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0.0 Preface

These notes provide an introduction to pseudo-differential operators from an invariant point
of view. Our modest goal is to discuss and elaborate on a subject contained in Hérmander’s
article “Fourier Integral Operators I”, emphasizing the geometric description of the distribu-
tions which play a natural role in the theory, namely the Schwartz kernels of the operators
under consideration. These distributions have singularities with some stability relative to
the action of vector fields which are tangent to the diagonal in the product manifold. Lifting
them to distributions on the normal bundle and applying Fourier transform along the fibers,
one is led immediately to the notion of symbol and the corresponding symbol calculus, which
for so many years has proven to be a powerful tool in the analysis of equations of various
kind.

One area where the power of these operators can be appreciated is in the study of elliptic
equations. I have always been fascinated by the naturality with which they appear in the
Atiyah-Singer index theorem and their success in the theory of elliptic boundary value prob-
lems, both subjects of extreme importance in the last few years. And I believe that their
invariant presentation is the most natural way for geometers to understand and quickly get
used to them. It shows painlessly why (for many purposes) it is sufficient to use integration
by parts and Fourier transform to come to grips with the subject.

The Schwartz kernel of a pseudo-differential operators is an important example of a
conormal distribution, that is to say, distributions whose singularities are nicely placed along
a closed embedded submanifold of the base, and stable when acted on by vector fields tangent
to it. After some preliminaries, we start the real course of this work by developing the notion
of conormal distributions of type p,d with p > §. Given our main motivation, it will suffice
to keep in mind only the case p = 1 and § = 0, although the general situation is just a little
more complicated. After that, the rest of the work follows a natural flow and we discuss
in detail important examples of elliptic differential operators frequently seen in differential
geometry, whose inverses are pseudo-differential operators of type (1,0) (see (6.3.5), (6.3.6)
and (6.3.7)). Among the many results we learned in [Hol] and [KN] (some of which are

reproduced here) we prove that elliptic pseudo-differential operators define Fredholm maps



when acting on sections of bundles of a conveniently fixed Sobolev order. As a consequence,
the analytic part of the Atiyah-Singer index theorem follows: any such operator has an index
(the difference of the dimension of its kernel and cokernel).

I learned the geometric version of this subject from lectures by Richard Melrose at MIT.
The courses in microlocal analysis that I taught at SUNY during 1987 kept me interested
in this project. The students and I benefited from the interaction and I felt that providing
them with written details would be helpful to improve their understanding of the subject. I
originally intended to include also a discussion of Fourier integral operators here, but decided
against it as the notes became too long and ambitious in scope, goal which we did not set
for ourselves at the beginning.

I have made no attempt to trace the results to the original references. I apologize if I
offended anybody and encourage the avid reader to look at the references provided in [Ho3]
covering this and other topics.

Special thanks are due to many friends with whom I discussed this material at one
time or another. Unfortunately, I can only mention a few: to view analysis with geometric
spectacles is something for which I will always be indebted to Richard Melrose. Steven
Andrea and Gerardo Mendoza initiated me into the subject. Kevin Payne read a great deal
of the manuscript and provided helpful criticism. Luisa F. Ruiz was always around helping
me with the computers and other things. That all errors that remain are only mine, as it is
sometimes said, goes without saying.

January 1990.



Chapter 1

Distributions

In this chapter we recall notions which are well understood nowadays with the purpose of
making these notes self-contained. In the process, we establish the notation to be used all

throughout this work.

1.1 Smooth and rapidly decreasing functions

Let n > 1 and let Q be an open subset of R". We denote by .(€2) the set of complex valued
functions which are differentiable with continuity arbitrarily many times and have compact
support in . The support of f €. (£2) will be denoted by supp f. Given a compact subset
K of Q, we define

Dg(Q) ={f € () : supp fC K}

and topologize it using the seminorms

pK,m(f) = Sup\a|§m,m€K|Daf('r)| ; M < 00. (111)

. : . 10
Here (and in the sequel) a = (ay,...,ay) is a multi-index, D* = D! ... D¢, D, = R
1075

and o] = a1 + ... + .

With this topology, Dg(2) is a locally convex linear topological space. Moreover if K
and K, are compact subsets of Q with K; C Kb, then the topology of D, () is identical
with the relative topology of D, (Q2) as a subset of D, (€2). Notice also that each Dg(Q) is



a linear subspace of .(€2) with

() =UgDg(Q) .
A convex, balanced and absorbing subset U of .(2) will be declared open if and only if for all
compact subset K of 2, U N Dk () is an open subset of Dg () containing the zero vector.
In other words, we provide .(€2) with the inductive limit topology of the Dg(€2)’s. The space
of compactly supported functions topologized in this way will be denoted by D(2). The
space of distributions in (2 is defined as the topological dual of D(Q):

D'(Q) = (D(Q)* . (1.1.2)

D' () will be provided with the weak topology.

For practical purposes, one should explore the definition above and define distributions
using criteria which are easier to deal with. In order to do that, we explore further the
topology of D(12).

Let F' be a topological vector space provided with a countable family of norms || ||;. We

can assume that || |1 > | [li. Otherwise set || [|; =3 ,<; | ;- Then

< =gl
d = AL AL L LA
(£:9) = 22

is a translation invariant metric on F. The space F' is said to be Fréchet if it is complete in

this metric. As an example, consider
CF(Q)={f:Q— C: D*fis continuous and sup |[D*f| < oo V a s.t. |a| < k} .

With the norm given by | f|lx = supj,<,|D*fl, C§(Q) becomes a Banach space. This

assertion is a consequence of the Arzela-Ascoli theorem. Then
Cr(Q) = MGy (Q)
is a Fréchet space. Let d be the distance function in Cy°(€2). Recall that a sequence {K;}

of compact subsets of €2 is said to be exhaustive if K; CI%J- for all j and Q = U; K.

Proposition 1.1.3 Let {f,} be a sequence in D(S)) which converges to f in the topology of
D(R2). Then there exists a compact set K C € such that supp f, C K for all n, and for any
a, D®f,, converges uniformly to D*f on K. Conversely, these conditions imply that f, — f
in D(Q).



Proof. 1t will be enough to assume that f = 0. Suppose the result is false. Then there
exists a exhaustive sequence {K} of compact subsets of {2 such that for some subsequence
fn; we have supp f,; C Kj and f, (z;) # 0 for some point z; € K;— K;,l. Indeed, {K;}
can be chosen to be a subsequence of {K;} where K; = {x € Q: d(z,R"—Q) > 1/j} n{z:
||z|| < j}. We shall find an open set O contradicting the hypothesis that f,, — 0 in D(2).

Set ¢ = d*(fn,;,0) > 0. Without loss of generality, we can assume these real numbers

form a decreasing sequence. Consider
0= U;i(){g € DK](Q) : doo(g,()) < €j/2} .

This set is an open neighborhood of the zero vector in D(2). For if K is a compact subset
of 2, given an element h € Ok = Dg(2) N O, then for some j, K C K; and h = h with
h € Dk, () and d®(h,0) < £;/2. Thus, if k' € Dk (Q) and d**(k',0) < £;/2—d>*(h,0), then
h+h € Ok. Clearly, fn; € O, reaching the desired conclusion.
The converse is straightforward. |
A convergent sequence { f,,} in D(2) is a particular example of a bounded subset of D((2).
In general, B C D(2) is bounded iff there exists a compact set K such that

suppp € KV € B and sup,cg ,ep5/D%p| <oV a. (1.1.4)

The proof of (1.1.4) involves the same arguments as the one in the previous proposition.

From this we obtain the following characterization of distributions.

Theorem 1.1.5 A map T : D(Q) — C is an element of D'(Q) iff T is linear and for any

compact subset K C §Q, there exist m and C' such that

IT(¢)] < Cprm(p) Vo € Dg(Q) .

Proof. The necessity is obvious since D(2) is the inductive limit of the spaces Dg(£2)
which implies that the composition Dk (€2) 29 D(Q) 5 C is continuous. Given (1.1.4), the

converse follows from the fact that 7" must be bounded on bounded sets. |

Example 1.1.6 Let f € C%(f2), the space of continuous functions. Then

Ty(p) = [ f@)e(a)de



defines an element T of D'(Q). In this way, we identify C°(f2) with a subset of D'().
Similarly, we identify L?(Q) with a subset of D'(Q2). Notice that in both of these cases we
make use of the Lebesgue measure of (2, structure which is naturally available unlike the

more general case of distributions on manifolds to be discussed below.

Example 1.1.7 Consider the functional

Then d, € D'(Q2). This is the so called Dirac delta function at z. It is not of the form T}

(as in the previous example) for any L?-function f.

Let us now consider the space (£2) of smooth functions in 2 topologized with the semi-
norms in (1.1.1). Clearly the inclusion map i : D(2) — (€2) is continuous and has dense
image. Following the usual principle of functional analysis in search of interesting spaces,

we dualize the inclusion above and obtain a map
D.(Q) 5 D(Q), (1.1.8)
where D.(Q) = ((Q))*.

Definition 1.1.9 u € D'(Q) is said to vanish on U iff the composition u o iy : D(U) — C
is identically zero. Here, iy : D(U) — D(Q) is the inclusion map. The support of u, supp

u, is the complement of the union of all the open sets where u vanishes.

Proposition 1.1.10 The image of (1.1.8) is the set of distributions in D'(Q) with compact

support.

Proof Let v = i*u for some u € D,(Q) and assume that v does not have compact
support. Then there is a sequence {z;}, without accumulation point in 2, entirely contained
in supp u. Choose a sequence of disjoint open sets {U;} with z; € U; and such that for
any compact set K there is an index jx with U; N K = 0 if j > jg. Since z; € U;, we can
find f; €. (U;) such that v(f;) = 1. Since the sum converges in (2) we define f = 3,4, f;.
Then, u(f) = S u(i.f;) = Y i*u(f;) = L v(f;) = oo, contradicting the fact that u € D.(1).



This shows that the image of (1.1.8) is contained in the set of distributions with compact
support. The converse is obvious. |
Abusing notation, we denote by D.(f) the set of distributions in D'(Q2) with compact
support.
The derivative D, of a distribution w is defined by the identity

(Da;u)(p) = u(=Dayp) -
Show that the map
D,,:D'(Q) — D'(Q)

is continuous and that supp D,;u C supp u. Generalize this result to partial differential
operators P =Y a,(z) D¢ with coefficients ,(z) € ().

A distribution u € D'(R™) is said to be positively homogeneous of degree z iff
miu=tu VteR",
where m; : R — R is the multiplication operator m;x = tz.

1. Show that for complex numbers z such that Re z > —1 the function

=e*losr 2 >0

0, <0
is locally integrable and it therefore defines a distribution 22 € D'(bfR).

2. Prove that if Re z > 0,

z z
—l'Jr—ZI'Jr.

dx
Use this property to extend the definition of 27 as a homogeneous distribution of degree
z with values in the space of meromorphic functions in C having at most simple poles

at z = —1,—2,.... The distribution so defined is positively homogeneous of degree z.

3. Show that for any integer £ > 1,

: z __ (_1)k_1 d et
Jm GRS =T %



4. For any positive integer k, define

P G ) Lo O N
v = m @ - = (%) o) -

Show that z* is not a homogeneous distribution.

5. For any z not a negative integer, define 2 by z* = T"*z% where T'(z) = —z. For a

k

positive integer k, define z_" as above replacing the role of 2% by zZ. Show that the

distribution 27! — ="' is the so called principal value

1
p.v.;(gp) = lim @dx

e=0Jjz|>e T

Finally let us consider the space of smooth functions in R™ for which

M «a
11115 = 8Pl <, wern (1 + [|2]*) 2 D3 f(2))]

is bounded for all non-negative integers M and N. These functions decrease at oo faster
than any polynomial. With the topology defined by these norms, we obtain the space of
rapidly decreasing functions S(R™), a Fréchet space. It is rather clear that D(R™) C S(R"™)

continuously. Hence, the space of tempered distributions,
S'(R") = (S(R")"
is included in D' (R™).
Find an element of D'(R™) which is not a tempered distribution.

1.2 Convolution and Fourier transform

Given f and g in S(R™) we define their convolution to be the rapidly decreasing function

(f+9)@) = [ &= gw)dy = [ Fwgle ~y)dy . (1:21)

This is an associative and commutative multiplication on S(R™) without identity. More-

over, if we identify f with an element of D'(R") and suppose that g €, (R™), we can write

(f *9)(@) = f(729) (1.2.2)



where 7, is the operator ¢g(.) — g(z— .). This allows us to extend the convolution operation
to the space D'(R™) ®, (R"). By duality, it can be extended to D'(R") ® D.(R™). In order

to see this, we must prove the following:

Proposition 1.2.3 Let f € D'(R") and g €. (R™). Then f * g is smooth and D*(f % g) =
Dfxg=fxD%. If f € D;(R”), then supp f * g C supp f+supp g.

Proof. Let e be the unit vector in the direction of the positive k-th axis. Then for
g €. (R") and fixed z, the function gx(y) = +-(g9(x + hex — y) — g — y)) converges to
D, g(z — y) in the topology of D(R") (see proposition 1.1.3). Hence

Dy, (f * g)(x) =limp0 f(gn)
:f(Tmekg) = (f * Dmkg)(x) .

Since D,, g(x —y) = —D,, g(x — y), it follows that

(f * Dayg) (@) = (Da f * g) () ,

proving the desired formula when |a| = 1. The general expression follows by induction.
Having this result available, to prove the smoothness of f x g it will suffice to show that
f * g is continuous. But if z; — x then g(z; —y) — g(z —y) in D.(R") as a function of y.

Hence

lim (f * g)(z;) = lim f(72,9) = f(7ag) = (f * 9)(2) -

Jj—00
Finally, observe that f(7,g) is zero unless supp fNsupp 7,g # 0. This condition means
that for some y € supp f, * —y € supp g. That is to say,

r=y+z, yesuppf, z €suppg,

showing the desired result for the support of the convolution. |
Using proposition 1.2.3 we can show that D(R") is dense in D'(R™). In fact, that

statement follows easily from

Proposition 1.2.4 Let ¢ €. (R™), ¢ a non-negative real valued function such that [ o =1
and supp ¢ C {zx : ||z|| < 1}. Consider the sequence p.(x) = e "p(x/e). Then, if
u € D'(R™), ue = u * @, is smooth and converges to u in the topology of D'(R™).



The proof of this proposition is left as an exercise for the reader.
If f and g are distributions with at least one of them compactly supported, then f % g
can be defined by

DR") 39— g(f*9),

where f is the pull-back of f under the diffeomorphism z — —z. It follows from proposition
1.2.3 that the function f % ¢ is smooth and that the right hand-side of the expression above
is well-defined if either f or g has compact support. Moreover, the map defined in the right
side is continuous in the topology of D(R™): for if ¢, — 0, f * ¢, — 0 if f has compact
support, or it does so on the support of g; in either case we conclude that g( f = ©n) — 0.
In this form, the convolution operation is extended to distributions when at least one of the
distributions involved has compact support. In the distributional sense, the properties of
proposition 1.2.3 carry over at this level, and when defined, the convolution is associative.

Consider the Fourier transform
S(R") L5 S(R™)

R , (1.2.5)
@) — f(©) = [ f(a)d

A

It is a well-defined map. Indeed, it is trivial to check that 5;;‘\ f(&) = & f(€) and that
zof(§) = (—1)°Dg f(£), implying that f € S(R").

Theorem 1.2.6 The map (1.2.5) is an isomorphism and f/*\g =f-q.

Proof. Let

1 i
G7(2) = (g [ O

We shall prove that (G o F)f(z) = f(x). We have

zm y§ dydf

1 i
(G0 F)f@) = gy [ (€0

Since the last integral does not converge absolutely, we cannot interchange the order of

integration. We can only do so after regularizing it. Just observe that

1 ; 2
08 fy)ayd =tim g o5 [ [ eHevS R f(y)dyde

=limy,o(f * g:)(7) ,



1

where ¢;(y) = / e tI¢1° g¢. Completing the square we have:

(2m)

1 llyl® e~ Syl ge — . H&—5vi)° g
o= g i gl i s

1 e,uif :

 (4nt)z ’

the latter obtained by shifting the contour of integration to the complex line Im z = zi—; As
it can be seen, f x g; is nothing but the convolution of f with the fundamental solution of
the heat equation g;. Notice that the later is such that g; > 0 and /gt(y)dy = 1. Hence, if

we choose 0 such that |f(y) — f(z)| < e for ||z — y|| < ¢ and we set M = sup|f(z)|, then

|(f * gi() = f(2))]

(@) = F@)gla = )y

< [ @) - f@late -y + [ 15) = f@)lgl - y)dy
z—yll<s lz—yl>6
< 6/gt(w—y)dy+2M gi(z — y)dy .
lz—y||>6
But / —y)dy = ﬂ’%/ e‘”C‘PdC, which shows that the second integrand in
llz— yII> I<l> 5%

the right hand-side of the expression above is less than ¢ for ¢ small. Thus, |(f * g.(z) —
f(z))| < 2e for small t, with € arbitrary. The result follows.

Finally, let h = f % ¢g. Since the integral converges absolutely we have:

h(€) = / (frg)(x dl’_// “f(z —y)g(y)dydz
[ /e ‘“Z*y’@f( )9 (y)dzdy
S GLGE

concluding the proof. |

Prove the result above as follows (see [Gi]):
1. Show that Gf(0) = 0 if f is such that f(0) =

2. For a general function f use the decomposition f = f(0)fo + (f — f(0)fo) where
fo = e I=I” Show that gf(o) = f(0) by computing explicitly the value of ffo(é)dé.

3. For 29 € R™ set g(xq) = f(x + zo). Using 1 and 2 show that f(zo) = (Gf)(x).



By duality one defines the Fourier transform of tempered distributions, i.e., if u € S'(R"),

then Fu(f) = u(Ff) for all f € S(R™). The map
S'(R") L S'(RY) (1.2.7)

is an isomorphism.
If u € D,(R") = ((R™))*, its Fourier transform can be defined using the duality pairing
between D, (R") and (R"). Indeed, e~" is an element of (R"), and

a(€) = Fu(§) =ule™) . (1.2.8)

This function is smooth and has a holomorphic extension to C". The resulting extension is by
definition the Fourier-Laplace transform of u. Observe that if u; € D,(R™) and uy € S'(R™),
the product i - Uy is well-defined, and by the isomorphism (1.2.8) it is the Fourier transform
of a tempered distribution which we call uq * us.

The following theorem is the crucial tool in studying the notion of singularity of distri-

butions. The statement as well as proof follows closely that in [Ho2].

Theorem 1.2.9 (Paley-Wiener) An entire analytic function U(§) is the Fourier-Laplace
transform of a distribution with support in the ball By = {z : ||z|| < A} if, and only if, for

some constants C' and N we have
U©)] < O+ [glhNete

U is the Fourier-Laplace transform of a function u ub .(Ba) if, and only if, for every integer

N there exists a constant Cn such that
U(€)] < On(1+[lg])~Nettmel,

Proof. Suppose U (§) is the Fourier-Laplace transform of a distribution with support in

B,4. By theorem 1.1.5 we know that for some constants C' and NV,

lu(p)l < C > sup|D%|, v €c(Ba).

la|<N

Let ¢ € (R) such that ¢y =1 on (—o00,1/2) and ¢ = 0 on (1,00). Then,

pe(x) = e v([[€]l([l]] — A))



is in .(R") and coincides with e~ is a neighborhood of B4. Since u has support in By, we

have:

@] = lu(pe)| < C > sup|Dpe| .

lal <N
But ¢¢ # 0 when
1
1€ll(l[z]] = A) <1 = |lz]| < el +A4.

Therefore |e™¢| < eAlmE+1 on the support of @¢. Hence, estimating the supremum of the
derivatives of ¢¢ on the support of u, we obtain

[a(€)] < CetME(1 4 1™,

proving that the first condition is necessary.

The necessity of the second condition is quite obvious since
EDp(6) = [ e D ((—a)p(a))da .
Using this with & = 0 we obtain that
l€l1°la(€)| < Cpetitne

for any 3, from which the desired result follows.

That the second condition is sufficient is proven as follows: set

u(a) = (2m)7" [ U(©e'de,

which makes sense because U is a tempered distribution. Then & = U. Furthermore,
u € (R™). We only need to prove that suppu C By.

But the second condition allows us th shift the integration in u(z) = (27)™™ / U(&)elde
into the complex domain u(z) = (27) " / U(& +in)e’®E+md¢. Here 7 is an arbitrary vector

in R™. Thus, using the condition with N =n + 1 we have

!

e . de .
u(z)| < Cyednl=@n ((2r) / T C Al

Choose n = tx and let t — +o0. It follows that u(z) = 0 if ||z| > A.



To prove the sufficiency of the first condition, we first note that U € S'(R") and so, by
(1.2.8), U = 4 for some u € S'(R"). Let ¢ €, (R™) such that ¢ > 0, supp ¢ C {z: ||z|| <1}
and /gp(x)dx = 1. As previously done, we set p.(z) = e "p(z/e). Then if u. = u * . we
have that 4. = 4@.. But u. is an element of .(Bay.) and it therefore satisfies the second
condition with A replaced by A + ¢. Letting ¢ — 0 we obtain that supp u C By. |

According to Paley-Wiener theorem, if v € D,(R") is smooth, then #(£) is a rapidly
decreasing function. In the general case, one could study those rays ¢ along which the

estimates

B < Onv(1+IIEHN™Y VN (1.2.10)

fail as a measure of the singularity of the distribution v. In other words, the cone Y (v)
consisting of those rays where (1.2.11) is not valid captures the singular behavior of the

distribution v. If u € D'(2), for x € Q we set
£, =N S(00), 6 €. (Q) 6(a) £0.
Definition 1.2.11 If u € D'(Q) the wave front set of u is defined as
WFu={(z,) e QxR"—0: £€X,}.

This coordinatized version of W F' u will be proven to be invariant in the following chapters
and we therefore shall not emphasize that at this moment. Let us just add that W F u should
be considered as a closed-conic subset of 7#{2 — 0, the complement of the zero section of the

cotangent bundle of €.
Example 1.2.12 For the Dirac delta function we have WF' §,, = {(xo,&) : £ # 0}.

Compute WF H where H is the Heaviside function.
Show that if P is a differential operator with smooth coefficients, W F' Pu C W F u.

1.3 Structure theorems

Let u € D'(Q). If there exists n such that for all compact sets K C €, |u(p)| < Cxprn(p)
for all ¢ € Dg(2), then w is said to be of finite order and its order is the smallest of all the

n’s with the property above.



Theorem 1.3.1 Letu € D'(Q), and let U be an open set with compact closure in 2. Then,

there exists a continuous function f in U and a differential operator P such that u = Pf.

Proof. Consider an open set V with compact closure such that U C V and let ¢ € C*(V),
¢ =1 in a neighborhood of U. Extend ¢ by zero outside V', and set u; = pu as an element
of D'(R™). Then u; |y= u |y. From theorem 1.1.5 it follows that u; has finite order. Since

it also has compact support, there are constants C' and N such that
ur(@)] < Csup|giyaev| D @(2)], ¢ € CP(RT) . (1.3.2)

From the Hahn-Banach theorem we obtain an extension of u; as a linear functional on the
space of N-times differentiable functions on R", C¥(R"), provided with the semi-norm on

the right hand-side of (1.3.2), taken over a compact neighborhood of supp u;. Set

1
'(1'15[72 Ce CL‘n)N+1

. L1y Ly >0
glz)=q MV +1) ,

0 otherwise

and define v = uy * g. Then v is continuous since 7,9 — 7,9 in CV(R™) when z — .
Moreover, for ¢ € C(Q),
ONTZ 0N 2y(p)=(—1)"NFDy(oN*+2 | 9N +2p)
(—1)" N2y (1,9) (ONF2 .. 9N T2p)
=(—1)"(N+2)y, </g(1‘ —y)oN+2 .. 8ﬁ+2g0(:c)d:c>

:Ul((p) )

completing the proof. |
Consider a distribution K € D'(Ql x y) with ©Q; and {2, open sets in R™ and R"?,

respectively. Such a kernel defines a map

Tx : D(4) — D'(2)
1 — (Tipr)(02) = K(p1 @ 0)
where ¢ ® @y is the element of D(€; X Q) defined by (1 ® @2)(z,y) = @1(z)p2(y).
Observe that if K; and K, are two kernels for which Ty, = Tk,, then K; = K5. Indeed,
if D(2;) ® D(2) stands for the span of the set of functions p; ® ¢y with ¢; € D(;), this

claim is an easy consequence of the following lemma, whose proof we omit:



Lemma 1.3.3 The inclusion map

D(Ql) X D(Qg) — D(Ql X Qg)
P1O P2 — P1 ® P2

has dense range. i

More interesting (and difficult) is the converse of the situation analyzed above. Any
continuous linear map T from D(€;) to D'() can be represented uniquely as Tk, for some

K € D'(Qy x ). This result is known as the Schwartz kernel theorem.

