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Abstract. We use results of Cochran-Lickorish and Ozsváth-Szabó to obtain bounds
on unknotting numbers. We determine the unknotting numbers of 910, 913, 935, 938,
1053, 10101 and 10120.

1. Introduction

Let K be a knot in S3. Given any diagram D for K, a new knot may be obtained by
changing one or more crossings of D. The unknotting number u(K) is the minimum
number of crossing changes required to obtain the unknot, where the minimum is
taken over all diagrams for K.

Let Σ(K) denote the double cover of S3 branched along K. A theorem of Mon-
tesinos [4] tells us that for any knot K, Σ(K) is given by Dehn surgery on some
framed link with u(K) components, with half-integral framing coefficients. In partic-
ular if u(K) = 1 then Σ(K) is obtained by ± det(K)/2 Dehn surgery on a knot C
in S3. Ozsváth and Szabó have shown in [11] that the Heegaard Floer homology of
a 3-manifold Y gives an obstruction to Y being given by half-integral surgery on a
knot in S3; they apply this to Σ(K) to obtain an obstruction to K having unknotting
number 1 .

Note that crossings in a knot diagram may be given a sign as in Figure 1 (inde-
pendent of the choice of orientation of the knot). Let σ(K) denote the signature of a
knot K. It is shown in [2, Proposition 2.1] that if K ′ is obtained from K by changing
a positive crossing, then

σ(K ′) ∈ {σ(K), σ(K) + 2};

similarly if K ′ is obtained from K by changing a negative crossing then

σ(K ′) ∈ {σ(K), σ(K)− 2}.

Now suppose that K may be unknotted by changing p positive and n negative cross-
ings (in some diagram). Since the unknot has zero signature, it follows that a bound
for n is given by

(1) n ≥ σ(K)/2,
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The following theorem, which uses a result of Cochran and Lickorish [2, Theorem
3.7], may be viewed as a refinement of Montesinos’ theorem. It may be combined
with results of Ozsváth and Szabó to get a useful obstruction to equality in (1).

Theorem 1. Suppose that a knot K may be unknotted by changing p positive and n
negative crossings, with n = σ(K)/2. Then Σ(K) may be obtained by Dehn surgery on
an oriented, framed p + n component link C1, . . . , Cp+n in S3 satisfying the following
conditions.

• The framing on component Ci is (2mi − 1)/2 for some mi ∈ N;
• let aij = lk(Ci, Cj) be the linking number of Ci and Cj. Then the inequalities

|aij| < mi ≤ mj

are satisfied whenever i < j;
• the corresponding four-dimensional 2-handlebody bounded by Σ(K) (as in Lemma

2.2) is positive-definite.

Moreover exactly n of the mi are even.

Corollary 2. The knots 910, 913, 935, 938, 1053, 10101, 10120 have unknotting number 3.

For all but one of the knots in Corollary 2, the signature is 4 and the unknotting
number computation follows from Theorem 1 and theorems of Ozsváth and Szabó.
The exception is 935, whose signature is 2. The computation of u(935) uses Theorem
1 and also a result of Traczyk [12].

Corollary 2 completes the table of unknotting numbers for knots with 9 crossings
or less.

Corollary 3. Any unknotting sequence for 10145 contains at least two negative cross-
ing changes.

Acknowledgements.
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Figure 1. Signed crossings in a knot diagram.
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2. Kirby-Rolfsen calculus

In this section we establish some preliminaries on Dehn surgery. For details on
Dehn surgery and Kirby-Rolfsen calculus see [3].

A framed link L in S3 with rational framing coefficients determines a three-manifold
YL by Dehn surgery (remove a tubular neighbourhood of each component of L; the
framing coefficient determines the gluing map to sew back a solid torus along the
boundary). If the framing coefficients are integers one obtains a four-manifold WL

with boundary YL by attaching two-handles to B4 along the components of L. Kirby-
Rolfsen calculus describes when two framed links L, L′ determine the same three-
manifold YL.

