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ABSTRACT. We prove the Feigenbaum, Coullet & Tresser Conjec-
ture on the hyperbolicity of the renormalization transformation of
bounded type. It gives the first computer free proof of the original
Feigenbaum’s observation of the universal parameter scaling laws.
We use the Hyperbolicity Theorem to prove Milnor’s conjectures
on self-similarity and “hairiness” of the Mandelbrot set near the
corresponding parameter values. We also conclude that the set of
real infinitely renormalizable quadratics of type bounded by some
N > 1 has Hausdorff dimension strictly between 0 and 1. Along the
lines we supply the space of quadratic-like germs with a complex
analytic structure and demonstrate that the hybrid classes form a
complex codimension one foliation of the connectedness locus.

CONTENTS

1. Introduction 2
2. Slow small orbits 10
3. External maps and hybrid classes 14
4. Space of quadratic-like germs 24
5. Renormalization, bounds and rigidity 46
6. Hyperbolicity of the renormalization (stationary case) 54
7. Hairiness, self-similarity and universality (stationary case) 62
8. Renormalization horseshoe with bounded combinatorics 74
9. Applications of the renormalization horseshoe 86
10. Appendix 1: Quasi-conformal maps 91
11. Appendix 2: Complex structures modeled on families of

Banach spaces 93

References 104



2 MIKHAIL LYUBICH

1. INTRODUCTION

1.1. Universality phenomenon. In 1970’s Feigenbaum and inde-
pendently Coullet & Tresser discovered a “Universal Scaling Law” of
transition from regular to chaotic dynamics through cascades of dou-
bling bifurcations (see Figure 1). The meaning of this discovery is that
the geometry of the bifurcation loci in generic one parameter families
of certain dynamical systems is independent of the specific family. The
importance of this discovery for dynamical systems theory and physi-
cal applications (fluid dynamics, statistical physics etc.) was realised
shortly.

Figure 1. Cascade of doubling bifurcations.
This picture became symbolic for one-dimensional dynamics.

To explain the universality phenomenon, the authors introduced a
renormalization transformation R in an appropriate space of dynam-
ical systems, and conjectured that this transformation has a unique
fixed point f,, and that this point is hyperbolic, with one-dimensional
unstable manifold [F1, F2, CT, TC]. Originally stated only for the
period doubling case, this conjecture was later extended to a wider
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class of combinatorics of “bounded type”, real as well as complex ones,
see [DGP, GSK]. In this paper we will prove this conjecture for the
renormalization operator of real bounded type acting in the space of
quadratic-like germs.

1.2. Statement of the results. The concepts used below (quadratic-
like maps, hybrid classes, renormalization, Mandelbrot copies, combi-
natorial type) are basic in holomorphic dynamics and will be precisely
defined in §3. In the next section, §4, we will supply the space QG
of quadratic-like germs (considered up to rescaling) with topology and
complex analytic structure.

Let My stand for the Mandelbrot set, and A stand for the full family
of Mandelbrot copies M C M, different from M, itself. To each M € N
corresponds the renormalization operator Ry, : Tayr — QG defined
on the “renormalization strip” Ty C QG. This operator admits an
analytic continuation beyond 7.

Given a family £ of disjoint Mandelbrot copies, we can consider the
corresponding piecewise defined renormalization operator

Re: |J Tu — Q6. (1.1)

MeLl

If £ is a finite family then R/ is called a renormalization operator of
bounded type.

By a “real” quadratic-like map we mean a quadratic-like map pre-
serving the real line. By a “real” Mandelbrot copy M € N we mean
a Mandelbrot copy centered on the real line. If the family £ consists
of real Mandelbrot copies then one says that the operator R, has real
combinatorics.

Let ¥, stand for the space of bi-infinite sequences in d symbols, and
let w: ¥y — ¥4 be the shift transformation on this space.

Hyperbolicity Theorem. Let us consider a renormalization opera-
tor R = R, of real bounded type defined on the union of d renor-
malization strips. Then there is a compact R-invariant set A (the
“renormalization horseshoe”) with the following properties:

e The restriction R|A is topologically conjugate to w|¥, and is uni-
formly hyperbolic;

e Any stable leaf W*(f), f € A, coincides with the hybrid class of
f and has codimension 1;

e Any unstable leaf W*(f) is an analytic curve which transversally
passes through all real hybrid classes except the cusp one (corre-
sponding to ¢ = 1/4).
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Remark. The stable/unstable leaves above mean the connected com-
ponents containing f of the sets of point whose forward /backward or-
bits are exponentially asymptotic to the corresponding orbit of f.

By a Feigenbaum quadratic P, : z — 2% + ¢ ( or a Feigenbaum
parameter value) we will mean an infinitely renormalizable map/(or
the corresponding parameter value) of bounded type. The following
result was conjectured by Milnor [M]:

Hairiness Theorem. Let ¢ € [—2,1/4] be a real Feigenbaum param-
eter value. Then the rescalings of the Mandelbrot set near ¢ converge
in the Hausdorff metric on compact sets to the whole complex plane.

Everyone who saw computer pictures of the Mandelbrot set realizes
that it is not self-similar: Otherwise wandering around it would not be
so fascinating. However some self-similar features are still observable.
In particular, it was conjectured by Milnor that the little Mandelbrot
sets around the Feigenbaum point of stationary type have asymptot-
ically the same shape ([M], Conjectures 3.1 and 3.3). The following
result proves some of these conjectures. Here we state it in the case of
stationary combinatorics postponing the statement for bounded com-
binatorics until §9.

Self-Similarity Theorem. Let M be a real Mandelbrot copy and
o: M — My be the homeomorphism of M onto the whole Mandel-
brot set M,. Then o has a unique real fixed point c. Moreover, o is
C'*e_conformal at ¢, with the derivative at ¢ equal to the Feigenbaum
universal scaling constant A = \p; > 1.

Remark. The Feigenbaum universal constant can be actually defined
as the above derivative. However, the logic of our discussion makes it
more natural to introduce it first as the unstable eigenvalue of the
renormalization operator Rj; at its fixed point.

Any real Feigenbaum parameter value c¢ of stationary type is a limit
of superattracting points ¢, of periods p" (where p = p(M)) obtained
from the center of M by n-fold “tuning” (see §5.1 for the definition).
The following theorem gives the first computer independent proof of
the Feigenbaum parameter scaling law in the quadratic family and the
universal nature of this law.

Universality Theorem. LetS = {f,} be areal analytic one-parameter
family of quadratic-like maps transversally intersecting the hybrid class
H. at p.. Then for all sufficiently big n, S has a unique intersection
point ji, near j, with the hybrid class H.,, and

b — ps] ~ @A™,
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where A\ = \y; is “universal”, i.e, independent of the particular family
in question. In particular, |c, — c| ~ bDA™"™.

Given a finite family £ of real Mandelbrot copies (“real family”), let
I; C [-2,1/4] stand for the set of infinitely renormalizable parameter
values of bounded type specified by L, i.e.,

R'P.e |J Tu, n=0,1,...

MeL
One more application of the Hyperbolicity Theorem is the following:

HD Theorem. For any finite family L containing at least two ele-
ments, I, is a Cantor set with Hausdorff dimension strictly in between
0 and 1.

Along the lines of our work we also establish the following result:

QC Theorem. Any primitive Mandelbrot copy M is quasi-conformally
equivalent to the whole Mandelbrot set M.

(Recall that a set M is said to be non-primitive, or satellite, if it is
attached to some hyperbolic component of the Mandelbrot set.)

1.3. Ingredients of the proofs. The main idea of the proof of the
Hyperbolicity Theorem is that for complex analytic transformations,
lack of hyperbolicity on an invariant set A (satisfying certain assump-
tions) can be detected topologically. Namely, one can construct a point
f € A whose orbit is slowly shadowed by another orbit. For the renor-
malization operator, such a situation is ruled out by the Combinatorial
Rigidity Theorem [L2].

Let us formulate here the above mentioned shadowing theorem in
the simplest fixed point case:

Small Orbits Theorem. Let B D B’ be two complex Banach spaces
such that the ball of B' is pre-compact in B. Let i : B' — B stand for
the natural embedding. Let T : (U,0) — (B',0) be a complex analytic
map in a neighborhoodU C B of 0, R = ioT : (U,0) — (B,0). Assume
that the spectrum of DR(0) : B — B belongs to the closed unit disk
and is not empty on the unit circle. Then R has “slow small orbits”,
that is, for any neighborhood V > 0, there is an orbit {R™f}>_, C V,
such that

1
lim —log ||R™ f]| = 0.
m

The idea of the proof of the Hairiness Conjecture is to pass to the
unstable manifold of the renormalization fixed point where the Mandel-
brot set becomes scaling invariant. Then we show that lack of hairiness
would imply existence of a non-trivial automorphism of a towers with
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a priori bounds. But this situation is ruled out by the hairiness of the
Feigenbaum Julia sets (McMullen [McM2]).

A substantial part of our work is to supply the space QG of quadratic-
like germs and the space £ of expanding circle maps with complex
analytic structure and to demonstrate that the hybrid classes form a
complex codimension one foliation of the connectedness locus. Then a
generalized version of the A\-lemma yields that this foliation is transver-
sally quasi-conformal, which we exploit many times. In particular, this
yields the QC Theorem.

At a Feigenbaum point ¢ we can do better, and show that the foliation
is transversally C'™®-conformal along the hybrid class H,. (this is an
expected regularity of a codimension 1 stable foliation). This yields the
Self-Similarity and Universality Theorems. The HD Theorem follows
from the hyperbolicity of the renormalization operator by a standard
distortion argument.

1.4. Structure of the paper. This paper is organized as follows. In
§2 we prove the Small Orbits Theorem.

In §3 we give a revisited account of the Douady & Hubbard theory
of quadratic-like maps [DH2]. The main novelty of our approach is
that the relation between quadratic-like and circle maps is given up to
affine rather than conformal equivalence. This allows us, in particular,
to extend the uniformization of C\ Mj to the “vertically holomorphic”
uniformization of the complement QG \ C of the connectedness locus.

In §4 we supply the space QG of quadratic-like germs (up to affine
equivalence) and the space of expanding circle maps (up to rotation)
with complex analytic structure (modeled on families of Banach spaces)
and demonstrate that the Douady-Hubbard hybrid classes form a fo-
liation of the connectedness locus C with complex codimension one
analytic leaves. Moreover, we show that C is the topological product of
the space £ of expanding circle maps by the Mandelbrot set M,. We
derive from this picture certain transversality results, and prove the
QC Theorem.

In §5 we define the complex renormalization operator. We analyti-
cally extend this operator beyond the renormalization strips and show
that it is transversally non-singular. Then we state three crucial ana-
lytic results: a priori bounds [MvS, S2], the Tower Rigidity Theorem
[McM2], and the Combinatorial Rigidity Theorem [L2].

In §6 we prove the Hyperbolicity Theorem for stationary combina-
torics. Along the lines we give a new proof of the exponential conver-
gence to the renormalization fixed point in its hybrid class based on
the Schwarz Lemma in Banach spaces.
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In §7 we prove in the stationary case the Hairiness, Self-Similarity
and Universality Theorems, and discuss a relation of these results to
the MLC Conjecture.

In the next two sections, §8 and §9, we extend the previous results
from stationary to bounded combinatorics and prove the HD Theorem.

In Appendix 1 we collect for the reader’s convenience some basic
results and references on quasi-conformal maps.

In Appendix 2 we develop a theory of complex structures modeled
on families of Banach spaces.

1.5. Complex combinatorics and higher degrees. Complex meth-
ods play so crucial role for our proofs that one can wonder why do we
need the real line at all. Besides physical motivations, there is only
one reason for that: a key technical result (complex a priori bounds)
needed for the construction of the renormalization horseshoe A is not
yet established for complex maps. Conjecturally a priori bounds are
true for all infinitely renormalizable maps with bounded combinatorics
but that far they are established only for real maps ([MvS, S2]|) and
for complex maps with sufficiently high combinatorics [L2]. Once the
complex a priori bounds are established, our results become valid in
the purely complex setting. In what follows we will state the results in
this setting assuming a priori bounds.

Another natural extension of the Renormalization Conjecture is con-
cerned with higher degrees of the maps under consideration at the crit-
ical point (“criticality”). All the results of this paper are extended in
the straightforward way from the quadratic-like maps to polynomial-
like maps with a single critical point of any even degree d. The only
noteworthy point is that the Combinatorial Rigidity Theorem is still
valid for infinitely renormalizable maps of this class with bounded com-
binatorics (see [L2], Remark in the end of §10.1).

1.6. Historical notes. Feigenbaum made his first announcements of
the Universality Phenomenon in 1976. The importance of this discovery
was realized soon, and there has been made a good effort to prove the
conjectural renormalization picture. Prior to our work, the conjecture
was proven (with some help of computers) in the period doubling case
with quadratic critical point, so let us first summarize the development
in this case.

The computer assisted proof in the doubling case was given by Lan-
ford [Lal], with one missing ingredient (a transversality issue) filled by
Eckmann & Wittwer [EW]. The unstable manifold at the correspond-
ing fixed point was constructed numerically by Vul, Sinai and Khanin
[VSK].
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Later on many ingredients of the picture were proven without com-
puters. Existence of a renormalization fixed point (a solution of the
“Cvitanovi¢-Feigenbaum functional equation”) was proven by Epstein
[E1, E2]. Existence of an unstable eigenvalue was proven by Epstein &
Eckmann [EE]. The stable manifold was constructed by Sullivan and
McMullen (see below). The ingredients which still required computers
after all that (in the quadratic period doubling case) were the codi-
mension and transversality issues. Thus even in the period doubling
case our paper provides the first complete computer free proof of the
Renormalization Conjecture.

Importance of complex analytic machinery was early realised, par-
ticularly by Lanford and Epstein, who searched for renormalization
fixed points in appropriate analytic functional spaces. In mid 80’s it
was greatly emphasized and expanded: ideas of holomorphic dynamics
and geometric structures coming from the complex plane (and even 3D
hyperbolic space) became the main tools in the field.

The renormalization operator was complexified by Douady & Hub-
bard [DH2]. A program of construction of the renormalization fixed
point and its stable manifold by means of the Teichmiiller theory was
formulated by Sullivan in his address to ICM-86 in Berkeley [S1]. This
program was carried out a few years later (see [MvS, S2]). A different
approach to the problem exploiting the idea of geometric limits was
given by McMullen [McM2].

For a renormalization operator of bounded type, Sullivan’s & Mec-
Mullen’s theory provides us with the renormalization horseshoe A and
proves uniform exponential contraction in the hybrid classes of f € A.
However, hyperbolicity of this horseshoe was not established even in
the stationary period tripling case. Nor it was shown that the hybrid
classes H(f), f € A, form a foliation with codimension 1 complex an-
alytic leaves. (In [McM2, S2| the hybrid classes are treated intrinsicly
without embedding them into an ambient complex space).

The above development based on complex methods treats the case of
quadratic critical point, or more generally, “analytic” fixed point (i.e.,
having even criticality). However, the computer experiments suggest
that the universality phenomenon is valid for any real criticality ¢ > 1
as well. (By definition, a smooth unimodal map has criticality § if
it admits a representation |¢(z)|° where ¢ is a diffeomorphism.) An
important progress in this direction was made in the works of Collet,
Eckmann, Epstein, Lanford and Martens [CEL, E1, E2, EE, Ma].

Let us also note that there is a parallel renormalization theory for
the circle dynamics which is also about to be completed (Lanford [La2],
de Faria [dF], de Faria-de Melo [dFM].
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For the background in the “classical renormalization theory” (i.e., 15
years old) see Collet & Eckmann [CE], Cvitanovi¢ [Cv] and Vul-Sinai-
Khanin [VSK]. For more recent developments see de Melo - van Strien
[MvS], McMullen [McM1] and the author [L3]. See also Tresser [T] for
a lively historical retrospective.

Let us finally note that the Hairiness Theorem we prove here has a
dynamical counterpart (hairiness of the Feigenbaum Julia sets) which
was proven by McMullen [McM2].

1.7. Further development. We have recently proven the Renormal-
ization Conjecture for all real combinatorial types [L5]. We conclude
that the set of real infinitely renormalizable parameter values has zero
linear measure, and that almost any real quadratic map P, :  — 2%+c,
c € [—2,1/4], has either an attracting cycle, or an absolutely continu-
ous invariant measure.

1.8. Notations & definitions. As usual, C is the complex plane; R
is the real line;

N =1{0,1,...} is the set of natural numbers; Z is the set of integers;
D(a,r) = {z: |z —a|] < r} is the open round disk of radius r,

D, =D(0,r), D= Dy;

T, = 0D, is the circle of radius r, T = Ty;

A(r,R) ={z:r < |z| < R};

X denotes the closure of a set X;

U € V means that U is compactly contained in V, that is, U is compact
and is contained in V.

A topological disk means a simply connected domain in C;

A topological annulus means a doubly connected domain in C. The
modulus of a topological annulus, mod A, is equal to log(R/r), provided
A is conformally equivalent to a round annulus A(r, R) (where r = 0
or R = oo are allowed);

The domain of a map f is denoted by Dom(f);

Quasi-conformal maps will be also abbreviated as “qc”;

Dil(h) will stand for the dilatation of a q¢c map h;

P.(z) = 2% + ¢

M, is the Mandelbrot set

Given amap f: X — X and a point x € X, let orb(z) = {f"z}>_,,
orby () = { ™}y

a < b means that the ratio a/b stay away from 0 and oo;

a ~ b means that a/b — 1.
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We assume the reader is familiar with the basic holomorphic dy-
namics (see e.g., [CG]) and the basic theory of hyperbolic dynamical
systems (see e.g., [Sh]).
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2. SLOW SMALL ORBITS

2.1. One dimensional case. In one dimensional situation the Small
Orbit Theorem says that any analytic map R : z — >0z + b2% 4 ...
near the origin has small orbits. This situation is well understood.
There are three possible cases:

e Parabolic case when 6 = ¢/p is rational. In this case R is either
of finite order, that is RP = id, or there exist orbits converging to 0
(within the attracting petals).

e Siegel case when R is conformally equivalent to the rotation z —
e?™ . In this case all orbits which start sufficiently close to 0 don’t

escape a small neighborhood of 0.

e Cremer case (none of the above). In this case, for all sufficiently
small € > 0, the connected component K. of the set {z : |R"z| <
e, n=0,1,...} is a continuum intersecting the circle T, (see Birkhoff
[B], p. 95, Perez-Marco [PM]).
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Thus in all three cases there exist small orbits.

2.2. Size of the basin of attraction. We will consider a slightly
more general setting than needed for the Small Orbits Theorem which
will be suitable for further applications to bounded combinatorics. Let
us consider a Banach space B split into two subspaces: B = E* @ E°.

Let D* = D*(0) and D¢ = D*(0) stand for the open disks of radius
0 centered at 0 in E° and E° respectively. Let us consider the bidisk
D = D(0) = D*(0) x D¢(6). Let 0°D stand for D* x 0D¢, and 0°D has
the similar meaning.

For h € B, let h* and h® denote the horizontal and vertical compo-
nents of h, i.e, the projections of h onto E* and E° respectively. Define
the angle 6(h) € [0,7/2] (between h and E*) by the condition:

1<)

tgf(h) = —||h,5|| )

Let Cf = {h € B: §(h) > 0} stand for the cone with angle 7/2 — 0
about its axis E°.

Let us also have another Banach space B’ compactly embedded into
B, i.e., there is a linear injection ¢ : B' — B such that the image of the
unit ball is relatively compact in B.

Let us now consider a periodic point situation. Let us have p pairs
of complex Banach spaces (B;, B) as above, and p maps T} : (U;,0) —
(Bj,1,0) defined in some neighborhoods U; C U; of the origin 0 = 0,
(where the index j is considered mod p). We will naturally label all the
above objects with the subscript j: E?, D;(6), i; etc. Let B = UB;,
U =UB;, D=uUDj etc., and T : LU — B' be the operator acting as
T; on U;. Let

R=ioT:U— B, R|Uj=ij0Tj.

Lemma 2.1 (Basin of attraction). Given the spaces and operators as
above, assume that T : B — B’ is compler analytic and i : B — B is
compact. Assume that the decomposition B = E°@® E° is invariant with
respect to the differential DR(0), and moreover the following properties
are satisfied.

HO. The origin is attracting: spec DRP(0) C D.
H1. Horizontal contraction: Rf ¢ 0°D for f € D.

|(DRsh)"|| < gllb]|  provided f € D, Rf € D.
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H2. Invariant cone field: There exists a 0 € (0,7/2) such that the
tangent cone field C? over D 1s R-invariant:

(DRy) C? C szf provided f € D, Rf € D.
Then there is a point f € 0°D such that orb(f) C D and |R™f|| — 0.

Remark. Note that there are no assumptions relating the spectrum
of DRP(0) and the size of the bidisks D;.

Proof. By assumption HO, the origins 0; € B; form an attracting cycle
O of period p. Let us consider its basin of attraction in D:

A={f:R'feD,n=0,1,... & |R"f||—0 as n— o0.}

Clearly A is forward invariant. We should show that A intersects the
horizontal boundary 0°D. Assume this is not the case.

Let A> = AN D. Then A° is forward invariant (indeed, if f € A°
then Rf ¢ 0°D by the assumption, and Rf ¢ 0°D by the assumption
H1). It follows that A° is open.

Let 0°A denote the part of the boundary of A which does not belong
to 0°D. Then

R(0°A) C 0°A. (2.1)

Otherwise there would be a point f € 0°A such that Rf € A° and
hence f € A. As A° is open, f can belong simultaneously to A and 0A
only if f € 0D contradicting the assumptions.

We are going to show that the assumptions HO-H2 contradict to
(2.1). Since all these properties are inherited by the iterates, at this
point we can replace R with RP and assume without loss of generality
that p = 1.

Note first that by the invariant cone field assumption H2, the linear
operator DR(0)|E® does not have 0 in its spectrum. Since it is compact,
E° is finite dimensional.

Let us now consider a family G of immersed analytic manifolds ¢ :
(€2,0) — (I',0), where Q = Q, and I' = I'y, C A°, with the following
properties:

Al. The tangent spaces T;I' = DT,Q2, where f = ¢(z), belong to
the cones C’j‘?.

A2. The manifolds are properly immersed into A°. This means that
if a curve y(t) C ©Q, 0 < ¢t < oo, tends to co in Q as t — oo (i.e.,
it eventually escapes any compact subset of ), then ¢(v(¢)) tends to
0°A.

Remarks: 1. The family G is non-empty: just let I' be the connected
component of the vertical slice DN A° of the attracting basin.
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2. By Property Al, the projection P : I' — D¢ of any I' € G onto
the vertical subspace is non-singular. Moreover, for any tangent vector
v e T;L, [|Pol| = lof].

3. Property Al also implies that there is an ¢ > 0 such that the
irreducible component of (D*® x D¢(¢)) N ' containing 0 is a graph of
an analytic map ¢ : D%(e) — D?.

Let us supply the manifolds I' € G with the Kobayashi metrics.
Recall that the Kobayashi norm of a tangent vector v € 7T is defined
as

[vlle = inf flw]le,

where ||w||p stands for the Poincaré norm of a vector w € TyD, and
the infimum is taken over all holomorphic curves v : (D, w) — (T, v)
(where by definition such a curve is factored via the parametrization
Y : Q — T'). The Kobayashi metric is invariant under holomorphic
coverings and increases under shrinking the manifold.

Remark. A covering map between immersed manifolds is naturally
defined using the parametrizations. A holomorphic covering of finite
degree can be defined as a proper non-singular holomorphic map.

It follows that for a tangent vector v € TyI', ' € G, the Kobayashi
norm is uniformly subordinate to the Banach one:

[olle < Cllv, (2.2)
where the constant C' is independent of v. Indeed
[olle < [vlle) = P[] pee)-
On the other hand, by the above Remark 2,
[oll < [[Pv]] < || Po|

DC(E)'

Let us now consider a manifold transformation R, : 'y, = I'goy. By
the invariant cone field assumption H2 and (2.1), Ro¢ : Q, — A% is
an immersion satisfying properties A1-A2. Hence R, transforms G into
itself. Moreover, the map R : I' — RI" is proper and non-singular, and
hence is a holomorphic covering of finite degree.

Since the Kobayashi metric is invariant under holomorphic coverings,
for any tangent vector v = Dty(w) € TpI' we have:

IDR"(v)]

On the other hand, since 0 is an attracting point,

ror = |[v[|r

IDR"(v)|| = 0 as n — oo.

These last two estimates contradict (2.2). O
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2.3. Proof of the Small Orbits Theorem. We are now ready to
prove the Small Orbits Theorem stated in the Introduction. The argu-
ment below exploits Perez-Marco’s perturbation idea [PM].

Let E* stand for the spectral subspace of R corresponding to the
part of spec R inside the unit disk D, and let E° correspond to the part
on the unit circle T. After replacing R by its iterate (or after adapting
the Banach norm), R becomes horizontally contracting and a cone field
preserving on a sufficiently small bi-disk D = D(J).

For A € (0, 1), let as consider the perturbation Ry = AR which makes
the origin attracting. This operator is stronger horizontally contracting
than R and preserves the same cone field. Thus it satisfies assumptions
HO-H2 of Lemma 2.1. Hence there is a point fy, € 0°D N A,, where
Ay={f: R*fe D, m=0,1,...} is the basin of 0.

Since the set {Rf)} is pre-compact in B, there is a convergent sub-
sequence Rfy, — g as A, — 1. Clearly g,, = R"g € D, m =0,1,....
Moreover, for ¢ sufficiently small, ||g°|| > ||¢g°||, since R contracts
stronger in the E*®-direction than in the E°one. Since E€ is the neutral
direction,

19m41ll = llgmll (1 + o(llgr 1)), (2.3)
provided

gmll < 1lgmll- (2.4)

But (2.4) is inductively satisfied for all m, so that (2.3) is satisfied for
all m as well. This implies that the g, may not exponentially converge
to 0. O

Remark. The Small Orbits Theorem is still true if to allow R to have
spectrum outside the unit disk.

3. EXTERNAL MAPS AND HYBRID CLASSES

3.1. Quadratic-like maps and germs. The following fundamental
notion was introduced by Douady & Hubbard [DH2]. A quadratic-
like map f : U — U' is a holomorphic double branched covering (i.e.,
a proper map of degree 2) between topological disks U, U’ such that
U € U'. Tt has a single critical point which is assumed to be located
at the origin 0, unless otherwise is stated. Note that the restriction of
a quadratic polynomial P. on a disk . of a sufficiently big radius r is
a quadratic-like map.

The filled Julia set of a quadratic-like map is defined as the set of
non-escaping points:

K(f)y={z:f"2€¢Un=0,1...}.
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Its boundary is called the Julia set, J(f) = OK(f). The Julia set J(f)
(and also K(f)) is connected if and only if the critical point itself is
non-escaping: 0 € K(f). Otherwise it is a Cantor set.

Any quadratic-like map has two fixed points, o and  (counted with
multiplicity). In the case of connected Julia set these points can be
distinguished. Namely, if these points are different then ( is a non-
dividing repelling point (i.e., its removal does not disconnect the Julia
set), while « is either non-repelling, or dividing.

In what follows we will also assume (without loss of generality) that
the domains U and U’ of any quadratic-like map f are bounded by
smooth Jordan curves. The topological annulus A = U’ \ U is called
the fundamental annulus of f. Let us foliate the fundamental annulus
by topological circles with winding number 1 around the origin (e.g.,
using the Riemann mapping onto a round annulus). This foliation can
be pulled back by dynamics providing a foliation ® with singularities
on U"\ K(f). Moreover, if K(f) is connected, then ® is non-singular.
Otherwise, the outermost singular leaf is a figure 8 passing through the
critical point 0. The leaves of this foliation will be called equipotentials.

We will consider quadratic-like maps up to affine conjugacy (rescal-
ing), so that near the origin they can be normalized as f : z
c+ 22 + ... Let QM stand for the set of normalized quadratic-like
maps.