Theorem 1.3.4 Let T : D(Qy) — D'(Qy) be a linear continuous map. Then there exists
a unique distribution K € D'(Qy x Q) such that T'(p1)(v2) = Tk (01)(p2) = K(p1 ® p3) for
all p1 € D(Ql), P2 € D(Qg)

Proof. If K and K are distributions representing 7', then K — K is a kernel representing
the zero map from D(Q;) to D'(Q,). That means that K — K  vanishes on D(€;) ® D(£y).
Using lemma 1.3.3, it must vanish on D(€ x ). Thus K = K  and therefore, the kernel
representing T, if it exists, is unique.

For the existence of K observe that 7" induces a bilinear map

D() ® D(22) — C

. (1.3.5)

Y05 @ — LT () ()

Thus if & =Y p; @ ¥; € D(1 x Q), K can be defined as
K(®) = > Tp;(¥;) - (1.3.6)

We need to prove that the K so defined is continuous in the topology of D(£;) ® D(s)
induced by D(€; x Q). From that and lemma 1.3.3, this K will define an element of
D'(Q; x Q3), which represents T in virtue of (1.3.6). Let C; and Cy be compact subsets of

Q, and (25, respectively. We want to find constants C' and N such that
| K((p) |§ CpcGCQ,N(‘I)) (137)

for any ® = 3" ¢; ® ¢; with supp® C C; x C5. Let E; and Fy be compact neighborhoods
of C; and (5. Then we can assume that supp ¢; C E; and supp¢; C Es.



Consider f; € C° (%), fi =1on E;, i =1,2. We have:

1
T%:m) [ TAROEDN)

/f2 05, (£)de
and
T(Spj)(@/’j):(zﬂ)ilw/T(fl(.)ei(- n)dn </f2 0, (¢ 5)
:# [ [ TAROED) (£26)69) 65356 dnde (1.3.8)

= [ [ Fn. )65 ()dnd

whete F(1,) = e T(RCEC) (19,

(2

The map (1.3.5) is separately continuous. If V; and V5 are compact subsets of Q; and

(g, there are constants A;, A,, N and M, such that

| T(p)(¥) |< Aipva,n () V0 € Dy, (22) ;0 € Dy, (1) fixed

and

| T(p) () I< Aopvy m (@) V@ € Dy (1) ¥ € Dy, () fixed .

The first of the estimates above comes from the fact that T(¢) € D'(€s), while the second
comes from continuity of 7. But Dy, () and Dy, () are Fréchet spaces. From the Baire

category theorem (see exercise 1.3.11 below), (1.3.5) is jointly continuous and

| T(¢)(¥) |< Apvy v (0)Pva,n (V) -

In particular, we can assume that supp f; C V; and apply this estimates to the functions

fi(z)e!™®m and f,(y)e'®¢). We conclude that for some N and M,

| F(0,) |=| T(f1()e™P)(fo(-)e’9) |< C1+ [Inl)™ (1 + [IElDN™

showing that F(n,£) has polynomial growth. Define a linear map on C°(2; x §2) by

@) = [ [ F(,)8(,€)dnde . (1.3.9)



Choose an integer ¢ such that N+ M — ¢ < —(ny +ng). If supp ® C V where V is a

compact subset of {2; x {25, one easily obtain the estimate

[ (0, ) 1< C (1 €]+ ) prig(@)
Hence
| R(®) | < Cpug(@) [ [+ 1€l + Inl)*(1+ Inl)™ (1 + €] dndg
<Cpv,(®) .
Thus, (1.3.9) defines distribution which, by (1.3.8), agrees with Y>> T(¢;)(¢;) when ® =

> p; ®1; and supp & C Cy x C,. Estimates (1.3.7) comes from (1.3.10) when V' = Cy x C
and N = ¢. This finishes the proof. |

(1.3.10)

Assume F, F' are Fréchet spaces and let B : F x F' —» C' be a separately continuous
bilinear map. Show it is jointly continuous.

Hint: For each £ € N define
Sy ={veF:|Bwv) |<Eklw|g, Vwe F}.

Prove that each Sy is closed and that F' = Uy S;. Then use Baire’s category theorem.
Consider a differential operator P = Y a,(z)D$ as in exercise 1.1.11. Show that its

Schwartz kernel Kp is
=Y an(z)(D26)(z —y) .

Conversely, show that any distribution like this is the Schwartz kernel of a differential oper-

ator.

1.4 Densities and density valued distributions

Contrary to the case of an open set in R" where there is a naturally defined notion of
integration, the case of general manifold X is a little bit more complicated. A measure
defines a continuous linear functional on C2°(X), but there is no natural way to associate

*

with a continuous function an element in [C°(X)]*. This problem can be solved making
additional assumptions on X. Rather, we shall define a complex line bundle over X which

will make possible to integrate with a desirable degree of generality.



Let us start looking at the linear case. Consider a vector space V' of dimension n with
basis {vy,...,v,}, and let A" V* be the vector space of exterior n-forms on V. It is well
known that A" V* is a one-dimensional vector space with basis w = v] A ... Av;. Here

{vf,...,v%} is the basis of V* dual to {vy,...,v,}.

Definition 1.4.1 An a-density d on 'V is a map d : \"V* — {0} — C such that for all
s € R—0 and for allw e \"V* — {0}, we have d(sw) =| s |* d(w).

Given an a-density d on V, it is completely determined by its value over w. Indeed,
any element w € A"V* can be written as w = cw for some constant ¢ and therefore,
d(w) =| ¢ |* d(w). The set of all a-densities on V will be denoted by 2*V. With the obvious
operations, it has the structure of a complex vector space. Its dimension is one. For, let
d, be that a-density for which d,(w) = 1, and consider any other a-density d such that
d(w) = ¢. Then, d = cd, since both, left and right hand-side take the same value over w. If
{e1,...,e,} is another basis of V, then there exists a matrix A = (a;;) such that e; = Y a;;v;.
Hence,

dles N...et) =|det A|* d(w)=]| det A |* cdy(w)
=cdy(ef N...€e),

n

(1.4.2)

and the result is independent of the basis chosen.
Consider a smooth paracompact manifold X of dimension n. For each z € X, T, X is
a vector space, and the set Q*7T, X a complex vector space of dimension one. As x varies,
this makes up a complex line bundle over X, Q*X | with transition functions as in (1.4.2).
If (U,p) is a local chart in X with ¢(p) = (21(p),...,z.(p)), pointwise we can define an
a-density on U that takes thevalue 1 over dzy A ... A dz,, a local generator for A" T*X |y.
It is customary to denote it by | dzy A ... Adz, |*. Hence, | dzy A ... Adz, |* will provide a
basis for Q*X |y. If (U', ¢') is another chart with ¢ (p) = (y1(p), ..., ¥x(p)) and UNU" # 0,
then
| dzy A .. dxy,

=| det Ox;/0y; |*| dyr A ... A dy, (1.4.3)

|gﬂU |3ﬂU’ :
From the construction above, we can see that there is a globally defined smooth non-zero

section of Q*X | showing that in fact, Q%X is trivial, although not naturally so. A section s



of Q*X which for any local chart (U, ¢) can be written as
s=s(z)|dey AN... Ndzx, |7,

with s(z) a C*-function, will be called a C*-section of Q*X. The space of C*-sections of
Q2 X will be denoted by C*(X;Q%X). The space of C*-sections with compact support will
be denoted by C*(X;Q2X). If E is any vector bundle sitting over X, using tensor product
with the corresponding space of sections, we define C*(X; E ® Q*X) and C*(X; E ® Q°X),

respectively.

Proposition 1.4.4 The family of bundles {Q*X} satisfies the following properties:

1.0X =2 X x C.
2.0°X @ QX > Qatb X,
3. (X)* = QX

Proof. 1. An element of Q°T, X is a constant function. The result follows at once.
2. The space Q°T, X ® 5T, X is naturally isomorphic to the space of finite linear combi-
nations of products of elements in the first factor with elements in the second factor. It is
clear that if d € Q*T, X and d € Q°T, X, then dd € QtPT,X. The result follows.
3. Given d € Q%X the map

Qex 1y qox
d— dd

defines an element of the bundle Hom (2% X, ') where £' is the trivial line bundle. The map
sending d into h, is clearly bijective. |

If p: X — Y is a diffeomorphism of manifolds, then ¢ induces an isomorphism ¢* :
QY — Q*X. More importantly, consider a continuous one density d with compact support,
ie, d e C%X;QX). Assume that the support of d is contained in the domain of a local
chart (U, ¢) with ¢(p) = (z1(p), ..., za(p)). If d =d(x) | dzy A ... Adzx, |, we define

/K d= [p(K) d(p™"(z))dzy A ... A dzy, (1.4.5)

where K is any compact set contained in U. In (1.4.5), the right hand side is the usual

Lebesgue integral over a compact set of R". Due to (1.4.3) and the change of variable



formula for integrals, the expression (1.4.5) is well-defined. The global definition of the
integral of a one density with certain growth outside a compact set can be achieved by
making use of a partition of unity subordinated to a locally finite covering of X by local
charts. In this way, if M(X;Q*X) is the line bundle of measurable a-densities, one defines

LMX;QX) = {d e M(X;QX) : ||d|| = KQIEI}%/X/K | d|< ool . (1.4.6)

If F is a bundle over X, using tensor product we define L}(X; F ® QX).

If d and d are smooth densities of order o and 1 — «, respectively, with d compactly
supported, the tensor product dd’ is smooth one density with compact support, and therefore,
integrable. Topologizing the space C°(X; E* @ Q! *X) in the usual way, we define the
distributions with values in £ ® Q%X as

D'(X;E®Q%X) = [C®(X;E*® Q' °X)| . (1.4.7)

Clearly, all the spaces C* are embedded into D' (X; E®Q*X). The space C®°(X; E*®@Q*X)
is dense in D' (X; E®Q*X). Note that D'(X; E) corresponds to the dual of C°(X; E*®Q.X).
When the bundle F is trivial of rank one, we shall drop it from the notation writting simply
D'(X;Q%X) instead of D'(X; E ® Q°X).

The set L'(X;QX) is a Banach space. With its help, we can define the Hilbert space of
measurable half-densities on X. Indeed, if d € M(X; Q%X), we say that d € L*(X; Q%X) if
and only if | d |*€ L'(X;QX). The bilinear map

C®(X;0:X) ® C(X;Q:X) — C
dod — /d d

defines a pre-Hilbert structure on C2°(X; 02X ) and the completion of this space in the norm
defined by this structure coincides with L*(X; 02X ). Once again, tensoring with the space of
sections of F, a bundle over X, we define L*(X; E®Q%X), which sits inside D' (X; E®Q%X).

Let ¢ : X — Y be a submersion. Show that the pull-back map ¢* defined on continuous
functions by ¢*f = f o ¢ can be extended by continuity to a map ¢* : D'(Y) — D'(X).
Hint: Show that the push-forward is a map from C°(X; QX) into C°(Y;QY"). The desired
result follows by duality.



Let X and Y be smooth manifolds, and consider a continuous linear operator
T :C®(Y)— D(X). (1.4.8)

Prove the Schwartz kernel theorem stating that there exists a unique distribution K, €
D'(X x Y;II3QY) such that
T(p)(¢) = K(p®9),
forall p € C*(Y) and ¢ € C*(X;0QX). Here IIy : X xY — Y is the natural projection.
Show that the map in (1.4.10) extends to a map from D,(Y) to C*®(X) if, and only if,
Kr e C®(X x Y11} QY).

1.5 Fourier transform

We would like to extend the notion of Fourier transform previously defined, keeping as much
as possible the coordinate free approach used in the previous section. The construction here
will be of crucial importance in chapter 4, where we shall prove the symbol isomorphism
theorem between conormal distributions to a submanifold S and symbols on N*S.

Let V' be a vector space of dimension n, and consider a family {V3,...,V,,} of constant
vector fields that spans the tangent space of V' at each point. Let || || be some norm defined

on V. The space of rapidly decreasing functions can be defined as
SWVYy={ue (V):| V.. . Vou(z) < Cy(1+||z]) Y Vai,...,an N} . (1.5.1)

Since all the norms on a finite dimensional vector space are equivalent and a new set of
constant vector fields amounts simply for a change of basis, the definition above is indepen-
dent of the choice of {V4,...,V,} and]| ||. The space of rapidly decreasing a-densities ; 2*V)
is defined as ;Q°V) =) ® Q*V. Here, Q*V is considered as a bundle over V| canonically
isomorphic to V' x Q*V, and the last Q%V on the left side is the vector space of a-densities
on V.

Let denote the dual pairing between x € V and £ € V*, and define the Fourier transform

on densities by

(1.5.2)



~

Proposition 1.5.3 The map (1.5.2) is well defined, that is to say, f(§) € S(V*).

Proof. 1t is clear that f (£) is a smooth complex-valued function on V*. It remains to

check that it is rapidly decreasing. This follows from the fact that if o is any multi-index,

e =M. g™ = (D ayVy)™) . (D an Vi) )e

for some constants a;;, 1 < ¢,j < n. The result follows integrating by parts. |
It is easy to see that Q*V is isomorphic to Q~*V*. Indeed, if {v1,...,v,} is basis of V,
vi A ... A v, is a basis of A" V*. Hence, given d € Q*V, we define hy by

ha(vi A ... Awvy) =d(vf Ao AL,

n

where {v],...,v:} is the basis of V* dual to {vy,...,v,}. If the j-th vector is replaced by
sv; then
ha(s(vi A ..o Avy))=ha(vi Ao Asv; AL Avy)
:d(vi‘/\.../\qf/\.../\v:)
=|s|7*dWf A...\V))
=|s|7 hg(vi A ... Avy) .
Thus, hg is an element of 2~*V*. The correspondence d — hy is an isomorphism. Hence
QV = Q- oV* = (Q*V*)* (the last congruency obtained using proposition 1.4.4). Therefore,

tensoring the domain and range of (1.5.2) with Q~*V and using the identification above, we

extend the Fourier transform to a map
Q1Y) D S(VH eV

Note the preferred role played by 1/2-densities. If S'(V'; Q*V) denotes the dual of S(V; Q' V),

i.e., the space of tempered a-densities distributions, by duality we get
S(V;v) L S'(velev) . (1.5.4)
Theorem 1.5.5 The map (1.5.4) is an isomorphism.

Proof. 1t is clearly well-defined and to show it produces an isomorphism, it will be enough
to show that (1.5.2) is an isomorphism. But that is nothing more than theorem 1.2.6 with

the presence of a density factor (see also (1.2.8)). i



Finally, let E be a smooth vector bundle over X with projection II, and assume for
simplicity that X is compact. We consider the space of rapidly decreasing functions along
the fibers:

S(E)={f € (B): f lu-rw€ S(T'(2)) Va € X} .

By letting the Fourier transform act along the fibers, we obtain an isomorphism

S(E; Qe E) = S(E" Qe E7) (15.6)
and by duality an isomorphism

S'(B; Qfyer ) = S (E7 Q. E7)

Both of these shall be strongly used for the case of the conormal bundle to Y, a given closed
submanifold of a paracompact manifold X.
If the base manifold is not compact, we shall denote by S.(E) the intersection S(E)N{f €

(E) : supp f CC X}. There are isomorphisms

SC(Ea Q?iberE) = SC(E) ® Q?iberE
QX ® 0%y, E = Q°E

(1.5.7)

The map (1.5.6) induces a map on S.(E). If we tensor domain and range with IT*Q'/2X
using (1.5.7) we conclude that
S.(E;Q?E) L5 S(E*;Q'2E*) (1.5.8)
is an isomorphism. We summarize this result in the following

Theorem 1.5.9 The Fourier transform (1.5.8) is an isomorphism. i



Chapter 2

Sobolev Spaces

In this chapter we introduce subspaces of D' () which allow us to measure the singularities of
distributions. These spaces are generally defined for open domains with smooth boundary,
but we present them in here in a way that applies also to domains with certain type of
singularities at the boundary. In particular, our definitions applied to polyhedral domains

in the plane, or to domains with edges in higher dimensions.

2.1 Sobolev spaces: definitions

Any element f of L*(R") defines a distribution by the expression ¢ — / o(z) f(z)dz. The

question one immediately asks is how far from an L2-function a given distribution is. A

criterion to answer it will provide a rule to determine how singular a distribution can be.
With this purpose in mind we introduce the following spaces. Let {2 be an open subset

of R™:
1. f ke N =40,1,2,...},

ue HY Q) <= Du e L2 (Q)ND(QV |a| < k.

2. When s is positive but not an integer, 0 < s < 1, we interpolate

we H(Q) e u e LX) A D) and LU =W Lo 2 gy

27



3. If s >0,
H:(Q)={ue D.(Q) : D2uc HI(Q)if |a|< [s], r=r—[s]}.
4. If s <0,

H2(Q) = {u € D.(Q) : Ju, € H'(Q) such that u = > Dlugforr =—[s] + s} .
laf<—]s]
It is clear that for any s, the space H?(Q) is contained in D,(2). We present below a
different description of H(2) in terms of the Fourier transform.

Let u € H(Q2) for 0 < s < 1. Then

[0) ~u0) | ¢ 2 w0 ).
o — o7 :

| u(z | u(z —2)
// y||n+2s dxdy // ||z|"+25 dzdz .

As a function of (z, z), the last integrand is square integrable. Thus, for almost every z, it

We have:

is square integrable as a function of x. Extending itby zero outside its support and using

Plancherel’s theorem, we obtain

| u(z) —u(z — 2) |? 2|1—€”5)|
// ||z||"+2s drdz—(21)" //| )| e = )T gae

= [ [ 1at) 12 Fe)de .

where F(£) = (27) ——/| — ) 12 2] e
Observe that F(t£) = t*F(£), ie., F(£) is homogeneous of degree 2s. Then F(§) =
1€]|2°F(€) where € = £/||€]|. Hence, u € H?() if, and only if, u € L2(2) and

I€lI*a(€) € Le(Q) -
These two conditions imply that
(1+ €M)z a(e) € L*(R™) .
Generalizing this to any s, and conclude that

H(Q) ={uec D'(R™) : suppu C Qand (1 + ||€]|)20(f) € LA(RM)} . (2.1.1)



Lemma 2.1.2 With the multiplication operation, H:(Y) is a (€2)-module.

Proof. Take u € H:(2) and ¢ € (2). We need to show that gu € H:(Q).

Certainly, supp pu C suppu. Then, we can assume that ¢ is compactly supported on an
open neighborhood of Q. With this assumption, ¢ € S(R") and v € S'(R"). Consequently,
ou = (2m) 7" * 4. Therefore,

(M)

(L+]IEl?)zpu(e) = (27T)_"/(1 +[[€117)26(€ — n)i(n)dn
= (QW)_"/(l +HIEN?)2 @+ [nl1*) = @(€ = n) (X + [Inl]*)2a(n)dn -
By assumption (1 + ||n][?)24(n) € L?(R™). Then, the desired result will follow from the

Cauchy- Schwartz inequality, if we prove Peetre’s inequality:
L+ NEPEA+Inl*)= <2M 1+ [le —n|*)* Vs €R, &neR".
This comes from the fact that
L+ [[€+nl* < 201+ 1E17)(X + [Inll*)

after conveniently taking the s-th power. i

Theorem 2.1.3 The family {H-*(Q)} is a (Q) filtration of D.(Q), i.e., they are (Q)-modules

and
1. Hgsl(ﬂ) C Hg‘”(ﬂ), 81 > S9.

2. D.(Q) = U,H*(Q).
3. () =NH_*(Q).
Proof. Tt clearly follows from (2.1.1) that H_*(Q) C H_**(Q2) if sy > so. On the other
hand, if u € D,(Q), using theorem 1.2.10 we find someN such that

N
2

| a() 1< C(L+ €N

Therefore,
(L+11El)2 | a(¢) le L*(R™)

for all s such that s + N < —n. It follows that D.(Q) = U,H,*(Q).




The last assertion also follows from theorem 1.2.10, and it is left as an exercise for the
reader. i
If we drop the condition on the support in (2.1.1), we we obtain the spaces H*(R™). That
is to say,
H*R") ={ueS[®R"): (1+[ ¢|*)7ae L*(R")}.

For what values of s is the constant function f(z) = ¢ an element of H*(R™).

The geometry of the boundary of {2 creates some troubles when one tries to generalize
the spaces H?(Q) releasing the constrain over the support. There are several ways of doing
this yielding different type of spaces (see [Ad]). We shall restrict our attention to the case
where () is a bounded domain with smooth boundary but in fact, some of the results to be
proven below also hold when €2 has a nice singular boundary.

The idea is to look at the restriction operator
D'(R") — D'(Q)
u— ulg
over H*(R™), and define H*({2) as its image. For that, given a closed subset K of R", let
us denote by Hi (R™) the space of elements of H*(R™) which are supported on K. This is

a closed subspace of H*(R™), and it therefore inherits a Hilbert structure. Thus, if we set

Q =R"— K, we define
_ H*(R")
Hy(R")’

and provide it with the quotient Hilbert structure. We obtain a short exact sequence

H*(Q) (2.1.4)
0— Hi(R") — H(R") - H*(2) — 0.

This sequence splits.

Define also

S

H (Q) ={ue H*(R") : suppu C Q} . (2.1.5)

Using the isomorphism
(1+A)2: H(R") — L*(R"),

show that (H*(R"))* = H *(R™).



Show that (H*(Q))* =H ().
Finally, consider a diffeomorphism ¢ : Q — Q, where Q and Q' are open subsets in R".
If we apply the change of variable formula in the integral conditions defining H?(2), we see

that fo¢ € H:(Q) if, and only if, f € H3(2). We introduce the local Sobolev spaces
H () ={uecD(Q): puc H¥(Q)Vyec.(Q)}. (2.1.6)

Definition 2.1.7 Let X be a paracompact manifold. The space Hf .(X) consists of the
set of distributions w € D'(X) such that wo p € H}

loc

(p(U)) for any coordinate system
©0(q) = (z1(q), - - ., 2,(q)) valid on the open set U C X.

The discussion above shows that H} (X) is well-defined.
Let X be a paracompact manifold. Show that {H,%(X)} is a (X) filtration of D'(X),
ie., H, (X) is a (X)-module for each s and

loc

1. H7H(X) € H2(X), s1 > so.

loc

2. D'(X) = U,H, 5(X).

loc

3. (X) =N Hj,0 (X).

If F is any vector bundle sitting above X, by taking tensor product over the space of

smooth sections, we define H} .(X; E), etc.

2.2 Compactness theorems

The way they were defined, it is clear that the spaces H*(R™) become smoother when s

increases. More precisely,

Lemma 2.2.1 (Sobolev embedding theorem). Let k be a non-negative integer and let s >

k + n/2. If f € H*(R"), then f € CF(R") and

R 1/2
sup | Df(a) 1< C | £ llo= € [+ eIy | 7€) ” de)

la|<k



Proof. When k = 0 we have

[F@) P = | [efO+ gl + IR/ d |
< [17@ P 1+ 1Py de( [ 1+ €~ de)
< ClfIz,

and the result follows. For general k, we use the fact that D¢ : H*(R") — H*~l*l(R")

continuously. |
Corollary 2.2.2 For s and k as above, H*(Q) C CF(Q)and the inclusion is continuous.

Proof. Given u € H*({2), apply lemma 2.2.1 to an extension & € H*(R™). The result
follows. i
On the other hand, let K be a fixed compact subset of R".

Lemma 2.2.3 (Rellich) Suppose { f,} is a uniformly bounded sequence in H*(R™) such that
supp f, C K for all n. Then, there exists a subsequence which converges in H'(R™) for all

t <s.

Proof. Let ¢ be a smooth function with compact support such that ¢ = 1 on K, and
consider f, = ¢f,. Since f, = (27)™"% * f, and Dy, fo = (2m) ™" Dg,; @ * f, wehave

| Defua(@) | = @) | [ De(€ = mfalmdn|

2m) " [ | D (€ = m)fuln) | d

) [ 1 D€ =) | (1+ ) F (1 + )%
)

2m) | fal

IN

fa(n) | dn
o) [ | De@(€ =) 2 (1+ [nl®)dn

IN
— G —~
>]

IN

where the last comes from the Cauchy-Schwartz inequality. From the estimates for D¢, ¢ that
we obtain applying Paley-Wiener theorem, combined with Peetre’s inequality, we conclude

that for some continuous function g,

| De; fu(€) 1< 9(E)|1 £l

HS(R") .

