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Abstract. We use Heegaard Floer homology to obtain bounds on unknotting
numbers. This is a generalisation of Ozsváth-Szabó’s obstruction to unknotting
number one. We determine the unknotting numbers of 910, 913, 935, 938, 1053,
10101 and 10120; this completes the table of unknotting numbers for prime knots
with crossing number nine or less. Our obstruction uses a Kirby calculus description
of a four-manifold W bounded by the branched double cover of the knot, and a
theorem of Cochran and Lickorish which computes the signature of W .

1. Introduction

Let K be a knot in S3. Given any diagram D for K, a new knot may be obtained by
changing one or more crossings of D. The unknotting number u(K) is the minimum
number of crossing changes required to obtain the unknot, where the minimum is
taken over all diagrams for K.

Let Σ(K) denote the double cover of S3 branched along K. A theorem of Mon-
tesinos [6] tells us that for any knot K, Σ(K) is given by Dehn surgery on some
framed link in S3 with u(K) components, with half-integral framing coefficients. In
particular if u(K) = 1 then Σ(K) is obtained by ±δ/2 Dehn surgery on a knot C,
where δ is the determinant of K. Ozsváth and Szabó have shown in [13] that the
Heegaard Floer homology of a 3-manifold Y gives an obstruction to Y being given by
half-integral surgery on a knot in S3; they apply this to Σ(K) to obtain an obstruction
to K having unknotting number one.

Note that crossings in a knot diagram may be given a sign as in Figure 1 (inde-
pendent of the choice of orientation of the knot). Let σ(K) denote the signature of a
knot K. It is shown in [3, Proposition 2.1] that if K ′ is obtained from K by changing
a positive crossing, then

σ(K ′) ∈ {σ(K), σ(K) + 2};
similarly if K ′ is obtained from K by changing a negative crossing then

σ(K ′) ∈ {σ(K), σ(K)− 2}.
Now suppose that K may be unknotted by changing p positive and n negative cross-
ings (in some diagram). Since the unknot has zero signature, it follows that a bound
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Figure 1. Signed crossings in a knot diagram.

for n is given by

(1) n ≥ σ(K)/2.

The main result of this paper is an obstruction to equality in (1). This is easiest to
state for the case of an alternating knot; the obstruction is then a condition on the
positive-definite Goeritz matrix obtained from an alternating projection of K. (We
will recall the definition of the Goeritz matrix in Section 4.) We also restrict for now
to knots which can be unknotted with two crossing changes.

A positive-definite integral matrix Q of rank r presents a finite group ΓQ via the
short exact sequence

0 −→ Zr Q−→ Zr −→ ΓQ −→ 0.

A characteristic covector for Q is an element of Zr which is congruent modulo 2 to
the diagonal of Q, i.e., an element of

Char(Q) = {ξ ∈ Zr | ξi ≡ Qii (mod 2)}.
Define a function

mQ : ΓQ → Q
by

mQ(g) = min

{
ξT Q−1ξ − r

4

∣∣∣∣ ξ ∈ Char(Q), [ξ] = g

}
.

(The minimum exists since Q is positive-definite.)

Theorem 1. Let K be an alternating knot which may be unknotted by changing p
positive and n negative crossings, where n = σ(K)/2 and p + n = 2. Let G be the
positive-definite Goeritz matrix obtained from an alternating diagram for K. Then
there exists a positive-definite matrix

Q =


m1 1 a 0
1 2 0 0
a 0 m2 1
0 0 1 2

 ,
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with

det Q = det K,

0 ≤ a < m1 ≤ m2 (and hence a < det K/4),

and exactly n of {m1, m2} are even; and a group isomorphism

φ : ΓQ → ΓG

with

mQ(g) ≥ mG(g),

and mQ(g) ≡ mG(g) (mod 2)

for all g ∈ ΓQ.

Applying Theorem 1 to the alternating knots which were listed in [1] as having
unknotting number 2 or 3 yields the following:

Corollary 2. The knots 910, 913, 935, 938, 1053, 10101, 10120 have unknotting number 3.

For all but one of the knots in Corollary 2, the signature is 4 and the unknotting
number computation follows directly from Theorem 1. The exception is 935, whose
signature is 2. The computation of u(935) uses Theorem 1 and also a result of Traczyk
[14].

Corollary 2 completes the table of unknotting numbers for prime knots with 9
crossings or less.

Recall that for an oriented framed link C1, . . . , Cr in S3, the linking matrix is the
symmetric matrix (aij) with each diagonal entry aii given by the framing on Ci,
and off-diagonal entries aij given by the linking numbers lk(Ci, Cj). The following
theorem uses a result of Cochran and Lickorish [3, Theorem 3.7], and may be viewed
as a refinement of Montesinos’ theorem.