Given a framed oriented link L with components C1, . . . , Cm, let A denote the free
abelian group with generators c1, . . . , cm. Define a symmetric bilinear form

Q : A× A → Q

by

Q(ci, cj) =

{
framing coefficient of Ci if i = j;
linking number lk(Ci, Cj) if i 6= j.

In other words, the matrix of Q in the basis c1, . . . , cm is the linking matrix of L.
(This is the intersection pairing on H2(WL; Z) if the diagonal entries are integers.)

In the case that the framing coefficients on L are integers, any change of basis in A
may be realised by a change in the link L. In particular the change of basis ci 7→ ci±cj

may be realised by a handleslide. Let λj denote a pushoff of Cj whose linking number
with Cj equals the framing of Cj. A handleslide Ci 7→ Ci ± Cj consists of replacing
Ci by the oriented band sum of Ci with ±λj. This gives a new link L′ whose linking
matrix is the matrix of Q in the basis {c1, . . . , c

′
i = ci±cj, . . . , cm} and with YL′ ∼= YL.

It will be convenient to have the following generalisation of handlesliding to links with
rational framings.

Proposition 2.1. Let L be an oriented link in S3 consisting of components C1, . . . , Cm

with framings p1

q1
, . . . , pm

qm
, and let Q be the rational-valued bilinear pairing determined

by the linking matrix of L. Then by replacing Ci in L it is possible to obtain a link
L′ whose linking matrix is the matrix of Q in the basis {c1, . . . , c

′
i = ci± qjcj, . . . , cm}

and with YL′ ∼= YL.

Proof. For each i = 1, . . . ,m choose a continued fraction expansion

pi

qi

= ai
li
− 1

ai
li−1 − . . . − 1

ai
1

.
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(The numbers ai
li
, . . . , ai

1 arise from the Euclidean algorithm as follows:

rli = pi = ai
li
qi − rli−2

rli−1 = qi = ai
li−1rli−2 − rli−3

...(2)

r2 = ai
2r1 − 1

r1 = ai
1.)

Use reverse “slam-dunks” to obtain an integral surgery description of YL: as
shown in Figure 2, we add a chain of linked unknots linking each Ci, with framings
ai

1, . . . , a
i
li−1, and replace the framing on Ci with ai

li
. (This is a standard procedure,

see e.g. [3, §5.3].) Denote the resulting link by LZ, and let QZ : AZ ×AZ → Z denote
the resulting bilinear form.

pi
qi

∼

ai
li

ai
li−1 ai

li−2

. . .

ai
2 ai

1

Figure 2. Converting Dehn surgery to integral surgery.

We now perform handleslides on this integer-framed link. Let D1, . . . , Dlj−1 be the
chain of unknots linking Cj as above, with lk(Cj, Dlj−1) = 1. Let K1 = Ci + D1, and
note that

(3) lk(K1, D1) = aj
1.

We now define Kk recursively for 2 ≤ k < lj. Choose any link diagram of Kk−1 ∪
Dk−1∪Dk. By performing a handleslide over Dk for each crossing where Kk−1 crosses
over Dk−1 we obtain a knot Kk which does not cross over Dk−1 and therefore is
separated from it by a two-sphere in S3 (see Figure 3). The signed count of these
handleslides is minus the linking number of Kk−1 and Dk−1; thus we write

[Kk] = [Kk−1]− lk(Kk−1, Dk−1)[Dk],
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where [Kk] denotes the element of AZ corresponding to the knot Kk. We may use
this to compute linking numbers and the framing of Kk. In particular

lk(Kk, Dk) = lk(Kk−1, Dk)− aj
klk(Kk−1, Dk−1)(4)

= −lk(Kk−2, Dk−2)− aj
klk(Kk−1, Dk−1).

