Quasisymmetric homeomorphisms

Definition. A homeomorphism $Z \stackrel{\phi}{\to} Z'$ between metric spaces is **quasisymmetric** if there is a homeomorphism $\eta:[0,\infty)\to [0,\infty)$ such that for all triples of distinct points $p,x,y\in Z$, we have

$$\frac{d(\phi(p),\phi(x))}{d(\phi(p),\phi(y))} \le \eta\left(\frac{d(p,x)}{d(p,y)}\right)$$

Poincare inequalities on metric measure spaces (after Heinonen-Koskela).

Say that a Riemannian manifold M satisfies a (1,p)-Poincare inequality if there are constants $C \geq 1$, $K < \infty$ with the following property. For every $p \in M$, $0 \leq r \leq \dim(M)$, if B := B(p,r), CB := B(p,Cr), and $u : CB \to \mathbb{R}$ is a C^1 function, then

$$\int_B |u-u_B| d\operatorname{vol}_M \leq Kr \left(\int_{CB} |\nabla u|^p d\operatorname{vol}_M \right)^{\frac{1}{p}},$$
 where

$$u_B := \oint_B u \ d\operatorname{vol}_M$$
 .

If M is complete and $Ricci_M \ge 0$, then it satisfies a (1, n)-Poincare inequality where C = C(n), K = K(n).

We would like to make sense of such an inequality when we replace M with a metric space Z, and the Riemannian measure $d\operatorname{vol}_M$ with a Borel measure μ .

Let $u: Z \to \mathbb{R}$ be a continuous function. A Borel measurable function $\rho: Z \to \mathbb{R}$ is an **upper gradient for** u if for every rectifiable curve $\gamma: [0,1] \to Z$, we have

$$|u(\gamma(1)) - u(\gamma(0))| \le \int_{\gamma} \rho ds.$$

Using this definition, we can make sense of Poincare inequalities in metric measure spaces.

Definition. A metric measure space (Z, μ) satisfies a (1,p)-Poincare inequality if there are constants C>1, $K<\infty$, such that for all balls $B=B(p,r)\subset Z$, $0\leq r\leq \operatorname{diam}(Z)$, every continuous function $u:CB\to\mathbb{R}$, and every upper gradient $\rho:CB\to\mathbb{R}$ for u, we have

$$\oint_{B} |u - u_{B}| d\mu \le Kr \left(\oint_{CB} \rho^{p} d\mu \right)^{\frac{1}{p}}.$$

Examples. 1. \mathbb{R}^n , equipped with Lebesgue measure.

- 2. S^3 equipped with the usual Carnot metric, and the associated 4-dimensional Hausdorff measure (which coincides with Lebesgue measure up to normalization).
- 3. Limits of sequences of Riemannian nmanifolds with Ricci curvature ≥ 0 , equipped
 with weak limits of the Riemannian measures.
- 4. (Semmes) Any linearly locally contractible Ahlfors n-regular n-sphere.
- 5. (Bourdon-Pajot) The boundaries of certain 2-dimensional hyperbolic buildings. These are homeomorphic to the Menger curve (= Menger sponge).

Nonexample. The standard square Sierpinski carpet.

Henceforth the phrase Z satisfies a Poincare inequality will be shorthand for: Z is compact, Ahlfors Q-regular, and satisfies a (1,Q)-Poincare inequality with respect to Q-dimensional Hausdorff measure for some Q>1.

Heinonen-Koskela

There is a good theory of quasiconformal/quasisymmetric homeomorphisms between spaces satisfying Poincare inequalities.

- -QC↔QS.
- -Absolute continuity.
- -ACL.

Bourdon-Pajot

Using the Heinonen-Koskela theory, one can prove rigidity for quasi-isometries of certain hyperbolic buildings.

Cheeger

-Rademacher's theorem.

Cheeger's version:

 $\{U_i\}$ countable disjoint collection of Borel sets in Z whose union has full measure.

