DENSITY OF RESONANCES FOR SCHOTTKY GROUPS

MACIEJ ZWORSKI

1. INTRODUCTION

In this talk I should like to present an estimate on the number of zeros of the Selberg zeta
function for a class of Schottky groups. The method applies in greater generality and this talk
should be considered as an announcement of the results of [4]. Here, I give a full proof of a special
case.

Our motivation comes from the study of the distribution of quantum resonances — see [18]
for a general introduction. Since the work of Sjéstrand [15] on geometric upper bounds for the
number of resonances, it has been expected that for chaotic scattering systems the density of
resonances near the real axis can be approximately given by a power law with the power equal to
half of the dimension of the trapped set (see (1.1) below). Upper bounds in geometric situations
have been obtained in [16] and [17].

Recent numerical studies in the semi-classical and several convex obstacles settings, [6],[7]
and [8] respectively, show that the density of resonances satisfies a lower bound related to the
dimension of the trapped set. In complicated situations which were studied numerically, the
dimension is a delicate concept and it may be that different notions of dimension have to be used
for upper and lower bounds — this point has been emphasized in [8].

In the case of conver co-compact hyperbolic quotients, X = I'\IH?, studied in [17] the situation
1s particularly simple as the quantum resonances coincide with the zeros of the zeta-function —
see [11]. The notion of the dimension of the trapped set is also clear as it is given by 2(1 + J).
Here ¢ = dim A(T") is the dimension of the limit set of T, that is the set of accoumulation points
of the elements of I' (they are all hyperbolic), A(I') C OHZ.

Hence we expect that

(1.1) > mr(s) ~ '+,

|[Im s|<r, Res>-C

where mr(s) is the multiplicity of the zero of the zeta function of T' at s.
Referring for definitions of Schottky groups and zeta functions to Sections 2 and 3 respectively
we have

Theorem. Suppose that T is a conver co-compact Schottky group and that Zr(s) is its Selberg
zeta function. Then for any Cy > 0 there exists Cy such that for |Res| < Cy

(1.2) |Zr(s)| < Cyexp(Cy]s|®), & =dim A(T).

The proof of this result is quite simple once we apply L?-techniques to the study of the
determinants of the Ruelle transfer operators and choose our spaces carefully.
If we use the convergence of the product representation (3.2) of the zeta function for Re s large
and apply Jensen’s theorem we obtain the following
1
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Corollary. Let mr(s) be the multiplicity of a zero of Z1 at s. Then
(1.3) Z{mp(s) cr<|Ims|<r4+1, Res>—Co} <Oy,
where § = dim A(T).

This is stronger than the result obtained in [17] where the upper bound of the type (1.1) was
given. In fact, the upper bound (1.3) is what we would obtain had we had a Weyl law of the
form #'*% with a remainder (9(r5). That local upper bounds of this type are expected despite
the absence of a Weyl law has been known since [12].

2. SCHOTTKY GROUPS

For simplicity we will discuss only the first non-trivial case: a convex co-compact Schottky
group on two generators — as will be seen in the argument increasing the number of generators
will only add to notational complexity.

Thus let D?, j = 0,1,2, be three open dics with disjoint closures intersecting JH* = R (we
will take the upper half plane model) perpendicularly. Let R; be the reflections with respect to
D;’s and R be the reflection with respect to R (in the disc model it would be the reflection with
respect to the boundary of the disc). We put

(2.1) pi=RjoR, fij=p"Ipo .
Clearly, f;; are holomorphic and contracting
(2.2) [fii(5)] <a<1.

We now take I' to be the group generated by p;p;. Then I' is a discrete subgroup of SLs(R)
and it is a free group on two generators. An example coming from [9] is shown (in the disc model)

=

F1GURE 1. Tesselation by the Schottky group, 'y, # = 110°, generated by in-
versions in three symmetrically placed circles each cutting the unit circle in an
110° angle, with the fundamental domain of its subgroup of direct isometries
and the associated Riemann surface. The dimension of the limit set is § =

0.70055063 . . ..

b
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3. PROPERTIES OF THE SELBERG ZETA-FUNCTION

For T', a discrete subgroup of SLa(R), the Selberg zeta function is defined as follows

(3.1) Zr(s) = exp Z Z ety e_"z(w)_1

7y n=t

Here
{7} = the conjugacy class of a primitive hyperbolic element ~.