A bound like this also holds for fn itself. By the Arzela-Ascoli theorem, we find a subsequence
{f n, } which converges uniformly on compact sets. We claim that { f,,} is Cauchy in H*(R™).



Indeed,

1oy = Fullte = [ (L IRV | (g = ) (6) 12

= [ TN ey = Fr) P [ NI | (Fay = o) e

gll>r
For fixed r, the first integral on the right is arbitrarily small for large j, k because of the

uniform convergence of { fn].}. We choose 7 so that the second integral is also small. In fact,

[ IR G = ) Pl = [ I Y Gy = fo) P e

S (1+T2)tis||fn]— _fnk|

Hs

which can be made arbitrarily small for large r since t < s. i
Corollary 2.2.4 The space Hi(R") is compactly included in H:-(R™) for any t < s.

Corollary 2.2.5 Assume Q) is a bounded domain with smooth boundary. Then H*(Q) is
compactly included in H () for any t < s. If X is a compact manifold and E is a vector
bundle over X, H*(X; E) is compactly included in H'(X; E).

Remark 2.2.6 Although the results have been stated for smooth domains, they can be gener-
alized to domains with nice singularities. One proceeds by “doubling” the domain across the
sides and extending the distributions conveniently. In the double manifold so obtained, one

applies the results here discussed and reaches the desired conclusions by taking restrictions.

2.3 Trace theorems

In the setting of Sobolev spaces, we want to consider the problem of taking the restriction
of a distribution to a hypersurface, or for that matter, to a submanifold. Later on, we shall
reconsider the same question in some other circumstances.
Let us start by looking at the case R*~! = R"! x {0} € R™. The map
(R" 1) — D'(R")

2.3.1
p—9®Di§ ( )



is continuous, and for any s such that s + j < —1/2, we have

Tn

= [+l | geE) P de

< [P+ lP) | () P de'dn
< Cllplyonses [+ Inl)* 1P |
<

C||‘P||Hs+j+% .

Therefore, (2.3.1) extends by continuity and produces an injective closed map

Hs+j+%(Rnfl) — Hs(Rn) . 1
s+ < —=. (2.3.2)

¢ — ®DI§ 2

It is clear that ¢ ® D, 6 ¢ H*(R") for any s such that s +j > —1/2.
Proposition 2.3.3 For s < —1/2, Hg.-.(R"™) equals to

{u:u= Y ¢;®DI§ @€ H 3R},

0<j<—s—1/2

Ifs>—1/2, Hy. . (R") = {0}.

Proof. We have proved that the space above is contained in H*(R"™). We must show that
any element in H.—1(R") can be expressed in this form.

Let u € Hgn1(R™). Then for any test function ¢ €, (R 1), u(-, z,)(¢) is supported on
{z,, = 0}. Thus,

N
u(2n) () = D up;DI 5.
§=0

Observe that u,; = i 7u(p @ 22). It follows then that ¢ — w,; is a distribution for all j.

Call it u;. Thus, we have
N
u=> u;® Dind .
5=0

Since u € H*(R"), we must have

o= [ (L4112 | (S0 5(€)60) 2 de
= [+ Y+ P | (S0 as(€ )L+ €1 i) 12 (1+ i€ 1) b
= [ (S () A + I 1D 447 2 (1 + n]?)dn < oo

ul



If an(£) # 0, then (1 + ||n||?)*n* must be integrable and, therefore, 25 + 2N + 1 < 0.

Thus, N < —s — % Also, from the fact that as a function of ¢ the integrand is in L'

for almost all 7, we conclude that @;(&)(1+ [|€'][?)**+2 € L3(R™"), which is to say that
u; € Hotita (R,

The remark preceding the proposition shows that Hg,—.(R") = {0} for s > —1/2. i

Theorem 2.3.4 The restriction map

(R") — CZ(R")

u— DI u|gn-1
extends to a continuous surjective map
H*(R") —s H* 7 3(R™1)
for all s such that s —j > 1/2.

Proof. Let ¢ be a test function. Then we can write
Dy, [re-1 () = Dy, u(p ® 8) = (=1)u(p ® D3 9)

as long as ¢ ® Diné is in the dual to the space where u belongs. Assume u € H*(R") for
some s. We must find conditions over s such that ¢ ® DI § € H *(R™). From proposition
2.3.3, we must have —s + 7 < —1/2.

The restriction operator is the transpose of (2.3.2). Hence, it is a surjective map. i

Corollary 2.3.5 Assume €2 is a smooth domain with boundary 02 and let V' be a transversal

vector field with respect to 0S). Then for any s such that s — j > 1/2, the map

(@) — H (@)

u — Viu |pq

18 continuous. I

We finish this section discussing an extension of corollary 2.3.5.



When s — j < 1/2 the restriction map discussed above is not continuous, but we can
recover from that in the following way. Let P be a differential operator of order m > 0 which
is elliptic on Q, i.e., if

P(z,Dy) = ) pa(x)Dy,

la]<m

then
p,6) = 3 pa(z)€*#0, VEECR" -0, 2€Q.

|a|=m

If V is a vector field as in corollary 2.3.5, then

H3(Q) — @ H*7+3(Q)

u—r EB;";OIVju |3Q

is continuous if and only if s —m > 1/2. If s —m < 1/2, consider
Hy(Q) ={u: ue H(Q), Pue L*(Q)},
and provide it with the graph norm.

Proposition 2.3.6 Assume (2 is a smooth domain with boundary OS2 and let V be a transver-
sal vector field with respect to 0S). Then, if P is an elliptic differential operator of order
m >0, the map

U — EB;”:OVj u |aq
as a map on smooth functions, extends to a continuous map
Hp(Q) — @7 H* 743 (Q)
for any value of s. i

Note that for s —m > 1/2, corollary 2.3.5 is stronger than proposition 2.3.6. The novelty
comes in the range s —m < 1/2. We postpone its proof until further machinery is developed,
but before closing up this section, we discuss a formula which will be useful in its proof.

Let (z,y) be a coordinate system near 0f), with = a defining function for 92 and V =
(—i)0,. The operator P can be written as

P = Zp](mvvay)Dng )

=0



where p;(z,y, D,) is a tangential differential operator of order m — j. By ellipticity of P,

0f) is non-characteristic and therefore, p,, # 0. If u € (Q2), let u. be the extension by zero
outside Q. Then,

1

P - (Pu). = 3 (mg Dy 41 (0,5, Dy) Dl |) ® D6 () (23.7)

Observe that the coefficient of D™ 1§(z) in the right hand-side of (2.3.7) is precisely the

term pp,(z,y, Dy)u |z—0, an elliptic differential operator of order zero.



Chapter 3

Conormal distributions of type p, 0

Pseudo-differential operators on an arbitrary manifold can be characterized in terms of their
Schwartz kernels. These are distributions on the product manifold which have nice singular-
ities: they remains stable, that is in the same Sobolev space, when acted on by any number
of vector fields tangent to the diagonal. A distribution with that property is called conormal
with respect to the diagonal and thus, a linear operator is psedo-differential iff its Schwartz
kernel is a conormal distribution with respect to the diagonal. In this chapter we prepare the
ground for the analysis and discussion of psedo-differential operators by defining the notion

of a distribution conormal to a given closed embedded submanifold of the ambient space.

3.1 Submanifolds and vector fields

Let X be a paracompact manifold of dimension n, and S a submanifold of X of codimension
n —m, i.e., a subset of X with regular inclusion map of rank m. Although in most of the
cases we shall consider S to be closed and embedded into X, many of the results below apply
to a larger class of submanifolds.

We begin recalling a standard fact. Given p € S there exists a coordinate system ¢ =
{z1,...,2,} valid on an open neighborhood U of p in X such that ¢(p) = (0,...,0) and
such that the set

U={qeU: zj(q)=0, m+1<j<n}

38



together with the restrictions of (zy,...,z,,) to U form a local chart on S containing p. In
other words, locally a submanifold is not any different of the case of R™ x 0 C Ru". The
coordinate system above shall be referred to as the preferred coordinate system adapted to S
at p. For convenience, sometimes we shall write 2" and " for (21, .., Tm) and (Tpmi1, ..., Tn),
respectively.

As usual, we denote by C*(X;TX) the space of smooth sections of the tangent bundle
to X. We shall primarily be concerned with the following subsets of C*(X;TX):

V(S) ={V € C®(X;TX): Vistangent to S at each s € S},

(3.1.1)
Vo(S) ={V € C~(X;TX): V vanishes at each s € S} .

Any function f € C*°(X) defines an endomorphism of V(S) and Vy(S) by V.— f- V.
Thus, both V(S) and V,(S) are left C*(X)-modules.

Definition 3.1.2 A (X)-module M is said to be locally finitely generated if each © € X has

an open neighborhood U such that for some Vi,... Vi in M,

C?(U)-Mzzk:C?(U)"/j-

j=1

Proposition 3.1.3 Both, and , are locally finitely generated (X )-modules and Lie algebras.

Proof. 1t is clear that and are Lie algebras. We just need to prove they are locally
finitely generated.

Let p € S and consider (U, ), a preferred coordinate system adapted to S at p. Then
0 {CX(U)-} = C=(p(U)) - (R*;TR™). Consequently, because of the invariance of the
conditions defining and , it will be enough to assume that S = R™ x {0}, X = R". Then,

V =Y a;(z)d,, is tangent to S at each s € S <> aj(z,0)=0,m+1<j<n.
j=1

By Taylor’s expansion we conclude that aj(z) = Y;_,, .1 Zrarj(x). Hence, any vector field

in can be written as 37" a;(2)0z; + 3k jom i1 Okj(2) k0., showing that
= (U) —spanof {0, 2105,1 < j<m,m+1<k,l<n} (3.1.4)

which certainly is enough to prove the proposition for .



Similarly, we can show that
= (U) —spanof {240,,,1 <l <mym+1<k<n}. (3.1.5)

which proves the desired result for . |

Before going any further, let us define the notion of a differential operator between
sections of vector bundles over a manifold X (for details see [GS]). Consider two vector
bundles F and F over X and let P be a vector bundle map from FE to F, i.e., a section of the
bundle Hom (E, F'). Therefore, given a smooth section u of E, Pu will be a smooth section of
F, inducing in this way a map P : (E) — (F'), where (E) (resp. (F')) stands for the space
of smooth sections of E (resp. F'). Note that for any smooth function f, the multiplication
map v —» f - u commutes with P, P(f - u) = f - Pu. Conversely, any map of sections P
which commutes with multiplication by functions defines a section of Hom (E, F'). Indeed, if
uy and uy are two sections of E that agree at xg, then locally uy —us = Y f;(z)v;(x) where
{v;} trivializes the bundle, and fi(zo) = 0. Then P(u; — u2) |zezo= > fi(®)PV; |p—p,= 0.
Hence, the value of Pu at zy only depends on the value of u at xq and therefore, P defines
an element of Hom (E, F). A linear operator P : (E) — (F) which commutes with
multiplication by functions is, by definition, a differential operator of order zero. The space
of all such operators will be denoted by Diff°(X;E,F). Proceeding by induction, we
define a differential operator of order k to be a linear map P : (E) — (F) such that
[P, f] = P-f—f-P € Dif f*1(X; E, F). For trivial bundles of rank one, we shall simply write
Dif f*(X) rather than Dif f*(X; E, F). Note that the composition of differential operators
P e Diff(X;E,F)and Q € Diffi(X;F,G), QP, defines an element of Dif f (X; E,G).
The union over k, U, Dif f*(X; E, F) is the set of all differential operators and will be denoted
by Dif f(X; E,F). When E = F it is provided with a ring structure given by composition.

Using the definition show that if (zy,...,x,) are local coordinates near p, then P €
Diff*(X; E, F) can be expressed as

P= % Au(2)DF,
<k

where A, € (Hom (E, F)). Conversely, any linear map P which locally can be written in

this form is an element of Dif f*(X; E, F).



In the ring of differential operators on X, Dif f(X), consider the subrings and locally
generated by and 1 and and 1, respectively, as (X )-modules. That is to say, these subrings
consist of finite sums of the type p(z)V; ...V, where p(z) € (X) and Vi, ..., V} are in and

, respectively. Note that is the ring of totally characteristic differential operators at S.

Proposition 3.1.6 In a preferred coordinate system adapted to S at p, the differential op-
erators D Df,, ("), | v |=| B |, form a local basis for over (X). Similarly, Ds, Dfu (z")7,

| v |=|a|+ |8, form a local basis for over (X).

Proof. By induction over the order of P €. Observe that
= UpMF(9) ,
where M*(S) = NDif f*(X). By (3.1.4) the result is true for ¥ = 1. Assume it for M*(S)
and consider P € M**1(S). Then we must show that

p= 3 aa,m(a:)pg,pf,, (z")7 .
|| +]|B|<k+1,|al=]]|

It will suffice to assume that P = V; ... Vi34, with each V; in . But then, by the induction
hypothesis and (3.1.4), we have
ViVii = (Y awsn@DIDA @ ) (Eas()Dey + S agy(@)miDa,) |
|| +18]<k,|al=]7] j=1 k,j=m+1
for some functions aq, s, @, agj. An easy commutation argument will complete the proof.
Similarly, = UpME(S), where ME(S) = NDiff*(X). The same proof will apply if
instead of (3.1.4) we now use (3.1.5). i
Neither nor are subbundles of TX. In fact, their fiber dimension is not even locally
constant on open sets intersecting S. However, when restricted to S, they are subbundles of
TsX, with |g the zero section of TsX. Away from S, there is no restriction over either or .
As a matter of fact, for any vector field V' €, given p € X — S, there exists a neighborhood
U of p, disjoint of S, such that V' |y can be considered as the restriction to U of a vector
field in or . If
V,={V € T,X : suchthat 3W € with W(p) =V},
V) ={V € T,X : suchthat 3W € with W(p) =V},

then



Proposition 3.1.7 The manifold S can be recovered by
S={peX: V,#T,X}={peX: V) #T,X}.

Proof. Using (3.1.4) or (3.1.5) one can easily see that for p € S, V, and V) are not equal
to T, X. Thus, S is contained in the sets on the right hand side of the expression above. The
remark preceding the proposition shows that for p ¢ S, V,, and V;,O equal 7,X. The result
follows. i

In general C and the inclusion is strict unless the codimension of S equals the dimension
of X. For more information on these and related notions, as well as applications, the reader
should see [MM], [MR1], [MR2], [Me], or [Si].

(see [MR1]). In any smooth manifold X, by a -variety we mean a collection £ =
{S1...Sn} of embedded submanifolds of X which are pairwise disjoint, have closed union
and are such that the space V(L) of smooth vector fields on X, tangent to each of the S;,
is everywhere locally finitely generated as a (X)-module. Given a -variety £, is V(L) a lie
algebra 7

(see [MR1]). In R? with coordinates (¢, z,y) consider the submanifolds S; = {z +¢ = 0},
Sy ={t* =2 +y*; t #0}. Show that:

1. V(Ss) is spanned by t0; + 20, + y0,, x0; + t0,, Yo + t0,, Yo, — x0,.
2. V(S41,S2) is spanned by t0; + x0; + y0y, €0, + t0y, y(0r — 0x) + (z + t)0,.

(see [MR2]). Consider two embedded plain curves, 7; and 72, tangent at the origin but

only simply so. Find local coordinates (z,y) near the origin such that

n={y=0}, n={y=2"}

Consider the -variety K1 = {71 — 0,0} Ko = {72 — 0,0}. Show that V(K,) is generated by
Y9y, Y0, x0,. Similarly, V(Ks) is generated by (y — z?)0dy, (y — 2*)0,, z(0, + 220,).

3.2 Conormal distributions of type p, ¢

In this section, we want to define a set of distributions with singularities nicely placed along

S. To motivate the subject, consider the Dirac delta function d(x)|dz| in D'(R;QR). It



is a distribution whose only singularity is located at S = {z = 0}, a closed embedded
submanifold of R. But a lot more is true about it. Observe that 6(z) € H~'/2-%(R) for any
e > 0, and as a distribution, (zD,)*§(x) = i*§(x) for any k. In other words, the Sobolev
regularity of §(x) is stable under the action of any element in .

The example above motivates the following generalization. Let p and ¢ be real numbers
such that 0 < § < 1,0 < p<1,and 1 — p < §. We consider distributions v € D' (X) for

which there exists s such that v € H?

loc

(X) and such that its regularity decreases by J and
1 — p when acted on by V in and , respectively.

Definition 3.2.1 The space I,5(X,S) of conormal distributions to S of type p,d, consists
of the set of distributions u for which, given an open set U with compact closure, there exists

a real number s = s(u,U) such that if p €. (X) and supp p C U,
Vi ViWy.. . Wypue HWPR(X) Ve W, €, (3.2.2)
for any k, 1.

Note that C. Therefore the restriction 1 — p < § is natural. Otherwise we conclude
that Vi...ViWi...Wipu € H*~*+03(X) when we view Wi,...,W; as elements in . If
1 —p > 4, thiswould be contained in H*{1=P)=%(X) If p = 0 then § = 1 and we know that
for any family of vector fields Vi,...,V, and for any u € D'(X), there exists s such that
Vi...Vipu € H*7"(X). Thus p > 0 is also natural.

The definition above may be rephrased stating that
Wy . WVi.. . Vipu e HSWPR(X) Ve W, € .

Just observe that VIW = WV + [V, W] and that [,] C and [,] C.

Let u € I,5(X,.S) and suppose for simplicity that u is compactly supported with support
contained on the coordinate pacth of a preferred coordinate system (z',z") = (1, ..., )
adapted to S at p. Note that 0,,,...,0,, are not elements of . Then the condition defining
I,5(X,S) says that for some fixed s,



[terating we can see that

(z")*DPu € H*~1¢l0-p)(X) | V@, B such that | a |=| 3 |

(3.2.3)
Dlue HM(X), ¥y

This coordinatized version is frequently useful in dealing with distributions in I,5(X, S).

Example 3.2.4 Consider the Dirac delta function d,0 centered at z° € R™. Then, if 2° =
(2%,...,29%), ((x; — 29)D,,)*6,0 € H=27(R") for any & > 0. Thus, 6,0 € I1o(R", {z = 0}).

rn

Example 3.2.5 Consider any smooth function ¢ € (R ') and let u = ¢(z') ®6(x,). Then,
u € I o(R",{z, = 0}). Moreover, if u € I o(R",{z, = 0}), then the distribution @(.) =
(u(.,zn),¥(x,)) is smooth. Consequently, any element of I; o(R", {z, = 0}) supported on
{z, = 0} is of the form

Z 903'(1") ® Diné(xn) )

where ¢ € (R™!) (see proposition 2.3.3).

Show that for every z, 27 and z? are distributions in I o(R, {z = 0}).

Let f be an element of I, 5(R", S) with compact support. Here S is a closed embedded

1 _ =02

submanifold of R™. Consider the heat kernel g;(z) = (dnt)? e 4 . What type of distribu-
7t)2

tion is the convolution g; x f 7
One can point out some generalizations of the notions here defined. Given a Lie algebra

of vector fields £ C which is a locally finitely generated (X)-module and involutive, i.e.,

[L,L] C L, we define
I(X,L)={ueD(X): Vi...Vou € HJ (X) forsome s, Vk, V; € L} .

Note that I(X,) corresponds to I,5(X,S) when p = 1 and 6 = 0. This generalization
although slightly artificial at this stage, is highly useful in the treatment of certain type
of partial differential equations. The space I(X,) has turn out to be useful in the study
of mixed boundary value problems [Si] or in the study of Hodge cohomology of negatively

curved manifolds [Ma], and the space I(R"™, L), where L is the Lie algebra of vector fields

2

tangent to the cone C' = {x : 22 = Z?;ll z§ , x, # 0}, is useful in the study of the wave

equation [MR1]. Observe that in this case, C' is not a closed submanifold of R™.



Lemma 3.2.6 For any open set U C X, the restriction
u— uly

defines a map from I,5(X,S) into I,5(X NU,SNU).

Proof. Let A be an open subset of U with compact closure and consider ¢ € C2°(U) such
that ¢ = 1 on a neighborhood of A. Let {V4,...,V;} and {W3,..., W} be arbitrary families
in V(SNU) and Vo(S N U), respectively. Extended by zero outside the support of ¢, the

families {oV4,..., pVi} and {pWi,..., W} can be considered as families in and . Then
Vioo ViWi.. . Weu |a= Vi ... @VeeWy ... oW |4
which belongs to H*~!(1=P)=#( A) for some s = s(u, A). The result follows. i
Corollary 3.2.7 Ifu € I,5(X,S), then sing supp U C S.
Proof. Let U =X — S. Then U is open in X. By lemma 3.2.8,
ulp€ Ls(XNU,SNU) =1,5X - S,0) .

By proposition 3.1.8, given an arbitrary number of vector fields Vi,...,V, in (U;TU),
Vi...Veu |a€ Hsik(l*p)(A) for some fixed s. Here, A is an open set as the one used in

loc

the proof of the lemma. Therefore, u € H;-*”(A) for any k. The result follows from the
Sobolev embedding theorem. |
Corollary 3.2.9 gives a description of I,5(X,S) away from the submanifold S. Near S
the situation is not so simple. We can think of elements in I, (X, S) as smooth functions
in S with values in the space of distributions on a transversal submanifold. We finish this
section proving this assertion.
Working locally we may assume that X = R” with S = R™ x {0} C R". Let us quickly

look at the case p =1 and 0 = 0. If u is an element in I; o(R", S) with compact support, its

order is finite and therefore, there exists s € R such that

DD (2" 'u e H'(R") Y o, 8,7, | B1=| 7] .



If s > 0, we have
D% D%, (z")u e L*(R") .

On the other hand, if s < 0, we can show that for any &k > —s,

D%D% (" Yu e (14 A, ) 1+ A, )L (R .
Here, A,y = Y7, D2, Ay = Y, D2, We can therefore conclude that u(z’,.) is a
distribution with Sobolev regularity s, and since there is no restriction on «, continuous as
a function of . The same is true of any number of derivatives in the z  directions. Thus,
u € C*(RY; H* (R, ™)). With some effort and modifications, the same can be proven for
ue l,s;(R",S).

Let u be any element of D'(R"') and consider the distribution v = u(z') ® §(z,).
Show that v € I,5(R™ {z, = 0}) if, and only if, v € (R"™'). Conclude then that v €
I o(R™", {z, = 0}).

Proposition 3.2.8 Let u € I,5(R",{z = (z',2") : 2" = 0} be a distribution with compact
support. Then u € C*(RT}; D’C(RZ,Tm)).

Proof. Since u has finite order, there exists s € R such that
De D82 € Hb80=0(R") Y o, 8,7, | 8 |=| 7] . (3.2.9)

For simplicity, call ug,, the distribution D?(z")Yu. Given a test function ¢ in D(R”,™) and
for fixed 3, with | 5 |=| v |, consider the distribution

!

v(z) = ugy(p) -

It is easy to see that

N _ N R d 7
o(n ) (%)m/um(n)w(n )dn
where ¢(n") = ¢(-n").
Consider (3.2.12) with | a |=0. If s =s— | 3| (1 —p) >0, then

lolly = /1+||77||) [ o(n) > dn

< C/( 1+ 11712 /|u[;,7 | dn dn>/|¢(n") > dn’
< Of+ImlPY | asa ) I dn
S CHuﬁ,’YHs’



On the other hand, if s" < 0, then for some k large enough, (1 + ||n"||?) %4, (n) in in L? as

a function of . Consequently,

by = [+ 1012 o) 2 di
< O QI I (I 157 itg n) P dn [+ 122 | 60”2 d”
< CL 1P (1 I 1P g (n) P
<1+||n’||2>s’<1+||n"||2>‘2k/ ik
< , (L 1) | g () [2 iy
(L+ [In]P)- '
< Cllugylly -

Therefore, v € H CS, (R™). If we work with D%v instead of v, we conclude that D%v €
H CS,_M&(R’”). By regularity theorems for differential operators, this implies that v € H, §,+‘°‘|(1_5) (R™)
for any a. But 1 — 4§ > p > 0. Hence, v € C*°(R™). This finishes the proof. i

In contrast with the case of elements in I, o(R", {z; " = 0}), we cannot conclude that
u € C*(RT; HI (R, ™)) for fixed s. The reason is that differentiation in the 2 directions
decreases the regularity in (3.2.12) by 4.

Show that Hgrn-1(R™) C I(R",Vy(R"™ 1)) for all s (compare with exercise 3.2.10).

Show that the Schwartz kernel of any differential operator P is a distribution in I; o(X X
X, A;TI5QX), where A is the diagonal in X x X and Il is the projection X x X — X onto

the second factor (see exercise 1.3.12).

