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Introduction

The results presented in this paper exploit a connection between the follow-
ing a priori loosely related problems: How do Lyapunov exponents of con-
servative (symplectic or volume preserving) diffeomorphisms depend on the
underlying dynamics? How typical is it for Lyapunov exponents to vanish?

We prove that Lyapunov exponents can be simultaneously continuous at
a gien diffeomorphism only if the corresponding Oseledets splitting is domi-
nated or else trivial, almost everywhere.

Trivial splitting means that all Lyapunov exponents are equal to zero.
Domination is a property of uniform hyperbolicity on the projective bundle,
whose precise definition will be recalled in a while.

As a consequence one gets a surprising dichotomy for a residual (dense
Gs) subset of volume preserving Ct diffeomorphisms on any compact mani-
fold: the Oseledets splitting is either dominated or trivial, almost everywhere.

Analogous results hold for symplectic C* diffeomorphisms, where the con-
clusion is even stronger: domination is replaced by partial hyperbolicity.

Moreover, there are versions of these statements for continuous cocycles
with values in various matrix Lie groups.

*To appear Annales Inst. Henri Poincaré.
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In the sequel we give the precise statements, and ideas of the proofs. For
that, we begin by explaining the meaning and significance of the domination
property. Complete proofs of these statements will appear in [4].

Acknowledgements. We lectured on these topics on several occasions.
Recently, during the Workshop on Dynamical Systems held at the ICTP-
Trieste in August 2001, we were able to improve our approach, resulting
in substantially stronger statements. Questions asked by colleagues present
at the ICTP, especially A Avila, B Fayad, K Khanin, J Mather, J Milnor,
C G Moreira, J Palis, E Pujals, M Shishikura, Ya Sinai, F Takens, J-C Yoc-
coz, and L-S Young, motivated us to write this outline of the arguments,
and helped improve the presentation.

Lyapunov exponents

1. Let f: M — M be a C* diffeomorphism preserving the volume p of a
compact Riemannian manifold M. Oseledets theorem [11] states that, for
p-almost every x € M, there exists a splitting

~
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of the tangent space, and there exist real numbers \;(z)
that

1D f™ (x)uj]| = eV oy
for all v; € EJ and 1 < j <k, if |n] is large enough. More precisely,

1 “ .
lim —log||Df"(z)vj|| = Aj(z) forall v; € EZ\ {0}. (1)

n—+oo N

The Oseledets subspaces EI and the Lyapunov exponents S\J(x) depend
measurably on z, and they are invariant under the dynamics:

Ni(f(@) = Aj(x) and  E}, =Df(x)-El, with k(f(z))= k().

2. In particular, one can always find m(z) € N such that
IDf" (@)vill = 2 |Df*(w)vy]| for all n > m(z) (2)

and all norm 1 vectors v; € E! and v; € EZ with 1 < i < j < k. That is,
iterates of Df are eventually more expanding along E° than along E?, for
any ¢ < j.



Let us stress, however, that this is a purely asymptotic statement. The
limit in (1) is usually not uniform on z. Correspondingly, the value of m(x)
in (2) does depend on the point, in a complicated fashion. Most important,
in general it is not even possible to choose m(:) bounded over each orbit

o(r) = {fx): L€ Z}.

Domination property

3. Wesay that the Oseledets splitting is dominated at x € M if m(-) € N as
in (2) may be chosen uniform over the whole orbit of x. That is, domination
at x means that there is m € N such that for every iterate y = f*(z), ¢ € Z,
we have

IDf"(w)vill = 2[[Df"(y)vs|| - for all n =m (3)

and all norm 1 vectors v; € E}, v; € EJ,and 1 <i < j < k.

More generally, we say that the Oseledets splitting is dominated over an
invariant set ' if there exists m € N such that (3) is satisfied for every y € T,
n>m,1<i<j<k(y),and v;, v; as before. The definition in the previous
paragraph corresponds to the case I' = o(x), of course.

4. Geometrically, domination is tantamount to uniform hyperbolicity of the
dynamics induced on the projective bundle, i.e. the bundle of directions in
the tangent space. We explain this with the aid of Figure 1.