Finally we let C ′
i be obtained as above from Klj−1 by sliding over Cj, with C ′

i unlinked
from each of D1, . . . , Dlj−1. As above we have

[C ′
i] = [Klj−1]− lk(Klj−1, Dlj−1)[Cj],

lk(C ′
i, Cj) = −lk(Klj−2, Dlj−2)− aj

lj
lk(Klj−1, Dlj−1)(5)

Comparing (3), (4), and (5) to (2) we see that

lk(Kk, Dk) = (−1)k+1rj
k for k = 1, . . . , lj − 2,

lk(Klj−1, Dlj−1) = (−1)ljrj
lj−1 = (−1)ljqj,

lk(C ′
i, Cj) = (−1)ljpj.

This yields
[C ′

i] = [Ci] +D + (−1)lj+1qj[Cj],

where

D = [D1] +

lj−1∑
k=2

(−1)k−1rk−1[Dk].

Note that by construction C ′
i is separated by a two-sphere from each Dk and so

QZ([C ′
i],D) = 0. The framing of C ′

i is given by

QZ([C ′
i], [C

′
i]) = QZ([Ci] +D ± qj[Cj], [Ci] +D ± qj[Cj])

= QZ([Ci]± qj[Cj], [Ci] +D ± qj[Cj])

= QZ([Ci], [Ci])± 2qjQZ([Ci], [Cj]) + q2
j a

j
lj
− qjrlj−2

= ai
li
± 2qjlk(Ci, Cj) + pjqj.

Slam dunking to remove the chains of linking unknots from each of C1, . . . , C
′
i, . . . , Cm

gives the required link L′ for the basis change c′i = ci + (−1)lj+1qjcj. To get the
opposite sign construct C ′

i as above but start with K1 = Ci −D1. �

The following lemma is an application of the standard procedure, referred to in
the proof of Proposion 2.1 and illustrated in Figure 2, for converting a Dehn surgery
description of a three-manifold to an integral surgery description.

Lemma 2.2. Let L = {C1, . . . , Cn} be a framed link in S3 with framing (2mi − 1)/2
on Ci, and let Y be the three-manifold obtained by Dehn surgery on L. Then Y is
equal to the boundary of the four-manifold W obtained by adding 2-handles to B4

along either of the following 2n-component framed links (as in Figure 4):
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Kk

Dk

Kk−1

Dk−1

Figure 3. Handlesliding Kk−1 over Dk yields Kk which is separated
from Dk−1 by a two-sphere.

(1) the link consisting of the components Ci with framing mi plus a small linking
unknot with framing 2, for each i = 1, . . . , n;

(2) the link consisting of Ci with framing mi, plus a longitude C ′
i with framing mi

and with the opposite orientation, with linking number lk(Ci, C
′
i) = 1 − mi,

for each i = 1, . . . , n.

Proof. The fact that Y is the boundary of the four-manifold given by the framed
link (1) follows from the continued fraction expansions (2mi − 1)/2 = mi − 1

2
. The

equivalence between (1) and (2) follows by handlesliding: add Ci to C ′
i to go from (2)

to (1).

3. Proof of Theorem 1

We start with an algorithm for drawing a Kirby diagram of a four-manifold W
bounded by Σ(K). (For more details on Kirby diagrams of cyclic branched covers
see [3, §6.3]; indeed what follows is a slight variation of the method in their Exercise
6.3.5(c).)

Let D be a diagram for a knot K which becomes a diagram for the unknot after
changing some chosen set of p positive and n negative crossings. We think of K ⊂ S3

as being in the boundary of B4. Draw (p + n) unlinked unknots beside D, each with
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(2mi−1)/2

∼

2

mi

'
. . .

mi

mi

Figure 4. Half integer surgery. There are 2mi− 2 crossings in the
diagram on the right.

framing +1. This is a Kirby diagram which represents K as a knot in the boundary
of X = B4#(p + n)CP2. As observed in [2], the knot K bounds a disk ∆ in X. This
may be seen from the diagram by sliding each of the chosen crossings in D over a
+1-framed unknot as in Figure 5. Mark each of these changed crossings with a small
arc αi, i = 1, . . . , (p + n), as shown in that figure.