Theorem 3. Suppose that a knot K may be unknotted by changing p positive and n
negative crossings, with n = σ(K)/2. Then the branched double cover Σ(K) may be
obtained by Dehn surgery on an oriented, framed p + n component link C1, . . . , Cp+n

in S3 with linking matrix 1
2
Q, where Q is a positive-definite integral matrix which is

congruent to the identity modulo 2, and exactly n of the diagonal entries of Q are
congruent to 3 modulo 4.

By handlesliding and changing orientations one may replace the linking matrix with
1
2
PQP T , for any P ∈ GL(p+n, Z) which is congruent to the identity modulo 2. This

preserves the congruences modulo 4 on the diagonal.

It is shown in [9] that the double branched cover of the Montesinos knot 10145 does
not bound any positive-definite four-manifold. This knot has signature two. Com-
bining this with Theorem 3, or indeed with the above-mentioned result of Cochran
and Lickorish, yields the following:
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Corollary 4. If 10145 is unknotted by changing p positive crossings and n negative
crossings, then n ≥ 2.

Given a matrix Q in M(r, Z) which is conjugate modulo 2 to the identity, associate
a matrix Q̃ ∈M(2r, Z) by replacing each entry by a 2× 2-block as follows:

odd entries: 2m− 1 7→
[
m 1
1 2

]
(2)

even entries: 2a 7→
[
a 0
0 0

]
.

Thus for example if r = 2,

Q =

(
2m1 − 1 2a

2a 2m2 − 1

)
7→ Q̃ =


m1 1 a 0
1 2 0 0
a 0 m2 1
0 0 1 2

 .

For a rational homology three-sphere Y , the correction terms of Ozsváth and Szabó
are a set of rational numbers {d(Y, s) | s ∈ Spinc(Y )} which provide constraints
on which four-manifolds Y may bound. We recall these constraints in Section 4;
combining these with Theorem 3 yields the following unknotting obstruction, of which
Theorem 1 is a special case.

Theorem 5. Let K be a knot in S3 which may be unknotted by changing p positive
and n negative crossings, where n = σ(K)/2. Let Q1, . . . , Qk be a complete set of
representatives of the finite quotient

{Q ∈M(p + n, Z) | Q is positive-definite, det Q = det K, Q ≡ I (mod 2)}
{P ∈ GL(p + n, Z) | P ≡ I (mod 2)}

,

and let Q̃1, . . . , Q̃k be the corresponding elements of M(2(p + n), Z). Then for some
Qi which has exactly n diagonal entries conjugate to 3 modulo 4, there exists a group
isomorphism

φ : ΓQ̃i
→ Spinc(Σ(K))

with

mQ̃i
(g) ≥ d(Σ(K), φ(g)),

and mQ̃i
(g) ≡ d(Σ(K), φ(g)) (mod 2)

for all g ∈ ΓQ̃i
.

Acknowledgements. The problem of generalising the obstruction in [13] to higher
unknotting numbers was suggested to me by Peter Ozsváth. I am grateful to Peter
Ozsváth, Ravi Ramakrishna, and Sašo Strle for helpful discussions. Some Maple
programs used in verifying Corollary 2 were written jointly with Sašo Strle.
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2. Kirby-Rolfsen calculus

In this section we establish some preliminaries on Dehn surgery. For details on
Dehn surgery and Kirby-Rolfsen calculus see [5].

A framed link L in S3 with rational framing coefficients determines a three-manifold
YL by Dehn surgery (remove a tubular neighbourhood of each component of L; the
framing coefficient determines the gluing map to sew back a solid torus along the
boundary). If the framing coefficients are integers one obtains a four-manifold WL

with boundary YL by attaching two-handles to B4 along the components of L. Kirby-
Rolfsen calculus describes when two framed links L, L′ determine the same three-
manifold YL.

Given a framed oriented link L with components C1, . . . , Cm, let A denote the free
abelian group with generators c1, . . . , cm. Define a symmetric bilinear form

Q : A× A→ Q

by

Q(ci, cj) =

{
framing coefficient of Ci if i = j;
linking number lk(Ci, Cj) if i 6= j.

In other words, the matrix of Q in the basis c1, . . . , cm is the linking matrix of L.
(This is the intersection pairing on H2(WL; Z) if the diagonal entries are integers.)

In the case that the framing coefficients on L are integers, any change of basis in A
may be realised by a change in the link L. In particular the change of basis ci 7→ ci±cj

may be realised by a handleslide. Let λj denote a pushoff of Cj whose linking number
with Cj equals the framing of Cj. A handleslide Ci 7→ Ci ± Cj consists of replacing
Ci by the oriented band sum of Ci with ±λj. This gives a new link L′ whose linking
matrix is the matrix of Q in the basis c1, . . . , c

′
i = ci ± cj, . . . , cm and with YL′ ∼= YL,

WL′ ∼= WL. It will be convenient to have the following generalisation of handlesliding
to links with rational framings.

