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AN ELEMENTARY PROOF OF THE JORDAN-SCHOENFLIES
THEOREM!

STEWART 8. CAIRNS
i. Introduction.

THE JORDAN-SCHOENFLIES THEQREM. A simple closed curve ¢ tn a
plane E separates E into lwo regions. There exists o self-homeo-
morphism of E under which ¢ is mapped onto a civcle.

The exierior of a bounded closed point set b in E will mean the
unbaunded region of the complementary set E—5b. The remainder of
E—b, if not vacuous, will be called the interior of b.

(A) As a corollary to the above theorem, ¢ 1s tntersected by any simple
arc with one end point interior and one exterior to ¢.

This paper contains an elementary constructive proof of the
Jordan-Schoenflies Theorem, motivated by the belief that such a
proof should be presented at a fairly early stage to students of
topology and analysis. To that end, it is desirable that the argument
be disassociated from conformal mapping theory and be accom-
plished by methods as elementary as possible.

2. Preliminary results. Let (x, ¥) denote a rectangular cartesian
coordinate system in E. The following two statements can be quickly
established by familiar methods.

(A) Let by and by denole two simple closed curves for each of which
the Jordan-Schoenflies Theorem holds. Then an arbitrary homeo-
morphism between by and by can be extended lo a self-homeomorphism of
E.

(B} If the Jordan-Schoenflies Theorem holds for b; and b,, and if
the intersection b,-b; is a simple arc b, then the Jordan-Schoenflies
Theorem holds for the simple closed curve by +bd:—38', where b’ de-
notes b without its end points.

THEOREM 2.1. The Jordan-Schoenflies Theorem holds for a simple
closed polygon p. A polvgonal path crossing p ot just one point and
otherwise not meeting p has one end point exierior and one tnierior io p.

Proor. (C) The result offers no difficulty when $ is a triangle.

Presented to the Society, December 30, 1948, received by the editors June §, 1950
and, in revised form, January 15, 1951,

! The proof has been substantially shortened and simplified since the presentation
of the paper to the Society as a result of suggestions by Mr. John Nash of Princeton
University.
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PROOF OF THE JORDAN-SCHOENFLIES THEOREM 861

Suppose p has # >3 vertices and assume Theorem 2.1 for all polygons
having fewer than # vertices.

Let & be the set of all points each attainable from the exterior of p
by a polygonal path crossing # at just one point and otherwise not
meeting p.

LemMa 2.1. There exists a line segment d joining? lwe vertices of p
on a.

Toa establish Lemma 2.1, let Py be the point on $ with the smallest
ordinate among those where the absicssa is smallest. Then Py is a
vertex of p. Let Py, Py be the vertices consecutive with P, in either
sense along p. Let 8 denote the triangular region PyP.Ps. Then either
PP, satisfies Lemma 2.1 or else & contains vertices of p other than
(P, P3). In the latter case, P,P; satisfies the lemma if P; is one of
the vertices on & — (P, Py) with least abscissa greater than the ab-
scissa of P,

Let p,, p2 be the two polygonal arcs into which the end points of d
divide p. Then the hypothesis af the recurrency (see (A} above)}
applies to p:4-4 and to p.+d. Thearem 2.1 now follows for #, and
hence follows in general, with the aid of result (B).

3. Approximation to a sector,

LEMMA 3.1. Leét ¢ be a Jordan curve with at least one inlertor point P
and let o be the maximel region of E —c containing P. Then any chord

(3 . I) d = D]Dg
aof ¢ on w separates o dnto lwo regions.

Proor. Let ¢, ¢, be the two arcs inte which Dy, Dy separate c.
Let p denote an arbitrary simple closed polygen crossing 4 at just
one point M, and not meeting 4 elsewhere.

(A) The polygon $ intersects ¢; (i=1, 2).

This auxiliary result follows from the facts that (1) p separates
Dy from Dy, by Theorem 2.1, and (2) ¢; joins D, and Ds.

(B) Let p be traced from M in etther sense to the first poinis en-
countered on ¢. This leads to two distinct points, Py and Py, on ¢; and ¢,
res pectively.