The resulting diagram consists of:

• an unknot U which has been obtained from K by crossing changes;
• arcs α1, . . . , αp+n (one per changed crossing);
• +1-framed unknots γ1, . . . , γp+n.

Each γi bounds a disk Di which retracts onto αi and whose intersection with U
consists of the endpoints of αi.

Rearrange the diagram so that a point of U which is not the endpoint of an arc αi

is the point at infinity and U is a straight line; then ∆ may be seen in this diagram
as a half-plane with boundary U . (The arcs αi may be knotted and linked in this
diagram.) We may suppose all of the αi are disjoint from the half-plane ∆, so that
each γi intersects ∆ in two points. Let w(γi) denote the writhe of γi (i.e. the signed
count of self-crossings). Similarly let w(αi) denote the signed count of self-crossings
of the arc αi.

It is now straightforward to draw a diagram of the double cover W of X branched
along ∆ (take two copies of S3 − U cut open along ∆, and join the boundary half-
planes in pairs). Each arc αi lifts to a knot α̃i, and each Di lifts to an annulus D̃i

with core α̃i. The knot γi lifts to two knots Ci, C ′
i; these are the boundary of the

annulus D̃i.
To compute the framings on these knots note that the blackboard framing of γi

lifts to the blackboard framings on each of Ci, C ′
i. The blackboard framing of γi is

w(γi). The blackboard framing of Ci and C ′
i are each given by w(α̃i) = 2w(αi). Thus

the framing +1 on γi lifts to 2w(αi) − w(γi) + 1; denote this number by mi. The
linking number lk(Ci, C

′
i) is w(γi) − w(α̃i) = 1 − mi. (The number of twists in the
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annulus D̃i is w(γi), while −w(α̃i) counts crossings of Ci and C ′
i due to knotting of

D̃i.)
We note that the resulting Kirby diagram for W matches that in Lemma 2.2 (2).

That lemma then shows that Σ(K) = ∂W is Dehn surgery on the framed link L =
C1, . . . , Cp+n with framing (2mi − 1)/2 on Ci. Thus we have recovered Montesinos’
description of Σ(K) as half-integral surgery on a link. But this four-dimensional
description yields more information: the rank and signature of the intersection pairing
of W are computed by Cochran and Lickorish in [2, Theorem 3.7] as follows:

b2(W ) = 2(p + n)

σ(W ) = σ(K) + 2p.

In particular if σ(K) = 2n then W is positive-definite. Note that the inequalities
i < j =⇒ |aij| < mi ≤ mj may then be satisfied after applying a finite number of
rational handleslides as in Proposition 2.1 to the link L. (These rational handleslides
are just a composition of handleslides on a Kirby diagram for W ; in particular they
preserve W as well as its boundary.)

Finally we must establish the claim that n of the numbers m1, . . . ,mp+n are even.
Let U denote the set of crossings in the diagram D that we change to unknot K.
We have given a description of Σ(K) as half-integral surgery on a link L, with one
component for each crossing in U . Dehn surgery on a sublink of L gives the double
branched cover of a knot which is obtained from D by changing a subset of the
crossings in U . In particular (2mi − 1)/2 surgery on the knot Ci yields the double
branched cover of the knot K ′ which is obtained by changing all but one of the
crossings in U .

The determinant det(K) of a knot K is equal to the order of H1(Σ(K); Z), which
in turn is equal to the determinant of any simply connected positive-definite four-
manifold W bounded by Σ(K). Moreover the determinant and signature of K are
shown in [5, Theorem 5.6] to satisfy

det(K) ≡ σ(K) + 1 (mod 4).