Such an element 1s called primitive if it is not a non-trivial power of another element. Using the
expansion of log(1 — z) we see that

(3.2) =11 H (1 = (s+R)L(y >) .

{7} k=0

We will now modify slightly the discussion in [13]. Let
D =DyUDiUDs, Dj an open neighbourhood of D? NA(T)
Jii(Dj) € Dy .

With notational simplifications in the upper half-plane model! we follow [13] and define a special
Ruelle transfer operator:

(3.3)

L(su(z) = Y [ ulfii(2), 2 € Dy,
(3.4) 7
u € H*(D), H*D) = {u holomorphicin D : /D lu(z)]2dm(z) < oo} .

The only difference lies in choosing L? spaces of holomorphic functions instead of Banach spaces.
However we still obtain the analogue of a (special case of a) result of Ruelle [14] and Fried [2]:

Proposition 1. Suppose that L(s) : H*(D) — H?(D) is defined by (3.4). Then for all s € C
L(s) is a trace class operator and

(3.5) |det(I = £(s))] < exp(Cls]?)

Proof. The proof is based on estimates of the characteristic values, p;(£(s)). We will show that
there exists C' > 0 such that

(3.6) pi(L(s)) < eI

To see how that is obtained and how it implies (3.5) let us first recall some basic properties
of characteristic values of a compact operator A : H; — Hs where H;’s are Hilbert spaces. We
define

1Al = po(A) > pa(A) > -+ > pue(A) = 0,

to be the eigenvalues of (A* A)% : Hi — Hq, or equivalently of (AA*)% : Hy — H5. The min-max
principle shows that

(3.7) p(A)= min  max || Al
codim V=t |lvllp, =1

tIn that case fi/] is positive on the real axis so we have a well defined power [f;;(2)]°. In the disc model we

extend the function |f;;(2)|* holomorphically from the boundary of the disc.
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The following rough estimate will be enough for us here: suppose that {x;}2, is an orthonormal
basis of Hy, then

(335) i) < 3 1Az ..

To see this we will use Vi = span {z;}52, in (3.7): for v € V; we have, by the Cauchy-Schwartz

inequality, and the obvious €2 C ¢! inequality,

2
oo

oQ
[Av|l7, = Zvl‘y Azg| < lollzz, | D 1Azl |

=L j=L

from which (3.7) gives (3.8).
We will also need some real results about characteristic values The first is the Weyl inequality
(see [3], and also [15, Appendix Al). It says that if H; = Hy and A;(A) are the eigenvalues of A,

Ao(A)] = Aa(A)] > - > [A(A)] =0,

then for any NV,
N

N
H(1+|/\z H L+ |pe(A

£=0 £=0
In particular if the operator A is of trace class, that is if, >, ue(A) < oo, then the determinant

det(7+A) € T (1 +xe(A)),
£=0
1s well defined and
(3.9) [det (1 + )] < T] 1+ e(4)).
£=0

We also need to recall the following standard inequality about characteristic values (see [3]):

(310) Hey+eo (A+ B) = Hey (A) +/'LZ2(B)
We finish the review, as we started, with an obvious equality: suppose that A; : Hy; — Ho; and

we form @j:l Aj @j:l Hyj— @j:l Hy;, as usual, @j:l Aj(v1®--Bvy) = A1 B - BAsvg.
Then

(3.11) > e @Aj =30 pel4y)

j=11t=0

With these preliminary facts taken care of, we see that (3.6) implies (3.5). In fact, (3.9) shows
that

det (I — £(s <H 14 Clel=/C) < 711
£=0
Hence it remains to establish (3.6). For that we will write