From the relation (3) one easily deduces that

IDf™(y)vil| > 2™ || Df™(y)v;|| for every n > 1 (4)

and for all y € o(z), 1 < i < j < k, and norm 1 vectors v; € E; and
v; € EJ}, where the constant ¢ > 0 depends only on m and f. Then, given
any y € o(x) and non-zero v € T, M, let v = vy + --- 4+ v; be the splitting
of v along Oseledets subspaces, and 1 < p < g < k be, respectively, smallest
and largest such that v, # 0 # v,.

From (4) one gets that, as n increases to infinity the component D f™(y)v,
becomes much larger than any other D f"(y)v;. So, Df™(y)v approaches the
direction of E;’n(w), exponentially fast. There is also a dual statement for
large negative n, with p replaced by ¢. Clearly, for most vectors p = 1 and
q = k. This means that E' is a global hyperbolic attractor and E¥ is a global
hyperbolic repeller for the dynamics of Df on the projective bundle, with
the other E7’s in the role of saddles.



El

Figure 1: Uniform projective hyperbolicity

5. It is not difficult to find open sets of maps whose Oseledets splitting
is dominated, e.g., any small neighborhood of a linear torus automorphism
whose eigenvalues have multiplicity 1 and different norms. Notwithstanding,
domination is really a very rigid property.

For one thing, if the number k(y) and the dimensions d;(y) = dim E}
of the Oseledets subspaces are constant on [', domination implies that the
splitting is continuous on I', and even admits a continuous extension to the
closure. In particular, the angles between the various Oseledets subspaces are
bounded from zero, uniformly over the invariant set I". Actually, this last
fact remains true even if the number or the dimensions of the subspaces are
variable. That is because we can always partition I' into a finite number of
invariant subsets corresponding to fixed values of k£ and d, ..., dx.

Due to this rigidity, it is often possible to exclude a priori the existence
of dominated splitting, using topological arguments. One such situation will
appear near the end of paragraph 8, another in paragraph 18.

A global picture for generic conservative maps

6. Difft(M ) denotes the space of volume preserving C'! diffeomorphisms on
M, endowed with the C* topology. Our first main result is

Theorem 1. For any compact manifold M, there exists a residual subset R
of DiffL(M) such that, for every f € R, the Oseledets splitting is dominated
or else trivial, at almost every point.

Later we shall explain how Theorem 1 may be derived from a statement
about continuity of Lyapunov exponents. Right now let us discuss the con-
clusion of the theorem in more detail.



First, let us consider f € R to be ergodic. Then the number and di-
mensions of the Oseledets subspaces are constant p-almost everywhere. The
theorem says that,

e cither all Lyapunov exponents vanish p-almost everywhere,
e or the Oseledets splitting is dominated, also p-almost everywhere.

In the latter case, the splitting extends continuously to the whole manifold:
the system is projectively uniformly hyperbolic on M.

7. In general, let O(dy,...,d) be the set of points for which the Oseledets
splitting exists and involves k£ subspaces, with dimensions dy, ..., d, respec-
tively. In particular O(d) denotes the set of points whose Oseledets splitting
is trivial, that is, whose Lyapunov exponents are all zero.

For k > 2, let Ogqom(d1,-..,d;) C O(dy,...,dy) be the subset of points
where the Oseledets splitting is dominated. Theorem 1 says that

/L(O(dl, ey dk) \ Odom(db Ceey dk)) =0

for all £ > 2 and any choice of dy,...,d;. Therefore,

M=0dUl) | Ownld.....d) (5)

k>2 dy,...,dy,
up to a zero volume set.
Odom(dy, - .., dr) may be written as an increasing union
o0
Oom(dr, .., d) = | ) Om(dr,..., di) (6)
m=1

where each O,,(dy, ..., d) corresponds to fixing the choice of m in (3). The
Oseledets splitting is continuous on every O,,(dy,...,d), and extends con-
tinuously to the closure. In general, these extensions need not coincide on
the intersections of the closures.

8. As the reader may easily check, for area preserving diffeomorphisms on
surfaces, domination is equivalent to uniform hyperbolicity (in the usual
sense, no projectivisation). On the other hand, for a residual subset of C*



diffeomorphisms on any manifold !, hyperbolic sets have a sort of automatic
ergodicity: either they have zero volume or they coincide with the whole
ambient space.

