us a quadratic-like family over Λ1.

It is proper since by construction gλ(0) ∈ ∂Uλ for λ ∈ ∂Λ1. It has winding

number 1 since the function φ : λ 7→ gλ(0) does not have zeros in the annulus P
0
.

It follows that the boundary curves φ : ∂Λ→ C∗ and φ : ∂Λ1 → C∗ are homotopic
(after parameterizing ∂Λ and ∂Λ1 by the standard circle) and hence they have the
same winding number around 0.

Let us now equip this family with a holomorphic motion h1λ : A1
◦
→ A1

λ of the
fundamental annulus A1

λ := UλrU
1
λ . This motion is obtained by lifting the motion

hλ by means of the double coverings gλ : A1
λ → A0

λ (see Lemma 17.10):

A1
◦
−→
h1
λ

A1
λ

g◦ ↓ ↓ gλ
A◦ −→

hλ

Aλ

By the First λ-lemma, the original holomorphic motion h matches with h′

on the common boundary4 ∂iA0
λ = ∂oA1

λ, so that together they provide a single
holomorphic motion of the union A0

λ ∪A1
λ over Λ1.

Let P 1 = {λ ∈ Λ1 : gλ(0) ∈ A1
λ}. Applying the above result to the re-

stricted quadratic-like family, we obtain a homeomorphism π ◦ γ1 : A1
◦
→ P 1,

where γ1 : A1
◦
→ Γ is the holonomy along h1. Since γ1 matches with γ0 on the

common boundary of the annuli, they give us a homeomorphism of the union of
the dynamical annuli onto the union of parameter annuli, A0 ∪A1 → P 0 ∪ P 1.

Proceeding in the same way, we construct:

• A nest of parameter annuli Pn attached one to the next and the corresponding
parameter domains Λn = Λn−1 r Pn−1 (where Λ0 ≡ Λ). Moreover,

⋃
Pn = ΛrM(g).

• A sequence of proper unfolded quadratic-like families

gn,λ ≡ gλ : Unλ → Un−1λ over Λn,

where Unλ = g−nλ Uλ (thus U0
λ ≡ Uλ, U−1λ ≡ U ′λ).

• A sequence of holomorphic motions hn,λ of the fundamental annulus Anλ :=

Un−1λ r Unλ over Λn that equip gn,λ; moreover, the hn,λ are obtained by lifting
the hn−1,λ by means of the coverings gλ : Anλ → An−1λ . These holomorphic motions
match on the common boundaries of the fundamental annuli.

Let γn : An
◦
→ Γ be the holonomy along hn. Since the holomorphic motions

match on the common boundaries, these holonomies also match, and determine a
continuous injection

γ : U ′
◦
rK(f◦)→ Γ.

Composing it with the projection π, we obtain a homeomorphism

(42.5) π ◦ γ : U ′
◦
rK(f◦)→ ΛrM(g)

4Recall from §1.7.12 that ∂iA and ∂oA mean the inner and the outer boundary components
of A.



550 6. STRAIGHTENING, PUZZLE, AND ATTRACTORS

Figure 42.1. External straightening.

between the dynamical and parameter annuli. Note that the inverse map is equal
to γ−1 ◦ Φ, where

Φ : Λ→ Γ, Φ(λ) = (λ, gλ(0)).

This is the Phase-Parameter Relation we alluded earlier.

Composing the above homeomorphism with the tubing (42.1), we obtain a
“uniformization” ψM(g) ≡ ψg of ΛrM(g) by a round annulus:

(42.6) ψg = T◦ ◦ γ−1 ◦ Φ : ΛrM(g)→ A(1, r2), ψg(λ) = Tλ(gλ(0)).

We see that this uniformization is given by the tubing position of the critical value
of gλ (compare §40.4.3).

Corollary 42.4. The Mandelbrot set M(g) is a hull.

In particular, M(g) is connected. Note that this argument can be applied
to the quadratic family restricted to a high level subpotential domain Σpar(r

2),
r >> 1 (see §42.2) providing us with yet another proof of connectivity of the actual
Mandelbrot set M.

The above uniformization of Λ rM(g) is generally not conformal. However,
in the case of a restricted quadratic family (see §42.2), it is a restriction of the
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Riemann map ΨM : C rM → C r D. Indeed, in this case, the tubing Tλ turns
into the Böttcher maps Bc (see (42.2) ), the critical value gλ(0) turns into c, and
formula (42.6) turns into formula (34.1) for the Riemann map ΨM.

42.6. External straightening. We are now ready to prove that the straight-
ening is a homeomorphism outside the Mandelbrot sets.

Lemma 42.5. Under the assumptions of Theorem 42.2, the straightening

χ : ΛrM(g)→ Σpar rM
is a homeomorphism.

Proof. Let us consider the uniformizations ψg : Λ rM(g) → A(1, r2) and
ΨM : Σpar rM→ A(1, r2) constructed above. Then

(42.7) χ = ΨM
−1 ◦ ψg.

Indeed, let λ ∈ Λ rM(g) and c = χ(λ) ∈ Σpar rM. Putting together (34.1),
(42.6) and (40.6), we obtain:

ψg(λ) = Tλ(gλ(0)) = Bc(c) = ΨM(c),

which is exactly (42.7). Since ψg and ΨM are both homeomorphisms, χ is a home-
omorphism as well. �

42.7. Quasiconformality. We willl show next that the external straightening
from Lemma 42.5 can be selected to be quasiconformal (quantitatively).

The Phase-Parameter Relation (Lemma 17.14) implies:

Lemma 42.6. Under the assumptions of Theorem 42.2, suppose that the tubing
T◦ : A◦ → A[r, r2] and the holomorphic motion h are K-qc. Then the uniformiza-
tion Φg : ΛrM(g)→ A(1, r2) (42.6) is K-qc as well.

In fact, we can make the dilatation depend only on modA◦ and mod(Λr Λ′),
after an appropriate adjustment of the family g:

Lemma 42.7. Let us consider a quadratic-like family g over Λ satisfying the
assumptions of Theorem 42.2. This family can be adjusted to a ql family g̃ over a
disk Λ̃ ⊂ Λ (equipped in the same way as g) in such a way that the dilatation of the
straightening χ̃ : Λ̃rM(g̃)→ ΣrM will depend only on modA◦ and mod(ΛrΛ1).

Proof. Let us first restrict our family to the family gλ : U1
λ → Uλ over Λ1,

equipped with the restricted holomorphic motion, hλ : A◦ → Aλ as described
in §42.5. By the Second λ-Lemma, Dil(h|Λ1) ≤ K, where K depends only on
mod(Λr Λ1).

Next, we can adjust the quadratic-like map g◦ : U1
◦
→ U◦ to a ql map g̃◦ : Ũ1

◦
→

Ũ◦ with L-bounded geometry, where L depends only on mod(A1
◦
) ≥ (1/2)modA◦

(as described in Lemma 40.1). This leads to a natural adjustment (g̃, h̃) over Λ̃ of
the ql family (g,h) over Λ1.

The tubing T̃◦ : Ã◦ → A[r, r2] for the adjusted map g̃◦ can be selected with
dilatation depending only on L, and hence only on modA◦.

By Lemma 42.6, dilatation of the straightening of (g̃, h̃) depends only on the di-
latation of B̃◦ and h̃, so ultimately it depends only on modA◦ and
mod(Λr Λ1). �
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Remark 42.8. If the holomorphic motion h and the tubing T◦ are assumed
to be smooth/(real analytic) on U ′

◦
r K◦ (which can actually be done in general

and which is obviously the case in our main examples of parapuzzle ql families
producing primitive M -copies: see §47.7), then the external straightening

χ : ΛrM(g)→ Σpar rM
has the same quality.

42.8. Miracle of continuity. We will now show that the straightening is
continuous on the boundary of M(g):

Lemma 42.9. Under the assumptions of Theorem 42.2, the straightening χ is
continuous at any point λ ∈ ∂M(g) and moreover χ(λ) ∈ ∂M.

Proof. First we will show that χ| ∂M(g) is a continuous extension of
χ|Λ rM(g). Let λn ∈ Λ rM(g) be a sequence of parameter values converging
to some λ ∈ ∂M(g). Let cn = χ(λn) and c = χ(λ) ∈ M. We should show that
cn → c. Let gλ : U → U ′, fc : Σ→ Σ′.

By Lemma 42.5, the map χ : Λ r intM(g) → Σpar r intM is proper, and
hence any limit point d of {cn} ⊂ Σpar rM belongs to ∂M. We assert that
gλ : U → U ′ is qc conjugate to fd : V → V ′. Indeed, the gλn

: Un → U ′n are hybrid
equivalent to the fcn : Σn → Σ′n by means of some qc maps ψn : U ′n → Σ′n. By
the straightening construction (see the proof of Lemma 40.13), the dilatation of ψn
is equal to the dilatation of the tubing Tλn

= T◦ ◦ h−1λ , which is locally bounded
by the Second λ-lemma. By Exercise 13.14, the sequence ψn is precompact in
the topology of uniform convergence on compact subsets of U ′. Take a limit map
ψ : U ′ → Σ′. Since gλn

→ gλ uniformly on compact subsets of U and fcn → fd
(along a subsequence) uniformly on compact subsets of Σ, the map ψ conjugates
gλ to fd, as was asserted.

But gλ is also hybrid equivalent to fc. Thus, fc and fd are qc conjugate in some
neighborhoods of their filled Julia sets. By Corollary 41.11, they are qc conjugate
on the whole complex plane. Since d ∈ ∂M, Proposition 36.18 implies the desired:
c = d (and, in particular, c ∈ ∂M).

The above argument implies that χ continuously maps Λr intM(g) into
Σpar r intM. We still need to show that χ is continuous at any point λ ∈ ∂M(g)
even if it is approached from the interior of M(g). The argument is similar to the
above except one detail. So, let now {λn} be any sequence in Λ converging to λ. Let
cn, c and d be as above. Then the above argument shows that fc is qc equivalent
to fd. But now we already know that c ∈ ∂M (though this time we do not know
this for d). Applying Proposition 36.18 once again, we conclude that c = d. �

“Only by miracle can one ensure the continuity of straightening in degree 2”
said Adrien Douady [D2]. As we have seen, a reason behind this miracle is qua-
siconformal rigidity of the quadratic maps fc with c ∈ ∂M (Proposition 36.18).
Another reason is the λ-lemma. All these reasons are valid only for one-parameter
families. There are no miracles in the polynomial families with more (essential)
parameters.

42.9. Hyperbolic components. As in the case of the genuine Mandelbrot
set, a component Q of intM(g) is called hyperbolic if it contains a hyperbolic
parameter value.
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Exercise 42.10. Show that:

(i) All parameter values in a hyperbolic component of intM(g) are hyperbolic;

(ii) Neutral parameter values belong to ∂M(g).

Lemma 42.11. If Q is a hyperbolic component of intM(g) then there exists a
hyperbolic component ∆ of intM such that χ : Q → ∆ is a proper holomorphic
map.

Proof. Obviously the straightening of a hyperbolic map is hyperbolic. Hence
χ(Q) is contained in some hyperbolic component ∆ of intM. Moreover, since the
hybrid conjugacy is conformal on the interior of the filled Julia set, it preserves the
multiplies of attracting cycles. Hence

ρQ(λ) = ρ∆(c) for λ ∈ Q, c = χ(λ),

where ρQ and ρ∆ are the multiplier functions on the domains Q and ∆ respectively.
By the Implicit Function Theorem, both these functions are holomorphic. More-
over, by the Multiplier Theorem, ρ∆ is a conformal isomorphism onto D. Hence
χ = ρ−1∆ ◦ ρQ is holomorphic as well.

By Lemma 42.9, the map χ : Q → ∆ is continuous up to the boundary and
χ(∂Q) ⊂ ∂∆. Hence it is proper. �

42.10. Queer components. As in the quadratic case, a non-hyperbolic com-
ponent Q of intM(g) is called queer. In this section we will prove, using the dy-
namical uniformization of queer components (§36.7.4), that the straightening χ is
holomorphic on Q. Let us begin with an extension of Corollary 36.6 to quadratic-
like families:

Lemma 42.12. Let Q be a queer component ofM(g). Take a base point λ◦ ∈ Q.
Then there is a holomorphic motion Hλ : U ′

◦
→ U ′λ conjugating g◦ to gλ.

Proof. Since M(g) is equipped, there is an equivariant holomorphic motion
hλ : A◦ → Aλ. Let Anλ = g−nλ Aλ. Since the critical point is non-escaping under
the iterates of gλ, the Anλ are annuli and the maps gnλ : Anλ → Aλ are double
coverings. By Lemma 17.10, h can be consecutively lifted to holomorphic motions
hn,λ : An

◦
→ Anλ. By the First λ-lemma, they automatically match on the common

boundaries of the annuli, so that we obtain an equivariant holomorphic motion
Hλ : U ′

◦
r K(g◦) → U ′λ r K(gλ). Since the sets K(gλ) are nowhere dense (see

Corollary 40.3(v) and Exercise 42.10(ii)), the First λ-lemma implies that the Hλ

extend to an equivariant holomorphic motion U ′
◦
→ U ′λ. �

Lemma 42.13. The straightening χ is holomorphic on any queer component Q
of intM(g).

Proof. Select a base point λ◦ ∈ Q, and let φ : U ′ → Σ′ denote the hybrid
conjugacy between g◦ : U → U ′ and its straightening f◦ ≡ fc◦ : Σ → Σ′. Let Hλ

be the holomorphic motion constructed in the previous lemma. By Lemma 17.15,
the Beltrami differential

(42.8) µλ(z) =

{
∂̄Hλ(z)
∂Hλ(z)

, z ∈ J (g◦) = K(g◦),
0, z ∈ Cr J (g◦),

depends holomorphically on λ ∈ Q. Push the structures µλ | J (g◦) forward to the
f◦-plane by the straightening conjugacy φ, i.e., let νλ be the f◦-invariant Beltrami



554 6. STRAIGHTENING, PUZZLE, AND ATTRACTORS

differential equal to φ∗(µλ) on J (f◦) and vanishing on C r J (f◦). Since φ is
conformal a.e. on the Julia set,

νλ =
(
µλ φ

′/ φ′
)
◦ φ−1,

which is obviously holomorphic in λ ∈ Q. Let hλ : (C, 0) → (C, 0) be the solution
of the Beltrami equation for νλ tangent to the identity at ∞. Then the maps
fλ := hλ ◦f◦ ◦h−1λ are quadratic polynomials z 7→ z2+ c(λ), and by Corollary 29.3,
c(λ) is holomorphic in λ. Finally, note that fλ is the straightening of gλ by means
of the hybrid conjugacy hλ ◦ φ ◦H−1λ . �

Remark 42.14. At this stage we do not yet know that χ |Q is non-constant, but
if it is, then it is easy to show that χ properly maps Q onto some queer component
of M.

42.11. Discreteness of the fibers.

Lemma 42.15. For any c ∈M, the fiber χ−1(c) is finite.

Proof. Since M(g) is compact, it is enough to show that the fibers are dis-
crete. Assume that there exists some c ∈ M with an infinite fiber χ−1(c). Then
this fiber contains a sequence of distinct parameter values λn ∈ χ−1(c) converging
to some point λ∞ ∈ χ−1(c). Let g ≡ g∞ : U → U ′.

Without loss of generality, we can assume that λ∞ ∈ ∂M(g). [Otherwise,
consider the component U of intM(g) containing λ∞. Since χ is holomorphic on
U and continuous on U , we conclude that χ|U ≡ const. But then we can replace
λ∞ by any boundary point of U .]

Let us select λ∞ as the base point in Λ. Since the quadratic-like family gλ :
Uλ → U ′λ is equipped, there exists an equivariant holomorphic motion hλ : A→ Aλ

of the closed fundamental annulus Aλ = U
′
λ r Uλ over Λ (where A ≡ U

′
r U).

Extend it by the Third λ-lemma5 to a holomorphic motion hλ : C r U → C r Uλ
over a neighborhood Λ′ ⊂ Λ of λ∞ (keeping the same notation for the extension).
We will now construct a holomorphic family of hybrid deformations Gλ of g over
Λ′ naturally generated by this holomorphic motion.

To this end let us first pull back the standard conformal structure to C r U ,
µλ = h∗λ(σ). Then extend µλ to a g-invariant conformal structure on C r K(g) by
pulling it back by iterates of g. Finally, extend it to K(g) as the standard structure.
This gives us a holomorphic family of g-invariant conformal structures on C. We
will keep the same notation µλ for these structures. Solving the Beltrami equations,
we obtain a holomorphic family of qc maps Hλ : C→ C such that µλ = (Hλ)

∗(σ),
and in particular, ∂̄Hλ(z) = 0 a.e. on K(g). Conjugating g by these maps, we
obtain a desired hybrid deformation Gλ = Hλ ◦ g ◦H−1λ , λ ∈ Λ′.

On the other hand, for maps gn ≡ gλn
, we can construct the Beltrami differ-

entials µn ≡ µλn
in a different way. Namely, since the map gn is hybrid equivalent

to g, the equivariant map hn ≡ hλn
uniquely extends from C r U to a hybrid

conjugacy (Theorem 41.10). Let us keep the same notation hn for this conjugacy.
The above two constructions naturally agree: (hn)

∗σ = µn. Indeed, it is true
on CrU by definition. It is then true on UrK(g), since both Beltrami differentials

5If we assume that the holomorphic motion h is smooth (see Remark 42.8) then we can use
the Elementary λ-Lemma (Lemma 17.1) instead.
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are g-invariant. Finally, it is true on the filled Julia set K(g) since hn is conformal
a.e. on it.

Thus, the qc maps Hn ≡ Hλn
: C → C and hn : C → C satisfy the same

Beltrami equation. They also coincide at two points, e.g., at the critical point and
at the β-fixed point of g (in fact, by Corollary 41.9 they coincide on the whole Julia
set of g). By uniqueness of the solution of the Beltrami equation, Hn = hn. Hence

(42.9) Gλn
(z) = gλn

(z).

Take an ε > 0 such that both functions Gλ(z) and gλ(z) are well-defined in the
bidisk {(λ, z) ∈ C2 : |λ − λ◦| < ε, z ∈ V ≡ g−1U}. For any z ∈ V , consider two
holomorphic functions of λ:

Φz(λ) = Gλ(z) and φz(λ) = gλ(z), |λ− λ∞| < ε.

By (42.9), they are equal at points λn converging to λ∞. Hence they are identically
equal.

Thus for |λ| < ε, two quadratic-like maps, Gλ and gλ, coincide on V . But it
is impossible since the Julia set of Gλ is always connected, while the Julia set of
gλ is disconnected for some λ arbitrary close to λ∞ (recall that we assume that
λ∞ ∈ ∂M(g)). �

Corollary 42.16. χ(intM(g)) ⊂ intM.

Remark. Of course, it is not obvious only for queer components.

Proof. Take a component Q of intM(g). We have proven that χ |Q is a non-
constant holomorphic function. Hence the image χ(Q) is open. Since it is obviously
contained in M, it must be contained in intM. �

42.12. Bijectivity. What is left to show is that the map χ :M(g) →M is
bijective. By §42.5, the winding number of the curve χ : ∂Λ→ C around any point
c ∈ Σpar is equal to 1. By the Topological Argument Principle (§3.3),

(42.10)
∑

a∈χ−1c

inda(χ) = wc(χ ◦ ∂Λ) = 1, c ∈ Σpar.

It immediately follows that the map χ : Λ → Σpar is surjective (for otherwise the
sum in the left-hand side would vanish for some c ∈ Σpar).

Let us show that χ is injective on the interior ofM(g). Indeed, if a0 ∈ intM(g),
then by Corollary 42.16 c = χ(a0) ∈ intM, and by Lemma 42.9, χ−1(c) ⊂
intM(g). But since χ| intM(g) is holomorphic (see §§42.9 and 42.10), we have
inda(χ) > 0 for any a ∈ intM. It follows that the sum in the left-hand side of
(42.10) actually contains only one term, so that c has only one preimage, a0.

Finally, assume that there is a point c ∈ ∂M with more than one preimage.
By the Topological Argument Principle, χ has a non-zero index at one of those
preimages, say, a1. Take another preimage a2. Both a1 and a2 belong to ∂M(g).

Take a point a′2 6∈ ∂M(g) near a2, and let c′ = χ(a′2). By Exercise 3.10, χ is
locally surjective near a1, so that c′ has a preimage a′1 over there. This contradicts
injectivity of χ on Λr ∂M(g).6

This completes the proof of Theorem 42.2.

6At this point, one can use only injectivity on Λ rM(g).
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43. QL families over complex renormalization windows

43.1. Canonical homeomorphism. Let us go back to the quadratic family
fc : z 7→ z2 + c. Take some superattracting parameter c◦ of period p > 1. It is the
center of the renormalization window V ≡ V◦ described in §37.11.1. Recall that it
is equal to the truncated parabolic wake Wpar ≡ Wpar

◦ centered at c◦ (and rooted
at the corresponding root r). Moreover, ∂V crosses M at r.7

For any polynomial fc, c ∈ V, we have constructed a quadratic-like map gc =
fpc : Vc → V ′c around the critical point. If the Julia set J (gc) of this map is
connected then fc is renormalizable with combinatorics given by the Hubbard tree
T ≡ T◦ of the superattracting parameter c◦ (see §§28.4.5, 37.11.2). Let

M ≡M◦ = {c ∈ V : fc is renormalizable with combinatorics T } ∪ {r}.
Notice that in the primitive case, the root map fr is still renormalizable with
combinatorics T (see Exercise 28.24).

Theorem 43.1. The set M is canonically ambiently homeomorphic to the Man-
delbrot set M. Moreover,

(i) This homeomorphism is conformal on intM .

(ii) In the primitive case, it admits a homeomorphic extension to a neighborhood of
M which is externally qc.

(iii) In the satellite case, it admits a homeomorphic extension to a neighborhood of
M which is externally qc outside an arbitrary small neighborhood of the root r.

Remark 43.2. In fact, as will be shown in vol. III, the above extensions are qc
on the whole neighborhoods as above (not only “externally”). Moreover, externally,
they can be made smooth (compare Remark 42.8).

The canonical homeomorphism χ :M →M is given by the straightening of the
renormalization, i.e. for c ∈ M r {r}, χ(c) ∈ M is defined so that the quadratic
polynomial fχ(c) : z 7→ z2 + χ(c) is hybrid equivalent to the renormalization gc. At
the root, we let by definition: χ(r) = 1/4.

Theorem 42.2 is designed to imply this result. However, it does not do it since
the quadratic-like family (gc) over V is not full: it misses the root r. This problem
can be fixed for the primitive renormalization, as the map fr is also renormalizable
(with the same combinatorics) in this case. However, in the satellite case, it is not
fixable (see §28.4.4).

Another issue is the existence of a global equipment of a family with holomor-
phically moving fundamental annulus. For primitive copies, we will deal with it in
§47. In general, as we will see below, any family can be locally equipped, which is
sufficient for most purposes.

In this section we will give a proof of Theorem 43.1 that will produce for us
all little M -copies. For primitive copies, an alternative proof will be given in §47
where we will construct the corresponding fully equipped quadratic-like families to
which Theorem 42.2 can be applied.

In what follows we will notationally distinguish the parameter plane for the
quadratic family fc from the parameter plane of its renormalization gλ (though

7In §37.11.1, the window and associated objects are labeled by the root rather than the
center: hopefully, it will not cause a confusion.
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formally, the latter is part of the former). In particular, a base point λ◦ ∈ V will
not be assumed equal to c◦, the center of M .

43.2. Straightening of general ql families. Before passing to a proof of
Theorem 43.1, let us summarize some features of Theorem 42.2 that are valid for
more general ql families, without assumptions that they are equipped, proper, and
unfolded.

Lemma 43.3. Let g = (gλ) be a quadratic-like family over a domain Λ ⊂ C.
Then:

(i) The canonical straightening χ :M(g)→M is continuous;

(ii) It is holomorphic on intM(g);

(iii) χ admits a continuous extension to a neighborhood of any point λ◦ ∈ ∂M(g),
and this extension is locally quasiregular on the complement of M(g);

(iv) χ maps ∂M(g) to ∂M;

(v) If M(g) 6= Λ then for any c ∈M, the fiber χ−1(c) is discrete;

(vi) If a component Q of intM(g) is compactly contained in Λ, then χ properly
maps it onto some component of intM.

For the proof, we need to locally equip our family (see §42.1):

Lemma 43.4. Let g be a ql family over a domain Λ, and let λ◦ ∈ Λ. Then g can
be equipped with an equivariant smooth holomorphic motion of some fundamental
annulus,

(43.1) hλ : A◦ → Aλ,

over some neighborhood Λ◦ ∋ λ◦.
Proof. Make the outer boundary of A◦ stay still, lift it to an equivariant mo-

tion of the inner boundary, and interpolate it inside A◦ by means of the Elementary
λ−Lemma. �

Proof. Let us start with the external part of (iii). Let λ◦ ∈ ∂M(g). Let us
locally equip this family by Lemma 43.4. Let us also select a tubing T◦ : A◦ →
A[r, r2] for g◦ (see §40.3). This determines an extension of the straightening to Λ◦.
By (34.1) and (40.6), the Riemann position of χ(λ) is equal to the tubing position
of the critical value outside M(g):

ΨM(χ(λ)) = T◦(h
−1
λ (gλ(0))),

where h−1λ : Σλ → Σ◦ is the lift of the inverse of (43.1) to the exterior of the figure-
eight centered at 0 (see §40.4.2). Since for µ near λ, the composition µ 7→ h−1λ ◦ hµ
is a holomorphic motion centered at λ, the map χ(λ) is locally quasiregular in
Λ◦ rM(g) (see Lemma 17.9). All the more, it is continuous.

The rest is proved along the lines of Theorem 42.2: For (ii) see §§42.9 and 42.10;
for (i) (and completion of (iii)) see §42.8; it implies (iv); for (v) see Lemma 42.15;
and (vi) follows. �

In fact, as the above proof shows, if the family happens to be globally equipped
then the straightening extends to the whole parameter domain:

Proposition 43.5. Let g be an equipped quadratic-like family over a domain
Λ ⊂ C. Then the canonical straightening χ : M(g) → M admits a continuous
extension to Λ satisfying properties (i)–(vi) of Lemma 43.4.
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43.3. Proof of Theorem 43.1. Proposition 43.3 (applied to the renormalized
family g over Λ) already provides us with some interesting information about the
canonical map χ : M → M. In fact, some of it can be obtained in a more direct
way by making use of the explicit uniformizations of components of intM described
by the Multiplier and Queer Theorems:8

Lemma 43.6. (i) Any hyperbolic component Q of intM is conformally mapped
under the straightening χ onto some hyperbolic component ∆ of M.

(ii) Any queer component Q of intM is either conformally mapped under the straight-
ening χ onto some queer component ∆ of M, or else collapses to some point of
∂M.

Proof. (i) Since the property of having an attracting cycle is preserved un-
der the renormalization and the straightening, hyperbolicity of Q implies that the
image χ(Q) is contained in some hyperbolic component ∆ of M. Moreover, by
the Multiplier Theorem, the components Q and ∆ are conformally mapped onto
D by the multipliers functions ρQ and ρ∆. Since χ preserves the multiplier of the
attracting cycle, we have: χ = ρ−1∆ ◦ ρQ, implying the conclusion.

(ii) In the queer case, fix a base point λ◦ ∈ Q and let c◦ := χ(λ◦) ∈ ∆. Let µ◦

be an invariant Beltrami differential on the Julia set J◦ of gλ◦
. By the ergodicity

(Lemma 36.17) it is either supported on the grand orbit

Orb J◦ =

∞⋃

n=0

g−nλ◦

(J◦)

of the little Julia set J◦, or on its complement. Moreover, in the latter case, there are
no invariant line fields on Orb J◦, implying that the whole component Q collapses to
a single point. By continuity, this point must belong to ∂M (see Lemma 43.3(iii),
(iv)).

In the former case, the restriction ν◦ := µ◦| J◦ is an invariant Beltrami differen-
tial on J◦. By the Queer Theorem, the family of gλ◦

-invariant Beltrami differentials
tµ◦ (t ∈ D) on J◦ naturally parameterizes the queer component Q. Restricting
it to the little Julia set J◦ and straightening the renormalization, we obtain an
fc◦−invariant family of Beltrami differentials th∗(ν◦) (t ∈ D) parameterizing ∆.
(We use that the straightening conjugacy h is conformal on J◦.) Putting these
pieces together, we come to the desired conclusion. �

What is left is to show that the straightening χ :M →M is injective, surjective,
continuous at the root (in the satellite case), and admits an external qc extension.

43.3.1. Injectivity. Assume that for two points c, c̃ ∈ M , we have χ(c) = χ(c̃).
Let f = fc : z 7→ z2 + c and f̃ = fc̃ : z 7→ z2 + c̃. Assume first that both points c
and c̃ are different from r, so both are renormalizable (with some period p). Then by
definition of the straightening χ, their renormalizations g : U → U ′ and g̃ : Ũ → Ũ ′

are hybrid equivalent. Using the Pullback Argument (and a bit of measurable
dynamics), we will show that the maps f and f̃ are hybrid equivalent as well. Since
they are quadratic polynomials, it will follow that c = c̃.

8Though clarifying, this lemma is not needed for the proof of Theorem 43.1. In fact, the
latter is independent of the Multiplier Theorem and supersedes it.



43. QL FAMILIES OVER COMPLEX RENORMALIZATION WINDOWS 559

Figure 43.1. An illustration of a partial cell decomposition for
period 12 renormalizable map (the period 4 elephant eye tuned by
the rabbit).

Let K =
⋃
Ki be the union of the filled little Julia sets of f (corresponding

to the renormalization under consideration). Let R be the configuration of the
f -rays landing the β− and β′−fixed points of these little Julia sets. Let E be some
f -equipotential, and let E ′ = fp(E). Let us consider a configuration C of these
two equipotentials and the rays truncated at the level of E ′. This configuration is
marked with the Böttcher coordinate.

Moreover, the configuration C produces a degenerate renormalization
g = (fp : W → W ′) around the little Julia sets K, so that the corresponding
renormalization U → U ′ is obtained by the thickening of the domains W , W ′ (see
§28.4.3). In fact, it produces a degenerate renormalization g = (fp : Wi → W ′i )
around each little Julia set Ki,

As usual, we mark with “tilde” the corresponding objects for f̃ .
Since the maps f and f̃ are renormalizable with the same combinatorics, there

exists a homeomorphism

(43.2) h : (C, C)→ (C, C̃)

respecting the marking and coinciding with the Böttcher conjugacy outside E .
Moreover, by Exercise 24.19, h can be selected to be quasiconformal.

Remark 43.7. This also follows from the Fourth λ-lemma since by the Wake
Theorem our configuration moves holomorphically over the corresponding renor-
malization window.

Map (43.2) can be modified so that its restriction to the domain W ′ is a hybrid
conjugacy between the renormalizations g and g̃ (keeping all other properties of
it). To see it, consider the configuration Γ ⊂ ∂W ′ of four ray segments landing
at the β− and β′−points of K that are used to construct the renormalization,
and the corresponding configuration Γ̃ for g̃. Modify h in the fundamental annulus
A = U

′
rU so that it maps the ray segments of Γ∩A to the corresponding segments

Γ̃∩Ã, respecting the boundary marking. Lifting h to the preimages of U and passing
to a limit (like in the Pullback Argument), we obtain a hybrid conjugacy that maps
∂W ′ to ∂W̃ ′ respecting the boundary marking.

Similarly, we can modify h near every little Julia set Ki, to turn it to a hybrid
conjugacy on each of them. Then we obtain a map that conjugates f |K to f̃ | K̃.
In particularly, it conjugates f and f̃ on their postcritical sets.

Let us now consider the combinatorial Hubbard tree T of f corresponding to
the configuration C (see §37.11.2). It has marked points (0n)

p−1
n=0 and is endowed

with a piecewise linear map F cyclically permuting these points. (Recall that F is
linear on each component of T r (0 ∪ b), where b is the set of branched points.)
Since h maps C to C̃, it respects the corresponding cell decomposition, and hence
induces a map H : T → T̃ respecting the marking. Hence it conjugates F to F̃
on the set of marked points. As these maps are piecewise linear in between, H
conjugates F to F̃ .
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Thus the (F, F̃ )−lift of H is equal to H. It follows that the (f, f̃)−lift of h is a
map h1 respecting our cell decomposition. By the Alexander Trick, h1 is homotopic
to h rel ∂C.

As h : Ki → K̃i is a conjugacy on the little Julia sets (and they are contained
in our cells), h1 coincides with h on them. It follows that h1 is homotopic to h rel
K ⊃ P. Thus, we obtain a qc Thurston equivalence between f and f̃ .

By means of the Pullback Argument (see §38.5), h can be transformed into a qc-
conjugacy between f and f̃ that coincides with the Böttcher conjugacy outside K(f)

and with the hybrid conjugacy on K. Then ∂̄h = 0 a.e. on OrbK =

∞⋃

n=0

f−n(K).

By Lemma 28.33, this set has full measure in K(f). Hence ∂̄h = 0 a.e. on the
whole complex plane. By Weyl’s Lemma, h is affine.

43.3.2. Surjectivity. For any b ∈M, we want to find c ∈M . such that χ(c) = b.
Let us start with a superattracting b with the Hubbard tree Tb. Let us tune the
Hubbard tree T◦ with Tb (see Exercise 37.42). It is easy to see that we obtain
an admissible Hubbard tree, which can be realized by a desired superattracting
parameter value c (see §37.9).

Moreover, by Lemma 43.6(i)9 χ maps conformally the hyperbolic component
Qc centered at c onto the hyperbolic component ∆b, so the latter is contained in
Imχ. Since χ is continuous and superattracting parameters accumulate onto the
whole boundary ∂M (see Exercise 33.6), the latter is also contained in Imχ.

What is left, are possible queer components. But if one of them were missing
in Imχ then Imχ would not be full. On the other hand, M is full, and hence has
vanishing first Alexander cohomology (Theorem 1.23). As the latter property is
invariant under homeomorphisms, H1

A(Imχ) = 0 as well, and hence Imχ is full.

43.3.3. Continuity at the root.

Lemma 43.8. The map χ :M →M is continuous at the roof r of M .

Proof. Recall that ∆0 ∋ 0 stands for the main hyperbolic component of M
(bounded by the main cardioid). Let Q0 ∋ c◦ be the main hyperbolic component
of M . By Lemma 43.6(i), the map χ : Q0 → ∆0 is univalent, and hence continuous
up to the boundary.

Let us now take a sequence of points cn ∈ M r Q0, cn → r. Then cn belongs
to a limb Ln attached to ∂Q0. By Lemma 37.22, diam Ln → 0; hence the root
points rn of the limbs converge to r. By continuity of χ|Q0, we have χ(rn)→ 1/4.
Applying Lemma 37.22 once again, we conclude that diamχ(Ln) → 0, and hence
χ(cn)→ 1/4 as well. �

43.3.4. Homeomorphic extension. Let us now show that χ admits a homeomor-
phic extension to a neighborhood of M (compare with §42.5). It is convenient to
use renormalization gλ : Wλ → W ′λ near the critical value as depicted on Figure
28.3. Let us consider the fundamental tile Tλ := cl(W ′λ rWλ). Then the comple-

ment of the valuable little Julia set, W
′
λ r Kv,λ, is tessellated with its pullbacks

Tni,λ under the iterates gnλ .
The boundary of Tλ moves holomorphically over the corresponding truncated

parameter wake W ′par. By the Fourth λ−Lemma, this motion can be extended to

9One can use Proposition 43.3 (vi) instead.
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a holomorphic motion of the whole tile Tλ over Wpar. By the Phase-Parameter
Relation, we obtain a fundamental parameter tile Tpar ⊂ W ′par (attached to the
Chebyshev parameter of M) naturally homeomorphic to the tile T◦ at the base
parameter.

Next, the above holomorphic motion can be lifted to a holomorphic motion of
the tiles of level one, T 1

i,λ, over W ′par r Tpar. By the Phase Parameter Relation,
we obtain two parameter tiles T 1

i,par (attached to appropriate dyadic tips of M)
naturally homeomorphic to the corresponding dynamical tiles T 1

i,◦ at the base pa-
rameter. Moreover, this homeomorphism matches with the previous one on the
common boundary of the parameter tiles (since the motions of the tiles match on
their common boundary).

Proceeding this way, we obtain a tessellation of

Λout := (Wpar rM) ∪ {dydic tips of M}
by parameter tiles Tni,par. Moreover, there are natural homeomorphisms from these
tiles to the corresponding dynamical tiles Tni,◦ that altogether form a homeomor-
phism from Λout onto the dynamical escaping set at the base parameter,

Dout
◦

:= (W ′
◦
rKv,◦) ∪ {dydic tips of Kv,◦}.

Repeating the same procedure for the actual quadratic family (fc), we obtain
a natural homeomorphism from Λout onto the corresponding truncated wake of
C rM (via the natural homeomorphism of the corresponding dynamical sets at
the base parameters).

Now the miracle of continuity ensures that this homeomorphism matches with
the canonical straightening χ :M →M. This produces a homeomorphic extension
of χ to the truncated wake Wpar. Finally, extend it arbitrarily to a small outer
neighborhood of the root.

Let us now show that the straightening homeomorphism χ is externally quasi-
conformal in a slighly smaller wake-like region W̃par rM ⊂ Wpar rM around M
truncated near the root. To this end, let us slightly adjust the base dynamical wake
W ′

◦
by replacing the rays landing at the root by nearby curves (“adjusted rays”)

invariant under g◦ (also landing at the root) and by replacing the outer equipoten-
tial with a higher level equipotential (compare with Lemma 42.6). Then the base
tile T◦ get adjusted accordingly and the tiles Tλ get adjusted via the holomorphic
motion over the adjusted parameter wake W̃par. (We will mark the adjusted objects
with the tilde.)

By the Phase-Parameter Relation, we obtain a truncated parameter tile T̃par ⊂
Tpar naturally homeomorhic to T̃◦. Moreover, as the motion (Tλ) exends to the
original wakeWpar, it has a bounded dilatation a truncated wake over W̃tr

par ⋑ Tpar

obtained by removing from W̃par a neighborhhood of the root. (by the Second
λ−Lemma). Then all the lifts of this motion to the adjusted tiles T̃ni,λ over W̃tr

par

have the same uniformly bounded dilatation. It follows that the straightening
homeomorphisms have uniformly bounded dilatation on the truncated parameter
tiles T̃ tr

par. As these tiles cover W̃tr
parrM (indeed, they cover W̃parrM truncated by

two adjusted parameter rays landing near the root), the conclusion follows (using
the Little Gluing Lemma).

This completes the proof of Theorem 43.1, except for an external qc extension
to a neigborhood of the root in the primitive case. It can be done by a carefully
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matching a local extension with the previously constructed one. However, we will
neglect this issue for the moment. An alternative approach to the primitive case
via puzzle given in §47 will automatically take care of it.

43.4. Tuning and renormalization combinatorics (once again). We are
now in a position to complete our discussion of the renormalization combinatorics.
Its real counterpart appeared in §37.11.3 (Exercise 37.51(ii)).

Recall from §37.11.2 that for a quadratic polynomials, we have four way of
recording the renormalization combinatorics: by means of a periodic ray portrait
Θ, a superattracting parameter c, a Hubbard tree T , and a little M -copy M (and
we know by now that this copy is homeomorphic indeed to the big Mandelbrot
setM).

Remark 43.9. We allow ourselves the trivial combinatorics represented by
Θ = ∅ (no rays in the portrait), or c = 0, or T = {∗}, (the tree degenerates to the
singleton), or M =M (the “little” M is equal to the whole Mandelbrot set). We
will usually identify it as ∗.

We can now extend all these descriptions to the quadratic-like case. Renor-
malizable ql maps (and their renormalizations) are defined in the same way as in
the polynomial case (see §28.4). As this notion is invariant under topological con-
jugacies, there is a natural relation between renormalizations of a ql map g and
its straightening f ≡ fc == χ(g). Which allows us to define the renormalization
combinatorics of g in terms of f .

Assume that g is several times renormalizable (maybe, infinitely many). Let
(gn) be the list of its consequtive renormalizations, n = 0, 1, . . . , with “absolute”
combinatorics τ [n] (which can be represented by a ray portrait Θ[n], by a superat-
tracting parameter c[n] ∈M, by a Hubbard tree T [n], or by a little M -copy M [n].).
Then gn+1 is the renormalization of gn with some relative combinatorics τn which
can be represented by a ray portrait Θn, by a superattracting parameter cn ∈ M,
by a Hubbard tree Tn, or by a little M -copy Mn. (Notice that we use the lower
indices to distinguish the relative combinatorics from the absolute ones.) The string
of these relative combinatorics,

τ̄ := ({∗} = τ0, τ1, . . . ),

represents the full renormalization combinatorics for g. Though it contains the
same amount of information as the string of absolute combinators, the relative
data often provides a better grasp of the renormalization structure in question.
In particular, any string of prime Hubbard trees is realizable as a renormalization
combinatorics:

Proposition 43.10. (i) For any finite string of abstract prime Hubbard trees,

τ̄ = (T0, T1, . . . , TN ), N ∈ N,

there exists a little M -copy M(τ̄) comprising all the parameters c ∈ M that are
renormalizable with renormalizatoin combinatorics τ̄ .

(ii) Any infinite string of abstract prime Hubbard trees,

τ̄ = (T0, T1, T2, . . . , ),
determine a combinatorial class C(τ̄) ⊂M of parameters which are infinitely renor-
malizable with combinatorics τ . Moreover, C(τ̄) is either a hull or a singleton.
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Proof. (i) By Exercise 37.42, there is a superattracting parameter c corre-
sponding to the Hubbard tree with combinatorics τ̄ . The little M -copy centered at
this parameter is desired.

(ii) (Compare Corollary 9.4.) Let us consider truncated renormalization com-
binatorics τ̄ [n] := (T◦, . . . , Tn). Then C(τ̄) is the intersection of the nest of the
corresponding little copies M [n] = C(τ̄ [n]), each of which is a subhull in the previ-
ous one. �

Let us consider a little Mandelbrot copy M◦ centered at a superattracting
parameter c◦, and let χ◦ : M◦ → M be the corresponding straightening homeo-
morphism. Take some c ∈M◦ and let d = χ(c). Thus, the map fc is renormalizable
with combinatorics specified by c◦ (or by the whole copy M◦ for that matter) and
fd is the straigtening of its renormlization Rfc. Under these circumstnces, fc is
called the tuning of f◦ ≡ fc◦ by fd. Accordingly, the parameter c is called the
tuning of c◦ by d, and one writes

c = c◦ ∗ d.
Let us describe what happens under tuning with the combinatorial laminations.