Two analytic maps f and g defined near 0 represent the same germ at
0 if they coincide in some neighborhood of 0. Let G, stand for the space
of germs at the origin. By taking all possible analytic continuations,
a germ [ € Gy can be equivalently viewed as a full analytic function
f Sy — C defined on a Riemann surface Sy covering C (in general,
non-evenly).

Let us now define quadratic-like germs. To this end consider the
following relation on the space QM: f ~ f if the maps f and f have a
common quadratic-like restriction. The following result gives a useful
criterion for two maps to be in this relation:

Proposition 3.1 ([McM1], §5.4). Let us consider two quadratic-like
maps f : U — U’ and f : U — U’ representing the same germ at
0. Let W be the component of UNU containing 0. Then f ~ f if and
only if fW > 0. Moreover, in this case the restriction g = f|W is a
quadratic-like map, and K(f) = K(g) = K(f).

This lemma yields:

o If f ~ g then K(f) = K(9);
e For the maps with connected Julia sets, the above relation is an
equivalence relation.
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In general, let us consider the equivalence relation generated by ~.
Classes of this equivalence relation are called quadratic-like germs.
Thus two quadratic-like maps f and f represent the same quadratic-
like germ [f] = [g] if there is a string of quadratic-like maps f =
fosfo,-- ., fx = f such that fy and f, have a common quadratic-like
restriction.

There is a natural map j : QG — Gy. If g = j(f), one can say that g
is marked. Note that there exists at most one marking with connected
Julia set [McM2, Lemma 7.1]. Also, any quadratic polynomial P, has
a unique marking since any two quadratic-like restrictions U — U’
and V' — V' have a “common minorant” D, — P.(D,) (such that
D, D UUYV). Thus the quadratic family P., ¢ € C, is naturally
embedded into OG.

Furthermore, two markings with “close almost connected” Julia sets
must coincide. More precisely, let us consider two quadratic-like maps
f:V =V and f:V — V' with the same germ at 0 whose Julia sets
stay Hausdorff distance at most e apart. Let Q.(J(f)) denote the filled
closure of the e-neighborhood of J(f) (where “filling” means adding
bounded components of the complement). Assume that Q. (J(f)) is
connected and

{0,£(0)} € Qc(J(f)) C Qse(J(f)) C V', (3.1)

and the same holds for f. Then f ~ f. (Indeed, Q. (J(f)) U Q(J(f))
is a connected set contained in V' NV and containing {0, f(0)}.)

Quadratic-like germs will be considered up to affine conjugacy. We
will adopt the following notational and terminological conventions (ex-
cept for special situations when they may lead to confusion). The germ
of a quadratic-like map f will still be denoted by f. However, some-
times the notation fy will be used for the quadratic-like representative
fv:V — V' of a germ f. The germ of a polynomial will be still called
“polynomial”.

Given a quadratic-like germ f, let

mod(f) = supmod(U'\ U),

where the supremum is taken over all quadratic-like representatives
f:U — U’ of the germ. Note that mod(f) = oo if and only if f is a
polynomial.

Let QG stand for the set of quadratic-like germs, and C be its con-
nectedness locus, that is, the subset of germs with connected Julia set.
Let QG stand for the set of quadratic-like germs which have repre-
sentatives satisfying (3.1).
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3.2. External maps. Let g : T — T be a degree two real analytic
endomorphism of the unit circle T. It can be also viewed as a complex
analytic germ near the circle. We call g erxpanding if it admits an
analytic extension to a double covering g : V' — V' between annular
neighborhoods of T such that V' € V'. We consider such a map up to
conjugacy by rotation, which is equivalent to normalizing it in such a
way that 1 € T is a fixed point. Let £ stand for the space of circle
endomorphisms as above (up to rotation). Let

mod(g) = supmod(V"\ (V UD)),

where the supremum is taken over all extensions g : V' — V' as above.
There is a projection 7 : QG — & which associates to f € QG
its external map g € £. In the case when f € C, the construction
is easily provided by the Riemann Mapping Theorem. Namely, let
f : U — U’ be a quadratic-like representative of the germ. Let us
conjugate f: U\ K(f) — U\ K(f) by the Riemann mapping
¢=0or: C\K(f) > C\D
to a double covering g : V' — V' between annuli with inner boundary T.
By the Reflection Principle, g extends to a circle endomorphism of class

£. Since the Riemann mapping ¢ is well-defined up to post-composition
with rotation, g is well-defined up to conjugacy by rotation.

Lemma 3.2. Let f € C and g = 7©(f) be its external map. Then
mod(f) = mod(g).

Proof. The Riemann mapping ¢ : C\ K(f) — C\ D obviously estab-
lishes one-to-one correspondence between the fundamental annuli of f
and g. O

In the case of disconnected Julia set the construction is more subtle.
Take a fundamental annulus A = U’ \ U with real analytic boundary
curves EF = 0U' and [ = QU. Then f : I — E is a real analytic double
covering.

Let 4 = mod A. Let us consider an abstract double covering &; :
A; — A of an annulus A; of modulus /2 over A. Let I} and E; be
the “inner” and “outer” boundary of Ay, i.e., & maps I; onto I and E}
onto E. Then there is a real analytic diffeomorphism 6; : E; — I such
that & = f o#,. This allows us to stick the annulus A; to the domain
C\ U bounded by I. We obtain a Riemann surface 7} = (C\U) Uy, A;.
Moreover, the maps f on A and & on A; match to form an analytic
double covering f; : Ay — A.

This map f; restricts to a real analytic double covering of the inner
boundary of A; onto its outer boundary. This allows us to repeat this



18 MIKHAIL LYUBICH

procedure: we can attach to the inner boundary of 77 an annulus A,
of modulus iu, and extend f; to the new annulus 75. Proceeding in
this way, we will construct a Riemann surface

TA=TA(f) =lim T, = (C\ U) Uy, A; Up, Ay ... (3.2)

and an analytic double covering F' : U,>1 A, — Up>0A, extending f.

Since the trajectories of F' don’t converge to the “inner” ideal bound-
ary of T4, it is a punctured disk and can be conformally mapped onto
C\ D. Now by the reflection principle, this conformal representa-
tion of F' can be extended to an analytic expanding endomorphism
ga:T —T.

For a given choice of the fundamental annulus A, the map g4 : V —
V" (which comes together with the domains (V, V”)) is well-defined up
to rotation. Indeed, for two such maps g4 and g4, by construction
there is a conformal isomorphism A : C\ D — C\ D conjugating them
on an outer neighborhood of the circle. Reflecting h to the unit disk,
we conclude that h is a rotation conjugating g4 and ¢’y near the circle.

The endomorphism g4 : T — T does not actually depend on A, that
is, on the choice of a representative of the quadratic-like germ. Indeed,
let A=U'\Uand A = U’ \ U be two fundamental annuli of f such
that 0 and f(0) are contained in the same connected component W’
of U' N V'. Then by Proposition 3.1, we have a quadratic-like map
f: W — W' whose fundamental annulus B = W'\ W is contained in
both U" and V'. Let us show that in this case g4 = g5 = ¢;.

It is enough to check the first equality. Let us consider the tautologi-
cal embedding C\U — C\W. The latter Riemann surface is naturally
embedded to T'®, so that we obtain an embedding i : C\ U — T'Z con-
jugating f|0U to ggli(OU). (Note that g admits an analytic extension
up to the curve i(0U) provided by f|U \ W.

Let us attach an abstract annulus A4; of half modulus to the inner
boundary of A. Then ¢ is naturally lifted to this annulus, so that we
obtain a conformal embedding i : (C\ U)U A; — TB. Now attach the
next annulus As and extend 7 to the new Riemann surface, etc. At the
end we obtain a conformal isomorphism i : 74 — TP conjugating ¢
to gp near the ideal boundary. The conclusion is obvious.

Thus the external map g = 7(f) is correctly defined up to rotation.

The above construction is due to Douady and Hubbard [DH2] except
that we remember the embedding of the fundamental annulus A into
C\ U. Due to this the external map is defined up to rotation rather
than an analytic diffeomorphism.
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We say that two quadratic-like germs f and f are externally equiv-
alent if 7(f) = «(f). Note that in the case of connected Julia sets this
means that the appropriately normalized conformal map h : C\K (f) —
C\ K(f) conjugates f and f near the Julia sets.

Lemma 3.3. The external map 7(f) is equal to Py : z +— 2* if and
only if f is a quadratic polynomial P, : z — 2*> + c.
Proof. The external map ¢ of a quadratic polynomial acts as a double
covering on the whole Riemann surface 7' = C\D, and hence g(z) = 2%
Vice versa, assume that 7(P.) = z?. This means that there is a
conformal map ¢ : C\ U — C\ V such that ¢(f(z)) = ¢#(2)* whenever
this makes sense. But this functional equation allows us to extend f
analytically to the whole complex plane, so that f is a restriction of a
quadratic polynomial. O

The inverse map qﬁ;l :C\V — C\ U conjugating g = 7(f) to f
on OV (and perhaps analytically extended elsewhere) will be called the
uniformization of f at oc.

The fibers Z, of the projection 7 will be called vertical curves, or
vertical fibers.

3.3. The Riemann mapping. Let us now construct a smooth map
£:9G\C—C\D

which conformally uniformizes the vertical fibers (its restriction to the

quadratic family will coincide with the Riemann mapping C \ My, —

C\ D).

Let us say that a normalized map g € &, g(1) = 1, is marked if one
has selected annuli neighborhoods (V, V') of T according to the defini-
tion of an expanding map and a point @ € V' \ D, up to the following
equivalence relation. Two data (g : V — V',a) and (g : V — V', a)
are considered to be equivalent if there is a string of representatives
g: Vi =V, k=0,...,N, such that

o (Vo.V5) = (V.V"), (V. V3) = (V. V');

e T and a are contained in the same connected component of V| N

Vie, k=0,1,...,N - L.

In the case of disconnected Julia set, the above construction of the
external map g = 7(f) actually provides us with a marked map as
follows. Given an (f : U — U’) € QG \ C, let us consider its external
map (g : V = V') = n(f) € &, where (V,V’) naturally correspond
to (U,U’). By the construction of g, there is a conformal map ¢ =
C\U — C\ V conjugating f : 0U — 90U’ to g : OV — 0V'. Let N be
the maximal natural number such that f~U > 0. Then ¢ admits the
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analytic extension to the domain C\ f~™U > f(0). Thus we can mark
the point

in V'.

Selecting a different representative of f does not change marking
of g. Indeed, let f : U — U’ and f : U — U’ satisty the property
that 0 and f(0) belong to the the same component of U’ N U’. Then
considering the quadratic-like intersection f : W — W' we conclude
that T and a belong to the same component of V' N V",

Let £™ denote the space of marked circle maps g of class £, and 7™
denote the projection QG\C — E£™ just described. Let us also consider
the following natural maps:

(: &M — & (forgetting the marked point) (3.3)
and
n:Em — C\D (position of the marked point). (3.4)

Let S, denote the fibers of (. Then n: S, — C\ D is a local home-
omorphism. Pulling the complex structure back via n, we make the
fiber a Riemann surface covering (non-evenly) an outer neighborhood
of the unit circle.

As in the case of QG, there is a subset £# C £™ with a preferred
marking. Namely let £# consist of marked circle germs which have
representatives (¢ : V' — V' a) with the property that 0V’ and a are
separated by some round circle T, C V' \ D. Clearly this marking is
uniquely determined by the germ ¢ and the point a. Thus the projec-
tion 7 : S — C\ D is univalent (here S# = S, N £#) and can be
identified with a domain (2, of the complex plane.

Note that for any g € &, there is a representative g : V. — V'
such that V' \ D D T, with r = r(g) > 1 depending only on mod(g).
Hence any point a € A(1,r) specifies a preferred marking of g, so that
Q, DAL, 7).

Theorem 3.4 (External mating). Let g € €™ be a marked circle map.
Then there is a unique quadratic-like germ f = 6(g) € QG\C such that

™ (f) =g.

Proof. Let us consider the marked point a = n(g). Let ¢"a € A =
V'\ (VUD) (without loss of generality we can assume that ¢"a & 0A).
On the other hand, take any quadratic polynomial P = P, with Cantor
Julia set. Let G be the Green function on C\ K(P) with pole at oo,
and let Q, = {2 : G(z) <logr} (r > 1). Let us select a fundamental

annulus Qg2 \ Qp containing PNe. Let r = RY?" and U = g NV,
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There exists a diffeomorphism ¢ : (C\Q,,¢) — (C\U, a) conjugating
P|Qr\ Q- to g|V \U. Let us consider the conformal structure p = ¢*o
on C\ Q,, and pull it back by P to the complement of .J(P). Straight-
ening this conformal structure by the Measurable Riemann Mapping
Theorem we obtain a desired quadratic-like map f.

Let us have two quadratic-like maps f: U — U' and f: U — U’ in
QG \ C with 7™ (f) = 7™(f) = g, in particular, £(f) = &(f) = a. Let
us show that these maps represent the same quadratic-like germ.

Let us first assume that the domains (V, V') of ¢ corresponding to
U and U coincide. Then f and f have fundamental annuli U’ \ U and
U’ \ U whose inner boundaries are “figures eight” passing through 0,
and such that there is a conformal map ¢ : (C\ U,0) — (C\ U, 0)
conjugating f to f on the boundaries of these domains. This map
admits a dynamical analytic extension to the complements of the Julia
sets. Since the Julia sets are removable, 1 is affine.

Assume now that we have two representatives of the marked germ
g:V — V' and V. — V' such that T and a belong to the same
component ' of VNV’ Let Q = ¢g7'. Then Q € ¥ and g : Q@ —
is a double covering.

Assume also that the map g : V' — V' corresponds to a quadratic-
like map f : U — U’. Then there is a restriction f : W — W'
corresponding to g : © — €. Moreover, by means of the functional
equation ¢(fz) = g(¢(z)), f analytically extends to a domain U—U'
corresponding to g : V — V.

Let us now consider a string g : V, = V/, k=0,..., N, such that T
and a are contained in the same component of VNV, ,, and (V;, V) =
(V, V"), (Vi, V&) = (V,V'). Then by the above construction, we have
the corresponding string f : Uy — U, of quadratic-like domains such
that the U, N U, , contain both 0 and f(0), and (U, Uj) = (U,U").
Then f:U — U’ and f : Uy — Uy represent the same germ. On the
other hand, fy : Uy — Up and f: U — U’ have the same marked
external map ¢ : V — V' considered with its domain. As we have
shown above, fy is affinely equivalent to f. O

The above operation # will be called the external mating. The reason
is that one can think of it as the mating of a circle map g € £ with
a point a € C\ D which produces a quadratic-like germ f outside the
connectedness locus C.

Note that the restriction £ : C\M — C\D of £ to the quadratic fam-
ily coincides with the uniformization of C\ M tangent to id at oo (see
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[DH1]). The preimage of a round circle T, under this uniformization
is called the (parameter) equipotential of level r.

We will see that the map 7™ : Z,\C — S, is a conformal isomorphism
(see Lemma 4.14). The preimages of the round circles under £ = non™
will be called (external) equipotentials on Z,.

The external equipotentials are the traces of equipotential hypersur-
facesin QG, the preimages of the round circles under £ : QG\C — C\D.
We will see that they are codimension 1 smooth submanifolds in QG.
(see Lemma 4.14).

3.4. Conjugacies. Two quadratic-like maps f : U — U’ and f:U—=
U’ are called topologically conjugate if there exists a homeomorphism A :
(U',U) — (U',U) such that h(fz) = g(hz), z € U. Two quadratic-like
germs f and f are called topologically conjugate if there is a choice of
topologically conjugate quadratic-like representatives. A self-conjugacy
h of a map/germ is called its automorphism.

Lemma 3.5 (see e.g., [L2], Lemma 10.4). Let f be a quadratic-like map
with connected Julia set and h be its automorphism. Then h|J(f) = id.

Two maps/germs are called quasi-conformally/smoothly etc. conju-
gate (or equivalent) if they admit a conjugacy h with the corresponding
regularity. If two maps/germs are qc conjugate with Oh = 0 almost
everywhere on the filled Julia, then f and f are called hybrid equivalent.

Lemma 3.6. Let f € C and g € C be two quadratic-like germs with
mod(f) > v > 0 and mod(g) > v > 0. Assume that they are qc
conjugate by a map h with
ess — sup |8h(z)| < K.
zex(p [Oh(2)]

Then there exist quadratic-like representatives f : U — U’ and g : V —
V' such that:

(i) mod(U"\U) > u(v) >0 and mod(V'\ V) > u(v) > 0;

(ii) These representatives are K-qc conjugate with K = K (k, v).

Proof. A quadratic-like germ with mod(f) > v > 0 admits a represen-
tative f : U — U’ satisfying (i) and such that the boundaries OU, oU’
are smooth v(v)-quasi-circle (see e.g., [McM2, Prop. 4.10]). If we have
two maps f: U — U" and g : V — V' with this property then there is
a @Q-qc map H : U'\ U — V' \ V respecting the boundary dynamics,
with @ = Q(u,y). This map can be pulled back to a K-qc¢ conjugacy
between between f and g on the complements of the filled Julia sets.
This conjugacy glues with h|K(f) to a single K-qc conjugacy, where
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K = max(Q,(k +1)/(k — 1)) (see e.g., [L2, Cor. 10.5] and Lemma
10.4). O

Corollary 3.7. Let f € C and g € C be two quadratic-like germs with
mod(f) > v > 0 and mod(g) > v > 0. If these maps are hybrid
equivalent then there exists a K(v)-qc hybrid conjugacy between them.

3.5. Hybrid classes. Let H(f) stand for the hybrid class of f € QG.
If f € C then the hybrid class H(f) can be endowed with the following

Teichmaller-Sullivan metric:
disty(f, g) = inf log Dil(h),
where h runs over all hybrid conjugacies between f and g (see [S1]).

Lemma 3.8. For any germ fo € C with connected Julia set and any
circle map g € &, there exists a unique (up to affine conjugacy) germ
€ H(fo) whose external map is equal to g. Moreover, if mod(fy) >
p >0 and mod(g) > p > 0 then disty(fo, f) < K(u).

Proof. Let gy : Vo — V{ be the external map of f;. Any two expanding
circle maps, in particular ¢ : V' — V' and ¢y, are quasi-conformally
conjugate. Indeed, let A =V’'\ (VUD) and Ay =V \ (VoUD) be outer
fundamental annuli of ¢ and gy respectively. Their boundaries can be
selected as smooth quasi-circles with dilatation controlled by p. Then
there exists a K = K(u)-qc diffeomorphism ¢ : (C, A) — (C, Ay) con-
jugating g : OV — 0V’ to gy : 0Vy — O0Vj. It admits a unique extension
toa K-qc map ¢ : C\ D — C\ D conjugating g : V\ D — V' \ D to
go : Vo \D — V{ \ D. By the Reflection Principle, 1) admits an exten-
sion to a T-symmetric K-qc map (C, V', V) — (C, V{, Vp) conjugating
g and go on their domains.

Let us consider a 1-push-forward of the standard conformal structure
o from C\D to C\ D, v = h,o. It is preserved by gy : Vo — Vj. Recall
now that in the case of connected Julia set, go : Vo \ D — Vj \ D is
conformally conjugate to fo : Uy \ K(f) — Ui\ K(f) by means of
the Riemann mapping ¢ : C\ K(f) — C\ D. Hence the structure
p = ¢*v on C\ K(fy) is preserved by fy near the Julia set. Let us
extend it to K (f) in a standard way: p|K(f) = 0. Straightening u by
the Measurable Riemann Mapping Theorem, we obtain a desired map
f.
Let us now have two maps like this, f and f. Since they are hybrid
equivalent, there is a qc conjugacy h : (U, K(f)) — (U, K(f)) near the
filled Julia sets, such that Oh = 0 a.e. on K(f). On the other hand,
f and f are externally equivalent, so that there is a conformal map
H:C\ K(f) » C\ K(f) conjugating f and f near the Julia sets.



24 MIKHAIL LYUBICH

These two maps match on the Julia sets (see [DH2], Prop. 6), and
hence glue together into a single conformal, and thus affine, map. O

Theorem 3.9 (Straightening [DH2|). If f is a quadratic-like germ with
connected Julia set then its hybrid class H(f) contains a unique qua-
dratic polynomial P : z — 2% + x(f), where ¢ = x(f) is a point of the
Mandelbrot set My. Moreover, distr(f, P) < K(mod(f)).

Proof. By the previous lemma, there is a unique map P € QG which
is hybrid equivalent to f and externally equivalent to Py : z — 22. By
Lemma 3.3, P is the unique quadratic polynomial in #(f). O

Let us summarize Lemma 3.8 and Theorem 3.9:

Theorem 3.10 (Internal mating). Any parameter ¢ € M can be mated
with any circle map g € € to obtain a unique (up to affine conjugacy)
map f =i.(g) € QG such that x(f) =c and 7(f) =g.

The hybrid class passing through a point ¢ € M, will be also denoted
as H.. Thus we have a partition of the connectedness locus C into
the hybrid classes labeled by the points of the Mandelbrot set and
parametrized by the space £ of circle maps.

Note with this respect that all quadratic-like germs with discon-
nected Julia set are hybrid equivalent, so that QG \ C is a single hybrid
class.

Let us finish with the following important remark: Any two germs
fo and f; in the same hybrid class H can be included in a certain
complex one-parameter family of maps called the Beltram: disk. Let
h be a hybrid conjugacy between fy and fi, and u = Oh/0h be the
corresponding Beltrami differential. Let us consider a complex one-
parameter family of Beltrami differentials py = Ay, A € Dy, .. Let
hx be the solution of the corresponding Beltrami equation. Then by
definition, the family {f\ = hy o fo o h,'} is the Beltrami disk via f;
and f;.

The real one parameter family {fy : |\ < 1+ €}, is called the
Beltrami path joining fy and f;.

4. SPACE OF QUADRATIC-LIKE GERMS

4.1. Topology and analytic structure. McMullen has supplied the
space QM of quadratic-like maps with the Carathéodory convergence
structure by declaring that a sequence f, : U, — U, converges to
f: U — U if the pointed domains (U,,0) Carathéodory converge to
(U,0), and f,, — f uniformly on compact subsets of U (see [McM1, §4]).
This structure can be pushed down to the space QG of quadratic-like
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germs by declaring [f,,] — [f] if the sequence [f,] can be split in finitely
many subsequences [f? ] which admit representatives f!, Carathéodory
converging to certain representatives f; of [f] (the splitting of the se-
quence is actually not needed in the case when f € C ). Below we will
show that this convergence structure on QG is consistent with a certain
topology, which in turn can be refined to a natural complex analytic
structure modeled on a family of Banach spaces. For the background
for this section the reader should consult Appendix 2.
As in §11.3,

e V will stand for the directed set of topological discs V' > 0 with
piecewise smooth boundary, with U = V if U € V;

e By will denote the space of normalized analytic functions f(z) =
c+ 224+ ... on V €V continuous up to the boundary supplied
with sup-distance;

e and B = lim By will stand for the space of normalized analytic
germs at 0.

Let us now supply the space QG of normalized quadratic-like germs
with a complex analytic structure modeled on a family of Banach spaces
By. Given f € QG, let V¢ stand for the family of topological disks
with piecewise smooth boundary such that f : V' — fV is quadratic-
like. If g € By(f,¢) is sufficiently close to f in the Banach space
By then it is quadratic-like on a domain U slightly smaller than V.
Hence g represents a quadratic-like germ. Thus we have an injection
jrv © By(f,e) — QG. This family of injections obviously satisfies
properties P1-P3 stated in Appendix 2 (with linear transition maps),
and hence endows QG with topology and complex analytic structure.

Note that by Lemma 11.6, convergence in this topology coincides
with the quotient of the Carathéodory convergence.

If f € C then the domains V on which f is quadratic-like form a
directed set Vg, so that f is a regular point of QG (see Appendix
2). Since the transition maps are linear, the tangent space T;QG is
naturally identified with the inductive limit

B(f) = lim By, (4.1)

which is in turn identified with the space of germs of analytic vector
fields near the filled Julia set K (f) normalized at the origin as v(z) =
o+az’+....

Since any finitely dimensional submanifold locally sits in some space
By, it can be locally identified with an analytic finitely parameter fam-
ily of functions f\(z) on V (so that f\(z) is analytic in two variables).
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Given > 0, R > 0, let QG(u, R) stand for the space of quadratic-
like germs which have normalized representatives f : V — V' z +—
¢+ 2%+ ... with mod(f) > p, |¢|] < R, and distyy,(0,¢) < R, where
the hyperbolic distance is measured in V'. Let

QG (n) = {f € QG : mod(f) > p}.
Note that

Cp) = QG(n)NC C QG (1, R(1)) (4.2)

(indeed, for a quadratic z — z?+c with connected Julia set, ¢ < 2, and
the statement for quadratic-like maps follows from the Straightening
Theorem). Similarly, let £(p) = {g € £ : mod(g) > pu}.

Lemma 4.1 (Compactness). A subset K of QG (respectively: of C or
&) is pre-compact if and only if it is contained in some QG(u, R) (re-
spectively: in C(u) or E(un)). Any compact set K sits in a union of
finitely many Banach slices and bears a Montel metric disty (see Ap-
pendiz 2) well-defined up to Hélder equivalence.

Proof. Sequential pre-compactness of QG(u, R) follows from [McM1,
Theorem 5.6]), and by Lemma 11.6 it implies pre-compactness.

Vice versa, let £ C QG be pre-compact, thus sequentially pre-
compact. Since ¢ = f(0) continuously depends on f, it is bounded
on K. Moreover, mod(f) and distpy, (0, f(0)) are sequentially continu-
ous on the level of maps: If f, — f then

limmod(f,) =mod(f) and limdistpy, (0, f,(0)) = distny,(0, £(0)).
Since convergence of germs is described in terms of representatives,
mod(f) > p > 0 and distyy, (0, f(0)) <R < oo for fek.

The criterion for C follows by (4.2), and the criterion for £ is com-
pletely analogous.
The last statement follows from Lemma 11.6. U

Let us consider a holomorphic family fy, A € A, of quadratic-like
germs over a Banach domain (A,0), fo = f),. Then this family locally
sits in some Banach slice By and is represented there by a holomor-
phic family of quadratic-like maps fy : V\, — V{. Take a thickened
fundamental annulus A, (i.e., a little neighborhood of the fundamental
annulus Ag) of fo with piecewise smooth boundary compactly sitting
in V. The following useful statement shows that this annulus can be
included into a holomorphic family:
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Lemma 4.2. There is a smooth holomorphic motion hy of fig over
a neighborhood of A' C A of 0, such that Ay = hyAy is a thickened
fundamental annulus of f\, which respects the dynamical relation near
the boundary of Ag.

Proof. Fix a collar neighborhood of the outer boundary of Aj, and let
the corresponding collar neighborhood of the inner boundary move as
prescribed by dynamics. By Lemma 11.2, this motion can be smoothly
interpolated through the whole annulus. O

Douady & Hubbard [DH2, Prop. 9] formulated this statement (for
one parameter families) as existence of horizontally analytic smooth
tubing, i.e., a smooth map W, (z),

U:A xA2—e4+¢6) = |J Ay, (4.3)
AEA
analytic in A € A’ for any given z € A(2 — ¢,4 + €), which is a fiber
map over id |A” and such that ¥, conjugates Py : z — 2% near Ty to fy
near the inner boundary of A,.

4.2. Complex structure on the space of circle maps. In a similar
way we can supply the space £ of expanding circle maps with the
inductive limit topology and real analytic structure. Namely, let us
represent T as R/(y : x — x + 1) so that 1 € T corresponds to 0 € R,
Let V be a v-invariant R-symmetric neighborhood of R, and let By
stand for the Banach space of functions f analytic on V, real on R,
normalized as f(0) = 0, and satisfying the following equation: f(z +
1) = f(z) + 2. (In other words, this is the space of degree two circle
maps analytic in a given neighborhood of T and fixing 1.)

Let &, be the set of expanding circle maps f € £ which belong
to By. It is clearly an open subset of By. Thus we have a natural
representation of £ as the inductive limit of real Banach manifolds &y .