The fact that σ(K) = 2n implies that every change of a negative crossing in U reduces
the knot signature by 2, while every change of a positive crossing leaves the signature
unchanged. It follows that if the knot K ′ is obtained by changing all but one crossing
in U , then K ′ has signature 2 if that crossing is negative and signature zero otherwise.
The determinant of K ′ is 2mi − 1; thus mi is even if and only if σ(K ′) = 2. Finally
note that the parities of m1, . . . ,mp+n are not changed by rational handlesliding.

4. Heegaard Floer homology

In this section we recall some properties of the Heegaard Floer homology invariants
of Ozsváth and Szabó. Details are to be found in their papers, in particular [9, 10, 11].
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Figure 5. Changing crossings by sliding over a two-handle.

Let Y be an oriented rational homology sphere. Recall that the space Spinc(Y ) of
spinc structures on Y is isomorphic to H2(Y ; Z); if |H2(Y ; Z)| is odd then there is a
canonical isomorphism which takes the unique spin structure to zero.

Fixing a spinc structure s, the Heegaard Floer homology HF+(Y ; s) is a Q-graded
abelian group with an action by Z[U ], where U lowers the grading by 2. The correction
term invariant is a rational number d(Y, s); it is defined to be the lowest grading of
a nonzero homogeneous element of HF+(Y ; s) which is in the image of Un for all
n ∈ N. These have the property that d(Y, s) = −d(−Y, s), where −Y denotes Y with
the opposite orientation. We will describe below how these correction terms may be
computed in certain cases.

Now let X be a positive-definite four-manifold with boundary Y . Then it is shown
in [9] that for any spinc structure s on X,

c1(s)
2 − b2(X) ≥ 4d(Y, s|Y ),(6)

and c1(s)
2 − b2(X) ≡ 4d(Y, s|Y ) (mod 2).(7)

This means that the correction terms of Y may be used to give an obstruction to Y
bounding a four-manifold X with a given positive-definite intersection form. We will
now elaborate on how this may be checked in practice.

Suppose for simplicity that X is simply-connected and that |H2(Y ; Z)| is odd.
Let n denote the second Betti number of X. Fix a basis for H2(X; Z) and thus an
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isomorphism
H2(X; Z) ∼= Zn.

Let Q be the matrix of the intersection pairing of X in this basis; thus Q is a symmetric
positive-definite n×n integer matrix with det Q = |H2(Y ; Z)|. The dual basis gives an
isomorphism between the second cohomology H2(X; Z) and Zn. The set {c1(s) | s ∈
Spinc(X)} ⊂ H2(X; Z) of first Chern classes of spinc structures is equal to the set of
characteristic covectors Char(Q) for Q. These in turn are elements ξ of Zn whose
components ξi are congruent modulo 2 to the corresponding diagonal entries Qii of
Q. The square of the first Chern class of a spinc structure is computed using the
pairing induced by Q on H2(X; Z); in our choice of basis this is given by ξT Q−1ξ.

The long exact sequence of the pair (X, Y ) yields the following short exact sequence:

0 −→ Zn Q−→ Zn −→ H2(Y ; Z) −→ 0.

Define a function
mQ : Zn/Q(Zn) → Q

by

mQ(g) = min

{
ξT Q−1ξ − n

4

∣∣∣∣ ξ ∈ Char(Q), [ξ] = g

}
.

An easy argument shows that in computing mQ it suffices to consider characteristic
covectors ξ = (ξ1, . . . , ξn) whose components are smaller in absolute value than the
corresponding diagonal entries of Q:

−Qii ≤ ξi ≤ Qii.

(A more difficult argument in [10] shows that it suffices to restrict to

−Qii ≤ ξi ≤ Qii − 2.)

Thus it is straightforward, if tedious, to compute mQ for a given positive-definite
matrix Q.