Let p be the period of 0 under f◦. Let us consider the lamination L◦ ≡ Lc◦ of f◦,
and let Q0 be the central gap of this lamination. For book keeping reasons, it is
convenient to denote the doubling map associated with f◦ by T◦ : θ 7→ 2θ mod 1. It
induces the return map T̂ p◦ : Q0 → Q0. The quotient Q0/L◦ is naturally identified
with the disk D in such a way that the above return map induces the squaring map
f0 : z 7→ z2 of D̄ (corresponding, via the Riemann uniformization, to the return of
the hyperbolic map f◦ to the immediate basin D0 of 0, see Corollary 25.9). Let
π : Q0 → D be the corresponding projection. Let us consider some lamination L
on D and pull it back by π to the gap Q0. Then spread it around by the iterated
doubling map T̂◦ to all other gaps of L◦. We obtain the lamination L◦ ∗ L called
the tuning of L◦ by L. Intuitively, this procedure means pinching of the basin
D0 along the lamination L and pinching all other components of intK◦ along the
pullbacks of L.

In what follows (in this section), Lc ≡ Lc,puz stands for the combinatorial
lamination for fc.

Proposition 43.11. (i) For c = c◦ ∗ d, we have Lc = L◦ ∗ Ld.
(ii) If fc is n times renormalizable with renormalization combinatorics (c◦, . . . , cn−1)
and the last renormalization straightening fd (i.e., c = c◦ ∗ c1 ∗ · · · ∗ cn−1 ∗ d) then

Lc = Lc◦ ∗ Lc1 ∗ · · · ∗ Lcn−1
∗ Ld.

(iii) If fc is infinitely renormalizable with renormalization combinatorics (c◦, c1, c2, . . . )
(i.e., c = c◦ ∗ c1 ∗ c2 . . . ) then

Lc = Lc◦ ∗ Lc1 ∗ Lc2 · · · := cl
∞⋃

n=1

L◦ ∗ L1 ∗ · · · ∗ Ln−1.

Let us do some preparation. Let g = fpc :W →W ′ be the pre-renormalization
of fc with combinatorics c◦. It straightens to fd, so fd = h ◦ g ◦ h−1, where
h : W ′ → C is the straightening conjugacy, and d = χ◦(c). The α-fixed point
αg of g generates a cycle αg of period p for fc. On the other hand, under the
straightening conjugacy, αg becomes the α-fixed point αd = h(αg) for fd.
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Lemma 43.12. Under the above circumstances, assume that the cycle αc is
either repelling or parabolic with non-zero rotation number. Then:

(i) The number of accesses to αg from CrK(fc) and to αd from CrK(fd) is the
same (with a natural relation betweeen them).

(ii) The combinatorial rotation numbers of αg and αd are equal.

Proof. Under the straightening, the number of accesses and the rotation num-
ber are preserved, so they are the same for αd viewed from C r K(fd) and for αg
viewed from C r K(g). But Lemma 28.36 tells us that the latter can be viewed
from CrK(fc) as well. �

Proof of Proposition 43.11. Let us start with the main hyperbolic component
∆◦ of M◦. By Corollary 35.11, the lamination Lc stays the same over it: Lc = L◦

for c ∈ ∆◦. But χ◦(∆◦) = ∆0, where the latter is the main hyperbolic component
of M. As Ld is trivial for d ∈ ∆0, we are done.

Let us now go to the main cardioid ∂∆◦ ofM◦. Let θ 7→ c(θ) be its parametriza-
tion by the rotation number θ ∈ R/Z of the cycle αc, while θ 7→ d(θ) be the
parametrization of the main cardioid ∂∆0 by the rotation number of the fixed point
αd. Under the straightening χ : ∂∆◦ → ∂∆0, the rotatoin number is preserved:
χ(c(θ)) = d(θ).

For θ = 0 (i.e., at the root r◦ of ∆◦) we have by Theorem 35.27: Lc(0) =
L◦. The corresponding parameter d(0) is the root 1/4 if of the main cardioid.
The corresponding Julia set (cauliflower) is a Jordan curve (Theorem 26.1), so its
lamination is trivial. The conclusion follows.

For an irrational θ, the Wake Decomposition Theorem, 37.15, implies that
Lc(θ) = L◦, while Ld is trivial, and we are done again.

For any other c ∈ M◦ (including non-root parabolics c(p/q) ∈ ∂∆◦ r {r◦}),
let Rc = {Rθkc } be the configuration of rays for fc landing at the g−fixed point
αg ∈ K(g), and let Θc := {θk} ⊂ T be the corresponding set of angles. This is a
tuned rotation cycle in the sense defined in §28.4.10. By Lemma 43.12, the image
configuration h(Rc) represents all accesses to αd (cyclically permuted by fd with
rotation number p/q). By the Lindelöf Theorem, this configuration is represented
by a cycle Rd = {Rωi

d } of external rays in C r K(fd), where {ωi} = Θp/q is the
rotation set on T with rotation number p/q. By definition, the pullback of Θp/q by
π to T (where π is defined before Proposition 43.11) is the tuning of L◦ by Θp/q.
On the other hand, it is exactly Θc.

We have shown that Lc contains L◦ ∗ Λp/q, where Λp/q is the ideal polygon
spanned by Θp/q. It follows that Lc contains L◦∗Lp/q, where Lp/q is the completely
invariant lamination generated by Λp/q (which coincides with the puzzle lamination

L[0]
d of zero level for fd, see §32.1.5). So, Lc ≻ L◦ ∗ L[0]

d .
If our fd is non-renormalizable and has both fixed point repelling (so, c is not a

parabolic point on ∂∆◦), then by Proposition 32.9 (i), the lamination L[0]
d coincides

with the whole combinatorial lamination Ld and the latter is maximal among clean
laminations (since polygonal), implying the desired result:

(43.3) Lc = L◦ ∗ L[0]
d .

Assume fd is exactly once renormalizable, maybe in the degenerate sense (so c
can be a parabolic point on ∂∆◦). This renormalization corresponds to some little
copy M [1] ⊂ M◦ containing c which is centered at some superatracting parameter
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Figure 43.2. Composition of two tunings.

c1. Let χ[1] : M1 → M be the straightening of this copy (see Figure 43.2). Then
c = c1 ∗e for e = χ[1](c). Applying (43.3) to this situation (replacing c◦ with c1 and

d with e ), we conclude that Lc coincides with the lamination L1 ∗L[0]
e , where L1 is

the lamination for fc1 while L[0]
e is the combinatorial lamination for fe. Moreover,

L1 = L◦ ∗ Ld1 , where d1 = χ0(c1) is the center of the little copy M1 := χ◦(M
[1]).

Hence
Lc = (L◦ ∗ Ld1) ∗ L[0]

e = L◦ ∗ (Ld1 ∗ L[0]
e ) = L◦ ∗ L[0]

d ,

where the last equality follows from the above discussion applied to the straighten-
ing

χ1 = χ[1] ◦ χ−1
◦

: (M [1], d1, d)→ (M, 0, e).

If fd is twice renormalizable, we proceed inductively.
In this way, we prove the assertion for all periodically repelling maps fb which

are at most finitely renormalizable. In the infinitely renomalizable case, we conclude
that

Lc ≻ L◦ ∗ L1 ∗ L2 ∗ . . .
But the latter is the lamination corresponding to the whole puzze Y. By Theo-
rem 32.9, it coincides with the combinatorial lamination Lc. Applying this result
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to the lamination L1 ∗ L2 ∗ . . . , we conclude that it coincides with Ld, concluding
the proof. ⊔⊓

Corollary 43.13. Under the above circumstances, for any (pre-)periodic point
z ∈ K(g), except the β−fixed point (for g) and its iterated preimages, the number
of accesses to z from CrK(g) and from CrK(fc) is the same.

To formulate a parameter counterpart of this statement (and of Lemma 28.36).
let us introduce a dyadic wake of a little copy M as the prepreriodic wake of M
rooted at a dyadic tip of M . The most prominent one is the Chebyshev wake rooted
at the Chebyshev point of M . The number of such wakes at each dyadic tip is equal
to q− 1, where p/q is the rotation number of the parabolic cycle at the root of M .

Exercise 43.14. (i) Any little copy M is obtained fromM by chopping off the
body sector attached at the root r of M , together with all the dyadic wakes of M .

(ii) For ant other parabolic or Misiurewicz point z ∈M , the number of accesses to
z from CrM and from CrM is the same (in a natural way).

Let us now relate different combinatorial notions in the infinitely renormalizable
case:

Corollary 43.15. Two infinitely renormalizable quadratic polynomials are
combinatorially equivalent if and only if they have the same renormalization com-
binatorics.

Proof. As we know from Proposition 25.61, the Hubbard tree Tf of a hyper-
bolic map f determines the lamination Lf (which can be thus denoted LT ), and
the other way around. Hence the renormlization combinatorics τ̄ = (T◦, T1, T2, . . . )
of an infinitely renormalizable map f determines its combinatorial laminatoin Lf =
LT◦ ∗ LT1 ∗ LT2 . . . , and the other way around. �

Remark 43.16. As written, this corollary looks like a purely combinatorial re-
lation between laminations and combinatorial Hubbard trees. And indeed, it could
be viewed as such. However, the Thurston theory guarantees that any admissible
Hubbard tree is realized by a unique superttracting parameter (see also Rigidity
Theorem 35.1 for the uniqueness part). Then the Douady-Hubbard theory of lit-
tle copies guarantees that any renormalization combinatorics τ̄ is realized by some
infinitely renormalizable map.

43.5. Renormalization structure of M.
43.5.1. Complex case. It is tautological to say thatM is decomposed into sub-

sets of renormalizable and non-renormalizable parameters. It becomes much less so
if we are able to describe the structure of these two subsets. Already at this stage,
we posses quite a deep information:

Theorem 43.17. The Mandelbrot set M admits the following decomposition:

(43.4) M = ∆0 ∪ N0 ∪
⋃
Mp/q ∪

⋃
MT ∪Y0,

where

• ∆0 is the main hyperbolic component of intM bounded by

• the main cardioid N0;
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• Mp/q is the satellite M -copy attached to the main cardioid at the parabolic points
with rotation numbers p/q ∈ (Q/Z)∗ (corresponding to the immediate renormaliza-
tion with this rotation number);

• MT is the maximal primitive M -copy corresponding to a prime Hubbard tree T ;

• Y0 is the set of non-renormalizable parameters with both fixed points repelling.

This decomposition is disjoint except for the bifurcation points rp/q ∈ N0 on
the main cardioid where the corresponding satellite M -copies are attached.

Proof. Tautologically, we have the following decomposition:

M = ∆0 ⊔ N0 ⊔ {immediately renormalizable parameters}

(43.5) ⊔{non− immediately renormalizable parameters} ⊔Y0

Theorem 43.1 implies that the set of immediately renormalizable parameters
is decomposed into the disjoint union of unrooted satellite copies M∗p/q (whose
closures are the satellite copies

Mp/q = clM∗p/q =M∗q/p ∪ {rp/q},

obtained by adding the corresponding roots.)
Theorem 31.17 asserts that non-immediately renormalizable parameters are

primitively renormalizable. Theorem 43.1 implies that the set of such parameters
is decomposed into the disjoint union of the maximal primitive M -copies according
to the combinatorics of the first renormalization, which is encoded by a prime
Hubbard tree.

Altogether, this provides us with the desired decomposition. �

Applying this decomposition to the M -copies themselves, we obtain a decom-
position of M according to the second renormalization type, etc. At the limit, we
obtain the following decomposition according to the infinite renormalization type:

Corollary 43.18. The Mandelbrot setM admits the following decomposition:

M = H ⊔N ⊔Y ⊔ I,

where

• H is the set of all hyperbolic parameters (i.e., the union of all hyperbolic compo-
nents of intM);

• N is the set of all neutral parameters (i.e., the union of the boundaries of all
hyperbolic components);

• Y is the set of all Yoccoz parameters (i.e., periodically repelling at most finitely
renormalizable parameters);

• I is set of infinitely renormalizable parameters: each of these parameters belongs
to an infinite nest of little M -copies.

Remark 43.19. Except for the last assertion, this decomposition is actually
tautological.
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43.5.2. Real case. Taking the real slice of the above decomposition, we obtain:

Theorem 43.20. The real Mandelbrot set MR admits the following decompo-
sition:

MR = {ccaul} ∪∆R
0 ∪ {cMyr} ∪

⋃
MR

doub ∪
⋃
MR

Kn ∪YR
0 ,

where

• ccaul = 1/4 is the cauliflower parameter;

• ∆R
0 = (−3/4, 1/4) is the main hyperbolic window of MR;

• cMyr = −3/4 is the Myrberg doubling bifurcation parameter;

• MR
doub = [ct ,−3/4] is the (closed) doubling renormalization window, where ct is

its tip (solving the equation f2c (c) = −fc(c));
• MR

Kn is the maximal primitive renormalization interval corresponding to a prime
superattracting kneading sequence Kn.

• YR
0 is the set of real non-renormalizable parameters with both fixed points repelling.

This decomposition is disjoint except that the Myrberg parameter cMyr belongs
to the closed doubling renormalization interval MR

doub.

Several remarks are due:

– We single out the doubling renormalization as it is the only real satellite renor-
malization type (for the first renormalization).

– We single out the Myrberg doubling bifurcation parameter since it is the only
parameter which is almost renormalizable, but not renormalizable (according to
our definitions).

– The definitions are designed so that the renormalization intervals are closed, even
in the doubling case.

The real slice of Corollary 43.18 assumes the following form:

Corollary 43.21. The real Mandelbrot set MR admits the following decom-
position:

MR = HR ⊔NR
sn ⊔NR

Myr ⊔YR ⊔ IR,

where

• HR is the set of all real hyperbolic parameters (i.e., the union of all hyperbolic
windows of MR);

• NR
sn is the set of all saddle-node parameters (where the saddle-node bifurcation

occur);

• NR
Myr is the set of all Myrberg parameters (where the doubling bifurcations occur);

• YR is the set of all real Yoccoz parameters (i.e., real periodically repelling at most
finitely renormalizable parameters);

• IR is set of all real infinitely renormalizable parameters: each of these parameters
belongs to an infinite nest of renormalization intervals.



44. COMPLEX A PRIORI BOUNDS: FIRST RESULTS 569

43.5.3. Preperiodic-superattracting bifurcation. Let us first consider the Cheby-
shev map f◦ = f−2. Since the interval I+ := [0, 2] is mapped homeomorphically
onto the whole interval I = [−2, 2], we obtain a backward orbit of 0,

· · · 7→ x−2 7→ x−1 7→ 0, x−n ∈ (0, 2),

converging to the fixed point β = 2. Moreover, these points robust under pertur-
bation: for c near 2, we have the corresponding backward orbit

· · · 7→ x−2(c) 7→ x−1(c) 7→ 0

depending holomorphically on c. Solving equation c2 + c = x−n(c), we obtain a
sequence of superattracting parameters cn (of period n+2) converging to c◦ = −2
at rate 4−n.

Lemma 43.22. The above superattracting parameters cn are the centers of little
M -copies Mn of size ≍ 16−n. Moreover, the characteristic rays R±n through the
roots rn of Mn converge to the ray (−∞,−2].

More generally, we have:

Lemma 43.23. Let c◦ be a preperiodic parameter with multiplier ρ. Then there
is a sequence cn of superattracting parameters converging to c◦ at rate ≍ ρ−n which
are the centers of little M -copies Mn of size ≍ ρ−2n. Moreover, the characteris-
tic rays R±n through the roots rn of Mn converge (subsequentially) to the valuable
parameter rays Rηipar landing at c◦ (described in Theorem 37.35).

Corollary 43.24. Any preperiodic parameter c◦ is well branched with Rpar
ηi

being the only rays landing at c◦.

Notes. The Straightening Theorem for ql families, justifying existence of little
M -copies, is one of the most fundamental results in Holomorphic Dynamics. It was
proven by Douady and Hubbard in the mid 1990s [DH3].

The higher degree case was studied in [IK]. No miracles of continuity occur in
this case, see [DH3, I]. In the anti-holomorphic world, the continuity breaks down
even in the unimodal case, see [IMu]. The corresponding image (the bifurcation
locus for the family z̄2 + c) is known under the name of Tricorn: see Figure 43.3
[M7, HSc2].

The idea of tuning was articulated in [D2].

44. Complex a priori bounds: first results

In the renormalization contexts that we discuss complex a priori bounds usually
mean lower bounds on the moduli of certain annuli that control the geometry of
the Julia sets. In this section we will consider two quite different situations when
such bounds are valid: for Yoccoz maps (Theorem 44.9) and for real Feigenbaum
maps (Theorem 44.11).

44.1. Principal moduli. Let us introduce the principal moduli:

µn := modAn ≡ mod(V n−1 r V n)

Below we will give a priori bounds on the µn that will provide us with a strong
geometric control of the whole puzzle. In particular, they control the distortion of
the generalized renormalizations. To this end, we will introduce asymmetric moduli
and prove that they do not decrease under the generalized renormalization. The
precise formulation (Theorem 44.9) is given at the end of the section.
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Figure 43.3. Tricorn.

44.2. Fibonacci case. Let us first consider the Fibonacci case which is com-
binatorially easy but already reveals the main geometric idea. So, we assume that
the generalized renormalizations have a form (see Figure 31.8.1):

gn : V n0 ∪ V n1 → V n−1, gn(0) ∈ V n1 , g2n(0) ∈ V n0 .
Let Sn−1 := V n−1 r (V n0 ∪ V n1 ), and let

mod[∂V n0 ] := supmodRn0 , mod[∂V n1 ] := supmodRn1 ,

where the sup are taken over all annuli Rn0 ⊂ Sn−1 and Rn1 ⊂ Sn−1 homotopic
to ∂V n0 and ∂V n1 respectively (compare §6.7). Then the asymmetric modulus is
defined as

σn := mod[∂V n0 ] +
1

2
mod[∂V n1 ].

Proposition 44.1. The asymmetric moduli do not decrease under the gener-
alized renormalization: σn+1 ≥ σn.

Proof. Let us take an annulus Rn0 as above and lift it to an annulus Rn+1
1 ⊂ Sn

homotopic to ∂V n+1
1 , so that gn : Rn+1

1 → Rn0 is a conformal isomorphism. Then

mod[∂V n+1
1 ] ≥ modRn+1

1 = modRn0 .

Similarly:

– lifting an annulus Rn1 ⊂ Sn−1 homotopic to ∂V n1 we obtain an annulus Rn+1
0 ⊂ Sn

homotopic to ∂V n+1
0 that double covers Rn1 ,

– lifting the annulus V n1 r gn(V
n+1
0 ), we obtain a disjoint annulus Tn+1

0 ⊂ Sn in
the same homotopy class that double covers V n1 r gn(V

n+1
0 ).

By the Grötzsch Inequality,

mod[∂V n+1
0 ] ≥ modRn+1

0 +modTn+1
0 =

1

2
(modRn1 +mod(V n1 r gn(V

n+1
0 ))

(44.1) =
1

2
(modRn1 + µn) ≥

1

2
(modRn1 +modRn0 )
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where the bottom line equality holds since gn conformally maps V n1 r gn(V
n+1
0 )

onto An. Taking the asymmetric combination of the above moduli, we obtain

(44.2) mod[∂V n+1
0 ] +

1

2
mod[∂V n+1

1 ] ≥ modRn0 +
1

2
modRn1 .

Taking the supremum over all annuli Rn0 , Rn1 in question, we obtain the desired
estimate. �

Corollary 44.2. If f has the Fibonacci combinatorics on all principal levels,
then on all these levels we have: µn ≥ 1

4µ1.

Proof. To pass from the asymmetric to the principal moduli, use (44.1):

µn+1 ≥ mod[∂V n+1
0 ] ≥ 1

2
(modRn1 +modRn0 ) ≥

1

2
σn ≥

1

2
σ2 (n ≥ 2).

But σ2 ≥ 1
2µ1, implying µn ≥ 1

4µ1 for n ≥ 3. Finally, note that (44.1) also yields
µn+1 ≥ 1

2µn, so µ2 ≥ 1
2µ1. �

44.3. General case: first estimates. Let Ln be the first landing map to
V n. By (31.14), for each V ni we have a decomposition:

(44.3) gn|V ni = Ln−1 ◦ f |V ni ,
where Ln−1 conformally maps f(V ni ) onto V n−1.

Lemma 31.14, Exercise 6.13(i), and the Koebe Distortion Theorem imply:

Lemma 44.3. If µn−1 ≥ µ the distortion of all branches Ln−1| f(V ni ) are
bounded by C(µ) exp(−µn−1)).

Let us fix a level n > 0, denote V n−1 = ∆, Vi = V ni , g = gn, A = An = ∆rV0,
µ = µn, and mark the objects of the next level n+1 with prime. Thus ∆′ ≡ V ≡ V0,
and g′ : ∪V ′i → ∆′. (We restore the index n whenever we need it).

Lemma 44.4. Let D′ ⊂ ∆′ be a puzzle piece such that gkD′ ⊂ Vi(k), k = 1, . . . , l,

with i(k) 6= 0 for 0 < k < l, while gl+1(D′) = ∆′. Then

mod(∆′ rD′) ≥ 1

2

l+1∑

k=1

mod(∆r Vi(k)).

Proof. Let us consider the following nest of topological disks:

∆′ ≡W1 ⊃ . . . ⊃Wl+1 ⊃Wl+2 = D′,

where Wk+1 is defined inductively as the pullback of Vi(k) under gk : Wk → ∆,
k = 1, . . . l (compare with the Telescope from §3.6). Since deg(gk :Wk → ∆) ≤ 2,

mod(Wk rWk+1) ≥
1

2
mod(∆r Vi(k)), 1 ≤ k ≤ l.

But by the Grötzsch inequality

mod(∆′ rD′) ≥
l+1∑

k=1

mod(Wk rWk+1),

and the desired estimate follows. �
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Figure 44.1. Annulus Ri.

Corollary 44.5. Given a puzzle piece V ′j , we have

mod(∆′ r V ′j ) ≥
1

2
µ.

Moreover, if the return to level n is non-central, that is g(0) ∈ Vi with i 6= 0, then

mod(∆′ r V ′j ) ≥
1

2
(µ+mod(∆r Vi)).

So, a definite principal modulus on some level produces a definite space around
all the puzzle pieces of the next level.

44.4. Isles and asymmetric moduli. Let Vn stand for the family of all
pieces V ni of level n. Let {Vi}i∈I ⊂ Vn be a finite family of disjoint puzzle pieces
consisting of at least two pieces (that is |I| ≥ 2) and containing a critical puzzle
piece V0. Let us call such a family admissible. We will freely identify the label set
I with the family itself.

Given a puzzle pieceD, let I|D denote the family of puzzle pieces of I contained
in D. Let D be a puzzle piece containing at least two pieces of family I. For Vi ⊂ D
let

Ri ≡ Ri(I|D) ⊂ D r
⋃

j∈I|D
Vj

be an annulus of maximal modulus enclosing Vi but not enclosing other pieces of
the family I. Such an annulus exists by Theorem 6.38 (see Figure 44.1). We will
briefly call it the maximal annulus enclosing Vi in D (rel the family I).

Let us define the asymmetric modulus of the family I in D as

σ(I|D) =
∑

i∈I

1

21−δi0
modRi(I|D),

where δji is the Kronecker symbol. So the critical modulus is supplied with weight 1,
while the off-critical moduli are supplied with weights 1/2 (if D is off-critical then
all the weights are actually 1/2).

For D = V n−1, let σn(I) ≡ σ(I|V n−1). The asymmetric modulus of level n is
defined as follows:

σn = min
I
σn(I),
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where I runs over all admissible subfamilies of Vn.
The principal moduli µn and the asymmetric moduli σn are the main geometric

parameters of the renormalized maps gn. Again, in what follows the label n will be
suppressed as long as the level is not changed.

Let {V ′i }i∈I′ be an admissible subfamily of V ′. Let us organize the pieces of
this family in isles in the following way. A puzzle piece D′ ⊂ ∆′ is called an island
(for family I ′) if

• D′ contains at least two puzzle pieces of family I ′;
• There is a t ≥ 1 such that gkD′ ⊂ Vi(k), k = 1, . . . t − 1, with i(k) 6= 0, while
gtD = ∆.

Given an island D′, let φD′ = gt : D′ → ∆. This map is either a double
covering or a biholomorphic isomorphism depending on whether D′ is critical or
not. In the former case, D′ ⊃ V ′0 (for otherwise D′ ⊂ V ′0 contradicting the first part
of the definition of isles).

We call a puzzle piece V ′j ⊂ D′ φD′-precritical if φD′(V ′j ) = V0. There are at
most two precritical pieces in any D′. If there are actually two of them, then they
are off-critical and symmetric with respect to the critical point 0. In this case D′

must also contain the critical puzzle piece V ′0 .
Let D′ = D(I ′) be the family of isles associated with I ′. Let us consider the

asymmetric moduli σ(I ′|D′) as a functional on this family. This functional is clearly
monotone:

(44.4) σ(I ′|D′) ≥ σ(I ′|D′1) if D′ ⊃ D′1,
and superadditive:

σ(I ′|D′) ≥ σ(I ′|D′1) + σ(I ′|D′2),
provided the D′i are disjoint sub-isles in D′.

Let us call an island D′ innermost if it does not contain any other isles of the
family D(I ′). As this family is finite, innermost isles exist.

44.5. Non-decreasing of the asymmetric moduli.

Lemma 44.6. Let I ′ be an admissible family of puzzle pieces. Let D′ be an
innermost island associated to the family I ′, and let J ′ = I ′|D. For j ∈ J ′, let us
define i(j) by the property φD′(V ′j ) ⊂ Vi(j), and let I = {i(j) : j ∈ J ′}∪ {0}. Then
{Vi}i∈I is an admissible family of puzzle pieces, and

(44.5) σ(I ′|D′) ≥ 1

2


(|J ′| − s)µ+ s modR0 +

∑

j∈J ′, i(j) 6=0

modRi(j)


 ,

where s = #{j : i(j) = 0} is the number of φD′-precritical pieces, and Ri are the
maximal annuli enclosing Vi in ∆ rel I.

Proof. Let φ ≡ φD′ . Let us show first that the family I is admissible. This
family is finite since J ′ ⊂ I ′ is finite. The critical puzzle piece belongs to I by
definition. So the only property to check is that |I| ≥ 2. But otherwise J ′ would
consist of two precritical puzzle pieces. But then D′ would be critical, and thus
should have also contained the critical piece V ′0 , which is a contradiction.

Let us observe next that

(44.6) mod(Vi(j) r φ(V ′j )) ≥ µ if i(j) 6= 0.
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Indeed, in this case gm(φ(V ′j )) = V0 for some m > 0. Let W ⊂ Vi(j) be the pull-
back of ∆ under gm. Then the annulus W r φ(V ′j ) is univalently mapped by gm

onto the annulus ∆r V0. Hence mod(W r φ(V ′j )) = mod(∆r V0) = µ, and (44.6)
follows.

Given an i ∈ I, let us consider a topological disk Qi = Ri ∪ Vi ⊂ ∆ (the “filled
annulus Ri"). By the Grötzsch inequality and (44.6),

(44.7) mod(Qi(j) r φ(V ′j )) ≥ modRi(j) + (1− δ0,i(j))µ.

For j ∈ J ′, let us consider an annulus B′j ⊂ D′, the component of φ−1(Ri(j))
enclosing V ′j . This annulus does not enclose any other pieces V ′k ∈ J ′, k 6= j.
Indeed, otherwise the inner component of C r B′j would be an island contained in
D′, despite the assumption that D′ is innermost.

Let us now consider a topological disk P ′j obtained by filling the annulus B′j .
Then

(44.8) modR′j ≥ mod(P ′j r V ′j ),

where R′j ⊂ D′ is the maximal annulus enclosing V ′j rel J ′. Moreover φ : P ′j → Qi(j)
is univalent or double covering depending on whether j 6= 0 or j = 0. Hence

(44.9) mod(P ′j r V ′j ) ≥
1

2δj0
mod(Qi(j) r φ(V ′j )).

Inequalities (44.7)-(44.9) yield

(44.10) modR′j ≥
1

2δj0
(modRi(j) + (1− δ0,i(j))µ).

Summing up estimates (44.10) over J ′ with weights 1/21−δj0 , we obtain the desired
inequality. �

Corollary 44.7. For any island D′ of the family D′ the following estimates
hold:

σ(I ′|D′) ≥ 1

2
µ and σ(I ′|D′) ≥ σ(I) ≥ σ.

Hence σ′ ≥ σ.

Proof. By monotonicity (44.4), it is enough to check the case of an innermost
island D′. Let us use the notations of the previous lemma. Since the family I is
admissible, it contains an off-critical piece. Hence |J ′| is always strictly greater
than the number s of precritical pieces in D′, and (44.5) implies the first of the
above inequality.

Furthermore, as µ ≥ mod(R0) and |J ′| ≥ 2, the right-hand side in (44.5) is
bounded from below by

1

2


|J ′| modR0 +

∑

i∈I,i6=0

modRi


 ≥ σ(I).

(Note that σ(I) makes sense since I is admissible). Finally σ(I) ≥ σ, and the
second inequality follows.

Taking the infimum over all admissible families, we obtain the last conclusion.
�
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Corollary 44.8. If the return under consideration is non-central (i.e., g(0) ∈
Vi with i 6= 0) then

µ′ ≥ modR′0 ≥
1

2
σ.

Proof. Estimate (44.10) for j = 0 gives

modR′0 ≥
1

2
(µ+modRi) ≥

1

2
σ.

�

Let (mk) be the sequence of non-central levels of the Principal Nest. Let us
define a function d(n) as follows: d(1) = 0, while for n ≥ 2, let

d(n) = n− 2−max{mk : mk ≤ n− 2} ∈ Z+.

Thus, d(n) = 0 iff the level n − 2 is non-central; otherwise, d(n) measures the
distance from n− 2 to the closest preceding non-central level.

Theorem 44.9. Let g :
⋃
V 1
i → V 0 be a generalized quadratic-like map with

µ1 ≡ mod(V 0 r V 1) ≥ ν > 0.

Then:

(i) The asymmetric moduli σn grow monotonically and hence stay away from 0 on
all levels: σn ≥ σ > 0.

(ii) The principal moduli µn are bounded from below by µ 2−d(n), with µ depending
only on ν. In particular, µn ≥ µ if the level n − 2 is non-central (i.e., when
d(n) = 0).

(iii) The distortion of all branches of the first landing maps

Ln :
⊔

i

Qni → V n

are bounded on all levels by some K(ν). In particular, the distortion of the diffeo-
morphisms Ln−1 from (31.14) on f(V ni ) are bounded by K(ν).

Proof. The first assertion follows from Corollary 44.7. Together with Corol-
lary 44.8 it implies the second one. Together with Lemma 31.20 and the Koebe
Distortion Theorem, it implies the last one. �

Corollary 44.10. Let f be a non-renormalizable quadratic polynomial with
both fixed points repelling. If all the levels of the Principal Nest are non-central,
then all the principal moduli stay away from zero: µn ≥ µ > 0 (with µ depending
only on the lower bound ν > 0 on the first principal modulus).

44.6. Complex bounds for real Feigenbaum maps.

44.6.1. Complex bounds for infinitely renormalizable maps. Let us now intro-
duce a most desired geometric quality of infinitely renormalizable maps; if satisfied
it gives a great control of the geometry of its Julia set, as well as the geometry of
the Mandelbrot set near the corresponding parameter value.

Let f be an infinitely renormalizable ql germ, and let Rnf , n = 0, 1, 2, . . . , be
all its renormalizations Let us say that f has (complex) a priori bounds if there is
an µ > 0 and a choice of ql representatives Rnf : U [n] → V [n] such that

mod(V [n] r U [n]) ≥ µ for all n ∈ N.
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We will now provide a supply of maps that possess complex a priori bounds.
Note that a real polynomial fc means that c is real; the map itself can still be
viewed on the complex plane. (A similar convention applies to more general “real”
maps.)

Theorem 44.11. Complex a priori bounds are valid for any real Feigenbaum
polynomial.

First, let us do some geometric preparation.

44.6.2. Towers of Epstein class. Let g ≡ g0 : U → V be a ql map (per-
haps, degenerate) of class Q′. Assume it is anti-renormalizable, so it is the pre-
renormalization g = Rg−1 of a map g−1 : U [−1] → V [−1] of class Q′. (So, if
the renormalization period is p−1 then g = g

p−1

−1 |U [−1].) In turn, if g−1 is anti-
renormalizable then we have an anti-renormalization g−2 : U [−2] → V [−2] defined
on a bigger domain; so g−1 = Rg−2 = g

p−2

−2 |U [−1]. Proceeding this way as long as
possible, we obtain a nest of anti-renormalizations

gn : U [n] → V [n], gn = Rgn−1 = g
pn−1

n−1 |U [n], n ∈ −N,

called a McMullen (ql) tower (it can be finite or infinite.) Topology on the space of
towers is defined naturally (note that an infinite tower can be obrained as a limit
of a sequence of finite towers of growing size).

We say that a McMullen tower

(gn : U [n] → V [n]), n ∈ −N

has a bounded combinatorics if the renormalization periods pn are bounded by some
p̄. It has a priori bounds if mod(V n r Un) ≥ µ > 0 on all levels n ∈ −N. We let
TQ(p̄, µ) be the space of towers (finite or infinite) combinatorics bounded by p̄ and
geometry bounded by µ.

Towers of Epstein class, as well as their combinatorial and geometric bounds,
are defined naturally (where a gemetric bound ν means that gn ∈ E(µ)). We let
TE(p̄, ν) be space of towers of Epstein class (finite or infinite) with the corresponding
bounds.

Lemma 44.12. For any p̄ and ν > 0, the space TE(p̄, ν) of towers (gn) of Epstein
class with the corresponding combinatorial and geometric bounds is compact.

Proof. It follows from compactness of E(ν) by means of the diagonal proce-
dure. �

44.6.3. Domain of analyticity for a tower of Epstein class. The map gp is nat-
urally defined on the disk Ω−1 := g−p(V ′) ⊃ U ≡ Ω0, providing us with an analytic
extension of f to a bigger domain.

If the map f is n times anti-renormalizable (not necessarily with the same com-
binatorics), we can repeat this procedure, obtaining an increasing nest of domain

Ω0 ⊂ Ω−1 ⊂ · · · ⊂ Ω−n

to which f is consecutively analytically extended. If f is infinitely anti-renormalizable,
then f ultimately extends to the domain Ω−∞ :=

⋃
Ω−n.
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Proposition 44.13. Let (g−n)∞n=0 be a McMullen tower with a bounded com-
binatorics and a priori bounds, f ≡ g0. Then:

(i) The domain Ω−∞ contains the real line.

(ii) f : Ω−∞ → V is a branched covering of infinite degree onto its image.

(iii) The slits [±b,±∞) of CL lift to proper curves Γ± ⊂ ∂Ω−∞ intersecting the
real line only at points ±a∂H.

44.6.4. Proof of Complex Beau Bounds. We are ready to prove that any tower
(gn)

−∞
n=0 of Epstein class TE(p̄, ν) restricts to a McMullen ql tower of class TQ(p̄, µ)

with µ depending only on ν. The idea is that in a small wedge around R, real
a priori bounds control the pullbacks by the tower maps, while outside this wedge
the pullbacks are decomposed into big scales Lipschitz maps (Lemma 7.3) followed
by the square root map. This yields a strong contraction in big scales.

Lemma 44.14. Let g : (U, I)→ (C(L), I) be a map of Epstein class E(ν), where
g : I → I is a proper unimodal map. Let us select an intemediate interval Iρ so
that

(1 + ε) |I| < |Iρ| < 2 |I| and modR(L : Iρ) ≥ ε > 0,

where ε depends only on ν. Then there exist λ ∈ (0, 1) and θ ∈ (0, π/2) depending
only on ε such that

(44.11) g−1(Dρ) ⊂ Dρ/λ ∪ (Dλρ rWθ).

Proof. Let us represent g as ψ ◦ f0, where f0(z) = z2 and ψ is the inverse to
a univalent embedding φ : CL → CL. Let

∆ := g−1(Dρ), W := φ(Dρ) = f0(∆).

By the Symmetric Schwarz Lemma, W is contained in the round disk D(J) based
upon the interval J = φ(Iρ).

Furthermore, by the Koebe Distortion Theorem, φ has a bounded distortion
on Iρ. Since the critical value v = g(0) is contained in I ⋐ Iρ, it divides Iρ into
comparable parts (with the constant depending on ε only). Hence φ(v) = f0(0) = 0
divides J into comparable parts as well.

It follows that the domain f−10 (D(J)) is an oval with bounded geometry based
upon the interval (g |R)−1(Iρ) ⋐ Iρ. Moreover, since the boundary of ∂I is repul-
sive and the Epstein class E(ν) is compact, there is a definite space in Iρ around
(g |R)−1(Iρ). Altogether, these imply that f−10 (D(J)) is contained in a domain
specified in the right-hand side of (44.11).

As g−1(Dρ) = f−10 (W ) ⊂ f−10 (D(J)), the conclusion follows. �

Lemma 44.15. For any ν > 0 there exist ρ > 0 and µ > 0 with the following
property. For any infinite tower (gn)

−∞
n=0 of Epstein class TE(p̄, ν), the base map

g ≡ g0(U, I)→ (C(L), I) admits a ql restriction with range Dρ(L) and mod g ≥ µ.
Proof. Let us normalize the tower so that I = I. Select a high level n < 0

(to be specified below), and consider the corresponding tower map

gn : (U [n], H [n])→ (C(L[n]), L[n]),

where H [n] is the real slice of U [n] and gn : H [n] → L[n] is a proper unimodal map.
Moreover, according to the real a priori bounds, the nest of intervals

(44.12) I [n] ⋐ H [n]
⋐ L[n]
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is a configuration with a definite space in between two cosecutive intervals. Hence
we can select |I [n]| < ρ < |L[n]| so that the nest I [n] ⋐ Iρ ⋐ L[n] has the same
property and the interval Iρ is comparable with I [n] (with all constants depending
only on ν).

Let Ω[n] := g−1n (Dρ), so the map gn : Ω[n] → Dρ is a double branched covering
. Let Wθ stand for the union of two R-symmetric wedges of size 2θ:

Wθ = {z : | arg z| < θ or | arg z − π| < θ}.
Let ρ := |L[n]|. By Lemma 44.14, there exist λ ∈ (0, 1) and θ ∈ (0, π/2) depending
only on the geometry of the nest (44.12) such that

(44.13) Ω[n] ⊂ Dρ/λ ∪ (Dλρ rWθ).

To simplify notation, let V := Dρ and let W := g−1(V ). The map g : W → V
is a double branched covering. We claim that W ⋐ V (provided n is sufficiently
big), which makes this map quadratic-like. First, let us show that for n sufficiently
big, we have:

(44.14) W ⊂ Dρ/λ.

So, taking any point z ∈ V and letting g−1(z) = {±w}, we need to check that |w| <
ρ/λ. Otherwise, let us coinsider the orbit (wk ≡ gkn(w))pk=0, where gpn = g, and take
the last moment k ∈ [0, p − 1] within it for which wk 6∈ Dρ/λ. Then wk+1 ∈ Dρ
(even wk=1 ∈ Dρ/λ unless k = p− 1), and (44.13) implies that wk ∈ Dλρ rWθ.

Let us now represent gkn as ψ ◦ f0, where f0(z) = z2, ψ is univalent, and
ψ−1 : C(L[n]) → C(L[n]) is a map of class U. By the Lipschitz control of ψ−1

(Lemma 7.3), we have:
|ψ−1(wk)| ≤ C|wk| ≤ Cρ,

with some constant C > 0 depending only on θ. Applying the square root map
f−10 , we concude that for ρ sufficiently big, |w| < √Cρ < ρ/λ, as was desired.

We see that W is compactly contained in Dρ. Let us show that ∂W does not
touch the slits Lc either. Otherwise ∂W would contain an R−symmetric open arc
Γ in C r Lc whose both ends land at some point a ∈ Lc. Since Γ is in the domain
of g, it is in the domain in any gn, n ≤ 0 of the tower. But for n sufficiently big,
the point a is also in the domain of gn. Hence the closed arc Γ̂ := Γ∪ {a} is in the
domain of gn. Since Dom gn is simply connected, the whole Jordan disk D boundsd
by Γ̂ is inteh domain of gn. In this way we a holomorphic function on a domain D
whose boundary is mapped to R, which is impossible for an open map. �

45. Geometry of Julia sets

In this section, we will exlore further the problem of local connectivity of Julia
sets:

JLC Problem. Give a combinatorial criterion for local connectivity of the
Julia set J (fc) of a quadratic polynomial.

Above, we have already seen several “tame” (local connected) creatures (hy-
perbolic, parabolic, and postcritically non-recurrent maps), as well some “wild”
(non-local connected) creatures (Cremer maps). In this section we will enrich the
tame zoo with Yoccoz and real Feigenbaum maps. On the other hand, the wild zoo
will be enlarged with some infinitely renormalizable maps of unbounded satellite
type.
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We will also show that the Julia sets of Yoccoz maps all have zero area.

45.1. Statements. Let us say that a quadratic polynomial f with connected
Julia set belongs to the Yoccoz class Y if it is periodically repelling and at most
finitely renormalizable.

Theorem 45.1. For any quadratic polynomial f of Yoccoz class, the Julia set
J (f) is locally connected.

We let Y[0] be the class of non-renormalizable quadratic polynomials fc with
both fixed points repelling. Note that if fc has a non-repelling cycle of period p > 1
then it is renormalizable since c belongs to a renormalization window of period p
(see §37.11) or is the root of a primitive hyperbolic component. Hence Y[0] ⊂ Y.

We let Y[n] be the class of quadratic polynomials which are exactly n times
renormalizable with both fixed points of the last renormalization Rnf repelling (in
other words, Rnf straightens to a polynomial of class Y[0]). For the same reason
as above, Y[n] ⊂ Y, and by definitions,

Y =

∞⋃

n=0

Y[n].

Here is the main particular case of the above theorem:

Corollary 45.2. For f ∈ Y[0], the Julia set J (f) is locally connected.

We will complement the above result with the measure-theoretic one:

Theorem 45.3. For any quadratic polynomial f of Yoccoz class,

areaJ (f) = 0.

In what follows, the proof is written for f ∈ Y[0]. The argument for f ∈ Y[n] is
the same except one should use the puzzle associated with the nth renormalization
level (introduced in §31.9).

We will proceed with a general discussion of the JLC probelm for infinitely
renormalizable maps, and will complete this section with the following result:

Theorem 45.4. The Julia set of a real Feigenbaum map is locally connected.