Proposition 2.1. Let L be an oriented link in S3 consisting of components C1, . . . , Cm

with framings p1

q1
, . . . , pm

qm
, and let Q be the rational-valued bilinear pairing determined

by the linking matrix of L. Then by replacing Ci in L it is possible to obtain a link
L′ whose linking matrix is the matrix of Q in the basis c1, . . . , c

′
i = ci ± qjcj, . . . , cm

and with YL′ ∼= YL.

Proof. For each j = 1, . . . ,m choose a continued fraction expansion

pj

qj

= aj
lj
− 1

aj
lj−1 − . . . − 1

aj
1

.
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(The numbers aj
lj
, . . . , aj

1 arise from the Euclidean algorithm as follows:

rlj = pj = aj
lj
qj − rlj−2

rlj−1 = qj = aj
lj−1rlj−2 − rlj−3

...(3)

r2 = aj
2r1 − 1

r1 = aj
1.)

Use reverse “slam-dunks” to obtain an integral surgery description of YL: as
shown in Figure 2, we add a chain of linked unknots linking each Cj, with framings

aj
1, . . . , a

j
lj−1, and replace the framing on Cj with aj

lj
. (This is a standard procedure,

see e.g. [5, §5.3].) Denote the resulting link by LZ, and let QZ : AZ×AZ → Z denote
the resulting bilinear form.

pj
qj

∼

aj
lj

aj
lj−1 aj

lj−2

. . .

aj
2 aj

1

Figure 2. Converting Dehn surgery to integral surgery.

We now perform handleslides on this integer-framed link. Let U1, . . . , Ulj−1 be the
chain of unknots linking Cj as above, oriented so that lk(Cj, Ulj−1) = lk(Uk, Uk−1) =
−1, for 2 ≤ k < lj. Let K1 = Ci + U1, and note that

lk(K1, U1) = aj
1,(4)

lk(K1, U2) = −1.

We now define Kk recursively for 2 ≤ k < lj. Choose any link diagram of Kk−1∪Uk−1∪
Uk. By performing a handleslide over Uk for each crossing where Kk−1 crosses over
Uk−1 we obtain a knot Kk which does not cross over Uk−1 and therefore is separated
from it by a two-sphere in S3 (see Figure 3). The signed count of these handleslides
is equal to the linking number of Kk−1 and Uk−1; thus we write

[Kk] = [Kk−1] + lk(Kk−1, Uk−1)[Uk],
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Kk

Uk

Kk−1

Uk−1

Figure 3. Handlesliding Kk−1 over Uk yields Kk which is separated
from Uk−1 by a two-sphere.

where [Kk] denotes the element of AZ corresponding to the knot Kk. We may use
this to compute linking numbers and the framing of Kk. In particular

(5) lk(K2, U2) = −1 + aj
2 lk(K1, U1),

and for 2 < k < lj,

lk(Kk, Uk) = lk(Kk−1, Uk) + aj
k lk(Kk−1, Uk−1)(6)

= −lk(Kk−2, Uk−2) + aj
k lk(Kk−1, Uk−1).

Finally we let C ′
i be obtained as above from Klj−1 by sliding over Cj, with C ′

i unlinked
from each of U1, . . . , Ulj−1. We then have

[C ′
i] = [Klj−1] + lk(Klj−1, Ulj−1)[Cj],

lk(C ′
i, Cj) = −lk(Klj−2, Ulj−2) + aj

lj
lk(Klj−1, Ulj−1) + lk(Ci, Cj).(7)

Comparing (4), (5), (6), and (7) to (3) we see that

lk(Kk, Uk) = rj
k for k = 1, . . . , lj − 2,

lk(Klj−1, Ulj−1) = rj
lj−1 = qj,

lk(C ′
i, Cj) = pj + lk(Ci, Cj).
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This yields

[C ′
i] = [Ci] + U + qj[Cj],

where

U = [U1] +

lj−1∑
k=2

rk−1[Uk].

Note that by construction C ′
i is separated by a two-sphere from each Uk and so

QZ([C ′
i],U) = 0. The framing of C ′

i is given by

QZ([C ′
i], [C

′
i]) = QZ([Ci] + U + qj[Cj], [Ci] + U + qj[Cj])

= QZ([Ci] + qj[Cj], [Ci] + U + qj[Cj])

= QZ([Ci], [Ci]) + 2qjQZ([Ci], [Cj]) + q2
j a

j
lj
− qjrlj−2

= ai
li

+ 2qjlk(Ci, Cj) + pjqj.

Slam dunking to remove the chains of linking unknots from each of C1, . . . , C
′
i, . . . , Cm

gives the required link L′ for the basis change c′i = ci + qjcj. To get the opposite sign
construct C ′

i as above but start with K1 = Ci − U1.

The following lemma is an application of the standard procedure, referred to in
the proof of Proposion 2.1 and illustrated in Figure 2, for converting a Dehn surgery
description of a three-manifold to an integral surgery description.