It is not obvious that £ can be also endowed with the complex ana-
lytic structure. To see this let us consider the hybrid class of z — 22,
HY = H(2*) = {f € QG : f(0) = 0}. Since the condition f(0) = 0
specifies in every Banach space By a codimension 1 linear subspace, H°
is naturally endowed with topology and complex analytic structure.

Lemma 4.3. The space € of circle maps and the hybrid class Hy are
homeomorphic.

Proof. The homeomorphism ¢ = iy : &€ — Hg is constructed as the
mating of ¢ = 0 € M with g € £. By the Mating Theorem 3.10, 7 is
one-to-one.
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Take a map gy € &, with a fundamental annulus A,. Then for
all nearby g € &y, we can select a continuously moving fundamental
annulus A = A, (as in Lemma 4.2). It follows that the map 1, :
A(r,r?) — A, conjugating P, : T, — T,2 to the boundary restriction
of g can be selected continuously in g.

Let us consider the conformal structure ¢*o on A(r,r?). Pull it back
by the iterates of Py and extend it as o beyond A(1,7%). We obtain a
continuous family of conformal structures v, on C. By the Measurable
Riemann Mapping Theorem, the straightening map

hg : (C,0) = (C,0), (hg)vg =0, (hy)'(0)=1,

depends continuously on g. Hence f = i(g) = hyo Py o h;l depends
continuously on g as well.

Vice versa, it is easy to see that the filled Julia set K(f) depends
continuously on f € H,. Hence the normalized Riemann mapping
¢ =¢;: C\ K(f) - C\ D depends continuously on f in compact-
open topology. Let v C C\ D be a closed curve homotopic to T which
belongs to the domain V; of gg € £. Then for f near fj, the external
map g = ¢ o f o ¢ ! restricted on v depends continuously on f. By
the reflection and maximum principles, g depends continuously on f
on the whole annulus enclosed by v and the symmetric curve. Thus
the map 7 ! is continuous. ]

Now the natural complex analytic structure on H, can be transferred
to £ via the above homeomorphism. (This construction is inspired by
the construction of the complex structure on the Teichmiiller spaces
via the Bers embedding [Be].)

Let

M:QG —Ho, I=(ig)  om c=iom:Ho—H,
(4.4)

4.3. Analyticity of 7= and i..

Lemma 4.4. e The projection m : C — & is proper;
e The projection w: QG — £ is complex analytic.

Proof. e By definition, “proper” means that preimages of compact sets
are compact. Let L C € be compact. Then by Lemma 4.1, mod(g) >
uw>0,g¢ek.

Let f € CNw K. Then by Lemma 3.2, mod(f) > p as well, so that
by Lemma 4.1 71K is compact.

e Let fy € QGy, Ay be its fundamental annulus. Then for f € QG
near fy select a holomorphically moving fundamental annulus A (see
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Lemma 4.2). This defines a holomorphic family z; of conformal struc-
tures on Ag. Pulling this structures back to the Riemann surface
To = T(fy) constructed above, see (3.2), we obtain a holomorphic
family of conformal structures v; on Tj. Realize T as C\ D, put the
standard structure on D, and solve the Beltrami equation: (hy).v; = o.
The analytic dependence in the Measurable Riemann Mapping Theo-
rem ensures that the maps Gy = hyo fyo h,;l € H, analytically depend
on f. As the complex structure on £ is by definition transferred from
Mo, we conclude that gf = 7(f) analytically depends on f as well. O

Lemma 4.5. Foranyc € M, f =i.(g) depends analytically on g € £.

Proof. The proof is similar to that for the previous lemma. Let A
be a fundamental annulus for fy € C. Select a fundamental annulus
B, which moves holomorphically with g, and a family of diffeomor-
phisms h, : Ay — B, respecting the dynamics on the inner bound-
aries and depending analytically on g. Then the conformal structure
tg = (hy)*o depends analytically on g. Pulling it back by iterates of f
and straightening, we complete the proof (using analytic dependence
in the Measurable Riemann Mapping Theorem). 0

Thus one can say that the mating f = i.(g) is horizontally analytic.

4.4. Infinitesimal deformations. Let us introduce spaces needed for
the description of the tangent spaces to the hybrid classes. For f € C,
let B(f) be the space of f-invariant Beltrami differentials p of class L™
near K(f) such that p =0 a.e. on K(f). Consider the Beltrami path
hy in the direction of p € B(f), i.e., the family of normalized solutions
of the the Beltrami equations Oh;/0h; = tp for small [t| (see §3.5). The
velocity of this path at f,
dhy
' =0,
is a vector field near K (f) which has locally square integrable distribu-
tional derivatives (i.e., of class H) and satisfies the d-equation dw = pu.
Let F(f) stand for the space of such vector fields (corresponding to all
possible 11 € B(f)).

For f € C, let us consider the tangent space to the hybrid class of f,

E"(f) = T(H(f). (4.5)
By definition, it consists of the velocities at f of all smooth curves

v(t) € H(f) through f. The space E"(f) and its vectors will be called
horizontal.

Remarks. 1. Vector fields v(z)/dz € T;QG are normalized so that
v'(0) = 0 and considered up to adding a vector field az?/dz. By this

w =
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we can make v”(0) = 0 but sometimes we will prefer a different nor-
malization.

2. On the plane C we will freely identify functions v(z) with the
corresponding vector fields v(z)/dz.

Lemma 4.6. The horizontal space E"(f) consists of (normalized) holo-
morphic vector fields v(z)/dz near K(f) which admit a representation
v(z) =w(fz) — f'(z)w(z) with some w/dz € F(f).

Proof. Let us consider a smooth path f, € H(f) tangent to v(z)/dz €
E"(f). Then Lemma 4.2 and the Measurable Riemann Mapping The-
orem imply that there is a smooth path of qc maps h; conjugating f
to fi, ho = id. Let w/dz € F(f) be the velocity of this path at id.
Linearizing the curve t +— hyo f o hy' at t = 0, we conclude that
{f:} is tangent to (wo f — f'w)/dz at f, so that v admits a desired
representation.

Vice versa, let v = wo f — f'w with w/dz € F(f). Then the Beltrami
differential ;1 = Ow belongs to B(f). The corresponding Beltrami path
fi = hyo fohy* (i.e., Ohy/Oh; = tw) is a smooth curve in H(f) tangent
to v at f. O

Let f € C. A vector field v(z)/dz € T;QG is called vertical if there
is a holomorphic vector field «(z)/dz on C\ K(f) vanishing at oo such
that

v(z) = a(f2) — f'(2)a(2) (4.6)
near the Julia set. (Note that the above condition is equivalent to
saying that « is a holomorphic function on C\ K(f) with at most
simple pole at 0o.) The space of vertical tangent vectors at f will be

denoted by EV(f). (We will eventually show that it is the tangent space
to the vertical fiber Z;.)

Lemma 4.7. For f € C, T;9G = E"(f) & E*(f).

Proof. Existence. Let us consider a holomorphic vector field v(z)/dz €
T;QG in a neighborhood of K(f). Select a quadratic-like representa-
tive f : U — U’ such that v is well-defined in a neighborhood of U".
Then there exists a smooth vector field w(z)/dz in a neighborhood of
C \ U vanishing near oo and such that

v(2) = f(w(z2)) — f'(2) w(z), =z € UnNDom(w). (4.7)

By means of this equation w(z)/dz can be extended to a smooth vector
field in C\ K(f) satisfying (4.7) in U. B )

Let us consider the Beltrami differential u = 0w in C\ K'(f) extended

by 0 to the filled Julia set K (f). Since v is holomorphic on U, (4.7)



UNIVERSALITY 31

implies that p is f-invariant over there. Hence it has a bounded L>-
norm on the whole sphere (equal to its L®-norm on C\ U).

Let us solve the d-problem du = p, where u(z)/dz is a vector field
on C of class H vanishing at co. Then:

a) The vector field v" = wo f — f'u on U is holomorphic since p is
f-invariant. By adding a linear function az+b to v we can normalize v
so that (v")'(0) = (v")"(0) = 0. Since =0 on K(f), v" is horizontal.

b) Let &« = w — u. The corresponding vector field «(z)/dz is holo-
morphic on C\ K(f)(since da = 0) and vanishes at co. Moreover,
v—v"= foa— flaonU. Hence (v—v")/dz is a vertical vector field.

Uniqueness. Assume that there exists a vector field v/dz € E"(f) N
E¥(f),v#0. Then v = fow—f'wwith w/dz € F(f) and v = aof—f'c
where (z)/dz is holomorphic on C\ K (f) and vanishes at co.

Let us consider a vector field u/dz = (w —«a)/dz on U'\ K(f). Since
it is f-invariant, it is bounded with respect to the hyperbolic norm
on U. Hence |u(z)| — 0 as z — J(f), 2 € U, so that v admits a
continuous extension to U vanishing on the Julia set J(f).

Thus the vector fields w(z)/dz and a(z)/dz match on the Julia set
J(f), i.e., the vector field 3(z)/dz which is equal to w(z)/dz on K(f)
and equal to a(z)/dz on C\ K(f) is continuous on the whole sphere.
Moreover, this vector field has distributional derivatives of class L' and
08 =0 (see e.g., ....). By Weil’s lemma, 3(z)/dz is holomorphic on the
whole sphere. Since it vanishes at oo, #(z) = az + b is linear.

Thus v(z) = af(z) +b— f'(2)(az +b), where f(z) = c+2°+.... Ifv
is normalized by v'(0) = v"”(0) = 0, then a straightforward calculation
shows that yields a = b = 0. Hence v = 0 as well. O

4.5. Horizontal foliation of C. In this section we will show that
the hybrid classes H., ¢ € M, are codimension 1 complex analytic
submanifolds in OG.

As usual, a foliation is called analytic (or smooth etc.) if it locally
admits an analytic (smooth etc.) straightening.

Lemma 4.8. The partition of int C into the hybrid classes is a complex
analytic foliation, with an analytic straightening given by the mating.

Proof. On the hyperbolic components of int C, the analytic map f
(m(f), A(f)) straighten the leaves, where A\(f) is the multiplier of the
attracting periodic point. To obtain an analytic straightening over
a “queer”component U of int M, (see §10.2), select a reference point
co € U, and a non-trivial measurable line field v : z — %% on
the Julia set J(P,,). Then the unit disk of Beltrami differentials \v,
A € D, analytically parametrizes U. Its product with £ analytically
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parametrizes the corresponding component of intC (by analytic de-
pendence on parameters in the Measurable Riemann Mapping Theo-
rem). O

Lemma 4.9. For f € intC, the tangent space to the vertical fiber Z;
coincides with EV(f). Moreover, if f : V. — V' is a quadratic-like
representative of f then the vertical vector fields extend to holomorphic

fields on V.

Proof. For g € Zf near f, let us consider a normalized qc conjugacy
h, : C — C conjugating f to g and conformal on C\ K(f). By the
Measurable Riemann Mapping Theorem, it depends holomorphically
on g. Hence the map (g,2) — hy(2) is holomorphic in two variables
near {f} x (C\ K(f)).

Let us consider a smooth curve g(t) in the vertical fiber Z; tangent
to a vector field v(2)/dz at f (for t = 0). Since hy) smoothly depends
on ¢, we can consider the vector field a(z)/dz tangent to this curve at
t=0:

a= %hzo. (4.8)
Then v = aof— f'a on the domain V of f. But by the above discussion,
a is holomorphic on C\ K(f). Hence v € E*(f).

Thus T;Z; C E”(f). Since both spaces are one dimensional, they
coincide.

The second statement of the lemma also follows from the above dis-
cussion. U

Remark. Formula (4.8) is valid for all f € C (not only for f € intC).
In the general formula h, should be understood as ¢, o ¢171, where gb;l
are the uniformizations at co (see §3.2). Justification of this formula
requires to prove that the vertical fibers are submanifolds (see §4.12)
and that ¢, smoothly depends on g.

We will also need the following technical lemma:

Lemma 4.10. Let f : V! — V" be a quadratic-like map with con-
nected Julia set, and let V = f~'V'. Consider vector fields v(z)/dz
and a(z2)/dz satisfying (4.6) on V', where v is holomorphic in V" and
a is holomorphic in C\ K(f). Then

lelleyy < Cllollyrand vl > C™ vl

with a constant C' depending only on p = mod(V"\ V).
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Proof. Let v = 0V. By the standard normality or hyperbolic metric
arguments, the inverse branches of f~ |y are uniformly contracting on
v with some constant A™' < 1 (where N and \ depend on p only).

Let [Jv||v = € and ||af/¢\y = M. Incorporating the above contracting
property and the Maximum Principle into (4.6) we obtain:

M < |lallj-x, < (M + )/

Hence M < €/(A — 1), which proves the first desired estimate. Using
(4.6) once again we conclude that ||v||y < e (K 4+ 1)/(A — 1), where
K =||f'llv, which proves the second estimate. O

Theorem 4.11 (Leaves). Hybrid classes H., ¢ € M, are connected
codimension one complex analytic submanifolds of QG. The quadratic
family Q = {P.(z) = 2% + ¢} is a transversal to all these manifolds.

Proof. We have: o1, =id. Hence by the definitions (see Appendix 2)
and the last two lemmas, 7 : QG — £ is a complex analytic submersion
and i, : £ — QG is a complex analytic embedding, so that its image
H. is a complex analytic submanifold in QG. Since any two points in
a hybrid class can be joined by a Beltrami path, the hybrid classes are
connected. The quadratic family is transverse to all the leaves since by
Lemma 3.3, it is a fiber of 7.

Let us now show that codim?, = 1 at any point f € H. (note
that by the last statement, it is true at f = P.). By Lemma 4.8
it is true for ¢ € int My. Let ¢ € OM. Select a sequence of maps
fn € intC converging to f. Let us consider the tangent projection
P =D(roi)(f): T;QG — E"(f) parallel to the vertical space E’(f),
and the analogous projections P, at f,. By Lemma 4.9, the latter
projections have corank 1.

Let us first show that corank P, < 1. Otherwise there would be
a two dimensional tangent space F' C EY(f) sitting in some Banach
slice By C TyQG. For n sufficiently big, this slice is naturally con-
tained into the tangent spaces Ty, QG as well. Let us consider the
slices L, = Im P, N By of the horizontal spaces. By Lemma 11.3, they
have codimension 1 in By. Hence there exist vectors v, € F N L,,
ol = 1.

Since P, — P, there exists a U > V such that eventually P, (By) C
By and the Banach operators P, : By — By converge to P : By — By.
But since F' is finite dimensional, ||v,||y > ¢ > 0. Thus ||P,v,||lv > ¢
while Pyv,, = 0 contradicting to the operator convergence.

Let us finally prove the opposite inequality: corank P > 1. To
this end let us consider vertical vectors fields v, at f,. Let us se-
lect quadratic-like representatives f, : V, — V, — V" Carathéodory
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converging to f : V — V' — V", By Lemma 4.9, the v,, holomorphi-
cally extend to V,'. Normalize the vector fields so that ||v,|[v; = 1.
Then Lemmas 4.9 and 4.10 imply that

[vally > ¢ > 0. (4.9)

Select a subsequence of these vector fields converging uniformly on
compact subsets of V' to a vector field v on V'. By (4.9), v # 0. Since
P, — P, we conclude that Pv = 0, and we are done. O

Remark. Under more usual circumstances the codimension 1 state-
ment would immediately follow from the facts that H,. is connected
and has codimension one at the point P,.. However, a justification of
this argument in our setting would be more involved than the above
proof.

One can extract an extra useful information from the above proof:
Lemma 4.12. For f € C,
E’(f) = Ker Dx(f). (4.10)

Proof. In the proof of Theorem 4.11 we have constructed a sequence
of vector fields v, and «, satisfying (4.6) and have passed to a limit
v = limv, € Ker Dr(f) (along a subsequence). By Lemma 4.10 we can
also pass to a limit o on C\ V along a subsequence of the a,,’s. Then v
and « are related by (4.6) on V'\ V. By means of this equation we can
now extend o to C\ K(f). Hence v € E*(f). Since dim Ker Drr(f) = 1
(by Theorem 4.11), Ker Dx(f) C E*(f).

Furthermore, by Lemma 4.7, E°(f) complements E”(f), and by The-
orem 4.11, the latter space has codimension 1. Hence dim E”(f) = 1,
and the conclusion follows. O

Denote by F the foliation of C into the hybrid classes. Accordingly
the hybrid classes in the connectedness locus will also be called the
leaves of F.

Let us summarize the above information:

Theorem 4.13 (Product structure). The connectedness locus C is home-
omorphic to the product £ x My. The homeomorphism is provided by
mating [ = i.(g). It is horizontally analytic everywhere, and analytic
in both variables for ¢ € int M.

Proof. By the Mating Theorem, the mating f = i.(g) provides one-to-
one correspondence between £ x M and C. Moreover, the inverse map
it fe (m(f), x(f)) is continuous, as 7 is continuous by Lemma 4.4
and x is continuous by [DH2], [McM2, Prop. 4.7]. Since by Lemma
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4.4 i~ ' is proper, i is sequentially continuous. By Lemma 11.6, it is
continuous.
The last statement is the content of Lemmas 4.5 and 4.8. O

4.6. Regularity of the external mating. Let us now study analytic
properties of the external mating defined in §3.3.

Lemma 4.14. The external mating 0 : €™ — QG \ C is a smooth
diffeomorphism fibered over £. Moreover, it is vertically conformal,
i.e., it is conformal on the fibers S, — 2, \ C.

Proof. Let us consider a pair A = (G, b) where G: W — W' € H,y, b €
W' varying near some \g = (G, by). Then by Lemma 4.2 and Lemma
11.2, there is a local holomorphic motion Hy : (By,by) — (Bg,b),
where B¢ is a fundamental annulus of GG). Consider the corresponding
holomorphic family py = Hjo of conformal structures on By.

Let R = Rg: C\ K(G) — C\ D stand for the normalized Riemann
mapping. Let us consider the corresponding marked external map

(gr: Vi = Vi,a)) = (7(G), Ra(b)) € E™.

Transfer the structures p, to this external model: vy = (R)).u\ on
Ay = Vi \ Wy (by 0 we label the objects corresponding \y). Pulling
vy back by iterates of gy we obtain a holomorphic family of conformal
structure on Vj \ D which we will still denote by vy. Let 2, be the
symmetrization of vy with respect to the unit circle. Then 7, depends
on A real analytically.

Let us solve the Beltrami equation, (hy). : oy — o, h(0,1,00) =
(0,1,00). The solution real analytically depends on A and hence a) =
hy(ag) also depends on A real analytically. Moreover, g, depends on A
holomorphically by definition of the complex structure on £.

Reversing this construction we see that (G, b) depends on (g, a) real
analytically as well.

Moreover, if G = G4 does not vary, then g, = gy does not vary either,
and hence h) commute with go. It follows that the identical map in
the interior of the unit disk glues with A) outside to a holomorphic
motion (see e.g., [L2, Lemma 10.3]). Hence in this case a, depends
holomorphically on A (i.e., on b only as G stays fixed).

In the same way one sees that f\ = 6(g,a) € QG depends holomor-
phically on A (compare Lemma 4.5). Hence it depends real analyti-
cally on (g,a) and, moreover, depends holomorphically on a once g is
fixed. O

4.7. Uniformization at oco. We need for further reference a state-
ment on continuous dependence of the uniformization at oo on the
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map. Let f: U — U’ be a quadratic-like map, g = w(f) : V. — V' be
its external, and ¢;: C\ U — C\ V be the conformal map respecting
the boundary dynamics (see §3.2). Let us normalize ¢ so that it has a
positive derivative at co. If N = N(f) is the maximal natural number
such that f~YU > 0 then ¢; admits an analytic extension

dp: Uf)=C\ fNU = C\g "V = A(f).
In the case of connected Julia set, Q(f) = C\ K(f) and A(f) = C\D.

Lemma 4.15. Let a sequence of quadratic like maps f, : U, — U,
Carathéodory converges to a map f : U — U' with connected Julia set.
Then gbj?nl converge to gbj?l uniformly on compact sets K C C\ D.

Proof. Let g, : V,, = V! be the external maps of f,, and g : V — V'
be the external map of f. These quadratic like representatives can be
selected in such a way that

e g, Carathéodory converge to g (by Lemma 4.4);

e 0V}, are smooth quasi-circles with bounded dilatation (see [McM2,
Prop. 4.10];

e The curves 0V, uniformly converge to dV'.

Hence for any r > 1 there exists an m € N such that eventually g, ™V C
D,.. Moreover, since the critical point of f is non-escaping, N(f,) — oo.
Hence A(f,) D C\ g,™V for n big enough. Altogether it follows that
for any r > 1, A(f,) D C\ D, for n big enough. In other words, all
functions ¢! are eventually defined on any C\ D,, r > 1.

Moreover, they form a normal family on any such domain. Indeed,
the (-fixed points 3, of the f,, converge to the S-fixed point of f, and
hence stay away from 0 and oo. Since Im¢,' does not assume the
values {0, ,}, the statement follows from Montel’s theorem.

Take any limit function ¢ of the family {¢,'}. It is defined on
the whole complement C \ D of the unit disk. We need to show that
=5 i _

If fmz € U\ U then for all sufficiently big n, f"z € U' \ U as well.
As N(f,) — oo, we conclude that Q(f,) is eventually contained in any
neighborhood of K(f). Hence the Im ) contains C\ K (f).

On the other hand, if Im¢ N K(f) # (), then Im N J(f) # 0. But
then

Ima, " N J(f,) # 0 (4.11)

since the Julia set depends lower semi-continuously on the map (as the
repelling periodic points are stable under perturbations). But (4.11) is
absurd.
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Thus Im ¢ = C\ K(f). By the normalization at oo, ¢ must coincide
with ¢, . O

4.8. Banach slices of the foliation F. Let us say that the leaves
H. depend C*-continuously on ¢ € My if for any cq € My, go € £, and a
Banach slice £, 3 go, there exist a Banach neighborhood V = &y (go, €)
and a Banach slice By 3 f, such that i,V C By

Dic(g9) = Dic,(9) as ¢ — ¢, ¢ € My, (4.12)

where the convergence is understood in the Banach operator norm, and
it is uniform over g € V.

Lemma 4.16. The leaves H. depend C'-continuously on ¢ € M.

Proof. By the product structure (Theorem 4.13) of the foliation F,
the leaves depend C?-continuously on ¢ € My: For any ¢y € M, gy €
&, and a Banach slice & > gy, there exist a Banach neighborhood
V = &y (go,€) and a Banach slice By > fo such that .}V C By and
llic(g) — ic(g0)|lv — 0 as ¢ — ¢o, ¢ € My, uniformly over g € V. Now
the Cauchy Inequality (see Appendix 2) yields (4.12). O

A Banach slice Fy of the foliation F is the restriction of F to the
Banach space By, so that the leaves of Fy are Hy(f) = H(f) N By,
f € C. We will show that the sufficiently deep Banach slices of F are
still foliations with complex codimension one analytic leaves (in the
corresponding Banach space).

Let EL(f) = E"(f)NBy(f) denote the slices of the horizontal spaces
(4.5). Since the codimension of a subspace does not drop after restrict-
ing to a Banach slice (by the density property C1 from Appendix 2),
E&(f) are codimension 1 subspaces in By .

Lemma 4.17. For any fo € C there exists a domain Vy € Vy such
that for any V-C Vi, V € Vg, the slice Fy near fo is a foliation in By
with complex codimension one analytic leaves.

Proof. Let us first assume that fy € int C, so that ¢y = x(fo) € int M.
By Lemma 4.8, F is analytic near f,, Hence it has a local analytic
transversal S parametrized near ¢y by f = ¢(c), where x o ¢ = id.
Being a one-dimensional submanifold in QG, S locally sits in some
Banach slice By-.

Let us consider the Banach slice Fy,. The leaves of this foliation-to-
be are the fibers of the straightening xy : QG — C, which is analytic
near fo. Since yy|S = x|S is non-singular, it is a submersion near fo.
By the Implicit Function Theorem in Banach spaces (see [D1, Lang]),
the fibers of yy form a codimension 1 analytic foliation in QGy near
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fo- (Note that the only requirement on the slice By is that some local
transversal S should sit in it).

Let now fy € 9C, ¢y = x(fo), Go = I1(fy) € Ho, where the projection
IT: QG — H, is defined by (4.4). The vertical line E”(f) is naturally
embedded into the space B(fy) and hence into some Banach slice By
fo- Let us take a neighborhood U C By which is analytically projected
by II into some Banach neighborhood

VCBO EHoﬂBV:{fGBV:f(O):O}
of Gy. Then
DII(EL(f)) C TupV ~ By, fel. (4.13)

For ¢ € My near ¢, let us consider immersed Banach submanifolds
X. C QG parametrized by f = I.(G) over V (recall that I, = i, o :
Ho — H.). By Lemma 4.16, these manifolds sit in some Banach slice
By D By and C' converge there to X, as ¢ — ¢y, ¢ € My. Hence the
tangent planes Ty (f) C By to X. at f = I.(G) are almost parallel to
the tangent plane Ty (fo) C Bw to X, at fy (once f is sufficiently close
to fo in By). Let us shrink U so that this takes place for all f € U.

Let us consider the following decomposition: By = Ef (fo)®E"(fo).
For a vector u € By, let " and u stand for the horizontal and vertical
coordinates of u with respect to this decomposition. Let us define the

angle oo = angy, (u, E”(fy)) by

_ leMlw
tga = —-—, a€l0,7/2].
[l
Since the spaces Ty (f) are almost parallel to Ty (fy) for f € U, the
angle between any u € Ty (f) and EY(fo) in By stays away from 0. If

this u actually belongs to Ty (f) = Tw(f) N By, then

angU(ua Ev(fﬂ)) > qangW(U’v Ev(fﬂ))v

where ¢ = q(U,W) > 0. Indeed, ||u"||y > |Ju"||w, while ||u’]]y =<
||u"]|w, since all norms on a one-dimensional space are equivalent. Thus
for f € U, the angle between Ty (f) and E¥(fy) in By stays away from
0 as well.

But by (4.13), E&(f) C Ty(f). Hence, the horizontal spaces E%(f)
also have a definite angle in By with the vertical line E¥(fp).

Let us now consider a local coordinate system in U provided by the
decomposition By = E&(fo) ® E*(fs). Without loss of generality we
can assume that U has a local product structure with respect to this
decomposition, U = U" x U”. Let L(f) C By stand for the vertical
lines through f € U parallel to E”(fy). As we have shown, these lines
have a definite angle with the horizontal distribution. In particular,
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for f € UNintC, L(f) provides a local transversal to F in the slice
By. As we have shown above, this implies that Fy is a codimension
1 analytic foliation near f. Hence the leaf Hy(f) is the graph of an
analytic function ¢; with a bounded slope over U

Take now a point f € U and approximate it with a sequence f,, — f,
fn € UNintC. Then the slices Hy(f,) uniformly converge in By,
to Hy(f). Hence the functions ¢y, uniformly converge to a function
1y parametrizing the slice #y(f) (note that this statement does not
depend on the choice of topology on U"). Since the uniform limit of
analytic functions is analytic, we conclude that Hy (f) is a codimension
one analytic submanifold in By.

Finally, the map f — (p"(f),¥(fo)) € U" x L(fo) (where p" : By —
E%(f,) stands for the horizontal projection) provides a local topological
straightening of Fy,.

O

4.9. Extension of the foliation. Let us show that the foliation Fy
admits a local smooth extension beyond C. The leaves of this foliation
are given by the position of the critical point in an appropriate local
chart.

Theorem 4.18. For any fy € C and any Banach slice By > fo,
U € Vg, asin Lemma 4.17, there exists a Banach neighborhood U C By
of fo such that the foliation Fy admits an extension to U (with codi-
mension 1 complex analytic leaves) which is smooth on U \ C.