The conditions (6) and (7) may now be expressed as follows: there exists a group
isomorphism

φ : Zn/Q(Zn) → Spinc(Y )

with

mQ(g) ≥ d(Y, φ(g)),(8)

and mQ(g) ≡ d(Y, φ(g)) (mod 2)(9)

for all g ∈ Zn/Q(Zn).
The four-manifold X is said to be sharp if equality holds in (6). In this case

the correction terms for Y can be computed using the function mQ described above.
Also, if a rational homology sphere Y bounds a negative-definite four-manifold X such
that −X is sharp, then the correction terms for Y can be computed using the formula
d(Y, s) = −d(−Y, s). Note that if K is a knot in S3 then the standard orientation on
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S3 induces an orientation on Σ(K); letting r(K) denote the reflection of K, we have
Σ(r(K)) ∼= −Σ(K).

In particular let K be an alternating knot with double branched cover Σ(K). Let
G denote the Goeritz matrix computed from an alternating diagram for K (see e.g.
[11]). This is a definite matrix; after reflecting K if necessary we may suppose it is
positive-definite. It is shown in [11, Proposition 3.2] that G represents the intersection
pairing of a sharp four-manifold bounded by Σ(K). Thus the correction terms for
Σ(K) are given by mG.

Also if K is a Montesinos knot then the double branched cover Σ(K) is a Seifert
fibred space which is given as the boundary of a plumbing of disk bundles over S2.
This plumbing is determined (nonuniquely) by the Montesinos invariants which spec-
ify K. After possibly reflecting K we may choose the plumbing so that its intersection
pairing is represented by a positive-definite matrix P . It is shown in [10] that the
plumbing is sharp, so that the correction terms for Σ(K) are given by mP . (See [6]
for a detailed description of Montesinos knots and their branched double covers.)

Remark 4.1. Checking the congruence condition (7) alone is equivalent to checking
that the intersection pairing of X presents the linking pairing of Y ; see [8] for a
detailed discussion.

5. Examples

Suppose that K is a knot for which the correction terms of Σ(K) are known (for
example if K is alternating or Montesinos they may be computed as in Section 4.)
We wish to investigate whether it is possible to unknot K by changing p positive
crossings and n = σ(K)/2 negative crossings. For ease of exposition we restrict to
the case that p+n = 2. Then it follows from Theorem 1 that Σ(K) is given by surgery
on a two-component link C1, C2 with framing (2mi − 1)/2 on Ci and lk(C1, C2) = a.
Moreover (after possibly changing the orientation of one component) these numbers
satisfy

0 ≤ a < m1 ≤ m2,

and exactly n of m1, m2 are even. By Lemma 2.2 we see that Σ(K) bounds a four-
dimensional 2-handlebody W with intersection pairing

Q =


m1 1 a 0
1 2 0 0
a 0 m2 1
0 0 1 2

 ;

Note also that Q is positive-definite. From the long exact sequence of the pair
(W, Σ(K)) it follows that the determinant of Q is equal to the order of H2(Σ(K); Z),
which in turn is equal to the determinant of K. There are finitely many choices of
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(m1, a,m2) satisfying these conditions, which imply for example that

4a < det K.

Thus there are finitely many possibilities for the matrix Q. For each one we compute
the function mQ as in Section 4. (We need to consider 4m1m2 characteristic covectors
ξ for Q in this computation.) If for all Q there does not exist a group isomorphism
φ satisfying (8) and (9), we conclude that K cannot be unknotted by changing p
positive crossings and n = σ(K)/2 negative crossings.

Proof of Corollary 2. For each knot in Corollary 2 we distinguish between K and
its reflection r(K) by specifying that K has positive signature.

We start with the knot K = 910 shown in Figure 6. This is the two-bridge knot
S(33, 23). It has signature 4, and it is easy to see that 3 crossing changes suffice to
unknot it. Thus the unknotting number is either 2 or 3, and if it can be unknotted
by changing two crossings then both are negative (p = 0 and n = 2).

Figure 6. The knot 910 = S(33, 23). Note that changing the circled
crossings will give the unknot.