45.2. Shrinking of puzzle pieces. Corollary 45.2 follows from the following
result (due to Corollary 9.9):

Theorem 45.5. For f ∈ Y[0], we have:

maxi diamY
(n)
i → 0 as n→∞,

which is the complex counterpart of Theorem 31.25.

Exercise 45.6. Show that it is sufficient to prove that for any z ∈ J r ∂Y,

(45.1) diamY (n)(z)→ 0 as n→∞.
Recall from §9.1.3 that a point z ∈ J r∂Y satisfying (45.1) is called rigid, and

note that the set of rigid points is backward invariant. Let us start proving rigidity
with points whose orbits avoid some central puzzle piece:



580 6. STRAIGHTENING, PUZZLE, AND ATTRACTORS

Lemma 45.7. For any central puzzle piece Y (l) ≡ Y (l)
0 , the set

Q(l) := {z ∈ J : fnz 6∈ intY (l), n = 0, 1, 2, . . . }
is hyperbolic.

Remark 45.8. Compare this assertion with Proposition 30.33.

Proof. Let us consider all non-critical puzzle pieces Yi ≡ Y (l)
i , i 6= 0, of depth

l. They can be slightly thickened to open disks Di ⋑ Yi so that f is univalent on
each Di and

f(Yi) ⊃ Yj =⇒ f(Di) ⋑ Dj , i, j 6= 0

(compare §28.4.3). By the Schwarz Lemma, if z ∈ Yi and f(z) ∈ Yj then
‖Df(z)‖hyp ≥ λij > 1 where the norm is calculated from the hyperbolic metric
on Di to that on Dj .

Let λ := minλij > 1. Let us consider a point z ∈ Q such that

(45.2) fkz ∈ Yj(k), k = 0, 1, . . . , n,

for some j(k) 6= 0. Then ‖Dfn(z)‖hyp ≥ λn, where the norm is calculated from the
hyperbolic metric of Dj(0) to that of Dj(n). Since the hyperbolic metrics on the Di

restricted to Yi are comparable with the Euclidean ones (and there are only finitely
many of the Di), we obtain that

|Dfn(z)| ≥ aλn,
with some constant a > 0 independent of z, as asserted. �

Corollary 45.9. If fmz ∈ Q(l) r ∂Y for some l,m ∈ N, then z is rigid.

Here is another noteworthy consequence:

Corollary 45.10. Let L ≡ L(l) be the landing map to Y ≡ Y (l), and let Dn

be the set of points z whose first landing time is equal to n (so Lz = fnz). Then

areaDn ≤ Cρn, where ρ = ρ(l) < 1.

Let us now proceed with a proof of Theorem 45.5.

Case 0: fn0 = α for some n ∈ Z+. It is a Misiurewicz case covered in §27.1.5.

Otherwise the critical puzzle pieces Y (n) (whose interiors contain 0) are well
defined for all n ∈ N.

Case 1: f is combinatorially non-recurrent, i.e., there is a critical puzzle piece
Y (l) and m ∈ Z+ such that fk(0) 6∈ Y (l) for all k = m,m + 1, . . . . Then fm(0)
belongs to the hyperbolic set Q(l) from Lemma 45.7.10 By Corollary 45.9, 0 is rigid,
so the puzzle pieces Y (n) shrink to 0.

It follows that there is a puzzle piece Y (l′) ⊂ Y (l) that does not contain points
fk(0), k = 1, . . . ,m − 1, and hence does not contain any points of orb f(0). By
adjusting notation, we can let Y (l) be such a piece.

Furthermore, taking further preimages of 0, we conclude that any precritical
point z ∈ J is rigid.

Take now an arbitrary non-precritical point z ∈ J . If orb z does not enter some
critical puzzle piece Y (l), rigidity follows again from Corollary 45.9.

10Note that in the non-recurrent case, Lemma 45.7 follows from Corollary 27.23.
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Otherwise, orb z lands infinitely many times in the interior of any puzzle piece
Y (n). Let us consider the landing moments mk → ∞ of orb z in the interior of
some puzzle piece Y (n) ⋐ Y (l). The pieces Zk := Y n+mk(z) are the pullbacks of
Y (n) under these landing maps. Since the orbit of f(0) does not enter intY (l), the
inverse branches f−mk : Y (n) → Zk extend univalently to Y (l). By the Shrinking
Lemma, diamZk → 0 as k →∞, as desired.

Case 2 (main): f is combinatorially recurrent. In this case, the Principal nest
V 0 ⊃ V 1 ⊃ . . . is infinite. Let V∞ :=

⋂
V n.

Since f is non-renormalizable, there are infinitely many non-central levels nk
in the nest. By Theorem 44.9 (i), mod(V nk+1 r V nk+2) ≥ µ > 0. By the Gröztsch
Inequality, mod(V 0 r V∞) =∞, so V∞ is a single point. Hence diamV n → 0, so
the critical puzzle pieces Y (n) shrink. Thus, 0 is rigid, and so are all its iterated
preimages.

Let us now prove rigidity at any other point z ∈ J r ∂Y. If orb z does not
accumulate on 0 then z belongs to one of the hyperbolic sets Q(l), and the conclusion
follows from Corollary 45.9. Otherwise, orb z lands in all puzzle pieces V n. Let us
consider the corresponding branches of the first landing maps,

Ln = fmn :Wn → V n, Wn ∋ z, mn →∞.

By Theorem 44.9 (ii), they have a bounded distortion, which allows us to apply
the refined Shrinking Lemma (Exercise 21.35). It implies that the puzzle pieces
Wn shrink to z, completing the proof of Theorem 45.5. ⊔⊓

Given an ε > 0, let

Jε ≡ Jε(f) := {z ∈ J : fnz 6∈ Dε, n = 0, 1, . . . }.

It is a compact invariant subset of J (f).

Corollary 45.11. (i) For any map f of Yoccoz class, the sets Jε are hyper-
bolic.

(ii) areaJε(f) = 0.

(iii) Let Dn := {z : fkz 6∈ Dε, k = 0, . . . , n− 1}. Then

areaDn ≤ Cρn, where ρ = ρ(ε) < 1.

Proof. (i) Since the puzzle pieces Y (n) shrink to 0, any set Jε is contained in
some set Q(n), which is hyperbolic by Lemma 45.7.

(ii) The assertion follows from Exercise 25.24.
�

We let

(45.3) J0 ≡ J0(f) :=
⋃

ε>0

Jε.

By the above Corollary, areaJ0(f) = 0. Note that

J r J0 = {z ∈ J : cl(orb z) ∋ 0}.
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45.3. Persistent recurrence and minimality. Let P be a critical puzzle
piece. In §31.2.2 we introduced a notion of the first kid of P . More generally, a
kid of P is a critical puzzle piece Q which is a degree two pullback of P . In other
words, there is a double branched covering fm : Q→ P . All kids of P form a nest
Q1 ⊃ Q2 ⊃ . . . , where Qn is called the nth kid of P .

Let f be a map of Yoccoz class, and let Y be the puzzle for f corresponding to
the deepest renormalization level.

Since the puzzle pieces shrink, the combinatorial recurrence of the critical point
is equivalent to the topological recurrence, so we do not need to distinguish these
properties anymore.

A recurrent critical point is called reluctantly recurrent if there is a critical puz-
zle piece Y (l) with infinitely many kids. Otherwise f is called persistently recurrent.

Exercise 45.12. Show that f is reluctantly recurrent if and only if there is an
ε > 0 and a sequence of moment nk → ∞ such that fnk(0) ∈ Dε and the pullback
of Dε to 0 is univalent.

Recall from §23.3 the notion of a regular backward orbit

(45.4) ẑ = (z ≡ z0, z−1, z−2, . . . ) ∈ Ĉ.

A compact invariant set K is called completely irregular if all backward orbits
ẑ ∈ K̂ (i.e., ones staying in K) are irregular. Equivalently, no point z ∈ K has
a neighborhood U that can be univalently pulled back along some backward orbit
ẑ ∈ K̂.

Proposition 45.13. Let f be a recurrent map of Yoccoz class. A map is
persistently recurrent if and only if the dynamics on the postcritical set ω(0) is
completely irregular.

Proof. Assume f is reluctantly recurrent. Let Y (l) be a critical puzzle piece
with infinitely many kids Y (l+nk). Then the pullbacks of Y (l) along the orbits
(0m)nk

m=1 are univalent. Taking a limit of the corresponding backward orbits,
we obtain an infinite backward orbit ẑ ∈ ω̂(0) along which the pullback of Y (l) is
univalent, so it is regular.

Vice versa, assume there is a regular backward orbit ẑ ∈ ω̂(0) as (45.4). Then
there is a neighborhood U ∋ z that can be univalently pulled back along ẑ; let
U−k ∋ z−k, k = 0, 1, . . . , be this pullback. Since all puzzle pieces shrink, there
exists a piece Y (l)(z) ⊂ U , so we can assume that U = Y (l)(z) in the first place.

Let us consider some U−k, k ∈ N. Since z−k ∈ ω(0), there is a postcritical
point 0j ≡ f j(0) ∈ U−k. For the smallest j = jk like this, the pullback of U−k
along (0n)

j
n=0 is a double branched covering (Corollary 31.6 (ii)).

Let us now consider a postcritical point 0j+k ∈ U . Since 0 is recurrent, orb 0j+k
lands in the critical puzzle piece Y (l); let m ∈ N be the first landing moment. By
Corollary 31.6 (i)), the map fm : Y (l+m)(0j+k)→ Y (l) is univalent. Moreover,

Y (l+m)(0j+k) ⊂ Y (l)(0j+k) = Y (l)(z) ≡ U.
Hence the pullback of Y (l+m)(0j+k) along the orbit (0n)

j+k
n=0 is a double branched

covering, implying that Y (l+mj+k) is a kid of Y (l) .
Since k is arbitrary big, Y (l) has infinitely many kids, so f is reluctantly recur-

rent. �



45. GEOMETRY OF JULIA SETS 583

Corollary 45.14. If f is persistently recurrent then the dynamics on ω(0) is
minimal.

Proof. Otherwise, there is a critical puzzle piece Y ≡ Y (l) such that the first
landing times n(z) for points z ∈ ω(0) to intY are unbounded (see Exercise 19.5).
The pullbacks of Y along the corresponding backward orbits are univalent. Taking
a limit of these backward orbits, we obtain an infinite univalent pullback of Y along
ω(0). �

Let us finish with a fun exercise:

Exercise 45.15. If Y corresponds to the deepest renormalization level then any
critical puzzle piece has at least two kids.

45.4. Area of Julia sets. In this section, we will prove Theorem 45.3.
Let Y be the puzzle associated with the deepest renormalization of f (see §31.9).

Let us consider two cases.

Case (i): f is reluctantly recurrent , so there is a critical puzzle piece P with
infinitely many kids Qk. Let fmk : Qk → P be the corresponding branched double
coverings.

Since P is a quasidisk, for any point ζ ∈ J ∩ intP there a round disk D(ζ) ≡
Dr((ζ) ⊂ P centered at ζ such that

(45.5) r ≡ r(ζ) ≍ dist(D(ζ), ∂P ) ≍ dist(ζ,J ∩ ∂P ).
Since J ∩ ∂P consists of finitely many pre-α-fixed points, there is an l = l(ζ) such
that f l maps D(ζ) with bounded distortion onto an oval O(ζ) of definite size. It
follows that each D(ζ) contains a gap in the Julia set of definite size.

Let us now take any point z ∈ J rJ0 (see (45.3), so cl(orb z) ∋ 0. Then there
exist nk such that fnkz ∈ intQk. Let ζk := fnk+mkz ∈ intP , and let Sk be the
pullback of P to z by fnk+mk . As it has degree two, the corresponding pullback
of D(ζk) has degree at most two. Since D(ζk) contains a definite gap in the Julia
set, so does Sk. Since diamSk → 0, the Julia set is porous at z. As this happens
for all z ∈ J r J0, we obtain area(J r J0) = 0 by the Lebesgue Theorem. On the
other hand, areaJ0 = 0 by Corollary 45.11, and the conclusion follows.

Case (ii): Persistent recurrence.
Let us consider a non-central puzzle piece V n−1 of the principal nest and the

corresponding generalized renormalization

gn :
⋃
V ni → V n−1.

Recall that Rn0 stands for the maximal annulus in V n−1 r
⋃
V ni surrounding V n

but not the lateral pieces. By Corollary (44.8), the moduli modRn0 are bounded
away from 0.

Hence Rn0 contains a definite gap in J . Spreading it around (for all V n as
above), we conclude again that the set J r J0 is porous.

45.5. Infinitely renormalizable maps. Part of the above analysis carries
through in the infinitely renormalizable case as well:

Exercise 45.16. Let f be a periodically repelling quadratic polynomial. Let us
consider the puzzle Y [m], m ∈ N, of any existing renormalization level m. Then
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for any admissible l, the set Q ≡ Q(l) from Lemma 45.7 is hyperbolic, and for any
z ∈ Q,

diamY (n)(z)→ 0 as n→∞.
Thus, all points of Q are rigid. In particular, all periodic points of f are rigid.

For an infinitely renormalizable quadratic polynomial, recall from §28.4.8 the
postcritical impression O ≡ Of , accompanied with the little Julia sets K [n]

i = J
[n]
i

(28.8), and in particular, the canonical Julia nest K [0] ⊃ K [1] = K [0] ⊃ . . . (see
also §31.10). For z ∈ O, we let

K [0](z) = J [n](z) ⊃ K [1](z) = J [1](z) ⊃ . . .
be the nest of little Julia sets containing z.

More generally, take any point z in the realm of attraction R(O, i.e., such that
ω(z) ⊂ O.

Exercise 45.17. Show that:

(i) For z ∈ R(O), we have: ω(z) = O.

(ii) z ∈ R(O) iff the orbit of z eventually lands in every little Julia set K[n].

Let ln be the first landing moment in the nth little Julia set, i.e., the first time
when f lnz ∈ K[n]. Taking the corresponding pullback of K [n] under f ln , we obtain
a Julia set K [n](z) around z.

Lemma 45.18. For an infinitely renormalizable quadratic polynomial f , the
Julia set K(f) = J (f) is (perfectly) rigid at z ∈ R(O) iff the little Julia sets K [n](z)
shrink: diamK [n](z)→ 0 as n→∞. In particular, the Julia set is (perfectly) rigid
at the critical point iff the canonical Julia nest shrinks.

Proof. As we know (see §28.4.6 and Theorem 31.17), little Julia sets K [n](z)
are intersections of nests of perfect puzzle pieces. Hence, if the nest

K [0](z) ⊃ K [1](z) ⊃ . . .
shrinks to z, then there is a nest of perfect puzzle pieces shrinking to z, implying
that K is perfectly rigid at z.

Vice versa, assume K is rigid at some z ∈ OrbO. Then the puzzle pieces around
z (in the general sense of §9.1.1) shrink. Since Klc = Kpuz (Theorem 32.10)), the
Yoccoz puzzle pieces Y (n)(z) around z shrink as well. As

⋂

n

Y (n)(z) =
⋂

n

K [n](z),

the conclusion follows. �

Proposition 45.19. An infinitely renormalizable quadratic polynomial f has a
locally connected Julia set iff for any z ∈ R(O), the little Julia sets K [n](z) shrink:

(45.6) diamK [n](z)→ 0 as n→∞.
Proof. The only property to be checked (in view Lemma 45.18) is that that

under shrinking assumption (45.6), J is locally connected at any point z ∈ J r

R(O). For such a point, there exists a sequence of moments lk → ∞ such that
dist(f lkz,O) ≥ δ > 0. Take an accumulation point ζ ∈ J rO for (f lkz).

Since under the shrinking assumption, the puzzle pieces around points of O
shrink, ζ belongs to the interior of some puzzle piece P ⋐ C. Pulling P back by
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the f lk , we obtain a nest of puzzle pieces P k containing z in their interiors. By the
Shrinking Lemma, they shrink to z, and the conclusion follows. �

Corollary 45.20. For an infinitely renormalizable quadratic polynomial f
with locally connected Julia set, the postcritical impression O is a Cantor set coin-
ciding with ω(0) and the dynamics on this set is conjugate to the adding machine
τq corresponding to the sequence q = (qn) of relative renormalization periods.

It was shown in Proposition 27.25 that Cremer Julia sets are wild, i.e., not
locally connected. We can now construct quite different examples of wild Julia
sets:

Example 45.21. There exists a rate εn → 0 such that for any sequence of
non-vanishing rotation numbers pn/qn ∈ (−εn, εn), n ∈ Z+, the following holds: If
f is an infinitely renormalizable quadratic polynomial of satellite type (pn/qn)n∈Z+

then the Julia set J (f) is not locally connected at 0.

Proof. Let βn, n ∈ N, be the β-fixed point of the little Julia set J [n] of
the n-fold pre-renormalization fn (which is equal to the α-fixed point of fn+1).
Given any rate δn → 0, we can select a sufficiently fast rate (εn) in such a way
that |βn+1 − βn| < δn. Hence β := inf |βn| > 0. But the little Julia set J [n] is
0−symmetric and hence contains all three points βn, 0− βn, so diam J [n] ≥ β > 0.
Application of Lemma 45.18 concludes the proof. �

45.6. JLC for real Feigenbaum maps. Let us now prove Theorem 45.4.
Let f be a real Feigenbaum map, let (J [n] = K [n]) be the canonical next of its

little Julia sets, and let (I [n] = K [n] ∩ R be the corresponding nest of their real
slices.

A priori bounds and Lemma 40.13 imply that the renormalizations Rnf are
uniformly K−qc conjugate to quadragtic polynomials fcn , cn ∈ [−2, 1/4]. For
the latter, the Julia sets J (fcn) and their real slices I(fcn) have size of order 1.
Therefore, the sizes of the Julia sets J [n] are comparable with the sizes of the
intervals I [n]: diam J [n] ≍ diam I [n].

By Corollary 30.46 (i), the intervals I [n] shrink. Hence the little Julia sets
J [n] shrink as well, implying the local connectivity of J (f) at the critical point
(Lemma 45.18).

The same argument shows that J (f) is locally connected at every point z ∈ O.
To complete a proof, we need to show (in view of Proposition 45.19) that the little
Julia sets K [n](z) shrink for any point z ∈ R(O).

Let us show that there is a definite gap (in the relative scale) between the little
Julia sets and the rest of the postcritical set, i.e., there exists a δ > 0 such that

dist(O r J [n]) ≥ δ diam J [n].

Indeed, let us consider pre-renormalizations fn : U [n] → V [n] with a bounded
geometry described in §40.1, and let U [n]

k := f−kn (U [n]). Then

diamU
[n]
k

diamK [n]
→ 1 as k →∞ (uniformly in n).

On the other hand, since O has a bounded geometry (Theorem 30.49), the intervals
I [n] stay a definite relative distance from the rest of the postcritical set, i.e., there
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exists an ε > 0 such that

dist(I [n], O r I [n]) ≥ ε |I [n]|.
It follows that for k sufficiently big (independently of n), the real traces of the

domains U [n]
k stay definite relative distance away from Or I [n]. But for any such a

k, the domains U [n]
k have a bounded geometry (depending on k but uniform in n).

Hence the whole domains stay a definite relative distance away from O r I [n].
By the Koebe Distortion Theorem, the pullbacks of the U [n]

k to z by f ln are

disks W [n]
k ∋ z with a bounded geometry as well. Together with the topological

exactness of f , this implies that they shrink as n→∞ (compare with the Shrinking
Lemma). All the more, the little Julia sets K [n](z) shrink.

Notes. The Puzzle techniques and its applications to the JLC and MLC Prob-
lems (Theorems 45.1 and 47.17) were developed around 1990 by Yoccoz. This theory
is closely related to an earlier work by Branner and Hubbard [BH] concerning the
dynamics of cubic polynomials with one escaping critical points. Yoccoz never pub-
lished his results: their first accounts appeared in the expositions by Hubbard [H2]
and Milnor [M4]. The above approach based on the Principal Nest and Generalized
Renormalization and leading to the bounds of Theorems 44.9 was developed by the
author in [L10].

Theorem 45.3 on the area of J is due to Lyubich [L8] and Shishikura [Sh1].
JLC for real Feigenbaum maps (Theorem 45.4) was proven by J. Hu and

Y. Jiang [HJ, J]. See also McMullen [McM2, §8.1].

46. Measurable Dynamics of real maps

In this section we will study Measurable Dynamics of real unimodal maps:
ergodicity, description of attractors, and the problem of existence of an absolutely
continuous invariant measure (acim).

Throughout this chapter, we assume that f : I → I belongs to the class QR of
real ql maps. Recall from Theorem 30.52 that such a map has a unique topological
attractor At ≡ At

f , which is either an attracting or parabolic cycle, or the cycle of
an exact periodic interval, or a Feigenbaum attractor.

As we know from Theorem 30.10, in the hyperbolic or parabolic cases, the
dynamics is regular, i.e., almost all orbits converge to the corresponding hyperbolic
or parabolic cycle. Below we will explore what happens in the irregular cases.

46.1. Following the critical point. Let us start with the real version of
Theorem 22.2 (which admits a similar proof):

Lemma 46.1. Let f : I → I be a real ql map. Assume it has a closed nowhere
dense invariant set K ⊂ I of positive length. Then ω(x) ⊂ ω(0) for almost all
x ∈ K.

Let us now introduce a real version of the sets Jε:
Iε ≡ Iε(f) := {z ∈ I : |fnz| ≥ ε, n = 0, 1, . . . }.

Lemma 45.11 (together with Exercise 30.11) implies:

Lemma 46.2. For any real ql map f : I → I of Yoccoz class and for any ε > 0,
we have:
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(i) The set Iε is hyperbolic;

(ii) length Iε = 0;

(iv) Let DR
n := {x ∈ I : fkx 6∈ Dε, k = 0, . . . , n− 1}. Then

lengthDR
n ≤ Cρn, where ρ = ρ(ε) < 1.

Consequently, ω(x) ∋ 0 for a.e. x ∈ I.
46.2. A priori bounds. Scaling factors for the Real Principal Nest (see

§31.11) are defined as

τn ≡ τn(f) :=
|In|
|In−1| < 1.

By restricting a priori bounds of Theorem 44.9 to the real line we obtain:

Theorem 46.3. Let g be a real symmetric generalized quadratic-like map with
mod g ≥ ν > 0. Then:

(i) The scaling factors τn are bounded by some τ̄ < 1 depending only on ν and d(n).
In particular, τn ≤ τ̄(ν) < 1 if the level n− 2 is non-central (i.e., when d(n) = 0).

(ii) The distortion of all branches of the first landing maps (31.32)

Ln :
⊔

i

Jni → In

are bounded on all levels by some K(ν). In particular, the distortion of the diffeo-
morphisms hn from (31.34) are bounded by K(ν).

46.3. Density Lemma.

Lemma 46.4. Let f : I → I be a non-regular map. Then there exists a nest
of 0-symmetric intervals I0 ⊃ I1 ⊃ . . . such that for any invariant measurable set
X ⊂ I of positive length, we have: dens(X| In)→ 1 as n→∞.

Proof. By Proposition 30.48 and Lemma 46.2, ω(x) ∋ 0 for a.e. x ∈ I, so we
can assume without loss of generality that ω(x) ∋ 0 for a.e. x ∈ X.

Let us consider two cases.

Case a) f is at most finitely renormalizable. Then f has an exact periodic
interval T ∋ 0 of some period p (see Theorem 30.37). Let I0 ⊃ I1 ⊃ . . . be the
Real Principal Nest for the return map fp| T . By Theorem 31.25, it shrinks to 0.

Let x ∈ X be a Lebesgue density point for X. Since ω(x) ∋ 0, x belongs to the
domain of each first landing map Ln :

⊔
i J

n
i → In. Let Jn be the interval of this

domain containing x.
Using exactness once again, we conclude that diam Jn → 0. Hence

dens(X| Jn)→ 1.

By Theorem 46.3 (ii), the landing branches Ln : Jn → In have a bounded
distortion. It follows that dens(X| In)→ 1.

Case b) f is infinitely renormalizable. In this case, use nest (30.8)

I0 ⊃ I1 ⊃ · · · ∋ 0

of periodic intervals instead of the Principal Nest. By Corollary 30.46 , it shrinks to
0. By Corollary 30.42, the first landing maps Ln to the In have bounded distortion.
This is all needed to apply the argument of Case a) to this situation. �
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Lemma 46.5. Let f : I → I be a map of real Yoccoz class . Then 0 is the
Lebesgue density point for any invariant measurable set X ⊂ I of positive length.

Proof. Lemma 46.4 implies that dens(X |Tn) → as as |Tn| → 0 along any
shrinking sequence of intervals Tn ∋ 0 commensurable with the In (i.e. such that
C−1|In| ≤ |Tn| ≤ C|In| with some a priori selected constant C > 1). So, we
only need to fill-in intermediate scales in between two (incommensurable) intevals
In ⊂ In−1.

Let us go back to the proof of Lemma 46.4, Case a). By Lemma 31.14, the
interval Jn ∋ x can be enlarged to an interval J̃n mapped by Ln diffeomorphi-
cally onto In−1. Let us consider any intermediate interval T ⊃ In, contained in
(1/2) In−1, and let S ⊂ J̃n be its pullback under Ln : J̃n → In−1 By the Koebe
Distortion Theorem, Ln : S → T has a bounded distortion. Hence X has high
density in T , implying the desired. �

The internal side of the crititical value v = f(0) is the component of R r {v}
containing f(I)r{v}. We let densi(X | v) be the density of a set X on the internal
side of v.

Corollary 46.6. For any invariant measurable set X ⊂ I of positive length,
the critical value v is a one-sided density point for X, on the internal side:

densi(X | v) = 1.

46.4. Ergodicity.

Theorem 46.7. Any non-regular map f : I → I is ergodic with respect to the
Lebesgue measure.

Proof. If f is not ergodic then I can be decomposed into two disjoint invariant
measurable subsets X1 and X2 of positive measure. Hence

dens(X1| I) + dens(X2| I) = 1

for any interval I ⊂ I, On the other hand, by the Density Lemma, there exists a
nest of intervals In such that both densities, dens(X1| In) and dens(X2| In), go to
1 as n→∞. Contradiction. �

46.5. Measure-theoretic attractor.

46.5.1. Classification.

Theorem 46.8. Any unimodal map f : I → I of class QR has a unique
measure-theoretic attractor Am ≡ Am

f attracting Lebesgue almost all orbits:

ω(x) = Am for a.e. x ∈ I.
Moreover, Am coincides with the topological attractor At, except for one theoretical
possibility: when At is a cycle of an exact interval then Am may be a Cantor subset
of At.

In the latter case, Am is called a wild attractor.

Proof. Let us consider one by one the cases of Theorem 30.52 describing
topological attractors.

If f is hyperbolic or parabolic then ω(x) = At for a.e. x ∈ I by Theorem 30.10.

If f is infinitely renormalizable then the assertion follows from Theorem 30.48.
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Assume finally that f is of real Yoccoz class. Then At is a transitive cycle of
intervals. By Corollary 30.34, almost any orbit eventually lands in At, so we only
need to study the measurable dynamics on At.

By Lemma 46.2, ω(x) ∋ 0 for a.e. x ∈ At. Hence ω(x) ⊃ ω(0) for a.e. x ∈ At.
If ω(x) = At for a.e. x ∈ At then At is the unique measure-theoretic attractor.

So, assume ω(x) 6= At for a subset of At of positive measure. Since

T := {x ∈ At : ω(x) = At}
is a completely invariant (under f | At) measurable subset At, it has zero measure
by ergodicity (Theorem 46.7).

Let us consider a countable base of open intervals Jk in At, and let

Xk := {x ∈ At : fn(x) 6∈ Jk, n = 0, 1, . . . }, X∞ :=
⋃
Xk.

Note X∞ is the complement of T , so it has the full measure.
Obviously, each Xk is compact and invariant. Since f | At is topologically tran-

sitive, Xk is nowhere dense. By Lemma 46.1, ω(x) ⊂ ω(0) for a.e. x ∈ Xk. Con-
sequently, ω(x) = ω(0) for a.e. x ∈ Xk, and hence ω(x) = ω(0) for a.e. x ∈ X∞.
The conclusion follows. �

46.5.2. Persistent recurrence of wild attractors. Let us start with some prepa-
ration.

Lemma 46.9. If f has a wild attractor Am then there exists an invariant mea-
surable set X of positive measure such that dens(X | I) < 1 for any interval I
contained in the transitive cycle of intervals At.

Proof. By definition, the realm of attraction R ≡ R(Am) has full measure
and ω(x) = Am for a.e. x ∈ R.

Since Am is nowhere dense, there exists a closed interval M ⊂ At rAm. Then
for any x ∈ R(Am), there exists an n(x) such that fn 6∈ M for n ≥ n(x). Since
n(x) assume only countable set of values, there is a value m ∈ N such that

Zm := {x ∈ R : n(x) = m}
has positive measure. Hence l(fm(Zm)) > 0, and moreover, this set is contained in

X := {x ∈ R : fnx 6∈M, n = 0, 1, 2, . . . } ⊂ I rM.

We conclude that X has positive measure, too (and of course, it is invariant).
Since At is the cycle of a topologically exact interval, the orbit of any interval

I ⊂ At covers the whole At. Hence, if dens(X | I) = 1 then X would have full
measure in At, which would contradict X ∩M = ∅. �

Lemma 46.10. The α-fixed point does not belong to the wild attractor Am.

Proof. Assume α ∈ Am, so ω(0) ∋ 0. Since Am is nowhere dense, there is an
open interval T̃ ⊂ I around α containing two gaps Gi (i = 1, 2) in Am such that
∂I ⊂ ∂G1 ∪ ∂G2. Let ai be the midpoint of Gi and let T := (a1, a2)#.

Let X be an invaraint set from Lemma 46.9. Then dens(X |Gi) < 1 for both
i = 1, 2.

Let T̃n = f−n(T̃ ) where the f−n mean the branches fixing α. Let Tn ⊂ T̃n

and Gni be corresponding pullbacks of T and Gi. Then there exists an ε > 0 such
that

|Gni | ≥ ε|Tn| and dens(X |Gi) < 1− ε, i = 1, 2, n ∈ N.



590 6. STRAIGHTENING, PUZZLE, AND ATTRACTORS

Since ω(0) ∋ α, there is a sequence of moments ln →∞ such that f ln(0) ∈ T̃n,
and hence f ln(0) ∈ Tn. Let us select the smallest ln like that (the first landing
moments to the corresponding intervals). Then each T̃n can be univalently pulled
back along the orbit {fm(v)}ln−1m=0 . Let J̃n ∋ v be these pullbacks, and let Jn, Hn

i

be the corresponding pullbacks of the Tn and Gni .
By the Koebe Distortion Theorem, |Hn

i | ≍ |Jn| and dens(X |Hn
i ) ≤ ρ < 1.

Hence dens(X | v) is bounded away from 1 on both sides of v, contradicting the
Density Lemma (Corollary 46.6). �

Theorem 46.11. If f has a wild attractor Am then f is persistently recurrent.

Proof. If f is reluctantly recurrent then there is a real puzzle piece P̃ ∋ 0
with infinitely many kids Qk. Let fnk : Qk → P̃ be the corresponding proper
unimodal maps. As the boundary points of P̃ are α-prefixed, ∂P̃ ∩ Am = ∅ (by
Lemma 46.10). So there are two disjoint intervals Gi (i = 1, 2) in P̃ rAm such that
∂P̃ ⊂ ∂G1 ∪ ∂G2. Let ai be the midpoint of Gi and let P := (a1, a2)#.

The rest of the proof is similar to that of Lemma 46.10. Pulling P̃ back along
the orbit {fmv}nk−1

m=0 , we obtain intervals J̃k ∋ v mapped by fnk−1 univalently
onto P̃ . Let Jk and Hk

i , be the corresponding pullbacks of P and Gi, i = 1, 2. By
the Koebe Distortion Theorem, fnk−1 : Jk → P are diffeomorphisms with bouned
distortion.

Let X be an invaraint set from Lemma 46.9. As dens(X |Gi) < 1 for i = 1, 2, it
follows that the dens±(X | Jk) are bounded away from 1 on both sides of v. Hence
dens(X | v) < 1 on both sides of v, contradicitng Corollary 46.6. �

Corollary 46.12. The dynamics on the wild attractor Am is minimal. In
particular, Am does not contain periodic points.

46.6. Stochastic maps. A real ql map f : I → I that has an absolutely
continuous invariant measure (acim) µ is called stochastic.

46.6.1. An acim is physical.

Proposition 46.13. A stochastic map f has a unique acim µ. Moreover, this
is a physical measure that governs behavior of Lebesgue almost all orbits:

(46.1)
1

n

n−1∑

k=0

δfkx → µ

for Leb a.e. x ∈ I.
Proof. An acim is ergodic and unique by Theorem 46.7. By the Ergodic

Theorem, there is an invariant set X0 of positive length such that (46.1) holds for all
x ∈ X0. Then this holds for all x ∈ X := Orb−(X). SinceX is completely invariant,
it has full Leb measure (once again, by Theorem 46.7), and we are done. �

46.6.2. Entropy. As in the Kneading theory (§32.4) let us consider the tiling P
of the interval I into its halves Ī− = {x ∈ I : x ≤ 0} and Ī+ = {x ∈ I : x ≥ 0}.
If f is not superattracting then µ{0} = 0 for any invariant measure µ, so P can be
considered as a partition for (f, µ).

Lemma 46.14. Assume f : I → I is neither hyperbolic nor parabolic. Then the
partition P is a generator for any invariant measure µ.
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Proof. Indeed, the partitions Pn shrink by Corollary 30.51 from the No Wan-
dering Intervals Theorem, �

Remark 46.15. In fact, one does not need to use the No Wandering Intervals
Theorem, since by the Poincaré recurrence, wandering intervals do not carry any
invariant measure.

Corollary 46.16. Under the circumstances of Lemma 46.14,

hµ(f) = hµ(f,P).
Theorem 46.17. An acim µ of a stochastic map f : I → I has positive entropy:

hµ(f) > 0.

Proof. Assume hµ(f) = 0. Then by Theorem 46.42, f is one-to-one µ-a.e.
Since µ is absolutely continuous, there is an invariant measurable set X ⊂ I of
positive length such that f : X → X is a bijection (and in particular, X is disjoint
from the symmetric set X ′ ≡ −X).

On the other hand, by the Density Lemma, dens(X| In)→ 1 for some shrinking
nest of 0-symmetric intervals, forcing X ∩ In to overlap with X ′ ∩ In. �

46.6.3. Lyapunov exponent. Let µ be a (probability) invariant measure for a
map f : I → I. The Lyapunov (or characteristic) exponent of µ is defined as

χµ ≡ χµ(f) :=
∫

log |Df | dµ

(which could be equal to −∞). By the Ergodic Theorem, if µ is ergodic then

χµ = lim
n→∞

1

n
log |Dfn(x)| for µ− a.e. x.

Pesin Formula. For an acim µ of a stochastic map f : I → I, we have

hµ(f) = χµ(f).

Proof. By Corollary 46.39 (combined with Lemma 46.14),

hµ(f) =

∫
log Jacµ f dµ.

Let ρ, be the density of µ with respect to the Lebesgue measure m. Then

Jacµ f =
ρ ◦ f
ρ
|Df |.

Hence

(46.2) log Jacµ f = log |Df |+ log ρ ◦ f − log ρ.

If we knew that log ρ is integrable, we would immediately conclude that

(46.3)
∫

log Jacµ f dµ =

∫
log |Df | dµ

(since the measure µ is f -invariant), implying the desired by the Jacobian Formula
(Corollary 46.39). In general, (46.3) can be derived from the Ergodic Theorem as
follows. Taking Birkhoff averages of (46.2), we obtain:

1

n
log Jacµ f

n =
1

n
log |Dfn|+ 1

n
log ρ ◦ fn − 1

n
log ρ.
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The last two terms go to 0 in measure (since µ is f -invariant), so

1

n
log Jacµ f

n − 1

n
log |Dfn| → 0 in measure.

On the other hand, by the Ergodic Theorem, this expression converges a.e. to
the difference between the integrals in (46.3). It follows that this difference must
vanish. �

Corollary 46.18. An acim µ of a stochastic map f : I → I has positive
Lyapunov exponent: χµ(f) > 0.

This shows that µ-almost all orbits are exponentially unstable, which is a basic
feature of chaotic dynamics.

46.6.4. Pesin unstable manifolds. Let f̂ : Î → Î be the natural extension of
f . Any f -invariant measure µ lifts to a f̂ -invariant measure µ̂. Let us consider a
backward orbit

x̂ = (x0, x−1, x−2, . . . ) ∈ Î
Assume we have a topological disk W0 ∋ x0 that can be univalently pulled back
along x̂, and let

Ŵ := (W0,W−1,W−2, . . . )

be the corresponding pullback. It is called a local leaf of Î at x̂.

Theorem 46.19. Let µ be an invariant measure with positive characteristic
exponent χ ≡ χµ > 0. Then for µ̂-a.e. x̂ ∈ Î, there exists a local leaf Ŵu(x̂) such
that for any ε > 0 and any ŷ ≡ (y0, y−1, y−2, . . . ) ∈ Ŵu(x̂) we have

C−1 exp(−n(χ+ ε)) ≤ |y−n − x−n| ≤ C exp(−n(χ− ε)),
n = 0, 1, 2, . . . , with C = C(ε, ŷ).

Under these circumstances, the leaves Ŵu(x̂) are called Pesin local unstable
manifolds.

46.6.5. Subhyperbolic maps. As we know, real postcritically preperiodic maps
are stochastic (Theorem 27.15). Let us now prove a more general result:

Theorem 46.20. A real subhyperbolic map f : I → I is stochastic.

Proof. By definition, a subhyperbolic map is not regular. By Corollary 30.46,
it is not infinitely renormalizable either. Hence, by the Structural Theorem for real
ql maps (30.52), f has a periodic exact interval T ′ of some period p.

Let α′ be the α-fixed for fp : T ′ → T ′. By Proposition 30.22, its iterated
preimages accumulate on 0. Let a−n be the closest to 0 preimage of order ≤ n.
Then the nest of nice intervals Jn := [−α−n, α−n]# ∋ 0 shrinks to 0, so we can
select a nice interval J ≡ Jn which is disjoint from the post-valuable set P.

Let T be the first return map to J . Let us show that it is a good expanding
Bernoulli map, as defined in Appendix 1 (§46.8.2).

As we know from §31.9, this map is Bernoulli: its domain DomT consists of
intervals Qi with disjoint interiors mapped diffeomorphically onto J . (Note that
the central interval is absent since the critical point does not return to J .)

By Lemma 46.2, DomT has full measure in J , securing property (G1) of good
Bernoulli maps.
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As the post-valuable set P is disjoint from J , the iterated inverse branches
T−ni : J → Qni extend to a bigger interval Ĵ ⋑ J . By the Koebe Distortion
Theorem, they have a uniformly bounded distortion (securing property FG2) of a
good Bernoulli map). Since fp is exact on T ′,

sup
i

diamQni → 0 as n→∞.

By the bounded distortion property, diamQni ≍ |DT−ni (x)| for any x ∈ J , so

sup
i

maxx∈J |DT−ni (x)| → 0 as n→∞.

Thus, T is expanding.
By Theorem 46.25, T has an acim µJ . By Lemma 46.24 (from Appendix 46.8),

we can spread µJ around to obtain an acim µ for f itself (finite or infinite). To
justify its finiteness, we need to show that the return time n(x) to J is integrable
with respect to µJ . It follows from the exponential decay of the tails:

∃ σ ∈ (0, 1) such that m{x ∈ J : n(x) ≥ n} ≤ Cσn, ∀ n ∈ N,

which is a consequence of Lemma 46.2 �

46.7. Pathological examples.

46.7.1. Non-renormalizable but non-stochastic map.

Example 46.21. There exists a non-stochastic topologically exact map f ∈ QR.

46.7.2. A map without physical measures.

Example 46.22. There exists a topologically exact map f ∈ QR that does not
have any physical measure.

46.7.3. A weird physical measure.

Example 46.23. There exists a topologically exact map f ∈ QR whose physical
measure is supported at the (repelling) α-fixed point.

46.8. Appendix 1: Preliminaries on acim.

46.8.1. Spreading around.

Lemma 46.24. Let m be a quasi-invariant measure for a map f : Y → Y , and
let X ⊂ Y be a measurable subset of positive measure . Let T : X → X be the first
return map to X, Tx = fn(x)x . Assume that T has an acim dν = ρ dm. Then
f has an acim dµ = q dm (maybe, infinite) whose restriction to X is equal to dν.

Moreover, the total mass of µ is equal to
∫

X

n(x) dν.

Proof. For y ∈ Y , let

Φy := {x ∈ DomT : ∃k = k(x, y) < n(x) ∈ N such that fkx = y},
and let

q(y) dm(y) :=
∑

x∈Φy

f
k(x)
∗ (ρ(x) dm(x)), i.e., q(y) =

∑

x∈Φy

ρ(x)

Jacm fk(x)(x)

(with understanding that q(y) = 0 if Φy = ∅). �
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46.8.2. Stochasticity for expanding Bernoulli maps. Let us adapt the notion
of Bernoulli map from §19.11.3 and §31.7.1 to the one-dimensional setting. Let J
be an interval and let Qi ⊂ J be a family of disjoint subintervals (which can be
countable). Let us consider a C2-map g : (Domg ≡

⋃
Qi) → J . Such a map is

called (unbranched) Bernoulli if each branch g : Qi → J is a diffeomorphism. It is
called expanding if there exists an n ∈ Z+ and λ > 1 such that

|Dgn(x)| ≥ λ for all x ∈ Dom fn.

An expanding Bernoulli map f :
⋃
Qi → J is called good if

(G1) m(J r
⋃
Qi) = 0 (where m is the Leb measure on J);

(G2) The branches g : Qi → J have a uniformly bounded distortion.

Theorem 46.25. A good expanding Bernoulli map is stochastic.

Proof. Let us adapt the proof of Theorem 19.76 to this more general setting.
Expanding property and uniformly bounded distortion assumption (G2) imply a
uniform distortion bound for all branches of the iterates gn (as in Lemma 19.68).
Hence the densities ρn of the push-forward measures mn := (gn)∗(m) have uni-
formly bounded distortion as well.

By Property (G1), the total mass of the push-forward measures remains the
same: mn(J) = m(g−n(J)) = m(J), so

∫
ρn dm = m(J).