Proof. Let us take a Banach slice By 3 fp as in Lemma 4.17, so that
Fu is a Banach foliation. Let Gy = II(fy) where II : QG — H, is
projection (4.4) associating to a map f € QG the map G € H, in the
same vertical fiber. Then there exist Banach neighborhoods U C By
and W C Hov C Ho such that II({) C W. In what follows the
neighborhoods U/ and W will be shrunk several times without change
of the notations keeping the above inclusions.

For Gy : Vo — Vj let us select a fundamental annulus Ay with a
piecewise smooth boundary supplied with an invariant real analytic
foliation @, by equipotentials. Then by Lemma 4.2, for maps G € Hy v
sufficiently close to Gy, there is a choice of the fundamental annulus
A holomorphically moving with G : V; — V/, so that this motion
respects the boundary dynamics and smooth in both variables. This
holomorphic motion admits an extension to a hybrid conjugacy hg
between G and G holomorphically depending on G. Let vg = hio be
the corresponding holomorphic family of Beltrami differentials.

For f e U, let g = n(f) = m(Gy) stand for its external map. Recall
that for f & C, £(f) denotes the position of the critical value in this
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local chart (see §3.3). Let Rg : C\ K(G) — C\ D be the Riemann
mapping with positive derivative at co. Let G = Gy = II(f). Let us
consider the point

ag = Rg'(E(f)) € Vé (4.14)

corresponding to the critical value.

Let I'¢ C Vg be the equipotential passing through the preimages
G 'ay, and let Qg be the annulus bounded by this curve and 9V4.
Then f has an annulus 7y with a figure 8 inner boundary corresponding
to Q¢ via the external map construction. Similarly let us consider the
equipotential bounded I'y; C V{; through ay, the annulus @ bounded
by this equipotential and 9V, and the corresponding annulus 77} for f.
Then the map f : Ty — T} is conformally conjugate to G': Q¢ — Q-

Transfer the conformal structures v to the annulus 7 and then pull
it back by the iterates of f;. We obtain a holomorphic family pg of
fo-invariant conformal structures, and the corresponding qc deforma-
tion fg of fy analytically depending on G. The Banach slices of these
holomorphic families are the leaves of the desired extension of F.

Let us show that if we take two maps fy # fo within the same vertical
fiber (i.e., II(fo) = II(fo) = Go), then the corresponding families f
and f¢ are disjoint. Since II(fe) = G, they can intersect only at a point
with the same G. But ag = hg(ap) where h¢ is the hybrid equivalence
between G and G (since the deformation f; was obtained by lifting
the Beltrami differential of hg). Hence aj, # af,, and the statement
follows from Lemma 3.4.

Let us now consider the horizontally analytic tubing over W

@WXA(L‘I)—)VE U VG’; \IIG:A(1,4)—)Vg,
aew (4.15)

such that the graphs G — Ug(z) coincide with the orbits if the holo-
morphic motion ¢ — he(¢) (see Lemma 4.2 and (4.3)). Moreover,
(G, z) = Y¢(z) is smooth in two variables.

Let py : W x A(1,4) — A(1,4) denote the natural projection. Then
the leaves of the extension of F to U \ C are the fibers of the smooth
map

[ p2(\I’G;1(af))= (4.16)

Moreover, this map is a submersion, since its restriction to any vertical
fiber is a diffeomorphism. Hence its fibers form a smooth foliation.
Finally, the leaves of this foliation are complex analytic since they are
the Banach slices of complex analytic families, and hence have complex
tangent spaces. U
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4.10. F is transversally quasi-conformal. Let us say that the foli-
ation F is transversally quasi-conformal if the holonomy between two
transversals S and T is locally a restriction of a qc map. Dilatation of
the holonomy at p € S is defined as the infimum of the dilatations of
the local qc extensions. Let
d(S) = inf mod(f).
mod(S) = inf mod()
Theorem 4.19. The foliation F is transversally quasi-conformal. The
dilatation of the holonomy between two transversals S and T depends

only on p = min(mod(S), mod(T)).

Proof. Let us take two transversals S and T to a leaf H of the foliation
and a Beltrami path 7 in H joining two intersection points. Being
compact, this path is contained in finitely many Banach slices (Lemma
11.6), whose number N depends only on u. Hence by Lemma 4.18 this
path can be covered by finitely many Banach balls By, (f;, €;) such that
F extends to the twice bigger balls By.(f;,2¢;). Thus the holonomy
between & and 7 can be decomposed into N Banach holomorphic
motions, which extend to the twice bigger domains. By the A-lemma
(see Appendix 2), each of the Banach motions is locally transversally
quasi-conformal with uniform dilatation. O

Taking the quadratic family Q as one of the transversals, we obtain:

Corollary 4.20. Let us consider a complex one dimensional transver-
sal 8 = {fa} to F in QG. Then the straightening x : S — Q s
locally K -quasi-conformal, with K depending only on mod(g). More-
over, K — 1 as mod(g) — oo.

Remarks: 1. From the above point of view, the “miracle” of con-
tinuity of straightening in the quadratic-like case (see Douady [D2])
is directly related to the miracle of the A-lemma. Note also that the
source of discontinuity of the straightening for higher degrees is the
failure of the A-lemma for foliations of codimension bigger than 1.

2. The foliation F is not transversally smooth. For example, take
the Ulam-Neumann quadratic P = P_y : z + 22 — 2 with a postcrit-
ical fixed point § = 2. Let us approximate it with superattracting
parameter values ¢, — —2, for which P¥(0) > 0, k = 2,...,n — 1,
while P,(0) = 0, where P, = P, . Then ¢, — 2 < 47", where 4 is the
multiplier of /3.

Let us now take another quadratic-like map f € H_, in the same
hybrid class. Then in the vertical fiber Z; there is a sequence of super-
attracting maps f,, € H,, converging to f. Now the rate of convergence
will be A™", where A is the multiplier of the (-fixed point of f. Since
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the latter can be made different from 4, the holonomy ¢, — f, is not
smooth at —2. (To see that the multiplier can be efficiently changed
in the hybrid class of P, consider, e.g., a quadratic-like deformation
P +e@, where Q is a polynomial with roots at 0, —2, 2, and @Q'(2) # 0).

For the same reason the foliation is not smooth at other Misiurewicz
points. Quasi-conformality seems to be the best transverse regularity
of F which is satisfied everywhere. However, we will prove in §§7.2, 9.3
that F is transversally smooth at Feigenbaum points.

4.11. Full families. Let D be a Riemann surface. Let us have a
quadratic-like family & = {f,},\ € D, over D, i.e., a complex ana-
lytic one-dimensional submanifold of QG parametrized by D. Such a
family is called full if its Mandelbrot set Ms = & N C is compactly
contained in S. It is called unfolded if the straightening x : Ms — M,
is injective.

If D is a topological disk then by definition, the winding number of a
full family over D is the winding number of the critical value A — f,(0)
around the critical point 0 as A runs once around a Jordan curve near

0D.

Theorem 4.21 (Douady & Hubbard [DH2]). Let S be a full quadratic-
like family over D.

o If S is unfolded then the straightening x : S — My is a homeo-
morphism;

o If D 1is a topological disk then S is unfolded if and only if it has
winding number 1.

4.12. Vertical fibers. Recall that the external fibers Z, =7 g, g €
&, are the fibers of the projection 7 : QG — £. Let My = Z,NC. In
this section we will show that the external fibers are complex analytic
curves. It is natural to expect since by Lemmas 4.4 and 4.5, 7 is
a submersion. However, since the Implicit Function Theorem is not
available on the manifolds under consideration, we will give a special
argument. First let us show that the fibers are topological curves:

Lemma 4.22. Let ¢ € £. Then there is a neighborhood N of the
Mandelbrot set My and a continuous injection v : N — Z, such that

for ¢ € My, y(c) = ic(g).

Proof. By Theorem 4.13, the map My — Z,, ¢ — i.(g), is a continuous
injection. Let us extend it beyond Mj.

Let us select a representative g : V' — V' and conjugate it to P, :
2+ 2% by a qc diffeomorphism

Y (VI\D, V\D) — (A(1,4), A(1,2)).
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Let Q@ € C\ My be a collar around My bounded by 0M, and the
parameter equipotential of level 4. Let us parametrize a collar around
My in Z, by € as follows:

y=E&loy ok, (4.17)

Since the middle map is smooth and the two others are conformal (by
Lemma 4.14), v|Q is smooth as well. Let us show that it continuously
matches with ¢ — i.(g) on M, (adopting the Douady & Hubbard
argument for continuity of the straightening [DH2]). Let c¢(k) € Q
converge to ¢, € OMy, fr = v(P,,). For c € Q, P, is K-qc conjugate to
fe = v(P.) with K = Dilty. Hence the sequence {f;} is pre-compact
and any limit f of this sequence is qc conjugate to P.,. But since
¢ € OMy, P., does not have invariant line fields on the Julia set (see
§10.2). Hence f is hybrid equivalent to P... Thus x(f) = ¢, and
7(f) = g, hence f is uniquely defined. It follows that f.) — f. O

Theorem 4.23. The vertical fibers 24, g € £, are complex analytic
CUrves.

Proof. Let Z = Z,. First of all, By Lemma 4.8, in the interior of C the
mating ¢ — i.(g) provides a complex analytic parametrization of Z.
Second, by Lemma 4.14, Z\C admits a complex analytic parametriza-
tion by the Riemann surface S,, so that Z \ C is a holomorphic curve.
Let us prove that Z is analytic near any f, € ZNC. To this end let
us consider the decomposition

B(fo) # Tr,QG = E" & E"

into the horizontal and vertical subspaces at fy: see (4.5) and (4.10).
Let p" : B(fy) — E" and p¥ : B(fy) — E? stand for the corresponding
projections.

Let us first show that p” : Z — EV is injective near fy. Let us
consider the map

A:U—E", A=Cor,

where U is a neighborhood in B(fy), and C' = Di,(g) with a = x(fo).
Then DA(fy) = ph.

For u € EY, let H(u) = {h € B(fo) : p’(h) = u} stand for the
hyperplane via u parallel to E" = H(0). Let us consider the restrictions
A, of A to these hyperplanes (defined on appropriate neighborhoods).
Since all these hyperplanes are naturally isomorphic, A, can be viewed

as acting on the same space E". Then DA, = id and by smoothness of
A

?

DA,(f) —id as u—0, f— fo (4.18)
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Take now a Banach slice By 3 fy containing a neighborhood of f
in Z. In what follows h € E}. and ||h]|y < 1. By Lemma 11.5, for any
€ > 0 there exist domains W € 2 € V' in the family V; such that

12llw > [|Allg" (4.19)
By (4.18),

1
DA,(f)h € By, and  [DAL(f)bllw = S Ihllw,

provided (u, f) is close to (0, fo). Together with (4.19) it yields:
IDALf)hllw > allhllg™, (4.20)

with some ¢ > 0.
Let us take some f € Z near fy, so that Af = fy. Then

Au(f +h) = fo + DAL(f)h + O(||h]3),

where the big O is uniform for (u, f) near (0, fo). Incorporating (4.20),
we obtain:

q e
4 +B) = folw = Sl

Hence A,(f+h) # fo for small enough h # 0. It follows that w(f+h) #
7(f) = g either, so that f +h ¢ Z.

So, the projection p¥ : Z — E" isinjective near fy. But by Lemma 4.17,
Z is a topological curve. By the Open Mapping Theorem, the image
p'Z covers a neighborhood of 0. Thus Z near f; is the graph of a
continuous map v : BV — El..

Let us show that ¢ is differentiable. Select points v and u 4+ Awu on
EV, and the corresponding points f = ¢(u) and f + Af = ¢(u + Au)
on Z. Let B =DA(f). Then

0=A(f+Af) = A(f) = B-Af + O([|AfII),
so that
1B - Afllw = O(IAFI[S)- (4.21)
Note that the projection p¥ : E¥(f) — EV is non-singular since E(f)
is close to E”. Hence there exists a linear map L : (EY,0) — (B(fo), f)

parametrizing the line EV(f) such that Lop?|E”(f) =id. Then p'f =
uw=p'(Lu) and p’(f + Af) = u+ Au = p’(L(u+ Au)). Hence
Af =L Au+ w, (4.22)
where w € E} is a horizontal vector. Applying B (taking into account
that B- L = 0), we conclude that B-Af = B-w. Together with (4.21)
this yields:
[Bwllw = O(J|Af][3)-
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But according to (4.20), ¢||lw||s™ < ||Bwl|w. Hence
lwlla = o([[Aflle)- (4.23)

Together with (4.22) this yields:
1
IL- Aulla > LA Sl

But since all one-dimensional norms are equivalent, ||L-Aul|q < ||Aul|
(with any choice of the latter norm). Hence [|[Af||q < const - ||Aul|.
By (4.23), ||w|la = o(]|Aul|) as well. By (4.22), ¢ is differentiable as a
curve in Bg.

Thus, the external fibers are differentiable smooth curves. Since they
have complex tangent lines, they are analytic. O

Corollary 4.24. The vertical fibers are full unfolded quadratic-like fam-
ilies.

4.13. Transversality criterion. The following lemma will give us an
efficient way to check transversality of one parameter families to the
leaves of the foliation:

Lemma 4.25. Let us consider an analytic one-dimensional submani-
fold S = {f,} in QG, fo = fr, € C. If the straightening x is locally
injective on M = SN C near fy, then S is transverse to the foliation

F at fo.

Proof. Injectivity of the straightening means that S intersects the leaves
of F at single points. We should show that this yields transversality.
Taking a Banach slice locally containing S and using Lemma 4.17 we
reduce the situation to a Banach setting. By the Hurwitz Theorem (see
Appendix 2), S is either transverse to F near fj or persistently tangent.
But by the Intersection Lemma from the same Appendix, the latter is
impossible in int C where by Lemma 4.8 the foliation is transversally
analytic. As intC is dense in C, the conclusion follows. U

Thus full unfolded quadratic-like families (in particular the external
fibers Z,) are transverse to the foliation F and we conclude:

Theorem 4.26. If S is a full unfolded quadratic-like family then the
straightening x : Ms — My is a qc homeomorphism. Moreover, the
dilatation of the straightening depends only on mod(S) and tends to 0
as mod(S) — oo.
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5. RENORMALIZATION, BOUNDS AND RIGIDITY

5.1. Little Mandelbrot copies. Let us consider a hyperbolic com-
ponent H of the Mandelbrot set M;, centered at the superattracting
parameter value ¢ € H. Douady & Hubbard [DH2, D2| proved that
H originates a “(little) Mandelbrot copy” M = M, canonically homeo-
morphic to the whole set. Let o0 = oy, : M — M be the corresponding
homeomorphism. It transforms the component H to the domain H,
bounded by the main cardioid of My, so that o(¢) = 0. The inverse
homeomorphism My — M. is called tuning and is denoted as z — cx* z
(see Milnor [M]).

A basic combinatorial parameter of the Mandelbrot copy M = M. is
its period pyr = p. defined as the period of 0 under P.. Except for the
period doubling, there are several Mandelbrot copies with the same pe-
riod. They are distinguished by their combinatorics, i.e., the Thurston
type of the superattracting map P, (see [DH3]). Note that M, deter-
mines ¢ as the superattracting parameter value in M, with the smallest
period. Thus we can use the copy itself to label the combinatorics.

The root rp; of M is the point corresponding to the cusp 1/4 € M
under the homeomorphism o. A little Mandelbrot copy is called prim-
itiwe if it is not attached at its root to any other hyperbolic component
(geometrically it is recognized by the cusp of the originating component
H at its root). Otherwise it is called satellite (for such components 0H
is smooth at the root) .

Let M = M in the primitive case, and M = M \ {ry;} (“unrooted”
M) otherwise.

A Mandelbrot copy M, is called real if ¢ € R, or equivalently M., is
symmetric with respect to R. The combinatorics of a real copy M, with
period p = p,. is determined by the order of the points 0, P.(0), ..., P?~*(0)
on the real line.

A Mandelbrot copy is called mazimal if it does not belong to any
other copy except M itself. These copies are pairwise disjoint, and any
other copy, except M, itself, belongs to a unique maximal one (compare
with the discussion of maximal renormalizations in the next section).
All maximal copies are primitive except for the ones attached to the
main cardioid. In particular, all real maximal Mandelbrot copies are
primitive except for the one corresponding to the doubling bifurcation
(i.e., with period 2).

All the copies M # M, are obtained from M by iterated tunings

M:Cl*...cl*MoEO']T/[}O"'OO']T/[IlMO, (5.1)
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where M), = M., are maximal Mandelbrot copies. Thus any two Man-
delbrot copies are either disjoint or nested.

Let N stand for the full family of the little Mandelbrot copies (not
including M, itself), which is naturally identified with the set of all
superattracting parameter values except 0. We will use £ to denote
a subfamily of pairwise disjoint copies of . Let Ny.x stand for the
family of maximal Mandelbrot copies.

5.2. Renormalization. For M € N, let Ty = x'M C C (resp.
Ti = X M C Ty) stand for the union of the hybrid classes via M

(resp. M). These sets will be called the (horizontal) renormalization
strips. The strips Ty, are closed (for instance, by the Product Struc-
ture Theorem 4.13). The renormalization strip is called mazimal if it
corresponds to a maximal Mandelbrot copy. Note that the maximal
renormalization strips are pairwise disjoint.

There is a canonical renormalization operator Ry : Ty, — C defined
as a p = pys-fold iterate of f restricted to an appropriate neighborhood
U of the critical point, up to rescaling. This neighborhood is selected in
such a way that ¢ = fP|U is a quadratic-like map with connected Julia
set, and moreover the “little Julia sets” f*K(g), k =0,1,...,p—1, are
pairwise disjoint except, perhaps, touching at their §-fixed points (see
[D2, DH2, L2, McM1] for an extensive discussion of this notion). The
maps f € Ty, are called renormalizable with combinatorics M.

Among all renormalizations of a map f there is the maximal one,
with the smallest possible period (see [L2, §3.4], [McM1, §7.3]). It
corresponds to the maximal renormalization strip containing f. De-
composition (5.1) can be rewritten as follows:

RM:RMIO"'ORMH

where the Ry, are maximal renormalizations. In this sense any renor-
malization is induced by maximal ones.

Let us consider a family £ C N of pairwise disjoint Mandelbrot
copies, e.g., L = Nyax. The operators Ry;, M € L, can be unified into
a single operator

Rg: U TM—>C

MeLl

whose restriction to a strip 7, coincides with R,;. All operators R are
induced by the maximal renormalization operator R, corresponding
to the family £ = Mpax.
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Similarly, the homeomorphisms oy, : M — My, M € L, can be
unified into a single map
or: U M — M,.
MeL
The latter homeomorphism is the quotient of the renormalization via
the straightening C — Mj:

o|M = x o R:|M. (5.2)

(Note that R, is not defined at the roots of satellite components, while
o is extended over there).

If £ is a finite family then R, is called a renormalization operator of
bounded type. If L = {M} consists of a single Mandelbrot copy then
R; = R, is called the renormalization operator of stationary type.

Let us finish with the following useful fact:

Lemma 5.1 (de Melo - van Strien [MvS], p. 440). The renormalization
operator Ru.x s injective on the real slice of its domain.

5.3. Analytic extension. For any f, € 7,; and any Banach slice
By D fo, the renormalization Rj); admits an analytic extension to a
Banach neighborhood B(fy,€). Namely, let us take a quadratic-like
representative go = f§ : U — U’ of the renormalization R);f, with
U € V. Then for f sufficiently close to fy in the Banach space By,
the restricted iterate g = fP|U represents a quadratic-like germ. Set
by definition Ry (f) = g.

As Ry, f is the normalized restricted iterate of f, Ry : B(fo,€) — QG
is complex analytic. For instance, let us consider the doubling case
when Ry, f corresponds to f2. It is a composition of the second iterate
operator L : f + f2|U, f : 2z~ c+ 22+ ... and the normalization
operator N. The former operator is obviously complex analytic with
the differential

DL(f)o = (f'o f) - v+vo fIT,
where v : 2z — § + az® + -+ - is a vector field on V with vanishing first
and second order terms. The normalization operator f — Af(A712),
where A = A(f) = f"(0)/2, is certainly analytic as well. (Note that
N transforms a small Banach neighborhood By (f, €) to a Banach slice
By, where W is a slightly shrunk domain AV').

Lemma 5.2. There exists a p > 0 and a neighborhood Uy = Uy (11, p)
of the renormalization strip Ty (p) in the slice QG(u, p) such that the
renormalization Ry admits an analytic extension to Uy, .

Proof. Take a p = p(pu) > 0 such that C(u) C QG(u, p/2). Select
a Montel distance disty; on QG(u, p), and take a small v > 0. For
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any renormalizable quadratic-like map ¢ : U — U’ with mod(U" \
U) > pu > 0, we have constructed local analytic extensions R, of the
renormalization Ry, to the Banach neighborhood By (g, ). We need to
show that these local extensions glue together to form a single operator.

If ~ is sufficiently small then for all g as above and all f € By(g,7)
we have:

() mod(Ryf) > v = () >
(ii) R,f € QG¥, and the connected filled neighborhood Q.(J(R,f))
from (3.1) can be selected with an e independent of f.

These properties follow from compactness of C(u) and the fact that the
same renormalization domain can be used for a perturbed map.

Let us take a germ f € QG(u,p) \ C. Assume that we have two
representatives Ry f = Rgif : Vi — V] and Rof = Ry, f : Vo = V)
satisfying (i) and (ii) (where possibly ¢; and go represent the same
germ). Then disty (g1, g2) < 27, and hence disty (Rgy, Rge) < 6 = §(7),
where § — 0 as v — 0. But disty(R;f, Rg;) < § as well. Thus
diStM(le, Rgf) < 30.

Since the Julia set J(f) depends semi-continuously on the map (see
[D3]), both points 0 and R;f(0) = R2f(0) are contained in the same
connected component of the intersection Q¢ (J(Ry f))NQ(J(Raf)) (pro-
vided ¢ is sufficiently small). As Qs (J(Ryf))UQs(J(Ryf)) is contained
in a connected component of V/ N V;, the maps R, f : V; — V] and
Ryf : Vo — Vi represent the same germ. O

In what follows, referring to the analytic extension of Ry, beyond T,
we will mean the above extension to Uy, (u, p) for some p > 0, p > 0.

5.4. Transversal non-singularity. Let us pick a map f € 7, and
a complex tangent line E* C B(f) transverse to the leaf #(f), so that
E'® T/H(f) = B(f). Let us say that R is transversally non-singular
at f if the restriction of the differential DRy to E* is non-singular.
(Since the foliation F on the connectedness locus is R-invariant, this
definition is independent of the choice of E'.)

Lemma 5.3 (Transversal non-singularity). The renormalization is transver-
sally non-singular at any f € Ty,

Proof. Let § be a one dimensional local transversal to F through f,
and M = SN 7T,;. Then the straightening x : M — M is injective.
Since 0 : M — M, is also injective, (5.2) yields the injectivity of
X : RIM) — M,. By Lemma 4.25, R(S) is transverse to F at Rf. O
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Douady & Hubbard gave a sufficient condition for the canonical
homeomorphism o : M — My to be qc ([DH2], Prop. 22). We will
show now that it is always so in the primitive case.

Lemma 5.4. A primitive copy M of the Mandelbrot set My is locally
gc equivalent to the whole set M.

Proof. Let us consider the analytic extension of Ry, to a neighborhood
D c Cof M.

By (5.2), the regularity of the homeomorphism o : M — M, is ruled
by the regularity of the straightening x. By Theorem 4.19, the latter is
locally qc on analytic transversals to F. As the analytic family S = RD
is transverse to F (by Lemma 5.3), the conclusion follows. O

Theorem 5.5 (QC Theorem). A primitive copy M of the Mandelbrot
set My 1s qc equivalent to the whole set M.

Proof. We will use the notations of the previous lemma. The straight-
ening x : RM — M, admits a continuous extension to a neighborhood
N of RM in the transversal S which is qc on N\ RM (see [L4, Lemma
3.1]). By the Gluing Lemma from Appendix 1, this extension glues
with the local qc extensions provided by Lemma 5.4 into a single qc
homeomorphism (see Lemma 3.2 of [L4] for details). O

Remark. By the same argument, a satellite Mandelbrot set M is
qc equivalent to M, after removing neighborhoods of the roots. Pre-
sumably the whole satellite set M is qc equivalent to the “one half”
of the Mandelbrot set My of the family z — Az + 22, (Note that the
latter is a holomorphic double branched covering of M, by the map
¢ =)\/2 — \?/4 branched at A\ = 1 over the cusp ¢ = 1/4.)

5.5. Combinatorial type. From now until the end of §5 we fix a
family L C N of disjoint Mandelbrot copies, and let R = R;. A
map f € C is called N times renormalizable by R (0 < N < o0), if
R'f € UTy, n=0,1,...,N — 1, and RN f € C. The itinerary 7n(f)
of such a map f is the sequence 7(f) = {My, My, ... My_1} of copies
M, € L such that R"f € 7Ty, . One says that the combinatorics of
such an f is bounded by p if p(M,,) <p, n=0,1,...,N.

The itinerary 7(f) = 7o (f) of an infinitely renormalizable map is
also called its combinatorial type. Two infinitely renormalizable maps
are called combinatorially equivalent if they have the same combinato-
rial type.

Let us now consider an orbit

{fn — RMn_l """ RMof = Rnf}) (53)
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where the maps f, can have disconnected Julia set and the R, are
understood as the analytic continuation of the renormalization To keep
the notations simple, we will still denote f,, as R"f keeping in mind its
meaning.

The combinatorial type of the orbit (5.3) is naturally defined as the
string
{My, My, ...}. Somewhat loosely, it will also be called the combinato-
rial type of f. Accordingly two orbits as above (or the corresponding
germs) are called combinatorially equivalent if they have the same com-
binatorial type.

5.6. A priori bounds. Let us say that a real quadratic-like map f is
close to the cusp if it has an attracting fixed point with multiplier at
least 1/2 (one can use any 1 — € in place of 1/2 but then the bounds
below will depend on € > 0).

Theorem 5.6 (A priori bounds). Let f be a real N times renormaliz-
able quadratic-like germ with itinerary T (f) = {Mo, My, ..., My_1}.
Assume that p(Mg) < p and mod(f) > v > 0. Then there exist
p=pu(p) >0 and l =I(v) such that

mod(R"f) > pu>0, n=1,...,N —1.

Moreover, mod(RY f) > u as well, unless the last renormalization is of
doubling type and RN f is close to the cusp.

An infinitely renormalizable germ is said to have a prior: bounds if
mod(R"f) > pu>0,n=0,1,....

Corollary 5.7. Any real infinitely renormalizable quadratic-like germ
f with bounded combinatorics has a priori bounds. More precisely, if
the combinatorics of f is bounded by p and mod(f) > v > 0, then there
exist p = p(p) > 0 and | = (v) such that

mod(R"f) >pu, n=0L1+1,....

Remark. A priori bounds for maps with bounded combinatorics have
been proven in [MvS, S2]. The refined finitely renormalizable version
appeared in [LS; LY]. The latter works actually prove that the above
bounds are independent of p.

For a n times renormalizable map fiy : V. — V', let us say that a
quadratic-like representative R"fy : V,, — V! is subdued to f if it is a
restricted iterate of the map fy itself (so that no analytic continuation
of f is allowed). The family of subdued quadratic-like maps represents
the subdued renormalization germ which will be also denoted as R" fy .
For a subdued germ ¢, mod(g) means the supremum of moduli of the
subdued representatives.
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It is easy to see that if the renormalizations of a germ f have bounds
R'f > pu, n =0,1,...,N, then the subdued renormalizations have
delayed bounds:

R"fy > pn/2, n=I1(g,mod(V'\V)),...,N. (5.4)

5.7. Combinatorial Rigidity. Anorbit {R"f = Ry, Ragy f fnen
is called non-escaping if there exists a > 0 such that R" f € Uns,,, (11, p)
for all n € N, where the Uy, (i, p) are the domains of analyticity of the
Ry, constructed in §5.2. We will also say that f is non-escaping (keep-
ing in mind that this notion depends on the choice of branches Ry, ).
In particular, f has a priori bounds: mod(R"f) > u>0,n=0,1,...