To establish (B), let gq be the arc PL.MP, of p. Suppose that (B)
is false and that both end points of pg are on ¢, for example. Let ¢
be the arc of ¢, which they bound. From parts of $¢ and a suitahle

* A simple arc will be said to jein its end points 8% o region if the entire arc, save
perbaps for either or hoth end points, is an that region.
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palygonal approximation to e, it is possible to put together a simple
closed polygon through M, meeting (e:+d) only at A, where it
crosses d. By the argument for (A), this is contradictory, since such
a polygon would necessarily meet ¢,.
(C) Let p; be the arc of po with M and P; for end points (1=1, 2),
and let o; be the set of all poinis which can be jotned fo p; by arcs not
“meeting c-+d. Then (1) o, and oy are disjoint and (2) & +ay=a.

P'I

Dl- M Dy

Figure 3.1

If ey and oy were not disjoint, then any point common to them
could be joined te p; (i=1, 2) by a polygonal arc ¢; on @; From
parts of 21, p1, ¢1, and gs, a polygon could be put together, leading to
the same sort of contradiction as in the argument for (B). Part (2)
of (C) presents no difficulty. The lemma and the corollary below
now follow at once.

COROLLARY. In the above notation, the boundary of a; is on d4-¢;
(x=1, 2).

Either of the two parts into which a chord =MD}, separates «
will be called a sector 8 of a. As a preliminary to proving that ¢ isa
2-cell, a method will now be developed for partially filling in 8 by
an approximating region 8*. In accordance with the preceding corol-
lary, the boundary of 8 is on d+u, where g is one of the arcs of ¢
with D, and D, for end points. From the midpoint M of d, let a ray
normal to d be extended into 8, and let P be the first point of ¢ on
that ray. Then, by the above corollary, P is on u [see Fig. 3.1].
Let u; be the arc of p with P and D; for end points (=1, 2). By
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Lemma 3.1 and the corcllary, MP separates 8 into two regions
B: (z=1, 2}, where the boundary of 8; is en y;+ MD;+ MP. Let §;
be the interior of the triangle MPD,. A subset 8* of §; will next be
defined, as an approximation to ;. Its boundary will be the union of
MP, MD,, and an arc u¥ joining D; and P on 3.

Case 1. (8;C8;). In this case u¥=PD; and ¥ =4§; (see 8 in Fig.~
3.1).

Case I1. (8;8.). In this case, let g/ be the intersection of g; with
d;. The canvex hull of pf +PD; is then bounded by a convex closed
curve u! +D;P; and the arc u separates §; into two regions, of
which the one with M on its boundary will be 8% [see 84 in Fig. 3.1].

(D) The approximation 8* to 8 is now defined as the union of
8, B and the open segment MP, It is uniquely determined by 8.

(E) The arc
3.2 b=t
is the union of a subset ¢* of y and a denumerable set of chords of ¢.
As a point P* traces u* from D, to Dy, the open segment M P* sweeps
out the entire region 8*.

4, An interior region of a Jordan curve. Under the hypotheses of
Lemma 3.1, let k(c) be an arhitrary but fixed homeamorphic map-
ping of ¢ onto a circle k. The images of ¢*, &, and D; [see §3 for nota-
tion | will be denoted by

| B* = h(c™),
(4.1) ' v = k),
E: = k(D3 (i=1,2).

Then # is an arc of & with end points E,, E,, and k* is a subset of 2.
Let k(c) now be extended to each chord of ¢ on u* [see §3(E)] and
to the chord d by the requirement that these cords map linearly onto
chords of k. This extends k(c) into a map k(c+d+p*). Let the images
of d and p* [see §3] be

k(d),
v* = h(u*).

Then e is the chord E\E, and ¥* is a simple arc from E; to E; on the

- closure of the region ¥ bounded by ¢+2. The arc v* is the union of
E* and a denumerable set of chords of .

The image N=4A(M) of M is the midpoint of ¢. As P* traces p*

from Dy to Dy, its image Q% =h(P¥*) traces v* from E, to K, and the

e
(4.2)
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open segment NQ* sweeps out an approximation ¥* to 4, bounded
by e+o* Let & now be extended over 8* by the requirement that it
map each segment MP* linearly onto the segment NQ*.

(A) This completes the extension of k(¢) into a homeomorphic
mapping h{c+8*) of ¢+8* onto k++v*. The extension is uniquely
determined, given i(c) and the sector 8.