3.3 Sobolev order filtration

Let us recall that the space of distributions with compact support, DIC(X ), is equal to
UsHZ(X), where H?(X) is the space of compactly supported distributions in X with Sobolev
order s. Therefore, if

Lse(X,S) = 1,5(X,5) N D(X), (3.3.1)
we define 1,5, (X, S) by

Lses(X,8) ={u€ I,;.(X,S): QPuec H ==k (X),

(3.3.2)
P e M*(S), Q € M{(S), k,[ arbitrary} .



Lemma 3.3.3 [,5.:(X,S) is a filtration of I,5.(X, S).

Proof. Clearly I,5.(X,S) = Usl,5.5(X,S). We need to prove that I,5.:(X,S) is
a C*°(X)-submodule of I,5.(X,S), which is fairly clear, and the remark I,5.,(X,S) C
I

pies (X,9)if s < s will complete the proof. i

More important are the following three propositions.
Proposition 3.3.4 If T =V;...V,, with V; € —, then
T : Ises(X,S) — Lsesims(X,S) .
IfT=Vy...V,, with V; €, then
T : Ipses(X,8) — Lpscsimiap(X,9) .

Proof. Supposeu € I,5.+(X,S). Since singsuppu C S, the statement Tu € I, 5. s+-ms(X, S)
is local near S. Hence, working on a preferred coordinate system adapted to S at p, the

result (in fact, both results) will follow from (3.2.3). i
Proposition 3.3.5 Let T be a differential operator of order j. Then
P: Ip’(g,c,s(X, S) — Ip’(g,c,erj(X, S) .

Proof. Let us recall that a differential operator of order j maps a distribution in H?(X)

into a distribution in H:77(X). Since we need to show that the condition
QPu e H*~10=P=k(x)v P e M*(S), Q € M,(S)
implies that
QP(Tu) € H*710=P=ky p c MF(S), Q € ML(S),

the result will follow from repeated applications of the fact that for all V € MF*(S) (resp.
Ve M(9))
VT =TV + [V, T],

and [V, T] is a differential operator of the same order as the order of T'.



Proposition 3.3.6 If p € C*(X) vanishes to order j on S, then
0 Lses(X,8) — Lgesjn(X,8) (3.3.7)
where the map (3.3.7) is defined by multiplication.

Proof. Working in a preferred coordinate system (z',z") adapted to S at p, we conclude

that

v = Z ‘Pv(x)(fﬂnw

vllI=s

for some ¢, € C*(X). Tt suffices then to show the result for ¢ = (z")7, | v |= j, and indeed,

it suffices to do so for 7 = 1. Thus, we need to show that

n

Wi WiV Vi (27w € H™sTel0=n=k i c v (S) W, € Vy(S)VE, L.
We can commute through to show that
DAWy .. Wi Vi Vi (27 Yu € H=~ D=7k y | o |<| v |= 1

and

DYWy .. Wi Vi Vi (2")'u € H s e (ki)

Hence, since 1 — § < p, this leads to the desired conclusion. |



Chapter 4

Symbol isomorphism

In this chapter we prove the symbol isomorphism theorem for conormal distributions of type
p,0. To avoid notational and technical complications which do not sheed extra light into
this result, we advise the reader to assume that p = 1 and § = 0, reducing the work to
the consideration of I(X,). To state a simplified version of the result to be proved, we
assume momentarily that X is compact and we let and stand for the normal and conormal
bundle of S. If n = dim = dim X and d = codim Og = fiber dimension of = codim S,
then the composition of a normal fibration and the invariant Fourier transform defines an

isomorphism
S IMXS) SR ® Oser)
TTX, S §m () ® Qo)
The filtration I™(X,S) on the left is equivalent to the Sobolev order filtration introduced

before, and the normalization is chosen so that pseudo-differential operators of order m

correspond to symbols of the same order, as we shall see later.

4.1 Linearization

Let S and X be as before, with dim X = n and codim S = d. We do not assume here that
X is compact. Given p € S, the tangent space 7,5 sits inside 7),X and the normal space to

S at p is obtained by taking the quotient




We get a set by setting = {(p,v) : v €}. The triple (,.S,II) where II is the projection map
IT : — S, produces a vector bundle of rank d. Indeed, if (z',z") is a coordinate system
adapted to pin U, ie., U= SNU ={p e U: z"(p) = (Tpn_as1(p), ..., za(p)) = 0} and

the restriction of z' to U defines coordinates on S, then the vector fields 8, O,

i1y
restricted to p € U give normal vectors on and moreover, they form a basis of . Thus
>~ R? and ;-5 U x R%. This shows simultaneously how to provide with a differentiable
structure as well as the local triviality condition of the bundle. We shall call (,S,II) the
normal bundle of S, and we shall often denote it by . Its dual bundle, , will be called the
conormal bundle to S. In both cases, S sits inside the bundle as its zero section Og. Under

the duality pairing between T*X and T'X, correspond to the annihilator of T'S C TsX,

justifying the terminology employed.

Theorem 4.1.1 Let S C X be an embedded submanifold with normal bundle . Then there

1s a neighborhood G of S in X and a smooth diffeomorphism
f:G—

onto a neighborhood G of the zero section Og = S in , which restricts to S as the nat-
ural identification with Og and such that the map f. : TG — TG induces the identity
1somorphism

f* 3—)N05.

Any two such maps are homotopic (in a sufficiently small neighborhood of S) through a

smooth curve of maps of the same type.

Proof. Give X a riemannian structure and fix f by using geodesic flow, in TX, starting

OSN

TOs 2. Conversely, given f,

choose a riemannian structure consistent with f being geodesic flow near S. The homotopy

at . The property of f. is proven once we observe that NOg =

can be constructed from a homotopy of riemann metrics. |
Maps as in the theorem above will be referred to as normal fibration or tubular neigh-
borhood maps.

Under the following assumptions, prove theorem 4.1.1 as follows:



1. If S is compact and contained in R"™, show there is an ¢ > 0 such that if g € U. = {q €
R™: dist (¢, S) < €}, there exist a unique p € S minimizing the distance from ¢ to S,
and that the map

nm:u0,— =S5
q — p(q)

is smooth (this will prove the theorem when X = R").

2. Assume that X is also compact. Using Whitney embedding theorem, deduce the

normal fibration theorem from i.

It follows directly from the definition that if f : X — X'is a diffeomorphism of mani-
folds and S" = f(S), then

o Lses(X,8) — Lses(X,9) .

Via a normal fibration, we lift distributions in I,,.(X,S) to distributions in I, .(, Og).
Exploiting the vector space structure of the fibers in , we associate with each win 1,55 (X, S)
a symbol in . Of course, we have to see up to what extend the symbol so obtained depends
on the choice of the fibration.

Hence, consider a fibration f : G — f(G) C as in theorem 4.1.1. Given ¢ € (X)

supported inside G and such that ¢ =1 near S, define the map

L
Lo5(X,5) = L,s(, Os)

(4.1.2)
u— (f71)*ou

By corollary 3.2.9, the map above is an isomorphism independent of ¢ up to smooth
errors. Indeed, if ' is another function like ¢, then (f1)*pu— (f 1)*¢'u = (f )* (¢ — ¢ )u
which is smooth since supp (¢ — ¢') does not intersect S. Moreover, since u = f*((f~')*u) —
(1 — ¢)u, the map (4.1.3) is itself an isomorphism up to smooth errors. We need to see how

this isomorphism depends on the choice of f.
Theorem 4.1.3 Let f and g be normal fibrations of X at S. Then, foru € I,5.5(X,S),

qu — Lgu € Ip,gycys,(p,(g)(, 05) .



Before proving theorem 4.1.4 let us make the following remarks. Since both, f and ¢
are normal fibrations of X at S, the map h = go f ! (wherever defined) has the following

properties:
1. h(s) = s for all s € Og.
(s) ° (4.1.4)
2. ho(V) =V +Ts5(0g) for all V € Tg(TI71(s)).
Note that the identity map has properties (4.1.5), and because any two normal fibrations
are homotopic through normal fibration maps, there exists a one parameter family h; of local

diffeomorphism with properties (4.1.5) such that hg = ig and hy = h = go f~'.

Lemma 4.1.5 Let h; be a one parameter family of local diffeomorphism with properties 1
and 2 above. Then, for any ¢ € (),

d * *
%htw = ht (‘/;90) )

where V; is a t-dependent vector field in which locally can be expressed as a finite sum Y j1;V;

with p1; a smooth function vanishing at Og, 1, log= 0, and V; € V(Oyg).

Proof. In a local trivialization of the normal bundle , consider coordinates (y,w) =
(Y1, -+ sYn_d,W1,-..,wy) where y is a coordinate in S and w is a linear coordinate on the

fiber of . We can write
ht(ya ’U}) = (Y;(ya w)7 Wt(y7 ’LU)),
with Y; = (Y},..., Y% and W, = (W},...,W¢). Therefore

d dY: dWw

%hiw(y,w) = %@(Yt(y,w),wt(y,w)) = ((E Oyt~ -aw> (p) (Y, W,). (4.1.6)

But Y;(y,0) = y. Hence,
Yi(y, w) =y +w - Ay(y, w)

for certain smooth matrix valued function A; locally defined. Thus,

d d

d
showing that %Yt vanishes at w = 0. On the other hand, using the second property we

obtain ' '
B oYy o owy o

(he)«(0w;) = ou, a—yj + D, a—wj ;




where &Uf(y, 0) = 6;;. In the expression above, the summation convention has been used.
Since W;(y,0) = 0, expansion in Taylor series will show that W;(y,0) = w + os(||w||?), and
consequently ;

% = w; fir(y, w)wg , (4.1.8)

for some functions fj. Inserting (4.1.8) and (4.1.9) in (4.1.7), we obtain the desired result.

Remark 4.1.9 From (4.1.7) we see that the vector fields V; of the lemma could be in Vo(Og)
or in V(Og) — Vo(Os).

Proof of theorem 4.1.4. Since modulo smooth errors the pullback map
g* : [p,ts,c,s(a OS) — Ip,ﬁ,c,s (X’ S)

is an isomorphism, it will be enough to prove that for u el po.e,s(, Os), with support suffi-

ciently close to Og, we have

(g © fﬁl)*ul - ’LL’ € Ip,5,c,s (p— 5)( OS’) (4]_]_0)

Indeed, if (f~')*ou — (¢7")*ou € I, 5.5 (p-5)(, Os), modulo smooth errors we can write pu

as g*u’ for some u" out of I,5,..(,0s). Then

(gofil)*ul_u’:(fil)*g*u’_(g )gu EI,ECS (p— J(OS)

Conversely, if condition (4.1.11) holds for all u" € I,5.(,0s) setting u = g*u" we conclude
that (f~")*u— (¢7")*u € I, 565-(p—5)(; Os) for all u € I, 5.,(X, S).

In order to prove (4.1.11), let 74 be a homotopy of normal fibrations connecting f and g,
ie., 7% = f, 1 =g, and v is a normal fibration for all ¢ € [0,1]. Hence hy = y; 0 f~!is a
curve with properties (4.1.5) above, connecting the identity map and go f~!. Consequently,

given an arbitrary distribution v in I,4.,(,Os) and using lemma 4.1.6, we have:

4 ! 1 d ! 1 !
—1\x* _ - * _ *
(go f YU —u _/Odt (htu)dt_/oht (V') dt
where of course, we have extended the lemma in the obvious way so that it can be applied

to distributions instead of smooth functions. By the local form of V; (see (4.1.7) and remark



4.1.10) and from propositions 3.3.4 and 3.3.6, we conclude that Viu' is in I,5.. ,i5(,Os).
The result follows. |

Corollary 4.1.11 The map Ly restricted to 1,5 .(X,S) induces an isomorphism
Ip,&,c,s (X7 S) Ip767675 (7 OS)

— , (4.1.12)
c(X) C()
independent of ¢, and the induced map of quotient spaces
Lses(X, S Lo 5,5, O
p76a 3 ( ) A p76a 3 ( S) (4113)
Ip,&,c,sf(pfé) (X7 S) Ip,é,c,sf(pfb") (7 OS)
s an isomorphism independent of the normal fibration f. i

The identification (4.1.14) is the key tool in the proof of the symbol isomorphism theorem.
It indicates the price one pays when reducing the analysis of conormal distributions to S in
X of type p,d, to conormal distributions to Og in of the same type: the distribution Lju
corresponding to u € I,5.(X,S) is independent of f up to distributions of the same type
with Sobolev regularity p — ¢ units better. Note that if p = § the map L, is the obvious
isomorphism between spaces consisting of just one element.

Let P be a smooth differential operator on X of order m.

i. Consider m functions f; € (X) vanishing on S. Show that the function

S—C
p— P(fi-fa--. fm)(p)
only depends on df;, i = 1,...,m. Thus, it defines a symmetric multilinear map ) by

QUdfr, ..., dfm)(p) = P(f1-.. fm)(p)-

ii. Let ¢ be a smooth function on and consider T},¢, the part of the Taylor series at

(p,0) € Os homogeneous of degree m in the fibers. Define

Ps(9)(p,0) = Q(Trno)(p) -

Note that Pg involves only differentiation along the fibers. Extend it to all of by
demanding translation invariance on the fibers. The resulting operator, Pg, is a differ-

ential operator on .



Consider a preferred coordinate system (z', z" ) adapted to S at p, with ' = (21, ..., Zn_a)

and 2" = (Zp_g41, ..., Tn) as before. Then if

P: Z p( ’ H)(QL‘I,.T,‘”)D;Y/_DSH y

a o
o' [+]a” |<m

show that
Ps= Y poam(x,0D%

o |=m
where (z',2") are the set of coordinates in induced by (z',z").
By proposition 3.3.5 if u € I,5.+(X,S) and P is a differential operator of order m, then
Pu € I,5cs:m(X,S). Show that

Ly m(Pu) = PsLsu ,

where L, is the map (4.1.14).

4.2 Symbols of type p, o

Although the notions we introduce in this section shall be only used when working with ,
they can be defined more generally on vector bundles over X. Here we consider these general
versions.

Let E -5 X be a vector bundle over X of rank r with zero section Opg. The non-zero
real numbers act on F by multiplication along the fibers. Thus, for each ¢ € R — 0 we obtain
an isomorphism m; : E — FE such that Il o m; = II. A subset I' C is said to be conic if,

and only if, given any point v € I', myy € T for all ¢t > 0.

Definition 4.2.1 A vector field L € (E,TE) is said to be homogeneous of degree zero along
the fibers if and only if (my).L = L.

The set of all homogeneous vector fields of degree zero along the fibers will be denoted
by Viu(E).
Consider an open set O of the base manifold X above which the bundle F is trivial. Take

coordinates (z,€) trivializing the bundle over II 'O,with z coordinate on O and ¢ a linear



coordinate in R". If
,

L(x,ﬁ) = Zaj(x7§)a$j + ij(xvé-)af] )
j=1

j=1
then

n "1
=1 j=1

Thus, if (m;).L = L then aj(z,§) = aj(z,0), j = 1,...,n, and b;(z,tf) = tb;(z,§), j =
1,...,r. Observe that the set Vy(F) has two distinguished subsets, namely VY, (E) = {L €
Vu(E): Llo,= 0} and V},(E) = Vy(E) — VY(E).

For the case of an open set €2 in R™, a symbol of order m is a function a € (T*R") such

that on any compact subset K of (2,
| DZD{a(z,€) |< Crap(1+ €N,
for some constant Ck o, and for all «, 5. This can be rephrased by saying that

| D2 DYa(z,€) |< Crap(l+||E)™ foralla, 8,7, | B =] 7] -

The operator D2 can be expressed as composition of elements in V;,(T*R™), while §7D? is
a composition of elements in VY (T*R™) when | 8 |=| v |. Precisely speaking, a symbol of

order m and type (1,0) is a function in (7*R") for which the estimates
| Vi VWi Wia(z,€) [< CL+[IEI)™, Vi € Vi (T"R"), W; € Vy(T'R")

holds on compact sets, for any k&, [.

Let || || be an euclidean metric on the fibers of E.

Definition 4.2.2 Let m,p,d be real numbers with 0 < p < 1, 0 < § < 1. We denote by
STs(E) the set of all smooth functions a € (E), such that for every compact subset K of the

base manifold X and for all k,1, the estimate

supgere | Vi VWi ... Wia -1 < Crepa(1+]|€[)™HE=ATR Dy e VL(E), W, € VY(E) ,

(4.2.3)
for some constant Ck ;. The elements of ’;‘J(E) shall be called symbols of order m and
type p,0. Given an open conic set T, ;?5(I‘) is the space of smooth functions on T' which

satisfies symbol estimates along directions in T'.



Proposition 4.2.4 Consider an open set O on which E is trivial an let (z,£) be coordinates

trivializing E. Then, if a € S}s(E), and K is a compact subset of O, we have
| DS D{a(x,€) |< Crap(1+ [P 2 e K. (4.2.5)

Conversely, any function a in (E) satisfying these estimates above every set on which E is

trivial, belongs to S7's(E).

Proof. Let Cy,,.(E) be the set of smooth functions on E which are constant along the

fibers. We have seen that locally, in coordinates (z, &) trivializing the bundle E,

Vi(E) = Ciper(E) — span{0y,,§0g,, 1 < j<m, 1L<jk <r}
Vi(E) = Cy..(E) —span{d,,, 1 < j < n} : (4.2.6)
V%(E) = C})iber(E) - span{gj(?gk, 1 S j7 k S 7"}

The homogeneous differential operator D2 is the composition of | « | elements in V},(E).
On the other hand, for any 8,~ with | 8 |=| v |, SVD? is a linear combination of the form
Z‘jﬂo Pj, where P; is the composition of j-elements in V3, (E). Hence, if a € S7'5(E) and j

and ~y are as above, we have
| DY Dfa(z,€) | Crapn(L+ [lEN™ A 2 € ke

where K is any compact subset of open neighborhood of the base manifold above which
the bundle is trivial. The result on this type of sets follows dividing by ||¢||"! away from
¢ = 0. For general compact sets K, we cover it by a finite number of open sets above which
the bundle is trivial. The result will follow applying several times the special case already
proved.

For the converse, we localize the problem using a partition of unity subordinated to a
locally finite covering of X by open sets on which F is trivial. Then using (4.2.6) one easily
obtains (4.2.3) over compact subsets sitting inside the open sets of the covering. The result
follows. |

The significance of proposition 4.2.4 is that it allows us to check for symbol estimates

locally in order to conclude that a smooth function is a symbol.



Using (4.2.5) we can topologize S75(E) as follows: firstly, let S ;(E) be the space of
symbols of type p,§ and order m with support contained in II"}(K), K a compact subset of

X. Then .
| D?Dﬁa(xvé) |
P jm(a) = sup — - (4.2.7)
’ (.6)en-1(K) Jal+181<j (1 + [||[)m—IBletleld

is a family of seminorms on S ,5(F), providing it with a Frechét space structure. A set

S C Sg,s(E) is declared to be open if, and only if, S N SR ;(E) is open in SE ;(£) for
all K CC X. Note that on bounded sets, the topologies of S7's(F) and (E) coincide. Using

this topology, the reader can easily prove the following

Proposition 4.2.8 For the spaces S}5(E) we have:
1. Sis(E) C SZ‘; (E) if m" > m, and the inclusion is continuous.
2. Let V € V3, (E). ThenV induces a continuous map

ms(B) — Sy (E)

a—Va
Similarly, if V€ V§,(E), it induces a map as above but with range in S;}_(p_l)(E).
3. The multiplication map

ps(E) ® Sy (E) — Sy (E)

(a,b) — a.b
18 continuous. I
We set
(E) = UnSTH(E),  S;5°(B) = NST5(E) - (4.2.9)

Remark 4.2.10 The symbols of order —oo are independent of p,d, i.e., for any pairs p,0
and p',6 as in definition 4.2.2, S, (E) = S;"g’, (E). Therefore, we shall simply write
S™>(E).



Let a € S} o(T*R") such that a(z,€) > 0 for all (z,£) € T*R". Show that e~*"% is a
symbol in S? , (T*R™).
The following proposition shall be useful later on, when dealing with the construction of

certain parametrices for pseudo-differential operators.

Proposition 4.2.11 (Asymptotic summation) Let a; € S;';{(E), j=0,1,2,..., and assume
that mj — —oco. Set my = max;>;m;. Then there exists a € SZ}’(E) such that for every k
a—Y a; €S FE). (4.2.12)
i<k

The symbol a is uniquely determined modulo S~ (E).

Proof. Using proposition 4.2.4 we conclude that for existence it will be enough to assume
that £ = O x R", where O is some open set in R".
Take a smooth function ¢ in R" such that ¢ = 0 for ||£|| < 1/2 and ¢ =1 for ||&]| > 1.

If {;} is a decreasing sequence of positive real numbers with zero limit, then

o0

Z (g58)a;i(z, )

converges as a smooth function because on compact subsets of O x R", there are only a finite

number of non-zero terms. We want to choose the ¢;’s such that

o)

Z (g;)a;(z,€) (4.2.13)

converges in S (O x R"). Certainly, this will prove the desired statement. Indeed, we

would have

290515 aj(z,§) :Z (g8)a;(2, ) + > (1 — p(g;€))a;(z, §)€S (OXRT)
i<k =k i<k
since the last term in the expression above is a rapidly decreasing symbol.
Firstly, let us prove that for any m, m’ with m' < m, given an arbitrary compact subset &

of O and u € Ry, there exists ¢ > 0 such that if ¢ € S75(0 x R") and c.(z, §) = ¢(e§)c(z, &),
then

PK jm(Ce) <UDk jm () - (4.2.14)



Consider multi-indices a and 3 with | « | + | 8 |< j. Then,

| DED{p(e€)c(z,€) | > B
(14 [jg]))m-Tpletlels =

<8\ Y

| D¢(c£) D2 DY e(x,€) |
(1 + [|€]|)m18le+lalo

11

(4.2.15)

Let ¢ be a generic constant. If | 7 |< m —m/, the terms in the sum of the right hand-side of

(4.2.16) are bounded by 0 on ||¢|| < 1/2¢, and by

| D2D{ e(x,€) |
(1+ [[€]|)m" - 1Blo+ladd (1 || €] [ym—m" -1l *

o]

(4.2.16)

in ||¢]| > 1/2e. Here C is a bound for the derivatives of ¢ up to order | § |. Hence the
nontrivial contributions in this case are bounded by

) | DeD{ e(x,€) |

Cem_m’ 1+ 2¢ ~(m—m' || - .
(1+2) (L& €]}y —Plo+iaP

If | v |> m —m, we still obtain trivial contributions when [|¢]] < 1/2¢, but now the
contributions are also trivial when [|£]| > 1/e. In between, i.e., for 1/2e < ||€|| < 1/e, we
have estimates (4.2.17). Since m — m'— | 7 | is now less or equal than zero, we can bound

these terms by
) | D2D¢ e(,€) |
(1 + [|&]fym ~18lelads -

In either case, (4.2.15) will follow after taking the supremum over all the multi-indices whose

Cell(1 + 5)—(m—m'—\7\

sum has weight bounded by j. Note that the ¢ obtained depends only on yx,j,m —m’ and
K.

Using proposition 4.2.8 and the hypothesis, we can assume that the sequence of orders
m; is strictly decreasing. Then, m;c = my,. With this assumption, we proceed to find the ¢;’s
by induction. Let {K;} be an exhaustive sequence of compact subsets of O. Take gy =1

and once ¢y, .. .,e,1are found, choose ¢, such that ¢, < ¢,-1/2, and

ij:jymj—l (aej) < E .

Such a choice is possible. Indeed, since a; € SZE(E) and m; < mj_;, we can take p in
(4.2.15) to be (27pk;, jm;(a;)) " if a; # 0, or (2/)~" otherwise. Once this choice is made, take
e such that (4.2.15) holds. Then we take €; to be the minimum of ¢;_;/2 and e.



With this choice, (4.2.14) converges in S7'#(O x R"). For let K be any compact subset
of O, and [ be a nonnegative integer. Take d > [ such that K C Ky. For integers i, n greater

than d, with + < n,

pK,l,mk(Z an) S z:pKd,d,m;c (a6j) .

j=i j=i
If j > d we have px,dam,(ac;) < Pk, jm;_,(ac;), as long as my < m;_;, which happens for
any k > j — 1. Hence, once my, is fixed, for large i,n we have

PEmy (i ae;) < X0 Prgdam (Ge;)

n 1

as i,m — oo. Thus, (4.2.14) is a Cauchy sequence in S)¥(O x R") on sets of the form
II"1(K). The desired result follows.
The statement about uniqueness is clear. |
A symbol a with the properties of the symbol in the proposition above will be called the

asymptotic sum of the symbols a;, and we shall write

GNZCLJ'.