Lemma 5.8. If an orbit { R" f\/ }°° , is non-escaping then f is infinitely
renormalizable.

Proof. Let f, stand for non-rescaled germs representing the renormal-
ization R" f,. Since f = fy is non-escaping, there exist quadratic-like
representatives f, = f™ : U, — V,, such that U, and V,, have bounded
geometry.

Let us show diamU, — 0. Otherwise, there would be a disk D,
contained in all U,,. Since deg(f™|D,)) < 2, D, does not intersect the
Julia set J(f). But then D, is escaping under iterates of f, so that the
big iterates f™ are not well-defined on D).

It follows that the Julia set J(f) is connected. Indeed, since J(f) N
U, D J(fn) # 0, we have: dist(0,J(f)) < diamU, — 0. Hence
0 € J(f). For the same reason, all Julia sets J(f,) are connected.

By definition, f,+1 = R, fn where Ry, means the analytic ex-
tension of the renormalization. But once J(f,41) is connected, f, is
renormalizable and f,; is its canonical renormalization. Hence f is
infinitely renormalizable. O

Theorem 5.9 (Combinatorial Rigidity). Let us consider two non-escaping
germs fi1 and fy in QG with bounded combinatorics. If fi and fy are
combinatorially equivalent then they are hybrid equivalent.

Proof. By Lemma 5.8, f; and f, are infinitely renormalizable quadratic-
like germs with a priori bounds. By the Rigidity Theorem of [L2], f;
and fy are hybrid equivalent. O

5.8. McMullen towers. Let —oo <[ < 0 < n < oo. By definition,
an (I,n)-tower f (related to the renormalization operator R = Ry) is
a sequence of quadratic-like germs f; : V¥ — U* with connected Julia
set, k = [,...,n, such that f, = f.*,|Vk, where f;*, represents the
renormalization Rf, ;. The germs can be simultaneously rescaled, so
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that f, can be normalized as z — c+2%+.... A tower is called infinite
if —[ = oo, and it is called bi-infinite if —[ = n = oo.

The combinatorics T(f) of the tower f is the string {M,, ..., M,, 1} of
little Mandelbrot copies such that x(fx) € M. We say that the tower
has a bounded combinatorics if there are only finitely many different
copies in this string. Let

p(f) = sup p(fi)-

I<k<n

We say that combinatorics of the tower is bounded by p if p(f) < p.
Let
mod(f) = lgl}clin mod( f).

One says that a tower has a priori bounds if mod(f) > 0.
The space of towers is supplied with the weak topology: {gmk}tr =
g, — fif:
e Given a k, the coordinates g, are eventually well-defined if and
only if the coordinate f; is well-defined as well;
e For each k with a well-defined fi, gmr — fr as m — oo.
Note that, in particular, finite towers can converge to an infinite one.
By means of the diagonal procedure, Lemma, 4.1 yields:

Lemma 5.10. Take p and 1 > 0. The set of towers with p(f) < p and
mod(f) > p > 0 is sequentially compact.

The filled Julia set K(f) of a towers is defined as the union UK ( fx)
(without taking the closure).

Theorem 5.11 (Hairiness of the Julia set [McM2]). Iff is an infinite
tower with bounded combinatorics and a priori bounds then the filled
Julia set K(f) is dense in C.

Two (I,n)-towers f and g are called topologically conjugate if there
is a homeomorphism h defined in a neighborhood of K(f) which si-
multaneously conjugates each fi to gx. A self-conjugacy of some tower
with itself is called its automorphism. The last theorem together with
Lemma 3.5 yield:

Corollary 5.12 (No automorphisms). An infinite tower f = { fi.} with
a priori bounds and empty int K(fy) does not admit non-trivial auto-
morphisms. In particular, bi-infinite towers with a priori bounds do
not admit non-trivial automorphisms.

If a conjugacy h between two towers can be selected to be quasi-
conformal then the towers are called qc conjugate. If additionally 0h =
0 a.e. on K(f) then the towers are called hybrid equivalent.
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Lemma 5.13. Two towers £ = {fi}}_, and g = {gx}_, with bounded
combinatorics and a priori bounds are qc equivalent if and only if all
pairs fr and g, are K-qc equivalent with uniform K.

Proof. Since a qc conjugacy between f; and gj serve as a qc conjugacy
between f; and g; for all s > k, the statement is not totally obvious
only when [ = —o0.

First note that by Lemma 3.6, f; and g, are L-qc conjugate by a map
h : Vi, — Uy such that mod(Vy \ K(f)) > v > 0 and mod(Uy \ K(g)) >
v >0, where v = v(u) >0, and L = L(K, ).

Second, the diameters of J(f;) and J(gx) grow exponentially as k& —
—00, (see [McM2, Prop. 8.1]).

It follows that the domains Uy and V}, exhaust the plane as k£ — —oc.
Since the space of normalized K-qc maps is compact, we can select a
subsequence converging to a conjugacy between the towers. O

Theorem 5.14 (Tower Rigidity Theorem [McM2]). (i) If two bi-infinite
towers with bounded combinatorics and a priori bounds are quasi-
conformally equivalent then they are affinely equivalent.

(ii) If two infinite towers { fx }5.25 and {fi} 225 with bounded combina-
torics and a priori bounds are qc equivalent and x(fo) = x(fo),
then they are affinely equivalent.

6. HYPERBOLICITY OF THE RENORMALIZATION (STATIONARY
CASE)

6.1. Renormalization fixed point and its stable manifold. Through-
out this section R = R, will stand for a renormalization operator with
stationary combinatorics M € N.

Let us consider a renormalization fixed point f,, Rf, = f..

Definition 6.1. Given an invariant set YW C QG, let us say that the
orbits of W uniformly exponentially converge to f, if for any quadratic-
like germ f € W, the orbit { R" fir } > n(mod(s)), belongs to some By > f,
and uniformly exponentially converges to f, in this Banach space:

IR f — fullv < Cq" %,
where C' > 0 and ¢ € (0, 1) are independent of f.

Remark. Since the property of exponential convergence is Holder in-
variant, it can be understood in the sense of the natural Holder struc-
ture on the precompact sets W(mu) (see §11.3).

Let us define the stable manifold of f, as
WA(f.) =W: = {f € QG : R"f — f.}.
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The following theorem summarizes results of Sullivan [S2] & Mec-
Mullen [McM2], and the author ([L2] & this work).

Theorem 6.1 (Stable Manifold). Assume that there exists an infin-
itely renormalizable (under the operator R) map F with a priori bounds.
Then the operator R has a unique fixed point f.. The stable manifold
We = WH(f,) of this point is a complezx analytic submanifold in QG of
codimension 1 coinciding with the hybrid class H. = H(f.). The orbits
in W2 converge to f. uniformly exponentially.

Proof. The maps F' and RF' are combinatorially equivalent and have
a priori bounds. By the Combinatorial Rigidity Theorem, they are
hybrid equivalent, so that the hybrid class H, = H(F') is R-invariant.

By Lemma 4.1, the orbit { R"F'}>° , is pre-compact, so that its w-
limit set € is compact. Since R|S is obviously surjective and mod(g) >
>0 forall g e Q any f = fy € Q can be included into two-sided
tower £ = {f; € Q}°__ with stationary combinatorics and a priori
bounds.

Take two such towers f and g. Since f; and g belong to the same
hybrid class H., by Lemma 5.13, these towers are quasi-conformally
equivalent. By the Towers Rigidity Theorem, they are affinely equiv-
alent. In particular, fy = gy, so that  consists of a single fixed point
f* = fO-

It follows that R™f — f, for any f € H,. Moreover, this convergence
is uniform in the following sense:

o0

Statement. There exists a quadratic-like representative f, : V. — V'
with the following property. For any v > 0 and € > 0, there exists
an N = N(v,e) such that: If mod(f) > v > 0 then for n > N,
R"f € By(f.,e).

Note first that Lemma 3.6 and the contracting property of the renor-
malization with respect to the Teichmiiller-Sullivan distance imply that
R'f € H.(n), n = 0,1,..., where n = n(v). Let us show that
disty (R™f, fi) < € for n > N(v,¢€), where disty is the Montel distance
on H.(n).

Otherwise we would find a sequence of maps f,, € H.(v) and mo-
ments n,, — oo such that dist,(R" f,,, f.) > 6. Let h,, = R"™ f,,.
Let us consider towers h,, = {RFh,,};° , . As these towers have a
priori bounds, by Compactness Lemma 5.10 we can select diagonally a
sequence converging to a two-sided tower with a priori bounds. Since
disty (A, fo) > 9, this tower is different from the stationary tower
(..o, fes fa, [y - ), which contradicts to the rigidity of towers.

Moreover, there exists a quadratic-like representative f, : V. — V'
(a priori depending on v) such that R"f € By (f.,¢) for n > N(v,¢€).
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Otherwise let us consider a nested sequence V; D V5 D ... of domains
shrinking to K(f.), and find a sequence of germs f,, € H.(v) and
moments n,, — oo such that R""f,, ¢ By, . But as we just shown,
R f., — f. in H.(n). This means that there exists a quadratic-like
representative f, : V. — V' such that R" f,, € By for all sufficiently
big m. As this V' contains some V,,, we arrive at a contradiction.

To complete the proof of the Statement we need to show that the
same is true with a domain V' independent of v. Take a representative
R fw : Wy — W/ eclose to f.y in By. If € is small enough, they can
be (1 + d)-qc conjugate in a slightly smaller domains. This conjugacy
provides a (1 + d)-qc conjugacy between the further renormalizations
R*™ fyr« Wi, — W/, and R™f, 2 Vi, = Vi, m > 0, subdued to
the above representatives. But since mod(R™f,) = mod(f.) > 0, the
subdued renormalizations R™ f, 1 are eventually (for m > N = N(n))
well defined on the same domain U, see (5.4). Hence for m > N,
RF™ fi- is well defined on a slightly smaller domain and is close to f,
over there, and the Statement follows.

Let us now consider the analytic diffeomorphism IT : H, — H, (4.4)
and the inverse map I, : Hy — H.. Let G, =II(f.), and

Ry=IloRol,:Hy— Hy.

Then II(By(f.,r)) C How for some r > 0 and some Banach slice
Ho,w 2 G, and this Banach restriction is continuous. It follows that
the orbits of Ry uniformly converge to G,: For any sufficiently small
€ > 0 and 0 > 0 there is an N such that

R(]]V%O,W(G*, 6) C /Hgyw(G*, (5)

By the Schwarz Lemma (see Appendix 2), R is uniformly contracting
if 6 < €/2. Thus the orbits of Ry converge to G, exponentially fast in
|| - [[w-norm.

Finally, there exists a Banach slice By > f, such that for sufficiently
small €, I, How (Gx, €) C By, and this Banach restriction is continuous.
It follows that the orbits of f € By (f.,r) converge to f. exponentially
fast in the || - [|[p-norm, hence in the Montel metric on By .

So, we have proven that H, C W7 and the orbits in . uniformly
exponentially converge to f.. The opposite inclusion, W; C H, follows
from Theorem 5.9. Thus W7 = H,, and by Theorem 4.11 this is a
codimension 1 complex analytic submanifold in QG. O

Remarks. 1. In [McM2, S2]| the following extra assumption was
needed: RF is hybrid equivalent to F' (which was proven by Sullivan
for real F'). Combinatorial Rigidity Theorem 5.9 allows us to eliminate
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this assumption. The above proof of existence of the renormaliza-
tion fixed point which attracts all the hybrid class is due to McMullen
[McM2]. However, the proof of the exponential convergence based on
the Schwarz Lemma is new. The inclusion H, € W* is due to Sul-
livan & McMullen but the opposite inclusion W7 C H, is new. The
statement that W7 is a codimension 1 analytic submanifold is also new.

2. Note that the above argument does not use uniform a priori
bounds, i.e., the bounds which are eventually independent of the map
in question. Vice versa, it shows how the uniform bounds follow from
the relative ones.

A fixed point f, is called attracting if it has a neighborhood U C QG
containing in the stable manifold W*( f.).

Corollary 6.2. Fized points of the renormalization operator are not
attracting.

Proof. Otherwise the stable manifold W?*(f,) would have codimension
0 rather than 1. O

6.2. Hyperbolicity. We are now ready to prove hyperbolicity of the
renormalization transformation at its fixed point f,. Let R, = DR(f,) :
TH, — TH, stand for the differential of R at f,. Note that the tangent
space TH, is naturally identified with the space of germs of analytic
vector fields z — a + bz% + ... near K(G.,), where G, = II(f.) € Ho.
Thus it has a natural structure of the inductive limit of Banach spaces.
We say that R, is uniformly exponentially contracting in this space if
its iterates uniformly exponentially converge to 0 (which is defined in
the same way as in the non-linear situation: see the previous section).

Theorem 6.3 (Hyperbolicity). The tangent space B, = Ty QG ad-
mits a R.-invariant splitting B, = E°* & E", where E° = TH, and
dim E* = 1. Moreover, R,|E® is uniformly exponentially contracting,

while the absolute value of the eigenvalue A\, of R.|E™ is greater than
1.

Proof. By Theorem 6.1, the map R|H. is uniformly exponentially con-
tracting. By the Schwarz lemma, its differential R,|E?® is uniformly
exponential contracting as well.

Let us make a selection of Banach spaces. Select a quadratic-like
representative f,, : V. — V' of the renormalization fixed point f, so
that the requirements of the Definition 6.1 are satisfied on the stable
manifold W*(f,). In particular, for any representative f,y : W — W'
there exists an N = N(W) such that the subdued renormalization
RN f, . has a representative U — U’ with V' & U (and of course
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RN f.w|V = f.v). Then for any 6 > 0 there is an € > 0 such that for
allmaps f € By (f., €), the renormalization RY fi belongs to By (f., ).
Thus for W € V, RY gives rise to a Banach operator A : By (f.,€) —
By, which is the composition of the following two operators:

BW(f*ae) R—>N BV c? BW7

where ¢ = iy is the natural embedding. Since the latter embedding
is compact, A is compact as well. Since R is complex analytic, A is
complex analytic as well. Let A, stand for the differential of A at f,.
This linear operator is compact as well since it is also factored via the
embedding i : By — Byy.

Let us consider the slice Wy, = W?*(f.) N By of the stable manifold.
If W is sufficiently small then it is a codimension 1 complex analytic
submanifold in By, (Lemma 4.17). By the Stable Manifold Theorem,
the orbits of A|W;;, uniformly exponentially converge to f.. Hence the
spectrum of the restriction A, to the tangent space Ej, = T Wy, is a
discrete set in the open unit disk I accumulating on 0.

Let us consider the quotient linear operator A, : By /Ef, — By | E3y.
Being one-dimensional, it is a multiplication operator, v — pv. Let us
show that |p| > 1.

By Corollary 6.2, |p| > 1.

If [p| = 1 then by the Small Orbits Theorem, for any v > 0, there
is an f € By such that A™f € B(f.,v), n =0,1,... but the A-orbit
of f does not exponentially converge to f,. By the Stable Manifold
Theorem, f & H(f.).

But if v > 0 is sufficiently small then A is the analytic continuation
of RY to the Banach slice By, and the orbit { A" f}2° , is non-escaping.
By the Combinatorial Rigidity Theorem, f € H(f.) - contradiction.

Thus |p| > 1. As the rest of the spectrum of A belongs to the unit
circle, A has an eigenvector h € By \ Ej}, corresponding to p. Let us
show that this is also an eigenvector for R, : B, — B, (corresponding
to a root A, = p'/"). Indeed, let us consider two vectors h and R.h =
Ah 4+ w, where w € E*. Since both of them are eigenvectors of R,{V
corresponding to the same eigenvalue p, RNw = pw as well. Let us
select a Banach slice £}, containing w. If w # 0 then

1R ™ wll = |p[™ lwlly — o0

contradicting to the property that the orbits of R,|E* converge to 0.
The theorem is proven. O

6.3. Unstable manifold. We keep considering a renormalization op-
erator R = R), of stationary type near its fixed point f,. As above,
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B, = E° @ E" means the hyperbolic splitting constructed in the previ-
ous section, and A, stands for the unstable eigenvalue.

Theorem 6.4 (Local unstable manifold). There ezists a complex an-
alytic one-dimensional manifold W (f.) = W"(f.) C QG wvia f. sat-
wsfying the following properties:
(i) WE.(fs) belongs to some Banach slice By > f., is tangent to E,
and transverse to W; ;
(i) We.(f.) € RWY and the inverse map R~ : W* — WY is well-
defined;
(iii) For any f € Wig.(fo), I1R7"f = fllw ~ CpA™

Proof. In the proof of the Hyperbolicity Theorem we have constructed
a Banach slice By 3 f, locally invariant under some renormalization
iterate A = RY. Moreover, we have proven that this Banach operator
is hyperbolic. By the standard hyperbolicity theory, A has a local
unstable manifold W satistying properties (i)-(iii) (with R replaced
by A).

Let us consider the image S = RW?. Since R, : E* — E" is a non-
singular operator, § is a complex one-dimensional manifold tangent to
E" (provided WY was taken small enough). Moreover, S sits in some
Banach slice By, U € W, and R¥YS D S. But By is locally invariant
under some iterate RN whose restriction to By is compact (by the
same argument as was used for construction of the operator A).

Thus in By we have two analytic submanifolds, W, and S, tangent
to E* and expanded by the compact hyperbolic analytic map R™'. By
the standard hyperbolic theory, these submanifolds must represent the
same germ at f,. In other words, the germ of W} is R-invariant. Since
f« is a repelling fixed point for the local restriction R,|WW¥, a small disk
around f, in this manifold is strictly expanded under R. O

guadratic family

Figure 2. Hyperbolic fixed point of the renormalization operator.
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Let us now globalize the unstable manifold. Let us define the unstable
Mandelbrot set M" as the set of infinitely anti-renormalizable points
f € C such that R7"f — f,.

Theorem 6.5 (Global unstable manifold). (i) A point f € C belongs

to M"(g) if and only if there exists a one-sided tower f = {fy, f_1,...

with stationary combinatorics {M, M, ...} and a priori bounds.
Moreover, in this case f_, € W .(f«) for all sufficiently big n.
(ii) The straightening M" — My is injective.
(iii) For any p > 0, the set

M, ={f € M":3 a tower f with f = fo and mod(f) > u}

15 embedded into a one-dimensional complex analytic manifold
Wyi(f.) which extends the local manifold Wi (f.).

(iv) The manifold Wy (f.) is transverse to the foliation F.

(v) The germ of the manifold Wj(f.) near C is invariant under the
renormalization.

Proof. (i) Assume that we have an infinitely anti-renormalizable map
f € C such that R7™"f — f,. Then the germs f_, = R™"f obviously
form a one-sided tower with a prior: bounds.

Vice versa, let {f_,,} be a one-sided tower with a priori bounds. By
the Compactness Lemma 4.1, the sequence {f ,} is pre-compact. Let
us consider its limit set €2. It is compact and R-invariant. Moreover,
the map R : 2 — € is surjective, since if f_,, — ¢, then any limit
point of the sequence {f_,,_1} is a preimage of g. Hence any point
g € ) is included into a two-sided tower with a priori bounds. By the
Tower Rigidity Theorem, g must coincide with the fixed point f,.

Thus f_,, — fs, and hence the f_,, eventually belong to some Banach
slice By D f,. This Banach slice can be selected so that some iterate
RN keeps it invariant and is hyperbolic at f,. Then f_, must eventually
belong to the local unstable manifold of this operator, which coincides
(by the Local Unstable Manifold Theorem) with W _(f.).

(ii) Let us have two maps f and ¢ in M" which are hybrid equiv-
alent, with x(f) = x(9) = ¢ € M. Then f, = R™"f — f, and
g.n=R"g— f.. Let 0 : M — M, denote the homeomorphism be-
tween the little and big Mandelbrot sets corresponding to R. Then the
hybrid class of f_,, and g_,, is 07 "¢, so that f_,, is hybrid equivalent to
g_n. Moreover, the hybrid conjugacy can be selected with uniformly
bounded dilatation, since the mod(f_,) and mod(g_,) stay away from
0. Hence the corresponding towers f = {f_,} and g = {g_,} are qc
equivalent. By the Tower Rigidity Theorem (ii), these towers coincide
up to rescaling, so that f = g.

}



UNIVERSALITY 61

(iii) Note that for f € M, convergence of the corresponding back-
ward orbit to f, is uniform: there exists an N = N(u) such that
R_NMZ C WE.(f+). Indeed, otherwise by compactness one can easily
construct a bi-infinite tower with a priori bounds which is different
from the stationary tower {..., fi, fi,... }.

Let () stand for the set of N times renormalizable maps in M7NW..
Then RNQ D M. Since R is transversally non-singular (by Lemma
5.3), there is a neighborhood U of @) in W}, which is injectively mapped
by RN onto its image. This image is a desired manifold.

(iv) Transversality follows from (ii) and Lemma 4.25.

(v) Invariance follows from the corresponding statement for the local
unstable manifold. O

6.4. Real combinatorics. Let us now summarize the above informa-
tion for the case of a real combinatorics:

Theorem 6.6. Let M € N be a real Mandelbrot set and R = Ry, be
the corresponding renormalization operator. Then:

(i) There exists a unique quadratic-like map f. such that Rf. = f.;
this map 1s real.

(ii) The renormalization operator R is hyperbolic at f..

iii) The stable manifold W*(f.) coincides with the hybrid class H(f.);
codim W*(f,) = 1.

(iv) dim Wi(f) = 1 and the unstable eigenvalue A, is positive.

(v) For any § > 0 there exists a u > 0 such that the unstable manifold
Wﬁ(f*) transversally passes through all real hybrid classes H. with
cel-2,1/4-19].

Proof. There are three points specific for the real situation as compared
with the previous complex setting:

a) The complex bounds are established for real maps (see §5.6), so
the statement on existence of the fixed point become unconditional.

b) Since dim W*(f.) = 1, the unstable eigenvalue A, is real. To see
that it is positive, we need to check that R preserves the orientation of
WH(f,) near f,. Sliding to the quadratic family, we see that it would
follow from the the property that o : I =— M is orientation preserv-
ing, where I = M NR. But this property is true by the monotonicity
of the kneading invariant in the quadratic family [MT].

¢)The bounds of [LS, LY] are valid for all finitely renormalizable
maps such that the last renormalization is not close to the cusp. More
precisely, there is a pr = () such that for any N and ¢ € [-2,1/4 — 6],
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there is an N times renormalizable quadratic map gy = P, with
xX(RNgyn) = ¢ and mod(R*gy) > p, k =0,1,..., N.

Let us consider finite towers fy = {fx _}o, with fy _x = RN Fgy.
Since they have uniform a priori bounds, we can pass to a limit tower
f = {f-r}%2- Then mod(Bf) > p and x(fo) = c. Hence M(f.)
passes through all hybrid classes ¢ as above. By the Global Unstable
Manifold Theorem (iii), we obtain the last statement of the theorem.

O

Remark. In particular, the real unstable manifold W*(f,) corre-
sponding to the limit ¢, = lim¢, of the period doublings stretches all
way through all real combinatorial types, except “1/4”, and is trans-
verse to the bifurcation loci H(c,). (And a similar statement can be
made for other combinatorics.) This was a part of the Renormaliza-
tion Conjecture (see [Lal]) which previously was established, in the
quadratic period-doubling case, by means of computers by Eckmann &
Wittwer [EW].

7. HAIRINESS, SELF-SIMILARITY AND UNIVERSALITY (STATIONARY
CASE)

7.1. Proof of the Hairiness Conjecture. Milnor’s Hairiness Con-
jecture asserts that the Mandelbrot set is becoming dense in small
scales near a Feigenbaum-like points. Our goal now is to prove this
conjecture for stationary combinatorics.




UNIVERSALITY 63

LA

Figure 3. Blow-up of the Mandelbrot set near the Feigenbaum point.

Theorem 7.1 (Hairiness of the Mandelbrot set). Let P.. be a Feigen-
baum quadratic polynomial with a priori bounds. Then the magnifica-
tions of the Mandelbrot set near c, converge in the Hausdorff metric
on compact sets to the whole complex plane. In particular, this is true
for real Feigenbaum points c,.

Proof of the Hairiness Conjecture. Note that by Corollary 10.3, the
hairiness property is qc¢ invariant. As the foliation JF is transversally
quasi-conformal (Theorem 4.19) and the quadratic family is transverse
to F (Theorem 4.11), it is enough to prove the hairiness property for
any transversal. Our choice will be the renormalization unstable man-
ifold.

Let R be the renormalization operator corresponding to the map P, .
Since P._ has a priori bounds, by the results of the previous section,
R has a fixed point f,, and is hyperbolic at this point. Let us consider
the unstable manifold W" = W} at this point, and the corresponding
Mandelbrot set M* = Wg.NC. By R™! we will denote the branch of
the inverse map which maps W" into itself. Given a set X C W", RX
will mean R(X N R~IWY).

Note first that RM" D M". Indeed, if the Julia set of the renor-
malization Rf is connected then the Julia set of f is connected as
well. Hence the Hairiness Conjecture on W* amounts to the following
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statement:

J R™M" is dense in W". (7.1)
m=0
On W" there is a linearizing coordinate which turns the map R into
rescaling by the Feigenbaum universal constant A,. The dist and diam
below refer to the distance and the diameter on W" in the linearizing
coordinate. Accordingly, a “round disk” D(f,p) is understood in this
sense. Fix some € € (0, 1).
Assume that (7.1) fails. Then there exists a round disk
V' = D(fo,p) € W*\ |J R"M".
m>0
Hence for any integer n < 0 we have
V= R"YW' = D(f,, \l'p) e W*\ |J R"M",
m>0
where f, = R"f. Let V,, C V), denote the round disks as above of radius
eAX!p, and let MY stand for the connected component of M* containing
f«. Note that MY is not a single point since the Mandelbrot set A,
does not have isolated points and the holonomy (My,c.) — (MY, f.)
is a local homeomorphism. Now we have:

diam V,,/ dist(V,, M¥) > diam V,,/ dist(V,, f.) < €.
Hence
diampy, (Vo | W* \ MY) > ae,

where diampy,(-|U) stands for the hyperbolic distance in an open set
U, and the constant a is independent of n and e. It follows that

ae < diampy, (Vo | W\ MY) < diamypy, (Vo | W* \ MY) < diampy, (Va| V)) < €.
Thus

diampy, (V,| W* \ M") <€ (7.2)
with the constant independent of n and e.

Let us show that if € is sufficiently small then over every domain
V, there is a holomorphic motion hp : U’ — U’ which conjugates
Fob=f,:Uy—UltoF:Up — Uy, F €V_,. Here the domains Up
and Uy will be selected in such a way that the mod(UJ; \ Ur) stay away
from 0 (as n changes).

If W" is selected sufficiently small then F(0) # 0 for FF € W*, and
thus F' € W" can be normalized so that F'(0) = 1. Also, by Lemma 4.2,
there is a fundamental annulus Ap = hprAy holomorphically moving
with FF € W¥. Let us consider two preimages of this annulus, A}, =
F'Ap and A% = F2?Ap. If F is sufficiently close to f, (so that
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F™(0) ¢ Ap for n = 1,2) then these preimages are holomorphically
moving annuli. Moreover, if we select an equipotential foliation in Ay,
we obtain the holomorphically moving equipotential foliation yg(r) =
hrvo(r) in the union of these three annuli. Let us assign the level r
to the equipotentials in such a way that the outer boundary of Ag
has level 4, the inner boundary has level 2, and F(yg(r)) = yr(r?) for
21/4 < r < 2. Note that by our normalization, the union of these three
annuli belongs to the twice punctured plane C\ {0, 1}.

Take a point 2y € A}. Let it belong to an equipotential v(r), v/2 <
r < 2. Let Qo = Qo(z) denote the fundamental annulus bounded by
equipotentials v, (r*/3) and v,(r??3), and let Qr = hpQy stand for its
motion. Let d > 0 be the hyperbolic distance (in C\ {0,1}) from z to
the boundary of Q).