It follows that the densities ρn are uniformly bounded from above and below. Now
Proposition 19.18 implies stochasticity. �

46.9. Appendix 2: Rokhlin Theory of measurable partitions.

46.9.1. Measurable partitions. Let (X,µ) be a Lebesgue space (all measure
spaces in what follows are assumed to be Lebesgue). A simple example of a mea-
surable partition of X is a finite or countable partition into measurable subsets. A
trivial particular case is the partition ν whose only piece is the whole space X.

A more interesting example is the partition of the square I× I by the vertical
fibers {x}× I. Though every piece of this partition has zero measure, the partition
as a whole is a non-trivial object.

In general, a measurable partition P of X can be defined as a partition into
fibers of some measurable map π : X → X̄. A particular case is the singleton
partition ε into single points. A typical example of a non-measurable partition is
provided by orbits of an ergodic transformation of an infinite space.

The space X̄ is naturally identifies with the quotient X/P mod the equivalence
relation corresponding to the partition P. We let µ̄ := π∗(µ) be the corresponding
quotient measure.

Two measurable partitions, P of X and P̃ of X̃, are viewed to be equivalent
(or equal mod 0) if there exists a measure-preserving bijection h : Y → Ỹ between
full-subsets that carries P |Y to P̃ | Ỹ . In what follows, all partitions are considered
mod 0.

A subset Z ⊂ X is called P-saturated if it is the union of some pieces of P. (In
other words, each piece P ∈ P is either contained in Z or disjoint from Z.) The
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family of all measurable P-saturated (mod 0)11 subsets forms a σ-algebra S(P)
called the envelope of P.

A family of saturated sets Xi ∈ S(P) is called P-separating if for any two pieces
P1, P2 ∈ P there is a set Xi containing P1 but disjoint from P2.

Proposition 46.26. A partition P is measurable iff its envelope S(P) con-
tains a countable P-separating family of sets Xi. Moreover, the correspondence
P 7→ S(P) is as a bijection between measurable partitions and σ-subalgebras of the
original σ-algebra S = S(ε).

Idea of the proof. To reconstruct a partition from a σ-subalgebra

S′ ⊂ S, take at most countable family of sets Xi ∈ S, i = 0, 1, . . . ,
generating S, let X0

i := Xi, X1
i := X rXi, and define pieces of P as

all possible intersections X
j0
0 ∩X

j1
1 ∩ . . . with , ji ∈ {0, 1}. QED

If S(P) consists of nul-sets and full-sets only, then P is called ergodic.
Let us say that a measurable partition is standard if it is isomorphic to the

vertical partition of the product Y ×F of two Lebesgue spaces (where the measure
is not assumed to be the product measure). The measure-theoretic category is so
flexible that any partition can be reduced to a trivial one:

Theorem 46.27. Let P be a measurable partition of a Lebesgue space X. Then
X can be decomposed into at most countably many disjoint measurable saturated
subsets, X =

⊔
Xi, such that the restriction of the partition P to each Xi is stan-

dard.

46.9.2. Conditional measures. Conditional measures are well defined on subsets
of positive measure, but not so on nul-sets. However, if we have a measurable
partition into nul-sets, conditional measures can still be defined for almost all pieces.

The model case is the vertical foliation of the square I2 with the 2D Leb measure
dm (area). The classical Fubini Theorem allows us to disintegrate any test function
on the box I2 along the vertical fibers It := {t} × I :

∫

I2
φ dm =

∫

I

(∫

It

φ(t, y)dy

)
dt, where It := t× I,

and in particular, for any measurable set X ⊂ I2, we have

area(Z) =

∫

Z̄

length(Z ∩ It) dt,

where Z̄ is the horizontal projection of Z. In this sense, length(Z ∩ It) can be
interpreted as the conditional probability of the event Z assuming the “event” t ∈
Z̄ ∈ I happened.

In a general setting, let us consider a measurable partition P of a Lebesgue
space (X,µ). For a point x ∈ X and the corresponding point x̄ ∈ X̄ ≡ X/P, we
let Px ≡ Px̄ ∋ x be the corresponding piece of P.12 Assume we have a family of
probability measures µx̄ supported on the pieces Px̄, x̄ ∈ X̄, with the following
properties:

11According to our convention, Z is P-saturated (mod 0) if there exists a P-saturated set Z′

such that the symmetric difference Z ⊕ Z′ is a nul-set.
12Formally speaking, x̄ ≡ Px̄, but we prefer to think of x̄ as the “parameter” for the corre-

sponding piece.
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• Any test function φ ∈ L1(X,µ) is integrable on a.e. pieces (Px̄, µx̄);

• The function

(46.4) x̄ 7→
∫

Px̄

φ dµx̄

is integrable with respect to µ̄; and

•

(46.5)
∫

X

φ dµ =

∫

X̄

(∫

Px̄

φ dµx̄

)
dµ̄.

The latter property is called disintegration of φ over P.

In particular, for any measurable subset Z ⊂ X, we have:

(46.6) µ(Z) =

∫

Z̄

µx̄(Z ∩ Px̄) dµ̄,

where the µx̄(Z ∩ Px̄) are interpreted as conditional probabilities of the event Z.

Theorem 46.28. For any measurable partition P on a Lebesgue space (X,µ),
there exists a unique (mod 0) family of conditional measures µx̄.

Note that we can let νx := νx̄ and interpret (46.4) as a function on X constant
on the pieces of P. This function is called the conditional expectation of φ with re-
spect to P and is denoted E(φ | P). Then by definition of the push-forward measure
dµ̄, formulas (46.5) and (46.6) can be written without a reference to the quotient:

∫

X

φ dµ =

∫

X

E(φ | P) dµ; µ(Z) =

∫

Z

µx(Z ∩ Px) dµ(x).

Note that the function E(φ | P) is measurable with respect to the sigma-algebra
S(P). (We aslo say that it is measurable with respect to the partition P.) Moreover,
the map φ 7→ E(φ | P) is the projection L1(X,S, µ)→ L1(X,S(P), µ) with norm 1.

Exercise 46.29. Show that the family of conditional measures is invariant
under measure-theoretic isomorphisms mod 0. (Part of the problem is to formulate
the statement rigorously.)

46.9.3. Martingales. Partition are partially ordered: P ≻ Q if any piece of P
is contained in some piece of Q (i.e., P is finer than Q). An increasing sequence of
measurable partitions,

P0 ≺ P1 ≺ P2 ≺ . . .
is called a filtration. Let P∞ =

∨Pn: elements of P∞ are the intersections of
various nests P 1 ⊃ P 2 ⊃ . . . with Pn ∈ Pn.

A sequence of random variables φn ∈ L1 is subordinated to a filtration (Pn) if
φn is measurable with respect to Pn. Such a seuqence is called a martingale if

(46.7) E(φn | Pm) = φm for any m ≤ n.
For instance, given a function φ ∈ L1(X), the sequence of projections

(46.8) φn := E(φ | Pn)
is a martingale.
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Doob Theorem. Let (φn) be a martingale subordinated to a filtation (Pn).
Assume it is uniformly integrable, i.e.,

∫
|φn| dµ ≤ C.

Then φn → φ a.e., where φ ∈ L(X,P∞, µ). Moreover, the φn are the projections
of φ to the partitions Pn, as in (46.8).

46.9.4. Notes. Theory of meaurable partitions of the Lebesgue space was de-
veloped in the classical paper by Rokhlin [Ro1]. In the Western literature, the
equivalent, but less intuitive, language of σ-subalgebras is usually used.

For the theory of martingales and the Doob Theorem, see [Doob] or e.g.,
[Bi, KoS]

46.10. Appendix 3: Elements of Entropy Theory.

46.10.1. Definition. According to Shannon’s insight, the amount of information
hidden in an event of probability p is equal to − log p. (So, if a low probability event
happens, a big amount of information is revealed.) If we have a statistical system
that can exist in d states whose probability distribution is p := (p1, . . . , pd) ∈∆d−1,
then the average amount of information hidden in this system is equal to

H(p) := −
d∑

i=1

pi log pi ≡
d∑

i=1

η(pi), where η(p) = −p log p.

This quantity is called the Shannon entropy of the system. Note that H : ∆d−1 →
R+ is a concave continuous function on the probabilistic simplex.

A homogeneous system contains the maximum amount of information:

Exercise 46.30. The entropy function H : ∆d−1 → R+ has a unique point of
maximum p◦ = (1/d, . . . , 1/d), and

max
p∈∆d−1

H(p) = H(p◦) = log d.

(The minima of H(p) are attained at the vertices of ∆d−1, where H vanishes.)

Let us now consider a probability space (X,µ). For a finite measurable partition

P =

d⊔

k=1

Pk of X, the measures (µ(Pk))
d
k=1 ∈ ∆d−1 form a probability vector. So,

we can consider its Shannon entropy:

H(P) ≡ Hµ(P) := −
∑

µ(Pk) log µ(Pk) ≡
∑

P∈P
η (µ(P )).

Given another finite measurable partition Q = {Qj} of X, let P ∨ Q be the
partition comprising all pairwise intersections Pk ∩Qj .13

Lemma 46.31. For any two finite partitions, we have:

H(P ∨Q) ≤ H(P) +H(Q).
The equality is attained iff the partitions are independent.

13Of course, measure zero intersections can be thrown away, but they can also be kept as the
matter of convenience of writing, as their presence would not affect any calculation.
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Proof. We have:

H(P ∨Q) = −
∑

i,j

µ(Pi∩Qj) log µ(Pi∩Qj) = −
∑

i,j

µ(Pi∩Qj) log(µ(Pi)µ(Qj |Pi))

= −
∑

i,j

µ(Pi ∩Qj) log(µ(Pi))−
∑

i,j

µ(Pi)µ(Qj |Pi) log µ(Qj |Pi))

= H(P)−
∑

j

∑

i

µ(Pi)µ(Qj |Pi) log µ(Qj |Pi)).

Applying Jensen’s Inequality to the concave function η(µ) = −µ log µ, we bound

the last sum by the value of η at
∑

i

µ(Pi)µ(Qj |Pi) = µ(Qj). This bounds the

double sum by
∑

j

η(µ(Qj)) = H(Q).

To have an equality in the Jensen’s Inequality, all the conditional measures
µ(Qj |Pi) must coincide for any given j, and hence be equal to µ(Qj). This is
equivalent to the independency of P and Q. �

Let us now consider the one-sided shift σ : Σ→ Σ in d symbols, where Σ ≡ Σ+
d

(see §19.10). Let µ be an invariant measure for σ. Truncating sequences at length
n, we obtain a finite probability space comprising dn cylinders Σn

j̄
(where some of

them may have zero measure). The Shannon entropy of this probability space is
equal to

Hn ≡ Hn
µ := −

∑

j̄

µ(Σnj̄ ) log µ(Σ
n
j̄ ).

If strings of symbols are interpreted as encoded messages then Hn is the average

amount of information contained in a message of length n. Thus,
Hn

n
is the average

amount of information per symbol contained in a message of length n.

Lemma 46.32. Under the above circumstances, there exists a limit

hµ(σ) := lim
n→∞

Hn
µ

n
.

This limit is called the entropy of σ with respect to µ.

Proof. By Lemma 46.31 and the shift invariance of the entropy, the sequence
Hn is subadditive: Hn+m ≤ Hn + Hm. The conclusion follows from Fekete’s
Lemma. �

Let us now consider a general transformation f : X → X preserving a proba-
bility measure µ. Given a partition P of X into d measurable pieces Pi, we obtain
a coding π : X → Σ ≡ Σ+

d of f (see §19.11). Pushing µ forward to Σ we obtain a
shift invariant measure ν := π∗(µ) on Σ. Then the entropy of f with respect to the
partition P is defined as

hµ(f,P) := hν(σ).

Finally, the entropy of f with respect to µ is defined as

hµ(f) := sup
P
hµ(f,P).
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Sometimes hµ(f) is also called a measure-theoretic entropy14 of f , to contrast
it to the topological entropy (see §48.4).

Note in conclusion that cylinders Σn
j̄

of the partition P correspond to sets

Pj0 ∩ f−1(Pj2) ∩ · · · ∩ f−(n−1(Pjn−1
)

that form a partition

Pn := P ∨ f−1(P) ∨ · · · ∨ f−(n−1)(P).
Then we can introduce Hn(f,P) ≡ Hn

µ (f,P) := Hµ(Pn) and define the entropy
directly in terms of f , without a reference to the corresponding shift:

hµ(f,P) := lim
n→∞

Hn(f,P)
n

, hµ(f) = sup
P
hµ(f,P).

(as it is commonly done).

46.10.2. Conditional entropy. Given a finite measurable partition P and a mea-
surable set Q ⊂ X, we can define the conditional entropy Hµ(P|Q) as the entropy
of the slice of P by Q with respect to the conditional measure on Q. If we have a
second partition Q, then we can average the conditional entropy of P over all the
pieces of Q to obtain the conditional entropy:
(46.9)

H(P |Q) ≡ Hµ(P|Q) := −
∑

Hµ(P|Qi)µ(Qi) = −
∑

log µ(Pj |Qi)µ(Qi)

= −
∑

(log µ(Pj ∩Qi)− log µ(Qi))µ(Pj ∩Qi) = H(P ∨Q)−H(Q).
By Lemma 46.31, for any two finite partitions P and Q, we have:

H(P |Q) ≤ H(P),
and the equality is attained iff the partitions are independent. The intuitive mean-
ing of this statement is that the information hidden in P drops after some Q-event
happens (However, if Q is independent of P, then Q does not reveal anything about
P.) More generally, we have:

Exercise 46.33. Let us consider three finite measurable partitions: Q1 ≺ Q2,
and P. Then H(P |Q2) ≤ H(P |Q1).

Using the general notion of conditional measures, definition (46.9) can be ex-
tended to an arbitrary measurable partition Q:

Hµ(P|Q) :=
∫

X̄

Hµ(P| Q(x̄)) dµ̄(x̄) = −
∫

X

log µ(P (x)|Q(x)) dµ(x),

where X̄ = X/Q and µ̄ is the push-forward of µ to the quotient space. It can also
be written in the following forms:

(46.10) Hµ(P|Q) = −
∫

X

log µ(P (x)|Q(x)) dµ(x) =
∑

P∈P
η (µ(P |Q(x)) dµ(x).

In particular, let us consider a partition

P∞ :=

∞∨

n=0

Pn,

14In the Russian literature, it is called metric entropy.
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called the tail partition. It is measurable and invariant: f−1(P∞) ≺ P∞. Note
also that P ∨ f−1(P) = P. If P is a generator then P∞ = ε is the partition into
points, while f−1(P∞) is the partition into the fibers of f .

Proposition 46.34. Let f : (X,µ)→ (Xµ) be a measure-preserving transfor-
mation. For any finite measurable partition P, we have

hµ(f,P) = Hµ(P | f−1(P∞)) = Hµ(P∞| f−1(P∞)).

Proof. As Pn = P ∨ f−1(Pn−1), we have (skipping “µ” in the notation):

H(Pn) = H(P | f−1(Pn−1)) +H(f−1(Pn−1)) = H(P | f−1(Pn−1)) +H(Pn−1)
= H(P | f−1(Pn−1)) +H(P | f−1(Pn−2)) +H(Pn−2)

= H(P | f−1(Pn−1)) +H(P | f−1(Pn−2)) + · · ·+H(P | f−1(P)) +H(P).
Since the conditional entropies H(P | f−1(Pk)) decrease (see Exercise 46.33), they
converge to a limit, implying that

hµ(f) = lim
n→∞

1

n
H(Pn) = lim

k→∞
H(P | f−1(Pk)).

Finally, let us show that the last limit is equal to H(P | f−1(P∞)). Let Qk :=
f−1(Pk), k ∈ Z+ ∪ {∞}. By the Doob Theorem, for any P ∈ P, we have

µ(P | Qk)→ µ(P | Q∞) a.e. as k →∞.
As the function η(µ) = −µ log µ is continuous,

η (µ(P | Qk))→ η (µ(P | Q∞)) a.e. as k →∞.
as well. Moreover, as the above functions are bounded, their convergence survives
integration. This yields the desired by (46.10). �

This formula assumes a nice interpretation in case of the shift σ partitioned
into rank-one cylinders Σ1

i , particularly, if to view the string of symbols (i0i1 . . . )
as coming from the “past”, so that i0 is the last symbol we have received. Then it is
equal to the average amount of information received when the last symbol arrives,
assuming the whole infinite pre-history (i1i2 . . . ) is known.

46.10.3. Generators. Recall from §46.9.1 that ε stands for the partition into
singletons. A finte partition P is called a generator if P∞ = ε mod 0. In this
case, the coding with respect to P induces a measure-theoretic isomorphism be-
tween (f, µ) and the one-sided shift (σd, ν) endowed with some invariant measure
ν. (Of course, for the shift itself the partition P0 into the rank 1 cylinders Σ1

i ,
i ∈ {1, . . . , d}, is the generator for any measure.)

Let p(x) be the conditional probability of x in the fiber Fx := f−1(fx). It is a
positive measurable function on X. Notice that

Hµ(f
−1ε| ε) =

∫ (
−
∑

Fx

p(y) log p(y)

)
dµ(x)−

∫
log p(x) dµ(x)

Proposition 46.34 immediately implies:

Corollary 46.35. If an invariant measure µ has a generator P then

hµ(f,P) = Hµ(f
−1ε| ε) = −

∫
log p(x) dµ(x).
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We also see that the entropy hµ(f,P) is the same for all generators P. In fact,
it gives the whole entropy of f :

Lemma 46.36. If a partition P is generating then hµ(f,P) = hµ(f).

46.10.4. Radon-Nikodym Jacobian. Let us first consider a quasi-isomorphism
f : (X,µ) → (Y, ν) between measure spaces, i.e. an invertible transformation such
that f∗µ ∼ ν. The Jacobian of f is defined as the following Radon-Nikodym density

Jac f ≡ Jacµ,ν f :=
d(f∗ν)
dµ

.

(If (X,µ) = (Y, ν) then we abbreviate the notation to Jacµ f .) It satisfies the
property that for any measurable subset Z ⊂ X we have:

(46.11) ν(fZ) =

∫

Z

Jac f dµ.

Exercise 46.37. (i) Check the standard Chain Rules (almost everywhere):

Jac(f ◦ g) (x) = Jac f(gx) · Jac g(x), Jac f−1(fx) = 1/ Jac f(x).

(ii) f is an isomorphism iff Jac f ≡ 1 a.e.

Let us now consider a quasi-endomorphism f : (X,µ) → (Y, ν), i.e., a mea-
surable transformation wiith at most countable preimages such that f∗µ ∼ ν. For
such a transformation, the space X can be decomposed into a disjoint union of
measurable subsets Xi such that the restrictions f : Xi → Yi (≡ f(Xi)) are quasi-
isomorphisms. Then we let

f∗ν :=
∑

(f |Xi)
∗(ν |Yi), Jac f :=

d(f∗ν)
dµ

.

Exercise 46.38. (i) Check that this definition is independent of the choice of a
partition and so provides us with a well-defined positive (a.e.) measurable function
Jac f ≡ Jacµ,ν f(x) on X.

(ii) It is determined by property (46.11) for any subset Z ⊂ X for which the restric-
tion f : Z → f(Z) is an isomorphism .

(iii) The pullback f∗ν can also be defined by integrating over dν the homogeneous
measures

∑

x∈f−1y

δx on the fibers of f , i.e., by letting for any measurable Z ⊂ X,

(f∗ν)(Z) =
∫

Y

|Z ∩ f−1y| dν(y).

(iv) f is an endomorphism iff
∑

x∈f−1y

1

Jac f(x)
≡ 1 for a.e. y ∈ Y .

(v) If f is an endomorphism then Jac f(x) = 1/p(x) a.e. (Recall that p(x) is the
conditional measure of x in the fiber Fx.)

Putting the last property together with formula (46.35), (and Lemma 46.36)
we come up with a nice interpretation of entropy as the exponential rate of measure
expansion.
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Corollary 46.39. (i) If an invariant measure µ has a generator P then

hµ(f) =

∫
log Jacµ f dµ.

(ii) If additionally µ is ergodic then

1

n
log Jac fn(x)→ hµ(f) for a.e. x.

Proof. (ii) By the Chain Rule and the Ergodic Theorem, we have:

1

n
log Jac fn(x) =

1

n

n−1∑

k=0

log Jac f(fkx)→
∫

log Jac f dµ for a.e. x.

�

46.10.5. Shannon-McMillan-Breiman Formula. Let us first state it in the case
of shift. Recall that for an infinite string j̄ ∈ Σ ≡ Σ+

d , we let j̄n := (j0 . . . jn−1).

Theorem 46.40. Let µ be an ergodic invariant measure for the shift σ : Σ→ Σ.
Then for a.e. j̄ ∈ Σ, we have:

− lim
n→∞

1

n
log µ(Σnj̄n) = hµ(σ).

If j̄ is interpreted as an encoded infinite message, then the quantity on the
left becomes the asymptotic amount of information per symbol contained in this
message. Thus, for a typical message, this amount is equal to the entropy of the
transmission channel.

For general maps, the Shannon-McMillan-Breiman Formula assumes the fol-
lowing form:

Corollary 46.41. Let f : X → X be a transformation preserving an ergodic
measure µ, and let P be a finite measurable partition. Then for a.e., we have:

− lim
n→∞

1

n
log µ(Pn(x)) = hµ(f,P),

where Pn(x) stands for the piece of Pn containing x ∈ X.

So, the exponential rate of decay of the measures µ(Pn(x)) is equal (a.e.) to
the entropy.

Proof of the SMB Theorem. Let P be the standard generator for the shift. By
Corollary 46.39 and the Egorov Theorem, we have

1

n
log Jac fn(x)→ h ≡ hµ(f)

uniformly on a subset Z ⊂ X of measure > 1− δ, so

C−1e((h−ε)n) ≤ Jac fn(x) ≤ Ce(h+ε)n.
Take a density point x ∈ Z and let Pn ≡ Pn(x). Since fn |Pn(x) is injective, we
have

µ(Pn) ≤ 2µ(Pn) ∩ Z) ≤ 2

∫

fn(Pn)

(Jac fn(x))−1 dµ(y) ≤ 2Ce(−h+ε)n,

so eventually

− 1

n
log µ(Pn) ≥ h− 2ε
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As the integral go to h, the upper bound follows as well. QED

46.10.6. Zero entropy.

Proposition 46.42. A measure preserving endomorphism f : (X,µ)→ (X,µ)
with zero entropy is an isomorphism mod 0.

Proof. In case when µ has a (one-sided) generator, this follows immediately
from Corollary 46.35. �

46.10.7. Examples. Let us start with the Bernoulli measures µp, p ∈∆ for the
shift σ ≡ σd : Σd → Σd with d symbols (see §19.10.3). It is easy to classify these
these dynamical systems:

Proposition 46.43. Two (one-sided!) Bernoulli shifts, σ : (Σ+
d , µp → Σ+

d , µp)

and σ : (Σ+

d̃
, µp̃ → Σ+

d̃
, µp̃), are isomorphic (mod 0) iff d = d̃ and the initial proba-

bility distributions coincide up to a permutation, i.e., {p1, . . . , pd} = {p̃1, . . . , p̃d}.
Proof. The conditional distributions on σ−1(ε) for µp are equal to

µp(i | i1i2 . . . ) = pi, i = 1, . . . , d.

Since the conditonal distributions are preserved isomorphisms (mod 0), the conclu-
sion follows. �

Remark 46.44. The situation with two-sided Bernoulli shifts is much more
delicate: see the Notes below.

Proposition 46.45. We have: hµp
(σ) = H(p). In particular, hµ(σ) = log d

for the balanced measure.

Proof. Let us consider the partition P of Σ ≡ Σd into the cylinders of rank
1. Since it is generating, hµp

(σ) = hµp
(σ,P). Since the partitions σ−k(P) are

independent,

H(Pn) =
n−1∑

k=0

H(σ−k(P)) = nH(P).

The conclusion follows. �

Corollary 46.46. Let us consider two probability distributions15 p and p̃ with
different Shannon entropies: H(p) 6= H(p̃). Then the corresponding Bernoulli mea-
sures µp and µp̃ are not equivariantly isomorphic mod 0.

We also see that the balanced measure maximizes entropy among all Bernoulli
measures (with the same number of states). In fact, it remains true among all
measures:

Theorem 46.47. For any integer d ≥ 2, the balanced measure µ is the unique
measure of maximal entropy for the Bernoulli shift σ : Σ+

d → Σ+
d .

Proof. It is easy to see that µ is a mesure of maximal entropy, as for any
invariant measure ν we have:

Hν(σ,Pn) ≤ #{cylinders of rank n} = dn.

15not necessarily with the same number of states
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To prove uniqueness, let us use formula (46.35):

hν(σ) = Hν(σ
−1ε | ε) =

∫

X̄

H(p(x̄)) dν̄(x̄),

where X̄ = Σ/σ−1(P), ν̄ is the quotient measure, and p(x̄) are the conditional
probability distributions on the fibers of the natural projection X → X̄.

Each fiber of this projection contains d points, so H(p(x̄)) ≤ log d everywhere.
If ν 6= µ then p(x̄) is not the uniform distribution over some set of positive ν̄-
measure Z̄ ⊂ X̄. Hence H(p(x̄)) < log d for x̄ ∈ Z̄. It follows that Hν(σ

−1ε | ε) <
log d as well. �

Similarly, we have:

Exercise 46.48. Let σA : Σ+
A → Σ+

A be an irreducible (one-sided) Markov shift,
and let µA be its invariant balanced measure (see §19.14.5 ) . Then:

(i) hµA
(σA) = log r(A), where r(A) is the spectral radius of A;

(ii) µA is a measure of maximal entropy.

As in the Bernoulli case, µA is the unique measure of maximal entropy for σA,
but it is less obvious, and we omit this discussion for now.

46.10.8. Notes. The Dynamical Entropy Theory was founded by Kolmogorov
[K] and Sinai [Si] in the late 1950s. It is less known that some version of this notion
had appeared earlier in the unpublished Master Thesis by Arov (see [Ar]). Demon-
stration that the Bernoulli measures for two-sided(!) shifts are not all equivalent
(which was the long-standing problem of the time) was the first spectacular success
of the new theory. (Much later (around 1970) it was proven by Ornstein that the
entropy fully classfies these shifts.) Rokhlin’s survey [Ro2] from 1967 still remains
invaluable source in this field. For other accounts, see e.g., [Bi, KSF, MaE].

The measure of maximal entropy for Markov maps was identified by Parry
[Par].

47. Parapuzzle and its Principal Nest

In this section we will further refine the Renormalization Structure of the Man-
delbrot set M (see §43.5) by constructing a Generalized Renormalization Hierar-
chy of parapuzzle tilings of the last two subsets of decomposition (43.4). The
corresponding nests of parapuzzle pieces either shrink to primitive M -copies or to
combinatorial classes of non-renormalizable parameters, which will give us a sys-
tematic way of constructing these objects. An important outcome is a construction
of proper unfolded ql families that produce primitive M -copies.

47.1. Satellite dyadic tips, wakes, and decorations.

47.1.1. Description. Let us take a look at the Renormalization Decomposition
of Theorem 43.17. It begins with the main hyperbolic component ∆0 bounded by
the main cardioid N0. Attached to the main cardioid at non-zero rational points
rp/q, p/q ∈ (Q/Z)∗, are wakesWp/q. For c ∈ Wp/q, the map fc has q rays landing at
αc that are permuted with combinatorial rotation number p/q (see Corollary 37.10).
Let Rc ≡ R(αc) be this configuration of rays, and let R′c ≡ R(α′c) = f−1c (Rc) be
the symmetric configuration of rays landing at α′c = −αc.
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Figure 47.1. Chebyshev wakes attached to the tips of satellite
M -copies with rotation numbers 1/2, 2/5, 1/3 and 1/4.

Inside the parabolic limb Lp/q = (Wpar
p/q ∩M) ∪ rp/q we see the satellite copy

Mp/q of the Mandelbrot set M. Each of these copies has a Chebyshev tip t ≡ t
p/q
Ч

for which fqt (0) = αt. Under the straightening χ : Mp/q → M, it corresponds
to the Chebyshev parameter cЧ = −2 of M. Pulling back the rays landing at αt,
we obtain q rays landing at the critical value vt = ft(0). By the corresponding
parameter result (Theorem 37.35), each Chebyshev tip t is the landing point of q
parameter rays. They divide the parameter plane into q sectors, one main sector
containing 0, and q − 1 satellite Chebyshev wakes VЧ

i , i = 1, . . . q − 1 (compare
§43.4). The wake VЧ

i is dynamically specified by the property that

Fc(0) = fqc (0) ∈ S′i;c,
where S′i;c = −Si;c, i = 1, . . . , q − 1, are the lateral sectors attached to α′c (see
§24.4.3) and Fc is the accelerated map (24.2) from §24.4.3.
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More generally, for each n ∈ Z+, the satellite M -copy Mp/q has 2n−1 dyadic

tips t ≡ t
p/q,n
j , j = 1, . . . , 2n−1 − 1, for which

Fmt (0) = fqmt (0) ∈ Πt, m = 0, . . . ,n− 1, Fn
t (0) = fqnt (0) = α′t,

where Πc is the central complementary strip to the ray configuration Rc ∪ R′c.
Under the straightening χ :Mp/q →M, they correspond to the dyadic tips tnj ofM
introduced in §37.10. There are q−1 satellite dyadic wakes Vp/q,n

ij , i = 1, . . . , q−1,
attached to each of these tips in the same way as for the Chebyshev tips. The
corresponding satellite decorations are

T p/q,n
ij := (Vp/q,n

ij ∩M) ∪ {tp/q,nj }.
Exercise 47.1. Looking at the picture ofM, how to recognize rotation numbers

p/q of the bifurcation points on the main cardioid?

Let R1 ≡ R′, and let us define Rn inductively as the preimage of the ray
configuration Rn−1 by the double covering F : Π→ S0. Let An be the component
of Cr

⋃

m≤n
Rm containing 0. (As usual, sets depending on a parameter are marked

with the corresponding subscript, e.g., An
c .)

Lemma 47.2. (i) The ray configuration Rn
c moves holomorphically (under the

Böttcher motion) over the domain

Λp/q,n−1 =Wp/q r

n−1⋃

m=1

⋃

i,j

clVp/q,m,
ij

(the parabolic wake Wp/q with the closures of all the satellite dyadic wakes of level
≤ n − 1 removed). In particular, it moves holomorphically over any dyadic wake
Vp/q,n
ij , i = 1, . . . , q− 1, j = 0, . . . , 2n−1 − 1.

(ii) For c ∈ Λp/q,n, the map Fc : An
c → An−1

c is a double branched covering.

Proof. By the Wake Theorem (Corollary 37.10), the ray configuration Rc

moves holomorphically over the parabolic wake Wp/q. Since fc(0) 6∈ Rc for c ∈
Wpar

p/q, the configuration R′c = f−1c (Rc) moves holomorphically as well. Moreover,
the critical orbit fnc (0), n = 0, 1 . . . , q − 1, does not hit the latter (since these
fnc (0) stay outside the critical sector S0(αc)) (see §24.5.1) while the boundary of

the Chebyshev wakes Vp/q,1
ij is specified by the property that Fc(0) ≡ fqc (0) ∈ R′c.

By Lemma 17.10, the configuration R2
c = f−qc (R′c) moves holomorphically outside

this boundary, and hence inside Λp/q,1 (compare Exercise 37.37). Note also that
Fc : A

2
c → A1

c ≡ Πc is a double covering map for c ∈ Λp/q,1.
Proceeding inductively, assume that the configuration Rn

c moves holomorphi-
cally over the parameter domain

Λp/q,n−1 =Wp/q r

n−1⋃

m=1

⋃

i,j

clVp/q,m
ij ,

and that for c ∈ Λp/q,n−1, the map Fc is a double covering Anc → An−1
c . Then

the critical orbit fnc (0), n = 0, 1 . . . , q − 1, does not hit Rn−1
c (for the same rea-

son as above), while the boundary of the dyadic wakes Vp/q,n
ij is specified by the

property that Fc(0) ∈ Rn
c . Applying Lemma 17.10 once again, we conclude that
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the configuration Rn+1
c = F−1c (Rn

c ) moves holomorphically outside this boundary,
and in particular, it moves holomorphically over Λp/q,n. Also, for c ∈ Λp/q,n, the
map Fc : An+1

c → An
c is obtained from Fc : A

n
c → An−1

c by restricting the latter to
An+1
c = F−1c (An

c ), which yields a double covering. �

Problem 47.3. Show that the straightening homeomorphism χ :Mp/q → M
admits a continuous extension to a map C → C that collapses each satellite wake
(attached to the satellite dyadic tip t

p/q, n
j ) to the ray R(2j−1)/2n

par landing at the cor-

responding dyadic tip tnj = χ(t
p/q, n
j ). (It can be called a “sectorial Devil Staircase”.)

Let c◦ ≡ c◦(p/q) ∈Mp/q be the center of the satellite M -copy. It is contained
in all the domains Λp/q,n−1, so we can center the Böttcher motion hc : R

n
◦
→ Rn

c

over this domain at c◦.

Lemma 47.4. The point h−1c (Fn+1
c (0)) runs once over the boundary of the

sector S0;◦ as c runs over the boundary of any satellite dyadic wake Vp/q,n
ij .

Proof. Let us fix some wake V ≡ Vp/q,n
ij rooted at a tip t. Let R±par be the

parameter rays that bound V. At the tip, the corresponding dynamical rays R±t
(with the same angles as R±par) land at the critical value vt = ft(0) (= t) bounding
a sector S(vt) (see Theorem 37.35). Moreover, under fqnt , this sector is univalently
mapped onto the lateral sector Si; t. For c ∈ ∂V the critical value vc = fc(0) (= c)
belongs to one of the dynamical rays R±c .

Let us consider the corresponding dynamical rays R±
◦

for the base map f◦.
They land at some preimage w◦ of α◦ of order qn bounding a sector S(w◦) (where
w◦ is not the critical value anymore, but it corresponds to vt under the Böttcher
motion, vt = ht(w◦).) Moreover, under Fn

◦
◦ fq−1◦ , the sector S(w◦) is univalently

mapped onto the sector S0;◦.
By the Phase-Parameter Relation (Lemma 34.9), the point h−1c (vc) runs once

over the boundary of the sector S(w◦) as c runs over the boundary of the dyadic
wake V. Since the Böttcher motion is equivariant, the point

h−1c (Fn+1
c (0)) = h−1c (Fn

c ◦ fq−1c (vc)) = Fn
◦
◦ fq−1

◦
(h−1c (vc)), c ∈ ∂V,

runs once around the boundary of S0;◦. �

47.2. Motion of the initial tiling.

47.2.1. Motion of the truncated satellite wakes. Let select an equipotential level
t > 0 that will serve as the initial equipotential for the Yoccoz puzzle (so the puzzle

pieces Y 0
i;c ≡ Y

(0)
i;c of zero depth tile the subpotential domain Σc(t)). Then puzzle

pieces Y (n)
i,c of depth n tile the subpotential domain Σ

(n)
c := Σc(t/2

n). By the
Phase-Parameter Relation, these domains move holomorphically over the parameter
subpotential domain Σpar(t/2

n−1). Moreover, letting Σ
(n)
par := Σpar(t/2

n), we have:

vc ∈ ∂Σ(n)
c for c ∈ ∂Σ(n)

par (where of course, vc = c for the quadratic family).
For a map fc with escaping time n, recall the initial tiling combining (31.22)

and (31.25):

(47.1) Y 0
c =

ess
V 0
c ∪ (Q1; c ∪Q2; c) ∪

n+1⋃

m=1

⋃

ij

Zmij; c
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endowed with the accelerated Markov map (31.26)

(47.2) Gc : V
0
c ∪ (Q1; c ∪Q2; c) ∪

n+1⋃

m=1

⋃

ij

Zmij; c → Y 0
c .

We let γ(c) := Gc(0) be the corresponding accelerated critical value.
Let us define the truncated parabolic wake of depth n as W(n)

p/q = Wp/q ∩ Σ
(n)
par.

The truncated parabolic wake of level m ≤ n is defined as

Wm
p/q =W(qm)

p/q (note that qm = depthY mc + q− 1).

It is dynamically specified by the property that Fc(0) ≡ fqc (0) ∈ Y mc .

Similarly, take a satellite dyadic wake V ≡ Vp/q,n
ij and truncate it by the equipo-

tential E(l)par of depth l ≡ lnij := depthZn
ij; c+ q− 1 (which is the same for all c ∈ V).

The truncated wake Vtr ≡ Vp/q,n
ij; tr is dynamically specified by the property that

Fc(0) ∈ Zn
ij; c, see (31.23).

Exercise 47.5. Check that the dyadic labeling of the pieces Zn
ij; c by j ∈

{0, 1}n−1 (see Remark 31.19) matches with the labeling of the corresponding wakes
Vp/q,n
ij .

For a parameter set V ⊂ C, we let

Y0| V :=
⋃

c∈V
Y 0
c .

Lemma 47.6. The boundary of the initial tiling (47.1) moves holomorphically
over any truncated satellite wake Vtr ≡ Vp/q,n

ij; tr . Moreover, the accelerated critical
value γ(c) := (c, γ(c)) is a proper map γ : Vtr → Y0| Vtr with winding number one.

Proof. Let us first consider pieces Zmij; c of level m ≤ n, together with the puz-
zle piece Y n. By Lemma 47.2, the ray part of their boundary moves holomorphically
over the wake Vtr. Also, the equipotentials of level ≥ n move holomorphically over
the subpotential domain Σ

(n)
par. Hence the equipotential boundary of these puzzle

pieces moves holomorphically over Vtr as well.
All other pieces of the initial tiling are pullbacks of the pieces Zn

j; c and Y n
c by

the map Fc|Y n
c . For c ∈ Vtr, the boundary of the latter pieces is not crossed by

the critical value γ(c) = Fc(0). By Lemma 17.10, all the pieces in question move
holomorphically over Vtr.

Furthermore, by the Phase-Parameter Relation, vc ∈ E(l)c as c ∈ E(l)par. Hence

fq−1c (vc) ∈ E(d)c , where d = depthZn
ij; c, and Fn

c (f
q−1
c (vc)) ∈ E(0). Thus,

γ(c) = Gc(0) = Fn+1
c (0) = Fn

c (f
q−1
c (vc)) ∈ E(0).

It follows that if c belongs to the equipotential piece of ∂Vtr the γ(c) belongs to
the equipotential piece of ∂Y 0

c . On the other hand, if c belongs to the radial part
of ∂Vtr then γ(c) belongs to the radial part of Y 0

c , by Lemma 47.4. The conclusion
follows. �
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Figure 47.2. Generalized quadratic-like family.

47.3. Generalized quadratic-like families. We let π : C2 → C be the
projection to the first coordinate.

In what follows, we will refine the structure of the satellite dyadic limbs ac-
cording to the combinatorics of the Principal Nest. To this end, we need a notion
of generalized ql family.

Let us consider a topological disc Λ ⊂ C with a base point λ◦ ∈ D, and a
family of topological bidisks Vi ⊂ U ⊂ C2 over Λ (tubes), such that the Vi are
pairwise disjoint. We assume that V0,λ ∋ 0. Let

(47.3) g :
⋃

Vi → U

be a fiberwise map that admits a holomorphic extension to some neighborhoods of
the Vi and whose fiber restrictions

g(λ, ·) ≡ gλ :
⋃

i

Vi,λ → Uλ, λ ∈ Λ,

are generalized quadratic-like maps with the critical point at 0 ∈ Vλ ≡ V0,λ (see
§31.3.1). We will assume that the discs Uλ and Vi,λ are bounded by piecewise
smooth quasicircles.

Let us also assume that there is a holomorphic motion h over (Λ, λ◦),

(47.4) hλ : (Ū◦,
⋃

i

∂Vi,◦)→ (Ūλ,
⋃

i

∂Vi,λ),

which respects the boundary dynamics:

(47.5) hλ ◦ g◦(z) = gλ ◦ hλ(z) for z ∈
⋃
∂Vi,◦.

A generalized quadratic-like family (g,h) over Λ is a map (47.3) together with a
holomorphic motion (47.4) satisfying (47.5). We will sometimes reduce the notation
to g. In case when the domain of g consists of only one tube V0, we obtain a DH
quadratic-like family in the sense of §42.1.

Remark 47.7. It would be more consistent to call just g a holomorphic family,
while to call the pair (g,h), say, an equipped holomorphic family. However, in this
section we will assume that the families are equipped.
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Let us now consider the valuable section

γ(λ) ≡ γg(λ) = gλ(0), γ(λ) ≡ γg(λ) = g(λ, 0) ≡ (λ, γ(λ)).

Let us say that g is a proper (or full) holomorphic family if the fibration π : U→ Λ
admits an extension to the boundary Λ̄, V̄i ⊂ U, and γ : Λ→ U is a proper section.
Note that the fibration π : V0 → Λ cannot be extended to Λ̄, as the domains Vλ,0
pinch to figure-eights as λ approaches ∂Λ.

Given a proper holomorphic family g of generalized quadratic-like maps, let us
define its winding number w(g) as the winding number of the critical value γ(λ)
about the critical point 0. By the Argument Principle, it is equal to the winding
number of the critical value about any section Λ̄→ U.

Let modg = infλ∈Dmod(Uλ r V0,λ).

We also face the situation when g does not map every tube Vi onto the whole
tube U but still satisfies the following Markov property: g(Vi) either contains Vj or
disjoint from it (and all the rest properties listed above are still valid, see §47.2.1).
Then we call g a holomorphic family of Markov maps.

47.4. First generalized quadratic-like family. In what follows, the pa-
rameter will be denoted λ instead of c. Fix a truncated satellite dyadic wake Vtr.
The first generalized quadratic-like map g1,λ :

⋃
V 1
i,λ → V 0

λ is defined as the first
return map to V 0

λ (see §31.5). The itinerary of the critical point via the pieces of the
initial tiling (47.1) determines the parameter tiling D1 of Vtr by the corresponding
puzzle pieces. Let ∆1(λ) stand for such parapuzzle piece containing λ.

More precisely, for any λ ∈ Vtr, let us consider the first landing map

Lλ :
⋃
Xī,λ → V 0

λ

(see §31.2.1). The puzzle piece Xī;λ is specified by its itinerary ī = (i0, . . . , is−1)
under iterates of the accelerated Markov map Gλ (47.2) through non-central pieces
Pi of the initial tiling16 until the first landing in V 0

λ :

(47.6) Xī;λ = {z : Gkλ(z) ∈ Pik;λ, k = 0, . . . , s− 1, Gsλ(z) ∈ V 0
λ }.

These tiles are organized in foliated tubes Xī (endowed with holomorphically mov-
ing boundary). Moreover, the first landing map induces a foliated diffeomorphism
L : Xī → V0 fibered over id.