For reference purpose, we define separately a subset of the space of symbols. Let p =1
and § = 0, and as usual, drop them from the notation. A function a € (E — Og) is said to

be homogeneous of degree m along the fibers if, and only if,
(my)*a =t"a .
Such a function clearly determines a symbol in S™(E) modulo symbols in S™*°(E).

Definition 4.2.17 By S7(E) (or classical symbols) we denote the subspace of elements in

S™(E) which consists of asymptotic sums

Zaj>

where a; is homogeneous of degree m — j on the complement of some neighborhood of Og.
When a is a symbol with values in some bundle G, it is classical if it has an expansion as

above with a; a homogeneous symbol of degree m — j valued on G.



Another important subclass of symbols are those which are elliptic.

Definition 4.2.18 A symbol a € S™(E) is elliptic if, and only if, for every relatively com-
pact subset K of X, there are constants C,C" such that | a(z,€) |> C||€||™ for all z € K,
€]l > C'. When a is a symbol in S™(E) with values in some bundle of homomorphism, it

is said to be elliptic if over II"Y(K) the homomorphism a(z,§) is invertible for large values
of €.

The key feature of elliptic symbols is that they can be inverted modulo S™°(E). This
will turn out to be relevant in the study of elliptic pseudo-differential operators, and we

postpone any extra discussion until then.

4.3 Equivalent filtration and symbol isomorphism

Starting with an element u of I,5(X,S), we would like to study the distribution F o Lsu.
Here F is the Fourier transform of chapter 1, and L is the map defined in (4.1.3). Note that
Lsu has compact support along the fibers on and it is therefore, a tempered distribution
along the fibers. Hence, F(Lju) makes sense if we think of F as the map dual to that in
(1.5.8).

Modulo smooth errors, adding a rapidly decreasing function to a distribution does not
modify the distribution. It will be rather convenient to modify I,5(,Os) and consider the
space

I1S,5(,05) = 1,5(,05) + S() ,
where S() is the space of rapidly decreasing functions along the fibers. Here we do not require
compactness of the base manifold S. The Sobolev order filtration introduced in chapter 3
carries over,
ISp506(,05) = Ipeal, 05) + 5:0) (431)

and proposition 3.3.4, 3.3.5 and 3.3.6 hold at the level of 1.5,5.(, Os).

Theorem 4.3.2 (full symbol isomorphism) The Fourier transform induces an isomorphism

ISp,é(aOS;inber) S;,C:S()
0 TS

(4.3.3)



Proof. Via corollary 3.2.9, we see that it is always possible to choose a representer
u € I,5(,0g; Qyiper) of the class [u] with compact support along the fibers. Using a partition
of unity, and by linearity of the Fourier transform, we can also assume that the support of
u is contained inside II7'(O), where O is an open set of S above which, is trivial.

Choose coordinates ¢ = (y,z) € O x R? that trivialize |p. The condition defining u as a

compactly supported element of I,5(, Og; Qyipe,) says that for some fixed s,we have

2*Dlu € H* 112 (0 x R4 QRY), |a|=| 5|

(4.3.4)
D)u € H*="5(0 x R QRY), Vy
Over IT"1(0), u can be expressed as u(y, z) | dz |. Then
iy, €) = Fu(y, &) = u(e™9) . (43.5)

By proposition 3.2.11, this is a smooth function of y; it is clearly a smooth function in £.
By the support condition, we can conclude that @ € (). It remains to show that estimates
of the type (4.2.5) hold.

Choose vector fields Vi,...,V, in V() and Wy, ..., Wy in V(). The operator V;...V,
can be written in the form 3, < aa(y)D;‘, while the operator Wi ... W}, can be expressed

as 3| <k,|8|=l| bﬂﬁ(y)D?fV. Hence, it is enough to show the existence of m € R such that
| D{& Dyay, €) [< C(L+ [[gymP=ariel g |=| v | .

In the distributional sense, Dg §'D%4 is the Fourier transform of 2°(—D.)"D%u. Using

proposition 3.3.4, we conclude that
2*(=D,)"Du € H* W=7l (0 x REQORY), | B |=| v | - (4.3.6)

Consider this expression with a and 3 set to be the null multi-indices. Using the fact
that (1 + A,)* has constant coefficients, we can show that (1 + ||€||*)*a(y,&) is in L' as a
function of £ for any k < s/2 — d/4. Since 4 is smooth, the function (1 + ||€]|?)*4(y, £) must
be bounded. We conclude that

[a|< O+ g .



If we now use (4.3.6) for any multi-indices «, 3,7 (with | 8 |=| v |), replacing k by k —

M in the argument above, we conclude that

| D?{*D;ﬁ(y,f) |§ C(l + ||£||)—2k—|6|(1—p)+|a\6 , (437)

leading to the desired conclusion.
Conversely, let a(y, &) be a symbol of order m and type p,d, with y-support compact in
O. We need to show that u(y, z) | dz | is a conormal distribution of type p, §, where

1\¢ )
u(y, z) = <> /e“z’é)a(y,é)dé- (4.3.8)
2T
If we choose k such that k >| m | +d, then (1 + ||£||*)"*a(y, £) is such that
(14 J€I1) Faly, ) < C(1+ ™ < C(1 + gym-2mi-24

and therefore, it is square integrable in £. Since it is smooth in y we have:

d
u(y, 2) = (1+ A)* (;ﬁ) / ei<z’€>(1+|1|£“2)ka(y,g)d§ e H(0 x RY).

Moreover, for any j, 9,,a(y,§) can be bounded by (14 ||€||)™"°. Then, replacing k by k+§/2
in the argument above, we conclude that 9,,u € H~**7°(O x R%). Similarly, using the fact
that | Dg,&a(y, €) |< C(1+[|€]))™ 1P, we conclude that z,D.,u € H %10 x R?) for
any 7, k. Iterating, we obtain estimates 3.2.3 for s = —2k. The proof is now completed since
F is an isomorphism. |

Observe that the order of the symbol Fu over each set of the form II"1(0), with O
relatively compact in X, depends only on the Sobolev order of u |;-1(0), and the dimension
and fiber dimension of .

To proceed any further at this point, there are two choices: the first is to determine
exactly the order of Fu given u € I,5,.(X,S) in terms of s,n and d. The second, easier
in some sense, is to define a new order filtration in I,5(X,S) in terms of the order of the
symbols, and study how the change in the order of the symbol affects the order so defined.
We follow this last choice.

Definition 4.3.9 By IS])%(E, Op; Q% E) C 1S,5(E, Op; Q4. F) we shall denote the sub-

space of distributions u such that

m—44n
Fue Shs (B Qb0 EY),



where d is the fiber dimension of the vector bundle E, and n is its total dimension.

For reference purposes, we write analogs to propositions 3.3.4, 3.3.5 and 3.3.6 in the
specific case of ' =. We leave to the reader the task of checking their validity in this new
setting.

Proposition 4.3.10 1. If T =V;...V,, with V; € V(Os) — Vo(Os), then
T :1S5,.(,05) — IS55™(,0g) .

py,c

IfT = Vi...V,, with V; € Vo(Og) then it induces a map as above with range in
]—SS+m(1*p)(’ OS)

ps0,c

2. If P € Diffi(), then

P :185,.(,05) — IS555(,0s) .

o piSic
3. If v is a smooth function that vanishes to order j on Og, then
p 1 1855.(,05) — 1S5577(,05)
where the map above is given by multiplication. i
We now prove that the filtrations (4.3.1) and (4.3.9) are equivalent.
Proposition 4.3.11 There exists M > 0 such that
ISp5esm(;0s) CI1S;5.(,05) CISps5es1m(;0s) -

Proof. The first inclusion follows from the proof of theorem 4.3.2 because the order of
the symbol Fu over relatively compact subsets of X depends only on n and d.
For the second, we work in local coordinates ( = (¥, z) over O x R%as before, and assume

that u has compact y-support. Then, in the distributional sense,
L\ [ it
— [ i(z, d
u(y, z) <27T> /6 a(y, §)d¢

m—24n
for some a(y,§) | d€ |€ S, 5 21 () ® Qfiper(), which is compactly supported in y.



From the symbol estimates for a we obtain

d

(1+[lel)~™+ 242 %a(y,€) € L*() Ve >0,

and therefore,

a(y, ) € (L+||g])eterm=a+3L2() .

Hence,

From the identity
DeDI 2w =F H(D3EP(—De)a)

we conclude that for a, 8,y with | 8 |=| v |, D;‘D?ﬁu corresponds with a density-valued
m—44n - «a . .
symbol in S 2+ tIBI—e) |5() ® Qfiper. Using the same argument we obtain that

D;szvu e H—m—(%+6)—\B\(1—p)—\a|5(0 > Rd) :
which leads to the conclusion that
Vi ViWi.. . Wyu € H-m=(a+e)=k1=p)=l6( « R9)
for all I,k, Vi € V(Os), W; € Vo(Os). Thus, u € I5e m (24e)(, Os). i

Definition 4.3.12 Let S be a closed embedded submanifold of a smooth manifold X, and let
f : G — G be a normal fibration of S. By 75(X,S) we denote the subspace of 1,5(X, S)

consisting of those distributions that, modulo (X), can be written as the pull-back to X wvia

f of IS}5(,05) N D(G).

Lemma 4.3.13 The spaces I’TJ(X, S) are well-defined, i.e., they are independent of the nor-
mal fibration and produce a filtration of 1,5(X,S) equivalent to the Sobolev order filtration.

Proof. Once the independency of f is established, the other statements will follow. The
equivalency with the Sobolev filtration is obtained using proposition 4.3.11.
As in the proof of theorem 4.1.4, it will be enough to show that IS7%(,Os) + () is

invariant under the pull-back by local diffeomorphism h near Og with properties i and ii.



Let h; be a homotopy between the identity and h. Using lemma 4.1.6, we conclude that if
u € IS7%5(, Os) + () has support sufficiently close to the zero section,

1
Ru—u = / R (Vau)dt (4.3.14)
0

for some vector field that can be written locally as > uV with V' € V(Og) and p |pgs= 0.

Iterating this argument, we establish that

U—U—Z/ /W] to V;fo ))dtjdto—l—

/ / htk tOVZk to(e o (Vigu) . )dty ... dty

for vector fields Vi,..40 which locally can be written as the one above. Using proposition

(4.3.15)

4.3.10, the last term in (4.3.15) is the integral in the parameters of the pull-back under
a diffeomorphism of an element in [ Sm+k - )(,OS). For p > § and k sufficiently large,
—k(6 — p) > 2M, with M as in proposition 4.3.11.Therefore, this last term will be the
integral with respect to the parameters of the pull-back under a diffeomorphism of an element
in 1,55 me(; Os) + (), which is once again included in I57%s(, Os). The desired invariance

follows. |

Theorem 4.3.16 (principal symbol) Suppose S C X is closed and embedded, and let Ly be
the map defined in (4.1.3). Then the composition F o Ly induces an isomorphism

d, n
m(X,S: 0 X ST () @ Qs
s ) 5 "0 ()

Ps

(X) S—() ® Qz()

independent of ¢, and it projects down to an isomorphism independent of f:

Y

P>

" ( (X S; QQX) SZ;;(F*ID*§+%() @ Q%() .

m (X $; 03 X) . Sm;g+%() ® Q2() (43.17)
8

Proof. If u € IST(, Os;Q2X), it follows from (4.3.14) that if f and g are normal

fibrations, Ly o (Lg)_lu — u is an element of ISZ(;_(”_‘;)(, Og: Q2 X). The rest of the proof is

a simple verification of how the densities transform under the different maps involved in the

statement of the theorem. i

_dyn
Note that if u € IT5(X,S), F o Lyu will be an element in SZ; 2Y1() @ Qfiber(), in-

variantly defined up to density-valued symbols of order p — § units lower. In either case,



u € I5(X, S; Q:X)orue 75(X,5), we shall denote its principal symbol by o (u), and call
o the map in (4.3.17).

4.4 Wave front set of conormal distributions

We have shown that for any normal fibration f : G — G, given u € os(X,S), the
composition o(u) = F((f~)*pu) defines an element of S::}_%Jr%() ® Qfiver/S™() @ Qfiper,
independent of p. Here ¢ is a smooth function with support contained in GG, identically equals
to one on a neighborhood of S. We now want to address the problem of defining intrinsically
a subset of on which the principal symbol o(u) is zero, i.e., rapidly decreasing. In principle,
one could do this using chosing a normal fibration f and making the corresponding statement
for F((f 1)*pu), but it is not a priori obvious that having a rapidly decreasing symbol along
certain directions is a notion independent of f.

Consider two normal fibrations, f and g, and assume that modulo smooth errors and lower
order terms, u = f*v = g*v for some v € 157%(, Os), with compact support along the fiber.
Hence, the principal symbol of u can be computed either from Fv or from F((f1)*g*v) =
F((go f~1)*v. From (4.3.15) of the previous section, we have

k
—(gof )v= ]2_:1%' +U(k)

where v; € IS 1079 0g), v y€IS)s =9 0g). Each v; is of the form

1 1
vj:/o /0 V.. Vivdt...dt;

where the V;’s are vector fields in V(Og) depending smoothly on the parameters t1,...,t;,
each of which can be expressed locally as V; = >, 1iqVig, Vig € V(Os), piq los= 0. We
can expand the functions p;, in Taylor series about z = 0 to conclude that for every k
and modulo IS]'5 k(p=0) ( Os), v; is given by a differential operator acting over v, whose
coefficients are functions in C})ibET(), constant along the fiber. Hence, for any £, modulo

m— din
Ho=0) =5 ta () ® Qiver, Fo; is given by a differential operator acting over Fuv.

elements in S, 5
Consequently, if along a direction £ on the fiber the symbol o¢(u) = Fv decreases rapidly,

so will F((go f1)*v and F((g !)*u). Thus, this notion is independent of the fibration.



The fact that Fv decreases rapidly in the direction & is a condition over the behavior
of Fu(y,&) when & = t&, — oo, i.e., when t — oco. Hence, given a open conic set I" and
u € I5(X, S), it makes sense invariantly to say that the symbol o(u) decreases rapidly along
directions in T. One simply takes a normal fibration f and consider F((f~')*ou) for some
smooth function ¢ as before. Then we demand from this function that it decreases rapidly

along directions in ', and this notion is independent of both, f and ¢.

Definition 4.4.1 Given u € Ig:g(X, S), its wave front set is the set of all directions along

which o(u) is not rapidly decreasing:
WF(u)=Np{—(T'UOg) : o(u) € S~(T'), I' C open conic} . (4.4.2)
We finish by proving the following
Proposition 4.4.3 Assume that u € IT5(X,S) satisfies the condition
WEu)N=0. (4.4.4)
Then u is a smooth function.

Proof. Modulo smooth errors, u can be lifted to a distribution v € S7%(, Os) with fiber
support compact, and o(u) = Fv. Using (4.4.4) we conclude that Fv € S™°(,0g) @ Qfiper-
Hence, v is rapidly decreasing along the fibers of and consequently smooth. Thus, u is

smooth. [



Chapter 5

Push-forward and pull-back of

conormal distributions

In this chapter we define the notion of push-forward and pull-back of distributions under
a very general setting, and then we study the behavior of these operations over conormal
distributions. The idea behind all this is to express the action of pseudo-differential and
Fourier integral operators over distributions in terms of their kernels, as the restriction of
K(z,y) ® u(z) to y = z, followed by integration along the fiber = constant. Hence, we
must understand when these operations are valid as well as the type of distributions one gets
when applying them. In that sense, this chapter contains results of technical nature, which

are needed for other purposes.

5.1 Push-forward

Consider a fiber map II : X — Y, i.e., a smooth map such that for every y € Y there
exists a neighborhood U of y in Y and a diffeomorphism 7 : U x IT"!(y) — II"}(U) making

commutative the following diagram:

Uxly) —— IOYU)
M| L (5.1.1)
U U

71



Each fiber over U is diffeomorphic to II7*(y). It follows that
QX = Qpjper X @ ITQY (5.1.2)

Moreover, if IT : X — Y, II' : X' — Y’ are fiber maps and we have diffeomorphism
f: X=X andg:Y =Y withIl o f =¢goll, then
X)) 2 QX @ F((IT)*QY")
= Qpiper X QIT*QY > QX.

Thus (5.1.2) is natural with respect to diffeomorphism of fiber maps.

By integration along the fibers we obtain a map

H* : C(X7 inbeTX) —c (Y)

; 5.1.3
II,u = / U ( )
fiber
where in interpreting the right hand-side as a function of Y, we make use of (5.1.1).
Proposition 5.1.4 The map (5.1.3) extends by continuity to a linear map
I : D.(X;QpperX) — D.(Y) . (5.1.5)

Proof. Take u € D.(X;Q riverX ) and consider a sequence {u, } C. (X, Qfper X ) such that
u, — u. By the principle of uniform boundedness, it will be enough to show that IT,u,(y)
is bounded by a constant times the m-th norm of ¢ over any compact set. But for some m,

on compact sets K contained in U, a set as in (5.1.1), we have

M) [ = | [ wa(lT) |

< Supﬂfl(K)ﬂsuppun,\aKm | D(o;,z)l_‘[*(p | < SupyEK,\a|§m | D?QO | )

(5.1.6)

where we have used the fact that I1*¢ is constant along the fiber, as well as the fact that
u, — u. The result for general compact sets follows using a partition of unity subordinated

to a covering of Y by sets as in (5.1.1). i

Remark 5.1.7 If u is not compactly supported, the push-forward IL,(u) can still be defined
if the fibers of Il : X — Y are compact or if u is compactly supported along the fibers. We

obtain a map as in (5.1.5) among distributions which are not necessarily compactly supported.



5.2 Pull-back

Given a submersion f : X — Y, the pull-back over smooth densities f*r = v o f extends by
continuity and produce a map f* : D'(Y,Q%Y) — D'(X,0Q°X) (see exercise 1.4.8). Indeed,
the push-forward f.p of a smooth density ¢ €, (X,Q!72X) is an element of (Y, Q'Y
and we can define f*v by
fv(e) =v(fep) -

If v is smooth, f*r can be defined by simple composition, with no requirement over f.
These cases are extremes of a more general situation to be discussed after the notion of wave
front set is introduced in the following chapter. Here we restrict ourselves, and discuss the
simplified version of the pull-back of an element v € I,5(Y, S ") under an immersion f which
intersects S* transversally.

Before going any further, the reader should be convinced that the pull-back notion is
not always defined is one insists that it be a continuous extension to distributions of the
usual operation over smooth densities. In fact, even for the simple case of the diagonal map
R >z — (z,2) € R* and v(z,y) = §(x) ® §(y), it is impossible to define f*v since there
is no way to make sense of the expression 6%(z). In this case, for f*v to be defined, one
should be able to approach the submanifold y = = along transversal directions on which v
is smooth.

Consider an immersion f : X — Y and let S’ be a closed embedded submanifold of Y.

The map f is said to be transversal to S if, and only if, at any point s € f1(S"),
FTX +TpS = TsY . (5.2.1)

Note that in the case where S is just a single point, the transversality condition coincides

with the notion of a submersion.

Lemma 5.2.2 Suppose f : X — Y is a smooth map transversal to S'. Then S = f~1(S")
s a submanifold of X.

Proof. Let tx, ..., 14 be a set of defining functions of S, i.e.,

S'={yey: di(y) =...=1ay) =0}



and di)q, ..., dig are linearly independent over S'. Then
S={zxeX: ¢Yof(z)=...=¢q0 f(z) =0}

and to show that S is a submanifold, it will be enough to prove that d(¢0 f),...,d(g0 f) is
a linearly independent set over S. Take a point s in S. If a linear combination Y- a;d(¢; 0 f)s

equals zero, then by the chain rule

Y ad(@io f)(V) = 0= ai(di) s .V ¥V VETX.

Thus, Y- a;(di;) f(s) is identically zero over Image f;. Since the 1;’s are defining functions for
S, 3 ai(dip;) 4 (s) is identically zero over Tj)S . By transversality we have that 3= a;(dv;) (s
is identically zero on T'(,)Y which implies that a; = ... = a; = 0. i

Proposition 5.2.3 Suppose f: X — Y is a smooth immersion transversal to S . Then
[ (V) —e (X)
extends by continuity to a map
f i Ls(Y,8) — D(X).

Proof. By a partition of unity, we can assume that v is supported on a small set near S’
and that f is an embedding of X into Y. Then, we can find coordinates (yi,...,y,) valid
on U, such that

"

Sl = {y, = (yla"'ayd) = 0} ) f(X) = {y = {yn—k+17---,yn) = 0} )
with d + k& < n and supp u C U. We expect that the restriction u |sx) defines an element
of D'(f(X)) = D'(X).
In the coordinates chosen above,
uy) = @n) ¢ [ aly’y" o)

where ¥ = (Yai1, .-, Unk) and a(y ,y" ;1) | dn' |€ S(N*S") @Qiper N*S" is the full symbol
of u. Then, for o(y',y") | dy'dy" |€. (f(X);Qf(X)), we have

ulpixy (p) = (27T)_d/€iy Ta(y", 0,0 )dn oly ,y )dy dy"



from which it clearly follows that

| ulpx) () [< Cllgllm

where m is the order of u as a distribution with compact support. |

Remark 5.2.4 For an immersion f as in the proposition above,

N =A{(f(x),n) : (f.)en =0}

does not intersect N*S'. Hence, WE(u)NN} = 0. Later on we shall see that it is this relation
between wave front set and N} what makes possible the definition of f*u as an extension of
the usual definition on smooth functions. Under this hypothesis, the conormality assumption
simply says that f*u is also conormal. We shall postpone that discussion until the following

chapter.

5.3 Push-forward and Pull-back of conormal distribu-
tions

We now proceed to study the operations defined in the previous two sections on the level of
conormal distributions. We start by considering the push-forward.

Given a fiber map II : X — Y and a closed embedded submanifold S, the set II(S) can
be a rather complicated one. We therefore restrict our attention to the case where II(S) is

an embedded submanifold of Y and
II |s: S — Y is a fiber bundle over II(S) . (5.3.1)

The bundle of densities along the fibers for the map above shall be denoted as € f;pe,S.

Observe that 1I* : Ty, Y — T7X is injective. On the other hand, if V' € then ILV €
V(II(S)). Thus, if « € N*(II(S)) then II*a(V) [s= a(ILV) |ng)= 0. Thus, II*(N*(II(S))) C
and IT* induces a bundle map

IT* : N*(II(S)) —> (5.3.2)



which identifies the fiber of N*II(S) at II(xz) with a subspace of the fiber of at z. On the
other hand, let x € S and denote by F' and Fs the fibers at = of I and II |g, respectively.

Then,

N.S — T, X ~ Tn(m)Y—l—TwF ~ TH(m)Y n T.F
LS Tuwl(S)+ToFs Tnwll(S)  T,Fs

= Nn(w)H(S) + N, Fy ,

where N, Fs is the normal to the fiber Fg as a submanifold of F'. It then follows that
Q7'N,S ~ Q7 Ny I1(S) ® Q"N Fs .
But recall that Q*V ~ Q *V*. Also, since T, F ~ T,Fs + N,Fs we have
Qtiver X = QfiverS @ Qpiper NFs .
Thus, by proposition 1.4.4 we derive
Qtiver @ Qtiver X = Qpiper N'I(S) @ QpiperS - (5.3.3)

Note that the right hand-side of (5.3.3) reduces to QN*II(S) if IT |g is an embedding of S
into Y. Putting together (5.3.2) and (5.3.3) we obtain a map

Hﬁ : Sll’c:é() (024 inber &® inberX — S}];’J(N*H(S)) (24 inberN*H(S)
®inber57

(5.3.4)

by restricting the symbols to N*II(S). This map will be needed to define o(Il,u) in
terms of o(u) when u € I;’fé’c(X, S5 Qriver X). But to prove that I1.J,5.(X,S; Qpiper X) C

I,5.(Y,II(S)) we shall need the following

Lemma 5.3.5 Assume Il : X — Y is a fiber map for which (5.3.1) holds. Then, for each
V e VII(S)) (resp. Vo(II(S)) ) there exists W € (resp. ) such that

InLw=Vv.

Proof. The result follows readily using the local splitting of T, X into Tyy,)Y + T, F. We
then can take W = V 4 0. Detalils are left to the reader. |



Theorem 5.3.6 Assume Il : X — Y is a fiber map for which (5.3.1) holds. Then the

restriction of (5.1.5) induces a map

m m+¥*%
II, : Ip75,C(X, S, inberX) — Ip,&,c

(Y, 11(5)) -

Here N and Ng are the fiber dimension of I and II |g, respectively. The symbol o(Il.u) is
m' 4 yn A
the projection of Iyo(u) to S,5 * TONTI(S)) ® Qiver NII(S) @ QpiverS/ S5 +h—(p 5)(

N*TI(S)) @ fiper N*TI(S) @Q piper S, where m = m—i—%—%, d = codimTI(S) andn' = dimY.