Lemma 2.2. Let L = {C1, . . . , Cr} be a framed link in S3 with framing (2mi − 1)/2
on Ci, and let Y be the three-manifold obtained by Dehn surgery on L. Then Y is
equal to the boundary of the four-manifold W obtained by adding 2-handles to B4

along either of the following 2n-component framed links (as in Figure 4):

(i) the link consisting of the components Ci with framing mi plus a small linking
unknot with framing 2, for each i = 1, . . . , r;

(ii) the link consisting of Ci with framing mi, plus a longitude C ′
i with framing mi

and with the opposite orientation, with linking number lk(Ci, C
′
i) = 1 − mi,

for each i = 1, . . . , r.

Proof. The fact that Y is the boundary of the four-manifold given by the framed
link (i) follows from the continued fraction expansions (2mi − 1)/2 = mi − 1

2
. The

equivalence between (i) and (ii) follows by handlesliding: add Ci to C ′
i to go from (ii)

to (i).

Recall that to each matrix Q ∈M(r, Z) which is congruent to the identity modulo
2, we associate the matrix Q̃ ∈M(2r, Z) as in (2). If a 3-manifold Y is given by Dehn
surgery on a link with linking matrix 1

2
Q, then by Lemma 2.2, Y is the boundary
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of a simply-connected four-manifold with intersection pairing Q̃. Also note that
det Q = det Q̃, and Q is positive-definite if and only if Q̃ is positive-definite: let

∆k(Q) = det(Qij)i,j≤k.

Then

∆2k(Q̃) = ∆k(Q),

∆2k−1(Q̃) = (∆2k−2(Q̃) + ∆2k(Q̃))/2.

(2mi−1)/2

∼

2

mi

'
. . .

mi

mi

Figure 4. Half-integer surgery. There are 2mi− 2 crossings in the
diagram on the right.

3. Proof of Theorem 3

We start with an algorithm for drawing a Kirby diagram of a four-manifold W
bounded by Σ(K). (For more details on Kirby diagrams of cyclic branched covers see
[5, §6.3]; indeed what follows is a variation of the method in their Exercise 6.3.5(c).)

Let D be a diagram for a knot K which becomes a diagram for the unknot after
changing some chosen set of p positive and n negative crossings. We think of K ⊂ S3

as being in the boundary of B4. Draw (p + n) unlinked unknots beside D, each with
framing +1. This is a Kirby diagram which represents K as a knot in the boundary
of the “blown up” four-ball X = B4#(p + n)CP2. As observed in [3], the knot K
bounds a disk ∆ in X. This may be seen from the diagram by sliding each of the
chosen crossings in D over a +1-framed unknot as in Figure 5. Mark each of these
changed crossings with a small arc αi, i = 1, . . . , (p + n), as shown in that figure.

The resulting diagram consists of:

• an unknot U which has been obtained from K by crossing changes;
• arcs α1, . . . , αp+n (one per changed crossing);
• +1-framed unknots γ1, . . . , γp+n.

Each γi bounds a disk Di which retracts onto αi and whose intersection with U
consists of the endpoints of αi.
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Figure 5. Changing crossings by sliding over a two-handle.

It is also observed in [3] that H1(X −∆; Z/2) ∼= Z/2, with generator given by the
meridian of K. (To see this note from Figure 5 that the linking number of U with
each of the +1-framed unknots is even. Now use the Mayer-Vietoris sequence for the
decomposition of X into X − ∆ and a neighbourhood of ∆, with Z/2 coefficients.)
Thus there exists a unique double cover W of X branched along ∆; this is a four-
manifold with boundary Σ(K).

Rearrange the diagram so that a point of U which is not the endpoint of an arc αi

is the point at infinity and U is a straight line; then ∆ may be seen in this diagram as
a half-plane with boundary U . (For a simple example see Figure 6. Note in general
the arcs αi may be knotted and linked.) We may suppose all of the αi are disjoint
from the half-plane ∆, so that each γi intersects ∆ in two points. There are now
four crossings involving the the line U and each knot γi; by twisting γi if necessary
arrange that the sequence of undercrossings and overcrossings between U and each
γi is nonalternating, in the order that they occur along U (as in Figure 6). Let w(γi)
denote the writhe of γi (i.e. the signed count of self-crossings). Similarly let w(αi)
denote the signed count of self-crossings of the arc αi.

It is now straightforward to draw a Kirby diagram of W , as in Figure 6. (Take two
copies of S3−U cut open along ∆, and join the boundary half-planes in pairs). Each
arc αi lifts to a knot α̃i, and each Di lifts to an annulus D̃i with core α̃i. The knot γi

lifts to two knots Ci, C ′
i; these are the boundary of the annulus D̃i.
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blow up−→
1

γ1

α1

U

'

γ1

1

U

α1

2:1←− 2

2

Figure 6. A four-manifold bounded by the double branched
cover of the left-handed trefoil. For this example w(α1) = 0,
w(γ1) = −1.