Let us find a moment [ such that F'™1(0) € Ap, and let us take
2o = F'(0). Since the map W*\ M* — C\{0, 1}, F — F'(0), contracts
the hyperbolic metric, the hyperbolic distance from F'(0) to F}(0) in
C\ {0,1} is at most Ae, provided F' € V,. For the same reason, for
¢ € 0@y, the hyperbolic distance from ( to hgp( is at most Ae for
F eV ,. Tt follows that hp( # F'(0) for F € V), provided € < d/2A.

Thus for sufficiently small ¢, the point zp = F'(0), F € V,, does
not cross the boundary of the fundamental annulus QQr. Hence we
have a holomorphic motion of (9Qr, zr) over V,. By the A\-lemma (see
Appendix 1), this motion extends to the motion of the whole annulus
(Qp, zr). Pulling it back by dynamics, we obtain the motion U}, \ K (F)
over V,,, where Ul is the domain bounded by the equipotential v (r*/3).
Using the A-lemma again, we extend this motion through the Julia set,
which provided us with the desired motion Ay of the domain U}, over
V,, which conjugates Fy to F.

By the A-lemma, hp is K-quasi-conformal over the twice smaller disk
A, = D(f,,eAlp/2), with an absolute K. Take any point fy, € Ay, and
let f, = R"f,. We conclude that f, is K-qc conjugate to f,, with an
absolute K.

Let us now consider the towers (with disconnected Julia sets)

£, = {fn_m};g’m and f‘m = {fn—m}r:iom

(so that f_,, is the zero coordinate of f,). They both converge to
the stationary tower f, = {..., f,, f«,... }. Moreover, the above K-qc
conjugacies h, converge to a qc automorphism A of g,. By Lemma
5.12,

h=id. (7.3)
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Let us show that on the other hand, the h, stay definite distance
away from the id. To this end let us now pass from the unstable
manifold W* to the vertical fiber Z = Z5. Let M" C Z = ZNC
denote the Mandelbrot set in Z. By Theorem 4.18 the foliation F
extends to some Banach neighborhood of f,, and by the A\-lemma (see
Appendix 2) this foliation is transversally quasi-conformal. Moreover,
both W* and Z are transverse to the foliation at f. (by Corollary
4.24, Lemma 4.25 and the Unstable Manifold Theorem). Hence the
holonomy from W" to Z* is well-defined and quasi-conformal near f..

Take two points f, = R"f, € V, and fn =R" fo € V,, n <0. Let
bn, dn € Z correspond to f, and f, under the holonomy (they are well-
defined for sufficiently big n < 0). Then by (7.2) and quasi-invariance
of hyperbolic metric (see [LV, Ch. II, §3.3]) we have

disthgp (Gn, Pn| 2\ M?) < 1. (7.4)

Take a little disk D in Z around f,, and consider a curve I' = 9D\ M"
(perhaps disconnected). Then obviously

disthyp(pn, I'| Z\ M") = 00 as ¢ — f.. (7.5)

Let us consider the map € : Z\ M? — C\ D which assigns to ¢
the position of the critical value in the external model (see §3.3). By
Lemma 4.14, this map is conformal. Hence by (7.4),

distuyp (En, En] EU)) < 1, (7.6)

where &, = £(én), §~n = &(¢yn), and U, is the component of Z \ M
containing ¢,, and ¢,,. X
Let us consider in U,, the domain U,, cut off by the arc ', ="' NUY,

and containing ¢, and ¢,. The image £(U4,) is bounded by the arc
£(T',) and an arc of the unit circle. By (7.4) and (7.5),

distygp (&0, &) C\ D) < 1. (7.7)
We refer now to the proof of Theorem 4.18 which extends the foli-

ation F beyond the connectedness locus. Consider a quadratic-like
map G, = II(f.) € Hy and the corresponding Riemann mapping
R, : C\ K(G,) — C\ D. Let us transfer the {-points by this Rie-
mann mapping as prescribed by (4.14):

a, = R, '€, @, =R,
By (7.7)

disthyp(an, a,| C\ K(G,)) < 1. (7.8)
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Let us now consider the tubing (4.15) near f,, and transfer the a-points
according to (4.16):

bn :p2(\p*_lan)7 Bn ZPZ(W:I&n)a
where U, = WU, . Since U, is quasi-conformal,
disthyp (bn, bp| C\ D) < 1,

so that . )
dist(by,, b,) =< dist(b,, T) < dist(b,, T).

Fix a small § > 0. Then applying P, : 2 + 22 to b, and b, appropriate
number [, of times, we can move the above b-points on distance of
order 0 apart (independently of n):

dist(Pl" by, Pl b,) < dist(Pl" b,, T) < dist(P{" b,, T) =< 6.
(7.9)

Let us now return to the unstable manifold W*. Denote the maps
and points corresponding to f, as follows:
Gn = H(fn) € Ho;
S, : C\D — C\ K(G,) is the Riemann mapping with a positive
derivative at oo;
v, = Vg, is the tubing map;
Nn = &(f) € C\ D is the position of the critical value in the external
model,;
d, = Sun, is the marked points associated with G,
(and denote correspondingly the tilde-objects).

As f, and ¢, (respectively f, and ¢,) lie on the same leaf of the
extended foliation, by (4.16):

Since ¥(; continuously depends on G near G, U,, and ¥,, are uniformly
close. Hence (7.9) implies that there exist some §” > ¢ > 0 depending
only on ¢ such that

o < dist(fir d,, f»d,) < 8", (7.10)
o' < dist(fi*d,, T) < 6", ¢ <dist(fd,, T) <"

Let us now transfer the d-points to the external model: 1, = S, *(d,).
By Lemma 4.15, the Riemann mappings S,, converge to the Riemann

mapping S : C\ D — C\ K(G.). Hence by (7.10),
&' < dist(glr 9, G i) < 6", (7.11)
o' < dist(gr n,, T) < 6", & < dist(glr 7, T) < 0",
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where the constants ¢’ and ¢” are not the same as in (7.10) but satisfy
the same properties.

Finally, let us transfer the above n-points to the original dynamical
plane of maps f, and f,,. They correspond to the points f»*1(0) and
f1(0) via the conformal maps & and € which are defined outside a
small neighborhood of the unit disk and by Lemma 4.15 converge to
the Riemann mapping R, : C\ D — C\ J(f.). Hence (7.11) yields:

dist (£ *1(0), fl=t1(0)) > &' > 0.

Since the conjugacy hy, between f, and f, carries f»*1(0) to ft1(0),
it stays uniformly away from id, as was asserted.

Hence the limiting qc automorphism A of the stationary tower g
cannot be identical contradicting to (7.3). This contradiction proves
(7.1) and hence the Hairiness Conjecture. O

7.2. Self-similarity of the Mandelbrot set. Below we will prove, in
the stationary case, the Self-Similarity Theorem stated in the Introduc-
tion for real parameter values. The corresponding complex statement
is the following:

Theorem 7.2 (Self-similarity). Let M € N be a real Mandelbrot copy
and o : M — My be the homeomorphism of M onto the whole Man-
delbrot set My. Assume that there exists a quadratic-like map f with
stationary combinatorics T(f) ={..., M, M, ...} and a priori bounds.
Let ¢, = x(f). Then ¢, is a fized point of o, and o is C'T*-conformal
at ¢, with the derivative at c, equal to the Feigenbaum universal scaling
constant A\, > 1. Moreover, there exists at most one parameter value
c. satisfying the above assumptions.

Remarks: 1. The real theorem stated in the Introduction follows
from this complex one and a priori bounds (Theorem 5.6).

2. This theorem does not rule out another fixed point ¢ € M of o
(for which the map P, fails to have a priori bounds). However, it rules
out other fixed points near c,.

A map h : (M;,0) — (Ms,0) between two subsets in C is called
C'*e_conformal at the origin if there exist a 7 # 0 such that h(u) =
Tu(1l+ O(|ul®)) for u € M; near 0.

Let us say that the foliation F is transversally C''*“-conformal at a
point ¢ € M (or along a leaf #.) if for any two transversals S and T
to the leaf H,., the holonomy Mg — M between the corresponding
Mandelbrot sets is C'*®-conformal.
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Lemma 7.3 (Transversal conformality at a Feigenbaum point). Let ¢, €
M be a Feigenbaum parameter value satisfying the assumptions of the
Self-similarity theorem. Then F is transversally C*t®-conformal at c,
with some oo = a(M) > 0.

Proof. By the Hyperbolicity Theorem, there exists a renormalization
hyperbolic fixed point f, € H., with the stable manifold H., and the
transverse unstable manifold W* = W (f.). Clearly it is enough
to check C'™*-conformality of the holonomy from a transversal S via
f € H, to the unstable manifold W*.

By the Stable Manifold Theorem, there exist a quadratic-like repre-
sentative f, : Vi, — V] and natural numbers N = N(V,, f), | = [(V,)
such that (By,, f.) is locally invariant under R, RN f € By and the
orbit of RN f under R’ exponentially converges to f, in this Banach
slice. Moreover, these properties are still valid (with a different 1) if we
take any other representative f, : V' — V' with V' C V..

Let us take a Banach slice By 3 f locally containing the transversal
S. Then there is a neighborhood U4 C By of f which is mapped by
RY into some Banach slice By as above (since for nearby F € U, the
renormalization RV F is well-defined on any domain V C V). Thus
the curve SY = RV S locally sits in By .

But it is sufficient to study the holonomy hy from S to W*. Indeed
if h denotes the holonomy from S to W* then by the R-invariance of
the foliation F, h = hyo RY where RY : (S, f) — (8", R" f) is a local
conformal diffeomorphism (by Lemma 5.3).

Thus the situation boils down to the Banach set up. Let T = R'.
Without loss of generality we can assume that S itself belongs to a
Banach neighborhood V C By of f.. Moreover, let us select this neigh-
borhood V as a box E*(§) x E*(J), where E*/*(3) is the d-ball in the
tangent space E/* = Ty, Ws/v If § is sufficiently small then TV C By,
and 7" is hyperbolic on V in the sense that it satisfies properties H1-H2
of Lemma 2.1 plus the analogous vertical expansion property. Recall
also that by Lemma 4.17, the Banach slice Fy of the foliation F is a
foliation near f, whose leaves are graphs over E*.

Let S" stand the truncated iterate of S, i.e., let inductively St =
Y NTS". Then eventually the 8™ can be represented as graphs of
analytic functions ¢, : E*(§) — E™(0), so that we can assume that this
happens from the very beginning. The local unstable manifold W* NV
can certainly be also parametrized in the same way by some function
Y. By the hyperbolicity of 7" on V, the manifolds S exponentially fast
converge to the unstable manifold:

[6n = Pller < K7™, (7.12)
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where v € (0,1) is a strict upper bound on the spectrum of DT'(g.)
lying inside the unit disk. Moreover, k > 0 can be a priori selected
arbitrarily small (just replace S by some 8™ with m = m(k)).

Let us use the projections p : 8™ — E" as analytic charts on S™. By
the Koebe theorem, they have distortion O(¢) in scale € with a uniform
constant (independent of m). To simplify the notations, we will skip
p, so that for u,v € 8", u — v means the difference between the local
coordinates: p(u) — p(v).

Let M =8NC and M"™ = 8" NC be the truncated iterates of M.

Select ¢ > p > 1. Take two points z1, 2o € M on distances of order
e = ¢ " from a = f. Push them forward by 7™ so that they go to
points (q, (o, b = T™a € M™ with relative distances of order ;~". By
the Koebe Distortion Theorem, the ratio distortion of 7™ at the above
three points is of order p=":

G—b =m-—a
G-b z—a

(1+0(™). (7.13)

Furthermore, m is at least nlog(q/u)/log A = en, where A is an up-
per bound for the unstable eigenvalue A, (and A = A(J, k) can be made
arbitrarily close to A, by choosing the parameters 0 and « sufficiently
small). By (7.12), 8™ is on distance O(y™) = O(p™) from W*, where
p="<l

It follows that the holonomy from S&™ to W* has an exponentially
small ratio distortion at (i, (s, b. Indeed, let us extend the foliation Fy
to a neighborhood of f, in By (see Theorem 4.18). Let 0 was selected
so small that the bi-disk E*(20) x E*(26) is contained in the domain of
the extended foliation. Let us consider the holonomy A, : 8™ — W*
along the extended foliation. By the A-lemma (see Appendix 2), h,, is
K-qc with K,;, = 14 O(p™). Then by the distortion estimates for qc
maps (see [LV, Ch. II, Thm. 3.1])

|h'm<2 - C*| — |<2 - b|
|hmCi — ¢ G — D)

(1+0(")), (7.14)

with any p; > p.

If the distance between (; and (, is commensurable with their dis-
tance to b then the same estimate holds for the other two ratios (cen-
tered at ¢; and (). Then by the Euclidean trigonometry the angles
of the triangle A(b, (1, () differ from the corresponding angles of its
image A(a, hy,Ci, himC2) by O(p}). But then it is also true without the
assumption that the distance between (; and (5 is commensurable with
their distance to b: indeed, a small angle can be represented as a differ-
ence of two angles satisfying the commensurability assumption. Thus
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the holonomy h,, preserves the angles at b up to order O(p}). Together
with (7.14) this yields:

thQ—C* _ CQ—b
hmC1 — ¢ Gi—0b

Finally, let us apply the inverse map 7~ : W* — W" to the points
h(¢;). Since the foliation Fy- is T-invariant, we obtain the points h(z;).
Moreover, by the Koebe Theorem, the ratio distortion of this transition
is O(p™") (like in (7.13)). Combining this with (7.13), (7.15), we obtain
the ratio distortion estimate for the holonomy A : & — Wt

(1+0(1")), (7.15)

hzg — ¢, 29— a

—n T

o= a C(L+ 0™ +p1)).

Thus the ratio distortion of A in scale ¢ > 0 about «a is of order €* with
some « > 0. This implies C'*@-conformality. Indeed, take two points
u,v € M with |v —a| < |u—a| <€ and let zyg = u,z1,...,2, = v,
be a string of points in M such that |z;| = |z;1|/2 for i < k and
|zk-1]/2 < |2k| < |2k-1|- (Such a string exists since the Mandelbrot
set. My is connected and the holonomy M, — M is continuous. Hence

the set M intersects every circle around a € S with sufficiently small
radius.) Then

h(Zz) —a . h(zi-i—l) —

Zi—a  Zig1—a

© =14 0(e2%).

Hence
h(u) —a h(v)—a
u—a  v—a

It follows that there exists a lim, ,o(h(u) —a)/(u —a) =7 # 0 and

=1+ 0(e%).

h(u) —a

u—a

=7(14 O(|u —al®)).
O

Proof of the Self-similarity theorem. By the Combinatorial Rigidity
Theorem 5.9, the point ¢, is fixed by ¢ and there is only one point c,
satisfying the assumptions of the theorem.

The holonomy o : My — M locally conjugates o to the renormal-
ization operator R. Since this holonomy is C'*®-conformal at ¢, and
R|W* is locally conformal, o is C'*®-conformal at c,. O
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7.3. Universality Theorem. Let us consider a little Mandelbrot copy
M = M, € L with p(M) = p, and the corresponding homeomorphism
o : M — M,. Then the “tuned copies” M™ = c~"M are centered at
superattracting parameter values ¢, = ¢ with period p(M™) = p".
The corresponding polynomials P,, = P. are n times renormalizable

with R"P, € H,.

Theorem 7.4 (Universality). Assume that the polynomials P, have a
common a priori bound: mod(RFP,) > p >0, n = 1,2,..., k =
0,1,...,n. Then:

e The ¢, exponentially fast converge to an infinitely renormalizable
parameter value ¢, :

len — cu| ~ a".

o Let S = {f,} be a complex analytic transversal to the hybrid class
H.. at some p. Then for p near p, and all sufficiently big n, S
has a unique intersection point p, with the hybrid class H.,, and
the p, converge to p, with the universal exponential rate:

|t = 1| ~ a(S)A"™
In particular, this yields the Universality Theorem for real parameter
values stated in the Introduction.

Proof. Take any accumulation point ¢, of the sequence {¢,}. By the
uniform a priori bounds assumption and Compactness Lemma 4.1,
P, is an infinitely renormalizable polynomial with combinatorics 7 =
{M, M, ...} and a priori bounds. By the Combinatorial Rigidity The-
orem, such a ¢, is unique. Hence ¢, — c,.

By the Hyperbolicity Theorem, the renormalization operator R =
Ry; has a unique fixed point f,, and this point is hyperbolic. Let us
consider its unstable manifold W* = {f,}. Since both Q and W*
are transverse to the hybrid class H, = H.., for all sufficiently big
n, there exists a unique parameter value v, near v, corresponding to
¢, under the holonomy. Since the holonomy conjugates o and R, we
have Rf,, = f,, ,- As f. is an expanding fixed point for R|W*" with
eigenvalue \,,

[V — vi| ~ g\, (7.16)

and the result follows from the smoothness of the holonomy along the
stable leaf (Lemma 7.3). O
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7.4. Connection to the MLC problem. The problem of local con-
nectivity of the Mandelbrot set (MLC) is a central theme in holomor-
phic dynamics. By works of Yoccoz (see [H]) and the author [L2, L5],
MLC is now established for all real ¢ except those which are infinitely
renormalizable with type bounded by some p. The following criterion
links this problem to the compactness of the Mandelbrot set in the
unstable manifold.

Proposition 7.5. Let M be a primitive little Mandelbrot set. Let ¢, €
My be an infinitely renormalizable parameter value of type {M, M, ...}
with a priori bounds (for example, a real one). Then the following
properties are equivalent:

(i) The Mandelbrot set My is locally connected at c,;
(ii) The unstable Mandelbrot set M™ of the Rys-fized point f, is com-
pact;
(iii) For any ¢ € My, there exists a tower £, = {--- — f_1 — fo} of
type {..., M, M} with x(fo) = ¢ and with a priori bounds.

If M s satellite then the same statement s true for My replaced with
M.

Proof. Tt is known that local connectivity of the Mandelbrot set at c,
is equivalent to shrinking of the tuned copies M™ to the point (see e.g.,
[Sch] for a discussion of this kind of relations).

(i) = (iii). If the tuned copies M" shrink to c,, then all of them even-
tually belong to the domain of the holonomy h : M"™ — M™"™. Hence
for any ¢ € M™, there exists a tower Bf, = {h(c) = fo, R fo,...}
with a priort bounds. Since ¢™ maps M"™ onto the whole Mandelbrot
set and hoo™ = R"oh (resp. hoo" ! = R" ! oh in the satellite
case), any tower f, with ¢ € My (resp. ¢ € M) and a priori bounds is
realizable as well.

(iii) = (ii). Assume that for any ¢ € M, (resp. ¢ € M in the
satellite case), there is a tower f. with a priori. Then by Theorem 6.5,
the holonomy h : My — M" (resp. M — M™!) is well-defined, and
hence has a surjective image.

(ii) = (i). Note that the image of M" under the straightening
X : M* — M, is open in M,. Indeed, the straightening homeomor-
phically maps a relative neighborhood 4 C M™ of f, onto a relative
neighborhood U C M of ¢, and conjugates R to o. Since by definition,

M"* = |J R"(U N Dom(R")), (7.17)

n>0
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we conclude:
x(M*) = | a™(UnM"™).
n>0
But o™ : M™ — M, is a homeomorphism, and openness of x(M")
follows.
On the other hand, if M is compact then the image x(M™") is closed.
As M is connected, x(M"™) = M,. Hence

X(RT"M™*) =07"My = M". (7.18)

Furthermore, by (7.17) and compactness of M* RN M" C U for
some N. If U is contained in W}’ then clearly the R~ shrink to f,.
Hence the R~ M™" also shrink to f.. By (7.18), the M™ shrink to c,.

(The argument for the satellite case is the same with M, replaced

by M.) O

Remarks: 1. Note that M is not compact in the satellite case. In-
deed, otherwise by transverse quasi-conformality of F (Theorem 4.19),
it would be qc equivalent to My. As 0 = x o R, the satellite copy M
would be qc equivalent to M, as well, despite the fact that it does not
have a cusp at the root point.

2. By the Self-similarity Theorem, the homeomorphism o : M+ —
M™ is almost linear near c,, so that the local geometry of the little
Mandelbrot sets M" is almost the same. However, it implies that the
whole M™*! is almost isometric to M™ only when the M™ shrink to c,
(i.e., when MLC holds at c,).

8. RENORMALIZATION HORSESHOE WITH BOUNDED
COMBINATORICS

In this section we will prove the Hyperbolicity Theorem and its con-
sequences for bounded combinatorics.

8.1. Construction of the horseshoe. Let us pick a finite family
L = {My}¢_, of disjoint Mandelbrot copies, and the corresponding
renormalization operator

R = R, : Dom(R) = UT; — QG,

where T, = TMk‘ This set up will be carried through the whole section.
Let us say that a point f € QG is completely non-escaping if there
is a sequence f, € QG, n =0,+1,4+2, ..., such that Rf, = f,,1 and

mod(f,) > p=pu(f) >0, n=0,£1,£2,....

Let us consider the set A = A, of all completely non-escaping points.
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Recall that the natural extension of a map R: A — Ais defined

as the lift of R to the space of two-sided orbits £ = {f,}nez, R(f) =
{Rfn}nez. Moreover, Risa homeomorphism with respect to the week
topology on A. The projection ¢ : f — fy to the zero coordinate
semi-conjugates R to R.

Let us also consider the space ¥ = Y, of bi-infinite sequences 7 =
{ My} in symbols My, € £ supplied with the weak topology.
Let w : ¥ — ¥ stand for the left shift on this space (so that My is
the zero coordinate of w(7)). It is called the Bernoulli shift.

Let £ = X7 stand for the space of one-sided sequences {M, )},
in symbols My € L. Recall that by definition, the combinatorial type
7(f) € X1 of an infinitely renormalizable map f is the itinerary of the
one-sided orbit orb(f) (see §5.5).

Lemma 8.1. Assume that there exists a v = vy > 0 such that for
any one-sided sequence T € X7 there exists an infinitely renormalizable
map [ with 7(f) =71 and

mod(R"f) >v, n=0,1,.... (8.1)

Then the natural extension R : A — A is topologically conjugate to
the Bernoulli shift w : X — X. Thus there exists a continuous map
¢ : X — A semi-conjugating w to R|A.

In particular, the statement is valid for a real family L. Moreover,
in this case the map ¢ is a homeomorphism, the horseshoe A is real
(i.e., consists of real maps), and the renormalization R : A — A is a
homeomorphism topologically conjugated to the Bernoulli shift.

Proof. Let us take a bi-infinite sequence 7 = {M;} € ¥. By the as-
sumption, for any [ > 0, there is an infinitely renormalizable quadratic-
like map F; with combinatorics 7(F}) = {M_,,..., My, ...} and a pri-
ori bound v. Let fo; = R'F;. These are infinitely renormalizable
quadratic-like germs with common combinatorics 7o = {My, My, ...}
and mod(fy;) > v. Since the set of such maps is compact, we can pass
to a quadratic-like limit f; = lim;_, fo; (along a subsequence) with
the same properties.

Let us now do the same thing for every ¢ < 0. Let f;; = R'"*'F}, and
let f; = lim;_, fi; be a limit point. The map f; has combinatorics
7, = {M;, M1, ...} and mod(f;) > v.

Selecting the above converging subsequences by means of the di-

agonal process, we construct a sequence of infinitely renormalizable
quadratic-like maps {f;}2__ such that Rf; = fi11, x(fi) = M; and
mod(f;) > v. This sequence represents a tower f with combinatorics 7

and a moduli bound v.



76 MIKHAIL LYUBICH

Thus any combinatorics 7 € X is represented by a tower with a priori
bounds. By the Tower Rigidity Theorem, this tower is unique. This
provides us with a bijective map ¢ : ¥ — A conjugating the Bernoulli
shift w to the natural extension R. Taking the zero coordinate of the
tower, we obtain a semi-conjugacy ¢ : ¥ — A.

To show that ® is continuous, we need to check that the coordi-
nate projections ¥ — A are continuous. To be definite, let us take
the zero coordinate. If the continuity failed, there would exist two se-
quences of towers f(") = {f(™+}, ., and g™ = {g,(cn)}kez in A such
that X(f,ﬁ”’) and X(g,(cn)) belong to the same My for —n < k < n,

but distM(fé"), g(()")) > € > 0, where disty; is the Montel distance on A.
Passing to limits, we would obtain two different towers with the same
combinatorics 7 € ¥ and a prior: bounds - contradiction.

In the case of real family £, the assumption of the lemma is satisfied
by Theorem 5.6, and the above construction leads to a real set A.
Moreover, by Lemma 5.1, a real bi-infinite tower f is determined by
its zero coordinate fy. Hence ® is a homeomorphism. It follows that
R: A — Ais ahomeomorphism as well. O

The set A = A, will be called the renormalization horseshoe (with
combinatorics £). The assumptions of Lemma 8.1 will be the standing
assumptions for the rest of this section.

8.2. Stable lamination. Let f, € A and f € QG be an infinitely
renormalizable map (in the sense of R). Let us say that the orbit of
f is asymptotic to the orbit of f, if there exist a > 0, a sequence of
quadratic-like representatives R" f, : V;, — V! with mod (V! \ V},) > p,
and an N such that forn > N, R"f € By, and

|R"f — R" f.||v,, = 0 as n — oo.
If under these circumstances we have

IR = RB"f.|lv, < Cq",

with C' > 0 and ¢ € (0,1), then we say that the orbit of f is exponen-
tially asymptotic to the orbit of f,.

Let us say that the orbits of f, € A and f € H(f.) are uniformly
exponentially asymptotic if the constants u, C', ¢ above are uniform,
while N depends only on mod(f).

The (global) stable set of a point f. € Ais defined as the set of points
[ € QG whose orbits are forward asymptotic to the orbit of f.. (We
avoid the usual term “global stable manifold” since in what follows
the stable set will not be a manifold but rather a countable union of
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manifolds.) Let us define the basin of attraction of A as the union of
the stable sets of all points f, € A.

The following result extends the Stable Manifold Theorem to renor-
malization operators of bounded type and follows from the works of
Sullivan, McMullen and the author in a similar way:

Theorem 8.2 (Stable lamination). The basin of attraction of the renor-
malization horseshoe coincides with the union of the hybrid classes
H(f.), f« € A, and hence form a lamination in QG with codimen-
sion 1 complex analytic leaves. The orbits of f € H(f.) are uniformly
exponentially asymptotic to the orbits of f, € A.

Proof. Let

H(fev) ={f € H(f.) : mod(f) = v}.
Let us show that the orbits of f € H(f.) are uniformly asymptotic to
the orbits of f, € A in the following sense.

Statement. There exist a g > 0 and a choice of quadratic-like repre-
sentatives R"f, : V,, = V., f. € A with mod(V,, \ V,,) > p satisfying
the following property. For any v > 0 and ¢ > 0, there exists an
N = N(v,¢) such that: If f, € A and f € H(f.,v), then for n > N,
R"f € By, (R"f.,€), where R"f, : V, — V! is a quadratic-like repre-
sentative of R"f with mod(V,, \ V,,) > p.

We leave the proof to the reader (it is a straightforward adjustment
of the proof of the corresponding statement for the stationary combi-
natorics).

Let us now consider the analytic projection II : QG — H, (4.4)
whose restrictions Iy : H(F) — H, are diffeomorphisms. Note that
by the Product Structure Theorem 4.13, the inverse branches IT;'
Ho — Hp are equicontinuous on compact sets. Let

Ry =Tlgepo R o Ilz' : Ho — Ho.

Then Statement A (uniform contraction by R), compactness of A, con-
tinuity of II, and equicontinuity of its inverse branches imply that the
family of operators Rr are uniformly contracting as well:

RngO,W(G)(G; 6) C /HO,W(RNGv)(RgG, 6),

where the W (G) are appropriately selected domains of maps G € II(.A)
with mod(W(G)) > n. By the Schwarz Lemma, this family is uniformly
infinitesimally contracting, and hence the iterates of R are uniformly
exponentially contracting. O

Thus the hybrid class H(f.) of a point f, € A is identified with the
connected component of the stable set of f. It will be also called the
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(global) stable leaf of f.. For an infinite horseshoe, the global stable
set of f, is the union of infinitely many disjoint stable leaves. It has a
dense intersection with A. This is the usual picture for disconnected
maps like the baker transformation.