Let īλ stand for the itinerary of the accelerated critical value γ(λ) = Gλ(0)
through the initial tiling, so that, Gλ(0) ∈ Xīλ,λ. For a base point λ◦ ∈ Vtr (which
can be selected arbitrarily) , we let X◦ ≡ Xī◦ . Then the parapuzzle piece of the
tiling D1 centered at λ◦ is defined as follows:

∆1(λ◦) = γ−1(X◦) = {λ ∈ Vtr : Gλ(0) ∈ Xī◦,λ}.
Let V1

j denote the components of G−1(Xī|∆1(λ◦)) contained in V0, where V1
0 ≡ V1

is the critical component (i.e., the one containing 0). The first return map

g1 = L ◦G :
⋃

V1
j → V0 ≡ U1

is the desired first generalized renormalization of f .
By means of the first landing map L, the holomorphic motion h over V can be

lifted to the boundary of the tubes Xī. By the λ-lemma, this lift and the motion h

of the boundary of the initial tiling (47.1) admit a common extension H0 over Vtr.

16Here we switch to a homogeneous notation Pi for the pieces of the initial tiling.
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Since the critical value γ(λ) lands at the tube X◦ as λ ranges over ∆1(λ◦), H0

can be lifted to a holomorphic motion of the annulus V 0
λ r V 1

λ over ∆1(λ◦). Let
us extend this motion to V 1

λ by the λ-lemma. This provides us with a motion h1

which equips the generalized quadratic-like family g1.
Since the winding number of γ around Y0

j over Vtr is equal to 1 (by Lemma
47.6), the function γ : ∆1(λ◦) → X◦ is proper with winding number 1. Since
the first landing map L is a fiberwise diffeomorphism of every tube Xī onto V0,
it induces a homeomorphism between the marked tori δLj̄ → δV0. Hence the
function γ1(λ) = (λ, Lλ ◦ γ(λ)), ∆1(λ)→ V0, is also proper with winding number
one. Thus, we obtain:

Lemma 47.8. The first generalized renormalization

(g1 :
⋃

V1
j → V0 ≡ U1,h1)

is a proper family with winding number one over ∆1(λ◦).

47.4.1. Appendix: Extra parameter space. Together with the tubes (47.6) let
us also consider bigger tubes Wī over Vtr defined as follows. Let Pir,λ = Xk

j,λ be
the first “X-piece" in the itinerary {Pim}sm=0. Then

(47.7) Wī,λ = {z : Gmλ z ∈ Pim,λ, m = 0, . . . , r − 1, Grλ(z) ∈ Ωkj,λ},
where the domains Ωkj,λ are defined at the end of §47.2.1. Then

(47.8) Grλ :Wī,λ → Ωkj,λ, Gs−rλ : Ωkj,λ → Y
(1+(t−1)p)
λ ,

and both maps are univalent isomorphisms. Thus Gs : Wī → Y(1+(n−1)p) is a
fiberwise conformal bundle diffeomorphism fibered over id.

Hence the holomorphic motion of Y(1+(n−1)p) (see Lemma 47.6) can be lifted
to holomorphic motions of the Wī. Let W◦ ≡ Wī◦ , where ī◦ is the itinerary of
the critical value γ(λ◦) = G◦(0) through the initial tiling. Let us introduce the
following parameter domains in Vtr:

(47.9) Λ1(λ◦) = γ−1W◦ = {λ : γ(λ) ∈W◦,λ} ⊃ ∆1(λ◦).

Thus for λ ∈ Λ1(λ◦), the critical value γ(λ) has the same itinerary through the
initial tiling as the critical value γ(λ◦), except for the last moment s, when the

former lands somewhere in Y
(1+(n−1)p)
λ . This extension of ∆1(λ◦) will be used for

a priori bounds on the parameter geometry.

47.5. Renormalization of holomorphic families. Let us now consider a
generalized quadratic-like family (g :

⋃
Vi → U,h) over (Λ, λ◦). Let I stand for

the labeling set of tubes Vi. Remember that I ∋ 0 and V0 ∋ 0. Let I# stand for
the set of all finite sequences ī = (i0, . . . , it−1) of non-zero symbols ik 6= 0. For any
ī ∈ I#, there is a tube Vī such that

gk(Vī) ⊂ Vik , k = 0, . . . , t− 1 and gtVī = U.

We call t = |̄i| the rank of this tube. The map gt : Vī → U is a holomorphic
diffeomorphism which fibers over id, so gtλ(Vī,λ) = Uλ, λ ∈ Λ.

Let us lift the holomorphic motion h of U to a holomorphic motion ĥ of the
Vī:

gtλ ◦ ĥī,λ(z) = hλ(g
t
◦
z), z ∈ Vī,λ◦

.
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Note that by (47.5) it coincides with h on the ∂Vi.
Let Xī ⊂ Vī be such a tube that gt(Xī) = V0, where t = |̄i|. The first landing

map L :
⋃
Xī → V0 is defined as L|Xī = gt. It is a holomorphic diffeomorphism

fibered over id. Extend the holomorphic motion ĥλ to the tubes Xī by pulling it
back from V0 by L. Then extend it by the λ-lemma to the whole tube U keeping
it unchanged on the boundaries ∂U,∪⋃ ∂Vī.

Let γ(λ) = gλ(0) and γ(λ) = (λ, γ(λ)). For a base point λ◦, let ī◦ be the
itinerary of the critical value γ(λ◦) under iterates of g◦ through the domains Vi,◦,
until its first return to V0,◦. In other words, let g◦(0) ∈ Xī◦ ≡ X◦.

Let us now consider the following parameter region around λ◦:

Λ′ ≡ Λ′(λ◦) = γ−1(X◦).

For λ ∈ Λ′, the itinerary of the critical value under iterates of gλ until the first
return back to V0;λ is the same as for g◦ (that is, ī◦). Let us define new tubes
V′j ⊂ V0 as the components of (g|V0)

−1(Xī|D′). Let

(47.10) g′ :
⋃

V′j → V0 |Λ′ ≡ U′

be the first return map of the union of these tubes to V0.
For λ ∈ Λ′, the critical value γ(λ) does not intersect the boundaries of the the

tubes Xī. Hence we can lift the holomorphic motion on U rX◦ to a holomorphic
motion h′ on U′ rV0 over Λ′ and extend it by the λ-lemma to the whole tube U′.
Thus we obtain a generalized quadratic-like family (g′,h′) over Λ′ which will be
called the generalized renormalization of the family (g,h) (with base point λ◦).

If g is a proper family then g′ is clearly proper as well. Moreover, w(g′) = 1
if w(g) = 1. Indeed, by the Argument Principle the curve γ|La′ intersects once
every leave of ∂L◦. Hence it has winding number one about this tube. As the
first landing map L : X◦ → V0 is a fiber bundles diffeomorphism, it preserves the
winding number. Thus the new critical value γ′ : Λ′ → U′, γ′ = L ◦ γ, has also
winding number one.

Let us summarize the above discussion:

Lemma 47.9. Let g :
⋃
Vi → U be a generalized quadratic-like family over

(Λ, λ◦). Assume it is proper and has winding number one. Then its generalized
renormalization g′ :

⋃
V′j → U′ over Λ′ is also proper and has winding number

one.

47.6. Central cascades. In this section we will describe the renormalization
of a generalized quadratic-like family through a central cascade, which will be then
treated as a single step in the procedure of parameter subdivisions. Let us consider
a holomorphic family (g :

⋃
Vi → U,h) of generalized quadratic-like maps over

(∆, λ◦). We will now subdivide ∆ according to the combinatorics of the central
cascades of maps gλ (see §31.8). To this end let us first stratify the parameter values
according to the length of their central cascade. This yields a nest of parapuzzle
pieces

∆ ≡ D ⊃ D′ ⊃ · · · ⊃ D(N) ⊃ . . .
For λ ∈ D(N), the map gλ has a central cascade

(47.11) V
(0)
λ ≡ Uλ ⊃ Vλ ≡ V (1)

λ ⊃ · · · ⊃ V (N)
λ
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of length N , so that gλ(0) ∈ V (N−1)
λ r V

(N)
λ . Note that the puzzle pieces V (k)

λ are
organized into the tubes V(k) over D(k−1) (with the convention that D(−1) ≡ D).

The intersection of these puzzle pieces,
⋂
D(N), is the little Mandelbrot set

M(g) centered at the superattracting parameter value c = c(g) such that gc(0) = 0.
Let us call c the center of D.

Let λ◦ ∈ D(N−1) rD(N). Let us consider the Bernoulli map

(47.12) G :
⋃

Wj → U

associated with the cascade (47.11). Here the tubes Wj over D(N−1) are the
pull-backs of the tubes Vi|D(N−1), i 6= 0, by the covering maps

(47.13) gk : (V(k) rV(k+1))|D(N−1) → (Ur V)|D(N−1), k = 0, 1 . . . , N − 1.

In the same way as in §47.5, to any string j̄ = (j0, . . . , jt−1) corresponds the
tube over D(N−1),

Wj̄ = {p ∈ U|D(N−1) : Gnp ∈Wjn , n = 0, . . . , t− 1}.
Note that Gt univalently maps each Wj̄ onto U|D(N−1). Thus Wj̄ contains a tube
Xj̄ which is univalently mapped by Gt onto the central tube V(N). These maps
altogether form the first landing map to V(N),

(47.14) L :
⋃

Xj̄ → V(N).

Remark. Note that

(47.15) mod(Wj̄,λ rXj̄,λ) = mod(Uλ r V
(N)
λ ) ≥ mod(Uλ r Vλ),

since Gtλ univalently maps the annulus Wj̄,λ rXj̄,λ onto Uλ r V
(N)
λ .

Let us now consider the itinerary j̄◦ of the critical value γ(λ◦) ≡ g◦(0) through
the tubes Wj until its first return to V (N), so that γ(λ◦) ∈ Xj̄◦ ≡ X◦. Let
W◦ ≡Wj̄◦ and

(47.16) ∆⋄(λ◦) = γ−1X◦, Λ⋄(λ◦) = γ−1W◦.

Thus, the annuli D(N−1) rD(N) are tiled by the parapuzzle pieces ∆⋄(λ) ac-
cording as the itinerary of the critical point through the Bernoulli scheme (47.12)

until the first return to V (N)
λ . Altogether these tilings form the desired new subdi-

vision of ∆. (Note however that the new tiles do not cover the whole domain ∆:
the residual set consists of the Mandelbrot set M(g) and of the parameter values

λ ∈ D(N−1) rD(N) for which the critical orbit never returns back to V (N)
λ .)

The affiliated quadratic-like family over ∆⋄(λ◦) is defined as the first return

map to V
(N)
λ ≡ U⋄λ . Its domain

⋃
V⋄i is obtained by pulling back the tubes Xj̄

from (47.14) by the double branched covering g : V(N) → V(N−1)|∆⋄(λ◦), and the
return map itself is just L ◦ g.

The affiliated holomorphic motion is also constructed naturally. Let us first lift
the holomorphic motion h from the condensator UrV to the condensators (V(k)r

V(k+1))|D(N−1) via the coverings (47.13). This provides us with a holomorphic
motion of (UrV(N),

⋃
Wj) over D(N−1). Extend it through V(N) by the λ-lemma,

lift it to the tubes (Wj̄ ,Xj̄) and then extended again by the λ-lemma to the whole
domain U over DN−1. Let us denote it by H.
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Lifting this motion via the fiberwise analytic double covering over ∆⋄(λ◦),

g : (U⋄ rV⋄,
⋃

i6=0

V⋄i )→ (V(N−1) rX◦ ,
⋃

j̄ 6=j̄◦

Xj̄),

we obtain the desired motion of (U⋄ rV⋄,
⋃
i6=0 V

⋄
i ) over ∆⋄(λ◦). By the λ-lemma

it extends through V⋄0.

47.7. Principal parapuzzle nest.
47.7.1. Top renormalization level. Let us now summarize the above discussion.

First, we consider the tiling D1 of a truncated satellite dyadic wake Vtr as described
in §47.4. Each tile ∆ ∈ D1 comes together with a generalized quadratic-like family
(g∆,h∆) over ∆.

Now assume inductively that we have constructed the tiling Dl of level l. Then
the tiling of the next level, Dl+1 is obtained by partitioning each tile ∆ ∈ Dl by
means of the cascade renormalization as described in §47.6.

Let ∆l(λ) stand for the tile of Dl containing λ, while ∆l(λ) ⊂ Λl(λ) ⊂ ∆l−1(λ)
stand for the other tile defined in (47.16). Each tile ∆ = ∆l(λ) contains a central
subtile Πl(λ) = γ−1∆ V0 corresponding to the central return of the critical point (here
γ∆(λ) = (λ, γ∆(λ))). Note that Πl(λ) may or may not contain λ itself.

Let us then consider the sequence of renormalized families (gl,λ,hl,λ) over topo-
logical discs ∆l(λ). We call the nest of topological discs ∆0 ⊃ ∆1(λ) ⊃ ∆2(λ) ⊃ . . .
(supplied with the corresponding families) the principal parapuzzle nest of λ. This
nest is finite if and only if λ is renormalizable. Moreover, in this case the last
generalized renormalization of the nest is a full unfolded ql family that produces a
primitive M -copy corresponding to the first DH renormalization of f . If λ is not
renormalizable, then

⋂
∆l(λ) is equal to the combinatorial class C(λ). It will be

shown in vol III that in fact diam∆l(λ) → 0 in this case, so non-renormalizable
parameters are rigid.

Let cl,λ ∈ ∆l(λ) be the centers of the corresponding parapuzzle pieces. Let us
call them the principal superattracting approximations to λ. If λ is not renormaliz-
able, then cl,λ → λ as l→∞, (since the ∆l(λ) shrink).

The mod(∆l(λ)r∆l+1(λ)) are called the principal parameter moduli for λ.

47.7.2. Deeper renormalization levels. The above discussion can be repeated
for any M -copy M′ ⊂ M. (corresponding to n-fold renormalization). It contains
the main hyperbolic component ∆′0 bounded by the main cardioid N ′ ofM′. At-
tached to N ′, are wakes W ′p/q ofM′. The appropriate periodic ray portrait moves
holomorphically (under the Böttcher motion) in this wake. so it can be further
used to construct the parapuzzle that refines W ′p/q. The corresponding parapuzzle
pieces either shrink to little M -copiesMi” corresponding to the (n+1)-fold renor-
malization (including the satellite copy attached at the bifurcation point c′(p/q)),
or to the combinatorial classes of maps that are exactly n times renormalizable.

If a parameter c ∈ M is infinitely renormalizable then its combinatorial class
C(c) is the equal to the intersection of the infinite nest M1 ⊃ M2 ⊃ . . . of little
copies corresponding to various renormalizations of fc. Thus, we ultimately obtain
a nest of principal parapuzzle pieces of various renormalization levels shrinking to
the combinatorial class of c.

In all cases, we obtain:
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Theorem 47.10. For any c ∈M, there is a canonical nest of parapuzzle pieces
∆n,l(c) shrinking to either the combinatorial class C(c) (if c is periodically repelling),
or to the little M -copy M′(c) such that c belongs to the closure of the main com-
ponent, c ∈ cl∆′0 (if c has a non-repelling cycle).

47.7.3. Parapuzzle for a ql family. The above construction works well combi-
natorially, but it does not capture geometry of little M -copiesMn of deep level. To
this end, we need a priori bounds for the sequence of ql families (gn,hn) producing
the little copies Mn.

Indeed, due to the straightening, the above discussion can be adapted for any
full unfolded ql family (g,h) instead of the polynomial quadratic family. All what
is needed is to select a tubing of the family and to replace the Böttcher motion with
tubing motion. The corresponding parapuzzle pieces essentially coincide with the
combinatorial pieces discussed above (i.e., their intersections with the Mandelbrot
set M(g) are the same).17 So, they produce the same little M -copies and the
combinatorial classes inside M(g).

In vol III we will show that the geometry of the maximal primitive M -copies in
M(g) depends only on the geometry of the family (g,h). Hence, in the infinitely
primitively renormalizable case with a priori bounds (for the families (gn,hn)), we
obtain a uniform control on the geometry of all the M -copies on all renormalization
levels.

47.8. MLC at primitive roots.

Theorem 47.11. The Mandelbrot set is perfectly rigid (and hence locally connected)
at any neutral point. Moreover,

• There is a single access to any neutral irrational point;

• There are two accesses to any parabolic point except the cauliflower (which has
only one access).

Proof. Due to Lemma 37.23, we only have to deal with the primitive roots r

of hyperbolic components. Let M be the little M -copy rooted at r. Assume first
it is maximal. Then there is a nest of parapuzzle pieces shrinking to M . It follows
that the body Br of M (i.e., the branch of M at r containing 0) is rigid at r. By
Lemmas 9.19 (iii) and 9.20,M is rigid at r.

Moreover, since preperiodic parameter are well branched (Proposition 37.38),
M is perfectly rigid at r (see Exercise 9.15).

�

47.9. Combinatorial model for M.

47.9.1. Combinatorial classification of quadratic polynomials (prelimenary version).
Given a hyperbolic component ∆ of intM, we call ∆∪{r∆} the rooted hyperbolic
component (recall that r∆ ∈ ∂∆ stands for the root of ∆). We also let ∂irr∆ be
the set of boundary parameters c ∈ ∂∆ with irrational rotation number.

Let us summarize our current understanding of the combinatorial classes in the
quadratic family:

17However, the boundary of these parapuzzle pieces can cross the original big Mandelbrot
set M in a wild way.
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Theorem 47.12. Any combinatorial class C(c◦) ⊂M is of one of the following
types:

• If c◦ is not periodically-repelling, then C(c◦) is equal to the rooted hyperbolic
component ∆◦ ∪ {r◦} union ∂irr∆◦ (containing c◦).

• For postcritically non-recurrent c◦, we have rigidity: C(c◦) = {c◦}.
• For c◦ periodically repelling, poscritically recurrent, and exactly m times renor-
malizable (m ∈ N), the combinatorial class C(c◦) is equal to the interesection of the
Principal Parapuzzle Nest

Υ0(c◦) ⊃ Υ1(c◦) ⊃ Υ1(c◦) ⊃ . . .
of the M -copy M[m] containing c◦.

• For infinitely renormalizable c◦, the combinatorial class C(c◦) is equal to the
intersection of the nest

M≡M [0] ⊃M [1](c◦) ⊃M [2](c◦) ⊃ . . .
of the little M -copies containing c◦.

Moreover, in the two latter cases, C(c◦) is either a hull or a singleton.

47.9.2. Minor lamination. The characteristic (or minor) lamination is a geo-
desic lamination in D obtained by taking the closure of the set of all characteristic
leaves of all parabolic quadratic polynomials except the cauliflower (or equivalently:
of all superattracting polynomials except f0(z) = z2). This is a lamination indeed
since these levels correspond to the cut-lines through all parabolic points in ques-
tion.

The quotient of C modulo the characteristic lamination is called the combina-
torial model for M (embedded into C). The following result justifies this name:

Theorem 47.13. The following properties are equivalent:

Shrinking: All nests of parapuzzle pieces around Yoccoz parameters and all nests
of little M -copies shrink;

MLC: The Mandelbrot set M is locally connected.

Under these circumstances, M is ambiently homeomorphic to its combinatorial
model.

Proof. The shrinking property implies MLC by Corollary 9.9.
Vice versa, assume M is locally connected. If it is not homeomorphic to the

model, then there is a non-singleton combinatorial class C ≡ C(c◦). Such a class
is a continuum. Since M is locally connected, all points of C are landing points
for some rays, so there exist uncountably many rays accumulating into C. This
contradicts Lemma 38.3.

Let us prove the last assertion. Assuming M is locally connected, we want to
approximate any Green cut-line L by a cut-line through a parabolic point. Since
parabolic points are the only cut-points on the boundaries of hyperbolic compo-
nents, we can assume that L cuts M at a periodically repelling point. Such a
cut-line is approximated by vertical boundary cut-lines of puzzle pieces. The lat-
ter cutM through preperiodic parameters. In turn, they are approximated by the
cut lines through parabolic parameters (Proposition 43.23).

�
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In fact, the combinatorial model is useful even without MLC:

Theorem 47.14. There is a continuous surjection π :M→Mcom whose fibers
are either singletons or combinatorial classes of periodically repelling points.

47.9.3. Landing of rays: summary. Let us finish by summarizing our current
knowledge on the behavior of the parameter rays:

Theorem 47.15. Let us consider a parameter ray Rθpar ⊂ C rM. Then we
have the following possibilities:

(i) For θ ∈ Qodd/Z, the ray Rθpar lands at a parabolic point cθ. Moreover, for
θ 6= 0, there are two rays landing at cθ. (Of course, R0 is the only ray landing at
the main cusp c0 = 1/4.)

(ii) For θ ∈ Qev/Z, the ray Rθpar lands at a critically preperiodic point cθ. Moreover,
there are finitely many rays landing at cθ.

(iii) For θ ∈ (RrQ)/Z with a non-polygonal lamination Lθ, the ray Rθpar lands at
an irrational point cθ of the boundary of some hyperbolic component. Rθpar is the
only ray landing at cθ, and the corresponding lamination is tuned rotational.

(iv) For θ ∈ (RrQ)/Z with a polygonal lamination Lθ, the ray Rθpar accumulates
into a combinatorial class Comθ of periodically repelling, but non-Misiurewicz, pa-
rameters. Moreover, there are at most two such rays, and the combinatorial model
of the corresponding Julia sets, Lcom(fc) for c ∈ Comθ, is equal to Lθ.

Proof. Part (i) is the content of Lemma 37.7 and Theorems 37.8, 47.11 . Part
(ii) is the content of Theorem 37.35.

By Theorem 32.10, any periodically repelling combinatorial class Com has a
polygonal lamination L, while by Lemma 38.3, L = Lθ for any ray Rθ accumulating
on Com, and, for an irrational θ, there are at most two such rays.

On the other hand, by Proposition 37.17, any neutral irrational parameter c◦ is
the landing point of a single ray Rθpar. Moreover, this ray is approximated near ∞
by rational rays Rθnpar (bounding approximating wakes) such that the corresponding
dynamical rays Rθnc , c ∈ Rθnpar, are rotational. It follows that Rθc is also rotational
for c ∈ Rθpar. It generates a tuned rotational (and hence non-polygonal) lamination
(see Problem 32.42).

The conclusions follow. �

47.10. Preview of the further theory. In the next volume we will prove
the following result:

Theorem 47.16. The nest of parapuzzle pieces around any non-renormalizable
parameter c ∈ Y0 shrinks.

This implies MLC at any parameter c ∈ Y0. Refining it further and combining
with Theorem 47.11, we will obtain:

Theorem 47.17. The Mandelbrot set is locally connected at any parameter
c ∈M which is not infinitely renormalizable.

This will reduce the MLC Conjecture to the following problem:

Conjecture 47.18. Any infinite nest of little M -copies

M⊃M [1] ⊃M [2] ⊃ . . .
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shrinks: diamM [n] → 0.

The corresponding real conjecture is established:

Theorem 47.19. Any infinite nest of real renormalization intervals

MR ⊃M [1]
R ⊃M

[2]
R ⊃ . . .

shrinks: diamM
[n]
R → 0.

This implies the Real Combinatorial Rigidity and Density of Real Hyperbolicity
in the quadratic family (see §38.3).

In conclusion, let us mention the measure-theoretic counterpart of Theorem 47.17:

Theorem 47.20. The set of at most finitely renormalizable parameters c ∈M
has zero area.

This reduces the ABM Conjecture asserting that area(∂M) = 0 (see §38.2) to
the collowing one:

Conjecture 47.21. The set of infinitely renormalizable parameters c ∈ M
has zero area.

Let us give some evidence in favor of this conjecture. As computer experiments
indicate, all little Mandlebrot copies M are not much distorted, giving a reason
to believe that all of them are uniformly K−qc equivalent to the big set M (after
some truncations at their roots, in the satellite case). This would immediately
imply shrinking of the copies (Conjecture 47.18), but would also imply that the
main hyperbolic component of each M represents a definite gap in ∂M . So, near
infinitely renormalizable parameters, ∂M would have gaps in arbitrary small scales.

48. More of topological and combinatorial fun

File: fun.tex. Under construction

We will finish with some fun stuff which does necessarily not belong to the
mainstream theme of this book. We will not be shy applying the deep theory
developed so far, though all of the results below can be obtained by elementary
means. The reader can further entertain himself by trying to develop an elementary
(and more general) theory himself, or to consult other sources.

48.1. Sharkovsky scale. Here is a remarkable order on the set Z+ discovered
by Sharkovsky:

3 ≻ 5 ≻ 7 ≻ . . .
≻ 2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ . . .
≻ 4 · 3 ≻ 4 · 5 ≻ 4 · 7 ≻ . . .

. . . . . . . . .

:

:

≻ 4

≻ 2

≻ 1.
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Sharkovsky Theorem. If a continuous map f : R→ R has a periodic point
of (exact) period p ∈ Z+, then it has a periodic point of all periods that follow p in
the Sharkovsky order. Moreover, any set P of periods with the property18

p ∈ P, p ≻ q =⇒ q ∈ P

can be realized by some continuous map f : R → R (in fact, by a quadratic
polynomial).

For instance, the final column of the Sharkovsky scale (with periods 2n) is
represented by quadratic polynomials fc going through the period doubling bifur-
cations.

It is striking that factor 2 plays some special role. In fact, one can observe
that the scale is self-similar: by chopping off the first and the last rows (altogether
comprising all odd number) and dividing by 2, we get the original scale back. As we
will see momentarily, this feature is directly related to the doubling renormalization.

We also see that period 3 is the strongest one: it forces all other periods to
exist. It is famously expressed by the title of the Li-Yorke paper: “Period three
implies chaos”.

Exercise 48.1. Prove that the airplane has periodic points of all periods. (Re-
call that the airplane is the real quadratic polynomial that has a superattracting
cycle of period 3.)

Proof for the quadratic family. Let us orient the parameter interval [−2, 1/4]
from 1/4 to −2, and accordingly write c ⊲ c′ if c farther from 1/4 than c′ .

For p ∈ Z+, let cp ∈ [−2, 1/4] be the first moment when the periodic orbit of
period p appears on the real line. We know that it happens through the saddle-
node bifurcation, one orbit in a time. Moreover, by Proposition 37.29, once this
happened, the orbit stays forever. It follows that the linear order of the points cp
induces the forcing order on the periods: If cp ⊲ cq then period p implies period q,
and this is sharp (at the moment of the first appearence of period q, period p is not
present yet).

So, we only need to identify the order ⊲ on the set C := {cp}p∈Z+
with the

order ≻. Let C[2] := {c2p}p∈Z+

Let us consider the nest of satellite renormalization windows M [n]
R ≡M [n]

R (cF )
around the Feigenbaum parameter cF :

[−2, 1/4] ≡MR ≡M [0]
R ⊃M

[1]
R ⊃M

[2]
R ⊃ · · · ∋ {cF },

As we know, the doubling renormalization yields a straightening homeomorphism

χ :M
[1]
R →MR,

giving a natural one-to-one correspondence between periodic points for c ∈ M
[1]
R

(except for its β-fixed point) and those for c′ := χ(c). Moreover, under this cor-
respondence the periods are divided by 2 (except for the α-fixed point for fc). It
follows that

(48.1) P(χ(c)) =
P(c)r {1}

2
, c ∈M [1]

R ,

where P(c) is the set of periods for fc. It follows that:

18We will say that such a set represents a “Dedekind section” in the Sharkovskii scale.
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v α 0 α′ v1

Figure 48.1. Superattracting parameter c◦5 without period 3.

• χ(c2p) = cp for c2p ∈M [1]
R ;

• C[2] = C ∩M [1]
R ;

• χ : C[2] → C is a bijection.

This reduces the problem to recognizing the ordering of the odd points c2k+1 ∈
MrM

[1]
R , k ≥ 1, as the rest of the Sharkovsky scale is obtained by pulling Codd :=

{c2k+1}k≥1 by the iterated straightenings

χn :M
[n]
R rM

[n+1]
R →MR rM

[1]
R

To verify the Sharkovsky order for odd periods, we only need to produce for
any odd q > 1, one parameter c such that the map fc has an orbit of period q
but misses all smaller odd periods p ∈ [3, q − 2]. This will be accomplished by a
certain sequence c◦2k+1 of superattracting parameters beginning with the airplane

and converging from the left to the Chebyshev tip of the satellite copyM [1]
R . Namely,

at c◦2k+1, the third iterate of 0 lands in (α, 0), and then spins away from α, landing
at 0 after k − 1 “revolutions” (see Figure 48.1), i.e.,

02 > α′, 02m+1 ∈ (α, 0), m = 1, . . . , k − 1, 02k+1 = 0.

Exercise 48.2. (i) Parameters c◦2k+1 with this combinatorics exist.

(ii) The map fk ≡ fck has no periodic points of odd periods p ∈ [3, 2k − 1].

(iii) It has only two periodic orbits of period 2k+1, the superattracting one and the
root orbit of its immediate basin.

(iv) The first parameter c2k+1 when period 2k+1 appears is the root of the hyperbolic
window centered at c◦2k+1.

This completes a proof that the forcing order on the periods coincides with the
Sharkovsky order, and shows that it is sharp in the weak sense: for any period
p there is a map fc that has a periodic orbit of period p but does not have any
periodic orbits of periods q ≺ p. We leave to the reader the following exercise that
completes the proof:

Exercise 48.3. Check that any Dedekind section P in the Sharkovsky scale
is realizable by some quadratic polynomial. Find the first and the last realizing
parameter.
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QED
Since the quadratic family is full, we immediately obtain a more general result:

Corollary 48.4. Sharkovsky Theorem is valid for arbitrary unimodal maps.

Project 48.5. Translate the above proof into purely combinatorial one by con-
sidering the kneading model for the quadratic family (see §33.7). In this way, deep
analytic results about the quadratic family become irrelevant.

Project 48.6. Study the Sharkovsky Theorem in full generality. (See refer-
ences in the Notes below.)

48.2. Entropy and the route to chaos. Let M(f) be the number of mono-
tonicity intervals of a piecewise monotone interval map.

Theorem 48.7. For a real quadratic polynomial f , we have:

(48.2) h(f) = lim
n→∞

1

n
logM(fn) = lim

n→∞
1

n
log |Pern(f)|

Proof. Let us denote the above limits µ and π repsectively, and let h ≡ h(f).
It is easy to see, using the kneading coding, that h ≤ min{µ, π}. To prove the
opposite inequalities, µ ≤ π ≤ h, we can use approximating hyperbolic sets from
§46.2. �

Exercise 48.8. Show that h(fЧ) = log 2 for the Chebyshev map.

Theorem 48.9. A real quadratic polynomial has zero entropy iff it has only
cycles of periods 2n (so, it belongs to the final segment of the Sharkovsky scale). In
the real quadratic family, this corresponds is the interval [cF , 1/4], where cF is the
Feigenbaum parameter.

Proof. For c ∈ (cF , 1/4], Per(fc) is finite (consisting of two fixed points (co-
inciding for c = 1/4) and cycles of periods 2n, one for each n = 2, . . . , N), so
h(f) = 0.

For c = cF , Per(fc) comprises all of the above periodic points, so |Per(fmc )| =
O(m), and h(fc) = 0.

Exercise 48.10. Show that h(f) = 0 for the Feigenbaum map in a different
way, using its dynamical structure.

On the left, cF can be approximated by the tips tn of the satellite renormaliza-
tion windows M [n]

R . At such a parameter, the renormalizatoin f2
n | In is a Cheby-

shev map, so it has entropy log 2. It follows that h(f) ≥ log 2

2n
. By monotonicity,

h(f) > 0 for all c ∈ [−2, cF ). �

Since positive entropy is associated with “chaos”, the cascade of doubling bifur-
cations is viewed to be a route of chaos.

Since the quadratic family is full, we immediately conclude:

Corollary 48.11. For arbitrary unimodal maps:

(i) Entropy formula (48.2) is valid;

(ii) h(f) = 0 iff f has only cycles of periods 2n.
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48.3. Measure with constant slope and the saw-like model. Let us
consider the most interesting particular case:

Theorem 48.12. Let f ∈ QR be a map of Yoccoz class. Then:

(i) It has a quasi-invariant measure λ with constant Jacobian r > 1 supported on
the invariant exact interval J .

(ii) The restriction f | J is topologically conjugate to a saw-like map with constant
slope r.

Proof. Let us approximate f by a sequence fn of once renormalizable su-
perattracting maps fn: for instance, take the canonical approximands.19 By Ex-
ercise 25.55, they have the quasi-invariant measures λn with constant Jacobians
rn > 1. Moreover, by the monotonicity of the entropy (Theorem 37.33), the rn
increase. Passing to a limit λ, we obtain a desired quasi-invariant measure λ with
a constant slope r > 1.

(ii) Exactness easily implies that suppλ = J . Hence there is is a homeomor-
phism h : J → J̃ such that the push-forward h∗µ is Lebesgue. Then the map
h ◦ f ◦ h̃−1 has the constant slope r. �

Remark 48.13. The above proof can be adjusted to become purely combina-
torial, without using deep analytic machinery. One can also do it directly for f ,
without approcimating it with superattracting or cricically preperiodic maps.

48.4. Appendix: Topological entropy.
48.4.1. Shifts. The “topological entropy” of the full shift σ : Σ+

d → Σ+
d is set

to be log d. Note that it is the growth rate for the number of cylinders of rank n
(which is equal to dn = en log d ).

More generally, for a Markov shift σA : Σ+
A → Σ+

A, the number of admissible
cylinders of rank n is comparable with r(A)n = en log r(A), where r(A) is the spectral
radius of the transit matrix A (see §19.14.1). This makes the topological entropy
h(σA) equal to log r(A).

Even more generally, let X ⊂ Σ+
d be a closed shift-invariant subset, and let

σX : X → X be the restriction of the full shift to X. In this case, the topological
entropy can be defined as the growth rate of the number of admissible sequences of
length n. Namely, a string ī = (i0 . . . in−1) is called admissible if it can be extended
to an infinite string (i0 . . . in−1 . . . ) ∈ X (in other words: Σn

ī
∩X 6= ∅). Let Nn be

the number of admissible strings of length n. Then the topological entropy of σX
is defined as

h(σX) := lim sup
n→∞

1

n
logNn.

Let us now pass to a general definition.

48.4.2. General notion. Let f : X → X be a continuous map on a (metrizable)
compact space, with a metric d. For ε > 0, a set of points xi is called an (d, ε)-net if
any point x ∈ X can be ε-approximated by some xi. Let Nd(ε) be smallest number
of points in all (d, ε)-nets.

Let us now consider metrics

dn(x, y) := max
0≤k≤n−1

d(fkx, fky),

19We can also use the canonical critically preperiodic approximands instead: see Exercise
27.13.
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and let Nn(ε) ≡ Ndn(ε) be the corresponding smallest number of points in (dn, ε)-
nets, i.e., the smallest number of orbits of length m such that any orbit of length n
can be ε-shadowed by one of those. Let

h(f, ε) := lim sup
n→∞

1

n
logNn(ε).

Obviously, this function is monotonically increasing as ε ց 0, so we can take the
limit:

h(f) := lim
ε→0

h(f, ε).

It is called the topological entropy of f .

Exercise 48.14. Show that:
(i) h(f) is independent of the choice of the metric d.

(ii) h(f is a topological invariant, i.e., h(f) = h(g) if f and g are topologically
conjugate.

(iii) More generally, If f : X → X is semi-conjugate to g : Y → Y then h(g) ≤ h(f).
(iv) h(fn) = nh(f).

Exercise 48.15. If f is an isometry then h(f) = 0. In particular, h(f) = 0
for a circle rotation or for an adding machine.

A point x ∈ X is called wandering if it has a weakly wandering neighborhood.
So, a point x is non-wandering if any neighborhood U ∋ x contains a returning
point y ∈ U , i.e., fny ∈ U for some n ∈ Z+. The set of non-wandering points is
denoted by Ω ≡ Ω(f). It is a closed invariant subset of X that captures chaos:

Exercise 48.16. h(f) = h(f |Ω).
The Minkowski dimension of X (with respect to the metric d) is defined as

MD(X) := lim sup
ε→0

logNd(ε)

log ε−1
,

so it is the sup of δ > 0 such that Nd(ε) = O(ε−δ).
It can happen that h(f) =∞ (give an example!). However, we have:

Kushnirenko Bounds. (i) If f is L-Lipschitz then h(f) ≤ MD(X) · logL.

(ii) In particular, if f is a smooth endomorphism of a compact manifold X endowed
with a Riemannian metric d, then

h(f) ≤ MD(X) · ‖Df‖∞.
Exercise 48.17. (i) Prove the Kushnirenko bounds.

(ii) Derive the following asymptotic versions of the bounds

h(f) ≤ MD(X) · lim
n→∞

1

n
logL(fn); h(f) ≤ MD(X) · lim

n→∞
1

n
log ‖Dfn‖∞.

(including the existence of the limits).

Instead of ε-nets, one can use (d, ε)-separated sets, i.e., sets of points xi such
that d(xi, xj) > ε for any two of them Let S(d, ε) be the maximal number of
ε-separated points, and let Sn(ε) ≡ S(dn, ε).

Exercise 48.18. Show that h(f) = lim
ε→0

lim sup
1

n
logSn(ε).
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48.4.3. Entropy and expansivity. Recall notion of expansivity from §19.9.1.

Exercise 48.19. If f is ε-expansive then:

(i) h(f) = h(f, ε);

(ii) h(f) ≥ lim sup
n→∞

1

n
log |Fix(fn)|;

(iii) h(f) ≥ lim sup
n→∞

1

n
log |f−n(x)| for any x ∈ X.

Exercise 48.20. Let σA : ΣA → ΣA be an irreducible topological Markov chain.
Then:

(i) It is 1-expansive in the d-adic metric (generalizing the dyadic metric (19.5);

(ii) h(f) = lim
n→∞

1

n
log |Fix(fn)| = lim

n→∞
1

n
log |σ−nA (x)| = log r(A), where r(A) is

the spectral radius of A, x is an arbitrary point of ΣA.

(iii) For an arbitrary subshift σX , justify the entropy formula given in §48.4.1.

48.4.4. Variational Principle. By Theorem 46.47 and the Exercise that follows,
for any irreducible Markov shift we have:

h(σA) = max
µ∈M(ΣA)

hµ(σA),

where the maximum is attained on the balanced measure. This property is re-
ferred to as a “Variational Principle”. Part of it holds under much more general
circumstances:

Variational Principle. For any continuous endomorphism f : X → X of a
compact space,

h(f) = sup
µ∈M(X)

hµ(f).

If the sup is attained, then the corresponding measure is naturally called a
measure of maxumal entropy. (In general, it does not have to exist.) One important
particular assertion is easy to verify:

Exercise 48.21. Let us consider any subshift σX , X ⊂ Σ+
d . Then for any

invariant measure µ, we have: hµ(σX) ≤ h(σX).

We may return to this theme in one of the forthcoming volumes.

48.4.5. T. opological entropy first appeared in print in Adler, Konheim and
McAndrew [AKMcA]. For a discussion of the Variational Principle, see e.g.,
[Bow].

Notes. Sharkovsky order appeared in [Sha1] (1964). One decade later it was
partly re-discovered by Li and Yorke in a paper entitled “Period three implies chaos”
[LiY] that introduced a term “chaos” to dynamics. For more recent approaches and
insights, see [Ste, B3, BMi].

Entropy formula for interval maps (Theorem 48.7) was proven by Misiurewicz
and Szhlenk [MiS].

Acknowledgment. The author thanks Sasha Blokh for many useful com-
ments.
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Notes

Theorems 46.7 on ergodicity and 46.8 on measure-theoretic attractors are due
to Blokh and the author [BL1, BL2]. The theory was further refined by Martens
[Ma]. A different approach was developed by Guckenheimer and Johnson [GJ].

Real a priori bounds of Theorem 46.3 are due to Martens [Ma]. Here we derive
them (for quadratic-like maps) as a consequence of complex bounds. Originally,
they were proved (for an appropriate class of smooth maps) by purely real methods.

Stochasticity of postcritically non-recurrent maps (Theorem 46.20) was proven
by Misiurewicz [Mi2] (which prompted the term “Misiurewicz maps”). The corre-
sponding set of parameters c ∈ [−2, 1/4] has zero measure.

More general conditions for stochasticity appeared in [CE, NS, MN]. Jakob-
son proved in the late 1970s [Ja1] that the set of stochastic parameters c ∈ [−2, 1/4]
has positive measure (see also Benedicks and Carleson [BC]). It was proven by the
author in the 1990s [L11] that almost all real Yoccoz parameters are stochastic.
(satisfying the Martens-Nowicki stochasticity condition). This result was further
refined by Avila and Moreira [AM1]. All these issues will be discussed in vol. III

The first example of a real non-stochastic exact map was constructed by John-
son [Jo]. Further pathological examples are due to Hofbauer and Keller [HoK].

The Principal Parapuzzle Nest (§47) was studied in [L11]. Its geometric ap-
plications will be discussed in vol. III. It provides us with one more illustration of
the Phase-Parameter Relation.
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49. Hints and comments to the exercises

Preliminaries: Topological background

Point set topology

1.8. Extend the Devil Staircase from T to D̄ preserving co-centric circles Tr so
that the intervals r · Ij ⊂ Tr are shrunk by factor (1− r).

Local connectivity

1.11. Use Exercise 1.10.

1.13. a) Fix some t ∈ [0, 1], and let γ(t) = x. Consider the decomposition of
γ−1(B(x, ε)) into connected components In and Jk , where In ∋ t while Jk 6∋ t.
Show that the paths γ(Jn) do not accumulate on x and conclude that γ is weakly
lc at x.

1.14. Construct a sequence of polygonal curves γn in Rn connecting x to y
such that:

• The vertices of the γn belong to K;

• γn+1 is a refinement of γn, i.e., the vertices of γn are also vertices of γn+1;

• ‖γn − γn+1‖ ≤ 1/2n, where ‖ · ‖ stands for the uniform norm.

Remark 49.1. In fact, this is true without assuming that K is embedded into
Rn. Indeed, any compact metric space X embeds into a Banach space (for instance,
by associating to x ∈ X the distance function y 7→ d(x, y)), where one can repeat
the above argument.

1.15. One direction: arc lc is stronger than weak lc. The other (non-trivial)
direction: use the argument for Exercise 1.14.

1.16. Use that J is path lc and show that K is such.

1.18. Have fun!

1.27. (i) A properly embedded star of valence one divides the plane into two
half-planes (by the Jordan-Schönflies Theorem). Inductively, a properly embedded
star of valence q divides the plane into d sectors. Map them consecutively onto the
standard sectors so that the maps match on the common boundary.