To compute the framings on these knots note that the blackboard framing of γi lifts
to the blackboard framing on each of Ci, C ′

i. The blackboard framing of γi is w(γi).
The blackboard framing of Ci and C ′

i are each given by w(α̃i) = 2w(αi). Thus the
framing +1 on γi lifts to w(α̃i) − w(γi) + 1; denote this number by mi. The linking
number lk(Ci, C

′
i) is w(γi) − w(α̃i) = 1 −mi. (The number of twists in the annulus

D̃i is w(γi), while −w(α̃i) counts crossings of Ci and C ′
i due to knotting of D̃i.)

We note that the resulting Kirby diagram for W matches that in Lemma 2.2 (ii).
That lemma then shows that Σ(K) = ∂W is Dehn surgery on the framed link L =
C1, . . . , Cp+n with framing (2mi − 1)/2 on Ci. Thus we have recovered Montesinos’
description of Σ(K) as Dehn surgery on a link with linking matrix 1

2
Q, where Q is

congruent to the identity modulo 2. But this four-dimensional description yields more
information: the rank and signature of the intersection pairing Q̃ of W are computed
by Cochran and Lickorish in [3, Theorem 3.7] as follows:

b2(W ) = 2(p + n)

σ(W ) = σ(K) + 2p.
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In particular if σ(K) = 2n then W (and hence Q, by the observation after Lemma
2.2) is positive-definite.

We now establish the claim that n of the diagonal entries 2m1 − 1, . . . , 2mp+n − 1
of Q are congruent to 3 modulo 4. Let U denote the set of crossings in the diagram
D that we change to unknot K. We have given a description of Σ(K) as half-integral
surgery on a link L, with one component for each crossing in U . Dehn surgery on a
sublink of L gives the double branched cover of a knot which is obtained from D by
changing a subset of the crossings in U . In particular (2mi−1)/2 surgery on the knot
Ci yields the double branched cover of the knot K ′ which is obtained by changing all
but one of the crossings in U .

The determinant det(K) of a knot K is equal to the order of H1(Σ(K); Z), which
in turn is equal to the determinant of the intersection pairing of any simply connected
four-manifold W bounded by Σ(K). Moreover the determinant and signature of K
are shown in [7, Theorem 5.6] to satisfy

det(K) ≡ σ(K) + 1 (mod 4).

The fact that σ(K) = 2n implies that every change of a negative crossing in U reduces
the knot signature by 2, while every change of a positive crossing leaves the signature
unchanged. It follows that if the knot K ′ is obtained by changing all but one crossing
in U , then K ′ has signature 2 if that crossing is negative and signature zero otherwise.
The determinant of K ′ is 2mi− 1, which is thus congruent to 3 modulo 4 if and only
if σ(K ′) = 2.

Finally note that we may reorient any of the link components C1, . . . , Cp+n without
changing the resulting Dehn surgery. Also by rational handlesliding as in Proposition
2.1 we may change the linking matrix by “adding” ±2Cj to Ci for any i, j. These
operations preserve the congruence classes modulo 4 of the diagonal. The last claim
in the statement of Theorem 3 now follows from the following lemma.

Lemma 3.1. Any matrix P ∈ GL(r, Z) which is congruent to the identity modulo 2
may be obtained from the identity by a sequence of row operations, each of which is
either multiplying a row by −1 or adding an even multiple of one row to another.

Proof. Let b = (b1, . . . , br) be an element of Zr with gcd(b1, . . . , br) = 1. Assume
bi ≥ 0 for all i, and that b1 is odd but the other components b2, . . . , br are even. Let bj

be the least positive component. By subtracting even multiples of bj and then possibly
changing sign, we may replace every other component bi by b′i, with 0 ≤ b′i ≤ bj. By
the gcd condition, the least positive b′i is less than bj unless bj = j = 1. By iterating
this procedure we see that b may be reduced to (1, 0, . . . , 0).

Now suppose P ∈ GL(r, Z) is congruent to I modulo 2, and let b be the first
column of Q. The argument just given shows that Q may be replaced by a matrix
with (1, 0, . . . , 0) in the first column using the specified row operations. Then replacing
the second column with (∗, 1, 0, . . . , 0) by row operations on the last r − 1 rows, and
so on, we see that we may reduce P to I in this manner.
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4. Heegaard Floer homology

In this section we recall some properties of the Heegaard Floer homology invariants
of Ozsváth and Szabó. Details are to be found in their papers, in particular [11, 12,
13].

Let Y be an oriented rational homology sphere. Recall that the space Spinc(Y )
of spinc structures on Y is isomorphic to H2(Y ; Z). If |H2(Y ; Z)| is odd then there
is a canonical isomorphism which takes the unique spin structure to zero; this gives
Spinc(Y ) a group structure.

Fixing a spinc structure s, the Heegaard Floer homology HF+(Y ; s) is a Q-graded
abelian group with an action by Z[U ], where U lowers the grading by 2. The correction
term invariant is a rational number d(Y, s); it is defined to be the lowest grading of
a nonzero homogeneous element of HF+(Y ; s) which is in the image of Un for all
n ∈ N. These have the property that d(Y, s) = −d(−Y, s), where −Y denotes Y with
the opposite orientation. We will describe below how these correction terms may be
computed in certain cases.