Proof. Let u be a distribution with compact support along the fibers. Then, for some s,
we have pu € HZ (X, Qgiper X ) where ¢ (X). By continuity of IL,, IL,u € Hgl (Y) for some s,

which obviously can be taken to be s. If V' is a vector field,
Vu(p) = (V') u € D'(X,0X), ¢ € D(X) ,

defines a vector field V*. Moreover, if V' € (resp. ), so does V*. Take V and W in V(II(5))
and (resp. Vo(II(S)) and ) related as in lemma 5.3.5. Then:

VILu(y) =TLau(Viy) =u(l*Vip) = u(WiIly)
= H*Wu(¢) )

from which it easily follows that I,u € I,5.(Y,II(S)) if u € I,5.(X, S; Qfiper X).

Since the symbol is invariantly defined, to check that the projection of IIyo(u) produces
the symbol of I, u, we just need to do it in coordinates. In so doing, we shall see the relation
between the standard order of v and II,u.

Take coordinates (y,z) = (y,y ,z,z" ) such that S = {y = 0}, II(S) = {y" = 0} and
the fibers are given by 3" o Il = constant, z' o Il = constant. Then, u € 175 (X, S5 Qpiver X)

is represented as

]_ d : ! "
uly,a) = (o) [ eae,mdn | dy'da” |,

™

_d n
for some section a(x,n) | dy'dz” | of S, "3 () @ Qgiper X Hence,

H*u(y”’ ;L"):(zﬂ-)*d/ /eiyna(.%‘, n)d?]dy’d.%‘”
=(27r)*d’/e’:y”’7”b(:v,0,77”)d17”d:13” ,



where
b(z,0,n") = (27T)d’_d/eiy"a(w,n)dn'dy' =a(z,0,n) .

By introducing a conormal error of order p units lower (see proposition 3.3.6), we can set
2" =0 in b. Hence,

o(IL,u) = b(z',0,0,n") | dz" |

which, of course, is only defined modulo symbols of order p — ¢ units lower. This symbol has
the same order as a. Thus, m—g—l—% :m'—%’—l—%’. Butn =n—Nand d =d— Ng.

Hence,

as stated. i
Let us now consider the pull-back. If f : X — Y is a smooth immersion intersecting
S" CY transversally, then by lemma 5.2.2, S = f~1(S') is a submanifold. As it was pointed
out in remark 5.2.4, the image of a conormal distribution under f* is itself conormal. Here
we shall prove this observation and work out the symbol behavior.
For any s € S, in view of (5.2.1), f,TsX contains a complements of Tf(S)S' in Ty,)Y.

Therefore,
T.,X Tyo)Y
= —

LS Tyys

= Ni(»)S
is surjective, and therefore an isomorphism. Thus, the dual map induces an isomorphism
fiNj xS —CTX .
By naturality of the pull-back, we have
Qiper = F* Qpiper N*S' .
We thus obtain a map

fti : L?J(N*Sl) ® inbETN*SI — S;TJ() ® inber (537)

"~

by just restriction of the symbols to N f X)S



Theorem 5.3.8 Assume f : X — Y is a smooth immersion transversal to S C Y. Then

the pull-back operation on smooth functions extends by continuity to a map
P I, S) = DX ),
where k = dimY — dim X. Moreover,
o(f*u) = fio(u)
where f* is the map (5.3.7).

Proof. As before, let S = f~'(S'). If V € (resp. ), it is rather clear that f,V €
V(f(X)NS') (resp. Vo(f(X)NS")) as a vector field in f(X). We can extend £,V to a vector
field in Y which belongs to V(S') (resp. Vo(S')). Hence, from the identity V f*u = f*(Wu),
it follows easily that f*u € I,5(X,S) ifu € I,5(Y,S).

To prove that o(f*u) = ffo(u) we can work in local coordinates. Let (v, ..., ¥,) be a set
of coordinates as in the proof of proposition 5.2.3, valid on an open set U. If v has support

in U, we can represent it as
uly) = 2) [ aly"y" o )

for a symbol a(y”,y",n') | dn' | in SZJ_%+%(N*S') ® Qiper N*S'. Therefore,
uloo=2m)~ [ aly’, 0,1y’

showing that o(f*u) = ffo(u) as stated. Moreover, since the order of the symbols of u and

f*u coincide, we must have
m—d/24+n/d=m —d /24 n /4,

where m’ is the standard order of f*u, d is the codimension of S in X and n’ is the dimension

of X. Since d =d and n' = n — k, it follows that
m =n+k/4=m+ (dimY — dim X)/4 .

This finishes the proof. i



Chapter 6

Pseudo-differential operators

In this chapter we use the space of conormal distributions and the symbol isomorphism
theorem to define and study pseudo-differential operators. As pointed out by Hérmander (see
[Hol]), these operators are introduced to handle variable coefficients differential operators
as one would handle the constant coefficients via the Fourier transform. It turns out that
the inverse of elliptic differential operators can be found in the algebra of pseudo-differential
operators, making this particularly useful in the study of elliptic equations. Some non-elliptic
equations demand a more general type of operators but a similar technique can be applied.
These, the Fourier integral operators, will not be studied here and the reader is advised to

consult [Hol], [Ho3] or [Me].

6.1 Pseudo-differential operators

Let X be a smooth paracompact manifold and consider the product X x X. Sitting inside

X x X is the diagonal A consisting of all the points of the form (z, z). It is a closed embedded

submanifold of X x X. Let II; be the projection of X x X onto the i-th factor, i = 1, 2.
Using the Schwartz kernel theorem (see theorem 1.3.4 and exercise 1.4.9), we see that

any continuous linear map

T : D(X) — D'(X), (6.1.1)

80



has associated with it a unique distribution K7 € D' (X x X;II3QX) such that

T(e)(¥) = Kr(p ® )

for every p € D(X), ¢ € D(X;QX).

Definition 6.1.2 For any smooth manifold X, the space of pseudo-differential operators of
type p,d, V,5(X), consists of those linear maps T as in (6.1.1) such that Kr € I,5(X X
X, A;TIQX). The space of pseudo-differential operators of type p,§ and order m, Wi's(X),
consists of those elements T € W, 5(X) such that Kr € I]%(X x X, A;I1;QX).

As usual, we shall drop p,d from the notation when p =1 and § = 0.

If T € UPs(X) then T = Ty + R with Ky, € (X x X,A;IEQX) and Kp €
(X x X;I13QX), respectively. The principal symbol of Kp, o(K7), will be an element of
SZ(;%JF% (N*A) @Qpiper N*A®IT;QX modulo a section of the same bundle of order p— 0 units
lower. Here, d and n are the codimension of A in X x X and dimension of X x X, respectively.
It then follows that o(Kr) is an element of /T(;(N*A)®inbeTN*A(@H;QX/SZ&_(p_&)(N*A)®
Qriber N*ARII;QX. Some identifications between 7% X and N*A will allow us to simplify the
symbol isomorphism when dealing with pseudo-differential operators, erasing conveniently
the density factors. However, the reason for the normalization introduced in chapter 4 which
makes elements in W7';(X) correspond to elements in S7% (N*A) @€ pipe, N*ARIQX deserves
to be explained. It is a choice dictated by the relation between differential operators and
symbols of the same order obtained using the Fourier transform. Indeed, if x = (z1,...,z,)
are local coordinates on a fixed coordinate patch U, then we can represent u €, (U) by

) [ eaee

21

u(z) = (

Thus, if P = 3 ,j<m a(z)Dg, we have

1

%> / it |Z aa(2)E%)a(€)dE ,

Pu(z) = (

which says that in the distributional sense, the kernel of P is given by

1

Kp=—
P 2

[ e ep(a, &) de Ty



where p(z,§) = X jaj<m @a(z)€*. Note that z = z — y defines a fiber of N*A and p(z, §)|d¢|
can be thought of as a section of S™(N*A) @ Qe N*A. Thus, Kp defines an element
of I'™(U x U, A;II5QU). By using another coordinate system, the reader can check that

> aj=m Ga(7)E is invariantly defined.
Proposition 6.1.3 Assume T' € V7';(X). Then
T : (X)— (X).

Proof. By definition we know that 7" = T; + R where T} and R have kernels in I, 5(X x
X, A;I13QX) and (X x X;II3QX), respectively. Hence, if u €. (X), we have Ru € (X). On
the other hand, Ky, ® u € I,5(X x X x X, A x X;II5QX). Indeed, if V is a vector field in
X x X x X tangent to (resp. vanishing at) A x X, then V = V] + V;, where V] is the lift
under the projection map of an element in V(A) (resp. Vo(A)) and V5 is the lift of a vector
field in the third factor. The condition on the local Sobolev order of K7, ® u follows easily
from this.

Since the map
1 X XX —=XxXxX

(z,y) — (2, 9,9)
is transversal to A x X and i 'A x X = A, by theorem 5.3.8 the restriction i*(Kp, ® u)
is a well-defined element of I,5(X x X, A;II5QX) with compact support in y. By theo-
rem 5.3.6, the push-forward of this distribution under II, will then produce an element of
Is(X,x(A)) = I,5(X,X) = (X). Thus, Ti(u) = (II2).i* (K7, ® u) € (X) . The result
follows. i
Let F and F' be smooth complex vector bundles over the manifolds X and Y, respectively.

Generalize the Schwartz kernel theorem ot he case of continuous linear operators
T :D(X;E) — D(Y;F). (6.1.4)

Using this, define the space of pseudo-differential operators W7's(X; E, F) as those maps as
above (with Y = X for which Kr € I75(X x X, A;Hom (E, F') ® I[;QX).

Show that any differential operator is a pseudo-differential operator.



i) Show that the operator
T:DR)— D (R)

u—s [ ul
is an element of ¥~'(R).

ii) Show that the Volterra operator

T :DR)— D' (R)

o e

Given an operator T" as in (6.1.5), one can define its transpose by

is not a pseudo-differential operator.

T'(p)(¥) = o(T¥)
forall v €. (X; E), p €. (Y; F*®QY). We thus obtain a linear map
T :D(Y;F*®QY) — D'(X; E* ® QX)
o — THyp) .
It is continuous since T € (Y; F) and given a sequence D(Y; F* ® QY) 5 ¢; — 0, then
for some fixed compact set K, supp ¢; C K for all j and ¢; — 0 on K uniformly, together
with all its derivatives. Then T%(p;)(¢)) — 0 for all ¢. It is straightforward to check that
if Kp(z,y) is the kernel of T, then Kr:(z,y) = Kk(y,z), i.e., the kernel of T" is obtained

by applying the isomorphism X XY 2 Y x X and by taking the transpose in the fibers
Hom (E, F) - Hom (F*, E*).

Proposition 6.1.5 Let T' € V7';(X; E, F). Then there exists a continuous extension
T :D.(X;E) — D (X;F).

Proof. In view of the relation between the kernels of T and T%, it is easy to conclude that

T € Us(X; F* @ QX, E* ® QX). Therefore, for u € D.(X; E) we can define
Tu(p) = u(T'p) ¢ € D(X;F*®QX).

Indeed, the use of sectional basis and proposition 6.1.3 shows that T¢ € (X; E* @ QX) &
(D.(X; E))". i



Note that W §°(X; E, F) = W~°(X; E, F) consists of those operators whose kernels are
in (X x X;Hom (E, F) ® II3QX). We know these operators regularize distributions (see
exercise 1.4.11), ie., for T € U==(X;E,F), Tu € (X;F) for all w € D,(X;E). Many
properties of pseudo-differential operator 7' depends only on its class in

U, (X5 E,F)

(6.1.6)

This is the case of the result in proposition 6.1.3 as the reader can easily check. Often, we

shall identify Ty and Ty in W7'(X; B, F) if Ty — T, € ¥, °(X; E, F).
Given a class [T] in (6.1.9), it is convenient to have a representer of that class with a
good behavior so that the composition with other operators can be defined. We end this

section describing and studying this representer.

Definition 6.1.7 An operator as in (6.1.5) is said to have proper support if for each compact
set K C X, there exists a compact set K' C'Y such that supp Ty C K if suppy C K. The
set of properly supported elements of ¥, 5(X; E, F) (resp. V7'5(X; E, F)) shall be denoted by
U, ,s(X;E F) (resp. ¥ s(X;E,F)).

D,p,6

Properly supported operators induce continuous linear maps D(X; E) — D,(Y; F). In

particular, if T € V7! (X; E, F), by proposition 6.1.8 we obtain a continuous extension

T: D,(X;E)— D.,(Y;F).
Proposition 6.1.8 Assume T' € V}';(X; E, F). Then,
T=T+R,

where Ty € U (X;E,F) and R € V" *°(X;E,F).

P,p0

Proof. For a properly supported operator 7', its kernel Kr(z,y) has support in ¥ x X
such that the projections Ily and Ilx, restricted to supp Kr, are proper maps. In fact, this
characterizes T' as a properly supported operator.

Let T € V7's5(X; E, F). Choose p € (X x X) such that p = 1 in a neighborhood of the
diagonal A C X x X and such that the restriction of II; (i = 1,2) to its support is a proper
map. Then Ky = pKp + (1 — p)Ky. Let T; and R be the operators whose kernels are



pKr and (1 — p) Ky, respectively. Since Kr is conormal, (1 — p) K is smooth and therefore,
R € U >°(X; E,F). By the remark of the previous paragraph, Ty € U7 (X; E, F). |

D:py0

We have seen that a pseudo-differential operator can be extended by continuity to act on

D.(X; E). For properly supported operators more is true.

Proposition 6.1.9 Assume that T € ¥, ,5(X;E,F). Then, there exists a continuous ez-
tension

T :D(X;E)— D'(X;F).
Proof. Since Kr:(x,y) = KL(y,z), T" is also properly supported and consequently, it
maps D(X; F* ® QX) continuously into D(X; E*®QX). Given u € D'(X; E) we can define
Tu(p) = u(T'y), ¢ € D(X;F*® QX).

This clearly define an extension of T i

6.2 Operations with pseudo-differential operators

We have observed already that for a linear operator 7" as is (6.1.5), there is a transpose
operator defined by duality as T ¢(1)) = p(T%). Since Kz+(z,y) = Kr(y, z), it follows that
the space of pseudo-differential operators of order m is closed under this map. We collect

this result in the following

Proposition 6.2.1 The transpose induces an order preserving isomorphism

LU (X B, F) — U(X; F* @ QX, E* @ QX)
T Tt ’

where Kr+(x,y) = Kr(y,x). If T is properly supported, so is T".

On the other hand, let { , )z be a sesquilinear pairing between D(X; E) and D' (X; E*®
QX). Given a linear operator T' as above, its adjoint 7™ is defined by duality as (T*¢,¥)p =

(p,TY)F, and produces a linear map

T :D(Y;F* ® QX) — D' (X; E* @ QX) ,



where E*, F* stand now for the sesquilinear dual bundles. If K (z,y) is the kernel associated

with 7', then Krp«(z,y) = K} (y,x). It is then clear that the following proposition holds.

Proposition 6.2.2 The adjoint induces an order preserving isomorphism

CLUT(XG B, F) — U (X P @ QX, E* © QX)

T —1T
where Kp«(z,y) = K5 (y,x). If T is properly supported, so is T*.
Finally, we shall consider the composition of pseudo-differential operators.

Proposition 6.2.3 Assume P and Q) are pseudo-differential operators. Then, if either P
or Q) is properly supported, the composition PQ is well-defined and it is a pseudo-differential

operator.

Proof. Assume for simplicity that @) is properly supported. Then, combining propositions
6.1.3 and 6.1.12 and the remark following definition 6.1.10, we see that @ maps D(X; E)
into D(X; F'). Consequently, for any u € D(X; E), P(Qu) is a well-defined distribution,

obtaining in this way a map

D(X;E) — D'(X;G)
u — P(Qu)

which is obviously linear. It remains to show that this map is pseudo-differential.
Proceeding formally, one sees that the kernel of the composition is given by Kpg =
II,p*(Kp ® Kg), where p is the inclusion map (z,y, 2) — (z,y,y, ) and II is the fiber map
(z,y,2) — (x, z). The problem is that the push-forward and pull-back are rather delicate
operations, making hard to see what type of distribution Kpg actually is. We shall prove
that p*(Kp ® Kg) is conormal to A = {(z,z,2)} in X x X x X. Since I |z is an embedding
onto A, it will follow from proposition 5.3.4 that Kpq € IT5(X x X, A;Hom (E, G) ® IT5Q.X).
Recall that by proposition 4.4.3, both Kp and K are smooth along directions which do
not belong to N*A. Therefore, the tensor product Kp ® K fails to be smooth only along
directions in N*A X N*AU N*A X Opsxxx UOp«xxx X N*A. The conormal bundle of the



image of X x X x X under p does not intersect this set. Thus, Kp ® K¢ is smooth along

directions in

N, ={(z,9,9,2,0,§,-£,0)},
and one can approach the manifold M = X x A x X transversally to define the restriction
Kp(z,y) ® Koy, 2) |m= Kp(z,y) ® Kg(y,2). That this distribution belongs to I,5(X x
X x X; A;Hom (E, G)®I132.X) is now a consequence of the conormality of the distributions

Kp and Kg, respectively. |

Remark 6.2.4 Note that we have avoided talking about W F(Kp ® Kg) since Kp ® Kg is
not necessarily conormal and therefore, definition 4.4.1 does not apply. In section 6.6, we
shall extend the notion of wave front set to any distribution. With that in mind we note
that the result above amounts just to exploit the property that WF(Kp ® Kqg) C WF(Kp) X
WF(Kg) UWF(Kp) x Op«(xxx) U Or=(xxx) x WF(Kg).

6.3 Symbol isomorphism for pseudo-differential oper-
ators

If T"is a pseudo-differential operator as in (6.1.5), of order m, its kernel K7 belongs to I} (X x
X, A;Hom (E, F)®I15QX). Hence, o(Kr) € ST5(N*A) @ Qfiper N*A@Hom (E, F) @ 130X
The isomorphism given by the diagonal map X > z — (z,z) € X x X, induces a bundle
isomorphism

N*A — T*X (6.3.1)

which identifies the fibers of both bundles. By the local trivialization condition of a vector

bundle, we have
Qriber N"A Q@ IILOQX = Qripe, T X Q II'QX = QT X . (6.3.2)

We now use the symplectic structure of the cotangent bundle: 7T*X is provided with
a canonical one-form a whose exterior derivative w = da is non-degenerate. If (z,£) are
coordinates in 7* X, then o = ¥ §;dx; and w = Y. d¢&; A dz;. Consequently, | wA ... Aw |

defines a canonical trivializing section of Q7™ X.



Theorem 6.3.3 There exists an isomorphism

(X B, F) ™ (T X; [I*Hom (E, F))
Om - ’ — ’ .
\If;’jg(P‘5)(X; E,F) 5275‘(”‘5) (T*X;II*Hom (E, F))

Moreover, if the composition of P € V}s(X; E, F') and Q € Y} 5(X; F,G) is defined, PQ €
\I’ZT;_H(X, E, G) and Jm+n(PQ) = Jm(P)Jn(Q)

Proof. We already know that

(X E, F) ™ (N*A) ® Hom (B, F)) ® Qiper N*A ® QX
Om - : — ’
(X B F) S (N*A) ® Hom (E, F)) ® Qpipes N*A @ 30X

is an isomorphism. By (6.3.1), any element of S7’s(N*A) is identify uniquely with an element
of S75(T*X). By (6.3.2), Qpier N*A ® IIFQX is identify with Q7™ X. Under the projection
II:7*X — X, the bundle Hom (E, F') pulls back to the bundle IT*Hom (E, F') over T*X.
Since T X is symplectic with form w, the bundle Q7™ X is canonically trivialized. Thus, we

can cancel the density factors and obtain
;?J(N*A) ®@ Hom (E, F)) ® Qgiper N*A @ II;QX o~ ;‘S(T*X) ® I[I*Hom (E, F)

S (N*A) ® Hom (B, F)) ® Qpine, N*A @ QX S0 P71+ X) @ I*Hom (E, F)

It remains to show that whenever the composition of pseudo-differential operators P and @)
of order m and n is defined, then 0,4, (PQ) = 0,,(P)o,(Q). Since the symbol of PQ is
invariantly defined and does not depend upon smooth perturbations of either P or (), we shall
compute it in local coordinates assuming that both P and () are properly supported. Thus,
we assume that the kernels Kp and Kg of P and @, respectively, are compactly supported
distributions with support contained in O x O, O a coordinate neighborhood. Let (z,y) be
coordinates in O x O. The maps fr(x,y) = (x,z — y) and fr(z,y) = (y,x — y) are normal
fibrations of A C O x O, with inverses f;(z,v) = (z,z —v) and fzp'(z,v) = (z+v,z) (see
section 6.4 below). With respect to the fibration fr, the full symbol of P is given by taking

Fourier transform along the fibers of the conormal bundle:
or(P) | ddy |= (Kp(w, 2 — ), ) [ dg | .

Observe that this section of ZJ(N*A) ® Qiver N*A @ II*QO can be identified with a section
of ST5(T*0) @ QT*O. Similarly,

or(Q) | dédy |= (Kqly +-,y),e7"P) | d¢ | .



For u €. (O, E), we can write

Pu(e) = (Kp(w,),u()) = @m) " [ 00(P) (@, )= u(y)dydg
)7 [ ou(P)(@, )= i) de

Qu(z) = (Kq(w, ), u() = 2m) " [ oa(Q)(y, '™ uly)dyds .
Hence,
PQu(x) = (2m)™ [ = a1(P) (@, )7n(@Q) (u, E)uly)dyde
which is nothing but the action of a pseudo-differential operator on O whose kernel is the in-
verse Fourier transform along the fibers of N*A of the symbol a(z,y,£) = o1(P)(z,£)or(Q)(y,§) €
SPSTHN*A) @ Qines N*ARTT*QO. Note that o, (P) and 0,(Q) are represented by o7 (P) and

or(Q), respectively. We just need to identify the invariant part of a(z,y,£). The expansion

a(xay,g) = UL(P)(x’g)UR(Q)(xa g) + (.73 - y) : &(xaya g) ’
combined with proposition 3.3.6 assures that

O—m+n(PQ)(m7€) = a(x,f) (HlOd Sm+n (p= 6)) = O'L(P)(m,g)O'R(Q)(.r,f) (mod Sm+" (p— 5))
= om(P)(z,£)0n(Q)(z,€) -

The result follows. |

Corollary 6.3.4 If i stands for the inclusion map, the short sequence

o) ™ (T X; [I*Hom (E, F))
0 — Uy (X, B, F) 5 WIS (X; B, F) 75— 000 0
™= (T X TI*Hom (E, F))

P,

18 exact. I

We stop momentarily to discuss three important examples of differential operators widely

used in differential geometry.

Example 6.3.5 Let X be a smooth manifold and E be the complexification of the exterior
algebra A*(X) = @,AP(X). Here, AP(X) is the set of all p-forms on X. If (zy,...,2,) is a
coordinate system valid on an open set U, any section of Ef over U can be expressed as

= Z Z fily---yip (ll?)dll?“ FANRWAN d[L'Z'p , (636)

P=0 i=(i1,..ip)



for some complex-valued function f;, . ; . This indicates how to trivialize A(X) over U: the
collection {dx;, A...ANdz; : 1<i; <...<i, <n, 0<p<n}form a basis for the fiber of
A*(X) over any x € U. Thus, A*(X) is a vector bundle of rank 2". The exterior derivative

d is the unique R-linear map
d: (X;A(T*X)) — (X; A" (T*X))

such that d((X;AP(T*X)) C (X;APTHT*X) for all p > 0, df (X) = X f if f € (X) and X is
a vector field, dod = 0 and d(wy Aws) = dwy Aws + (—1) w1 Adws where wy € (X; A" (T*X)).
We still call d the operator we obtain on sections of the complexification E of A*(T*X). Let
P be any zeroth order differential operator acting on sections of (X; E). Then Pw = p(x)w
for all w € (X; E) and for some p € Hom(E, E) (see chapter 3 for definitions). Thus

dPw — Pdw = d(pw) — pdw

=dp Aw+ pdw —pdw = dp ANw .