(ii) The natural cyclic order on the set of angles θk := k/q, k ∈ Z/qZ, can
be also defined as follows: θk+1 in the next after θk if the corresponding rays Rk
and Rk+1 bound a complementary sector (call if Sk), and Rk is positively oriented
with respect to Sk. Since h maps complimentary sectors to complimentary sectors
(preserving orientation), it preserves this cyclic order.

627
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Figure 49.1. Dyadic tree of pairs of pants.

1.33. Otherwise there is a sequence of arcs γn ⊂ Uin whose diameter is bounded
away from 0. Take an accumulation point a for the “mid-points” an of the γn. Then
K is not lc at a.

1.34.

1.35. From any point z ∈ D one can reach the closest to it boundary point
ζ ∈ ∂D along the straight interval [z, ζ].

Group actions and foliations

1.50. (i) See Figure ... Note that the two foliations are mutually orthogonal.

1.51. The vertical circle {0} × R/Z is a global transversal to the foliation. Its
monodromy map is the rotation by α. Apply Exercise 19.31.

Coverings

1.52. Take a path γ in E connecting e to a point x, and consider its image
h ◦ p(γ) in B′. It lifts to a path γ′ in E′ that begins at e′ and ends at some point
x′. Let x′ = H(x). The π1-assumption assures that this definition is independent
of the choice of γ.

1.56. (i) These coverings correspond to the subgroups Γd = d ·Z, d ∈ Z+∪{0}.
(ii) There are only two automorphisms of Z, and both keep each Γd invariant. The
Lifting Criterion applies.

1.58. Consider the covering corresponding to the Ker of the monodromy action.

Topological surfaces

1.66. Extend h to a homeomorphism H : D̄ → D̄ (e.g., radially) and let
D̄ ⊔h D̄→ S2 be equal to H on the first disk and be equal to id on the second.

1.67. (i) Connect xi to yi with disjoint arcs, and construct a homeomorphism
supported in small neighborhoods of these arcs. (ii) Construct a homeomorphism
supported in small annuli neighborhoods of the boundary circles.

1.73. Use Lemma 1.71 many times. For instance, to check pre-compactness,
follow the proof of the lemma to construct an escaping nest of fjords F1 ⊃ F2 ⊃ . . .
each of which contains infinitely many points of a given escaping sequence (xn).

To check total disconnectedness, find a simplicial compact set K such that two
given ends, E1 and E2, belong to different unbounded components of SrK. Then
approximate every unbounded component of S rK with a fjord.

1.99. Represent DrK as the dyadic tree of pairs of pants: see Figure 49.

1.100. Compare with the circle case: Exercise 1.56. Note that this relation
is natural as Cyl and S1 are homotopically equivalent.

1.106. Otherwise f : U r f−1(b) → V r {b} would be unbranched. Since
U r {b} is a topological annulus, U r f−1(b) would also be a topological annulus.
But then f−1(b) = {a} and dega f = deg f .

Appendix 1: Hausdorff metric

1.120 (iii) Approximate the Xn with finite εk-nets with εk → 0, and use the
diagonal procedure.
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Chapter 1. Conformal geometry

Riemann surfaces

2.5. (iii) The semi-direct product of the group of translations with the cyclic
group of order 4 and 6, respectively.

(iv) See [M6], §5.
2.6. (i) a) The infinite diahedral group (obtained by adding the involution

σ : z 7→ −z to the lattice Z) produces the orbifold with signature (C, {2, 2}). The
corresponding covering map (if appropriately normalized) is cos.
b) The infinite diahedral groups of rank 2 (obtained by adding σ to a lattices ≈ Z2)
produce orbifolds with signature (T2, {2, 2, 2, 2}). The corresponding covering maps
are Weierstrass P-functions (see §2.10.2).
c) Remaining special orbifolds are obtained by takling quotients of the tori with
extra symmetries (corresponding to the tilings of C by squares or equilateral trian-
gles) by the corresponding symmetry groups (of order 4, 3 and 6). The signatures
are (T2; {2, 4, 4}), (T2; {3, 3, 3}), and (T2; {4, 3, 6}).

(ii) All these orbifolds are covered by the cylinder or the torus.

2.9. Use the normal form.

2.10. The space of ε-separated triples of points is compact. The Möbius
transformation φ depends continuously on the triple (α, β, γ) = φ−1(0, 1,∞) as
obvious from the explicit formula

φ(z) =
z − α
z − γ ·

β − γ
β − α.

(This can also be used to verify equivalence of the two topologies.)

2.13. The signatures of the Platonic orbifods are: (S2; {2, 3, 3}) (tetrahedron),
(S2; {2, 3, 4}) (cube and octahedron), and (S2; {2, 3, 5}) (dodecahedron and icosihe-
dron). The orders qi are halves of the valences of the vertices of the corresponding
triangulations.

First formula (2.3) follows from the transformation rule for the Euler charac-
teristic under orbifold coverings (see Exercise 1.117). Then the relation area(O) =
2π χ(O) becomes straighforward. Note that it is a particular case of a general
Gauss-Bonnet Formula. It is also a cosequence of the general formula for the area
of spherical triangles (Exercise 2.14).

2.14. See [Sch, §9.3] for a nice elementary way to verify the formula.

2.17. The curvature of a metric ρ(z)|dz| can be calculated by the formula:

κ(z) = −∆log ρ(z)

ρ(z)2
.

PSL(2,R)-invariance of the hyperbolic metric in the H-model amounts to the iden-
tity:

Imφ(z) =
Im z

|cz + d|2 , φ(z) =
az + b

cz + d
.

Smooth isometries preserve angles between tangent vectors, and so conformal. In
fact, one does not need to impose smoothness a priori. Any isometry is quasicon-
formal (e.g., by Proposition 12.14), and hence conformal by Weyl’s Lemma (§13.1).

2.19. The hyperbolic metric is the only invariant metric on H coinsiding with
the Euclidean metric on the tangent plane at i.
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2.22. (ii) Hyperbolic R-neighborhoods of a geodesic γ are invariant under
Stab(γ).

2.23. (i) φ is the composition of a Möbius map and
√·

(ii) True by the R-symmetry.

(iii) Use (i) and Exercise 2.22.

2.34. Bring two parabolic elements to a normal form

A =

(
1 1
0 1

)
, B =

(
1 0
µ 1

)

and calculate tr{A,B} = 2 + µ2.
In the elliptic case, bring A to the diagonal form with multipliers e(±θ/2) and

calculate tr{A,B} = 2(ad+ bc cos θ).

2.38. The universal covering is H→ D∗, z 7→ e(z).

2.39. The coverings over D∗ are classified by the subgroups of the cyclic group
generated by the translation z 7→ z + 1 of H.

2.40. (i) See Figure 49. R = exp(2π2/ log ρ). (ii) The equator is the image of
the hyperbolic geodesic i ◦ R+; and its hyperbolic length is equal to

log ρ =
2π2

logR
.

(iii) This is manifestly so in the T-symmetric model A(1/
√
R,
√
R) for the annulus.

2.41. It can be done in two ways: a) by means of the Schwarz Reflection
Principle or b) by using the covering by an elementary Fuchsian group.

2.46. They correspond to degree two branched coverings A(1/R,R)→ D with
the covering group Z/2Z generated by the involution z 7→ 1/z. So, it has signature
(D; 2, 2).

2.47. (i),(ii and (v)). Consider the quadrilateral ∆ ∪ δ(∆), with two ideal
vertices and two vertices with angle 2π/3. Rotating it around the latter by the
ω±1± , we obtain a 10-gone with two ideal vertices and 8 vertices with angle 2π/3. It
is triangulated by translates of ∆. Rotating these translates around the vertices (by
appropriate conjugates of ω±1) we construct a converx polygon with ideal vertices
and vertices with angle 2π/3. Proceeding this way, we will tessellate the whole
hyperbolic plane H by translates of ∆.

To show that the translates of ∆ cover the whole H+, take any point z ∈ Π+.
If z 6∈ D, then do nothing. Otherwise apply δ to it and then apply γn to bring
it back to Π+. We obtain a point z1 := γn(δz) ∈ Π+ such that Im z1 > Im z. If
z1 ∈ ∆ then stop. Otherwise repeat the procedure. We obtain a sequence of points
zn ∈ Π+ with increasing Im zn. By discreteness, only finitely many of them can
belong to D.

See [Akh, Iw] for a background in modular functions.

2.49. See Figure 49.3.

2.51. See [Be2], [Har, §V.B].

2.54. Use the orthogonal projection to the corresponding geodesic or horocycle
as indicated on Figure 2.7.

2.79. They correspond to the tori with extra symmetries (see Exercise 2.4 (iii)).
Notice that the order of the fixed points (2 and 3) are two times smaller than the
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Figure 49.2. Covering of an annulus by a cyclic hyperbolic group.

order of the corresponding groups of symmetries (4 and 6), as the latter get factored
by the involution σ : z 7→ −z which acts on all tori. (So, the markings < a, b > and
< −a,−b > of a lattice L = {ma+ nb}m,n∈Z2 are persistently identified).

2.81. Sum-up all the functions (2.16) comprising the cross-ratio group.

2.101. The cylinder endomorphism An : C/Z→ C/Z, z 7→ nz, descends to an
endomorphism Чn : C→ C. [Interprete (2.21) as cos ◦An = Чn ◦ cos].

2.103. The torus endomorphism An : C/L → C/L, z 7→ nz, descends to an
endomorphism Ln : C→ C.

2.105. (iii) This difference is independent of a quadratic differential q since
q1/q2 is a rational function for any two qi’s. So, any q (e.g., dz2) can be used for
the calculation.

Holomorphic proper maps and branched coverings.
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−1 −1/2 0 1/2 1

Figure 49.3. Tiling of the fundamental triange of the modular
group by 6 ideal triangles.

3.2. Consider the unbranched covering over S′r {vi}, where vi are the critical
values of f .

3.3. (i) Let ak be zeros of f , k = 1, . . . , d. Then

g(z) := f(z)/

d∏

k=0

z − ak
1− ākz

→ ∂D as z → ∂D,

so it is proper. Since g does not have zeros, it has zero degree, so it is a constant.

Riemann, Montel, Koebe

2.49. (iii) An ideal quadrilateral consisting of two adjacent triangles of the
tiling gives us a fundamental domain of λ. In the H-model, we can normalize it so
that it is bounded by two vertical lines x = ±1 and two half-circles |z±1/2| = 1/2.
Then the boundary identifications are given by two parabolic deck transformations
z 7→ z + 2 and z 7→ z/(2z + 1). They generate the group of deck transformations,
on the one hand, and the group Γ2, on the other.

For (ii), subtract from f a rational map to kill all the poles (which must be
simple).

4.3. Let Un ⋐ U be an increasing sequence of domains exhausting U , and let

dist(φ, ψ) =
∑ 1

2n
sup
z∈Un

ds(φ(z), ψ(z)).
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4.4. Consider a sequence of holomorphic functions 1/φn(z) (which are the
original functions written in terms of the local chart 1/z near ∞ in the target Rie-
mann sphere). Apply the Hurwitz Theorem on the stability of roots of holomorphic
functions.

4.10. Without loss of generality, we can assume that U = D, the functions ψ
do not collide in D∗, ψ1 ≡ ∞ and ψ ≡ ψ2 has a pole at 0. Then the functions φn
are holomorphic on D and form a normal family on D∗. By Exercise 4.7, we can
assume that the φn are either uniformly bounded on each Tr, r ∈ (0, 1), or

(49.1) φn →∞ uniformly on Tr.

In the first case, the Maximal Principle completes the proof, so assume (49.1) occurs.
If φn(k)(0) 6= 0 for a subsequence n(k), then by the Minimum Principle φn(k) →∞
uniformly on Dr, and we are done. So, we can assume that φn(0) = 0 for all n.
Then the winding number of the curve φn : Tr → C∗ around 0 is positive. But by
(49.1), the curve φn−ψ : Tr → C∗ eventually has the same winding number around
0 (r should be selected so that ψ does have poles on Tr) and hence the equation
φn(z) = ψ(z) has a solution in Dr.

Extremal length and width

6.13. (i) Lemma 6.10 implies that there exists M > 0 such that diamK ≤
(1/2) diamQ provided modA ≥ M . Now subdivide A into n ∼ modA annuli of
modulus ≥M .

(ii) NormalizeK so that diamK = 1 and and let d := dist(Q,K). Use the Euclidean
metric on the d-neighborhood of K to bound from below L(Γver).

6.15. Normalize K so that areaK = π. By the Isoperimetric Inequality,
le(γ) ≥ 2π for any horizotal curve γ in A. Proceed with an estimate from below
for L(Γhor). (This estimate is due to C. McMullen, see [BH, §5.4].)

6.21. Compare Proposition 6.6.

6.23. The path family Γ overflows the half-annulus A(1, R)∩H, which implies
the lower estimate for θ(R). Similarly, one can obtain the lower estimate for the
dual path family Γ′ (connecting (−∞, 0] to [1, R] in H. This yields the upper
estimate for θ(R) = 1/L(Γ′).

Hyperbolic metric and Schwarz Lemma

7.13. Consider the universal covering π : (D, 0) → (S′, z). The lift of S to D

containing 0 covers a disk Dt, where t = t(r)→ 1 as r →∞.

7.20. Triangle inequality.

Carathéodory boundary

8.2. (i) See the hint to Exercise 1.35.

(ii) Take a point z ∈ σ. If D r σ is connected that there is a Jordan curve γ ⊂ D
crossing σ at one point, z. The Jordan disk bounded by γ would contain a limit
point ζ ∈ ∂D of σ.

8.7. Use the Schwarz Reflection Principle.

8.12. Notice that there is no need to mark a point in A, since only one com-
ponent of Ar σ is simply connected. Notice also that the Carathéodory boundary
∂Ce D literary coincides with that of the conformal disk Ĉ rK, as the notion of a
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nest of fjords with shrinking cross-cuts is the same in A and in Ĉ rK (except for
several initial fjords).

8.16. Use Exercise 2.22 and Proposition 7.5.

8.19. Use elementary functions to turn D into a bounded domain. (Compare
with the proof of the Riemann Mapping Theorem.)

9.17. For a perfect sector S, the intersection S ∩K is connected by definition.
Then use induction in the number of corners (simple and dipole).

9.23. Apply Lemma 1.30, Proposition 9.21, and the Conformal Schönflies
Theorem.

Appendix: Potential Theory

10.24 Apply the Index Formula to the gradient vector field ∇G in a region
{z : 0 < ε < G(z) < R}. (Or apply the Morse theory.)

2.99. Let {gα} be the projective atlas on V . Let us write f in the local
parameter z = gα(x) (i.e., consider the function fα = f ◦ g−1α ), and let us take its
Schwarzian Sfα(z) dz2. Let ζ = gβ(x) be another local chart (with an overlapping
domain), and let ζ = Aβα(z) be the transit Möbius map. Then fβ ◦Aβα = fα, and
the Chain Rule (2.20) translates into the property that the quadratic differential
Sfα(z) dz

2 is the pullback of Sfβ(ζ) dζ2 under Aβα. This means by definition that
these local expressions determine a global quadratic differential on V .

Chapter 2. Quasiconformal Geometry

Analytic definition and regularity properties

11.6. If |µ| < 1 then A can be deformed to z 7→ az through invertible operators.
(One can also use formula (11.3) for detA.)

11.9. Since both actions of PSL#(2,R) are isometric in the respective metrics
it is sufficient to check that distT(σ, µ) = disthyp(0, µ), where the former distance
in measured in Conf(CR), while the latter is measured in D. But this is what the
first formula of (11.3) tells us.

Quasi-invariance of moduli

12.5. Assume h : C → D is a qc map. Let A = h(C r D). Then modA < ∞
while mod(Cr D) =∞.

12.12. Consider the points zn = x + (z − x)/2n, 0 ≤ n ≤ N , where 1/2 <
|zN+1| ≤ 1, and use |z′n − z′n−1| ≤ L|z′n| inductively.

Further important properties of qc maps

13.14. Combine Corollary 13.12 with the Koebe Distortion Theorem.

Measurable Riemann Mapping Theorem

14.8. Approximate µλ by Beltrami differentials with compact support and use
that a pointwise limit of (Banach valued) uniformly bounded holomorphic functions
is holomorphic.

14.10. Let T be the Riemann surface (S, f∗σ). (See §29.1.1 for a discussion of
pullbacks of conformal structures by qr maps.)

One-dimensional qs maps, quasicircles and qc welding
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15.3. Any interval J ⊂ I can be sandwitched in between two intervals, J ′ ⊂
J ⊂ J ′′, tessellated by a bounded number of tiles Tnk of the same level n. Compare
Prop. 19.67.

15.5. See [A2], Ch IV, Theorem 2.

15.8. The best way is to construct a qc map h : (C,K) → (C, K̃). To this
end consider round disks Dn

ε̄ based on the generating intervals Inε̄ (see §1.1.1) as
diameters, and build up h by gluing qc maps between the corresponding pants.

Moduli and Teichmüller spaces of punctured spheres

18.4. A quadratic differential φ ∈ Q can be represented as φ(z)dz2 where φ(z)
is a holomorphic function on Ĉ r P. Since

∫
|φ| < ∞, this function can have at

most simple poles at finite points zi, i = 1, . . . , n− 1, and φ(z) = O(|z|−3) near ∞
(which is equivalent to saying that the differential φ(z)dz2 has a simple pole at∞).
Hence

φ(z) =

n−1∑

i=1

λi
z − zi

with
∑
λi = 0 and

∑
λi
∑

k 6=i
zk = 0. These two linear conditions are independent,

and in fact, (λ1, . . . , λn−3) can be selected as global coordinates on the correspon-
dent subspace (as the the right-most minor of the corresponding 2× (n− 1) matrix
is equal to zn−1 − zn−2 6= 1).

Chapter 3. Dynamical Plane I: basic objects

Glossary of Dynamics

19.1. Use the number-theoretic Möbius Inversion Formula.

19.12. In the invertible case, the density ρ is invariant: ρ ◦ f−1 = ρ (compare
Exercise 19.7).

19.21. Under these circumstances, ‖Df(α)‖ < 1 with respect to some norm
in the tangent space TαM . Extending this norm to a Riemannian metric near α,
we make f locally contracting.

19.28. (i) Compare with the proof of Theorem 23.4.

(ii) Write a germ x 7→ x ± xk+1 on I+ in the coordinate X = 1/xk (compare
with §21.3.2 and Exercise 21.13).

One can use Hölder continuity of qs maps. But it can also be done directly using
Exercise 19.28.

19.31. For the unique ergodicity, use Fourier Analysis to check the criterion
of Exercise 19.16. [Ergodicity with respect to m can be also deduced from the
minimality by means of the Lebesgue Denisty Points Theorem and the isometric
property of Rθ.]

circle homeos with irr rot. See [MvS]

19.35. Such a homeomorphism is an isometry.

19.36. Show that f is a homeomorphism on X∞ :=
⋂

n≥0
fn(X) and consider

maximally separated points x, y ∈ X∞.
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19.37. Otherwise, the restriction f : X∞ → X∞ (see the previous exercise)
is a homeomorphism. Hence there exists a δ > 0 such that for any two points
x, y ∈ X∞ with d(x, y) < δ, we have d(f−1x, f−1y) < ε, where ε is from (19.3).
Then d(f−1x, f−1y) ≤ λ−1d(x, y) < λ−1δ. Iterating we obtain

(49.2) d(f−nx, f−ny) ≤ λ−nd(x, y) < λ−nδ ∀ x, y ∈ X with d(x, y) < δ.

Cover X with N balls of radius δ. Then by (49.2), X can be covered by N balls of
radius λ−nδ for any n ∈ N, which implies that X is finite.

19.39. (ii) For a tangent vector v, let

‖v‖ρ = sup
n

max
1≤i≤2n

λn|Dg−ni v|,

where g−ni are the inverse branches of gn.

19.49. More generally, it would be sufficient to assume that diam(X◦)n
ī
→ 0

as n → ∞, where (X◦)n
ī

are the cylinders of order n with respect to the partition
X◦ =

⊔
X◦i .

19.60. Compare Exercise 19.53. Condition (i) is used to construct the Devil
Staircase: otherwise the Bernoulli conjugacy may not be monotonic. The last
assertion uses that h is one-to-one except on the endpoints of gaps, and the latter
are pre-fixed points for Td.

19.65. It can be derived from the symbolic model and Exercise 19.43 or shown
directly by noticing that the periodic points and preimages are spread uniformly of
the cylinders of rank n.

19.66. Use (19.8).

19.74. Use the Lyapunov metric from Exercise 19.39.

19.83. Adapt the method that was used for Prop. 19.75.

19.84. Follows from the Ergodic Theorem. (See [Bi] for these and further nice
applications of the Gauss map.)

19.86. Compare §§25.5, 25.9.

19.94. Similar to Proposition 19.75.

19.97. (i) |Fix(σp)| is equal to the number of loops in ΓA of length dividing p.
(ii) Follows from the property that for some N any cylinder of rank m contains a
periodic point of period p ≤ m+N .

19.104. (i) Show first that the rational nubers form one grand orbit for both Γ

(easy) and g (more interesting). Note that any p/q ∈ Q̂ is an ideal vertex for some
translate of the fundamental domain ∆. (See Exercise 2.47 and the hint to it.)

19.110. To lift an f -invariant measure µ, set

µ̂(X̂) = µ(U0 ∩ f−1(U1) ∩ · · · ∩ f−n(Un))
for any basic open set U0 × U1 × Un ⊂ X̂. See [KSF, Ch.X, §4].

19.111. (ii) Invariant measures for both shifts are determined by their cylindri-
cal values, µ(Σim...in), satisfying compatibility condition and invariant under right
translation: µ(Σim...in) = µ(Σim+1...in+1

).

19.113. Take any sequence of positive εn with
∑
εn < ∞, and consider the

set X ⊂ [0, 1] that can be approximated by rational numbers with this rate, i.e.,
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∀x ∈ X there is an infinite sequence of rational numbers p/q ∈ Q such that

|x− p/q| < εq.

(Compare Proposition 21.38.)

19.115. The size of the gap in D(z, ρ) depends lower semi-continuous on z.

19.118. Use the Mean Value Theorem to find a point x◦ ∈ D such that

m((∆) = Jac f(x◦) ·m(D).

19.120. Let p be the maximal common divisor of the lengths of all the loops
of Γ. To identify p with the period, show first that if p = 1 then Γ is primitive.

19.121. Up to re-labeling of the vertices, A has a triangular form with aii = 0
for i ∈ V rR.

Holomorphic dynamics: basic objects

20.1. It follows from the chain rule: Dfn(z) =
n−1∏

k=0

Df(fkz).

20.4. (i) Consider fixed points of f and their preimages.

(ii) It is a generality about full sets: a non-trivial loop γ in intK would break ĈrK
into two pieces. (iii) follows from (ii).

20.17. (iii) Consider separately cases of non-negative and negative multiplier
(see Figure 20.8 for the latter). Use that there exists only one cycle of period 2.

Moreover, Ic remains periodic until the “Chebyshev parameter” for f2c | Ic, which is
determined from the equation f2c (0) = −αc.

20.19. (i) This is related to the doubling formula for cos.

(iii) To show that all points in Cr I escape to ∞, use Montel’s Theorem or (i).

(v) Compare Exercise 19.55.

(vi) µ is the push-forward under the Zhukovsky map of the Lebesgue measure on
the unit circle to the interval [−2, 2].
(vii) Interpret dynamically the trigonometric formula cosnθ = Pn(cos θ), where Pn
is the Chebyshev polynomial of degree n (slightly differently normalized).

Periodic motions

21.1. For instance, being simply attracting is equivalent to the existence of
an attracting petal described prior to the exercise. (In the interesting direction, it
follows from the Schwarz Lemma.)

21.2. For z ∈ Df (α), fn → α uniformly on a neighborhood of z. Let D be
the component of intK(f) containing z. Then by normality of the family (fn|D),
the fn → α uniformly on compact subsets of D.

21.3. (i) D•(α) is the component of {z : fpn(z)→ α as n→∞} containing α.

(ii) Let P∞ = ∪Pn. Then fp(∂P∞) = ∂P∞ since fp(∂Pn) = ∂Pn−1.

21.12. It is particularly clear in Z-coordinate (21.4).

21.13. In Z = 1/zk-coordinate (21.4) we have Zn ∼ n. Compare with Exercise
19.28.

21.14. In Z−plane (21.4), take a fundamental arc Γ0 connecting Z and F (Z)
and push it forward by the iterates of F .
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21.16. By the Leau-Fatou picture, f |Q has a forward or backward orbit
converging to 0, with a power rate. The corresponding hyperbolic orbit would
converge exponentially. (Compare with Exercise 21.19(ii))

21.17. Construct a conjugacy starting with the fundamental rectangles/crescents.
In fact, one can build up a topological (qc) model for the local dynamics whose local
charts are attracting and repelling Fatou coordinates (see §23.7.3). See Camacho
[Ca].

21.19. (i) Topological and quasisymmetric classifications coincide.

(ii) Exponential and polynomial rates of convergence are not qs compatible
(which can be seen, e.g., by considering annuli separating two consecutive points
of an orbit from the rest of it). One can also use the Hölder continuity of qs maps.
(Compare with Exercise 21.16(ii))

21.21. The dispacement in question is bounded by inf
Re z>0

dist(z, z + 1).

21.22. Use the hyperbolic metric dx/x (near the ends of the strip) to estimate
from below the extremal length of the horizontal famiy of curves on the cylinder.

21.24. Here l comes from Theorem 21.11 applied to fpq; compare also Exer-
cise 21.9.

21.35. Otherwise, the images in question would contain a disk D centered at
some ζ ∈ J . As the diam(fnk(D)) are bounded, this would contradict Lemma
21.33.

21.40. Use Exercise 1.106 to show that otherwise all the inverse branches f−pn

with f−pn(α) = α are well defined in some neighborhood of α.

21.41. (i) Use normality. (ii) Use Remark 21.6.

(ii) Approximate f by attracting germs fn → f and take a Hausdorff limit of the
corresponding immediate basins Dεfn .

23.41. See [F3, Ch. VII, §9], [M2].

Remarkable functional equations

23.1. A qc conjugacy φ : C→ C can be written in the polar coordinates (r, θ)
as a “power twist map” r′ = rδ, θ′ = θ + ω(r), where

δ =
log |ρ′|
log |ρ| , ω(r) =

arg ρ′ − arg ρ

log ρ
log r.

23.9. It can be written explicitly in the polar coordinates (r, θ) as the loga-
rithmic spiral r = |ρ|θ/ arg ρ.

Alternatively, for any real ρ, we can let R := R+, and the general case reduces
to this one due to Exercise 23.1.

23.12. See the first proof of Lemma 23.10.

23.13. Linearize map, globalize the curves, and uniformize the strip in between
them by a straight strip. The map on the strip will be turned into a translation.
(One can also try to implement an elementary topological argument or to make use
of the Brouwer Translation Theorem, see [Fr]).

23.14. Figure 49.4 illustrates lifts γ̃k, k ∈ Z, of a cycle of curves with rotation
number p/q = 2/5 to the universal covering exp : C→ C∗. The curves are labeled
so that γ̃k+1 lies “above” γ̃k. The branch of log ρ is selected so that γ̃k+log ρ = γ̃k+p.
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2πi

2πip

logρ

qlogρ

0

Figure 49.4. Lift of a cycle of curves to the universal covering.

23.24. Note that the foliation by round circles is defined dynamically as the
closures of the petit orbits {z ∼ ζ : ∃n : gnz = gnζ}. Hence a germ φ commuting
with g must respect this foliation. It follows that φ is linear (even if it maps just
one round circle onto a round circle).

23.30. Two main antipodal needles have tips at ±Re(θ) corresponding to the
critical point (see Theorem 23.29). Other needles are obtained from the main ones
by taking preimages under the iterates of z 7→ z2. See [LeS].

23.34. For any c◦, there exist an R > 0 and ε > 0 such that |fc(z)| > 2|z| for
all c ∈ D(c◦, ε) and |z| > R. Hence Cr D̄R ⊂ CrKc for all (c, z) as above.

Now, if ζ◦ ∈ C r K◦ then fn
◦
(ζ◦) ∈ C r D̄R for some n. By continuity,

fnc (ζ) ∈ CrD̄R for all (c, ζ) sufficiently close to (c◦, ζ◦), and the openness follows.

23.42. The realization part is based upon the MRMT, see [Vo].

Periodic ray configurations

24.19. The geometry of the ray configuration is controlled by the Böttcher
coordinate away from the Julia set, and is controlled by the linearizing coordinates
near the repelling points.

Appendix: Rotation sets for the doubling map

24.26. Any minor arc ωi is disjoint from its image T (ωi).

24.28. Construct Θθ as a limit of Θpn/qn
as pn/qn → θ.

Complementary intervals in Θ are called gaps. A gap is called major if it has
length ≥ 1/2, and minor otherwise.

Key observations:
• The image T (ω) of any minor gap ω is a minor gap of twice bigger length.
• Any minor gap is eventually mapped onto a major gap, ω0.
• If |ω0| > 1/2, then T (ω0) would cover the whole circle plus some minor gap, ω1.
Then the end-points of ω0 would be periodic

24.29. If Θ is contained in a semi-circle, then T |Θ preserves the cyclic order.

Chapter 4. Dynamical Plane II: fine structures and models

Hyperbolic maps
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Figure 49.5. Preimage of a cut-line and a ray portrait comprising
five rays.

25.12. Compare Proposition 41.3.

25.24. The key property is that there exist ε > δ > 0 and n ∈ Z+ such that
for any z ∈ Q the disk D(z, δ) is univalently mapped by fn onto an oval containing
D(f(z), ε). In particular, any disk D(z, ε), z ∈ Q can be univalently pulled back
along any backward orbit . . . z−2 7→ z−1 7→ z in Q.

25.30. Follows from Lemma 25.27.

25.32. The permutation of the local branches at α is cyclic, for otherwise
there would be a cycle of limbs, from which points 0k would never return back to
0.

25.34. First, symmetrize T to obtain T sym ≡ f−1(T ). For z ∈ T sym r {0},
let T sym(z) be the subtree of T sym rooted at z and not containing 0. Let us attach
to T sym an edge [z, β] as follows. Mark consecutive preimages of α′ on T sym(α′),

α−n 7→ α−(n−1) 7→ · · · 7→ α′ ≡ α−1 7→ α, where α−(k+1) ∈ T sym(α−k),

and consider the subtree X := T sym(α−n). Then fn(X) ∩ [α, α′] = [α, fn(z)].
Moreover, fn[z, β] ⊃ [fn(z), α′], which determines how [z, β] branches off T .

To obtain T e, attach also the symmetric edge [z′, β′] to T sym(α), and let

T e := T ∪ [β, β′].
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25.35. The edge [z, β] from the previous Exercise is mapped by f onto a
bigger edge [f(z), β], and this map is expanding in the hyperbolic metric, implying
the desired for all z ∈ σ◦. Now, make use of Proposition 24.15.

25.40. Compare with Exercise 31.16.

25.43. Any local branch at α stretches under some iterate of fq onto the
corresponding global branch T . The latter is tessellated by the iterated preimages
of the little Hubbard tree I2 (if exists: see §25.6.10).

25.48. (ii) Compare with the Non-Cutting Assumption from §28.4.1.

25.51. (ii) Use relative exactness.

25.54. Make use of Proposition 19.93.

25.55. (ii) Use only the postcritical points 0k to produce the Markov tiling.

25.64. Compare with Lemma 32.6.

25.65. Markov property comes form the observation that the boundary of
this partition (of the Julia set) is a finite invariant set (compare with Exercise 19.90
and Prop. 25.29).

25.67. Use the hyperbolic metric of Cr Pf .
25.68. Compare Exercise 19.86.

25.69. (i) The interval T already appeared in Exercise 20.18.

25.70. To obtain a Markov family of tiles, remove a small neighborhood of
the attracting cycle α.

25.71. (ii) Each difference T kr int T k+1 contains an invariant compact set Qk

on which the dynamics is conjugate to an irreducible Topological Markov Chain.
Moreover, Qk is either a Cantor set or a periodic orbit of some period 2m. Compare
with Theorem 30.54. See [Sha2, JR, vS, B1, B2].

Parabolic maps

26.11. See the picture.

26.12. Rule out that g is hyperbolic by putting together Exercises 21.21
and 2.22(iii).

26.16. Start with the puzzle piece Pk ∋ αk whose external rays are the same
as in the superattracting case (Problem 25.64). Its pullbacks Pnk under fp shrink
to αk outside the immediate basin. In the immediate basin use a small thickening.

26.26. Hyperbolic Julia sets do not have cusps (Corollary 25.18), while the
Leau-Fatou picture shows that a primitive parabolic Julia set does.

Critically non-recurrent maps

27.1. (i) Use Theorems 21.4, 21.25, and Proposition 21.39 (accompanied with
Exercise 21.40) to rule out various types of non-repelling cycles.

(ii) Use Theorem 21.47 to rule out periodic Fatou components (except for
D(∞)) and Lemma 22.1 to rule out wandering components.

(iii) Use Theorem 22.2.

Note that contrary to a common perception, these statements do not need more
advanced tools like MRMT or orbifolds.

27.5. The cut-lines in question break J into an invariant family of pieces on
each of which f is univalent and expanding. It follows that they are singletons.

27.7. Compare with the interval dynamics: §§30.6, 30.8.
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27.9. (iii) Compare with Exerxice 25.54.
(iv) The matrix A has a hierarchical block structure, with certain blocks of a

given level cyclically permuted. All sufficiently high powers Apn, n≫ 1, have many
positive blocks (which ones?).

27.10–27.11. See [BFH] (for polynomials of arbitrary degree).

27.14. (i) Follows from Theorem 22.2.
(ii) For an interval J ⊂ A, consider a set of points x ∈ A that never visit J . Use

the dynamical magnification and distortion bounds to show that this set has zero
measure. (There is an option of using the Koebe Distortion Theorem or Denjoy
distortion estimates in the orbifold metric.)

Alternatively, the assertion follows from ergodicity of the a.c.i.m. µ supported
on A (see Theorem 27.15).

(iii) Use Proposition 19.75 as a model.

27.16. The branches g−ni near αk that create poles correspond to backward
orbits passing through the critical point. They have a form g−t ◦ g−l ◦ g−m, where
g−m fixes αk = gl(0). Such a branch contributes density of order λ−m|y − αk|−1/2
(see Exercise 19.20), where λ is the multiplier of α, so the total contribution has
the desider order.

Quadratic-like maps: first glance

28.4. (iv) Use the Argument Principle.

28.12. Take a Jordan curve Γ close to ∂U with winding number 1 around the
origin and, look at the curve g : Γ→ C, and apply the Argument Principle.

28.19. Since the periodic angles θ± are repelling under the pq-fold iterate of
the doubling map T : R/Z→ R/Z, and αch is a repelling fixed point for fp, the line
Γ will be “pushed farther away” from αch under fp, implying the first assertion.

Moreover, the fp-orbit of any point z ∈ Ω rW escapes from Ω, implying the
second assertion.

28.21. In the satellite case, construct an anti- renormalization with period p as
follows. Consider the outermost cut-line L of R(αch) through αch and let W be the
component of C rR(α) attached to L. Show that the return map fp : W 99K W
has an fp-invariant leaf separating αch from 0. It produces a ql renormalization
with period p whose domain contains R(αch). The shadow of R(αch) at infinity is
the union of tuned rotation cycles with the same rotation number. Moreover, it the
satellite case, these cycles are not boundary points of the shadow intervals I1, I2
(coming from the definition of tuned cycles). By Corollary 24.30, there is only one
such a cycle, implying that the rays in R(αch) are permuted cyclically under fp.
Compare [M5], where this assertion originally appeared (with a different proof).

28.25. Otherwise, the central component of Cr (R(β)∪R(β′)) would not be
a strip.

28.27. Follows from the inclusion K ⊂ Π̄0.

28.32. (i) Let βn ∈ Kn be the renormalization β-fixed point. By the Non-
Cutting Assumption, all periodic points in Kn except βn have period at least pn
(under f itself). Hence by Exercise 28.27, all periodic points in Kn+1 have period
at least pn.

(ii) Use that any non-repelling periodic point is contained in ω(0).

Topological Dynamics on the Fatou set
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29.8. Since f : D → D1 is a conformal isomorphism, the push-forward f∗(µ0)
is a conformal structure of D1 with the same dilatation as µ0. For the same reason,
f2∗µ0 is a conformal structure of D2 with the same dilatation, etc. By pushing it
further by all iterates of f , we obtain an invariant measurable conformal structure
µ on orbD with the same dilatation as the original structure on D.

Let us now pull this structure back to preimages of the domains Dn. Of course,
one of these preimages can contain the critical point, where the pullback is not
well defined. However, it does not cause a problem since a measurable conformal
structure needs to be defined only almost everywhere. Since f is locally conformal
outside the critical point, the pullback preserves the dilatation of the structure.
Iterating this procedure, we obtain an invariant conformal structure on the grand

orbit OrbD =

∞⋃

m=0

f−m(orbD) (undefined on the critical set Crit∞f (20.1)) with

the same dilatation as the initial structure.
Let us extend this structure to Ĉ rOrbD as the standard one, σ. As σ is in-

variant in the first place (and has no dilatation), we obtain an invariant measurable
structure with bounded dilatation on the whole Riemann sphere.

29.10. The maps Ht do not move periodic points.

Topological dynamics of real quadratic maps

30.6. The action on the basin is proper.

30.7. See Exercise 28.5.

30.9. Compare Exercise 26.30.

30.11. Compare Exercise 25.24.

30.47. See [Gu1] and [L6].

30.61. See [CE].

30.62. See [MvS].

Yoccoz puzzle and its Principal Nest

31.3. Otherwise, Q ∩Q′ would contain two symmetric points.
31.24. Note that f(YR

(0)) = [v, α] and f [v, α] = [α, f2(0)].
For assertion b), note that the map f : [α′, β) → [α, β) is an orientation pre-

serving diffeomorphism with the property f(x) < x.

General combinatorial theory

32.23. The set of points x with itinerary ε̄perp is either a periodic point or a
periodic homterval of period p. The period of the limit cycle can be doubled if fp

reverses orientation.

32.32. An important difference is that continuous maps can have non-trivial
homtervals that collapse to points in the kneading model (see Exercise 32.29).
Statements like Proposition 32.16 should be adjusted accordingly.

However, saw-like maps, being expanding, cannon have homtervals. In partic-
ular, they do not have attracting cycles.

32.34. Otherwise the sides of the Qi would be mapped by T̂ p to diagonals.

Chapter 5. Parameter plane

Definition and first properties



644 HELP CENTER AND REFERENCE GUIDE

33.1. (iii) Recall the proof of Proposition 20.3.

(iv) We have: υn →∞ locally uniformly on CrM, and |υn(c)| ≤ 2 onM (as
in Proposition 20.20).

33.6. (Compare with Theorem 21.31.) (i) Since the family of functions υn is
not normal near c∗ ∈ ∂M, one of the equations υn(c) = 0 or υn(c) = ±

√
c should

have roots arbitrary close to c∗ ∈ ∂M.

(ii) Consider, for instance, the β-fixed point as a function of c (it branches only
at the main cusp 1/4). Then one of the equations υn(c) = β(c) or υn(c) =

√
β(c)− c

should have roots arbitrary close to c∗ ∈ ∂M.

Hyperbolic components of M
35.16. (ii) The translation corresponds to the Dehn twist of the torus that

keeps the marked loop invariant. It can be dynamically lifted to the attracting
basin and then extended by id to the Julia set (something to verify!), yielding an
automorphism of f◦.

35.19. Let us do a Möbius change of variable that moves α to 0 and β to ∞:

ζ =
z − α
β − z =

δ + z

δ − z (1 +O(δ)), where δ =
√
bε

and the error term is uniform in z ∈ D2δ. Conjugating f by this Möbius transfor-
mation, we obtain a map of a form ζ 7→ ζ(1− 2δ)(1+O(δ2)) in the right half-plane
{Re z > −1/2} (with the error term being uniform in ζ).

Bringing this half-plane back to the z-plane provides us with a desired disk.

35.28. Compare with Exercises 21.16(ii)) and 26.26.

Structural stability

36.5. Use density of repelling cycles in Jc and the possibility to launch the
active critical orbit so that it lands at any given repelling cycle (by a small pertur-
bation of the map: compare Exercise 33.6(ii)). See [He1, L7].

36.11. For a point ζ = z2 ∈ A′ = A[R2, R4], let Hc(ζ) = (Hc(z))
2. This

map is correctly defined (does not depend on the choice of z =
√
ζ), and is a

self-homeomorphism of the annulus A′ identical on ∂A′ and commuting with the
group of rotations. Moreover, it commutes with z 7→ z2 (by definition) and depends
holomorphically on c. Now extend it further to A[R4, R8], and so on.

Limbs and wakes of the Mandelbrot set

37.42. (i) Extend the Hubbard tree T to T e (see §25.6.6), and insert it instead
of a symmetric small arc J◦ ⊂ T e◦ around 0 (by gluing the arc [β, β′] ⊂ T e, ap-
propriately oriented, to J◦). Spread the inserted tree T e around by the dynamics
on T e

◦
. The outcome is T ef . [Theory of hyperbolic ql maps can be developed along

the lines of the polynomial theory; or else, one can use the Straightening Theorem
from §40.2.]

(ii) Use Theorem 37.34.

37.51. (i) Let Kn◦ = (ε1 . . . , εp−1 0) and let s be the number of “− ” in it; let
Kng = (δ1δ2 . . . ). Repeat Kn◦ periodically and then replace kth “0” with (−1)sδk.
(Stop if δk = 0.)

(ii) Tune any sequence ε̄ = (ε1 . . . , εp−1 0) of the model for f◦ by a sequence
δ̄ = (δ1δ2 . . . ) of the model for g in the same way as described in (i).
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37.53. (i) Start with (−), replace it with (−+), then replace it with
(− + −−) , and proceed inductively as follows: given a sequence of length 2n,
repeat it twice replacing the last symbol to the opposite:

(⊖⊕ − ⊖ − + − ⊕ − + − − − + − ⊖ . . . )
(here the 2nth spots are circled).

Chapter 6. Renormalization, puzzle, and attractors

Straightening

40.5. Since ∂U ′ is 0-symmetric κ(δ)-quasicircle, there is a L′(κ)-qs homeomor-
phism T : ∂U ′ → Tr2 . Since g : ∂U → ∂U ′ has a C(δ)-bounded distortion, T lifts
to a L(D,L′)-qc homeomorphism T : ∂U → Tr. These two qs homeomorphisms
can be interpolated by a K-qc homeomorphism T : A→ A[r, r2], with K depending
only on L′, L and bounds for modA.