Now let X be a positive-definite four-manifold with boundary Y . Then it is shown
in [11] that for any spinc structure s on X,

c1(s)
2 − b2(X) ≥ 4d(Y, s|Y ),(8)

and c1(s)
2 − b2(X) ≡ 4d(Y, s|Y ) (mod 2).(9)

This means that the correction terms of Y may be used to give an obstruction to Y
bounding a four-manifold X with a given positive-definite intersection form. We will
now elaborate on how this may be checked in practice.

Suppose for simplicity that X is simply-connected and that |H2(Y ; Z)| is odd.
Let r denote the second Betti number of X. Fix a basis for H2(X; Z) and thus an
isomorphism

H2(X; Z) ∼= Zr.

Let Q be the matrix of the intersection pairing of X in this basis; thus Q is a symmetric
positive-definite r×r integer matrix with det Q = |H2(Y ; Z)|. The dual basis gives an
isomorphism between the second cohomology H2(X; Z) and Zr. The set {c1(s) | s ∈
Spinc(X)} ⊂ H2(X; Z) of first Chern classes of spinc structures is equal to the set
of characteristic covectors Char(Q) for Q. These in turn are elements ξ of Zr whose
components ξi are congruent modulo 2 to the corresponding diagonal entries Qii of
Q. The square of the first Chern class of a spinc structure is computed using the
pairing induced by Q on H2(X; Z); in our choice of basis this is given by ξT Q−1ξ.

The long exact sequence of the pair (X, Y ) yields the following short exact sequence:

0 −→ Zr Q−→ Zr −→ H2(Y ; Z) −→ 0.

As in the introduction, define a function

mQ : Zr/Q(Zr)→ Q
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by

mQ(g) = min

{
ξT Q−1ξ − r

4

∣∣∣∣ ξ ∈ Char(Q), [ξ] = g

}
.

An easy argument shows that in computing mQ it suffices to consider characteristic
covectors ξ = (ξ1, . . . , ξr) whose components are smaller in absolute value than the
corresponding diagonal entries of Q:

−Qii ≤ ξi ≤ Qii.

(A more difficult argument in [12] shows that it suffices to restrict to

−Qii ≤ ξi ≤ Qii − 2.)

Thus it is straightforward, if tedious, to compute mQ for a given positive-definite
matrix Q.

The conditions (8) and (9) may now be expressed as follows:

Theorem 4.1 (Ozsváth-Szabó). Let Y be a rational homology three-sphere which is
the boundary of a simply-connected positive-definite four-manifold X, with |H2(Y ; Z)|
odd. If the intersection pairing of X is represented in a basis by the matrix Q then
there exists a group isomorphism

φ : Zr/Q(Zr)→ Spinc(Y )

with

mQ(g) ≥ d(Y, φ(g)),(10)

and mQ(g) ≡ d(Y, φ(g)) (mod 2)(11)

for all g ∈ Zr/Q(Zr).

The four-manifold X is said to be sharp if equality holds in (10). In this case
the correction terms for Y can be computed using the function mQ described above.
Also, if a rational homology sphere Y bounds a negative-definite four-manifold X such
that −X is sharp, then the correction terms for Y can be computed using the formula
d(Y, s) = −d(−Y, s). Note that if K is a knot in S3 then the standard orientation on
S3 induces an orientation on Σ(K); letting r(K) denote the reflection of K, we have
Σ(r(K)) ∼= −Σ(K).

In particular let K be an alternating knot with double branched cover Σ(K). Let
G denote the positive-definite Goeritz matrix computed from an alternating diagram
for K as follows. Colour the knot diagram in chessboard fashion according to the
convention shown in Figure 7. (Note that this is the opposite convention to that used
in [13], since they use the negative-definite Goeritz matrix.) Let v1, . . . , vk+1 denote
the vertices of the white graph. Then G is the k × k symmetric matrix (gij) with
entries

gij =

{
the number of edges containing vi if i = j
minus the number of edges joining vi and vj if i 6= j
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for i, j = 1, . . . , k. It is shown in [13, Proposition 3.2] that G represents the intersec-
tion pairing of a sharp four-manifold bounded by Σ(K). Thus the correction terms
for Σ(K) are given by mG (for any choice of alternating diagram and any ordering of
the white regions). Also it follows from [4] that with this colouring convention, the
signature of K is given by

σ(K) = k − µ,

where µ is the number of positive crossings in the alternating diagram used to compute
G.

Also if K is a Montesinos knot then the double branched cover Σ(K) is a Seifert
fibred space which is given as the boundary of a plumbing of disk bundles over S2.
This plumbing is determined (nonuniquely) by the Montesinos invariants which spec-
ify K. After possibly reflecting K we may choose the plumbing so that its intersection
pairing is represented by a positive-definite matrix P . It is shown in [12] that the
plumbing is sharp, so that the correction terms for Σ(K) are given by mP . (See [8]
for a detailed description of Montesinos knots and their branched double covers.)