Because of this, in dimension 2 the conclusion of Theorem 1 is simpler:

Theorem 2 ([3], partially based on [10]). For a residual subset of area
preserving C* diffeomorphisms on any compact surface, both Lyapunov ezx-
ponents are zero at almost every point or else the diffeomorphism is Anosov.

It would be nice to know whether this simpler picture remains true in
arbitrary dimension, without assuming ergodicity:

Problem 1. Is there a residual set R; C R for which, in the context of (5)-(6),
either O(d) or some O,,(dy, ..., d) has full volume in M 7

Corollary 1 below gives a partial answer, for symplectic maps.

Also, existence of Anosov diffeomorphisms imposes strong topological re-
strictions on the manifold. In particular, the second alternative in Theorem 2
is possible only if M = T2,

Problem 2. Which manifolds support diffeomorphisms having a dominated
splitting defined on the whole ambient space ?

Continuity of Lyapunov exponents
9. Let T,M = El @ ---® E* be the Oseledets splitting of f € Difft(M) at
some point © € M. Let

AM(z) > Ao(z) > -2 > Ng(x), d=dim M,

be the Lyapunov exponents of f at x, counted with multiplicity: each S\J(x)
appears exactly d;(z) = dim EJ times. Formally,

Ni(@) = Aj(a) if 1<i— [di(a) +- -+ dja(2)] < djla).

This defines measurable functions \;, 1 < ¢ < d, over a full measure subset
of the manifold M.

!This subset includes all C? diffeomorphisms [6]. A corresponding statement for domi-
nation is false if d > 3: there exist C*° diffeomorphisms exhibiting invariant sets supporting
a dominated splitting and whose volume is neither zero nor full.



Now we consider the average Lyapunov exponents of a diffeomorphism f,
given by \;i(f) = [ Ai(x)du(x), for 1 < i < d. This defines functions

A; : Diff, (M) — R, 1<i<d.
Note that A;(z) + -+ -+ Ag(x) = 0, because f preserves volume. Hence,

M(f)+---+X(f) =0 for every fGDiﬁ'L(M). (7)

10. Another main result, from which we shall deduce Theorem 1, is

Theorem 3. Suppose fy € Diffi(M) s a continuity point for the map
Diff, (M) 3 f = (A(f), .-, Aa(f)) € R

Then, at almost every point, the Oseledets splitting of fy is either dominated
or trivial.

Symplectic diffeomorphisms

11. The previous results extend to the symplectic case. Let M be a compact
manifold of dimensional d = 2[, endowed with a symplectic form w. Let
Symp. (M) be the space of w-preserving C* diffeomorphisms on M. This is
a closed subset of the space Diff}l(M ) of C! diffeomorphisms that preserve
the volume measure x4 induced by the volume form w! = w A --- A w.

Theorem 4. Theorems 1 and 3 remain true when one replaces Difflli(M) by

Sympi,(M). Actually, in the symplectic context the conclusion is stronger:
instead of domination one gets partial hyperbolicity.

The present notion of partial hyperbolicity is also stronger than usual,
in that the central bundle exhibits only zero Lyapunov exponents, and the
dimensions of the stable bundle and the unstable bundle are equal:

12. The Oseledets splitting of a symplectic diffeomorphism has a symmetric
structure:

TxM:E;EB---@E;@[Eﬁ@]E*l@---@E*S

T T



with dim £ = dim E* for 1 < i < s (the dimension of EY may be zero) and
Lyapunov exponents

~

A(@) > > M) > [5\0(33) - ]o > A (@) > > A(2)

satisfying A;(z) + A_;(z) = 0 for 1 <i < s. Let
Ef=FE®---®E! and E; =E'®---0E;*.

We say that the Oseledets splitting is partially hyperbolic at x if it is
dominated at x and Df is uniformly expanding along E* and uniformly
contracting along E~:

IDf™ES| <L and |DfmE;|| <L (8)

1
2
for any iterate y = f*(x), ¢ € Z, where m € N is uniform over the orbit of x.

Proposition 1. Let f be a symplectic diffeomorphism. If the Oseledets split-
ting of f is dominated at a point x then it is partially hyperbolic at x.

This fact was first observed by Mané [9]. A proof is given in [1], for
dim M = 4, and in [4], for the general case.