40.7. Pull µ back from the fundamental annulus A = S2
0 ∩S2

∞ to its preimages
An = F−nA, µ|An = (Fn)∗(µ|A). Since F is holomorphic in the local chart
φ0 (namely, equal to g), all these structures (in this local chart) have the same
dilatation as µ|A. Hence they form a single F -invariant measurable conformal
structure with bounded dilatation on S2 r φ−10 K(g). Finally, let µ = (φ0)

∗σ on
φ−10 K(g).

40.16. See [McM1, Theorem 5.11].

Quadratic-like families

42.10. Compare §33.4.

Geometry of Julia sets of Yoccoz class

45.6. It is related to the König Remark: If a tree with finite valence of all
vertices has arbitrary long branches (at the root) then it has an infinite branch.

45.16. For the last assertion, use Exercise 28.32.

45.15. Let Q1 be the first kid, and let fm : Q1 → P be the corresponding
quadratic-like map. Let 0n ∈ Q1 be the first landing of orb 0 to Q1. Since Y
corresponds to the deepest renormalization level, fkm(0n) ∈ P r Q1 for some
k ∈ Z+. Pulling P back to 0 under fn+km creates the second kid.

Parapuzzle and its Principal Nest

47.1. The branching valence of the Chebyshev tip of a satellite copy Mp/q is
equal to q. It is clearly recognizable at the picture.

More fun.

48.1. Use the associated Markov chain.

48.2. Use the first return map

g : I1− ∪ I10 ∪ I1+ → [−α, α], where g | I10 = f3, g | I1± = f2,

and show that all orbits of odd period must pass through I10 .

48.3. For instance, the Feigenbaum parameter represents the final segment
of the Sharkovskii scale when all periods 2n co-exist. The initial segment of the
scale (when all even periods co-exist, but no odd periods exist) can be represented
e.g., by the Chebyshev tip of the satellite copyM[1] (which is the last representing
parameter).
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50. Basic notation, terminology, and conventions

50.1. Logical and set-theoretical symbols and conventions. We use
symbol ≡ for tautological equalities (e.g., for modified notations of the same object).

For two real-valued quantities α and β, an implication of sort

α ≥ δ ⇒ β ≥ ε(δ)
means that δ = δ(ε), i.e., “∀ δ ∃ ε”.

We say that “property A follows from B, quantitatively” if parameters of A
depend only on parameters of B. For instance, the statement “a quasiconformal
map is quasisymetric, quantitatively” means that the quasisymmetric dilatation of
a map in question depends only on its quasiconformal dilatation.

Symbol α ≍ β means that C−1 ≤ |α/β| ≤ C for some C > 0.
Notation {xk}nk=1 stands for an unordered set of points xk ∈ X. If we want

to emphasize that the points are ordered (also called colored ), we use notation
(xk)

n
k=1. Formally speaking, this is a map {1, . . . , n} → X. For instance, notation

h : (xk)→ (yk) means that h : xk 7→ yk.

Notation (X,Y ) stands for the pair of spaces such that X ⊃ Y . A pair (X, a)
of a space X and a “preferred point” a ∈ X is called a pointed space.
Notation f : (X,Y )→ (X ′, Y ′) means a map f : X → X ′ such that f(Y ) ⊂ Y ′. In
the particular case of pointed spaces f : (X, a)→ (X ′, a′) we thus have: f(a) = a′.
Similar notations apply to triples, (X,Y, Z), where X ⊃ Y ⊃ Z, etc.

Notation f : (X,Y ) → (X ′, Y ′) is also used for a germ near Y i.e., a class of
local maps f : (Uf , Y ) → (X ′, Y ′) such that any two of them coincide in some
neighborhood of Y . In other words, this term serves to emphasize our interest in
local properties of f near Y . For instance a “holomorphic germ” f : (C, 0)→ (C, 0)
suggests that we are interested in local properties of a holomorphic map near a
fixed point (placed at the origin).

A sequence of sets (Xn) forms a (decreasing) nest if X1 ⊃ X2 ⊃ . . . ... It forms an
increasing nest if X1 ⊂ X2 ⊂ . . . ... By default, a “nest” means a decreasing one. It
is called shrinking (in the metric context) if diamXn → 0.

The intersection multiplicity of a family of sets Xn is the maximal k such that there
is subfamily of k sets Xni

, i = 1, . . . , k, with non-empty intersection.

50.2. Complex plane and its affiliates. As usually,

N = {0, 1, 2, . . . } stands for the additive semigroup of natural numbers (with the
French convention that zero is natural);
Z is the group of integers;
Z+ and Z− are the sets of positive and negative integers respectively;
Q is the field of rationals;
Qodd and Qev are the sets of rationals with odd and even denominators respectively
(in the irreducible representation), with a convention 0 = 0/1 ∈ Qodd;
Q/Z is the “rational circle”, (Q/Z)∗ = (Q/Z)r {0}.
R stands for the real line;
R̂ = R ∪ {∞} is the “real circle”;
R/Z is the “angular circle”, (R/Z)∗ = (Q/Z)r {0};
C stands for the complex plane;
and Ĉ = C ∪ {∞} stands for the Riemann sphere;
C∗ = Cr {0}; Z∗ = Z r {0}, etc.;
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CR ≈ R2 is the decomplexified C (§11.1.2);
e(θ) = e2πiθ, so e : (C,R) → (C∗,T) is the exponential covering with Z serving as
the group of deck transformations.

S2 is a topological sphere, i.e., a topological manifold homeomorphic to the standard
unit sphere in R3;
We let CR ≈ R2 be the decomplexified C (i.e., C viewed as 2D real vector space).

For a ∈ C, r > 0, let
(50.1)
Dr(a) ≡ D(a, r) = {z ∈ C : |z − a| < r}; Dr(a) ≡ D(a, r) = {z ∈ C : |z − a| ≤ r}
(these notations are also used for balls in Rn), Dr ≡ D(0, r), and let D ≡ D1 denote
the unit disk;
D∗ = Dr {0};
Given a real interval L ⋐ R, D(L) is the round disk based upon L is a diameter;
Let T(a, r) = ∂D(a, r), Tr ≡ T(0, r), and let T ≡ T1 denote the unit circle;
S1 is a topological circle;
A(r,R) = {z : r < |z| < R} is an open round annulus; the notations A[r,R] or
A(r,R] for the closed or semi-closed annuli are self-explanatory;
∂iA and ∂oA are the inner and outer boundaries of an annulus A ⊂ R2 (§1.7.12);
modA is the modulus of an annulus;
Cyl is a topological cylinder (of any type);
Cyllh ≡ Cyll(0, h) = (R/lZ) × (0, h) is the flat cylinder with circumference l and
height h (with the affiliated notation for the closed and semi-closed cylinders);
Cylh ≡ Cyl1h;

Πlh = [0, l]× [0, h] is a rectangle; Πl ≡ Πīl1.

H ≡ H+ = {z : Im z > 0} is the upper half plane;
H− = {z : Im z < 0} is the lower half-plane;
Hh ≡ Hh(∞) = {z : Im z > h}, h > 0, is a horoball in H centered at ∞;
Hr(a) = {z ∈ H : |z − r/2| < r/2}, a ∈ R, is a horoball centered at a ∈ R;
Lh ≡ Lh(∞) = {z : Im z = h}, h > 0, is a horocycle in H centered at ∞;
Lh(a) = {z : |z − r/2| = r/2}, a ∈ R, is a horocycle centered at a ∈ R;
Sh = {z : 0 < Im z < h} is a strip, S ≡ S1;

I = [−1, 1] is the standard interval, Iρ = [−ρ, ρ];
We use notation [a, b]# for a (closed) interval with endpoints a and b, without
assuming that a < b (the similar notation is used for open and semi-open intervals);
A similar convention is used for geodesics. For instance, for a, b ∈ ∂D = T, notation
[a, b]# means the closure in D of the non-oriented hyperbolic geodesic γ ⊂ D with
endpoints a and b;
[−∞,∞] stands for the natural two-point compactification of R (oriented);
Given an interval I ⊂ R, I◦ stands for its interior rel the real line;
For λ > 0, we use notation λ · I for the λ-scaled interval I (centered at the middle
of I;
C(I) = Cr (Rr I) is the plane slit along two rays (§2.4.5);
Cθ(I) is the union of two symmetric disk sectors based on I and meeting R at
angle θ (§7.2.2);
Dθ(I) is a symmetric hyperbolic neighborhood of I in C(I) (§2.4.5);
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U(I) := U r (Rr I), where U is an R-symmetric disk containing I (§30.1.4).
A set is called “0-symmetric” (resp, “R-symmetric”) if it is invariant under the
reflection with respect to the origin (resp.: with respect to the real line).
Given an R-symmetric set X ⊂ C, XR = X ∩ R stands its real slice20;
rD(a) and RD(a) are the inner and outer radia of a pointed domain (D, a) (§4.4);
modR(I : L) is the modulus of a pair of intervals L ⊂ I ⊂ R (§6.3.5);

Euc or e is used for the Euclidean metric on various surfaces (C, Cyl, T2, etc.)

50.3. Spaces and maps.

50.3.1. Spaces.

• X ≡ clX denotes the closure of a set X; intX ≡ X◦ denotes its interior.

• A neighborhood of a point x will mean an open neighborhood, unless otherwise
is explicitly said. For instance, a “closed neighborhood” P ∋ x means a closed set
such that intP ∋ x.
• U ⋐ V means that U is compactly contained in intV , i.e., U is a compact set
contained in intV ;
• For a domain U (maybe, infinite dimensional), let us say that a subset K ⊂ U is
strictly contained in U if dist(K, ∂U) > 0.

• A compact connected space containing more than one point is called a contin-
uum.21

• A space X is called totally disconnected if for any two points x, y ∈ X, there exist
disjoint open sets U ∋ x, V ∋ y, whose union covers the whole of X.
• A compact space is called perfect if it does not have isolated points. Perfect sets
are always uncountable. (In particular, continua are uncountable.)

• A precompact subset of a locally compact space is also called bounded.
• We say that a sequence {zn} in a locally compact space X escapes to infinity,
zn → ∞, if for any compact subset K ⊂ X, only finitely many point zn belong to
K. In other words, zn →∞ in the one-point compactification X̂ = X ∪ {∞} of X.
• Similarly, a sequence of subsets En ⊂ X escapes to infinity, if for any compact
subset K ⊂ X, only finitely many sets En intersect K. In other words, En → ∞
uniformly in X̂.
• For a tiling (tessellation) X of a space X =

⋃
Xi, we let ∂X :=

⋃
∂Xi, diamX :=

max diamXi.

50.3.2. Maps. • An embedding i : X →֒ Y is a homeomorphism onto the image.
An immersion i : X → Y is a continuous (not necessarily injective) map which is
locally an embedding.
• A function f : X → R is called upper semicontinuous at z ∈ X if

f(z) ≥ lim sup
ζ→z

f(ζ).

It is called lower semicontinuous if f(z) ≤ lim inf
ζ→z

f(ζ).

20We use notation XR or XR for real slices of much more gerneral complex objects.
21We hope this will not be confused with the set-theoretical notion of continuum. Note also

that our definition slightly differs from the standard definition used in the Continuum Theory, as
the latter allows a “continuum” to be a single point.



50. BASIC NOTATION, TERMINOLOGY, AND CONVENTIONS 649

Exercise 50.1. Show that the set of zeros of a non-negative upper semicontin-
uous function is of type Gδ.

• A continuous map f : X → Y between two locally compact spaces is called proper
if for any compact set K ⊂ Y , its full preimage f−1(K) is compact. Equivalently,
f(z) → ∞ in Y as z → ∞ in X, or in other words, f extends continuously to a
map f̂ : X̂ → Ŷ between the one-point compactifications of X and Y .

Exercise 50.2. An injective proper map i : X →֒ Y is an embedding.

In this case we say that X is properly embedded into Y .
We have found convenient to adjust this definition to the following situation.

Let (X, ∂X) and (Y, ∂Y ) be two locally compact spaces with marked boundary,
for instance, bordered manifolds (e.g., closed intervals), or closures of domains in a
bigger manifold (e.g., in S2), or cell complexes (e.g., trees) with marked boundaries.
Then a continuous map f : (X, ∂X) → (Y, ∂Y ) between the pairs will be called
proper.

For instance, a path γ : [0, 1)→ Y is proper if and only if

γ(t) ∈ intY for t ∈ (0, 1), γ(0) ∈ ∂Y and γ(t)→∞ in intY as t→ 1.

A proper path γ : (0, 1) → Y is called landing at a point a ∈ ∂Y as t → 0
if γ(t) → a as t → 0. It is equivalent to saying that γ extends to a proper path
[0, 1)→ Y .
• Full preimages of points will also be called its fibers. Note that for a proper map,
discrete fibers are finite.

• ∏◦ stands for the composition of a chain of maps (§25.8.1).

50.3.3. Quotients. An equivalence relation ∼ on a topological space X is called
closed if its graph

Graph(∼) = {(x, y) ∈ X : x ∼ y}
is closed in X2. In other words, if we have two sequences xn ∼ yn converging to
points x and y respectively, then x ∼ y.

Exercise 50.3. (i) Show that equivalence classes of a closed relation are closed,
but in general, not the other way around.

(ii) Show that an equivalence relation ∼ is closed iff the quotient space X/ ∼ is
Hausdorff.

Since an “equivalence relation” is the same as a partition of X, we can carry
the above terminology over to partitions.

50.3.4. Metrics.

• In a metric space , we use notation B(x, r) for an open ball of radius r centered
at x (though in C, we also use (50.1)).
• For two sets X and Y in a metric space with metric d, let

dist(X,Y ) = inf
x∈X, y∈Y

d(x, y).

If one of these sets is a singleton, say X = {x}, then we use notation dist(x, Y ) for
the distance from X to Y .
• The diameter of a set X us defined as

diamX = sup
x,y∈X

d(x, y).
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• distH(X,Y ) is the Hausdorff distance between two closed subsets of a compact
space Z; S(Z) is the space of all closed subsets endowed with this distance.

• For a manifold M , TxM stand for its tangent space at x, and TM stands for its
tangent bundle.
• If M is Riemannian and X is a path connected subset of M , then one can induce
the metric from M to X in two ways:

– The chordal metric is obtained by restricting to X the global metric on M .

– The path or intrinsic metric is obtained by restricting toX the Riemannian metric
on M and then defining the path distance between x and y as the infimum of the
length of paths γ ⊂ X connecting x to y (which could be infinite). For instance,
one can induce the Euclidean metric from R2 to the circle T in these two ways
leading to the chordal and angular metrics on T. A more interesting example is
obtained by inducing the Euclidean metric to a Jordan domain D ⊂ R2 with fractal
boundary.

50.4. Measures and densities. A measure space X ≡ (X,µ) ≡ (X,S, µ) is
a set endowed with a (finite or σ-finite measure) µ defined on a σ-algebra S. A
null-set in X is a set of zero measure.

An isomorphism h : (X,S, µ) → (X, S̃, µ̃) between two measure spaces is a
measure preserving bijection, i.e.,

Y ∈ S⇐⇒ h(Y ) ∈ S̃, and in this case µ(Y ) = µ(h(Y )).

A (partially defined) map h : X 99K X̃ is called an isomorphism mod 0 if it restricts
to an isomorphism h : Y → Ỹ between full measure subsets.

More generally, we say that some property is valid mod 0 if it is true up to a
null-set.

A space X is called Polish if it is a separable complete metric22 space. A
measure µ on X is called Borel if it is defined on all Borel sets, i.e. on the σ-algebra
generated by open (or closed) subsets ofX. A completion of such a measure amounts
to adding to this σ-algebra all subsets of null-sets. By default, all measures under
consideration in this book are completed Borel measures on Polish spaces.

Any Borel measure is regular in the sense that any set can be approximated
in measure by open sets (from above) and by closed sets (from below): For any
measurable set Z ⊂ X any ε > 0 there exists an open set U ⊃ Z and a closed set
K ⊂ Z such that µ(U r Z) < ε and µ(Z rK) < ε.

A finite measure space is called a Lebesgue space if it isomorphic to the dis-
joint union of the interval I (continuous part) and at most countably many atoms
(discrete part). (There is an equivalent intrinsic definition which is not directly
used in this book.) The main virtue of this category is that the Rokhlin theory of
measurable partitions is applicable. Any Polish space (with a finite Borel measure)
is Lebesgue.

Let us now briefly dwell on the notion of absolute continuity. A functorial
way to introduce it is in the category of measurable maps h : (X,µ) → (Y, ν)
by requiring that the full preimages of null-sets are null-sets. Equivalently, the
push-forward measure h∗µ is absolutley continuous with respect to ν: h∗µ ≺ ν.

22Or rather, metrizable with a complete metric
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However, the classical definition for functions of one variable, h : (0, 1) → R

was the existence of locally integrable ρ which is the derivative of h in the sense of
the Newton-Leibnitz Formula:

h(y)− h(x) =
∫ y

x

ρ dt ∀ x, y ∈ (0, 1)

(in other words, h is the distribution function for an absolutely continuous mesure,
not necessarily positive). For a 1D homeomorphism, it is equivalent to the absolute
continuity of h−1 in the above functorial sense. To avoid confusion, we mark the
classical notion with the star: absolute continuity∗. The definition extends in an
obvious way to functions h : (0, 1)→ Rn, and in particular, to h : (0, 1)→ C. The
image of such a maps is a rectifiable curve.

More generally, we can consider absolutely continuous∗ maps h : γ → γ̃ between
rectifiable curves (in Euclidean spaces) endowed with the length measures dl and
dl̃. Such a map is differentiable a.e. along the curve: for l-a.e. z0 ∈ γ,

∃ ∂γh(z0) := lim
h(z)− h(z0)

z − z0
as z → z0, z ∈ γ,

and the usual change of variable rule is valid: for any ρ̃ ∈ L1(dl̃) we have:∫

γ̃

ρ̃ dl̃ =

∫

γ

ρ ◦ h |∂γh| dl.

When h : γ → γ̃ is a homeomorphism then this rule means that h∗(dl̃) = |∂γh| dl.
Lebesgue measure on Rn (or a smooth measure on a Riemannian manifold) is

usually (in this book) denoted by m;
In 2D we also call it “area”, so for K ⊂ R2, areaK ≡ m(K);
In 1D, we also use notation l(K) ≡ lengthK ≡ m(K);
Similarly, we use notation lhyp for the hyperbolic length;
The densities dens(X |D), dens(X | a), and their upper/lower and one-sided ver-
sions are defined in §19.18.

ν ≺ µ means that µ is absolutely continuous with respect to µ;
Equivalence ν ∼ µ means that ν ≺ µ and µ ≺ ν; it is also expressed by saying that
µ and ν are in the same measure class.

δx is the delta-measure supported at the point x.
∆ ≡∆d = {(pi) ∈ Rd+1 : pi ≥ 0,

∑
pi = 1} is the standard probabilistic simplex.

50.5. Dynamical objects.

Rθ : T→ T, z 7→ e(θ) z is a circle rotation with rotation number θ ∈ R/Z;
Rational rotation numbers are usually denoted p/q with Gothic fonts (which also
applies to other settings: parabolic, combinatorial, etc.).

orb z ≡ orbf (z) = (zn ≡ fnz)∞n=0 is the (forward) orbit of a point z;
0n ≡ fn(0) are postcritical points;

Orb−(z) =
⋃

n≥0
f−n(z) is the grand backward orbit;

Orb(z) =
⋃

n≥0
f−n(orb(z)) is the grand orbit;

ω(z) is the limit set of orb z.

f = fc : z 7→ z2 + c is the quadratic family;
Critf ≡ Crit(f) is set of critical points (§20.9);
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Critnf = Crit(fn), Crit∞f =
⋃

Critn(f) (§§20.1, 20.9);
CritR(f), CritR(fn) and Crit∞R (f) are the real counterparts of these sets (§20.7.3);
Pf is the post-valuable set (§§20.1, 20.9).

Df (∞) ≡ Dc(∞) basin of ∞;
K(f) ≡ Kc is the filled Julia set;
J (f) ≡ Jc is the Julia set;
F(f) ≡ Fc is the Fatou set;
KR = [β, β′]# is the real slice of K (in the case of real f).

α is the cycle of a periodic point α;
If 0 is periodic then 0 is its cylce;
D(α) is the attracting or parabolic basin;
DR(α) is the real basin;
D•(α) is the immediate basin.

Rθ ≡ Rθc is the external dynamical ray for fc of angle θ (§23.5.4);
Rθ(t) ≡ Rθ(r) is the point on the ray Rθ whose equipotential level is equal to
t = log r;
Rθ[t1, t2] = {Rθ(t) : t1 ≤ t ≤ t2} be the arc of the ray Rθ between equipotentials
of level t1 and t2 (§24.2).
Etc ≡ Erc is the external dynamical equipotential for fc of radius r or height t;
Σc(r) ≡ Σc(t) is the subpotential disk for fc of radius r or height t;
Ωc(r) ≡ Ωc(t) is the superpotential domain for fc of radius r or height t;
Ωc is the critical superpotential domain for fc (bounded by the figure-eight).

Ic, c ∈ [−2, 1/4] is the maximal invariant interval of fc;
Tc is the minimal invariant interval of fc.

M is the Mandelbrot set;
MR ≡M∩ R = [−2, 1/4] is its real slice (§33.6).

D ≡ D(∞) ⊂ C2 =
⋃Dc(∞) (§23.6.3);

Ω =
⋃
Ωc ⊂ D (§23.6.3);

f is the fibered dynamics (§23.6.3);
G is the fibered Green function (§23.6.3);
B is the fibered Böttcher function (§34.4.2);
Crit∞ ⊂ C2 is the precritical locus og f (§34.4.3).

Y is the Yoccoz puzzle, Y(m) is the puzzle of depth m (§31.1);
Y (m)(z) is the puzzle piece of depth m containing z (maybe, non-elementary);
Y[n] is the Yoccoz puzzle associated with the nth renormalization level (§31.9).

50.6. Dynamical (and associated) classes.
UR is the class of R-symmetric univalent maps between slit planes (§7.2.1);
Q is the space of ql maps (§28.1.2);
Q′ is the space of perhaps degenerate ql maps (§28.1.2);
QR is the space of real ql maps (§28.1.5);
G′ ≡ Q′R is the real slice of the space of perhaps degenerate ql maps (§§28.1.5,
§30.1.1);
G is the space of maps f : U → U ′ of class G′ such that UR ⋐ U ′R (§30.1.1);
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E is the class of degree two analytic expanding circle maps (§41.1.1);
E, E′ are Epstein classes (§30.1.1);
Y, Y[n] are Yoccoz classes (§45.1).

mod f is the moduls of a ql map or germ;
modR f is the real modulus of a map of class G (§30.1.2).

50.7. Functional spaces. Lp(D,m), p ∈ [1,∞], stands for the Lp-space on
the measure space (D,m), it is abbreviated as Lp(D) when m is the Lebesgue mea-
sure, when D = C, it is abbreviated further as Lp;
The corresponding norm is denoted ‖ · ‖p;
Lploc(D,m) is the space of locally Lp-functions on (D,m) (with the same abbrevia-
tion conventions);
Cp ≡ Cp(D), p ∈ N ⊂ {∞}, is the space of Cp-smooth functions on a manifold
D (which can have border), with topology of uniform convergence on compact
subsets for all derivatives involved, (again if D is not specified, it is assumed to be
C);
C(X) ≡ C0(X) is the space of continuous functions;
For a domain D ⊂ C, W(D) is the Sobolev space of bounded continuous functions
φ on D whose distributional partial derivatives ∂xφ, ∂yφ belong to L2

loc(D) (§11.5);
Wp, Wp

loc are similar Sobolev spaces;
Lpcomp(D,M), Cpcomp(D) stand for the corresponding spaces of functions with com-
pact support (where convergent sequences are assumed to be supported on compact
subsets);
M(X) is the space of finite (comleted Borel) measures on X (§13.7.2);
M(X) is the subspace of probability measures on X (endowed with the weak topol-
ogy) (§19.6.1);
Mf (X) is the subspace of invariant measures (§19.6.2).

Given a Banach space B, B(a, r) stand for the (open) ball of radius r centered at
a, Br ≡ B(0, r) (for instance L∞1 is the unit ball in L∞).

DHomeo(U, V ) is the class of homeomorphisms U → V differentiable a.e. (§11.2);
DHomeo+(U, V ) is the subclass of orientation preserving homeomorphisms;

50.8. Special groups and homogeneous spaces.
GL(V ) is the group of linear automorphisms of V ;
GL+(V ) is the subgroup of orientation preserving automorphisms;
SL(2,R) is the group of 2 × 2 matrices over a ring R with determinant 1 (we will
deal with R = C, R, or Z);
PSL(2, R) = SL(2, R)/{±I}, where I is the unit matrix;
SO(2) ≈ T is the group of plane rotations;
PSO(2) = SO(2)/{±I} (this group is actually isomorphic to SO(2), but it is natu-
rally embedded into PSL(2,R) rather than SL(2,R));
Sim(2) is the group of similarities of R2, i.e., compositions of rotations and scalar
operators.
CR is naturally embedded into C2 by z 7→ (z, z̄) (as the reflector for the anti-
holomorphic involution (z, ζ) 7→ (ζ̄, z̄)). Linear operators of C2 preserving CR and
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the area therein have the form
(
α β
β̄ ᾱ

)
, α, β ∈ C, |α|2 − |β|2 = 1.

We let SL#(2,R) be the group of these operators (it is another representation of
SL(2,R) in SL(2,C)). Note that it acts on CR ⊂ C2 by transformations z 7→ αz+βz̄.
Möb(Ĉ) ≈ PSL(2,C) is the group of Moöbius transformations;

Aff(C) is the group of complex affine maps;
Aff(R) is the group of real affine maps (that can act on R, C or H);
Euc(C) is the group of orientation preserving Euclidean motions of C.

Conf(V ) is the space of conformal structures on V ≈ R2 (§11.1.1).

For a subgroup Γ ⊂ G, we l use the convention that g ·Γ are left cosets while Γ ·g are
right cosets. The corresponding homogeneous spaces are denoted G/Γ and ΓrG,
respectively.

50.9. Some elementary facts.

Jensen’s Inequality. Let φ(x) be a concave function on a real interval I.
Then for any points xk ∈ I, k = 1, . . . , n, and any weights (pk)

n
k=1 ∈ ∆n−1, we

have: ∑
pk φ(xk) ≤ φ

(∑
pkxk

)
.

A sequence an ∈ R+ is called subadditive if an+m ≤ an + am.

Fekete’s Lemma. For a subadditive sequence (an)

∃ lim
an
n

= inf
an
n
.

50.10. Abbreviations. We let e(θ) := e2πiθ

1D, 2D, 3D, ... – one-dimensional, two-dimensional, three-dimensional,...
ABM – Area of the Boundary of M
AK – Alexander-Kolmogorov
DH – Douady-Hubbard
IFT – Implicit Function Theorem
IVT – Intermediate Value Theorem
JLC – local connectivity of a Julia set
Leb – Lebesgue
Lip – Lipschitz
MLC – local connectivity of the Mandelbrot set
MRMT – Measurable Riemann Mapping Theorem
a.e. – almost everywhere
acim – absolutely continuous invariant measure
lc – locally connected
ql – quadratic-like
qc – quasiconformal
qs – quasisymmetric
h.o.t. – higher order terms
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51. Index

Abelian differential/integral §§2.11, 2.6.4
Abel equation §23.7.1, eqn. (23.19)
absolute≡circle at infinity §§1.7.8, 2.4.1
absolutely continuity/absolutely continuity∗ §50.4
– on lines §11.5
absolutely continuous invariant measure (acim) §§19.6.5, 19.13.7
– for the Chebyshev map §20.4.6
– for a Misiurewicz map §27.1.6
absorbing set §19.7
accelerated
– dynamics/map §§24.4.3, 31.7.1, 47.1.1
– critical value §47.2.1
accessible point, access §1.3.5
– peripheral §9.1.1
active critical point/parameter §33.2
adding machine (q-adic/q-adic/dyadic)/odometer §§19.16.2, 28.4.8, 30.13
adic ring (q-adic/q-adic/dyadic) §19.16.2
adjustment of a ql map (elementary) §§28.1.1, 40.1
admissible
– conformal metric (extremal/W-admissible) §6.1
– (kneading) sequence §32.4.4
affine geometry: maps/group/structure §2.2
airplane
Alexander
– cohomology 1.10
– trick 1.3.6
almost renormalization (canonical) §28.4.3
ambient equivalence §1.3.3
ameba (central ) §24.5.1
annulus
– topological (≡ cylinder) §1.7.1
– conformal §§2.4.10, 2.6
– covering §§1.7.13, 6.7
– ε-pinched §6.3.3
– maximal/canonical §6.7
a priori bounds
– real §30.12
– – beau §30.12.3
– complex §44
– for generalized renormalization §44.5
– for Feigenbaum maps §44.6
arc §1.2.1
– proper/non-trivial §1.7.11
– diagram §1.7.11
– vertical (genuinely) §6.3.1
– – for a ql map §28.1.4
– major/characteristic §24.7
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arcwise connected set §1.2.1
area of a Julia set §§25.5, 26.5 28.4.9, 45.4
asymmetric moduli §§44.2, 44.4
atlas topological/smooth/analytic, etc. §§1.7.1, 2.1
attractor measure-theoretic/topological (global/minimal) §19.7
– for a polynomial §22.2
– for a Misiurewicz map 27.1.6
– Julia set §§27.3, 45.5
– description of topological attractors for unimodal maps §30.14.2
– wild §46.5
attracting
– periodic point/cycle §§19.8.1, 21.1
– – central/valuable §21.2.3
attracting-superattracting surgery §§25.8, 35.4
averaging §19.6.2
automorphism
– of a Riemann surface §2.1
– of f §19.4
– external §§41.2, 41.3.1
axis of a hyperbolic motion §2.4.4

Baker domain §29.5
baker transformation §19.16.4
balanced measure/class §§19.13.3, 19.14.3
– invariant Markov §19.14.5
Baire category (first/full) §19.17
Baire Category Theorem §19.17
ABM Conjecture (on the Area of the Boundary of M) §38.2
base for a covering §1.6.1
Basic Dichotomy §20.3
basic set of level n (for a unimodal map) §§30.11, 30.14.3
basilica: §20.4
– lamination
basin of attraction (immediate)
– for a general attractor §19.7
– for an attracting cycle §21.2.2
– – real §§21.2.4, 30.2.1
– for a parabolic cycle §21.3.6
– – real §§21.3.7, 30.2.2
– for a germ §21.6.4
– beau bounds
– – real §30.12.3
– – complex
Beltrami
– coefficient/form §11.1.2
– differential §§2.11, 11.1.3, 11.2 xs – equation
– path
Bernoulli
– shift/generator §§19.10 19.11.3
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– two-sided §19.16.3
– measure(s) µp §19.10.3
– map/tiling/family of tiles (unbranched) §§19.11.3, 24.4.3, 31.7.1, 31.8
– good expanding §46.8.2
Bers’ Gluing Lemma §13.3
bifurcation
– saddle-node §§20.4.4, 33.5, 35.5, 35.9.1
– superattracting §20.4.4
– satellite §§35.6, 35.9.2
– period doubling/tripling/n-tupling §§20.4.5, 33.5, 35.6
– in the quadratic family §35.9
– locus
– – in a real analytic family §33.6.3
– – in the complex quadratic family §36.3
biholomorphic isomorphism/automorphism §2.1
Birkhoff Ergodic Theorem §19.6
blow-up of points of an interval or a circle/minimal §1.1.2
Blaschke
– product §3.1
– model/map
– – hyperbolic §25.3
– – parabolic §26.2
body
– of a hull §9.1.5
– of a Hubbard tree §25.6.5
– of M at r §37.3
Bogolyubov-Krylov Theorem §19.6.2
Böttcher
– function/coordinate/equation §23.5.1
– conjugacy §23.5.2
– position of the critical value §23.5.3
– fibered function §34.4
– fibration/foliation/holonomy §§34.4.2, 34.4.3
– motion §§34.4.4, 35.2.2
boundary
– topological (∂TS) §1.7.5
– for a general family of fjords §1.7.6
– inner ∂iA and outer ∂oA (for an annulus) §1.7.12
– ideal (∂IS) §§2.4.1, 2.4.6, 2.4.17
– relative/totally geodesic §2.4.6
bounded
– subset of a locally compact space §50.3.1
– combinatrorics/geometry of a Cantor set §§1.1.1, 15.2.4
– distortion §§19.13.4, 25.4.1, 26.4.1
bouquet
– of components in the attracting basin §25.6.2
– of little Julia sets §§28.4.2, 28.4.6
branch
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– of the inverse map §§1.6.1, 1.7.14
– of a hull (unrooted) §§9.1.1, 9.1.5
branched
– point/value
– – its local degree (multiplicity)
– – well branched point with valence n §9.1.5
– covering §1.7.14
– – its global degree
– – critically periodic §39.1
Brolin Formula §23.6.1
buffers/square §§6.7, 6.8

Cantor
– set (“1/3” and general) §1.1.1
– – dynamical §19.13.11
– bouquet §1.4.6
canonical
– annuli/multicurve §6.7
– (weighted) arc diagram (CAD) §6.8
– foliation §6.8
Carathéodory
– convergence §7.7
– boundary/compactification §8.1
– Boundary Theorem §8.1.2
– Torhorst Theorem 8.2
Cauchy
– Inequality (in Banach spaces) 14.11.3
– transform 14.10.1
Cauchy-Riemann equation §11.1.3
cauliflower
– map/Julia set: Figure 20.3, §§20.4.4, 26.1
– checkerboard §26.1.3
cellular set 1.3.1
center
– of a component of Kf for superattracting f §25.6.1
– of a hyperbolic omponent, c∆ §35.2.1
central
– component §20.5
– basin/periodic point, etc. §§21.2.3, 21.3.6, etc.
–
– strip/ameba §24.5.1
– return §§31.4, 31.6.1
– cascade §31.6.1
– – real [Chebyshev (Ulam-Neumann) or parabolic (saddle-node)] §31.11
– cascade renormalization §31.8
characteristic
– ray/angles/sector/cut-line/geodesic (leaf)/strip §§23.5.4, 24.5.1,
– – for superattracting maps §25.7.1
– – for attracting maps §§25.8.3, 35.2.2
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– – for parabolic maps §26.7
– – for Misiurewicz maps 27.1.5
– arc §24.7
– attracting point §21.2.3
– lamination §47.9
characteristic (Lyapunov) exponent §§27.1.6, 46.6.3
Chebyshev
– polynomial Чn §2.101
– – quadratic z 7→ z2 − 2 (Ulam-von Neumann map) §20.4.6
– tip §47.1.1
– wake §47.1.1
chopping off sectors §9.1.2
Choquet Theorem §19.6.2
chordal metric §50.3.4
circle rotation §19.8
coding §19.11
collapsing a hull §1.3.1
collar
– geometric §7.6.2
– maximal §6.7
Collar Lemma §7.6.3
comb §1.2.2
combinatorial
– rotation number ρcom §§23.1.5, 23.4, 24.4.1
– – of f §24.4.2
– – tuned §24.5
– recurrence §31.5
– equivalence/model/geodesic lamination §32.1.3
– – R−equivalence §32.4.1
– – qs equivalence §38.8
– class §38.1
– – real §§32.4.1, 38.3
– rigidity §38.2
Combinatorial Rigidity Conjecture §38.2
– Real §38.3
combinatorics
– bounded (for a Cantor set) §1.1.1
– of renormalization §§28.4.5, 28.4.7, 37.11.2, 43.4
compact core §1.7.2
compactification
– topological (clT S) §1.7.5
– for a general family of fjords §1.7.6
– one-point §1.7.6
– ideal circle §§1.7.2, 1.7.8, 2.4.1
completely invariant set
– under a group action §1.5.1
– under a map §19.1
conditional
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– measures/probabilities §46.9.2
– expectation with respect to a partition, E(φ | P) §46.9.2
– entropy §46.10.2
conformal structure
– on a surface S 2.1
– on the linear space CR §11.1.1
– measurable (standard, σ) §11.2
conformal
– disk/annulus etc §2.1
– Riemannian metric §2.11.1
Conformal Schönflies Theorem 8.2
congruence group (idel triangle group) Γ2 §2.4.13
conjugacy (topological)
– between group actions §1.5.1
– between maps (smooth/conformal/qc) §19.4
– between ql maps (hybrid) §40.2
connected sum §1.7.2
contained compactly (U ⋐ V )/stricty §§50.3.1, 14.11.3
continuity/continuity∗

– semi- (upper/lower) §§50.3.2, 1.9
– absolute §§50.4, 11.4
– – on lines §11.5
continuum §50.3.1
– indecomposable §1.4.3
– – hereditary §1.4.4
convex
– core §§2.4.18. 7.6.8
– hull (hyperbolic) §2.4.4
covering (of degree d) §1.6.1
– branched §1.7.14
– Galois (regular) §§1.6.1, 1.7.14
– group §§1.6.3, 1.7.14
– Universal §1.6.3
– equivalent coverings §1.6.1
– orbifold §1.8
Cremer point/map/germ §§21.6, 21.6.2
critical
– point/value §1.7.14
– – for the iterates §§20.1, 20.9
– component of K (critical≡central/valuable) §20.5
– backward orbit §23.3
– rays and equipotential/figure-eight §23.5.4
– sector/strip §24.5
critically
– preperiodic maps §27.1.1
– non-recurrent maps §27.2
cross-cut genuine/generalized §8.1
crossing path families 6.5
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cross-ratio (group) §2.6.4
curve/path §1.2.1
– closed/simple closed §1.2.1
– essentially crossing/disjoint §1.7.10
– Jordan §1.3.1
– trivial §§1.3.2, §1.7.5, 1.7.10
– peripheral §1.7.5, 1.7.10
– (genuinely) vertical/horizontal §6.3.1, 6.3.7
cusp
– pseudosphere §2.4.10
– of a domain §15.3.1
– of M §33.3
cut-point/curve (Jordan)/line (simple/Green/dipole) §§9.1.1, 9.2.1
cycle
– of periodic points
– of curves §§23.1.5, 23.4
– of intervals §§30.4.1, 30.13.1
cyclic order §1.11
cylinders of ranks n (of Bernoulli maps) §§19.10.2, 19.11
cylinder
– topological (≡topological annulus) Cyl §1.7.1
– open/bordered/semi-bordered
– flat Cyl[l, h], Cylh §50.2
– bi-infinite C/Z §2.2
– half-infinite is 2.6.1

David surgery: Notes to §§25–27.
deck transformation §§1.6.3, 1.7.14
decoration (dyadic satellite) §47.1.1
deformation space
– of expanding circle maps 19.13.8
– quasiconformal (qc) §29.1.2
degree (local/global) §1.7.14
Denjoy Distortion Estimate §19.13.4: Exercise 19.69
Denjoy-Wolff Theorem §21.7
dendrite §§1.3.4, 27.1.3
dependence on parameters
– of the solution of the Beltrami equation
– of a qc deformation §29.1.3
density point §19.18
developing §2.12.1
Devil’s Staircase §1.1.2
– vs Weyl’s Lemma §13.2
– projection Sh0(∆)→ ∂∆ §§37.4, 37.5
– sectorial §47.1.1
∂z and ∂z̄ partial derivatives §2.11.2
∂ and ∂̄ operators §2.11.2
∂̄-equation §14.10.1
diameter of a set, diamX §50.3.4
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dilatation
– of a conformal structure/Beltrami form≡differential (Dilµ/dilµ)/ linear op-

erator (DilA) §§11.1, 11.2
– – bounded §11.2
– of a qc map (Dil(h, z), Dilh) §§11.1.3, 11.2
– macroscopic circular Dil(h, z, ρ)/upper Dil(h, z),Dilh §§4.4, 12.2
– quasisymmetric §12.3
dipole (cut-points/lines/corners) §9.2.1
Dirichlet regularity/barrier §10.7
Dirichlet Problem §§10.3, 10.7
distance ration §12.3
disintegration §46.9.2
displacement §2.4.4
distance
– between subsets: dist(X,Y ), dist(x, Y ) §50.3.4
– Hausdorff: distH(Y,Z) §1.9
distortion §4.4
– bounded §§19.13.4, 25.4.1, 26.4.1
– control for maps with negative Scwarzian derivative §30.15.1
distributional derivative §11.5
Divergence Property §6.3.4
Doob Theorem §46.9.3
Douady rabbit: Figure 20.5
Douady-Hubbard (DH) renormalization/(pre-)renormalizable §§28.4.3, 31.6.2
doubling
– map T ≡ T2/degree d circle map Td §19.12
– bifurcation §§20.4.5, 35.6
dyadic
– interval §19.12
– dynamical interval/tile 19.13.2
– grid §23.6.2
– dynamics/points on the cauliflower §26.1.2
– tip §§37.10, 47.1.1
– wake §§43.4,47.1
– decoration §47.1.1

Écalle-Voronin
– cylinder §21.3.5
– moduli §23.7.3
electric circuits laws §6.2
Elementary λ-Lemma (Extension of a smooth motion) §17.3
elementary Fuchsian group §2.4.8
elliptic function §2.10.2
embedding (proper) §50.3.2
end (compactification/impression)
– topological §§1.7.5
– – tame §1.7.8
– general notion 1.7.6
– prime §8.1
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– puzzle §9.1.3
envelope (of a partition) §46.9.1
entropy
– Shannon §46.10.1
– measure-theoretic (metric) §46.10.1
– conditional §46.10.2
– topological §§48.4, 48.2, 37.7.2
Epstein class §30.1.1 §30.1
equator §§2.4.10 2.6.1
equidistribution of an orbit §19.6.2
equipotential §§4.2, 10.9, 8.3, 23.5.4, 23.6
– internal §§9.2.3, 25.3
– radius/height §§8.3, 23.5.4
– external §§23.5.4, 23.6
– tubing equipotential (for a ql map) §40.4.1
– parameter §34.2
equivalence relation
– closed §50.3.3
– holomorphic/algebraic (its local charts,sections,fundamental domains, etc.)