TreorEM 4.1. Under the hypotheses of Lemma 3.1, an arbitrary
homeomor phic mapping h(c) of ¢ onto a circle k can be extended into a
homeomor phic mapping H(&) of @ onto K, where K is the interior of k.

Let d =011, be an arbitrary chord of ¢ on e Let 8%, ¥* be ap-
proximations, as defined in §3(D), to the two sectors inte which 4
separates ¢ Let oy denote the union of 8%, 4* and the open segment
DlDz.

(B) By the extension pracess of statement (A), let h(c) be extended
over both B* and 7*, hence over . This defines @ homeomor phic map ping
Hy(a,+e) of ai+c onto a certain subset Ei+k of K.

The definition of H\{& +c¢) is the first step of a recurrent process,
based on the following hypothesis, which is easy to verify for j=1.

HypaTHEsIs. For same positive integer §, the sets &, K; and the
homeomorphisms H; (=1, 2, - - -, §) have been so defined that:

(1) The domain of H, is a;-4¢, where e, is a 2-cell on a.

{2) The boundary of @ is a simple closed curve ¢; which is the
untion of a point set ¢¥ on ¢ and a denumerable set of chords of ¢ on a.

{3) The image k;=H{¢;) is the union of a subset 2¥=H,;(c}) of k
and a denumerable set of chords of k.

(4) The mapping H; is linear between the chords of ¢ on £; and
the chords of % on k..

{5) Each map H,,, is an extension of H;and of k(c).

Let d; (t=1, 2, - + ) denate the chords of ¢ on ¢;. Of the two
sectors into which d; separates & (see Lemma 3.1), let 8; be the one
which contains no point of oy, and let 8# be the approximation to
A; defined in §3(D).

(C}) The region ayy; is now defined as

(4.3) wpn = a;+ >0 + O d

where d/ is the chord d; without its end points. The homeomorphism
H ;.1 is now defined on &;,; —&; by extending k(c) over each g4, using
the process of {A) abhove. On ¢;, this extension agrees with H;, as a
consequence of the linearity requirements in the extension process
and in part {4) of the above hypothesis.
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On &y, let Hy; be defined as identical with H;. It is then easy to
verify the above Hypothesis with 7+1 in place of j where

K = Hiplaga),
Risr = Hin(cp).

LEMMA 4.1. For any €, there extsts an iuteger § so large that every
circular region of radius € about @ point on ¢ contains a sector on o oul-
side oo; and cul off by a chord of ¢;. I'n other words, the regtons of Fig. 3.1
become uniformly small as 7 tncreases.

(4.4)

Suppose the lemma false. As a consequence of the recurrent process
for defining the regions a, it follows that, for same e > (), there exists at
least ane circular neighborhood of radius € with center on ¢ contain-
ing no point of Y cf.

Let ¢ be a maximal are of ¢— D ¢, and let Py, P be its end
points . Let N, N’ be the circular neighborhoods about Py, Py respec-
tively each of radius d{Ps, P¢)/3. By definition of ¢4, it is possible
to find two points (D, D) such that (1) D, and D, are the end paints
of a chord d of ¢ an the curve ¢, [see Hypothesis, Part (2}] for some
value of 2. (2} If ¢} is the arc of ¢ which has I}, D, for end points and
contains ¢q, then (¢! —e) C(N+N'). (3) D, and D, are so close to
Py and P4 respectively, that the perpendicular bisector n of d daes
not meet N+ N’. In the extension process, a point of ¢fy, is common
to = and ¢f, hence is on the arc ¢q. Since this contradicts the definition
of ¢5, Lemma 4.1 is proved.

COROLLARY. Euery point of « is on one of the 2-cells o,

Assume the contrary, and let @ be a point on & — Zag. For each
value of ¢, there is a chord d; ont ¢; which separates & into two sectors,
one of which, §;, contains Q, whiie the other contains a,. Let ¢; be the
arc of ¢ on f;. Then, as a consequence of Lemma 4.1, there is just one
point (* common to all the arcs e;. For 7 large enough, any given
neighborhood N{(Q*) will contain d;+¢; and hence §;. Since N(Q¥)
need not contain @, the corollary follows.

Now let H be defined as the common extension of ail the homeo-
morphisms H; By the above coroilary, the domain of o is e¢+c.
Furthermore, H is continuous on &. Its continuity on « follows from
the continuity of the H;, while its centinuity at points on ¢ follows
from Lemma 4.1. Hence the mapping H fulfills the requirements of
Thearem 4.1.