YD) = u*DY),
7=0
and introduce

Lij(s) : HX (DY) = HA(DY), Lij(s)u(z) B [ () ulfis(z)), =€D?, i#j



DENSITY OF RESONANCES FOR SCHOTTKY GROUPS 5

From (3.10) and a version of (3.11) we then have
pe(L(s)) < max 2ugese)(Lij(s)) -
s

To estimate ju (L£i;(s)) we use (3.8) with a basis of H*(DY) given by
T = \/WTl_l((z — ai)/ri)k , DY = D(a;,r;).
Since m C D?,
1((fi5(2) = ai)/re) "= ooy < Ca,
for some 0 < a < 1. Since [f;;(2)]* < e“lsl we obtain

£
pe(Lij(s)) <O NLij(s) ()| < €D ePlak < Ceclsl—la < CreClsl=tion
—
k>t k>t

for some C, which completes the proof of (3.6). O

Remark. The simple proof above is inspired by the work on the distribution of resonances in
Euclidean scattering where the Fredholm determinant method and the use of Weyl inequalities
were introduced by Melrose [10] and developed further by many authors — see [15],[18], and
references given there. That was done at about the same time as David Fried (across the Charles
River from Melrose) was applying the Grothendieck-Fredholm theory to multidimensional zeta-
functions [2]. In both situation the enemy is the exponential growth for complex energies s,
which is eliminated thanks to analyticity properties of the kernel of the operator.

The next proposition is an easy modification of [13, (3)]:
Proposition 2. Let L(s) be defined by (3.4) and T' be generated by p;p; where p;’s and fi;’s are
as in (2.1). Then
Zr(s) = det(I — L(s)) .

Proof. For the reader’s convenience we reproduce the well known arguments of [14],[13] in the
L? setting and for the Schottky group. For s fixed and z € C

h(z) € det(I — 2L(s))
is, in view of (3.6) and (3.9) an entire function of order 0. For |z| sufficiently small log(I — zL(s))
is well defined and we have

(3.12) det(I — zL(s)) = exp (_ > % tr(ﬁ(s))") :

To analyse the traces we introduce an expanding map T
T U fij(Dj) = UDJ' v Tl )= Pil 0= figlrfu‘(Dj) ‘
i2] J
In terms of T, £(s) takes the usual Ruelle-Perron-Frobenius form:
Lshu(z) = Y [T (w)]"u(w).
Tw=z
The correspondence between the closed geodesic (or, equivalently, conjugacy classes of hyperbolic
elements) and the periodic orbits of T is particularly simple for Schottky groups and we recall
it in the form given in [13, Proposition 3.4] (where it is given in a more complicated setting of
co-compact groups):
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Closed geodesics on T'\H?, « of length [(+), and word lenght |y| are in one to one
correspondence with periodic orbits {z, Tz, -, T" 12} such that (1T7)(x) =
exp £(y), and n = |y|. For prime closed geodesics we have the same correspon-
dence with primitive periodic orbits of 7'
It is not needed for us to recall the precise definition of the word length. Roughly speaking it is
the number of generators of I' needed to write down ~.
The Schwartz kernel of £(s)” can be written using the Bergman kernel for D;’s and the
evaluation of the trace T gives

TTL / T -3
tr L(s)" = Z 1[_([(7271( )]

Y@

Returning to (3.12) and using the identification with closed geodesics quoted above, we obtain
for Re s sufficiently large,

> z" T (2)]—5
det(I — zL(s)) = exp (— Z — Z %)

n=1 Tre=z

_ & <k () ()]
=ew | =2 X T

= exXp —Zzzk 71—6_“7)

= exp —i Zkke—sz(w io: e—mz(’Y)
11 ﬁ (1= shletomrem) |

{7} k=0

which in view of (3.2) proves the proposition once we put z = 1. a

It is important that in the proof we did not use any properties of the open sets D; other than
the ones given in (3.3).