 $f_i:U_i\to\mathbb{R}^{d_i}$ Lipschitz mappings ("coordinates"), where d_i is uniformly bounded.

Every Lipschitz function $u: Z \to \mathbb{R}$ is differentiable a.e. with respect to the relevant f_i , and the derivative is L^{∞} .

For all i, the component functions of f_i have linearly independent derivatives at almost every $x \in U_i$.

(Heinonen-Koskela-Shanmugalingam-Tyson, Keith) Cheeger's theory applies to functions in $W^{1,Q}$, and QC(Z) acts on the Cheeger cotangent bundle.

Suppose Z, Z' satisfy Poincare inequalities.

Theorem. (Infinitesimal dilatation controls dilatation) If $Z \xrightarrow{f} Z'$ is quasiconformal, and its derivative is almost everywhere K-quasiconformal, then the dilatation of f satisfies $H(f,x) \leq K' = K'(K)$.

Corollary. If $dim(T_z^*Z) = 1$ almost everywhere, then QC(Z,Z') is automatically uniformly quasiconformal.

Suppose Z, Z' satisfy a Poincare inequality for Q>1, h is a measurable Riemannian metric on T^*Z and h' is a measurable Riemannian metric on Z'.

Definition. A homemorphism $(Z,h) \rightarrow (Z',h')$ is **conformal** if it is quasiconformal, and its derivative is conformal almost everywhere. The **conformal group of** h, Conf(h) is defined similarly.

Corollary. If Z satisfies a Poincare inequality, and h is **bounded** Riemannian metric on T^*Z , then $\mathsf{Conf}(Z,h)$ is a group of uniformly quasiconformal homeomorphisms. In particular, it is a convergence group, i.e. it acts properly on the space of triples.

(Idiotic) Problem. Is Conf(Z, h) a closed subgroup of Homeo(Z)?

Conformal actions

Definition. A **conformal tuple** is a quadruple (G, Z, h, ρ) , where G is a group, Z satisfies a Poincare inequality, h is a bounded measurable Riemannian metric on Z, and ρ is an action of G on Z by h-conformal homeomorphisms, which is cocompact on triples.

Main example. Suppose G is hyperbolic group, and $\partial G \stackrel{qs}{\sim} Z$.

(Uniformly qc implies conformal) By a construction of Sullivan, it follows that if $G \curvearrowright Z$ is a uniformly qc action of a countable group on a space satisfying a Poincare inequality, then there is a bounded measurable Riemannian metric h on T^*Z with respect to which G acts conformally.

Theorem. (Mostow rigidity) If (G, Z, h, ρ) , (G', Z', h', ρ') are conformal tuples, then any isomorphism $G \to G'$ induces an equivariant conformal map $(Z, h) \to (Z', h')$.

Remark. If Conf(h) were a closed subgroup, this could be restated as an assertion about cocompact lattices in the locally compact group Conf(h).

Remark. This shows that association $G \mapsto Conf(h)$ is canonical.

Remark. One can reasonably expect a version of Gromov-Tukia here.

Which hyperbolic groups have boundaries qs to a space satisfying a Poincare inequality?

Necessary conditions:

Bourdon-Pajot:

Definition (Pansu). The **conformal dimension** of a metric space X is the infimal Hausdorff dimension of the spaces quasisymmetric to it. The **Ahlfors regular conformal dimension** of X is the infimal Hausdorff dimension of the Ahlfors regular metric spaces quasisymmetric to X.

Theorem (Tyson). If Z satisfies a Poincare inequality, then $\operatorname{HausDim}(Z) = \operatorname{ConfDim}_{AR}(Z)$.

Theorem (Bonk-K.). If Z is qs to the boundary of a hyperbolic group, Z is Q-regular, and HausDim(Z) = ConfDim $_{AR}(Z)$, then Z satisfies a Poincare inequality.

Extremal problem. When is it possible to realize ConfDim(X) (or ConfDim $_{AR}(X)$)?