Remark 4.2. Checking the congruence condition (9) alone is equivalent to checking
that the intersection pairing of X presents the linking pairing of Y ; see [10] for a
detailed discussion.

�����������������������

:::::::::::

:::::::::::

Figure 7. Colouring convention for alternating knot diagrams.

5. Obstruction to unknotting

In this section we prove Theorems 1 and 5.
Let Q(r, δ) denote the set of positive-definite symmetric integer matrices of rank

r and determinant δ, on which GL(r, Z) acts by P ·Q = PQP T with finite quotient
(see e.g. [2]). Let Q(r, δ)2 ⊂ Q(r, δ) (resp. GL(r, Z)2 ⊂ GL(r, Z)) denote the subset
(resp. subgroup) consisting of matrices which are congruent to the identity modulo 2.
Then the subset Q(r, δ)2/GL(r, Z) is clearly finite, and thus so is Q(r, δ)2/GL(r, Z)2

since GL(r, Z)2 is a finite index subgroup of GL(r, Z).



16 BRENDAN OWENS

Proof of Theorem 5. By Theorem 3, the unknotting hypothesis implies that Σ(K)
is given by Dehn surgery on a link in S3 with linking matrix 1

2
Qi for some i, where n of

the diagonal entries of Qi are congruent to 3 modulo 4. By Lemma 2.2, Σ(K) bounds
the 2-handlebody W specified by an integer-framed link with positive-definite linking
matrix Q̃i, which then represents the intersection pairing of W . The conclusion now
follows from Theorem 4.1.

Proof of Theorem 1. Theorem 1 follows from Theorem 5 since a finite set of
representatives of Q(2, δ)2/GL(2, Z)2 is given by the set of matrices{

Q =

(
2m1 − 1 2a

2a 2m2 − 1

) ∣∣∣∣ det Q = δ, 0 ≤ a < m1 ≤ m2

}
,

and since the correction terms d(Σ(K), s) may be computed using a positive-definite
Goeritz matrix G when K is alternating.

Remark 5.1. Theorems 1 and 5 do not use all of the information from Theorem
3. We have only used the information about the intersection pairing of the four-
manifold W bounded by Σ(K), and not the fact that W is a surgery cobordism arising
from a half-integral surgery. Comparing to Theorem 1.1 in [13], we have generalised
conditions (1) and (2) to the case of u(K) > 1 but not the symmetry condition (3).
It is to be hoped that the symmetry condition may also be generalised in some way,
and that this could lead to computation of some more unknotting numbers.

6. Examples

Proof of Corollary 2. For each knot in Corollary 2 we distinguish between K and
its reflection r(K) by specifying that K has positive signature.

We start with the knot K = 910 shown in Figure 8. This is the two-bridge knot
S(33, 23). It has signature 4, and it is easy to see that 3 crossing changes suffice to
unknot it. Thus the unknotting number is either 2 or 3, and if it can be unknotted
by changing two crossings then both are negative (p = 0 and n = 2).

With the white regions labelled as shown in the figure, the Goeritz matrix is

G =


4 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 4

 .

Using mG, we find the correction terms of Σ(K) to be:
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A =


−1, −23

33
, 7

33
, − 3

11
, − 5

33
, 19

33
, − 1

11
, − 5

33
, 13

33
, − 5

11
, −23

33
,

−1
3
, 7

11
, 7

33
, 13

33
, 13

11
, 19

33
, 19

33
, 13

11
, 13

33
, 7

33
, 7

11
,

−1
3
, −23

33
, − 5

11
, 13

33
, − 5

33
, − 1

11
, 19

33
, − 5

33
, − 3

11
, 7

33
, −23

33

 .

The order of this list corresponds to the cyclic group structure of Spinc(Σ(K)) ∼=
H2(Σ(K); Z), and the first element is the correction term of the spin structure.

v1 v2 v3 v4

v5

Figure 8. The knot 910 = S(33, 23). Note that changing the cir-
cled crossings will give the unknot. The labels v1, . . . , v5 correspond to
vertices of the white graph.