§29.4
equipped ql family §42.1
equivariant map §§1.5.1, 19.4,
Ergodic Theorem (Birkhoff) §19.6
ergodicity §§19.6.2, 19.6.5
ergodic
– partition §46.9.1
– transformation §§19.6.2, 19.6.5
– decomposition/components §19.6.2
escaping
– to infinity (in a general context) §50.3.1
– moment n (for the initial puzzle) §31.4
– time (for a central cascade) §31.6
essential
– submanifold/simple closed curve §1.6.4
– intersection (crossing) §2.4.19
– set (topologically) §19.17
– tiling/pullback/essentially equal puzzle pieces §31.1
Euclidean geometry
– motions/structure §2.2
– of an annulus 6.3.3
Euler characteristic §1.7.4
– for orbifolds §1.8
exactness
– topological (leo property) §19.3
– – relative §25.6.9
– – for interval maps §30.8.2
– measure-theoretic
expanding
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– maps §19.9
– – uniformly/strictly/weakly
– – globally/locally/infinitesimally
– – dynamically
– – with respect to a partition/tiling §19.11
– circle maps §19.13
– sets (Julia) §§20.3, 20.8
– orbifold maps §27.1.2
expansive map (ε−) §19.9.1
– cauliflower §26.1.2
extension
– of a holomorphic motion
– of a conformal structure (invariant/canonical) §29.1.4
external
– neighborhood §1.3.4
– coordinates §§23.5.3, 34.2
– angle/radius/height §§8.3, 23.5.4
– map §41.1
– – connected case §41.1.2
– – general case §41.1.4
– automorphism §41.2
external equipotential
– dynamical (of radius r or height t = log r) Etc ≡ Erc §§23.5.4, 40.4.1
– – critical (figure-eight) §§23.5.4, 40.4.1
– parameter Etpar ≡ Erpar §34.2
external ray
– general §8.3
– dynamical (of angle θ) Rθc §23.5.4
– Green 23.6
– characteristic 25.7, 25.8.3 26.7
– critical/crashing §23.5.4
– valuable §§23.5.4, 32.1.2,
– landing §24.2
– parameter Rθpar §34.2
– rational/irrational §24.2
– for a ql map (tubing) §§28.1.4, 40.4.1
extremal length/width/metric §6.1
extreme point (of a convex set) §19.6.2

family
– quadratic
– real quadratic §33.6
– unimodal
– real analytic (non-trivial) §33.6.2
– quadratic-like (ql)
– full §33.6.2
Fatou Theorem (on radial limits) §8.4
Fatou Conjecture §33.4
– Real §§33.6, 38.3
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Fatou
– set F(f) (≡ set of normality) §20.5
– coordinates §23.7
Feigenbaum
– attractor (≡ solenoid) §30.13.3
– map (real) §§30.13.4, 44.6
Fekete’s Lemma 50.9
fiber
– of a map §50.3.2
– of a covering §1.6.1
– of a ql family §42.1
Fibonacci
– map
– combinatorics/level §31.8.1
– complex bounds §44.2
fibered
– dynamics f §§23.6.3, 34.4.1
– Böttcher function B §34.4.2
– Green function G §34.4.3
fibration
figure-eight §23.5.4
filled Julia set K(f) §20.3
– real §30.1
filling-in holes §1.3.4
filtration (of measurable partitions) §46.9.3
Finsler metric/distance §18.6
First λ-lemma §17.2
first
– return map/time §19.2
– – for the puzzle (full) §31.2.2
– – – its branch/component (critical or central)/domain §31.2.2
– – – first kid §31.2.2
– escaping moment n §31.4
– landing map/time, etc. §19.2
– – for the puzzle (its branch, component, domain)/full §31.2.1
– – – principal §31.5
fixed point §19.1
– for a group action §1.5.1
– hyperbolic/parabolic/elliptic §2.3.2
– topologically attracting/repelling (on the right/left)/of mixed type §19.8.1
– orientation preserving/reversing (≡ flip) §19.8.1
– repulsive §20.4.3
– co-fixed point §24.4.4
– α− and β− fixed point (dividing/non-dividing) §§24.4.2, 25.6.4
– – on a Hubbard tree §25.6.4
– – for a real quadratic polynomial §§20.4.2, 20.4.3
– – for a real map of class G §30.3
– attracting/repelling/neutral §21.1
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– – parabolic/irrational (Siegel/Cremer) §§21.1, 21.6
fjord §§1.7.5, 1.7.6
– prime §8.1
– Green §8.3
– puzzle §9.1.3
flat geometry §2.2
flip §§19.8.1, 21.3.4
Flower Theorem §21.3.2
folding
– point §25.6.12
– map §25.6.5
foliation (topological/smooth/holomorphic, etc.) §1.5.2
– its (global) leaf/flow box/local chart/local leaf (plaque)/transversal §1.5.2
– singular §1.5.2
– vertical/horizontal §§6.3.1, 6.3.7 23.5.4
foliated tube §17.1
Fourier transform §14.10.2
four-times-punctured spheres §2.6.4
Fourth λ-Lemma §17.6
Fuchsian group §2.4.8
– limit set Λ(Γ)
– set of discontinuity Ω(Γ)
– of first and second kind
– elementary
– uniformization §2.4.9
full (≡ non-separating) set §1.3.1
– filling in the holes §§1.3.1, 20.3
– unimodal family §33.6.2
– ql family
fundamental
– domain (for a group action/Dirichlet) §1.5.1
– domain for a Fuchsian group
– crescent (attracting/repelling) §§21.3.2, 21.3.3
– rectangle (repelling) §21.3.3
– annulus
– – for an attracting/superattracting point §21.2.1
– – for a ql map §28.1.1
– torus §§23.1.3, 23.4
– – its qc deformation §35.3.1
– domain §29.4
Fundamental Theorem of 2D Topology §1.7.2

gap
– of a closed subset of an interval or a circle §1.1.2
– of a geodesic lamination (polygonal/of countable type) §2.5
– definite §19.18
Gauss map §19.13.10
Gauss-Bonnet Formula
– for spherical triangles §2.3.6
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– for hyperbolic triangles §2.4.7
– for flat surfaces §2.7.2
– for variable metrics §2.12.2
– for orbifolds §2.12.2
– application to Thin-thick decomposition §7.6.8
generalized
– polynomial-like/ql map (of finite fype)/renormalization §31.3.1
– – its filled Julia set §31.3.1
– ql family §47.3
– sequence §13.7.1
– renormalization hierarchy §47
generator (for a dynamical system (f, µ)) §46.10.3
generic property/points §19.17
genus §1.7.2
geodesic hyperbolic (complete) §2.4.4
geodesic lamination §2.5
– its support, leaves and gaps
– clean/colored/Chebyshev/pre- §2.5.1
– polygonal/maximal §2.5.2
– vertical foliation and its ideal singular points
– unlinked laminations §2.5.2
– generated by the characteristic geodesic γch §25.7.2
– invariant/symmetric/completely invariant §32.5.1
– rational LQ(f)/combinatorial Lcom(f)/critical Lcrit(f) §32.1.3
– combinatorial R[n] §32.1.4
– puzzle §32.1.5
– characteristic/minor §47.9
geometry
– bounded (for a Cantor set) §§1.1.1, 15.2.4
geometry (geometric structure) §2.1
– flat (Euclidean/affine) §2.2
– spherical (projective) §2.3
– hyperbolic §2.4
germ §§50.1
– holomorphic §21.1
– attracting/repelling, etc. §§19.8.1, 21.1
– quadratic-like (ql) §40.5.1
gluing≡pasting §1.7.2
Gluing Lemma
– little §15.3.6
– – smooth version §13.3
– Bers’ §13.3
(an orbit) governed by an invariant measure §19.6.2
grand orbit OrbX/backward orbit Orb−X §§19.1, 29.4
graph
– recurrent/irreducible/permutation/primitive §19.19.1
– ΓA of a matrix §19.19.2
Green
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– function §10.9,
– – dynamical §23.6, eqn.(23.13)
– ray/equipotential (Rθ/Er) §4.2
– cut-line/sector/puzzle piece etc. §9.1.1
group
– action (free, properly discontinuous) §1.5.1
– of deck transformations (covering group) §1.6.3
Gröztsch Inequality §6.3.2

handle §1.7.2
harmonic
– functions and differentials §10.1
– sum x⊕ y §6.2
– measure §10.8
Harnak Inequality §10.4
Hausdorff metric/distance distH, and space S(Z) §1.9
hedgehog
– fat/thin §2.5.2
– Perez-Marco 21.6.4
height (of the Principal Nest) §31.6.2
Hilbert transform §14.10.3
hole (in a surface) §1.7.2
holomorphic motion §17
– orbits/leaves §17.1
– smooth/biholomorphic §17.1
– total space/fibers/foliated tube §17.1
– lift §17.4.3
– equivariant §34.4.1
– global transversal to §42.4
holomorphic
– equivalence relation §29.4
– maps between Banach spaces/curves §14.11.2
– lamination (trivial) §17.1
holonomy §§1.5.2, 17.4.2
homogeneous space §1.5.1
– H as a homogeneous space for SL(2,R) §2.4.3
– Conf as a homogeneous space for SL(2,R) §11.1.1
homterval (maximal) §30.4.1 (see also “wandering interval”)
horizontal curves (genuinely)/foliation
– in an annulus≡cylinder §6.3.1
– in a quadrilateral≡rectangle
horn map §23.7.3
horocycle/horoball (Lh(a), Hh(a)) §§2.4.4, 2.4.10,
– on a surface (simple) 2.4.16
Hubbard tree/map
– superattracting §25.6
– – geometric §25.6.1
– – its body and limbs §25.6.5
– – extended §25.6.6
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– – little (central/valuable/extended)
– – – of α−rotational type §25.6.7
– – – of non-rotational type §25.6.8
– – – primitive/satellite §25.6.11
– – puzzle tree (central/valuable) §25.6.8
– – prime §§25.6.11, 27.1.4
– – nest §25.6.11
– – abstract §§25.6.12, 35.2.4
– – of molecule type §25.6.13
– for a Misiurewicz map §27.1.4
– for an attracting map §§25.8.3, 35.2.4
– for a parabolic map §26.6.2
hull/subhull K ⊂ C §1.3.1
hybrid conjugacy/equivalence/class §40.2
hyperbolic
– maps/parameters/sets §§20.8, 21.2.3, 25, 33.4
– – primitive/satellite §25.6.2
– – real
– – – quadratic-like §25.9
– – – of class G §30.2.1
– Blaschke model §25.3
– sets
– – complex §45.2: Lemma 45.7
– – real §30.9
– component §33.4
– – primitive §35.9.1
– window (real) §33.6.1
hyperbolic
– plane H ≈ D ≈ S §2.4.2
– metric §§2.4.2, 5.2
– motion §2.4.3
– geodesic (complete) §2.4.4
– – its stabilizer Stab+(γ)
– convexity/convex hull §2.4.6
– triangle/polygon §2.4.7
– Riemann surface/domain §§2.4.9, 5.2
– Riemann orbifold §2.4.11
– Riemannian surface §2.12.1
– line §7.2.1

ideal
– circle (absolute)/compactification §§1.7.2, 1.7.8, 2.4.1, 2.4.8
– boundary (∂IS) §§2.4.1, 2.4.6, 2.4.17
- - triangle group (congruence group) Γ2 §2.4.13
immersion §50.3.2
immediately renormalizable maps §§28.4.6, 31.4
– real §31.11
Implicit Function Theorem (IFT) in Banach spaces §14.11.1
impression
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– of an end §1.7.6
– of a prime end §8.1
– of a puzzle end §9.1.3
– postcritical (complex/real) §§28.4.8, 30.13.1
initial Markov tiling/puzzle/pieces/critical (central) nest §31.7
Intermediate Value Theorem (IVT) §33.6.2
internal rays, angles and equipotentials (compare “Green rays/equipotentials”)
– for an interior component of a hull §9.2.3
– for an immediate superattracting basin §25.3.1
– for a parameter hyperbolic component §§35.2.4, 37.5
intersection multiplicity §50.1
interval maps
– expanding/saw-like 19.14.2 (Exercise 19.90)
– with constant slope §19.14.7
– unimodal §20.4.3
intrinsic topology (of a leaf) §23.3
invariant
– set (forward/backward/completely) §19.1
– curve (landing at a fixed point) §§23.1.5, 23.4
– – essentially §23.4
– interval (for a real quadratic map)
– – maximal I §20.4.2
– – smallest T §20.4.5: Exe 20.18, §30.4.2: Exe 30.20
inverse
– branches §1.6.1
– – normality and Koebe control §20.7.1
– – for interval maps of class G §30.1.4
– limit §§19.16.1
irreducible
– component of a graph §19.19.1
– component of a matrix §19.19.2
isomorphism
– between Riemann surfaces §2.1
– between measure spaces (mod 0) §50.4
isotropy group §1.5.1
itinerary
– for the first landing and return maps (to a puzzle piece) §31.3.2
– for unimodal maps §32.4.2

J-stability §36.2
Jacobian (Radon-Nikodym) §46.10.4
Jensen’s Inequality §50.9
Jordan
– curve (polygonal) §1.3.1
– – trivial/peripheral §§1.7.8, 18.7
– disk (open/closed) (inner/outer) §1.3.2
Jordan Theorem §1.3.2
Julia
– set J (f)/filled K(f) §20.3
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– – for ql map §28.1.3
– – little §§28.4.1, 28.4.6
– – real JR(f) §30.14.3
– – – filled I(f) §30.1.1
– – – for hyperbolic maps §§25.9, 30.2.1
– – – for parabolic maps §§26.8, 30.2.2
– bouquet §§28.4.2, 28.4.6
– nest (canonical) §§28.4.7, 31.10
JLC Problem §45

kid §45.3
– first §31.2.2
Knaster continuum §1.4.3
kneading
– theory/data §32.4.1
– sequence §32.4.3
– – prime §37.11.3
– model §§32.4.4, 33.7
Koch snowflake §1.4.1
Koebe
– Distortion Theorem §4.4
– 1/4−Theorem §4.4
– Distortion Property (for maps with positive Schwarzian derivative) §30.15.1
– space §31.3.4
Königs function §23.1.2
Krein-Milman Theorem §19.6.2
Kronecker Theorem §19.8.3
Kushnirenko bound §48.4

lake of Wada §1.4.5
λ-lemma §17
– First (Extension to the closure) §17.2
– Second (Transverse quasiconformality) §17.4
– Third/Fourth §17.6
– Elementary (Extension of a smooth motion) §17.3
lamination
– geodesic §2.5 (see “geodesic lamination”)
– holomorphic (trivial) §17.1
landing path/points §1.3.5
landing map (first) §19.2
– (branch/domain/component) §31.2.1
– complex §31.2
– real §31.11
Lattès maps §2.10.2
Law of Large Numbers §19.10.2
leaf
– local/global §23.3
– minor/critical §25.7.1
Leau-Fatou flower (attracting/repelling (uniformly)) §§21.3.2, 21.3.3
Lebesgue
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– density point/Density Points Theorem §19.18
– space §50.4
legal arc/hull/convexity §9.3
length of a real Julia set
leo
– property (topological exactness) §19.3 (see “exactness” for more)
– periodic interval §30.10
Levin-Sodin hedgehog §23.5.4
lift
– of a map/homotopy §1.6.2
– of a holomorphic motion §17.4.3 §1.6.2
liftable map (via covering p and p′), or (p, p′)−liftable §1.6.2
Lifting Property/Criterion §1.6.2
limb
– of a hull §9.1.5
– of a Hubbard tree §25.6.5
– of M (rooted at r/unrooted/centered at c◦) §37.3
– main Lp/q (unrooted L∗p/q) §37.4
ω-limit set §19.1
limit set of a Fuchsian group §2.4.8
lim supXn, lim infXn §1.9
Lindelöf Theorem §8.3
line field (measurable/invariant) §36.7.1
– support
linearizable map/germ/point §§21.6, 23
linearizing coordinate §§21.6, 23.1.2, 23.2
linearization
– of attracting/repelling cycles
– – local §23.1.2
– – global §§23.1.4, 23.4
– of parabolic cycles
– – local §23.7.1
– – global
– of Siegel cycles §21.6.1
Linearization Theorem §23.1.2
linking §2.4.19
Liouville equation §2.12.1
little
– (filled) Julia set §28.4.1
– M -copy (centered at c◦ or rooted at r◦) §§37.11.1, 43.1
local
– inverse branches §1.6.1
– chart/coordinates (topological) §1.7.1
– sections of an equivalence relation §29.4
– leaf (of the natural extension) §23.3
local connectivity (lc) §1.2.2
– weak lc (= connected im kleinen
– lc modulus
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local (semi-local) dynamics §21.1
loop §1.2.1
– ε-loop §2.4.16 (Exercise 2.54)
Lyapunov
– stability §§19.1, 21.34
– (characteristic) exponent §§27.1.6, 46.6.3
– metric §19.9.2

Magnification dynamical 19.13.6
main
– hyperbolic component ∆0 of M/cardioid §33.3
– cusp
– wake/limb ofM (p/q-satellite) §37.4
Mandelbrot set M (connectedness locus) §§20.3, 33.2
– of a ql family §42.1
– little (M -copy) §§37.11.1, 43.1
manifold
– simply connected
marking (colored/uncolored) §1.7.15
Markov
– shift (topological) §19.14.1 – – ≡ Topological Markov Chain or subshift of

finite type §19.14.1
– – two-sided §19.16.3
– matrix (transit) §19.14.1
– map §19.14.2
– – branched (accellerated) §31.7.2
– process §19.14.4
– balanced invariant measure §19.14.5
– tiling (partition)/family of tiles (unbranched) §19.14.2
– – for a Hubbard tree 25.6.3
– – for a hyperbolic map §25.7.3
– – initial (for the puzzle) §31.7.1
– model/coding §§19.14.2, 25.6.3, 25.6.13, 25.7.3
– property (for the real puzzle) §31.11
martingale §46.9.3
mating (qc) §§25.4.3, 26.2.1, 41.4
matrix non-negative/positive and its graph §19.19.2
– recurrent/irreducible/primitive §19.19.2
maximal annulus §6.7
Maximum Principal (for harmonic functions) §10.5
McMullen tower §44.6.2
– with bounded combinatorics/a priori bounds
– of Epstein class
M -copy (little) §§37.11.1, 43.1
Mean Value Property (MVP) §10.2,10.5
measure space §50.4
measure
– Borel/completed/regular §50.4
– invariant/ergodic/uniquely ergodic/mixing/quasi-invariant §19.6
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– class §50.4
– balanced (of maximal entropy) §§19.13.3, 46.10.7, 48.4.4
– Bernoulli (µp) §19.10.3
– Markov §§19.14, 46.10.7
– SRB/ physical
measurable
– partition §46.9.1
– function with respect to a partition §46.9.2
Measurable Riemann Mapping Theorem (MRMT) §14
metric
– chordal/path (intrinsic)/angular §50.3.4
– conformal/admissible/extremal §6.1
minimal map §19.3
Minimum Principle (for maps with negative Schwarzian derivative) §30.15.1
Minkowski dimension §48.4
minor leaf §25.7.1
– lamination §47.9
miracle of continuity §42.8
Misiurewicz (critically preperiodic)
– map §27.1.1
– wake/decoration §37.10.2
mixing
– topological §19.3
– measure-theoretic §19.6.4
MLC Conjecture §38.2
mod 0 (for validity of some property) §50.4
model
– pinched disk/geodeic lamination §§2.5.2, 9.4
– – for a hyperbolic Julia set §25.7.2
– – for a parabolic Julia set §26.7
– – for general Julia sets §32.1.3
– – for the Mandelbrot set §47.9
– Blaschke (for the immediate basin)
– – hyperbolic §25.3.1
– – parabolic §§26.2.1, 26.2.3
– Markov
– – for Hubbard trees §§25.6.3, 25.6.13
– – for real maps §25.6.14
– saw-like/piecewise linear
– – for the Chebyshev map §20.4.6,
– – for a Hubbard map §25.6.13
– – for a real superattracting map §25.6.14
– – for a preperiodic (Misiurewicz) map §27.1.6
– – for a real leo map §48.3,
– superattracting (for a hyperbolic map) §25.8.2
– combinatorial Fcom/critical Fcrit §32.1.3
– kneading §§32.4.4, 33.7
Moduli space
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– for a critically periodic branched covering (Mg) §39.2.1
modular
– functions J , λ §§2.4.12, 2.4.13
– group/surface §2.4.12
modulus
– of an annulus≡cylinder (modA) §§2.4.10, 2.6.1, 6.3.1
– of a torus §2.6.3
– of a ql map
– of a real map §30.1.2
molecule of M
molecule type
– for a Hubbard tree §25.6.13
– for renormalization
Monodromy Theorem §1.6.3
monodromy map §1.5.2
monotonicity interval §20.7.3
Montel Theorem (Little, Big and Refined) §4.3
Möbius (projective)
– group Möb(Ĉ) §2.3.1
– map (transformation) §§2.3.1, 2.3.2
– – hyperbolic/parabolic/elliptic/loxodromic
– – their fixed points/multipliers
– – normal form
Moore’s Theorem §1.3.8
motion (Euclidean, hyperbolic,. . . ) §1.5.1
multi-arc §1.7.11
multicurve §1.7.10
– canonical §6.7
– invariant §39.2.7
multiplier §§2.3.2, 19.5, 21.1
Multiplier Theorem §35.2
Myrberg
– map §§20.4.5, 30.3
– parameter §43.5.2

Naishul’s Theorem §21.6.5
natural extension §§19.16.3, 23.3
Necklace Lemma §21.7
negligible set (topologically) §19.17
neighborhood (closed) §50.3.1
net (d, ε)−) §48.4
nest
– of sets (general) §50.1
– – increasing/decreasing/shrinking
– of Hubbard trees §25.6.11
– of little Julia sets (canonical) §§28.4.7, 31.10
– principal §31.5
– – real §31.11
nice/very nice
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– disk §31.1
– interval §31.11
Nielsen map §19.15
No Invariant Line Fields Conjecture §36.7.2
Non-Crossing Principle (for path families) §6.5
Non-Cutting Assumption (for little Julia sets) §28.4.1, Property (R3)
non-wandering point/set Ω(f) §48.4.2
normal families, §4.3 , 7.7, 10.4
– in Banach spaces §14.11.3
Normality Lemma (for inverse branches) §20.7.1
No Wandering Domains Theorem §29.2
No Wandering Gaps Theorem §32.5.2
No Wandering Intervals Theorem §30.14.1
null-set §50.4

orbit (forward) orbx/backward/grand/petit §19.1
– small §21.3.3
– equivalence §19.15
– for a holomorphic motion
orbifold (good/oriented/universal) §1.8
– underlying space/orbifold groups/local charts/signature
– morphism/homeomorphism
– covering (Universal)
– Euler characteristic §1.8.2
– of finite topological type §1.8.2
– of finite conformal type §2.8.3
– smooth/Riemannian/Riemann §2.1.4
– – map/diffeomorphism
– parabolic/(Euclidean≡flat)/ §2.2
– elliptic≡spherical/Platonic §2.3.6
– hyperbolic §2.4.11
– associated with a quadratic map (Of ) §27.1.2
orientability/orientation §1.7.1

pants/pair of pants §1.7.10
parabolic
– periodic point/cycle §§21.1, 21.3
– germ §21.3.1
– – non-degenerate/order of degeneracy
– – primitive/satellite
– – real (flip/-attracting/-repelling/-semi-attracting) §21.3.4
– petal/flower (attracting/repelling (uniformly)) §21.3.2
– polynomial (map) §§21.3.6, 26
– basin (immediate) and realm §21.3.6
– – central/valuable
– – real §21.3.7
– Blaschke model §§26.2.1, 26.2.3
– spine §26.2.2
– Hubbard tree §26.6.2
– real map/Julia set §26.8
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– set §30.2.2
parabolic-attracting surgery §26.6.1
Parallel Law §6.2
Parseval’s Identity §14.10.2
partition (open) §19.11
–closed §50.3.3
– measurable §46.9.1
– singleton (ε)/trivial (ν) §46.9.1
– equivalence mod 0 §46.9.1
– tail §46.10.2
passive critical point/parameter §33
pasting≡gluing §1.7.2
Path Lifting Property §1.6.1
path §1.2.1
– connected set §1.2.1
– metric §50.3.4
– family §6.1
Peano curve §1.2.2
perfect
– set §50.3.1
– sector/corner/puzzle piece §9.1.1
– rigidity §9.1.3
period (minimal) §19.1
periodic
– point/orbit/cycle §19.1
– – weakly attracting/repelling/of mixed type §19.8.1
– – attracting (simply/superattracting)/repelling/neutral §21.1
– – – parabolic/irrational (Siegel/Cremer)
– interval §§19.6.1, 30.4.1, 30.6
– arc §23.1.5
– ray
– – protrait §32.5 (see “ray portrait”)
periodically repelling polynomial §21.4
peripheral point §1.3.1
– curve §1.7.10
permutation (weighted) §19.19.5
– its multiplier §19.19.5
Perez-Marco hedgehog §21.6.4
Perron method §10.6
Perron-Frobenius
– Theory §19.19
– Theorem §19.19.3
persistent recurrence §45.3
Pesin
– Formula §46.6.3
– local unstable manifold §46.6.4
petal
– for an attracting/superattracting point §21.2.1
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– for a parabolic point (attracting/repelling) §21.3.2
Phase-Parameter Relation
– without dynamics §17.5
– for the quadratic family §§34.2, Eq.(42.5), 34.4.5
– for ql families §42.5
piece §19.11
pinched disk (model) §§2.5.2, 9.4
plane domain §1.7.12
planar space §1.3.3
pointed
– space §50.1
– hull §9.2
Poincaré function §23.4
Poincaré Recurrence Theorem §19.6
Poisson Formula §10.3
Polish space §50.4
Polygonal Jordan Theorem §1.3.1
polynomial-like map §28.3
porosity (in all scales/uniform) §§19.18, 25.5
postcritical
– sets §§20.1, 20.9
– cycle §27.1.1
– impression Of §28.4.8
– real impression Of §30.13.1
post-valuable sets Pf , Pf ≡ clPf §§20.1, 20.9
preperiodic
– point (and its preperiod) §19.1
– wake/decoration §37.10.2
pre-renormalization (DH) §§28.4.3, 31.6.2
prime end (impression) §8.1
primitive
– element of a group §1.5.1
– component of a graph §19.19.1
– component of a matrix §19.19.2
– parabolic point §21.3.1
– component of intM §§33.5, 35.9.1
– hyperbolic map §25.6.2
– renormalization §§28.4.1, 31.6.2
primitive
– parabolic point
– hyperbolic map
– little Hubbard tree §25.6.11
– renormalization
– component/bifurcation §§33.5, 35.9.1
Principal Nest §31.5
– real §31.11
– of Hubbard trees §25.6.8
principal
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– first return maps/generalized renormalizations/annuli §31.5
– moduli §44.1
– – real §31.11
projective structure §§2.3, 2.9.3
proper
– map §50.3.2
– – between ends §1.7.5
– arc/curve/homotopy §1.7.11
– unimodal map §20.4.3
pseudo-arc/-circle §1.4.4
pseudo-group (structural) §2.1
Puiseux series §21.3.2
pullback
– of a structure, h∗µ §§2.1, 11.1.1, 29.1.1
– of a measure
– of a set §§19.1, 31.2.1
– – regular §23.3
– of a puzzle piece §31.2
– operator (in the Thurston theory) §39.2.2
– of a multicurve §39.2.7
Pullback Argument §38.5
puncture §1.7.2
– at infinity §1.7.8
push-forward of a structure, h∗µ §2.1
– of a measure §19.6.1
puzzle §§31, 9
– piece (Green/perfect/vertices/corners) §§9.1.1, 9.2.1
– end/boundary/compactification/impression §9.1.3
– on the Hubbard tree §25.6.8
– Yoccoz (depth/critical/valuable/protected/non-elementary) §31.1
– associated with the nth renormalization §31.9
– level of §31.11
– real §31.11
– lamination/model §32.1.5
– parameter/rational §38.1

quadratic differential §2.11
quadratic family: Preface, §20
– real §§20.4, 33.6
quadratic polynomial
– hyperbolic 20.8
– parabolic §21.3.6
– Siegel/Cremer §§21.6, 21.6.2, 23.2
– periodically repelling §21.4
– critically preperiodic≡Misiurewicz §27.1.1
– non-recurrent §27.2
– persistently/reluctantly recurrent
quadratic-like (ql)
– map (conventional/degenerate) §28.1.1
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– adjustment/restriction §§28.1.1, 40.5.1
– – real §28.1.5
– – generalized §§31.3.1, 47.3
– – with L-bounded geometry §40.1
– germ §40.5.1
– family: DH/equipped/proper/unfolded/winding number of §42.1
quadrilateral marked §6.3.7
quasi-annulus §15.3.5
quasiconformal (qc)
– map §§11.3, 12.5
– – deformable/rigid §36.8
– deformation
– – general idea §29.1.2
– – history §29.5
– – No Wandering Domains Theorem §29.2
– – Connectivity ofM
– – Multiplier Theorem for M §35.3.2
– surgery
– – general idea §29.1.2
– – history §29.5
– – attracting-superattracting §§25.8, 35.4
– – straightening of ql maps
– – mating
quasi-geodesic §13.5.1
quasi-isometry §13.5.1
quasi-invariance of moduli §12.1
quasi-invariant measure §19.6.5
quasi-isomorphism /-endomorphism (between measure spaces §46.10.4
quasisymmetric map (quasisymmetry)/qs dilatation (kappa-qs/L-qs) §12.3.1
– vs quasiconformal §12.3.2
– one-dimensional §15.1
quasiregular (qr) (quasi-holomorphic) map §14.9
quasi-self-similarity §§25.4.1, 26.4.1
queer
– component §33.4
– interval §33.6.3
Queer Theorem §36.7.4
quotient §50.3.3
– by a lamination, (C,D)/L §2.5.2

radial limit §§8.4, 13.5.2
radius inner/outer (rD(a)/RD(a)) §4.4
ray (Green) §§4.2, 10.9
– external (Rθ) §§8.3, 23.5.4, 23.6 (see “external ray” for more)
– internal §§9.2.3, 25.3
– limit set ω(Rθ) §8.3
– landing/closed §8.3
– converging to a puzzle end §9.1.3
– configuration §§24.4, 24.5
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– portrait (periodic) §§24.4.1, 24.5.2, 32.5.1 (Example 32.33)
Real Fatou Conjecture §§33.6, 38.3
Real Combinatorial Rigidity Conjecture §38.3
real
– hyperbolic map §25.9
– Julia set (filled): §§30.1.1, 30.14.3 (see “Julia set” JR(f) for more)
– modulus §30.1.2
– a priori bounds §30.12
– – beau §30.12.3
– quadratic family §§20.4, 33.6
– slice of the Mandelbrot set, MR §33.6
– analytic family of unimodal maps (non-trivial, full) §33.6.2
– hyperbolic window §33.6.1
– structural stability/bifurcation locus §33.6.3
– renormalization window (open/closed) §37.11.3
realm of attraction
– for a general attractor §19.7
– for a parabolic cycle §21.3.6
– – real §21.3.7
recurrent point §19.1
recurrence
– persistent/reluctant §45.3
– combinatorial §§31.6.2, 31.11
rectangle marked, standard §2.6.2
recurrent vertex §19.19.2
regular dynamics/map §30.2
regular point/(leaf space) §23.3
removability (conformal/qc) §13.3
– dynamical §35.1
renormalization and renormalization∗ (pre-) §§28.4, 30
– complex (ql) §28.4.1
– period §§28.4.1, 30.11
– – relative §§28.4.7, 30.11
– primitive/satellite §§28.4.1, 31.6.2
– DH (Douady-Hubbard) §§28.4.3, 31.6.2
– – valuable
– – degenerate §§28.4.3, 28.4.4, 31.10
– – parabolic case §28.4.4
– – immediate §28.4.6
– – first/n-fold §28.4.7
– real §30.7
– – almost (renormalization∗) §30.7.2
– – filtration §30.11
– – n-fold §30.11
– combinatorics (full) §§28.4.5, 28.4.7, 37.11.2, 43.4
– – bounded §28.4.7
– – real §§30.7.1, 37.11.3
– – absolute/relative §§37.11.2, 43.4
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– window §37.11
– – complex/its center, root and tip §37.11.1
– – real §37.11.3
– generalized §§31.3.1, §31.3.3
– – cascade §31.8
renormalizable map/polynomial
– complex (ql) §28.4.1
– – DH (Douady-Hubbard) §28.4.3
– – almost (renormalizable∗) §28.4.4
– – immediately §28.4.6
– – N times/infinitely/non-renormalizable §28.4.7,
– – with respect to a ray configuration §31.9
– really §30.7
– – almost (renormalizable∗) §30.7.2
– – N times/infinitely/non-renormalizable §30.7.3
– – structure of non-renormalizable∗ interval maps §30.8
– – structure of N times renormalizable∗ interval maps §30.10
– – structure of infinitely renormalizable interval maps §30.13
repulsive unimodal map/fixed point §20.4.3
residual set §19.17
resolvent §14.11.2
restricted quadratic family §42.2
return map (first) §19.2
rigidity (perfect) §9.1.3, 9.2.1
– combinatorial §38.1
– quasiconformal (qc) §36.8
– of superattracting maps §§35.1, 38.6
Riemann-Hurwitz formula §3.2
Riemann Mapping Theorem 4.2
Riemann sphere Ĉ §§2.1, 2.3
Riemann surface §2.1
– hyperbolic §§2.4.9, 5.2
Rokhlin Theory (of measurable partitions) §46.9
root
– of a sector §9.1
– of a basin (central/valuable) §25.3.2
– of a hyperbolic component, r∆ §§33.5, 35.2.4, 35.8
– of a limb §37.3
rotation
– of a cyclically ordered set (cyclic) §1.11
– of the circle §19.8
– cycle/set §§24.7, 24.4.2
– – tuned §§24.7, 28.4.10
rotation number
– for a permutation §1.11
– for a circle homeomorphism §19.8.4
– for a neutral cycle §21.1
rotational lamination §32.5.4
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saddle-node bifurcation/unfolding §§20.4.4, 35.5, 35.9.1
satellite
– parabolic point §21.3.1
– hyperbolic map §25.6.2
– little Hubbard tree §25.6.11
– renormalization §28.4.1
– component/bifurcation §§33.5, 35.6, 35.9.2
saturation (under an equivalence relation) §29.4
– P- §46.9.1
saw-like
– map §19.13.9, §19.14.2 (Exercise 19.90)
– model §§20.4.6, 25.6.14, 27.1.6, 48.3
scales (all/dense set of) §19.18
scaled interval λ · I §50.2
scaling factors §31.11
Schwarz
– Lemma §7.1
– – Definite 7.5
– – Symmetric §7.2.1
– Contraction Property (for maps with positive Schwarzian derivative) §30.15.1
Schwarzian derivative Sf §2.9
– negative §30.15
– Schottky group §19.15
– Schröder equation §23.1.2
Second λ-lemma §17.4
sector rooted at a (perfect) §9.1.1
– critical/valuable/characteristic §§24.4.3, 24.5.1
cellular set/approximation §1.3.1
semicontinuity (upper/lower) §50.3.2
– for sets §1.9
separated set (d, ε−) §48.4
separatrix §23.5.4
Series Law §6.2
set
– directed §13.7.1
– of discontinuity of a Fuchsian group §2.4.8
– of normality (≡ Fatou set) §20.5
shadow
– of a sector (perfect) §§9.1.1, 28.4.10
– Shp/q of a wake of M §§37.4, 37.5
shadowing property (ε−) §§19.14.6, 48.4
Shannon entropy §46.10.1
Shannon-McMillan-Breiman Formula §46.10.5
shape §4.4
Sharkovsky order §48.1
shift locus (complex/real) §§20.3, 20.4.1
Shrinking Lemma §20.7.2
– refined Exercise 21.35
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Siegel point/map/germ/disk §§21.6, 23.2
simple closed curve (trivial/peripheral) §1.7.10
simplicial set §1.7.3
Singer Theorem §30.15.2
skeleton §24.4.4
slit plane §2.4.4
small orbit (ε−, one- and two-sided) §§21.3.3, 21.6.4
Small Overlapping Principle §6.5
Snail (≡Necklace) Lemma §§21.7, 21.7
Sobolev class Wp(U), W ≡W2 §11.5
solar system §31.8
solenoid §30.13.2 (see also “Feigenbaum attractor”, “adding machine”)
spectrum (boundary) §19.19.3
spectral radius r(A)/gap §19.19.3
Spectral Decomposition
– for graphs §19.19.1
– for non-negative matrices§19.19.2
Speizer class of entire functions (of finte type) §29.5
spherical (projective) geometry/structure §2.3
spider §18.3
spine §24.4.4
– parabolic §26.2.2
Stability Lemma §37.1.3
stabilizer/isotropy group Stab(Y ) §1.5.1
star (abstract/closed/open/standard) §1.3.3
stochastic
– dynamics/map §46.6
– – Chebyshev (Ulam-Neumann) map
– – Misiurewicz maps §§27.1, 30.2.4
– – subhyperbolic maps §46.6.5
– matrix §19.19.4
Stolz sector §2.4.4
straightening §§40.2, 41.3
– of families §§42.3, 43.1
Straightening Theorem §40.2
Strebel quadratic differential §6.7
strip critical(central)/characteristic(valuable) §24.5.1
structure (smooth/complex/conformal/qc/hyperbolic/Euclidean, etc.) §2.1
structural stability §36.1
– real §33.6.3
Structural Stability Theorem §36.1
subharmonic and superharmonic functions §10.5
subhyperbolic map §27.2
subpotential disk Σc(r) ≡ Σc(t) §23.5.4
– parameter Σpar(r) ≡ Σpar(t) §34.2
subshift §19.10
– of finite type §19.14.1
Sullivn Dictionary §29.5
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S-unimodal maps §30.15.2
superpotential domain Ωc(r) ≡ Ωc(t) §23.5.4
surface
– topological §1.7.1
– – with boundary (bordered)
– – open/closed
– – of finite topological type/tame §1.7.2
– smooth/(analyticequivconformalequivRiemann), etc. §2.1
– homogeneous §2.12.1
surgery
– general idea §29.1.2
– quasiconformal: see the item “quasiconformal surgery”
– parabolic-attracting §26.6.1
– David: Notes to §§25–27
Symmetric Schwarz Lemma §7.2.1
symmetry dynamical §20.4

Teichmüller
– space §18
– – of punctured spheres §18
– – – four times §2.6.4
– for a critically periodic branched covering (Tg) §39.2.1
– metric/distance §§11.1.1, 11.2 18.6
tensor §2.11
Telescoping Lemma §3.6
test function §11.5
thin-thick decomposition §7.6
– for bordered surfaces §7.6.8
thickening §28.4.3, Lemma 45.7
Third λ-lemma §17.6
thrice-punctured sphere §2.4.13
Thurston
– (qc) equivalence §§25.6.12, 38.4, 39.1
– qc rigidity 38.7
– Realization Theorem §39
– matrix §39.2.9
tightening of a loop §2.4.16
tile/tiling/tessellation §19.11.2
– with bounded combinatorics/geometry §15.1.3
– dyadic/dynamical §§19.12, 19.13.2
– essential §31.1
tip (dyadic)
– of M §37.10,
– satellite (Chebyshev) §47.1
– of a renormalization window (little M -copy) §37.11.1
Topological
– Argument Principle §3.3
– Dynamics/(dynamical system) §19.1
topological
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– surface (disk, sphere, annulus≡cylinder, etc) §1.7.1
– transitivity/mixing/exactness (leo) §19.3 (see “exactness” for more)
– model
– – for a hull §9.4
– – for a superattracting map §25.7.2
– – for a hyperbolic map §25.8.2
– – for a parabolic map §26.7
– entropy §§48.4, 48.2, 37.7.2
topologically
– essential/negligible set §19.17
– holomorphic maps §1.7.14
totally disconnected space §50.3.1
touching §§9.1.1, 9.1.2
– between hyperbolic components §35.8
tower (McMullen/Epstein) §44.6.2
Transcendental Dynamics §29.5
transit
– map/time §19.2
– – Markov matrix §19.14.1
transition maps (between local charts) §§1.7.1, 2.1
triangle group (Euclidean/spherical/hyperbolic) §§2.2, 2.3.6, 2.4.14, 2.8.1
triangulation §1.7.3
transversal (global) §1.5.2
– to a holomorphic motion §42.4
truncated
– image ftr §31.1
– wake §§37.11.1, 47.2.1
tube (of a ql family) §42.1
tubing §40.3: Eq.(40.5), §40.4.2, §42.1: Eq.(42.1)
– rays and equipotentials §§28.1.4, 40.4.1
– position of the critical value §§40.4.2, 40.4.3, 41.3.2, 42.5: Eq.(42.6)
tuning §43.4
– of Hubbard trees §37.11.2: Exercise 37.42
– of unimodal maps/kneading sequences §37.11.3
tuned rotation set §§28.4.10, 24.7, 37.5
twist of the annulus (cylinder) §1.3.7
twisted lexicographic order §32.4.2
type Gδ, Fσ §19.17
typical point for an invariant measure µ §19.6.2

Ulam-von Neumann (Chebyshev) map §20.4.6
unicritical polynomial §20.9 (see also “unimodal map”)
uniformization §2.1, 5
– by a Fuchsian group §2.4.9
Uniformization Theorem §§5.1, 5.2
– Geometric §2.12.1
unique ergodicity §19.6.3
Uniqueness Theorem (F. & M. Riesz, Privalov) §8.4
unimodal map (proper/repulsive/attractive) §20.4.3 (see also “unicritical”)
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– topological structure §30.14
Universal covering §1.6.3

valuable objects (component/basin/periodic point, etc.) §§20.5, 21.2.3, 21.3.6, etc.
Variational Principle §48.4.4
vertical curves (genuinely)/foliation
– in an annulus≡cylinder §6.3.1
– in a quadrilateral≡rectangle

wake
– of a hull §9.1.5
– parameter (rooted at r or centered at c◦) §37.3
– – truncated (of certain depth/level) §§37.11.1, 47.2.1
– – main (p/q-satellite Wpar

p/q) §37.4
– – Misiurewicz (preperiodic) §37.10.2
– – Chebyshev/dyadic (satellite) §§43.4, 47.1.1
Wake
– Theorem §37.3
– Decomposition (main/general) §§37.4, 37.5
wandering
– set (weakly) §19.1
– domain §§22.1, 29.2
– – oscillating §29.5
– interval (non-trivial) §§30.4.1, 30.14.1 (see also “homterval”)
– point §48.4.2
weak topologies (w and w∗) §13.7.2
– on the space of measures §19.6.1
wedge of a petal §21.3.2
Weierstrass P-functions §2.10.2
weighted permutation §19.19.5
welding (qc) §15.4
Weyl Equidistribution Theorem §19.8.3
Weyl’s Lemma §13.1
winding number §3.3
– for a ql family §42.1
witch brush §1.2.2

Yoccoz
– class Y, Y[n] §45.1
– Inequality §24.6
– puzzle §31.1
– – associated with the nth renormalization level (Y[n]) §31.9

Zhukovsky map §20.4.6
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