The operator w — dp A w is differential and has order 0. Hence [d, P| € Dif f°(X; E)
for any P € Diff°(X; E), proving that d is a differential operator of order 1. Thus d €
SYT*X;II*H E. E
VY X;E,E) = V(X E). Its symbol is an element of SOET*X;H*HSE EE:E;;
know a priori it is invariantly defined, we can proceed to compute it in coordinates. Consider

Since we

a compactly supported section w as in (6.3.6). From the properties of d we see that

a 11...%
dwzzp,i J;;'] ’ (m)dil?] ANdx;, N... A d:Eip
1/,
_ / ¢ VGENS L Fiy)dysy A .. A dy;,
(275)”)

(27_(_)”) /ei(w—y)fa(d)(x,f)w(y)dydé‘ ,

where o(d)(z,§) is the full symbol of d in the (z,&) coordinates of T*X. It follows that the

principal symbol of d is the element represented by the homomorphism o (d)(z, §)(a) = i Aa.

Example 6.3.7 In addition to the hypothesis on X in the previous example, suppose it is a
compact riemannian manifold with riemannian metric (, ). This metric induces a metric on
the fibers of the exterior algebra which integrated defines a pairing between D(X; A*(T*X))
and D' (X; (A*(T*X))* ® QX). The density factor can be ignored because the riemannian



structure trivializes the density bundle in a canonical way. Also, the dual bundle (A*(7T*X))*
is isomorphic to A*(T*X). Complexifying all this construction, we obtain a sesquilinear
pairing ( , ) between D(X; E) and D'(X; E).

Using proposition 6.2.2, we see that the adjoint ¢ of d is pseudo-differential operator of

order 1. Since it clearly preserves support, it is a differential operator. Its symbol can be
SYT*X;I*Hom (E, E))
SO(T*X; I*Hom (E, E))
given by 01(0)(x,&)a = —i&]a, the contraction of a by —i¢ in the first slot.

The Hodge Laplacian A is defined as (d+§)?. Since d* = 0 it follows that 2 = 0. Hence,

A = db 4 dd. Therefore,

computed using the relation (dw, @) = (w, da). It is the element of

02(A)(z,)a = o1(d)or()a + 01(8)or(d)a = [[¢]ar

This can be checked using some local trivialization of the bundle E. Notice that the symbol

above is, at every point of 7*X — 0, an invertible element of [I*Hom (F, E).

Example 6.3.8 Let V be a vector space with inner product ( , ). In the free tensor algebra
>, ®"V, consider the ideal Z generated by all elements of the form v ® v + (v,v) -1, v € V.
The Clifford algebra is defined as

_S.®V

CUV, () = =22

Since V C ¥, ®"V/, it projects down to CI(V, (, )). This projection is 1-1. Thus, we think of
V as included in CI(V,(, )). An endomorphism of V' preserving the inner product, extends
canonically to an inner automorphism of CI(V,(, )). As a vector space, CI(V,(, )) is iso-
morphic to the exterior algebra A*V| and the isomorphism preserves the obvious filtrations.
Cl(V,(, )) decomposes as a direct sum of subspaces, Cly(V, (, )) and Cl;(V, (, }), generated
by products v;, - v;, ... - v;, with k even and odd, respectively, defining a Zs-graded algebra
structure. Given an element z = av;, - vj, . .. - v;,, define Z = (—1)"av;, - ...-v;,. Then z -z

is a algebra norm on CI(V,(, )). The spin group is defined as
Spin(V)={z € Clo(V,{,)): z-2=1, 20z ' € VifveV}.

When V' = R"™ we shall simply write Spin(n). This group is a double covering of SO(n).



There is a natural representations of Spin(n), p : Spin(n) — Aut(V), given by p(g)v =
gvg .

With the tuple (V,(, )) we can associate the space of spinors S(V,(, )). Assume then
that n = 2k and that V has a complex structure J which is an isometry relative to the inner

product. The complex space (V, J) leads to the complex exterior algebra
ALV = &b ALV .

For v € (V,J), the map ¢ — v A ¢ —v]p is R-linear in V' and its square equals —(v, v)I.

Thus, it extends to a homomorphism of C-algebras
p:CLUV, () CcCUV,(,)) ®r C — Endc(AgV) .

Set S(V,(, ),J) = A&V. The restriction of p to Spin(n) is reducible. This u-action of
Spin(n) preserves both, S, (V,(, ), J) = ®;—aALV and S_(V,(, ),J) = ®j—u11ALV. One

obtains irreducible representations
D7 : Spin(n) :— Aut(S+(V, (, ), J) .

Given an oriented riemannian manifold X of dimension n = 2k, let F(X) be the bundle
of frames. It is an SO(n)-bundle. We assume that the transition functions of F'(X) can be
lifted preserving the cocycle condition, to functions in Spin(n). In this form, we obtain a
Spin(n)-bundle F(X). The manifold is said to be a spin-manifold if this lifting is possible.
The obstruction to it is measured by the second Stiefel-Whitney class wq(x) € H*(X; Z5).

If for a G-bundle P — X one has a representation p : G — Aut(W), then the bundle
P x, W is defined as P x W/{(pg,w) ~ (p,p(g)w)}. Sections of this bundle are in 1-to-1
correspondence with maps f : P — W satisfying the property that f(pg) = p(¢=!)f(p) for
all g € G. Given a connection form on P and a tangent vector Y € T, X, the notion of the
horizontal vector field Y along IT-*(z) is well defined. If f represents a section of P x, W,
by checking the compatibility condition, we can see that Y f also represents a section of the

same bundle. Thus, the connection on P induces a linear connection

V:(X;Px,W)— (X;T*X®Px, W) .



Let u be the representation of Spin(2k) on S(R?**,( , },J) = S(R*), where (, ) and
J are the usual structures. Consider also the representation p of Spin(2k) defined before,

extended to the whole algebra of R?*. We obtain bundles
S(F)=F X, S(R%*)
CUTX) =F x,Cl(R*,(,))

The spinor bundle S(F) is a natural CI(TX)-module. Indeed, if u € (X;CI(TX)) and
¢ € (X;S(F)), we can regard u and ¢ as functions on F with values in CI(R?*,( , )) and

S(R?*), respectively. Then, u - ¢ is a function on F' with values on S(R?*) and

(u-©)(pg) = ulg™ulp)plg™")e(p) = ulp)g - g~ olp)g = wlg™")(u- ©)(p) .

The Dirac operator is defined on (X;S(F)) as follows: the connection on F' induces a
connection on S(F). The metric on X identifies TX and T7*X. We write V for the composite
map

(X;S(F)) — (X;T*X @ S(F)) — (X;TX @ S(F)) .

Since TX C Cl(TX), Clifford multiplication induces a map
m:TX ® S(F) — S(F) .

The Dirac operator is the composition of m and V:

D: (X;S8(F)) — (X;S8(F))
o — mVe

If {e1,...,e,} is an orthonormal frame on T X, locally it follows that
Dy = Zei Ve, 0.
i=1
Consequently, the symbol o(D)(z,£) is the homomorphism given by Clifford multiplication

1
s@—ﬁé-so-



6.4 Representation in local coordinates

We now proceed to describe the elements of \IIZ,’(;(X ; E, F) locally. Therefore we assume that
X = R™ with its usual coordinate system. Since every vector bundle over a contractible
manifold is trivial, in order to achieve the desired description it will be enough to assume
that E and F' are trivial vector bundles of rank one, i.e., we assume that we are in the
scalar case, because otherwise, after chosing some sectional basis, we shall simply deal with
matrices of operators whose entries are scalar pseudo-differential operators.

Hence, let T' € ¥7';(R™). We want to write down a coordinate formula for the action of
T over u €, (R"). Recall that what characterizes T is the fact that its kernel K7 belongs
to ;‘J(R" x R™ A; II;QR™). By proposition 6.1.1, T' can be written as T} + R where T} is

properly supported and R is regularizing. Let p € S(R") with p > 0. If we set

o(R)(2,y,§) = ———

we obtain a rapidly decreasing symbol such that

Ru(z) = (2m)™" [ D80 (R)(z, y, )u(y)dyds . (6.4.1)

Under the assumption that 7" is properly supported, we shall show that it admits a similar
representation with a symbol o(7T') in S7%(T*R"). In fact, there are different representations
of T'u which depend upon the normal fibration of A C R™ x R™ employed to lift K to
an element of STJ(N A, Op; TIEQR™). We disgress momentarily to study three particular
examples of fibrations.

Let (z,y) be coordinates in R™ x R"™ and consider the maps

fu(z,y) = (z,z —y)
These maps are diffeomorphism of R" x R™ onto itself. Moreover, fr(z,z) = fr(z,x) =

fw(z,2) = (x,0) which we consider a typical element of the zero section of NA. It is

rather clear that under any of these maps, T'A gets mapped onto 7O and the quotient



TaAR™ xR"/TA is identified with Tp, NA/TOa. Thus, fr, fr and fy are normal fibrations
of A, the left, right, and Weyl fibrations, respectively.

If T is properly supported, the pull-back of K7(z,y) | dy | under the inverse of any of the
fibrations (6.4.2) is a tempered distribution along the fibers of NA. The Fourier transform
produces left, right and Weyl symbols:

or(T)(x,€) = / Kr(z, @ — v)e®dv | dydé |
or(T)(1,€) = [ Krly +v,y)e dv | dydg |
ow(T)(z +1/2,€) = /KT(:L- Fy/2 4 v/2,3 +y)2 —v/2)e"Edy | dyde |
These are the full symbols of the operator 7" in the coordinates chosen, and are elements of
Ts(N*A) @ Qpiver N*A @ TI3QR™), which can be thought of as elements of S75(T*R") ®
QT*R™. Note that in the coordinates above, | dyd¢ | is the density w™, where w is the
canonical form dy A d¢ of T*R™.

Proposition 6.4.3 Any T € V]'s(R") has a representation

Tu(w) = (2m)™" [ €=9%6(T) (2, y, E)uly)dyd

for some p,d symbol o(T) of order m. Conversely, any such operator defines an element of
ns(R™).

Proof. In view of (6.4.1) and the linearity of the map T' — o(T'), it is enough to assume
that T is properly supported. In that case, T can be represented as above, where the symbol
o(T) is determined once a choice of normal fibration is made. In particular, for the left,
right or Weyl fibration, T is represented by or(T'), or(T) or ow (T), respectively.

Conversely, any operator as in the proposition has kernel given by the “oscillatory inte-

gral”
Kr(z,y) | dy |= [ €= 0(T)(@,y.6) | dy| |
which is a conormal distribution. i
Notice that the maps gr(z,v) = (2,2 — v) and gg(z,v) = (z + v, ) are inverses of fr,

and fg, respectively. The one parameter family of maps

hi(z,v) = (x 4+ tv,z — (1 — t)v)



defines a homotopy between g7, and gr. This homotopy is the inverse of a homotopy of normal
fibrations connecting f;, and fg, which we knew exists in view of theorem 4.1.1. In terms of
the coordinates (z,y) on R™ x R, v = x —y. Consider the homotopy ¢;(x,y) = hso fr(z,y)

between the identity and gg o fr. If u is a distribution on R™ x R", we have

14 1
(gro f1)'u—u :/0 £gt*udt:/0 g; (v - (0p + 0y))udt .

Iterating this N-times we obtain

N (v (0, +8
(grofL) u—u = Z —l—/ / / 9; (v(9,40,)) N tudsy1dsy . . . dsydt .

If u is an element of I%(R"™ x R", A), since the vector field v - (9, + §,) is tangent to

and vanishes on A, the last term in the right hand-side of the expression above belongs to

Igfg_(NH)(p_&)(R" x R™ A). It then follows (see proposition 4.2.12) that

frgiu~ YU +a))u

7>0

Notice that if (z,v) are trivializing coordinates for NA, (fr).((x —y) - (0 + 0y)) = v - Oy.

Consequently,
gru ~ Z ;! gru

320

If, additionally, we assume that the projections onto the first and second factor restricted to
the support of u are proper maps, after taking invariant Fourier transform along the fibers
in the expression above, we conclude that

or(u) ~ Z

|
J>0j

(35 0z or(u) (6.4.4)

where o, (u) and og(u) are the full symbols of v computed using the left and right fibrations,

respectively. Clearly, we also have

o1(w) ~ 3 _jiz)J (0 - 0.) on(u) (6.4.5)

Assume that 7' is represented in its more general form

Tu(w) = (2m)™" [ € V8a(o,y, E)uly)dyde



for some symbol a(z,y, ). Show that its left reduced symbol can be obtained as

UL(T)(JZ»O ~ Z (_]Z')J (86 ’ (9y)ja(x,y,f) |y:w .

320

Using the fact that if the Taylor series of f is written in terms of the differentials f*) as

o0 £(5) (- .
f(l’+y)zzf (x;ylv"'vy])

=0 7!

806 (64
then f®)(z;y1,...,y;) = > lal=k k!M, conclude that

a!
(—3)’

al

Y

o (T)(x, ) ~ >

|20

a? ;‘a(fc,y,ﬁ) |y:w :

Hint: In the left fibration the symbol of gju on the fiber over zy depends only on u on the
submanifold =z = (. Freeze the coefficient of Kr(z,y) at x = x¢ and use (6.4.5).

Notice that if the role of the amplitude a in the second expression above is played by the
right symbol og(P) of some pseudo-differential operator P, we obtain an equivalence version

of (6.4.5) relating the right and left symbol of P.

Theorem 6.4.6 Let P € U (R") and @ € g (R™), respectively. Then PQ € \Ilerm’(R”)

P:py8 Dspy0 P,p,0

and

—i)le
01 (PQ) ~ X 0 080, (P) (2, 050,(Q) )

07

Proof. By proposition 6.2.3 and theorem 6.3.3, we know that the composition is an

element of \I/Z?;f(’;(R”) whose principal symbol is the product of the principal symbols of P

and @, respectively. It only remains to show that asymptotic expansion for o (PQ).

We have left and right representations
Pu(x) = (2m) " [ = %0, (P) (@, €)u(y)dyds = (2m) " [ o1 (P)(, E)a(€)de |
and
Qu(w) = (2m) " [ ¢ Veor(@)(y, uly)dyds = (2m) " [ ¢ ( [ e ¥on(@)(y, uly)dy ) d |

for P and @, respectively. Then, computing the Fourier transform of Qu and inserting it in

the expression for Pu, we obtain

PQu(a) = 2m) " [ [ €401 (P)(z, )7r(@) (4, E)uly)dyde



Let us set c(z,y,£) = or(P)(x,&)or(Q)(y, €). This is a symbol of order m +m'. By Taylor

series expansion about z = y, we see that

(v = ) -
(o= 3 DD g S e (e0,6)

!
0<[y|<N [7|=N+1

Since the symbol c, has order m + m' — N(p — §), it follows that the kernel of PQ is

asymptotically equals to

Kpg ~ (2m)™ > /17 9 ((y — z) - Dy)Ve(w, z, §)dE
|v|>0
~ (2m)™" 1|7| / iVe) )reie—v)é (D%)(x z,&)d¢
|'7|>0 gk @, - Doe
D
~ @ny Y [etevel@i Dl e
|7|>0/ 7!

Hence, taking Fourier transform along the fiber v = x —y to compute the left reduced symbol

of the composition, and writing the differentials in terms of partial derivatives, we obtain

[v[>0 By

Ivl
~y y O i (;)azﬂaL(sza?o—R(Q).

Changing the summation index v — 3 to a we conclude that

a iy
orL(PQ) ~ Z( ), Ogor(P)oy (Zﬁ(ﬁ)!

_iyla
Z( a)! dgor(P)ogoL(Q) ,

[e3

858?0R(Q)>

where, to obtain the last equivalence, we have used (6.4.5) (see also exercise 6.4.6 and remark

thereafter). The desired result is proven. i

Corollary 6.4.7 Let X be a smooth manifold and consider P € V7's(X) and Q € \IJZ};(X)
such that its composition is defined. Then, [P,Q] = PQ — QP € \IJZ?;m ~(p=9) (X) and its

symbol is

AA(P.Q)) = Y (3,0(P)s,0(@) ~ 3,0(Q)0no(P)

J
Proof. In view of theorem 6.3.3 and corollary 6.3.4 the only unresolved question is the

computation of the symbol of [P, @] in terms of the symbols of P and @, respectively. But



the symbol is invariantly defined and in coordinates, according to the previous theorem, is
equals to the expression given in the statement, since o, (P) (resp. 0.,(Q)) represents o(P)
(resp. 0(Q)). The result follows. i
Let P € U75(X; E, F). Show that o,,,(P)(z,sf)(w) = e~/ P(e*/v)(z) where v €, (X; E)
has value w € E, at z and df(z) = £ # 0. Conclude that if P is classical, i.e., 0,,(P) is a
classical symbol (see definition 4.2.18), then o,,(P) = lim, ;o s ™e **/ P(e*v)(z).
How different from the one above, is the formula for o ([P, @Q]) when P and @ are pseudo-

differential operators acting on sections of a bundle E.

6.5 Continuity in Sobolev spaces

In this section we discuss continuity properties of pseudo-differential operators when acting

on sections of some Sobolev order. We shall prove that if P € ¥7'(X; E, F') with p > 0 then

P : H; (X,E) — HS.™(X, F) (6.5.1)

loc

continuously. That is, for v € H(X, E), suppu C K a fixed compact subset, ||Pul/s—m <
Cllu||s for some constant C' independent of w.
Let U be a coordinate neighborhood in X and (z,&) coordinates in T7*U. Using (2.1.1)

it is clear that the operator

(U, E) — (U, E)
Quux) = (2m) " [ (1 + ) 2a(e)de

maps Hj (X, E)N{u: suppu C U} continuously onto L*(X, E) N{u: suppu C U}, and
this map with restricted domain and range is an isomorphism. Patching together operators of

this type, we obtain globally defined pseudo-differential operators ()5 inducing isomorphisms

QsE : loc(X E) — L2

loc

(X, E).

Therefore, to achieve the desired continuity result for the operator P, it will be enough to

show it for the operator

P:I?

loc

(X, E) — Lipe(X, F)



given by Q¥ PQ¥_, where in defining the composition one introduces compactly supported
functions wherever necessary such that in the end, it is nothing but composition of properly
supported operators. Thus the proof of continuity of (6.5.1) is reduced to the case m = s = 0.

The need for a trivialization of 2X demands to fix a positive density once and for all.
In the sequel, v will be one such density and all the L?-inner products will be computed

relative to v.

Lemma 6.5.2 Suppose P € V) ;(X), p > 0, is self-adjoint and oo(P) > ¢ > 0. Then there
exists A € W0 (X)) self-adjoint, such that P = A*A+ S, where S € U~°(X).

P,p>0

Proof. Modulo a smoothing operator we can assume that P is properly supported. If

there is one such operator A, the symbol algebra isomorphism will imply that
oo(P) = 09(A)*>¢c>0.

This produces a candidate for symbol of A, namely a = \/op(P). We must check that
a € Sg,J(T*X). Using proposition 4.2.4, it will be enough to check that for K C X, compact

and contained in an open set O on which 7*X is trivial, we have
| D2Dfa |< C(1+ ¢l 7+ (6.5.3)

over IT7'(K). Here (z,&) are trivializing coordinates over O.
Observe that
DD ... DN DN oo (P)(z, €)
UO(P)Nii (l’, 5)

D:D?a(m7 6) = Z cg,lﬁaﬁla'--aaNyﬁN
ZOéi=|04|, Zﬁi=|5|
N<lal+|0]

Indeed, a formula as the one above is obviously true when there is no differentiation at all,
or when | o | + | 8 |= 1. The general expression is obtained by induction. Estimates (6.5.3)

follows from proposition (4.2.4).

Choose Ay € U0 (X) such that o(A,) = /oo(P). Then oo((4Ay)*) = oo(A,) and the

D,p,6

operator

P:py8

Ao = 54y + (4))7) € W,,5(X)



is self-adjoint with 0¢(Ag)?> = 0o(P). Using the short exact sequence of corollary 6.3.4, we

have

Ri=P—Aecu »0)

P,p,0

Proceeding by induction, assume we have found a sequence of operators 4; € ¥ lp(,g*‘s) (X),
[=0,1,...,k — 1, such that A = A; and

2

k-1
Ry=P~ (Z Al> Sl
=0

We want to choose A, € ¥, /’jfg” % such that

k 2
P (Z A,) e = x)
=0

The expression above implies that

k—1 k—1
Ri - (z A,) Ay — Ay (z A,) + A2 = Ry — 2404 mod ¥, 0500 (x)

pps0
1=0 1=0
!
Hence, choose A, such that

O kp-8)(BE) 0 k(p—5)(Rp)

—k(p—08) (%
7-k(p-5)(Ae) = 200(40) 2 oo(P) =2 .

Py

and set

By the asymptotic summation formula, there exists A" € \1127 .6 (X)) such that

N
A — ZAZ e \I,—(N+1)((P—5)(X) )

p,p,8
1=0
The operator
1 ! !
A= (A +(A))
has the same properties and satisfies the requirements of the lemma. |

Theorem 6.5.4 Suppose P € V7's(X; E, F). Then

P: H(X;E)— H,™(X;F)

loc

continuously.



Proof. As it was mentioned before, we can assume that s = m = 0. Using sectional basis
we see that E and F' can be assumed to be trivial bundles or rank one. Therefore, by density

of .(X), it will be enough to show that there exists a constant C' such that
(Pu,Pu):/|Pu|2V§C’/|u|2V:C(u,u>.
This estimate is equivalent to one of the form
(C" = P*P)u,u) > —C' (u,u) ,
where C' = C" 4+ C" for some constants C', C". If
B=C"-PP,

then B € Y 5(X) and oo(B) = C"— | oo(P) |?. Therefore, by choosing C" such that
C" > sup| oo(P) |?, we obtain an operator B which is elliptic and self-adjoint. Applying

lemma 6.5.2, we find an square root A of B modulo smoothing operators, B = A*A + S,

Ae W (X),S €U =(X). Hence:

ppy0
(Bu,u) = (A*Au,u) + (Su,u)
= (Au, Au) + (Su,u) > (Su,u) > —||Sul|rz||u||Lz
> _Cl <u7u> ’
because S is smoothing and u has compact support. The desired result follows. |

Observe that in the case s = m = 0, we have really proven that
(Pu, Pu) < M*(u,u) + (Su,u) ,

for some smoothing operator S and M any upper bound for lim¢_,. sup| oo(P) | on the

support of u. Hence, we have the following

Corollary 6.5.5 Let X be a compact manifold and P € U 5(X) (p > 6) with limg_,o 09(P) =
0 for some metric on the fibers of T*X. Then

P: L*(X) — L*X)

18 a compact operator. |



We can now study how the space of conormal distributions behaves when acted on by

pseudo-differential operators.
Lemma 6.5.6 Assume P € VU, ,5(X) has proper support. Then,
P Ip,g(X, S) — Ip,,g(X, S) .

Proof. Assume that P has order m. Since for any V' € (X,TX) the operator Q) = [V, P]

is an element of U7's(X), one can show that
V.. ViP=PV;.. Vit OVa.. Vit ...+ OQx Ve + Q.

where the Q;’s are elements of W7';(X). In particular, this will hold for vector fields in and
. Therefore, if u € 1,5.+(X, S), for vector fields V4,..., Vi, Wi,...,W;in and , respectively,

we have

Vi ViW .. Wi Pu=Vs.. . Vi(PWy.. Wi+ X2 Q. Wiy .. . W+ Q)u

for some operators ), of the same order and type as P itself. Using continuity of pseudo-
differential operators in Sobolev spaces we conclude that the most singular term in the right
hand-side of the expression above is V... ViPW; ... Wju. Commuting through the vector
fields Vi, ...V, with the operator P and using the continuity result one more time, we see
that Vi ... ViW,...W;Pu has local Sobolev order s — m — [(1 — p) — k§. This proves the
desired result. |

This lemma in fact shows that for P € 7! (X),

P Ip,(;’c’s(X, S) — Ip,(;,c,s_m(X, S) .

This leads to the question of how is the symbol of u € I,5.,(X,.S) related to the symbol of
Pu and the symbol of P itself.

Proposition 6.5.7 Ifu € I .(X,S) and P € V]'5(X), then
P IS’&C(X, S) — I;ng(X, S),

and

Gsim(Pu) = o(P) | o4(u) . (6.5.8)



Proof. We have seen already that Pu € I,5(X,S). Since its symbol is invariantly defined,
we can compute it in coordinates to establish the validity of (6.5.8). For that, let (z',2")
be a preferred coordinate system on U adapted to S at p. Then S = {g € U : z'(q) =

(#n-a(q), - - -, 2a(q)) = 0} and

! n ]. d R ! n "
’LL(.’L‘,.CL' ): (%) /elm ¢ a(x,f )dg )

!

where a(z',€") | d€" |€ 357" (N*S) @ Qiper N*S.