The determinant of 910 is 33. To find a matrix Q as in Theorem 1 we need to find
(m1, a,m2) with

(2m1 − 1)(2m2 − 1)− 4a2 = 33,

0 ≤ a < m1 ≤ m2,

and m1 and m2 are even. There are two solutions: (2, 0, 6) and (4, 2, 4). Computing
mQ for each of the matrices

Q1 =


2 1 0 0
1 2 0 0
0 0 6 1
0 0 1 2

 , Q2 =


4 1 2 0
1 2 0 0
2 0 4 1
0 0 1 2


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yields the following lists:

B1 =


−1, − 5

33
, 13

33
, 7

11
, 19

33
, 7

33
, − 5

11
, 19

33
, 43

33
, − 3

11
, − 5

33
,

−1
3
, − 9

11
, 13

33
, 43

33
, − 1

11
, 7

33
, 7

33
, − 1

11
, 43

33
, 13

33
, − 9

11
,

−1
3
, − 5

33
, − 3

11
, 43

33
, 19

33
, − 5

11
, 7

33
, 19

33
, 7

11
, 13

33
, − 5

33

 ,

B2 =


−1, −19

33
, 23

33
, 9

11
, − 7

33
, −13

33
, 3

11
, − 7

33
, 5

33
, − 7

11
, −19

33
,

1
3
, 1

11
, 23

33
, 5

33
, 5

11
, −13

33
, −13

33
, 5

11
, 5

33
, 23

33
, 1

11
,

1
3
, −19

33
, − 7

11
, 5

33
, − 7

33
, 3

11
, −13

33
, − 7

33
, 9

11
, 23

33
, −19

33

 .

We claim that for both Q1 and Q2 it is impossible to find a group automorphism φ of
Z/33 satisfying the required inequality and congruence conditions. This is immediate
in either case by considering the minimal elements (excluding −1 which appears in
all 3 lists). We have the entry −9/11 in B1. By inspection there is no element in A
which is less than or equal to −9/11, and differs from it by a multiple of 2. The same
applies to −7/11 in B2. We conclude that 910 cannot be unknotted by two crossing
changes and u(910) = 3.

Similar calculations show that 913, 938, 1053, 10101 and 10120 cannot be unknotted
with two crossing changes. All of these knots are alternating, have signature four
and cyclic H2(Σ(K); Z). By inspection of their diagrams (see e.g. [1]), all can be
unknotted with three crossing changes. For some details of the calculations for these
knots, see Table 1. Note that we use the knot diagrams from [1] to compute the
Goeritz matrices for these knots, after possibly reflecting to ensure positive signature.

Finally consider K = 935, pictured in Figure 9. It has signature 2 and can be
unknotted with 3 crossing changes. The Goeritz matrix from the figure is

G =

(
6 −3
−3 6

)
.

We note that this presents H2(Σ(K); Z) which is thus 2-cyclic; this shows (by Mon-
tesinos’ theorem for example but by an inequality originally due to Wendt) that
u(K) ≥ 2. We can use mG to compute the correction terms of Σ(K), which are

A =


−1

2
19
18

− 5
18

3
2

7
18

7
18

3
2
− 5

18
19
18

1
6
− 5

18
7
18

1
6

19
18

19
18

1
6

7
18

− 5
18

1
6
− 5

18
7
18

1
6

19
18

19
18

1
6

7
18

− 5
18

 .

Here the rectangular array shows the Z/3 ⊕ Z/9 group structure; the top left entry
is the correction term of the spin structure.
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v1

v2

v3

Figure 9. The Montesinos knot 935 = M(0; (3, 1), (3, 1), (3, 1)).

Suppose that 935 may be unknotted by changing one positive and one negative
crossing. The only matrix which satisfies the conditions of Theorem 1 and which
presents Z/3⊕ Z/9 is

Q =


2 1 0 0
1 2 0 0
0 0 5 1
0 0 1 2

 .

Computing mQ yields another array whose minimal entry is −17/18; we conclude
that there is no automorphism φ of Z/3⊕ Z/9 satisfying the conclusion of Theorem
1.

This is not enough to rule out the possibility that u(935) = 2; it does however show
that if 935 can be unknotted by two crossing changes, then they are both negative
crossings. Using the value of the Jones polynomial at eiπ/3, Traczyk has shown in
[14] that if 935 can be unknotted by changing two crossings, then the crossings have
different signs. We conclude that u(935) = 3.
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Knot Goeritz matrix min
g 6=0
{mG(g)} (m1, a,m2) min

g 6=0
{mQ(g)}

913


2 −1 0 0
−1 2 −1 0
0 −1 4 −1
0 0 −1 4

 −27
37

(10, 9, 10) −33
37

938


4 −1 −1 0
−1 4 −2 0
−1 −2 4 −1
0 0 −1 2

 −37
57

(2, 0, 10) −51
57

(6, 4, 6) −45
57

1053


4 −1 0 0
−1 4 −1 −1
0 −1 4 −1
0 −1 −1 2

 −53
73

(4, 1, 6) −59
73

10101


2 −1 0 0
−1 4 −1 −1
0 −1 4 −1
0 −1 −1 4

 −59
85

(6, 3, 6) −65
85

(22, 21, 22) −81
85

10120


4 −2 0 −1
−2 4 −1 0
0 −1 4 −2
−1 0 −2 4

 − 69
105

(2, 0, 18) − 99
105

(4, 0, 8) − 91
105

(6, 2, 6) − 83
105

(10, 8, 10) − 93
105

Table 1. Data for knots in Corollary 2. The fourth column con-
tains possible coefficients of the matrix Q in Theorem 1.
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