13. Theorem 4 has the following interesting consequence, that extends con-
clusions in paragraph 8.

Corollary 1. For a residual subset of SympL(M), either the diffeomorphism
15 Anosov or almost every point exhibits some Lyapunov exponent equal to
zero (with even multiplicity).

Indeed, for f € R, the set of points whose Lyapunov exponents are all
non-zero is a countable union of hyperbolic sets: the union is over the value
of m in (8). Hence, restricting to some residual Ry C R, either that set has
zero measure, or the whole manifold is hyperbolic for f. Recall also that
dim E? is always an even number, in the symplectic case.

The semi-continuity argument

14. We are going to deduce Theorem 1 from Theorem 3. Foreach 1 <1 < d,
let

Ai(f) =M(f) + -+ Nlf) -
The relation (7) means that Ag(f) = 0. Clearly, f — (A (f),..., Aa(f)) is
continuous at fy if and only if f +— (A(f),..., Ag_1(f)) is continuous at fj.

8



Proposition 2. Every f — A;(f), 1 <i <d—1, is upper semi-continuous,
both on Diff, (M) and on Symp,(M).

This proposition is proved as follows. For the largest Lyapunov exponent
A; = )\ one uses the relation

M) = int - [1og|DF | da. )

The infimum of continuous functions being upper semi-continuous, the con-
clusion follows.

For i > 2, one considers the vector bundle V* over M whose fiber V! is
the space of i-forms on (T,M)*. The derivative Df induces a fibered map
Df" Vi — Vi and the largest Lyapunov exponent of Df"? is precisely
A;(f) (see [8]). Thus we have the relation corresponding to (9) for D f"* :

1 N
A = int - [log|(DF)" | du, (10)

and semi-continuity follows as before.

Remark 1. A natural choice of a norm in (10) is such that the quantity
|(Df"¥(x))"|| is the supremum of the i-volume of D f"(x)(P) over i-parallel-
epipeds P C T, M of unit -volume. Of course, any other norm would work
as well.

Theorem 1 is now an immediate consequence of Theorem 3, Proposi-
tion 2, and the well-known fact that the set of continuity points of any
semi-continuous function defined on a Baire space contains a residual subset.

The perturbation strategy

15. The proof of Theorem 3 is quite long. Here we only give a glimpse of
the strategy to reduce Lyapunov exponents along finite pieces of orbits.
Recall that the Oseledets splitting is dominated at = if condition (3) is
satisfied. It is not hard to see that this condition can be reformulated as
follows: There exists m € N such that for every iterate y = f(x), { € Z,

IDf™ (y)vll = 2[|Df™ (y)wll (11)

for all norm 1 vectors v € E} @ --- @ E; and w € E}"' @ --- @ E} , and all
1< <k—1.



Now suppose the Oseledets splitting is not dominated, over a positive
measure set of orbits: for some ¢ and for arbitrarily large m there exist
iterates y for which (11) does not hold. The basic idea is to take advantage
of this fact to, by a small perturbation of the map, cause a vector originally
in E;Z = E; ® - ®E, tg move to E}J;l(:) = E}Tnl(y) @D Ekm(y), thus
“blending” different expansion rates.

U
Ve SV
Eitlk EitLk Ei+1,k Ei—l—l,k
z Y fm(y) fr(z)

Figure 2: Blending expansion rates

More precisely, given a perturbation size € > 0 one chooses m sufficiently
large with respect to €. Then for n > m one chooses a convenient y = f*(z),
with ¢ &~ n/2, where domination fails. By composing D f with small rotations
near, at most, m iterates of y, one causes the orbit of some v € E™ to move
to EtLE . See Figure 2. That is, one constructs a perturbed map g preserving
the orbit segment {xz,..., f™(x)} such that Dg"(z)v € E}t(lxli As a result,
it is possible to show that

. Aj+ A
1(Dg" @)"[| S exp [n (A1 + L) | < exp ().
where j = dim B,

This local procedure is then repeated for several points z. Using (10) and
a tower argument, one proves that A;(f) drops under such arbitrarily small
perturbations, contradicting continuity.

Linear cocycles over transformations

16. The previous methods also extend to products of deterministic contin-
uous matrices. In this setting one considers a measurable invertible transfor-
mation f : M — M on a compact space M, preserving a Borel probability
measure g. The system should be aperiodic, meaning that the set of periodic
points of f should have zero u-measure. For simplicity, here we also take the
system to be ergodic.