Finally, we remark that in view of the lower bounds on the number of zeros of Z1 obtained in
[5] we see from Proposition 2 that the upper bound (3.5) is optimal for any T

4. ESTIMATES IN TERMS OF THE DIMENSION OF A(T).

For the proof of Theorem stated in Sect.l we will choose D;’s in the definition of £(s) in way
dependent on the size of s. Let h = 1/|s|. The self-similarity structure of A(T') will show that we
can choose Dj = D;(h) to be a union of O(h~?) disjoint discs of radii ~ h and d(0D;, A(')) ~ h.
The argument used in the proof of Proposition 1 will then give (1.2).

We start with

tTo see how it works we consider a simple case of f holomorphic in the unit dics, f(0) = 0, and |f(z)| < |2|

for z # 0. The pull back by f has the kernel (as a map on H2(D(0,1))) given by 7~1(1 — f(2)¢). The trace is
then 7—1 ffD(O,l)(l — f(z)®)dm(z) = (1 = |f(0)])~* .
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Proposition 3. Let A(T') C R be the limit set of T in the disc model. Then there exists a
constant K = K(T') such that for § < dy the connected components of A(T') + [—4,0] have length
at most K§.

Proof. The discussion of “cookie-cutter sets” in [1] and in particular [1, Corollary 4.4] can be
applied to A(T) showing that it is a quasi-self-similar set. More precisely there exist ¢ > 0 and
rg > 0 such that for any xg € A(T) and r < ry there exists a map g : [#g — r, g + 7] = R with
the properties
g(AT)N[wg —r,zg+r]) C A(T)
er o~ y] < (@) — g(u)] < e =yl wy € e - romo 1]

Hence the proposition follows by a scaling argument. a

Proof of Theorem. As outlined in the beginning of the section we put h = 1/|s|, where |s| is large
but | Re s| is uniformly bounded. We then define
Pi(h)
def . . . . . . .
I](h) = (A(F) N D? + [_hah]) = U [l‘% - T‘Zy),l‘i + 7“‘17)] ’ xi+1 - ri)+1 > l‘% + 7“‘17) ’
p=1

that is [a:% — i —p, x% + rg;]’s are the connected components of I;(h). Proposition 3 shows that
7“17; < Kh.
The open set D(h) is defined as

D(h) = U Dj(h), Di(h) =] Djp(h), Djp(h) = D(xd, 7)),

and since fi; : A(T) N DY — A(T') N D} we see that the condition (3.3) holds: for each Dj, there
exists a p’ = p(4, j, p) for which
d(ODipr (h), fi5(Djp)) > (1 = B)h,

for a fixed constant 0 < 3 < 1. From this we also see that P;(h) = P(h) is independent of
j=0,1,2.

The now classical results of Patterson and Sullivan on the dimension of the limit set show that
P(h) = O(h~?%): what we are using here is the fact that the Hausdorff measure of A(T') is finite.

We can now apply the same procedure as in the proof of Proposition 1. What we have gained
is a bound on the weight: since | Res| < C and f]; is real on the real axis
|55 (2)]"| < Cexp(|s|| arg fi; (2)]) < Cexp(Cils||Imz]) < Tz, 2 € Dj(h).

We write £(s) as a sum of six operators £;;(s) each of which is a direct sum of P(h) operators.
The discs and contractions are uniform after rescaling by A and hence the characteristic values
of each of these operators satisfy the bound y; < C+%, 0 < v < 1. Using (3.9) and (3.11) we
obtain the bound

log |det(I — £(s))] < CP(h) = O(h~?)
and this is (1.2). H

Proof of Corollary. The definition of Zr(s) (3.1) shows that for Res > C we have |Z1(s)| > 1/2.
The Jensen formula then shows that the left hand side of (1.3) is bounded by

Z{mp(s) Cs—ir—C| < Co} <2 ,max log | Zr(s)| + Ca,
IRs1<Ch



and (1.3) follows from (1.2).
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