8.3. Slow shadowing and hyperbolicity. In this section we will
state a new hyperbolicity criterion for invariant sets of complex an-
alytic maps. It says that the lack of hyperbolicity can be detected
topologically by the existence of slowly shadowing orbits. It will model
a more complicated situation treated in the next section.

Let L : A — A be a continuous transformation of a metric compact
set. One says that an orb™(g) e-shadows the orb™(f) if dist(LF f, LFg) <
e, k=0,...,n.

A map L is said to satisfy a “specification property” (compare Bowen
[Bo]) if for any € > 0 there exists an | = [(e) such that any orbit
{LFFAN-L f € A, can be e-shadowed by a periodic orbit of period at
most N + [.

A basic example of a system satisfying the specification property
is the Bernoulli shift w : ¥; — ¥;. Note also that this property is
preserved under taking quotients: If a map L : A — A satisfies the
specification property and S : X — X is a quotient map (i.e., there
exists a surjective continuous map h : A — X such that Soh = ho L),
then S satisfies the specification property as well.

Let A be embedded into a complex analytic Banach manifold i/, let
V be a neighborhood of A in U, and let L : (V, A) — (U, A) be a
complex analytic map preserving A.

Let us say that an orbit of f € V slowly e-shadows an orbit of g € A
if it e-shadows the latter but is not exponentially asymptotic to it.

Let L: A — A stand for the natural extension of L. Given an orbit
f € A, we will denote by f = fy € A its zero coordinate. A map L|A
is called uniformly hyperbolic if:

(i) There is an invariant subbundle £* C T 4U, on which DL is uni-
formly exponentially contracting;

(ii) There exists a family of tangent subspaces Ef C T U labeled by
points f € A of the natural extension satisfying the following proper-
ties:

e Transversality: £ @ Ef = T;U;

e Equivariance: EY = DL(EY);

e Uniformly exponential expansion: there exist ¢ > 0 and p > 1

such that for any f € A, v € E¢, we have:

IDLHW)] > ep", n=0,1,....
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(In the invertible case, this definition coincides with the standard one.)

Theorem 8.3 (Hyperbolicity criterion). Let L : (V, A) — (U,.A) be a
complex analytic map satisfying the following properties:
(i) L|A is topologically transitive and satisfies the specification prop-
erty.
(ii) There is an invariant complex codimension 1 subbundle £° C
T U, on which DL is uniformly exponentially contracting.
(iii) L is transversally non-singular, i.e., the quotient maps

D.Ls : TjU/ES — TriU] By,

are tnvertible.
(iv) There is an € > 0 such that L|.A has no slowly e-shadowing orbits.

Then L is uniformly hyperbolic over A.

All the assumptions of Theorem 8.3 are satisfied for the renormal-
ization operator of bounded type:

(i) is valid by Lemma 8.1 (Renormalization horseshoe);
(ii) is true by the Theorem 8.2 (Stable lamination);

(iii) is satisfied by Lemma 5.3;

(iv) is ensured by Theorem 5.9 (Combinatorial Rigidity).

The only property which fails is that R acts on a Banach manifold.
For this reason Theorem 8.3 cannot be directly applied to R. However,
we can make some iterate of R act fiberwise analytically on a Banach
fiber space over A.

The reader can figure a proof of Theorem 8.3 by specifying the ar-
gument below to the manifold setting.

8.4. Hyperbolicity of R : A — A. In this section we will give a
proof of hyperbolicity of the renormalization operator R of bounded
type on the renormalization horseshoe A. Let R: A — A be the
natural extension of the renormalization and ¢ : A — A be the natural
projection. We will use bold letters f, g etc. for points in A and the
corresponding usual roman letters f, g etc. for their projections to A.

Theorem 8.4 (Hyperbolicity). For any f € A there is a splitting
T,QG = E} @ EY with the following properties:

o B} = TyH(f) and the action of DR is uniformly exponentially
contracting on the subbundle £° = Urc sE};

o dim B¢ = 1. This family of spaces is continuous and equivariant.
The action of DR on it is uniformly exponentially expanding (see
§8.3).
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Let us start with the choice of the Banach fibers. By compactness
of A, there is a choice of domains W = W (f) of quadratic-like germs
f € A satisfying the following properties:

WL1. mod(W'(f)\W(f)) > 1 > 0 with an absolute pu > 0;

W2. There exists an n > 0 such that if disty(g, f) < 7 for some f, g €
A then g € By = By y).

W3. There exist € > 0 and N € N such that RVB;(f,§) C Bgn .

W4. The vertical fibers Z¢ locally sit in By, f € A; hence the vertical
lines EV(f) (4.10) sit in the By as well.

The spaces By are the Banach fibers mentioned above. We will let

B;(9) = By(f,9).
Let
Per,(R) ={g € A: R"g = g}.
Let us consider the stable tangent bundle &, over A with fibers £} =
THw(s)(f), and the “normal bundle” ) over A with fibers Y; =
T¢By/E}. By the Stable Manifold Theorem, dim Yy = 1.
Let R, : Yy — Ygs stand for the quotient action of the renormal-
ization. Let
V(R)=inf _inf R

N gePery,
where the norm || - [[; of DR, : Y, — Ypn, is evaluated with respect
to the quotient Banach norms in the fibers. Note that by Corollary 6.2
v(R) > 1.

Let RY = L, where N satisfies Property W3. All further notations
involving L will be similar to the corresponding notations for R.

Lemma 8.5. For any A € (0,7(R)) there is a constant ¢y > 0 such
that

R4l > e, feA n>0.

Proof. 1t is clearly enough to prove the desired property for R replaced

with L. By Property W2, L can be locally trivialized: if f,g € A

and dist(f,g) < 6, then L, : (Bf,g) — (BLs, Lg). Moreover, locally

trivializing the normal bundle ), we make the quotient maps L, , act

on the same space Y;. As L, 4 continuously depends on g, for any € > 0

there is a § > 0 such that || L. jo L.} —I||; < ¢, provided dist(f, g) < 9.
It follows that

IL% (L2y) " = Il = O(ne),

provided orb,, g 6-shadows orb,, f.
By the specification property, any orb,(f) can be §-shadowed by an
orb,(g) of a periodic point g of period at most n + [. Let f, = L"f,
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gn = L"g. It follows that
ILE el > NIL2 Iy exp(=Cne) >
| IIZL I exp(—Ce) > Bly(L)" exp(~Chne),

where

B=  sup | L.glly
FEA, dist(g,f)<d

and C' are independent of €. As (L) > 1, the conclusion follows. [

Given a tangent vector h € By, let h* and h” stand for its projections
to E° and E" respectively. Let us consider a family of tangent cones

Cp={he By |0’ > 0lln° [}, f € A.

Lemma 8.6. For some N and 0 > 0, the cone field C’J‘?, feA,isRN-
invariant. Moreover, there exists a continuous RY -equivariant family
of complex lines Eg C By, f € A, complementary to £°.

Proof. Let us show that for sufficiently big N and sufficiently small
a>0>0,

DRY C} C Chny, (8.2)
(in particular, the family of cones C%, f € A, is DRN-invariant). In-
deed, by the Stable Lamination Theorem and Lemma 8.5, there exist
A€ (0,1), p> A, such that for S = R! we have:
[DSshl| < Alltll, he Bj: [DSshl| > pllhl. h < B,
Moreover, since the decomposition By = £ @ E} continuously depends

on f,
[(DSh)*| < Afln]l.

Take 6 > 0 so small that A + A0 = pu < p. Let h € 80}’, so that
||k¥|| = 0||h*||. Then
[(DSeh)* [ < AR+ A[[R7]] = pl| A7

Hence for h € 9C% we have:

[DSeh) | el

I(DSeh)ll — el
so that DS(0CY) C C¢; with o = (p/p)f. As the cones are convex,
(8.2) follows.

Let us now consider the projective cone PJ‘?, the space of lines in C?.
Let us supply it with the following hyperbolic distance. Take two lines
I Pf. Select two points 7; € I';, join them by the straight line and
take the intersection I = I°(71,72) of this line with the cone C%. Let us
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consider this interval I as a model for the hyperbolic line and supply
it with the corresponding hyperbolic metric. Then

dist”(['y, Ty) = distyyp (71, 72/ 1)

This definition is independent of the choice of representatives v, and 7,
since the transition from one pair to another, 7| and ~4, is carried by a
Mobius transformation I — I’ which preserves the hyperbolic metric.

Moreover, the hyperbolic distance dist® in the cone C* strictly dom-
inates dist’: there exists a ¢ > 1 such that

dist®(T'y, Ty) > ¢dist?(y, Ty),

since I%(y,7:) has a bounded hyperbolic length in I?(y;, 7). As S :
P’ — P* is contracting from dist’ to dist®, the map S : P? — P’
is uniformly contracting in dist’. Hence for any two-sided orbit f =
{fx}kez with itinerary f € A, the cones JF = DSk(C?—k) exponentially
shrink to a single complex line Ef as k — +o0o. Obviously, this family
of lines is DS-equivariant.

If the orbits f and g with itineraries 7 and 7 respectively are so close
that their backward pieces of length k -shadow one another, then the
cones J¢ and JE are also close and well localize the lines Ef and EY.
This shows continuity of the line field. O

Let D3(6) C E3(9) and D¢(0) C E¢(9) stand for the d-disks about
f = #(f) in the stable/unstable subspaces E} and Ey respectively .
Let

Di(5) = Dj(6) x D(0) (83)

stand for the corresponding d-bidisks, and let 0"Dg(5) = Dj}(d) x
0D{(9) be their unstable boundaries.

Lemma 8.7. If y(R) =1 then R has a slowly shadowing orbit.

Proof. Let us consider the disjoint union B = U, 18;(p) supplied with
the topology induced from A x B. Let

D(6) = Ug 1D (0) C B.

The renormalization RY gives rise to an operator L : D(§) — B
acting fiberwise. By the Stable Manifold Theorem and Lemma 8.6, this
operator is exponentially horizontally contracting and has an invariant
cone field in the bidisk family D(4) (provided § is sufficiently small).

For A € (0,1), let us consider a fiberwise linear contraction T :
B — B. Perturb L by postcomposing it with this contraction: Ly =
Ty o L. If an L-periodic point f € A becomes attracting under this
perturbation, then by the Small Orbits Theorem, there is a ¢ and a
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point g € 9“D; () in the basin of f such that L*g € D;.p.(6),
k=0,1,....

Since y(R) = 1, for any A € (0,1) there is an attracting periodic
point fy and the corresponding shadowing point gy € 9"Dy, (6). But
by Lemma 4.1, the set D(d) is compact in B. Passing to limits f =
limf,, € A and g =limg,, € D¢(J) we conclude that f is shadowed

by g & Wi (f)- O

Proof of the Hyperbolicity Theorem 8.4. By the Combinatorial Rigid-
ity Theorem, R|A does not have slowly shadowing orbits. Hence by
Lemma 8.7 v(R) > 1, so that the periodic points of R are uniformly
repelling in the transverse direction. By Lemma 8.5, R is exponentially
expanding in the transverse direction. Hence by Lemma 8.6, RV |A is
exponentially expanding on the family of unstable lines. Together with
the Stable Lamination Theorem this yields uniform hyperbolicity of
RY|A.

By Theorem 6.3 (hyperbolicity in the stationary case), the unsta-
ble lines Ef are uniquely determined for periodic points f € A (i.e.,
independent of the choice of Banach spaces B; and the iterate R"),
and for a DR-invariant family. Since the full family of unstable lines
E¢ f e fl, is continuous, it is uniquely determined and D R-invariant
everywhere. [

8.5. Unstable manifolds of R|.A. We will keep the notations of the
previous section. In particular, By will stand for the family of Banach
slices satisfying properties W1-W4.

Theorem 8.8 (Local unstable manifolds). There ezists a continuous
family of complex one-dimensional analytic manifolds Wi (f) C By
through [ = ¢(f) € A satisfying the following properties:
(i) Wi (f) is tangent to Ef and transverse to Wi .(f).
(i) W (Rf) € RWE (), thus the inverse map Rg' : W (Rf) —
WE(£) is well-defined.
(iii) There exist p € (0,1) and C > 0 such that for any g € WE (f),

||g—n - f—n”f,n S Cpna

where f_, = ¢(R~™f) and g_,, are the corresponding preimages of
g.
(iv) The straightenings x : Wt .(£) — My are uniformly K-qc.
Proof. As in the proof of Lemma 8.7, let us lift the iterate L = RNA to
the hyperbolic fibered Banach operator L : D(§) — B, and let L = R".
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By the Hyperbolicity Theorem, L is hyperbolic. By a standard con-
struction, it generates a continuous family of local unstable manifolds
W () satisfying the above properties.

The construction is the following. Let us consider a family G¢ of
complex analytic curves I' C D¢ which are represented by the graphs
Y+ Df — D§ of analytic functions whose tangent lines belong to the

cones C’?M. Supply this family with the uniform norm. Let us define
an operator L, on G as the truncated image of the functions: v
Ly N Dj,. Since L is horizontally contracting, vertically expanding,
and preserves the cone field (for N big enough), it maps G¢ into G;
uniformly contracting the distance. It follows that there exists a

nlggo I_/Zl/)—n = Wg(f) € Gy,

where 1)_,, is an arbitrary function of the family G;_,;. All the desired
properties of this family (with R replaced by L) are obvious.

Passing from L = RY back to R we only need to ensure property
(ii) (as (i) and (iii) are obvious). It is easy to see from the construction
that the manifolds RW¢(f) and W¥(Rf) represent the same germ at
Rf = ¢(Rf). Moreover, clearly by taking & sufficiently small we can
make the iterates R*, k =0,1..., N, to be well-defined on the W (f).
Let us now define the unstable manifolds as

Wi(®) = U RWy(R).
0<k<N

Clearly this new family satisfies the properties (i)-(iii).
Property (iv) follows from Theorem 4.19. O

Similarly to the stationary case, we can now globalize the unstable
lamination. For f € A, let us define the unstable Mandelbrot set M"(f)
as the set of infinitely anti-renormalizable points g € C such that there
exists a one-sided tower g = {¢_,}nen with the following property:
Ng—n — f-ullf, = 0 asn — oo.

Theorem 8.9 (Global unstable leaves). Let f € A, 7. = 7. (f) =
{M _,}nen. Then
(i) A point g € C belongs to M™(f) if and only if there exists a one-
sided tower g = {go, g1, ... } with combinatorics T_ and a priori
bounds. Moreover, in this case g_, € Wi (f_,,) for all sufficiently
big n, where £_, = R"f.
(ii) The straightening M"(f) — My is injective.
(iii) For any p > 0, the set

M (f) = {g € M" : 3 a one-sided tower g as above with g = gy and mod(g) > p}
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15 embedded into a one-dimensional complex analytic manifold
Wi(£) which extends the local manifold Wi (f).

(iv) The manifold Wi(f) is transverse to the foliation F.

(v) The germ of the manifold W (f) near C is mapped to the germ of

W;j(f%f) under the renormalization.
(vi) The straightening M;(f) — My is K(p)-quasi-conformal.

Proof. (i) If g = {g0,9_1,...} is a tower with combinatorics 7_(f) and
a priori bounds, then [|g_, — f_,||;_, — 0 as n — oo. Otherwise we
would construct by the diagonal process a bi-infinite tower {h,}22
with some combinatorics 7 € X, but different from the tower in A with
the same combinatorics. This would contradict to the Tower Rigidity
Theorem.

The rest of the argument follows the lines of the proof of Theorem
6.5 replacing the fixed point with the inverse orbit. O

The manifolds W*(f) constructed above will be called (global) un-
stable leaves. The global unstable set of f (i.e., the set of points g whose
backward orbits are aymptotic to the backward orbit of f) consists of
infinitely many leaves.

8.6. Real horseshoe. In the same way as for stationary combinatorics
(Theorem 6.6), the above results can be refined in the case of real
combinatorics. In the following statement all the sets (QG, H(f), stable
and unstable leaves) mean the real slices of the sets considered above,
(without change of notations).

Theorem 8.10 (Real horseshoe). Let £ C N be a finite family of real
Mandelbrot sets and R = R, be the corresponding renormalization op-
erator. Then:

(i) There ezists a real compact invariant set A C C on which R is
topologically conjugate to the shift w: ¥, — Y.

(ii) The renormalization operator R is uniformly hyperbolic on A.

(iii) The stable leaf W*(f), f € A, coincides with the hybrid class
H(f); codimW?(f) =1.

(iv) For any 6 > 0 there ezists a p > 0 such that every unstable leaf
Wﬁ(f), f € A, transversally passes through all real hybrid classes
He with ¢ € [-2,1/4 —6]; dim W) (f.) = 1. These unstable leaves
are pairwise disjoint.

(v) The straightening Wy (f) — [—2,1/4—0] is K (9)-quasi-symmetric.

Remark. The disjointness of the unstable leaves follows from the
injectivity of R (Lemma 5.1).
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9. APPLICATIONS OF THE RENORMALIZATION HORSESHOE

In this section we will derive from the above Renormalization theory
the Hairiness, Self-similarity and Universality Theorems in the case of
bounded combinatorics. The exposition will be sketchy as it follows the
lines of the stationary case (replacing the renormalization fixed point
by the orbits of the renormalization horseshoe). At the end we will
prove the HD Theorem.

We keep our standing assumptions (of Lemma 8.1) which ensure
existence of the hyperbolic horseshoe A.

9.1. Distortion and linearization. Given a conformal diffeomor-
phism ¢ : X — Y between two complex one-dimensional Riemannian
manifolds, the distortion (or non-linearity) of ¢ is defined as

ID(2) |l
") = B Da (o)

By the Koebe Distortion Theorem, if X and Y are Euclidean disks
then n(¢) is uniformly bounded in any hyperbolic disk of radius r > 0
(with a bound depending on r only). Moreover, n(r) = O(r) with an
absolute constant, as r — 0.

Let us supply each unstable leaf W _(f), f € A, with the Riemannian
metric induced from the Banach space By = By (y), [ = ¢(f) € A, (see
§8.4). Let us make a few remarks on this family of metrics:

e Since Ug ;Wi (f) sit in a compact part of QG, these metrics are
uniformly equivalent (after perhaps a slight shrinking of the domains
W (f)) to the metric induced from a single Banach space By

e Supply the unit disk D with the Euclidean metric. Then the uni-
formizations ¢¢ : WY (f) — D have a uniformly bounded distortion.
Indeed, in the local coordinate systems By = E} @ Ef the manifolds
W (f) have a uniformly bounded vertical slope. Hence the projections

pe s Wi (£) — Df (0) (9.1)

have a uniformly bounded distortion. But since the space Ef is one-
dimensional, the Banach disk D§(9) is linearly conformally equivalent
to the standard Euclidean disk D.

Moreover, as the slopes of the W (f) are uniformly bounded, by the
Cauchy Inequality, their graphs have uniformly bounded second deriva-
tives as well. Hence the distortion of pe uniformly linearly vanishes as
d — 0, i.e. n(pg) = O(9).



UNIVERSALITY 87

It follows that the Koebe Distortion Theorem is valid with respect
to the Banach metrics on the leaves Wi (f). This yields for R the
following usual distortion estimates.

Below R;" means the inverse branches of R~"|W_(f) corresponding
to the backward orbit f and D* means the differential in the direction
of W (f).

Lemma 9.1 (Distortion). There exists a C' > 1 such that for any f €
A and g € W (f), we have

1 DR ()
c7' < ”;_ <C,
ID“Re™ (9]

for appropriately understood branches of R™™. Moreover, if dist(f, g) <
€ then

DR " (N

DR (g~ O

One can go further and linearize R along the unstable lamination:

Lemma 9.2 (Linearization). There is a family of conformal local charts
e WE(f) — C, £ € A, with uniformly bounded distortion, and a
function \ : A — C which linearize R:

¢ ne(Rg) = AM£)¢e(g).

Proof. Let us start with local charts provided by the family of projec-
tions (9.1). Let A(f) denote the derivative of RIW®.(f) at f = ¢(f)
with respect to these local charts at f and Rf, and let

ntf) = T AGR)

stand for the corresponding n-fold derivatives (which form a C-valued
multiplicative cocycle).

Consider the backward orbit {f_,} = R™"f, and the corresponding
backward orbits {f_, = ¢(f_,)} and {g_,} of some g € W (f). Let

¢e(g) = lim gn(f-n) (Pr(g-n) = Pn(f=n));

where p, = pg . By the Distortion Lemma, the ratio of two consec-
utive terms of the above sequence goes to 0 at uniformly exponential
rate, and hence the above limit exists and represents a conformal chart
on W (f). It is obvious that these charts provide a desired lineariza-
tion of R. O
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9.2. Hairiness. The Hairiness Conjecture at a Feigenbaum parameter
value ¢ € M, of bounded type is stated in the same way as for the
stationary combinatorics. Namely, let r = r(¢) be the maximal number
such that D(b,7¢) C D(e,€)\ My (i.e., the maximal relative size of gaps
in My in scale €). Then

r(e) >0 as e—0. (9.2)

Proof of the Hairiness Conjecture (bounded combinatorics). Assume
that (9.2) fails, so that there is a decaying sequence of scales around
¢ in which M, has definite gaps. Since the holonomy W (f) — M,
f € A, is uniformly qc (Theorem 8.8), on any unstable manifold W (f)
there is a sequence of scales in which the corresponding Mandelbrot set
M(f) has definite gaps (where the relative size r > 0 of the gaps is
uniform over the family of unstable manifolds).

Let us take a point f € A and a corresponding definite gap U C
WE . (f) in some scale € > 0. Let us push it forward by the renormaliza-
tion, U, = RFU, k = 0,1, ..., n, where n is selected in such a way that
the gap U, has size of order 1. By the Distortion Lemma, at this mo-
ment U, is an “ellipse” of bounded shape whose size is commensurable
with the size of the unstable manifold W (f,), where f, = R"f.

Take now two points ¢, g € U on distance of order ¢ whose distance
to the boundary OU has the same order. Let g, = R¥g, §, = R*g,
k = 0,1,...,n. By bounded distortion, the distance between ¢, and
Jk, their distances to the boundary OUy, and their distances to fp =
o(fr), are all comparable. In the proof of the Hairiness Conjecture
for stationary combinatorics we have shown that this property implies
that gr and g, are K-qc conjugate by a map staying a definite uniform
distance away from the id.

Take now a middle iterate h,, = g;, | = [n/2], as zero coordinate of
the tower h,, = {R*h, }._ ,, and pass to a limit as n — co. We obtain
a bi-infinite tower of connected type with bounded combinatorics which
admits a non-trivial automorphism contradicting Corollary 5.12. O

9.3. Self-similarity and Universality.

Lemma 9.3 (Transverse conformality). There ezists an o = a(L) >
0 such that the foliation F is transversally C*T®-conformal along any

stable leaf H(g), g € A.

Proof. Let us take a transversal S to H(g) at some point f. It is enough
to study the holonomy A from § to an unstable manifold W (g). Let
us consider a family of bidisks Dy = D3 x D¢ (8.3) and an iterate
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L = RY which acts hyperbolically on this family (uniformly contracting
in the horizontal direction and uniformly expanding in the vertical).

Let us consider the forward orbit g,, = L™g € A and the corre-
sponding sequence of bidisks Dy, = D, = D} x D,,. Let 8™ denote
the connected component of D,, N L™S containing f,, = L™ f. Then
by hyperbolicity of L, the S™ can be eventually represented as graphs
of analytic functions D} — D? with bounded vertical slope. More-
over these graphs are exponentially close to the corresponding unstable
manifolds WY = W .(8m)-

Let ¢ > pu>1, M =8nNC. Take two points 21,z € M on distance
of order ¢ = ¢7" from a = f and iterate them forward by L until they
go to three points (y,(s,b = L"a on distance of order u=". By the
Distortion Lemma this transition has distortion of order =", like in
(7.13).

Furthermore, the manifolds S® and W} are exponentially close and
hence by the A\-lemma the holonomy between them has exponentially
small ratio distortion at points (i, (s, b, like in (7.15).

Returning back by T~ we conclude that the holonomy h has ratio
distortion of order €* in scale € about a, which yields C**®-conformality
at a. U

Theorem 9.4 (Self-similarity for bounded combinatorics). Let ¢ be a
Feigenbaum parameter value of bounded type satisfying our standing
hypotheses, and M € L be the Mandelbrot copy containing c. Then the
homeomorphism o : M — My is C't® at c.

Proof. This follows from the transverse conformality of the foliation F
(Lemma 9.3) and analyticity of the renormalization R on the unstable
lamination. O

9.4. Universality for bounded combinatorics. Let us restrict our-
selves to the real case, as the complex statement is obtained by the
usual adjustment. Let us take a finite family £ of real Mandelbrot sets
M, centered at points ay € (—2,1/4). Let us consider a Feigenbaum
parameter value c, € (—2,1/4) with combinatorics {M;q), My, .. }.
Let us consider the centers ¢, = aj) * - -+ * a;1) of the n-fold tuned
Mandelbrot copies.

Theorem 9.5 (Universality for bounded combinatorics). The sequence
¢, exponentially converges to c,:

AT < e — el < BAT", (9.3)
with some B,b > 0 and A, A > 1.
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Let S = {f.} be a real analytic one-parameter family of quadratic-
like maps transversally intersecting the hybrid class H., at p.. Then
for u near p, and all sufficiently big n, S has a unique intersection
point with the hybrid class H.,, and

|tn = pa| = a|en — ] (14 O(g"), (9.4)
where a = a(S) > 0 and ¢ = q(£) € (0,1).

Proof. By Lemma 8.1, there is a map f. € A such that x(f.) = c..
By Theorem 8.10, there exist maps f,, € W*(f,) such that x(f,) = c,.
Then
R™f, e WY(R"™f,) and x(R™f,) = cam-

Since dist(R" f,, R" f.) is bounded and R™™ exponential contracts the
unstable leaves, f, — f. exponentially fast (with the rate depending
only on the family £). Since by Lemma 9.3 the foliation F is transver-
sally C1* (9.3) follows.

Applying C'*%conformality once more, we obtain (9.4). O

Thus for any bounded combinatorics 7 = (My, My, ...) there is a
universal scaling law of transition in generic one-parameter families to
the parameters with this combinatorics.

9.5. Hausdorff dimension. Let L, = {1,...,d}, d > 1. Let us have
a hierarchical family of interval I C R, where i = (g, ..., in_1), i €
Ly, n = 0,1,.... Assume that the intervals of a given rank n are
pairwise disjoint, while for any ;7 € Ly, Ii.’f;rl C I7'. The components
G?’j of I\ Ujfgffl are called the gaps of rank n. Let

Q=NU-

The set () is called a Cantor set with bounded geometry if the family of
configurations (/7, Ulg;rl) have uniformly bounded geometry, i.e., the
intervals I{fjl and the gaps G?jl are commensurable with I7* (with a
constant independent of n and 7). It is well-known and simple fact that
a Cantor set with bounded geometry has Hausdorff dimension strictly
in between 0 and 1.

Let us consider a finite family £ = {M}} of real Mandelbrot copies
centered at ¢j. Recall that I C (—2,1/4) stand for the set of infinitely
renormalizable real parameter values of type specified by this family
(see the Introduction).

Lemma 9.6. The set Iz is a Cantor set with bounded geometry (de-
pending on L).
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Proof. Let is consider the renormalization windows [ obtained by re-
moving from M* N R a neighborhood of the cusp by. For instance, let
us remove the intervals (cg, bg]. On the union of these windows we have
the straightened renormalization operator:
c=xoR: |J I,—[-20].
1<k<d

For i = (ig,...,in_1), let I" ={c:0"(c) € T;,, k=0,...,n—1}. Then

(]
1=NUE.
Let us now transfer these intervals to the unstable lamination. For
feA,let
() = (v ()~

Since the holonomy ¥ : W“( ) — [—2,0] is uniformly quasi-symmetric,
the configurations (W"(f), UZx(f))) have uniformly bounded geometry
(independent of f € A) But by the Distortion Lemma, the map

has a bounded distortion. Hence all the Conﬁguramons (Zr(f), UkI{”“(f))
have uniformly bounded geometry, so that the Cantor set Z(f) =
(x|W¥(f))~'I; has bounded geometry. As the holonomy is quasi-
symmetric, the desired statement follows. O

Now the HD Theorem stated in the Introduction follows .