Then one considers the space of all continuous maps A : M — G, where G
is a convenient matrix group. In all that follows we may take G = SL(d, R),

10



GL(d,R), Sp(d), ..., and we may also replace R by C as the field of coeffi-
cients. Associated to each A, one considers the cocycle

F:MxR' = MxRY, F(z,0)=(f(z), Alz)v).

Note that F™(z,v) = (f"(z), A"(z)v), where

-1

AMx) = A(f" (@) Alf () Al2) and A (@) = [A"(f ()],

for n > 1. As before, Oseledets splittings {z} x R = EL @ --- @ EF and
Lyapunov exponents

~ 1 .
() = lim = n , . j
Aj(e) = lim —log | 4" (@)usll, vy € B\ {0},
are well-defined p-almost everywhere.

17. We prove that for a residual subset of continuous maps A : M — G,
either the Oseledets splitting is dominated, and hence continuous, over the
whole space M, or the Lyapunov exponents are all equal (k = 1) at p-almost
every point. As before, this follows from proving that average Lyapunov
exponents can be simultaneously continuous at some A, only if the Oseledets
splitting of the cocycle associated to Ag is either dominated or trivial.

The converse is also true: if the Oseledets splitting of Ay is trivial or
dominated then Ay is a continuity point for all Lyapunov exponents. The
proof has two main ingredients. The first one is the robustness of dominated
(or trivial) splittings: every C° nearby map A has an invariant splitting into
subspaces with the same dimensions and uniformly close to the Oseledets
subspaces of Ag. The second one is an semi-continuity argument within each
of these subspaces, to show that its Lyapunov exponents are close to the
corresponding exponents of Ag.

It is interesting to put this conclusion together with a theorem of Ru-
elle [12] stating that if the Oseledets splitting of A, is dominated, and the
Oseledets subspaces all have dimension 1, then the Lyapunov exponents vary
smoothly with the matrix map A near A.

Oseledets subspaces of C° generic cocycles need not be 1-dimensional:

Ezxample 1. Let f : M — M have a fixed point p. Let Ay : M — SL(3,R) be
constant, with one real and two complex conjugate eigenvalues. Assuming
the norms of the eigenvalues are not all equal, the Oseledets splitting of Ay

11



is the (constant) splitting into eigenspaces, and it is dominated. Then every
A in a CY neighborhood U of Ay admits a dominated splitting F'* & F?, with
dim £ = 4. In particular, the Lyapunov exponents of A can not be all equal.
So, for every A € U N'R the Oseledets splitting must be dominated, and
it must be a refinement of F* @& F2. Now, assuming I/ is sufficiently small,
F? admits no continuous invariant proper subbundle. That is because A(p)
has complex eigenvalues along FPQ. Hence, if A € Y N'R then its Oseledets
splitting must coincide with F'* @ F? almost everywhere.

But [5] shows that, for appropriate choices of ( f, 1), the majority of Hélder
continuous maps A € U (an open dense subset, whose complement has infi-
nite codimension) do have all their Oseledets subspaces with dimension 1.

18. Here is one situation where simple topological reasons prevent the ex-
istence of dominated splittings, for a whole C° open set of cocycles:

Ezxample 2. Let f : S — S! be a homeomorphism and « : St — S! be a
continuous map with non-zero degree. Let G = SL(2,R). Fix any B € G
and define A : S' — G by A(z) = BRyy), where R, is the rotation of angle
«. Then the cocycle associated to any map M — G in a C° neighborhood of
A admits no invariant continuous subbundle, let alone a dominated splitting.

A simple proof goes as follows. Let & : S' — P! be any continuous
section in the real projective space P!, and & : S' — P! be its push-forward:

&1(r) = A(f () (fH (@) = BRags-10p&(f (2))-

Then deg(&;) = 2 deg(a) + deg(&p) (the factor 2 comes from the fact that we
are considering maps to P! instead of S'). This implies that & # &, hence

& can not be invariant. These topological arguments extend immediately to
a C° neighborhood of A.

In spite of this, non-zero Lyapunov exponents may occur in this setting.
For example, if f is an irrational rotation, @ = id, and ||B|| > 1 then, by
Herman’s subharmonicity argument ([7], see also [2]), the cocycle associated
to A has a positive exponent.
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