Two-bridge knots are both alternating and Montesinos, so the correction terms of
Σ(K) may be computed using either method described in Section 4, or alternatively
using the recursion formula given in [9, Proposition 4.8]. (See also [6].) We find them
to be:

A =


−1, −23

33
, 7

33
, − 3

11
, − 5

33
, 19

33
, − 1

11
, − 5

33
, 13

33
, − 5

11
, −23

33
,

−1
3
, 7

11
, 7

33
, 13

33
, 13

11
, 19

33
, 19

33
, 13

11
, 13

33
, 7

33
, 7

11
,

−1
3
, −23

33
, − 5

11
, 13

33
, − 5

33
, − 1

11
, 19

33
, − 5

33
, − 3

11
, 7

33
, −23

33

 .

The order of this list corresponds to the cyclic group structure of Spinc(Σ(K)) ∼=
H2(Σ(K); Z), and the first element is the correction term of the spin structure.
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The determinant of 910 is 33. To find a matrix Q as above we need to find (m1, a,m2)
with

(2m1 − 1)(2m2 − 1)− 4a2 = 33,

0 ≤ a < m1 ≤ m2,

and m1 and m2 are even. There are two solutions: (2, 0, 6) and (4, 2, 4). Computing
mQ for each of the matrices

Q1 =


2 1 0 0
1 2 0 0
0 0 6 1
0 0 1 2

 , Q2 =


4 1 2 0
1 2 0 0
2 0 4 1
0 0 1 2


yields the following lists:

B1 =


−1, − 5

33
, 13

33
, 7

11
, 19

33
, 7

33
, − 5

11
, 19

33
, 43

33
, − 3

11
, − 5

33
,

−1
3
, − 9

11
, 13

33
, 43

33
, − 1

11
, 7

33
, 7

33
, − 1

11
, 43

33
, 13

33
, − 9

11
,

−1
3
, − 5

33
, − 3

11
, 43

33
, 19

33
, − 5

11
, 7

33
, 19

33
, 7

11
, 13

33
, − 5

33

 ,

B2 =


−1, −19

33
, 23

33
, 9

11
, − 7

33
, −13

33
, 3

11
, − 7

33
, 5

33
, − 7

11
, −19

33
,

1
3
, 1

11
, 23

33
, 5

33
, 5

11
, −13

33
, −13

33
, 5

11
, 5

33
, 23

33
, 1

11
,

1
3
, −19

33
, − 7

11
, 5

33
, − 7

33
, 3

11
, −13

33
, − 7

33
, 9

11
, 23

33
, −19

33

 .

We claim that for both Q1 and Q2 it is impossible to find a group automorphism
φ of Z/33 for which (8) and (9) are satisfied. This is immediate in either case by
considering the minimal elements. We have the entry −9/11 in B1. By inspection
there is no element in A which is less than or equal to −9/11, and differs from it by
a multiple of 2. The same applies to −7/11 in B2. We conclude that 910 cannot be
unknotted by two crossing changes and u(910) = 3.

Similar calculations show that 913, 938, 1053, 10101 and 10120 cannot be unknotted
with two crossing changes. All of these knots are alternating, have signature four
and cyclic H2(Σ(K); Z). By inspection of their diagrams (see e. g. [1]), all can be
unknotted with three crossing changes. For some details of the calculations for these
knots, see Table 1.

Finally consider K = 935. This is the Montesinos knot M(0; (3, 1), (3, 1), (3, 1)). It
has signature 2 and can be unknotted with 3 crossing changes. The opposite −Σ(K)
of its double branched cover Σ(K) is the boundary of the plumbing of disk bundles
over two-spheres specified by the graph in Figure 7. This has intersection pairing
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represented by the matrix

P =



3 1 0 1 0 1 0
1 2 1 0 0 0 0
0 1 2 0 0 0 0
1 0 0 2 1 0 0
0 0 0 1 2 0 0
1 0 0 0 0 2 1
0 0 0 0 0 1 2


.