10. APPENDIX 1: QUASI-CONFORMAL MAPS

The material of this appendix is standard in analysis and dynamics.
We add it in order to fix some terminology and notations and to provide
for reader’s convenience some basic references.

10.1. Quasi-conformal maps. The reader can consult [A, LV] for
the basic theory of quasi-conformal maps.

Let U,V stand for domains in C. We say that a continuous map f :
U — C belongs to (Sobolev) class H if it has locally square integrable
distributional derivatives 0h, Oh. A homeomorphism h : U — V is
called quasi-conformal (qc) if it belongs to H and |0h/Oh| < k < 1
almost everywhere. As this local definition is conformally invariant,
one can define qc homeomorphisms between Riemann surfaces.

One can associate to a qc map an analytic object called Beltrami
differential, namely

Oh dz
N ohdz
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with |||l < 1. The corresponding geometric object is a measurable
family of infinitesimal ellipses (defined up to dilation), pull-backs by A,
of the field of infinitesimal circles. The eccentricities of these ellipses
are ruled by |u|, and are uniformly bounded almost everywhere, while
the orientation of the ellipses is ruled by the argpu. The big axes of
these ellipses determine a line field on the measurable support of the
differential. The dilatation Dil(h) = Kj; = (1 + ||ptl|e) /(1 — ||t|s0) Of
h is the essential supremum of the eccentricities of these ellipses. A qc
map h is called K-qc if Dil(h) < K.

A remarkable fact is that any Beltrami differential with ||ps|| < 1 (or
rather a measurable field of ellipses with essentially bounded eccentric-
ities) is locally generated by a qc map, unique up to post-composition
with an analytic map. Thus such a Beltrami differential on a Riemann
surface S induces a conformal structure quasi-conformally equivalent
to the original structure of S. Together with the Riemann mapping
theorem this leads to the following statement:

Theorem 10.1 (Measurable Riemann Mapping Theorem). Let i be a
Beltrami differential on C with ||ps|| < 1, Then there is a unique quasi-
conformal map h = hy, : C — C which solves the Beltrami equation:
|0h/Oh| = p1, and is normalized at three points. Moreover, h, holomor-
phically depends on p.

The last statement means that h,(z) holomorphically depends on p
for every given z (note that p is an element of the unit Banach ball of
L* which has a natural complex structure) - see [AB] for a thorough
discussion.

In what follows by a conformal structure we will mean a structure
associated to a measurable Beltrami differential p with ||p|| < 1. We
will denote by o the standard structure corresponding to zero Beltrami
differential.

Another fundamental properties of qc maps is the following:

Theorem 10.2 (Compactness). The space of K-qc maps h : C — C
normalized by h(0) = 0 and h(1) = 1 is compact in the uniform topology
on the Riemann sphere.

Corollary 10.3. Let h : (C,0,1) — (C,0,1) be a K-qc map. Then
for e >0, hD(1,¢) D D(1,9) with 6 = §(K,€) > 0.

We will also make use of the following properties:

Lemma 10.4 (Gluing). Let us consider a compact set Q C C, two its
neighborhoods U and V', and two maps ¢ : U — C and ¢ : V\Q — C of
class H. Assume that these maps match on 0Q), i.e., the map f:V —
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C defined as ¢ on @ and as v on V\Q is continuous. Then f € H and
the distributional derivatives of f on Q) are equal to the corresponding

derwatives of ¢. In particular, if ¢ and 1 are qc homeomorphisms,
then f is a q¢c homeomorphism and Dil(f) = max(Dil(¢|Q), Dil(¢)).

See e.g., [DH2, Lemma 2, p. 303] for a proof (where the lemma is
stated for qc homeomorphisms but the proof goes through for general
maps of class H).

10.2. Qc classification of quadratic maps. Let us consider the
quadratic family P, : 2z — 22 + ¢, ¢ € C, and its Mandelbrot set
My = {c: J(P.) is connected}. Recall that a component H of int M,
is called hyperbolic if the maps P., ¢ € H, have an attracting cycle.
Any hyperbolic component contains a unique superattracting param-
eter value cy called its center. Non-hyperbolic components of int M,
are called queer (conjecturally they do not exist).

Theorem 10.5. The quadratic family is decomposed into the following
quasi-conformal classes:

(i) complement of the Mandelbrot set, C\ Moy;
(i) punctured hyperbolic components H \ cy;
(iii) queer components;
(iv) single points.
The holomorphic deformations in the qc classes can be obtained via
holomorphic motions.

In case (i), the qc deformation is obtained by changing the position of
the critical value. In case (ii) it is obtained by changing the multiplier
of the attracting point. In case (iii) the deformation is generated by an
invariant line field on the Julia set. The last statement says that points
on the M, (and of course the centers of hyperbolic components) are
qc rigid. In particular, they do not admit invariant line fields on the
Julia set. See [L3, McM3] for further discussion and references.

11. APPENDIX 2: COMPLEX STRUCTURES MODELED ON FAMILIES
OF BANACH SPACES

11.1. Complex analysis on Banach manifolds. We assume famil-
iarity with the standard theory of manifolds modeled on Banach spaces
(see e.g., [D1, Lang]). Below we will state a few facts which are specif-
ically complex analytic.

Given a Banach space B, let B,(z) stand for the ball of radius r
centered at x in B, and B, = B,(z).
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Cauchy Inequality. Let f : (By,0) — (D;,0) be a complex analytic
map between two unit Banach balls. Then ||Df(0)|| < 1. Moreover,
for x € By,

1
T

Proof (Yuri Lyubich). Take a vector v € B with ||v|| = 1 and a linear
functional ¢ on D with ||¢p]| = 1. Let is consider an analytic function
¢ Dy — Dy, ¢(A) = ¢¥(f(Av)). As |¢(N)] < 1, the usual Cauchy
Inequality yields: |¢'(0)| = |(Df(0)v)| < 1. Since this holds for any
normalized v and v, the former estimate follows by the Hahn-Banach
Theorem.

The latter one follows from the former by restricting f to the ball
Bijja (). O

The Cauchy Inequality yields:

The Schwarz Lemma. Let r < 1/2 and f : (B1,0) — (D,,0) be a
complex analytic map between two Banach balls. Then the restriction
of f onto the ball B, is contracting: ||f(x) — f(y)|| < ¢||z — y||, where
g=r/(1-r)<1.

I1Df ()] <

Proof. By the Cauchy Inequality, ||Df(x)|| < ¢ for = € B,. Integrating
this along the interval [z, y], we obtain the desired. O

Let us now state a couple of facts on the intersection properties
between analytic submanifolds which provide us a tool to the transver-
sality results.

Let X and § be two submanifolds in the Banach space B intersecting
at point z. Assume that codimX = dimS = 1. Let us define the
intersection multiplicity o between X and S at x as follows. Select a
local coordinate system (w), z) near z in such a way that x = 0 and
X = {z = 0}. Let us analytically parametrize S near 0: z = z(t),w =
w(t), z2(0) = 0,w(0) = 0. Then by definition, ¢ is the multiplicity of
the root of z(t) at t = 0.

Hurwitz Theorem. Under the above circumstances, let us consider
a submanifold Y of codimension 1 obtained by a small perturbation
of X. Then S has o intersection points with ) near x counted with
multiplicity.

Proof. Let us use the above local coordinates and parametrization. In
these coordinates ) is a graph of a holomorphic function z = ¢(w)
which is uniformly small at some neighborhood of 0 (this is the meaning
of Y being a small perturbation of X’). The intersection points of Y
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and S are the roots of the equation z(t) = ¢(w(t)). By the classical
Hurwitz Theorem, this equation has exactly o roots near the origin
counted with multiplicities if ¢ is small enough. O

As usual, a foliation of some analytic Banach manifold is called ana-
lytic (smooth) if it can be locally straightened by an analytic (smooth)
change of variable.

Intersection Lemma. Let F be a codimension one complex analytic
foliation in a domain of a Banach space. Let S be a one-dimensional
complex analytic submanifold intersecting a leaf Ly of the foliation at
a point x with multiplicity o. Then S has o simple intersection points
with any nearby leaf.

Proof. Let us select local coordinates (w,z) near x so that x corre-
sponds to 0, and the leaves of the foliation near 0 are given by the equa-
tions L, = {z = €}. Let 2 = 2(t), w = w(t) be an analytic parametriza-
tion of S, with ¢ = 0 corresponding to x = 0. Then z(t) = at?(140(t)),
a # 0, has root of multiplicity o at 0. Clearly there is an analytic lo-
cal chart 7 = 7(¢) in which the curve is parametrized as exact power:
z(T) = 77. Then for small € # 0, the equation z(7) = € has o simple
roots near 0: 7; = €'/7. O

Corollary 11.1. Under the circumstances of the above lemma, S is
transverse to Lo at x if and only if it has a single intersection point
near x with all nearby leaves.

Let X C C be a subset of the complex plane. A holomorphic motion
of X over a Banach ball (B;,0) is a a family of injections hy : X — C,
A € By, with hy = id, holomorphically depending on A € B; (for any
given z € X). The graphs of the functions A — hy(2), z € X, form a
foliation F (or rather a lamination as it is partially defined) in B; x C
with complex codimension 1 analytic leaves. This is a “dual” viewpoint
on holomorphic motions.

We will now state a basic fact about holomorphic motions usually
referred to as “A-lemma”. It consists of two parts: extension and quasi-
conformality which will be stated separately. The consecutively im-
proving versions of the Extension Lemma appeared in [L1, MSS, ST,
BR, Sl]. The final result is due to Slodkowski:

A-lemma (Extension). A holomorphic motion hy : X, — X of a set
X, C C over a topological disc D admits an extension to a holomorphic
motion Hy : C — C of the whole complex plane over D.
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The point of the following simple lemma as compared with the pre-
vious deep one is smoothness of the extension and that the parameter
space is allowed to be infinitely dimensional.

Lemma 11.2 (Local extension). Let us consider a compact set () C C
and a smooth holomorphic motion hy of a neighborhood U of ) over
a Banach domain (A,0). Then there is a smooth holomorphic motion
H, of the whole complex plane C over some neighborhood A' C A of 0
whose restriction to () coincides with hy.

Proof. We can certainly assume that U is compact. Take a smooth
function ¢ : C — R supported in U and let

Hy = ¢hy+(1—¢)id.

Clearly H is smooth in both variables, holomorphic in A, and identi-
cal outside U. As Hy = id, Hy, : C — C is a diffeomorphism for A
sufficiently close to 0, and we are done. U

Given two complex one-dimensional transversals S and 7T to the
lamination F in B; x C, we have a holonomy & — 7. We say that
this map is locally quasi-conformal if it admits local quasi-conformal
extensions near any point.

Given two points A\, € By, let us define the hyperbolic distance
p(A, 1) in By as the hyperbolic distance between A and g in the one-
dimensional complex slice A +¢(p — A) passing through these points in
Bl-

A-lemma (quasi-conformality). Holomorphic motion hy of a set X
over a Banach ball B, is transversally quasi-conformal. The local di-
latation K of the holonomy from p = (A\,u) € § to ¢ = (p,v) € T
depends only on the hyperbolic distance p between the points \ and p
in By. Moreover, K =1+ O(p) as p — 0.

Proof. 1f the transversals are vertical lines A x C and p X C then the re-
sult follows from the classical A-lemma [MSS] by restricting the motion
to the complex line joining A and .

Furthermore, the holonomy from the vertical line A x C to the
transversal S is locally conformal at point p. To see this, let us se-
lect a holomorphic coordinates (¢, z) near p in such a way that p = 0
and the leaf via p becomes the parameter axis. Let z = ¢(f) = e+ ...
parametrizes a nearby leaf of the foliation, while § = g(z) = bz + ...
parametrizes the transversal S.

Let us do the rescaling z = €(, 0 = ev. In these new coordinates, the
above leaf is parametrized by the function ¥(v) = e '¢(ev), |v| < R,
where R is a fixed parameter. Then ¥'(v) = ¢'(ev) and U"(v) =
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e (ev). By the Cauchy Inequality, ¥"(rv) = O(e). Moreover, ¢ uni-
formly goes to 0 as 1(0) — 0. Hence |¥'(0)| = |

do(€) — 0 as € — 0. Thus ¥'(v) = dy(€) + O(e)
uniformly for all |v| < R. It follows that U(v) = 1+ O(d(€)) = 1+ 0(1)
as € — 0.

On the other hand, the manifold S is parametrized in the rescaled co-
ordinates by a function v = b{(1 +o(1)). Since the transverse intersec-
tion persists, S intersects the leaf at the point (v, (o) = (1,0)(1+0(1))
(so that R should be selected bigger than [|b]|). In the old coordinates
the intersection point is (g, z9) = (€, be) (1 + o(1)).

Thus the holonomy from A x C to S transforms the disc of radius |e|
to an ellipse with small eccentricity, which means that this holonomy
is asymptotically conformal. As the holonomy from p x C to 7T is also
asymptotically conformal, the conclusion follows. O

Quasi-conformality is apparently the best regularity of holomorphic
motions which is satisfied automatically. A holomorphic motion is
called smooth (or real analytic etc.) if it has the corresponding reg-
ularity in both variables.

11.2. Inductive limits. Let (V,~) be a partially ordered set Recall
that such a set is called directed if any two elements have a common
majorant. We assume that V has a countable base, i.e., there is a
countable subset W C V such that any V' € V has a majorant W € W.
Let us consider a family of Banach spaces By labeled by the elements
ov V. An e-balls in By centered in an f € By will be denoted By (f,¢).
Elements of the By, will be called “maps” (keep in mind further appli-
cations to quadratic-like maps). For every pair U > V, let us have a
continuous linear injection iy : By — By. We assume the following
properties:
C1. Density: the image iy v By is dense in By;
C2. Compactness: the map iy is compact, i.e., the images of balls,
ivvBv(f, R), are pre-compact in By.

Lemma 11.3. o IfUW =V, f e By, R> 0, then the metrics
pu and pw induced on the ball By (f, R) from By and By are
equivalent.

e LetU >V, and ¢; : (By,By) — (C,C) be a family of linear func-
tionals continuous on the both spaces. Let us consider the common
kernels of these functionals in the corresponding spaces: Ly C By

and EV = EU N Bv. Then codim(£U|BU) = COdiHl(Lv|Bv).

Proof. e It is clearly enough to check the case when W > U. Assume
that there exists a sequence f, € By (0, R) such that || f,|[w — 0 while
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|| fnllu stay bounded away from 0. By compactness of iy, we can pass
to a limit f, — f in By along a subsequence. Then f # 0, while
iwpf = 0 contradicting that iy, is injective.

e If a family of functional as above is linear dependent on By, then by
the density property it is linerly dependent on By as well. This yields
the second statement. O

For any W = V| let us identify any f € By with its image iy, f €
By and span the equivalence relation generated by these identifica-
tions. Thus f € By and g € By are equivalent if there is a common
majorant W > (U, V) such that iy, f = iwpg (then by injectivity
this holds for any common majorant). The equivalence classes will be
called germs. The space of germs is called the inductive limit of the
Banach spaces By and is denoted by B = lign By .

Every space By is naturally injected into the space of germs, and
will be considered as a subset of the latter. Given a subset X C B, the
intersection Xy = X N By will be called a (Banach) slice of X.

Let us supply B with the inductive limit topology. In this topology,
a set X C B is claimed to be open if all its Banach slices X} are
open. The axioms of topology are obviously satisfied, and the linear
operations are obviously continuous (note that the product topology
on B x B coincides with the natural inductive limit topology). Thus B
is a topological vector space. Since points are obviously closed in this
topology, B is Hausdorff (see [Ru]). The following lemma summarizes
some useful general properties of the inductive limits.

Lemma 11.4. (i) In the inductive limit topology, f, — [ if and only
if all the maps f,, and [ belong to the same Banach slice By and
fn = [ in the intrinsic topology of By . Any cluster point f of a
set K C B is a limit of a sequence {f,} C K.

(ii) A set X C B is open if and only if it is sequentially open.

(iii) If X is a metric space and ¢ : (X,a) — (B,g) is a continuous
map then there is neighborhood D > a and an element V € V
such that ¢D C By .

(iv) A set IC C B is compact if and only if it is sequentially compact.
Moreover, K sits in some Banach space By such that the induced
metric on K is compatible with its topology.

(v) A map ¢ : B— T to a topological space T is continuous iff every
restriction ¢|By is continuous. The map ¢ is continuous if and
only if it is sequentially continuous.

Proof. (i) Since the inclusions By — B are continuous, any sequence
{fn} C By converging to f in By converges to f in B as well.
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Let us assume that {f,} converges to f in B but does not sit in any
Banach slice. Then we can select a subsequence which hits any Banach
slice at most finitely many times and never hits f itself. By definition
of the inductive limit topology, the complement of this sequence is a
neighborhood of f - contradiction.

Similarly, if {f,} is not bounded in any Banach slice, then we can
select a subsequence fy) such that ||fuw)|lv, > @ for i = 1,...,k,
where Uy is a countable base in V. This subsequence has a discrete
intersection with any Banach space By, (in the Banach topology), and
hence B\ {fux) } is open - contradiction.

Thus the whole sequence {f,} sits in some Banach space By and is
bounded there. Hence it is compact in any By with U > V. But any
limit point ¢ € By of {f,} must coincide with f. Hence f,, — f in the
Banach topology of By .

If the latter statement concerning cluster points fails then f is not a
cluster point for the slices Ky,. Then we can construct a neighborhood
U C B of f missing K in the same way as above.

(ii) Generally, any open set is sequentially open (which means that
its complement is closed with respect to taking limits of converging
sequences). Vice versa, if a set is sequentially open, then clearly its
Banach slices are sequentially open. By definition, the set itself is
open.

(iii) Otherwise there would be a sequence x, — a such that the
maps f, = ¢(x,) don’t sit in a common space By despite the fact that

fn— 9.

(iv) Let us show that any compact set K C B sits in some Banach
slice. Otherwise there would be a sequence {f,,} C K no subsequence
of which sits in a common Banach slice (since V has a countable base).
But by the first point of this lemma, such a subsequence has no cluster
points. Similarly one can see that K is a bounded subset in some
Banach slice By, .

Let W > V. Then K is compact in the topology of By . Since this
topology is finer than the inductive limit topology, they must coincide
on .

Exactly the same argument can be applied to sequentially compact
sets. Since compactness and sequential compactness are equivalent in
metric spaces, the desired statement follows.

(v) Take an open set X C 7. By the definition of topology, the
preimage ¢ 'X is open iff all its slices (¢|By) !X are open. This
imply the former statement, which yields the latter. O
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The above metrics on compact sets defined in (iv) will be called
Montel metrics disty. (We will not specify the Banach space By from
which the metric is induced.)

Remarks. 1. Any continuous curve v : (R,0) — (B, g) locally sits in
some space By;

2. Given a continuous transformation R : (B, f) — (7T, g) between
two spaces of germs over V and U respectively, for any V' € V there
exist an € > 0 and an element U € U such that R(By(f,¢)) C By.

3. The third statement of the above lemma shows that B is not a
Fresche space, i.e., it is not metrizable, and thus does not have a local
countable base of neighborhoods. However, as we see, the sequential
description of basic topological properties (cluster points, compactness,
continuity etc.) is adequate.

4. Note that the Banach slices By are dense in the space of germs
B, so that their intrinsic topology is not induced from B.

Let us define a sublimit of the directed family By, V € V as the
inductive limit of Banach spaces By corresponding to a directed subset
U C V (which is not necessarily exhausting).

All linear operators A : B — T between spaces of germs are assumed
to be continuous. Let us supply this space with the following conver-
gence structure. A sequence of linear operators A,, : B — 7T converges
to an operator A if for any V € Vand W, U € U, W > V, such that
A(By) C Ty, we have: A,(By) C Ty for all sufficiently big n and the
restrictions A, : By — By, converge to A : By — By in the uniform
operator topology.

11.3. Main example: analytic germs. Let V be the directed set of
topological discs V' 3 0 with piecewise smooth boundary, with U = V' if
U € V. Let By denote the affine Banach space of normalized analytic
functions of the form f(z) =c+ 2%+ ... on V € V continuous up to
the boundary supplied with sup-norm || - ||y.

Remark. To make this example consistent with the previous dis-
cussion, one can make By linear by putting the origin into the map
f(2) = 2%. Or one can rather make the previous discussion in the
category of affine Banach spaces.

For U = V, define the injection iy : By — By by restricting the
functions. Since polynomials are dense in By, this inclusion has a dense
image. Moreover, by Montel’s Theorem, the balls of By are relatively
compact in By. Thus this family of Banach spaces satisty assumptions
C1-C2 from §11.2, so that we can form the inductive limit B = lim B\, .
The elements of this space are analytic germs at 0.
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Let us say that two metrics p and d on the same space K are Holder
equivalent if there exist constants C' > 0 and 6 > 0 such that

C™' plx, y)* < d(x,y) < Cp(z,y)°

The following classical statement is a version of the Hadamard Three
Circles Theorem.

Lemma 11.5. Let us consider three domains Ve W € U. Then the
metrics || - ||v and || - ||w induced on the unit Banach ball of By are
Holder equivalent. Moreover, the Holder exponent goesto 1 as V — W
in the Hausdorff metric.

Proof. Take a holomorphic function f on U with || f||z < 1. Let || f||v =
€.

Let us consider a positive harmonic function h on the annulus U \
V' with boundary values 0 and 1 on its outer and inner boundaries
respectively. Then

log |f| < hloge (11.1)

on the boundary of the annulus. Since log|f| is subharmonic, (11.1)
also holds inside the annulus. Putting § = inf,cow h(2), we conclude
that |flw < =[£I}

Moreover, it is clear from the above formula for the exponent ¢ that
0 is close to 1 if V' is Hausdorff close to W. O

Thus the Montel metric disty; on compact sets of germs is well defined
up to Holder equivalence. In other words, compact subsets I C B bear
a natural Holder structure.

11.4. Analytic maps. We will give most of the definitions in the
complex analytic category automatically adopting the corresponding
smooth notions. So the Banach spaces under consideration are as-
sumed to be over C.

Let us consider an inductive limit B over V. By definition, a function
¢ : B — C is complex analytic if all the restrictions ¢|By are complex
analytic in the Banach sense.

Let us consider a continuous map R : V — B', where V is an open
subset of B and B’ is an inductive limit space over V'. It is called
differentiable at a point f € B if there is a real linear operator A =
DR(f): B — B’ such that any Banach restriction Ry : By — By, with
[ € By is differentiable at f, and DRy (f) = A|By.

As usual, a map R : V — B’ is called smooth if it is differentiable at
every point f € V and the differential DR(f) is (sequentially) continu-
ous in f (which amounts to the smoothness of all Banach restrictions).
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A map R :V — B'iscalled analytic if it is smooth, and the differentials
DR(f) are linear over C.

11.5. Complex Structure. Let us have a family of Banach spaces
By labeled by elements V' of some set V, and open sets Uy C By. Let
us have a set QG and a family of injections jy : Uy — QG. The images
Sy = jyvUy are called Banach slices in QG. The images jyyVy C Sy of
open sets Vi, C Uy are called Banach neighborhoods. We assume the
following properties (compare with C1 and C2):

P1: countable base and compactness. There is a countable family of
slices S; with the following property: For any f € QG and any slice
Sy O f, there exists a Banach neighborhood Vy C Sy compactly
contained in some S;.

P2: analyticity. If some Banach neighborhood Vy C Sy is also con-
tained in another slice Sy, then the transit map jy v = Jutogy
Vy — Sy is analytic.

P3: density. The differential Djy v (f) of the above transit map has a
dense image in By .

We endow QG with the finest topology which makes all the injections
jv continuous by declaring a set V C QG open if and only if all its
Banach slices j;,,'V are open. Lemma 11.4 should be minor modified
in this more general situation:

Lemma 11.6. In QG, f, — [ if and only if the sequence {f,} sits in
a finite union of the Banach slices, and the corresponding subsequences
converge to f in the Banach metric. All other statements of Lemma
11.4 are valid in QG as well with the modification that a single Banach
slice in (iii) and (iv) should be replaced with a finite union of Banach
slices.

Proof. 1t is similar to the proof of Lemma 11.4. Let us just note on the
induced metric on a compact set L C QG (the last statement). Such a
set, is covered with finitely many Banach balls B;, 7 = 1,..., N, which
bear an induced dist;. Let R > maxdiam B;, where the diameter is
evaluated with respect to the corresponding metric.

Given two points f,g € K, let us define dist(f, g) as follows. If there
is a linking sequence f = fo, f1,..., fn = g such that f; and f; | belong
to the same Banach ball Bj) then

dlStM(fa g) = landIStj(k) (fka fk-l—l))

where the infimum is taken over all possible linking sequences (note
that in this case dist(f, g) < RN). If no linking sequence exists then
distpm(f,9) = RN. O]
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Similar to the inductive limit case, the above metrics on compact
subsets of QG will be called Montel metrics.

We say that a topological space QG as above is a complex analytic
variety modeled on the family of Banach spaces. A subset QG# will be
called a slice of QG if it is a union of some family of Banach neighbor-
hoods jyVy. It naturally inherits from QG complex analytic structure.

By definition, a smooth curve in QG locally sits in some Banach slice
and is smooth therein. Since the transit maps between the Banach
slices are analytic, this notion is well-defined. Moreover, the tangency
between two smooth curves v, () and 75(t) through f = 7,(0) is well-
defined by the following condition: disty(7y1(t),v2(t)) = o(t) as t — 0.
Thus we can define a tangent vector to QG at f as a class of tangent
curves. The set of tangent vectors at f is called the tangent cone T;QG.
It is generally not a linear space but rather a union of Banach spaces
TSy ~ By (the space of smooth curves via f lying in Sy).

Let us call a point f € QG regular if any two Banach neighborhoods
U C Sy and V C Sy around f are contained in a common slice Sy. At
such a point the tangent cone T;QG is a linear space identified with
the inductive limit of the Banach spaces,

Tf QQ = U:l}g}S'U TfSU.

Tangent cones at regular points will be called tangent spaces. If all
points of QG are regular then it will be called a complex analytic man-
ifold (modeled on a family of Banach spaces).

A map R : QG' — QG? is called analytic if it locally transfers
any Banach slice Sy to some slice Sy, and its Banach restriction
jy' o Rojy is analytic. An analytic map has a well-defined differ-
ential DR(f) : T;QG" — Tr;QG? continuously depending on f whose
Banach restrictions are linear.

Let M be a complex analytic manifold modeled on a family of Ba-
nach spaces. An analytic map i : M — QG is called immersion if for
any m € M the differential Di(m) is a linear homeomorphism onto its
image. The image X of an injective immersion ¢ is called an immersed
submanifold. Tt is called an (embedded) submanifold if additionally i
is a homeomorphism onto X supplied with the induced topology. For
example, if there is an analytic projection 7 : QG — M such that
mo¢ =1id then X is a submanifold in M. By definition, the dimension
of X is equal to the dimension of M.

Ifi: (M,m)— (X, f) C(QG,[f)is an immersion, then the tangent
space T(X is defined as the image of the differential Di(m). If the
point f is regular then T;& is a linear subspace in T;QG, so that we
have a well-defined notion of codimension of X at f. Moreover, if M is
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a Banach manifold (in particular, a finite dimensional manifold) then
X locally sits in a Banach slice of QG.

We say that a submanifold X C QG is regular (of codimension d)
if all its points f € X are regular (and X has codimension d at all its
points).

As usual, two regular submanifolds X and Y in QG are called trans-
verse at a point g€ X NY if T, X @ T, Y =T,00.
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