Let x €. (U) with x = 1 on a neighborhood of an open set V' with compact closure in U.
To compute oym(Pu) |-1y it is enough to compute o, (Pxu) since for any other choice
X, Pxu |y= Pxu |y modulo smooth errors. If P(z, D,) is the given pseudo-differential
operator, we can assume without loss of generality that it is properly supported in a neigh-

borhood of V' x V. Then it has a left representation, and

1 ntd S 7:” " ’ " "
Pxu(z) = <§> /e“”” VI 6 (P (2, y)x(y)aly s )dn dydy .

We need to show that the partial Fourier transform of Pyu in the z"-variables, is a symbol
in the conormal bundle to S whose top part is given by the right hand-side of (6.5.8). Call
this transform b(z',£") | d¢” |. Then,

! " 1 ntd —iz” " i(z— i mon ’ " "
' €)= () e e o (P) @ )ty 1 ) Yy

2

After changing the variables z”,v,n" to rz",ry,rn’ , respectively, we see that

ron 1 n+d n ir :I:” " T mon ’ " ’ " "
€)= (55) e [ e ey (P v ey (w)aly' o s

Consider the phase function ¢((z",y,v,n") =2 € + (x —y)y+y'n". It has non-degenerate
critical points given by the equations ¢ =y, 2 =0=y", 7 =0andy =7  =¢". On
these critical points, ¢ vanishes. Applying the stationary phase formula [GS], we see that

"

for the rescaled variable r=1¢,

b(z',€") | d€" |= a1 (P)(«',0,0,&")x (2, 0)a(a’,€") | d€” | .

Over V, x = 1. Hence,

b(x', &) [ dE" |lnrv=0L(P)(x',0,0,¢ )a(z,&") | dE" |= o(P)

N5 o(u) fmry



This completes the proof. |
Without using stationary phase formula, prove formula (6.5.8) for the case where P is a

differential operator.

6.6 Elliptic operators and elliptic complexes

As an illustration of the power of the ideas developed so far, we discuss a particular class of
operators, the elliptic pseudo-differential operators.

Let P € ¥7';(X; E, F). Its symbol is an element of S7's(7*X; [I*Hom(E, F)). P is said to
be elliptic if for every relatively compact subset K of X, o(P)(z,£) is an invertible element of
[I*Hom(FE, F) for all x € K when £ is large (see definition 4.2.19). If the ellipticity condition
only holds for directions (z,£) on an open cone I'; we shall say that P is elliptic on I". The
open set of elliptic points of P will be denoted by EIll(P).

Define the operator wave front set by
WF'(P) = {(z,y,&,n) € T"X x X : (2,9,& —n) € WF(Kp)} . (6.6.1)

We are abusing notation in the expression above by ignoring the role played by the bundle
Hom(E, F'). This is done just for notational convenience. Note that the bundle isomorphism
(6.3.1) permits to identify WF (P) with a subset of T*X. We shall frequently do this,

without making any reference to it.

Proposition 6.6.2 Let P € \Ilzg(X; E| F) be an elliptic operator on an open cone I'. Then,
for any closed cone I' C T, there exists Q) € U 5(X; F,G) such that
WFQP-NNT' =WF(PQ-I)nT' =0.
Proof. Choose a closed cone K such that I" CKCKCT. Ifp= om(P), we can find a
symbol ¢ € S7§"(T* X; II"Hom(FE, F)) such that
pg=1+a+b,

where a € S~°°(T*X;II*Hom(E, F)) and b € S) ;(T*X; II*Hom(E, F')) with suppb C T*X —
K. We can choose Qg € ¥_"(X; F, E) such that o_,,(Q¢) = ¢. Then

P,p,0

o(PQ —1I)=b mod S, (I X; I"Hom(E, F)) .



We now choose By € V9 5(X; F, E) with o(By) = b. It follows that WF (By) N K = and
PQy— (I +Bo) = E1 e W, Y™ (X; F,E) .

We proceed by induction to get rid of the error term. Assume we have found Q;, B;, j =
0,...,k — 1, such that Q; € ¥, 77 (X, F,E) and B; € ¥, 3" °(X;F, E), respectively,
with WF'(B;) N K = () and

k—1 k—1
P Q) ~(I+Y.B;))=E, eV *(X;FE).

=0 =0
One construct @, By, such that

i i —(k+1)(p—9)

P(ZQJ)_(I+ZBJ):EkE\Pp,6 g (X7F7E)7
=0 =0
and WF'(By) N K = (). The two relations above imply that
o(P)o(Qr) — o(By) = o (Ek) -

By ellipticity of o(P) on T, we can find Q; € \Il;,g”*k(p*é) (X; F, E) such that

op(Qr) = o(Ex) + b + ay ,

with aj, € S~(T*X, I*Hom(E, F)), by € S, (T*X; I*Hom(E, F)) and suppby N K =
(). Choose By, € \I/p_,];(p_‘s)(X; F, E) such that o(By) = bg. Using the asymptotic summation
formula, we set

Q@ ~ 2 Q;

B~Y B,

Y

which gives

PQ—-(I+B)eV *°(X;F E),

with WF'(B) N K = .

We leave to the reader to show that Q can be chosen to be also a left parametrix on I".



Corollary 6.6.3 Let P € \I/Zf(;(X; E, F) be an elliptic operator. Then there exists a parametriz
Qev " (X;F,E) such that

rode

S=QP 1€V (X;E,F)
S'=PQ—-1cV =X;FE)

Ifu € D'(X,E) is such that Pu €. (X, F), thenu € (X, E).

Proof. The only unsettled point is the last part of the statement. But if u € D'(X, E) is
such that Pu = f €. (X, F), then

Qf—Su=u,

for S a regularizing operator. It follows that ) f — Swu is smooth. Then, so is w. |
The results above are enough to obtain a great deal of information about elliptic equations
on compact manifolds. Let P € \IJZ?(;(X ; £, F) be elliptic and consider the one-parameter

family of continuous linear operators

H™(X,E) 25 H*(X,F)
(6.6.4)
u — Pu

The continuity is, of course, a consequence of theorem 6.5.4.
Theorem 6.6.5 The map (6.6.4) is Fredholm.

Proof. Let u be a distribution in the kernel of P,. Using the parametrix @) of corollary
6.6.3, we see that

u==Su.

Since S is a regularizing operator, it follows that v € (X;E). Thus, ker P, C (X;E) is
independent of s. By Rellich’s theorem (see corollary 2.2.5), ker P, is a finite dimensional
space.

We show next that the range of P; is closed. Let f, be a sequence in the range converging
to f. For each n, there exists a unique u,, perpendicular to ker P, such that Pu, = f,. We

then obtain

Qfn = QPu, = u, + Su, .



Since S is regularizing, Rellich’s theorem implies it is a compact operator. Assume that the
sequence of norms ||u,|| goes to co. This will imply that some subsequence of the sequence
Up, = Un/||un|| converges to an element in ker P;, contradicting the fact that every element
of {v,} has norm one and is perpendicular to ker P;. Thus, {||u,||} is a bounded sequence.
Hence, some subsequence of {u, } converges, say to u, and Pu = lim Pu,, = lim f,, = f.
Finally, using a riemannian structure to identify the corresponding dual bundles with
the bundles themselves, we see that the adjoint of P; is again defined by an elliptic pseudo-
differential operator. This is a simple consequence of theorem 6.2.2. Thus, coker P, = ker P*
is also independent of s, contained in (X; F'), and therefore, a finite dimensional space. This
finishes the proof. i
Consider now a graded bundle E = @?ZOEJ- over X and a graded classical pseudo-

differential operator P = @?;6]31- of order m, i.e., P; € V"™ (X; E;, E;11). The sequence

(X5 E) (X3 50) B (X5 ) .50 (X )
is called a complex if PjP;_; = 0. Notice that in this case, o(P;)o(P;—1) = 0 follows from
theorem 6.3.3. We shall refer to the complex (F, P). A particular example is the De Rham
complex essentially defined in 6.3.5.

A complex (E, P) is said to be elliptic if for every (z,&) € T*X — 0, kero(P;)(z,§) =
range o (P; 1)(,§). It follows that the operator A; = PfP; + P; 1P}, is an elliptic pseudo-
differential operator of order 2m. Indeed, if v € kero(A;)(z,§), taking the inner product
of o(A;)(v) with v itself, we conclude that 0 = |[lo(P;)(v)||* + |lo(P;,)(v)||>. Thus, v is
the kernel of o(P;) and therefore, v = o(Pj_1)(w) for some w. But then, (d(4;)(v),w) =
(o(P;_y)o(Pj_1)(w), w) = [lo(Pj_1)(w)||* = ||[v]|> = 0. Thus, o(4;) is invertible. Conversely,
if 0(A;) is invertible then the complex (E, P) is elliptic. This only amounts to show that any
v in ker o(P;) belongs to rangeo(P;_1) since the other inclusion follows from the complex
condition. From invertibility of o(A;) we find w such that v = ¢(A;)(w). This implies
that o(P;)o(P;)o(P;)(w) = 0. From this it follows that o(P})o(P;)(w) = 0 and therefore,
v = o(Pj_1)o(P; 1)(w), an element of the range of o(Pj_1). An example of an elliptic

complex is the De Rham complex. This was proven in 6.3.7.



The j-th cohomology group of the complex (E, P) is defined by

ker P;
range Pj_1

H!(X;E P)=
Theorem 6.6.6 (Hodge) Let (E, P) be an elliptic complex. Then,
L*(X; E;) = ker A; @ range P;_; @ range P

as an orthonormal direct sum, ker A; is a finite dimensional vector space contained in

(X;E;), and H (X ; E, P) = ker A,.

Proof. By theorem 6.6.5 we know that A; has a finite dimensional kernel entirely con-
tained in (X; F;). Regarding it as a map from H*™(X; E;) to L*(X; E;), it is Fredholm and
we obtain L?(X; E;) = ker A; @ range A;. Clearly, the range of A; is contained in the span
of the ranges of P;_; and P;. Since P;P; ; = 0, these two spaces are orthogonal to each
other. It is clear that ker A; = ker P; Nker P;_;. It follows that range A; contains the span
of the ranges of P;_; and P}. Since range A; is a closed subspace of L*(X; E;), the desired
decomposition is proven.

There is an inclusion of ker A; in H’(X; E, P). This inclusion is injective because the
range of P;_; is orthogonal to ker A;. We leave the proof that this map is surjective to the
reader. i

Assume P € U™(X; E, F) is elliptic and self-adjoint, with m > 0. Let IT be the orthogonal
projection onto the kernel of P, and consider the operator A = (1—1II)P~(1—II). Comparing
this operator with the parametrix () of P given by corollary 6.6.3, show that A is a self-
adjoint operator in ¥~ (X; E, E). Using compactness of A as an operator in L?(X; E),
establish the spectral decomposition for the unbounded operator in L?*(X; E) defined by
P.

We finish this section by proving proposition 2.3.6, where continuity of elliptic operators
in Sobolev spaces is going to be used one more time:

Proof of proposition 2.3.6. Let (x,y) be a coordinate system near 02, with = a defining
function for 90 and V' = (—i)d,, and write the operator P as P = 7" p;(z,y, Dy) DI,

where p;(z,y, D,) is a tangential differential operator of order m — j. The result has been



proven when s —m > 1/2. Otherwise, (i.e., when s —m < 1/2) distributions in H* ™ ()
can be approximated by smooth functions with with compact support in €.

The jump formula (2.3.7) applied to u € (2) gives

m—1 [m—k—1
H Z ( Z pj+k+1(0>ya Dy)Diu |w:0> ® D’£5($)||s—m = HP(UC) - (Pu)cnsfm .
k=0 \ j=0
If u € Hy(Q), then (Pu). € L*(R"), and since s —m < 1/2, the term ||P(u,)||s_m can be
bounded by the s Sobolev norm of u since P is elliptic and continuous on Sobolev spaces,

and u can be approximated with functions supported in the interior. Hence, applying the

triangle inequality, we obtain
m—1 [m—k—1
I kz_% ( Jz_;) Pj+k+1(0,y, Dy) Diu |x—o> ® Dyd(2)lls-m < C(llulls + | Pull2) -

It follows that that the distribution whose norm is computed in the left hand-side belongs to
H*~™(Q) and it is supported by 0. Pairing it with a test function which near the border
is equal to ™! we conclude that p,(z,y, Dy)u |9 ®DT'6(z) € H*™(Q). Since 09 is
compact, proposition 2.3.3 implies that p,,(z,y, Dy)u |z=0€ Het3 (0€2), and since p,, (0, y, D)
is elliptic of order 0, this implies that the first trace u |,—o is in H sty (092). Knowing this, one

can go back to the jump formula once again, and by induction conclude that the remaining

traces V7u |oq are in H*9+3(9Q) for 1 < j < m — 1. i

6.7 Wave front set of a distribution. Pull-back revis-
ited

The kernel Kp of a pseudo-differential operator P is an element of I(X x X, A;I1,QX).
Therefore, we have WF(Kp) C N*A. From the definitions and the identification II :
N*A — T*X we see that T*X — 0 — WF'(P) is the largest open cone in T*X — 0 where
o(P) is rapidly decreasing.

Define

Y(P)={peT*X —0 : o(P) is not elliptic in a cone around p} . (6.7.1)

We proceed to prove a useful microlocal partition of unity result.



Proposition 6.7.2 If {¢;};er C S°(T*X) form a partition of unity of T* X, then there exist
P; € V(X)) such that WF'(P;) C supp p;, and
P=I+5, SeU > X).
Proof. We can assume that the partition of unity is locally finite. Take PJ0 € UO(X)

such that aO(PjO) = ;. Without loss of generality we can also assume that the collection of

supports of the kernels of the P’s is locally finite in X x X. Then WF'(PJQ) C supp ¢; and
I+E =P'=) P)ec¥X)

for some E; € U 1(X).
Proceeding by induction, assume that we have found P* with P* = > P¥, WF'(PF) C
supp ;, and P* — I = Ep,; € U~ *TD(X). We want to find Q¥ € ¥~**D(X) such that

k k (k42
S(PE+ Q) e ¥ t4(x)
and WF' (PF + Q¥) C supp p;.Since P¥ — I € U=*D(X), we must have

Z‘L(kﬂ)(Q?) - _Uf(kﬂ)(z Pf —1I)=— Z%‘L(HI)(EkH) :

Choose Q¥ such that o_(11)(QF) = —9;j0_(k41)(Ek+1). The result will follow after using the
asymptotic summation formula. |
Refining the notion of singular support of a distribution, we now introduce the following

concept:

Definition 6.7.3 Ifu € D'(X), its wave front set is the subset of T*X — 0 defined by
WF(u) =n{y(P): Pe¥)(X), Puec (X)}.

It clearly follows that pseudo-differential operators are microlocal, i.e., WF(Pu) C
W F(u). Our most immediate goal is to show that the definition above coincides with 1.2.12
when expressed in local coordinates. Note that W F(u) is invariant under m;, the operator

multiplication along the fibers by ¢t € R,. That is to say, W F(u) is a conic subset of 7*X —0.

Lemma 6.7.4 Suppose u € D'(X) and let P € W5(X) be such that WF (P)NWF(u) = 0.
Then Pu € (X).



Proof Let I'; and I'y be conic open sets such that WF(u) C T'y, WF (P)NnTy = 0,
ULy =T*X —0and WF(u) C T*X — 0 — I'y. Using definition 6.7.3, we conclude that
there is a family of operators {P; }icr, P; € \Ifg(X), such that Pu € (X) and at least one of
the P;’s is elliptic on I'y. We can assume that the collection {supp Kp, }ics is locally finite
and that

My (P) =10.

Choose an operator Fy with symbol identically one on a conic neighborhood of 7* X —0—1I's,
and rapidly decreasing on the complement of I';. Consider the operator
Q=PFP;P+> PP .
iel

It is elliptic and therefore, it has a parametrix 7". Thus,
u—TQu e (X) .

Since for ¢ in I we have Pu € (X), this implies that u — TPy Pyu € (X). Hence, Pu —
PTP;Pyu € (X). Using the formula for the symbol of the composition, we see that the
operator PT P} P, is regularizing. Thus, PTPyPyu € (X), and therefore, Pu € (X), as
desired. i

Proposition 6.7.5 Let I : T*X — X be the natural projection. Then II(WF(u)) =

sing supp u.

Proof. Clearly II(W F(u)) C sing supp u since for x ¢ sing supp u, we can find a function
¢ €. (X) such that ¢(z) # 0 and u is smooth on its support. The operator multiplication
by ¢ belongs to ¥°(X) and pu €. (X). Hence, the fiber above z is not in W F(u) showing
that = & sing supp .

For the converse, let © ¢ II(W F(u)). Since Ty X — 0/R, = S:X is compact, there are
operators P; € U)(X), i < j < k, such that

NPy NT; =0

and Pju € (X) for all j. This condition says that at each p € T;X, at least one of the

P;’s is elliptic. Consider a microlocal partition of unity Ay, ..., A, Axt1 subordinated to the



sets {Ell(Py),...,El(P,), T*X —TrX}. Then, > A, =1+ S, where S is some smoothing
operator. Since WF'(4;) C Ell(P;) for 1 < i < k, we can find operators B; and S;, with the
first of order zero and the second a smoothing operator, such that A; = B;P; + S;. Choose
¢ €. (X) such that it is equal to one on a neighborhood of z, and such that the projection

of WF' (A1) does not intersect its support. Then we have

pu = (Z A; — S)QOU = Z(Bz-Pz + Si)SDU + Ap1ou — Seu .

Since Pu € (X) and pseudo-differential operators are microlocal, the terms B;P;pu are
smooth. By lemma 6.7.4, the term Ay ipu is also smooth. And the remaining terms are
smooth because the operators are regularizing. Then, ¢u is smooth, implying that z is not

in its singular support. |

Proposition 6.7.6 Let (z,&) be a local coordinate system on T*X walid on I U with
g € U. Let vy = (x0,&0) be a point in T*X. Then o ¢ WF(u) if and only if, there exists
a function ¢ €. (U) such that p(zo) # 0 and the localized Fourier transform, pu, is rapidly

decreasing ina cone about &.

Proof. Suppose @u is rapidly decreasing in the cone T'. = {& : ||£/[|€]] — &/ l|&lll| < €}
Choose a symbol ¢ of order zero with support contained in I'. and such that 1) is elliptic about
&. Then the tempered distribution v(§) = ¥(&)pu(€) is smooth and rapidly decreasing.

Thus, its inverse Fourier transform is smooth:

wlw) = @m)7" [ eo(€)dg = 2m)7 [ IEp(y)(€)uly)dyde

That is to say, the smooth function w is nothing but the action of a pseudo-differential
operator P over u whose right symbol is ¢(y)¥ (&) | d€ |. Since P is elliptic about 7, it
follows that g is not in the wave front set of u.

Conversely, suppose vy € W F(u). Since WF(u) is a closed conic set, there exists an
e > 0 such that

WFu)N{z: ||z —zl| <e} xT.=0.

Consider an operator P with right symbol ¢(y)¥(£) as above. Then, by lemma 5.7.4, Pu
is smooth. It follows that Pu = »(&)pu(€) is rapidly decreasing, which implies that gu is
rapidly decreasing along &. |



We have establish the desired equivalence between the coordinatized definition 1.2.12
and the invariant one given in 6.7.3. We now enlarge the discussion concerning the pull-
back operation using the availability of the wave front set concept as one that has invariant
meaning.

Let X and Y be smooth manifolds and consider a smooth map f : X — Y. Define the

set of conormals of the map f by

N;={(f(z),n): (fo)en=0}.

This set was already found in the discussion of pull-back of a conormal distribution (see
remark 5.2.4).

If I' is a closed conic subset of T*X, define Dp(X) = {u € D'(X) : WF(u) C T'}. This
is topologized by declaring u; € Dy.(X) to converge to u € Dp.(X) if the sequence converges
weakly to u and Pu; — Pu for all P € ¥,(X) with WF' (P)NT = .

Theorem 6.7.7 If u € D.(Y) and WF(u) N N; =0, the pull-back f*u can be defined in
one and only one way so that it is equal to the composition wo f when u is continuous and
it is sequentially continuous from Dy(Y) to D'(X) for any closed cone T C T*Y — 0 such
that ' N N} = (). The following relation holds:

WE(f'u) C fWEF(u) ={(z,(f)en) : (f(z),n) € WF(u)} .

Proof. The result is local and therefore we assume that X = R", Y = R™. If u € (R™)

and ¢ is a test function with support near x,

(frule) = 2m) ™ [ al©)p(@)e VD dads = a((2m) ™ [ o(x)e V) da) = (@)

If (fu)itm # 0 when z € supp ¢, then we can find a vector field L homogeneous of degree
—1 along the fibers such that e/’ is an eigenfunction for L of eigenvalue 1. Thus, ¢
is rapidly decreasing. If I" is a conic neighborhood of {n : (f.){,n = 0}, then ¢ is rapidly
decreasing outside I' if the support of ¢ is sufficiently closed to zy. On the other hand, if I' is
sufficiently small, @ is going to be rapidly decreasing on I, even if u is replaced by a sequence

converging to an element with wave front set outside I'. Breaking the integral above in pieces



associated with I' and its complement, we conclude that the desired pull-back operation can
be defined by continuity.

The second part of the theorem can be proven using the local characterization of the
wave front set discussed in proposition 6.7.6. Breaking the integral of the localized Fourier
transform into integrals on an open conic neighborhood I'y of {(§,7) : ((f«)zo)n = &} and its
complement I's, we see that this Fourier transform is rapidly decreasing on I's and rapidly
decreasing on I'y if (f(zg),n) 2 WF(u). i

Notice that if P € W,5(X) and « € D'(X), then the product Kp ® u € D'(X x
X x X;II3QX) has wave front set contained in WF(Kp) x WF(u) UWF(Kp) X Opsx U
O+ (xxx) X WF(u). By conormality of Kp, this last set is contained in N*A x WF(u)U
N*A X Opsx UOp«(xxx) X WF (uw). This set does not intersect the conormal set of the map
p(xz,y) = (x,y,y). Hence the pull-back p*Kp ® u = Kp(z,y)u(y) is well-defined, and has
wave front set contained in the set of points (z, z,§, —&) such that ((z,—§) € WF(u). If u
is compactly supported then the distribution above is compactly supported along the fibers

of the map II(z,y) = x. Hence, pushing forward we obtain that Pu can be expressed as
Pull,p"KpQu .

Given a fiber map I1: X — Y, let I !(y) denote the fiber through z, where Il(z) = y.
Show that for u € D.(X; Qpiper X ), WF(ILau) C {7y € T;Y : there exists v e N Y(y), v €
WF(u), II;y =4}, where N;II"!(y) is the conormal to the fiber.

Using purely wave front set considerations, show that convolution with a smooth function
is a regularizing operator.

When is it possible to multiply two distributions u; and us? When is it possible to
restrict a distribution u to a submanifold S?

We finish this section proving a result concerning linear operators with general Schwartz

kernels.

Theorem 6.7.8 Assume the operator T : D(X) — D'(Y) is linear and continuous with
Schwartz kernel Kr € D'(Y x X;TIxQX). If WE(Kp)NT*Y x Opex = 0, then T € D(Y)
for all ¢ € D(X). In this case, T* has an extension from D.(Y) to D'(X). Furthermore, if



WE(Kp)NOpey x T*X =0, T can be extended by continuity from D.(X) to D'(Y). When

both conditions hold, the wave front set of T is contained in

{(y,n) : (y,z,n,—&) € WF(Kp) for some (z,£) € WF(u)} .

Proof. Consider the distribution w = K7(y,z) ® ¢(z) for ¢ € D.(X). If ¢ is smooth it
follows that the wave front set of w is contained in the set {(y,z,2,7,&,0) : (y,z,n,§) €
WF(Kr)}. Let p(y,r) = (y,z,2). The conormal set N> = {(y,z,z,0,§,—¢)} does not
intersect the wave front set of w. Hence p*w(y,z) = Kr(y,x) ® p(z) is well-defined and
has, according to theorem 6.7.7, wave front set contained in the wave front set of Kp. Let
IT:Y x X — Y be the projection onto the first factor. To show that T'¢ is smooth, we use
the result of exercise 6.7.8. The conormal at (y,z) of the fiber II"!(y) consists of points of
the form (y,z,n,0). The hypothesis of W F(Kr) implies that the intersection of these two
sets is empty. Hence, T'¢ = Il w is smooth.

That under this condition 7% has a continuous extension from D,(Y) to D'(X) follows
easily from this result and the closed graph theorem.

Using an entirely symmetric argument, it follows that if WF(K7) N Opsy X T*X = ()
then T can be extended by continuity from D,(X) to D'(Y'). If both conditions are satisfied,
the local version of the wave front set, with an argument similar to the one employed in the

proof of theorem 6.7.8, implies the statement made about the wave front set of Tu. |
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