We note that this presents H2(−Σ(K); Z) which is thus 2-cyclic; this shows (by
Montesinos’ theorem for example but by an inequality originally due to Wendt) that
u(K) ≥ 2. We can also use −mP to compute the correction terms of Σ(K), which
are

A =


−1

2
19
18

− 5
18

3
2

7
18

7
18

3
2
− 5

18
19
18

1
6

− 5
18

7
18

1
6

19
18

19
18

1
6

7
18

− 5
18

1
6

− 5
18

7
18

1
6

19
18

19
18

1
6

7
18

− 5
18

 .

Here the rectangular array shows the Z/3 ⊕ Z/9 group structure; the top left entry
is the correction term of the spin structure.

Suppose that 935 may be unknotted by changing one positive and one negative
crossing. Applying Theorem 1 we find that Σ(K) is the boundary of a 2-handlebody
with intersection pairing

Q =


2 1 0 0
1 2 0 0
0 0 5 1
0 0 1 2

 .

(This is the only matrix for which (m1, a,m2) satisfy the conclusions of Theorem 1
and which presents Z/3⊕ Z/9.) Computing mQ yields another array whose minimal
entry is −17/18; we conclude that there is no automorphism φ of Z/3⊕Z/9 satisfying
(8) and (9).

This is not enough to rule out the possibility that u(935) = 2; it does however show
that if 935 can be unknotted by two crossing changes, then they are both negative
crossings. Using the value of the Jones polynomial at eiπ/3, Traczyk has shown in
[12] that if 935 can be unknotted by changing two crossings, then the crossings have
different signs. We conclude that u(935) = 3.

Proof of Corollary 3. The knot K = 10145 has signature 2. It is shown in [7] that
the double branched cover Σ(K) does not bound any positive-definite four-manifold.
It follows from Theorem 1 that if K is unknotted by changing p positive and n negative
crossing changes, then n > 1.
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Knot Correction term data min
s6=s0

{d(Σ(K); s)} (m1, a,m2) min
q 6=0

{mQ(g)}

913 S(37, 27) −27
37

(10, 9, 10) −33
37

938 G =


4 −1 −1 0
−1 4 −2 0
−1 −2 4 −1
0 0 −1 2

 −37
57

(2, 0, 10) −51
57

(6, 4, 6) −45
57

1053 M(0; (2, 1), (3, 2), (7, 4)) −53
73

(4, 1, 6) −59
73

10101 G =


2 −1 0 0
−1 4 −1 −1
0 −1 4 −1
0 −1 −1 4

 −59
85

(6, 3, 6) −65
85

(22, 21, 22) −81
85

10120 G =


4 −2 0 −1
−2 4 −1 0
0 −1 4 −2
−1 0 −2 4

 − 69
105

(2, 0, 18) − 99
105

(4, 0, 8) − 91
105

(6, 2, 6) − 83
105

(10, 8, 10) − 93
105

Table 1. Data for knots in Corollary 2. Correction term data
consists of either a two-bridge or Montesinos description of the knot,
or a Goeritz matrix; in each case these enable one to compute the
correction terms of Σ(K). The fourth column contains the surgery
coefficients satisfying the conclusions of Theorem 1.

Remark 5.1. The obstruction described in this section to equality in (1) does not use
all of the information from Theorem 1. We have only used the information about the
intersection pairing of the four-manifold W bounded by Σ(K), and not the fact that
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322 2 2

2

2

• • ••

•

•

•••

Figure 7. Plumbing graph for −Σ(935).

W is a surgery cobordism arising from a half-integral surgery. Comparing to Theorem
1.1 in [11], we have generalised conditions (1) and (2) to the case of u(K) > 1 but
not the symmetry condition (3). It is to be hoped that the symmetry condition may
also be generalised in some way, and that this could lead to computation of some more
unknotting numbers.
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