Let b, and b, denote two Jordan curves, each with an interior, and
let 3; be a 2-cell with b; for boundary (¢=1, 2), in accordance with
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Theorem 4.1. Suppose the intersection of b; and b, is an arc b, where
b, —b is exterior to by and b,—b is exterior to b Let &' denote b with-
out its end points, and let

(4.5} ’ B =g+ ¥+ 8.

(D) As a corollary to Theorem 4.1, B is a 2-cell with by+by—b' for
boundary, and any homeomor phism between this boundary and a circle
b can be extended inlo a homeomor phism belween § and K (see Theorem

4.1 for notation). It will be said that B is ablatned by amalgamating
By and By acrass b.

5. Completion of the proof.

LEMMA 5.1, Let ¢ satisfy the hypotheses of Lemma 3.1 and hence of
Theorem 4.1, Let g be o simple arc joining two distinct points Py and
P, of ¢ and lying on o, save for Py, Py Let ¢, ¢y be the iwo arcs tnto
whick P\, Ps divide ¢. Then g separates o tnio two 2-cells e, o where
a; has g+¢; for boundary (1=1, 2).

ProoF. By Theorem 4.1, the lemma reduces to the case where ¢ is
a circle and « is its interior. If g did not separate a, a polygonal
arc p could be constructed joining ¢, to ¢; on & without meeting g.
This arc p could be completed outside ¢ to a simple closed polygon.
By Theorem 2.1, using an arc of circle instead of a polygonal path,
such a polygon must separate P, from P, and hence must intersect g,
contrary to its definition. It follows that g-¢; satisfies the hy-
potheses of Theorem 4.1. Let a; be a 2-cell bounded by g+¢; in accord-
ance with that theorem. By §4(D), @ and a» can be amalgamated
across g to obtain the 2-cell, &, bounded by c.

Next consider an arbitrary simple closed curve ¢. Let p be a simple
closed polygon, meeting ¢ in just two points, P; and P,, and other-
wise exterior to ¢. Such a pelygon is easy to define, if P, and P are
chosen as points of maximum and minimum ordinates, respectively,
on ¢. :

Let ¢, and ¢ be the two arcs into which P, and Py divide ¢. As a
consequence of Theorem 2.1 and Lemma 5.1, ¢; separates the interior,
p, of p into two 2-cells @; and Bi one of which, 8; contains ¢;
(i=1,7=2)and (=2, j=1), Similarly, ¢, separates f; into two 2-cells,
one of which, a, has ¢, + ¢, for boundary. Any point on e is interior ta
¢, since any arc joining it to # must meet either ¢ or ¢a. This estab-
lishes the following result.

LeEMMA 5.2, Any Jordan curve has an interior.

Now let oy and a be amalgamated across ¢; [see §4(D)] and let
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the resulting 2-cell be amalgamated with ey across ¢; to obtain a
2-cell p with p for boundary. By Theorem 2.1, p is the interior of p.
Since ¢ and oy are exterior to ¢, the 2-cell & constitutes the entire
interior of ¢. The Jordan-Schoenflies Theorem now follows readily
in all its generality.

UNiveRsITY oFf [LLINOIS

A NOTE ON CURVATURE AND BETTI NUMBERS
H. GUGGENHEIMER

1. S. Bochner has proved the following theorem [2]:* Let M
be a closed manifold with complex structure [4; 7] of complex
dimension #, on which there exists a Kihler-metric {2; 3; 5]2

{1) ds? = gi(deidz®),?
A Bgue
(2) = '
921 62,:

Let Ry.+ denote the Riccei tensor and

1
{3) Privjee = Rpprjie — ———— (gniRjpe + grarRiry)
m+ 1

the tensor of projective curvature. In every point of M we form
the numbers

— Roobite
(4) L = inf ~—-—-_-"i‘§—,
¢ £
Pe et g 78
) P = sup M_i ,
¢ F %

with all vectors £ and skew-symmetric tensors £7 attached to the
point in question. If

(6) L>0

Received by the editors December 8, 1950,

* Numbers in brackets refer to the biblography at the end of the paper.

? Products of differentials in parentheses denote ordinary products, products
without parentheses are skew products,

1 We denote by * the index relative to 27,



