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�� A missing line in the dictionary�

There is an intriguing dictionary between two branches of conformal dynamics�
the theory of Kleinian groups and dynamics of rational maps� This dictionary was
introduced by Sullivan� and led him in the early ��	s to the no wandering domains
theorem� deformation theory and geometric measure theory for holomorphic maps�
Thurston	s rigidity and realization theory� developed at the same time� was also
motivated by this analogy� More recently� McMullen has made important contri

butions to the renormalization theory motivated by the analogy with �
manifolds
which �ber over the circle ��� ����

However� the translation from one language to another� as in usual life� is not
automatic� There are concepts and methods in each of these �elds which only
barely allow translation to the other one� And even when it is possible� the results

�
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achieved are often complementary �see Sullivan	s table in ��� of the results on the
structural stability and hyperbolicity problems��

In this paper we explore a construction which attempts to provide an element
of the dictionary that has so far been missing� an explicit object that plays for a
rational map the role played by the hyperbolic �
orbifold quotient of a Kleinian
group� To build this object we replace the notion of manifold by �lamination��
which is a topological object whose local structure is the product of Euclidean
space by a �possibly complicated� transverse space�

Another goal of this work is to study the space of backward orbits of a rational
function� Since Fatou and Julia� inverse branches of iterated rational functions
have played a crucial role in the theory� Unfortunately� the space of such branches�
with its natural topology� is wild �should be compared with the H�enon attractor��
and may deserve to be called a �turbulation�� By imposing a �ner topology and
completing� we turn this space into an a�ne lamination� in the hope that this will
tame it�

Laminations were introduced into conformal dynamics by Sullivan� whose Rie�
mann surface laminations play a role similar to that of Riemann surfaces for
Kleinian groups �see ��� ��� or x��� and Appendix � of this paper�� These are
objects which locally look like a product of a complex disk times a Cantor set� Sul

livan associated such a holomorphic object to any C�
smooth expanding circle map�
The construction involves �conformal extension� of a non
analytic one
dimensional
map �see Appendix ���

In this paper we go one dimension up and make a �hyperbolic three dimensional
extension� of a non
M�obius map� This object is called a hyperbolic orbifold ��
lamination and can be constructed in the following way�

Step �� the natural extension� Consider the full natural extension �f � Nf � Nf of
a rational map f �points of Nf are backward orbits �z � �� � � �� z�� �� z�� of f��

Step �� the regular leaf space� Restrict �f to the �regular part� Rf of Nf where the
inverse iterates branch only �nitely many times� This space is a union of leaves
which are non
compact Riemann surfaces� simply connected except for Herman
rings� that is� hyperbolic or parabolic planes� It can be viewed as a Riemann surface
with uncountably many sheets where all inverse iterates f�n live simultanuously�

Step �� a�ne orbifold lamination� Consider the subset Anf of Rf consisting of
parabolic leaves� The parabolic leaves possess a canonical a�ne structure preserved
by the map� However this structure is not necessarily continuous in the transverse
direction� To make it continuous� we re�ne the topology on Anf � obtaining a space

A�
f with a laminar structure�� We then complete A�

f to obtain a �nal object Af

some of whose new leaves may be �
orbifolds�

This step is technically the hardest�

Step �� three�dimensional extension� Each a�ne leaf is naturally the boundary
of a three
dimensional hyperbolic space �in the half
space model�� The union of

these spaces forms a hyperbolic orbifold �
lamination Hf with �f acting properly
discontinuously� and by isometries on the leaves�

�A di�erent approach to this part was independently suggested by Meiyu Su who imposed a
di�erent laminar topology associated to the transversal measure structure �����
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Step �� quotient� Finally taking the quotient Hf� �f of this lamination by �f we
obtain the desired hyperbolic orbifold �
lamination�

We also de�ne the convex core of the lamination Hf� �f and prove that it is com

pact if and only if f is critically non
recurrent without parabolic points� Using this
criterion� we prove a rigidity theorem ��� for critically non
recurrent maps which
extends Thurston	s rigidity theorem for post
critically �nite rational maps �see
Douady
Hubbard ����� Our three
dimensional proof gives an explicit connection
between Thurston	s and Mostow	s rigidity theorems�

The structure of the paper is as follows�

x�� Basic notions of laminations and orbifold laminations�

x�� The natural extension Nf � and its regular partRf � The space Rf consists of
backward orbits which have neighborhoods whose pullbacks hit the critical points
only �nitely many times� This space can be decomposed into leaves that admit a
natural conformal structure� We show that �with the exception of Herman rings�
the leaves of Rf are simply connected non
compact Riemann surfaces� i�e� either
hyperbolic or parabolic planes�

We discuss criteria for when Rf is all of Nf except for a �nite set� and when Rf

is open in Nf � This discussion crucially depends on a theorem by R� Ma�n�e on the
behaviour of non
recurrent critical points ����

x�� Here we discuss the a�ne part Anf of Rf � which leads us to the type problem
for the leaves� This problem seems to be intimately related to the geometry of
the Julia set� Parabolicity of leaves re�ects �some� �but not necessarily uniform�
expansion � see Lemma ���� We give several simple criteria for parabolicity and
apply them to some special cases� In particular� all leaves of the real Feigenbaum
quadratic are parabolic� This follows from an expansion property of f with respect
to a hyperbolic metric �compare McMullen ����� The only examples known to us
of hyperbolic leaves are the invariant lifts of Siegel disks and Herman rings�

We also give an explicit formula for the a�ne coordinate on a parabolic leaf�
It generalizes the classical formulas for the linearizing K�onigs and Leau
Fatou co

ordinates near repelling and parabolic points� From this point of view the a�ne
structures on the leaves are just the linearizing coordinates along the backward
orbits of f �

x�� Here we carry out Step � of the construction for the post
critically �nite
case� the construction of an a�ne orbifold lamination Af � We re�ne the topology
on Anf to separate leaves which branch inconsistently over the sphere� and enlarge
Anf to Af by making several copies of the post
critical periodic leaves� and replacing
the original a�ne structure on some of them by an orbifold a�ne structure� This
is the price we pay for having the a�ne structure transversally continuous� while
keeping the lamination complete �in an appropriate sense��

x�� We de�ne the notion of an orbifold a�ne extension �f � A � A of a ratio

nal map f � and show that it is naturally the boundary at in�nity for an orbifold
hyperbolic �D extension �f � H � H� We prove that the action of �f on H is prop

erly discontinuous� so that the quotient H� �f inherits the structure of a hyperbolic
orbifold �
lamination�

Then we introduce and discuss the notion of the convex core Cf in Hf� �f � which
will play a key role in the rigidity argument�
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We also describe the topological structure of the �
lamination associated to
quadratics p� � z �� z� � � with � inside of the main cardioid of the Mandel

brot set� We show that it is homeomorphic to S � ��� �� where S is the Sullivan
lamination� So� like in the case of quasi
Fuchsian groups� the �
lamination connects
the �
laminations associated to the attracting basins of p��

At the end of this section we discuss the �scenery �ow� introduced by A� Fisher
as an analogue of the geodesic �ow on �
manifolds� The phase space of this �ow�
constructed in �� for rational maps satisfying axiom A� is loosely speaking the set
of �pictures�� that is all possible rescalings of the in�nitesimal germs of the Julia
set� This scenery �ow is topologically equivalent to the �vertical geodesic �ow� on
the �
lamination over the lifted Julia set�

This vertical geodesic �ow is an extra piece of structure which makes a di�erence
between �
laminations of rational maps and �
manifolds of Kleinian groups� An
equivalent way of viewing this structure is by saying that there exists a preferred
�f
ivariant cross
section� ���� at the boundary of the lamination Hf �
x�� In this section we give a general construction of the a�ne and hyperbolic

orbifold laminations associated to a rational map� The main hurdle is� as in the
post
critically �nite case� the fact that a sequence of disks in Rf whose projection
to the sphere is branched can limit onto a disk on which the projection is univalent�
In the general case sorting out the di�erent branching types is more involved since
the set of points where this happens is no longer �nite� Thus many copies of a
leaf� possibly a continuum� must be added� One can keep track of this� and de�ne
an appropriate topology� using the a�ne structures themselves and their limiting
behavior�

The self
organizing idea for this construction is to observe that the natural pro

jection � � Nf �  C gives a meromorphic function on each leaf of Anf � and this
family of functions has a natural topology which induces a topology for Anf � In
fact� the space of non
constant meromorphic functions on C with the right action
of the a�ne group serves as a �universal� lamination on which every rational func

tion acts� For any �xed f the structure of Af and Hf can be extracted from the
attractor of f in this universal space�

In conclusion we prove �using Ahlfors	 �ve islands theorem� that every lamination
Hf is minimal� except for the Chebyshev and Latt!es maps� In these special cases�
the lamination becomes minimal after removing the invariant isolated leaf� This is
the characteristic property of these remarkable maps from the lamination point of
view�
x�� In this section we prove that f is convex co
compact �that is� its convex core

Cf is compact� if and only if it is critically non
recurrent and does not have parabolic
periodic points� Note that thus convex co
compactness di�ers from hyperbolicity�
while these two notions are equivalent for Kleinian groups �one more illustration of
the loose nature of the dictionary��

We also de�ne the conical limit set and give in these terms a criterion of convex
cocompactness� We then study ergodic properties of the conical limit set by means
of the blow
up technique �on the lamination level� and Ahlfors	 harmonic extension
method� Along the lines we obtain the lamination insight on the existence of
invariant line �elds for the Latt!es examples� it comes from the existence of the
isolated leaves�
x� This section contains the three
dimensional proof of rigidity for convex co
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compact maps�
We start by lifting the topological equivalence between the maps to a quasi


isometry �h between their �
laminations �using the convex co
compactness�� It fol


lows that �h is quasi
conformal on the leaves of the a�ne extension� This reduces
the problem to the existence of invariant line �elds on the Julia set of Af � which
was analyzed in the previous section�
x��� Conjectures and further program�
x��� In the �rst appendix we outline Sullivan	s costruction of the Riemann

surface lamination associated to an expanding map of the circle� We also give a
globalization construction for the natural extension of polynomial
like maps via the
inductive limit procedure�
x��� Appendix � �lls in some necessary background� all of which is well
known

to those who work in either dynamics or in geometry� but not always to both� It
also �xes some terminology and notation�
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�� Laminations� general concepts

In this paper� a lamination will be a Hausdor� topological space X equipped with
a covering fUig and coordinate charts �i � Ui � Ti�Di� where Di is homeomorphic
to a domain inRn and Ti is a topological space� The transition maps �ij � �i����j �
�j�Ui � Uj�� �i�Ui � Uj� are required to be homeomorphisms that take leaves to
leaves �see Sulivan ��� and Candel �����

Subsets of the form ���i �ftg�D� are called local leaves� The requirement on the
transition maps implies that the local leaves piece together to form global leaves�
which are n
manifolds immersed injectively in X �

As usual we may restrict the class of transition maps to obtain �ner structures
on X � If Di are taken to lie in C and �ij are conformal maps� we call X a Riemann
surface lamination and note that the global leaves have the structure of Riemann
surfaces� If �ij are further restricted to be complex a�ne maps z �� az�b� then we
call X a 	complex
 a�ne lamination� and the global leaves have a �complex� a�ne
structure� If the leaves of an a�ne lamination are isomorphic to the complex plane�
we also call it a C
lamination� One can similarly consider real a�ne laminations�
but as they will not play a role in this paper we shall assume from now on that
�a�ne� means �complex a�ne��
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If D are taken to lie in Hn and �ij are hyperbolic isometries� then X is an n�
dimensional hyperbolic lamination� or hyperbolic n�lamination� In the case when
all leaves of the lamination are hyperbolic spaces� let us call it an Hn
lamination�

When the laminated space X is a �smooth"analytic� manifold� the lamination is
usually called a foliation� It is called smooth�analytic if there is a smooth"analytic
atlas of laminar local charts�

We shall need the notion of distance between a�ne structures on a Riemann
surface� Let S be a Riemann surface supplied with two a�ne structures A� and
A�� Let �� and �� be any two local charts of the structures A� and A� respectively�
� � �� � ���� � U� � U� be the transition function� Then we may de�ne

dist�A��A�� � sup
�����

Dis��� � ���� ��

where Dis stands for the distortion �see Appendix �� x����
We will encounter situations where a Riemann surface lamination R can be re


�ned to give an a�ne lamination� Suppose that the global leaves of R admit a�ne
structure � that is� each global leaf L admits a collection of conformal coordinate
charts with a�ne transition maps� We say that these a�ne structures vary continu�
ously in R if� for any product box U � T�D the induced family of a�ne structures
on D vary continuously with T � in the sense of the above notion of distance�

In other words� continuity of a�ne structure means that for each coordinate
chart � � U � T �D there is a choice of coordinate �t � �

���ftg�D�� C for each
t � T � so that �t is a restriction of an a�ne coordinate chart on a global leaf� and
so that the family �t � ����t� �� � D � C varies continuously with t� The following
is easy to check�

Lemma ���� A continuous family of a�ne structures on the global leaves of a Rie�
mann surface lamination R induces an a�ne lamination structure on R compatible
with the original structure�

Similarly the Riemann surface lamination can be viewed as a topological lami

nation with transversally continuous conformal structure on the leaves�

���� Orbifold laminations� In analogy with Thurston	s notion of orbifolds �see
Thurston ���� Scott ��� and also Satake	s similar notion of V
manifolds� �����
we may de�ne an orbifold lamination to be a space for which every point has a
neighborhood that is either homeomorphic to a standard product box neighborhood
in a lamination� or to a quotient of such a box by a �nite leaf
preserving group
�called an orbifold box��

If the covering box has an a�ne �or conformal� or hyperbolic� structure which is
preserved by the �nite group� then we say that the orbifold box inherits an orbifold
a�ne �or conformal� or hyperbolic� structure�

For example� let T � D be a product box� with D a two dimensional disk� let
� � T � T be a �nite
order map and let � � D � D be a �nite order rotation of
D� Then the map � � � generates a �nite cyclic group action on T �D and the
quotient is an orbifold box� Cycles of � of order not divisible by the order of �
��xed points� for example� give rise to quotient leaves with orbifold points�

See also ��� ��� for the use of �regular �
dimensional� orbifolds in the context of
post
critically �nite maps�
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Example ���� This example illustrates how orbifold boxes will arise in x�� Let K
be a Cantor set and K � � K n fag for some a � K� and let � � �D � D be a doubly
branched map� Let B denote �K �� �D�� �fag�D�� topologized so that a sequence
�bi� zi� in K

�� �D converges to �a� z� in fag�D if and only if bi � a and ��zi�� z�
We can then express B as an orbifold box� by letting T be the double of K� with

both copies of a identi�ed� and � � T � T the map that interchanges copies� Let
� � �D � �D be the involution that interchanges pairs of preimages of points in D�
Then �T � �D���� � �� is exactly B�

�� Natural extension and its regular part�

���� Natural extension� Let f �  C �  C be a rational endomorphism of the
Riemann sphere� Let us consider the space of its backward orbits�

N � Nf � f�z � �z�� z��� � � � � � z� �  C� f � z��n��� �� z�ng�
with topology induced by the product topology in  C�  C� � � � � This is a compact
space projected down to  C by � � �z �� z�� The endomorphism f naturally lifts to a
homeomorphism �f � N � N as �f��z� � �fz�� z�� z��� � � � �� �The inverse map forgets

the �rst coordinate of the backward orbit�� Moreover� � � �f � f � �� In dynamics

the map �f is usually called the natural extension of f � In algebra this object is also
called the projective �or inverse� limit of

 C	
f

 C	
f

 C	
f
� � �

One can also think of a point �z � N as a full orbit fzng�n���� where f � zn ��
zn��� �But don	t confuse them with grand orbits generated by the equivalence
relation z 
 	 if there exist natural m and n such that fmz � fn	�� Along with
the projection � � �� let us also consider projections �n � Nf �  C such that
�n��z� � zn� Clearly �n � fn�m � �m for n � m�

Given a �forward� invariant set X   C� let �X  Nf denote its invariant lift to
Nf � that is� the set of orbits fzng  X � This is nothing but the natural extension
of f jX � Note that it di�ers from ���X � unless X is completely invariant �that is�
f��X � X��

Let �z � �z�� z��� � � � � � Nf � D be a topological disk containing z�� and N be a
natural number� Consider the pullback D�� D��� � � � of D along �z� That is� D�n is
the component of f�n�D� containing z�n� Let us de�ne the following �boxes��

B�D� �z�N� � ����N �D�N� �����

� f�	 � �	�� 	��� � � � � � Nf � 	�N � D�Ng�
which form a basis of the topology in Nf � For N � � we will shorten the notation
as B�D� �z� � B�D� �z� ���

���� The regular leaf space� Let us say that a point �z � �z�� z��� � � � � � N
is regular if there is neighborhood U of z� in  C whose pullback U�n along the
backward orbit �z�� z��� � � � � is eventually univalent� Let R � Rf denote the set
of regular points of the natural extension� This set is clearly completely invariant�
Moreover� if z� is outside the 

limit set 
�C� of the critical points� then �z � Rf

�see Appendix ���
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The path connected components of R will be called the leaves and denoted by
L��z� for �z � R�

Lemma ���� The leaves L��z� possess an intrinsic topology and analytic structure
such that the projection � � L��z� �  C is analytic� The branched points are the

backward orbits passing through critical points� Moreover �f � L��z� � L� �f �z� is a
biholomorphic isomorphism�

Proof� Let �z � �z�� z��� � � � � � R� Then there is a neighborhood U � z� whose

pull
back U�n along the orbit z�n is eventually univalent� Let us take �U � f�	 �
�	�� 	��� � � � � � 	�n � U�ng as a base neighborhood of �z �also called a leafwise
neighborhood��

Let f � U��n��� � U�n be univalent for n � N � Then the map ��N � �	 �� 	�N

is a homeomorphism between �U and U�N � Let it be our local chart� The transition
functions are just appropriate iterates of f � so that this provides us with a complex
structure�

The last two statements are obvious�

We may characterize the leaves in dynamical terms via the following observation�

Lemma ���� Two points �z and �	 in Rf belong to the same leaf i� the following
holds� There is a sequence of paths ���n� in  C such that ��n connects z�n to 	�n
and f���n� � ��n��� Furthermore for n su�ciently large there are neighborhoods
U�n of ��n such that there is a branch g of f�� de�ned on U�n and f�U�n� �
U�n��� In particular 	�n can be obtained from z�n by analytic continuation of f��

along ��n���

Proof� Assume that �z and �	 are on the same leaf and let �� be a path connecting
them� We may represent any such path as a sequence of paths ���n� in  C such
that ��n connects z�n to 	�n� and f���n� � ��n��� Since each point in Rf has a
neighborhood whose projections are eventually univalent� we take a �nite covering
of �� and consider its projections by ��n for n su�ciently large� These are the
neighborhoods U�n�

Conversely� given the sequence ��n satisfying the conditions� it is immediate
that the path �� in Nf that they de�ne in fact lies in Rf �

By local leaves in a box B�D� �z�N� we will mean the components of intersection
of the global leaves with this box�

Unfortunately these boxes in general don	t have a product structure� so that Rf

is not always a Riemann surface lamination� For this reason Rf will be called a
	conformal
 leaf space� that is� a space which is decomposed into the union of leaves
supplied with smooth �conformal� structure� Actually the leaves behave so wildly
�keep in mind the Henon map� that one might rather call the space a �turbulation��

However� if the orbits of the critical points don	t meet D�N then B�D� �z�N� �
T �D�N � where T may be identi�ed with the �ber ����z�N�� The local leaves in
this box correspond to slices ftg �D�N �
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���� Topology of the leaves� Our main tool in this section will be the Shrinking
Lemma �see Appendix ��� which states roughly that� in a uniform sense� backward
iterates of a region on which the branching of f is bounded have �spherical� diame

ters that shrink to �� This holds except if the iterates remain in a rotation domain
� a Siegel disk or Herman ring � for all time�

Let us �rst consider some exceptional cases� If a component W of the Fatou
domain Ff is a rotation domain� then its invariant lift �W � consisting of all orbits

which remain in W for all time� is a full leaf of Rf � and � � �W � W is a conformal
equivalence� The second part is obvious since f jW � W � W is a �
� conformal
map� It only remains to check that �W is not properly contained in a leaf� That is�
we must check that any point on � �W in Nf does not lie in Rf � Such a point �w
is an orbit which stays in �W for all time� and in particular is on the Julia set� If
w� had a neighborhood D� which pulled back along �w eventually univalently� then
by the Shrinking Lemma �after possibly trimming D� to a slightly smaller disk��
diam�D�n�� �� However D� �W is being pulled back by the univalent map f jW �
and so the diameter of D�n �W cannot shrink�

We shall adopt the convention of using rotation domain� Siegel disk or Herman
ring� to refer also to the leaves of Rf which are invariant lifts of these domains�

Except in the case of rotation domains� the structure of a leaf re�ects the be

havior of f at small scales � this is another consequence of the Shrinking Lemma�
The following two lemmas show that� barring the obvious exception� all leaves are
topologically trivial�

Lemma ���� All leaves of Rf which are not Herman rings are simply connected�

Proof� The invariant lift of a Siegel disk is� by the above discussion� a disk� so we
may from now on consider a leaf L which is not either kind of rotation domain�
That is� for �z � L there is some n for which z�n is not in a rotation domain�

Let �� � S� � L be a simple closed smooth curve on L� which does not pass
through the branched points of �� We need to show that �� bounds a disk on
the leaf L� Let us consider the corresponding sequence of smooth curves on the
Riemann sphere� ��n � ��n � �� � S� �  C� Deforming �� slightly� we can get �� to
have only �nitely many points of self intersection� all of which are double points�
Clearly� the ��n have no more points of self intersection than ��� since if ��n�a� is
a simple point for some a � S�� so is ���n����a��

Let us now consider a point of self intersection� ���a� � ���b�� where a� b � S��
and a �� b� Since ���a� �� ���b�� there is an n� such that ��n�a� �� ��n�b� for n � n��
so that ��n has strictly fewer points of self intersection than ��� It follows that
eventually all the curves ��n are simple�

Furthermore� by the Shrinking lemma� diam ��n � � as n � �� Let D�n be
the component of C n ��n of small diameter� Then it contains at most one critical
point of f for n su�ciently big� If D��n��� actually contained a critical point� the
curve ���n��� �obtained by analytic continuation of f�� along the simple curve
��n� would not be closed� Hence the D�n eventually don	t contain the critical
points�

It follows that the maps f � D��n��� � D�n are univalent for n su�ciently big�

n � N � Hence the set �D of backward orbits f�z�n� � z�n � D�n for n � Ng
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represents a topological disc in L bounded by �� �with a homeomorphic projection
��N � �D � D�N ��

The following lemma excludes elliptic leaves �that is� conformal spheres��

Lemma ���� If deg f  � there are no compact leaves in the lamination R�

Proof� Assume that a leaf L is compact� Then the projection � � L �  C is a
�nite
sheeted branched covering� However� we can also express � as fn � � � �f�n�
so deg� � �deg f�n for any n� This is a contradiction�

���� Criteria for regularity� Let us consider some cases in which we can say
which part of Nf is regular�

Axiom A case� �See Appendix � for de�nitions� We will call these functions
�Axiom A� instead of the more common �hyperbolic� in order to avoid sentences
like �in the hyperbolic case all leaves are parabolic��

If f satis�es axiom A thenRf � Nf nf�nite set of pointsg� namely the attracting

cycles of �f � Note that the backward orbits like ��� � � � � �� �� � � � �� where � is an
attracting �xed point and � �� � is another preimage� are included into Rf � since
� �� 
�C��

Critically non	recurrent case� We will use the notation ���z�   C for the limit
set of the backward orbit �z � �z�n�n���

Lemma ���� Let �z � �z�n� � Nf be a backward orbit satisfying the property that
for some N  z�N does not belong to an attracting or parabolic cycle nor to the

�limit set of a recurrent critical point� Then �z � Rf �

Proof� Let C� be the set of critical points such that for c � C�� z�n � 
�c��
n � �� �� � � � � and C� be the complementary set of critical points� Without loss
of generality we can assume that already z� does not belong to an attracting or
parabolic cycle� nor to the closure cl�orb�c�� for any c � C��

By the assumption� C� consists of non
recurrent points� Hence there is an �  �
such that dist�z�n� C�� � �� n � �� �� � � � � For �  � let U� � D�z�� ��� and U�n
be the pull
back of U� along z�n� By Ma�n�e	s Theorem ���� and x������ there is a
�  � such that diam U�n � �� Hence U�n does not hit the critical points of C��

Moreover� if � is su�ciently small� the orbits of the critical points c � C� clearly
don	t meet U�� Hence U�n don	t hit these critical points either� so that the pull

back fU�ng is univalent�

When we refer to an attracting"parabolic etc� cycle in Nf � we mean the invariant
lift of the corresponding cycle in  C� Let us recall from Appendix � that Cr denotes
the set of recurrent critical points in the Julia set�

Lemma ���� The closure of the set Nf n Rf of irregular points in Nf coincides
with the invariant lift �
�Cr� together with attracting and parabolic cycles�
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Proof� If �z �� �
�Cr�� nor is an attracting or parabolic periodic point� then it follows
from lemma ��� that B�D� �z�  Rf for su�cently small neighborhood D � z� Thus
�z � intRf �

Vice versa� let �z � �
�Cr�� Let D be a neighborhood of z�� N  � be any integer�
and B� � clB�D� �z�N� be a closed neighborhood of �z� We should show that B�

contains an irregular point�
Since D�N � 
�Cr� �� �� there is a critical point c � Cr such that fn�c � D�N

for some n�  �� Let �z��� be any backward orbit with z
���
��N�n��

� c� and

B� � clB�D� �z���� N � n��  B��

Then all leaves of B� over D are at least double branched�
Let us now consider a neighborhood base D � D� � D� � � � � of z� and let

D�
��N�n��

� c be the pullback ofD� along the orbit ffkcgN�n�
k�� � Since c is recurrent�

there is an n� such that fn�c � D�
��N�n��

� Take any backward orbit �z��� with

z
���
��N�n��n��

� c� and cosider the closed box B� � clB�D�� �z���� N�n��n��  B��

All leaves of B� over D� are at least triple branched�
Proceeding in this way� we will construct a nest B� � B� � B� � � � � of closed

boxes� such that all leaves of Bn are at least n times branched over Dn� Hence the
intersection of these boxes consist of irregular points�

Let us call a map f critically non�recurrent if all its critical points on the Julia
set are non
recurrent� The following fact was proved by Carleson� Jones and Yoccoz
��� �in di�erent language��

Corollary ���� A map f is critically non�recurrent if and only if

Rf � Nf n fattracting and parabolic cyclesg�
Let us call a map f persistently recurrent if any backward orbit U�� U��� � � � of

a neighborhood U� along 
�Cr� hits a critical point� In other words� all points of
�
�Cr� are irregular� Lemma ��� also yields the following criterion of openness of
the regular leaf space�

Corollary ���� The regular leaf space Rf is open in Nf if and only if f is either
critically non�recurrent or persistently recurrent� In the latter case

Rf � Nf n ��
�Cr� � parabolic and attracting cycles�

�

���� The Julia and Fatou sets� Let us consider the pull
backs J r

f � J r �

���J � Rf and Fr

f � Fr � ���F of the Julia set J and the Fatou set F to the
space Rf �

Note �rst that Fr is obtained from the pullback of F to Nf just by removing
the attracting cycles� Also� if we remove from Fr the invariant lifts of Siegel disks
and Herman rings� then we obtain a Riemann surface lamination� Indeed� if U
is compactly contained in the Fatou set� and a backward trajectory U�� U��� � � �
eventually does not meet either attracting cycles� Siegel disks or Herman rings�
then there is an N such that U�k does not meet the critical points for k 
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N � In particular� the boxes B�U�� �z�N� have a product structure if �z � Fr n
fSiegel disks and Herman ringsg and N is large�

Note further that �f acts properly discontinuously on Fr with Siegel disks and
Herman rings removed� Indeed for any �z � Fr which is not in a rotation domain�
eventually z�n lies either in an attracting or parabolic basin and pulls back toward
its boundary� or ends up in preimages of a periodic domain� Thus there is a neigh

borhood V of z�N for some N such that all further pullbacks of V accumulate onto
J � It follows that �f�nB�V� z�N� eventually escapes every compact subset of Fr�

Thus� Fr� �f is a Hausdor� topological space� and in fact a Riemann surface
lamination� since it inherits its local structure from R�

So to each basin of the Fatou set we can associate a Riemann surface lamination�
These play the role of the Riemann surfaces associated to a Kleinian group�

In ��� ��� Sullivan considered the natural extension of the attracting basin of
in�nity for a polynomial� and obtained a �solenoidal Riemann surface lamination��
called S �see Appendix ��� This appears as a subset of Fr� �f in general� Let us
consider the topological structure of these laminations in somewhat greater detail�

Attracting domains� Consider a cycle of basins U�
f� � � � f� Um

f� U� for an
attracting �or super
attracting� cycle� and let G denote the subset of Fr consisting
of orbits �z that are attracted �in forward time� to this cycle� This sublamination
divides naturally into two pieces� let G� contain orbits which stay in �Ui for all
time� and let G� consist of orbits which� before some time� lie outside the Ui�

Suppose that all of the domains are simply connected� We claim that G�� �f is

Sullivan	s solenoidal Riemann surface lamination �of appropriate degree�� and G�� �f
is a �nite union of copies of �plane domain���cantor set�� which accumulates onto

the solenoidal part� The full quotient G� �f is� in particular� compact�

We can study G�� �f by considering just the return map fm to U�� and the quotient
of the set of orbits of this map that stay in U� for all time� On a neighborhood
of �U�� f

m is topologically conjugate to z �� zd acting on a neighborhood of the
boundary in the unit disk D� and every orbit in G� accumulates in backward time
onto �U� �note that we omit the orbit which remains on the attracting periodic

cycle� since it does not lie inRf �� It follows that the quotient G�� �f is homeomorphic
to the quotient of the Fatou domain of � �or�� for the lamination of z �� zd� namely
Sullivan	s solenoidal Riemann surface lamination�

Now consider an orbit �z which escapes �Ui in backward time� Let ez denote the
full orbit �� � � � z��� z�� z�� � � � �� There is a �nite list V�� � � � � Vp of preimages of U�

such that no Vi contains a post
critical point� and every full orbit ez with �z � G�
passes through a unique Vi� Let q denote the smallest integer for which zq � �Vi�
Since G�� �f is just the space of these full orbits modulo shift� we can identify it
with ��Vi� � #� where # is a cantor set� so that the �Vi component is zq and
the # component speci�es the preimages of Vi which contain the preimages zq�n�
n � �� �� � � � �

It remains to see that the closure of G�� �f is in G�� �f � Let A denote a funda

mental annulus in U�� This is a compact annulus� surrounding the �xed point of
fm� through which every full orbit of G� passes exactly once �or twice if on the
boundary�� Now if we consider �z in G�� such that zq � Vi� we see that zq�N passes
through A where N  � gets larger as zq approaches �Vi� Thus �z is very close
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to some orbit �w � G� which agrees with �z for all moments n where zn � �Ui� It
follows that G�� �f accumulates on G�� �f � and in fact that all of G�� �f is obtained this
way�

If the domains Ui in the cycle are not simply connected the topological structure
of the quotient is more complicated and we shall not describe it here� However
let us sketch an argument showing that it is compact� Let D be a small closed
disk around the attracting �xed point for fm in U�� so that D maps univalently to
fm�D�  D� For any orbit �z attracted to the cycle there is a �rst moment q � Z
when zq lies in D�

Let A � D n int�fm�D��$ this is the same fundamental annulus described above�
Let D� denote all orbits �z � G for which z� � A� Let D� denote all orbits �z � G for
which z� � f�D� and z�n �� D for n  �� Then modulo the action of �f every orbit is
uniquely represented in D� �D�� except for some identi�cations on the boundaries�
Since both D� and D� are compact� it follows that G� �f is compact�

Leau �parabolic� domains� For a cycle of domains with a parabolic periodic
point� the quotient of the corresponding lamination is not compact� One should
think of these as obtained from the solenoidal Riemann surface laminations by a
�pinching�� but we will not try to elaborate on this case in this paper�

�� The Type Problem and affine structure on the leaves�

By Lemmas ��� and ��� every leaf ofRf is either a parabolic �a�ne� or hyperbolic
plane� except possibly for �invariant lifts of� Herman rings� which are hyperbolic
annuli� Siegel disks are the only example we know of hyperbolic planes�

Type Problem� Are there any other cases of hyperbolic leaves except Siegel disks
and Herman rings�

���� Criteria for parabolicity of leaves� Let us look at the type problem in
some special cases�

Repelling 
xed point� Let � be a repelling �xed point for f with multiplier ��
and �� � ��� �� � � � � be its invariant lift to Nf � Let us consider the invariant leaf
L���� � f�z � z�n � �g through ��� This leaf is parabolic since the quotient of

L n f��g by the action of �f is a torus� Similar reasoning applies to the case of a
repelling periodic point�

Parabolic 
xed point� Let now � be a parabolic �xed point with combinatorial
rotation number p�q� Then fq has s � ql invariant repelling petals Pi� Let us
consider the set Li � Li���� consisting of backward orbits �z such that the suborbit
z�qn� n � �� � � � � � eventually lands in Pi� �Observe that �� itself does not belong

to these leaves but hopefully this will not lead to confusion�� The map �f permutes
the leaves Li organizing them into cycles of order q� These leaves are parabolic
since their quotients by the �f q
action are �Ecalle
Voronin cylinders� with in�nite
modulus �that is� conformally equivalent C��� The case of parabolic periodic points
is treated similarly�
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General conditions� Let us now give a couple of general conditions for a leaf to
be parabolic� Let D�z� �� denote the spherical disk of radius � centered at z� and
�D��z� �� denote the component of L��z� � ���D�z� �� containing �z� where ���z� � z�

Lemma ���� Let a backward orbit �z � fz�� z��� � � � g � Rf n 	rotation sets
 sat�
isfy the following property� There is an �  � and a subsequence fn�k�g such
that the disk D�z�n�k�� �� can be univalently pulled back along the rest of the orbit
fz�mgm�n�k�� Then the leaf L��z� is parabolic�

Remark� In terms of the natural extension the assumption of the lemma means
that the �D�k � �D� �f�n�k��z� �� univalently project down to the sphere�

Proof� Assume without loss of generality that n��� � �� By the Shrinking Lemma�
diam���m �D�� � ��m� � � as m � �� Hence for su�ciently large k the annulus
�D�k n �f�n�k� �D� is univalently mapped to an annulus on the sphere containing a
round annulus with outradius � and inradius ��n�k��� Its modulus can therefore be
estimated via

mod � �D�k n �f�n�k� �D�� � �

��
log�sin �����n�k������

This is equal to the modulus of its univalent image� �Ak � �fn�k�� �D�k� n �D�� which
is an annulus in L��z� surrounding �D�� Since mod � �Ak���� the leaf L��z� must
be parabolic�

Recall that C denotes the set of critical points of f � The following is an immediate
consequence of Lemma ����

Corollary ���� If a backward orbit �z � fz�� z��� � � � g � Rn	rotation sets
 does not
converge to 
�C� then the leaf L��z� is parabolic�

Note that the set C can be replaced here by the set Cr of recurrent critical
points�

Lemma ���� Let �z � Rf � Assume that for some sequence n�k� there exist annuli
�A�n�k�  L�n�k� � L� �f�n�k��z� enclosing �f�n�k��z and a branched point of the
projection � � L�n�k� �  C whose moduli stay away from �� Then the leaf L��z� is
parabolic�

Proof� Let B�n  L�n be the set of branched points for the projection � � L�n �
 C� Since every branched point is represented by a backward orbit �nitely many
times passing through a critical point� �f��B�n � B��n���� and moreover for any

�c � B� there is an n such that �f�n�c is not a branched point any more� Let
Pn � �fnB�n  L�� It follows that P� � P� � P� � � � � � and �Pn � �� As P�
is discrete� the sets Pn escape to �� Thus� if the leaf L� were hyperbolic� then
the modulus of any annulus Rn enclosing �z and a point of Pn would tend to � as
n��� which would contradict our assumption�

Lemma ���� Consider a backward orbit �z � fz�� z��� � � � g � R which does not hit
the set 
�C�� Assume that kDf�n�z�k � � as n � � where f�n is the branch
of the inverse map which sends z to z�n and k � k means the hyperbolic metric in
C n 
�C�� Then the leaf L��z� is parabolic�
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Proof� Let L�n � L� �f�n�z�� Then the projection

� � L�n n ���
�C��  C n 
�C�

is a covering map� and hence a local hyperbolic isometry �with respect to the
corresponding hyperbolic metrics��

Assume now that the leaf L� is hyperbolic� Then all L�n are also hyperbolic�
Since the inclusion i � L�n n ���
�C� � L�n is a hyperbolic contraction� the
projection � is expanding from the hyperbolic metric of L�n to the hyperbolic
metric of  C n 
�C��

Note �nally that �f�n � L� � L�n is a hyperbolic isometry� Hence kDf�n�z�k �
kD���z�k��  � where the last norm is measured from the hyperbolic metric on L�

to the hyperbolic metric of  C n 
�C�� Contradiction�

Remark� We don	t know whether the above contracting property along the back

ward orbits is always satis�ed �unlike the expansion property along the forward
orbits� see McMullen ���� Theorem ����� See also Lemma ��� below�

Axiom A case� Let f satify Axiom A� Let us consider a backward orbit �z �
fz�ng � Rf � Then this backward orbit converges to the Julia set� and hence stays
bounded distance away from 
�C�� By Corollary ���� all leaves of Rf are parabolic�

Critically non	recurrent case�

Proposition ���� Assume that all critical points on the Julia set are non�recurrent�
Then

Anf � Rf � Nf n fattracting and parabolic cyclesg�
so that all regular leaves are parabolic�

Proof� The second equalityRf � Nf nfattracting and parabolic cyclesg was proved
above �Corollary �����

In order to prove the �rst one� let us consider the following ordering on the set
of critical points in J�f�� c� � c� if cl�orb�c��� � c�� Given a �z � Rf � let �C denote
the set of critical points belonging to ���z��

Assume �rst that �C �� �� Then let us take a critical point a � �C which is a
maximal element of this ordering� Let �  � be such that z�n stay distance at
least � from all critical points c �� �C� By Ma�n�e	s theorem �Appendix ��� there is
a �  � such that for all n all components of f�nD�a� �� have diameter at most
�� Hence if z�k � D�a� ��� and we pull D�a� �� back along fz��k�n�gn� then we

don	t hit the critical points c �� �C� Clearly we will not hit the critical points c of �C
either �provided � is small enough�� since their forward orbits don	t accumulate on
a� Hence this pull back is univalent�

Select now a sequence k�l� such that z�k�l� � a� and apply Lemma ���� �Note
that the lemma applies since there can be no rotation domains in the non
recurrent
case��

If �C � � then take any point a � �� z�� and repeat the above argument�

Remark� By a minor modi�cation of the above argument one can check that
the leaf L��z� is parabolic provided �z is not an attracting or parabolic cycle and
���z� is not contained in 
�Cr�� where Cr is the set of recurrent critical points�
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Invariant measures with positive characteristic exponent� Let � be an in

variant measure of f � and suppose that for �
a�e� z the characteristic exponent

��z� � lim
�

n
log jDfn�z�j

exists and is positive �j � j means the spherical norm��
Let �� be the lift of � to the natural extension� The Pesin local unstable manifolds

for �� are the sets �D��z� ���z��  L��z� which univalently project down to the sphere
and whose backward orbits shrink exponentially� Moreover� ��z�  � ��
a�e�

Let X� � f�z � ��z�  �g� It follows from the Poincar�e recurrence theorem that for

��
a�e� �z there is an �  � such that the backward orbit �f�n�z in�nitely many times
visits X�� By Lemma ��� the leaves L��z� are parabolic for ��
almost all �z �compare
��� �����

In
nitely renormalizable quadratics� We refer to the papers of Douady and
Hubbard ��� and McMullen ���� ��� for the background in holomorphic renormal

ization theory� Here we will brie�y recall the basic concepts�

Let U � and U be two topological disks such that clU �  U � A double branched
covering map f � U � � U is called quadratic�like� We assume that its critical point
is located at the origin �� The set K�f� � fz � fnz � U �� n � �� �� � � �g is called the
�lled Julia set� Its boundary is called the Julia set J�f�� The Julia set is connected
i� the critical point � is non
escaping� that is� � � K�f��

Any quadratic polynomial can be viewed as a quadratic
like map with U being a
round disk of su�ciently big radius� and U � being its pullback� By the Straightening
Theorem of Douady and Hubbard any quadratic
like map f � U � � U is quasi

conformally conjugate to some quadratic polynomial z �� z� � c� Moreover� if
mod �U � n U� � �  � then there is a conjugacy with dilatation bounded by K����

We can specify a distinguished �xed point of f as follows� Take an arc �  U nK
with endpoints a and f�a�� Choosing appropriate pullbacks of this arc by f we
obtain a curve % � � such that f�%n�� � %� It turns out that if J�f� is connencted
then this curve lands at a speci�c �xed point of f � usually denoted by �� This point
is repelling for any quadratic polynomial z �� z� � c except c � ����

A quadratic
like map f is called renormalizable under the following circum

stances�

� Some iterate g � fp �p  �� restricted to an appropriate topological disk
U � � � is quadratic
like with connected Julia set$

� The sets fkK�g�� k � �� � � � � p� �� do not touch K�g� except possibly for
the �
�xed point of g�

Under these circumstances the map g �considered up to conformal conjugacy� is
called a renormalization of f � If there is a sequence of renormalizations gn � U �n �
Un with increasing periods pn� the map f is called in�nitely renormalizable� If this
sequence can be selected in such a way that the ratios pn���pn are bounded� then
one says that f is of bounded type�

We say that f is an in�nitely renormalizable map with a priori bounds if there
is a sequence of renormalizations as above and an �  � such that

mod �Un n U �n� � �� n � �� �� � � �
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Let us say that a map is Feigenbaum�like if it is in�nitely renormalizable of
bounded type with a priori bounds� Any in�nitely renormalizable real quadratic
of bounded type is Feigenbaum�like� complex a priori bounds were established by
Sullivan �see ���� �����

For a Feigenbaum
like map the set 
f ��� is a Cantor set of bounded geometry�
and f j
f ��� is an invertible minimal dynamical system �conjugate to a translation
on a group�� In particular� f is persistently recurrent and hence� by Corollary ����
Rf � Nf n �
f ����

Lemma ���� Let f be a Feigenbaum�like quadratic polynomial� Then all leaves of
the lamination Rf are parabolic�

Proof� Let �z � fz�� z��� � � � g � R� Then this orbit eventually stays out of the set

���� so we can assume that z� � C n 
����

Let g � U � � U be a renormalized map� mod�U n U ��  �  �� Let � be its
distinguished �xed point� as above� Since f is of bounded type� g is K���
quasi

conformally conjugate to a polynomial z �� z� � c with jc � ���j  �  � �with �
depending on the type bound�� Hence

kDg���k � �  �� �����

Because of Corollary ���� we can assume that z�n converge to 
���� Let 
g���
be the closure of the postcritical set of g� Then there is a backward orbit 	�l of
g converging to 
g��� which is a part of the backward orbit �z� Let us take the
second element 	�� of this backward orbit� Clearly 	�� � U � nU ��� where U �� is the
g
pullback of U ��

The set of Feigenbaum
like maps is compact in the Caratheodory topology �see
McMullen ����� Hence there is a path � in U n
g��� joining 	�� and � of bounded
hyperbolic length� such that the analytic continuation of g�� along � which �xes �
carries 	� to 	��� It follows from this and ����� that kDg�	���k � �  � for some �
depending on �� � and the hyperbolic length of � only�

Hence kDf�n�z�k � � as n � � �where f�nz � z�n�� and Lemma ��� yields
the desired�

Remark� The above way to get hyperbolic contraction is� modulo the details�
due to Curt McMullen �compare ���� Proposition ����� It is actually possible to
weaken the assumptions of the lemma� McMullen has an argument showing that
his notion of �robustness� su�ces to give the desired contraction�

���� A�ne structures on the leaves and linearization� Being unable to re

solve the type problem in full generality� let us de�ne a new leaf space Anf by
throwing away from Rf all hyperbolic leaves� All leaves in Anf are conformally
equivalent to the complex plane C and hence possess a unique a�ne structure
compatible with their conformal structure�

We can express this a�ne structure as a limit of rescalings of backward branches
of f �

Lemma ���� Let f be a rational map with � a critical point� Given �z � Anf  there
exists a sequence of similarities An�w� � �nw � �n such that the maps

�n � An � � � �f�n � L��z�� C
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converge 	uniformly on compact sets
 to a conformal isomorphism � � L��z�� C�

Remark� The condition that � is critical can always be arranged by conjugation
with an appropriate M�obius transformation� For polynomials it is automatic�

Proof� Take a disk neighborhood �U � �U�� U��� � � � � of �z in L��z� with compact
closure� Since the leaf L��z� is parabolic� for any M  � �U is contained in a disk
�V � �V �M� with modulus mod� �V n �U� �M �

Let l � l�M� be such that ��n � � � �f�n is univalent on �V for n � l �possible
by de�nition of Rf �� Thus for n  l� V�n � ��n� �V � contains no critical points
and in particular lies in C� Choose the similarity An such that An�z�n� � �
and A�n�z�n� � ����n��z��

��� Therefore �n � An � ��n have been normalized by
�n��z� � �� ��n��z� � �� �In order for these derivatives to make sense on L we should
�x some local coordinate chart��

For n  l and k  �� we can write �n�k � Gn�k ��n� where Gn�k � An�k � f�k �
A��n � with f�kn denoting the branch of f�kn taking V�n to V�n�k� Note that Gn�k is

de�ned and univalent on An�V�n� � �n� �V �� and is normalized so that Gm�n��� � ��

G�m�n��� � �� By the Koebe �"� theorem �n� �U� contains a disk of de�nite radius

�  �� Since �n is univalent the modulus of �n� �V � n �n� �U� is M � so by the Koebe
distortion theorem �see appendix �� the nonlinearity of Gn�k on the �
disk around
� is small� and goes to � as M ��� independently of k�

Letting M � and therefore l and n� go to �� it follows that Gn�k � id uniformly
on a ��� disk around � as n � �� Thus f�ng form a Cauchy sequence� and so
converge uniformly on a neighborhood of �z� Since f�nj �Ug are a normal family� they

must converge on all of �U �

Applying this argument to a sequence of disks �Um exhausting L��z�� we con

clude that �n converge uniformly on compact sets to a global map � � L��z� � C�
which is univalent� Since L��z� is parabolic its image must be all of C� so � is an
isomorphism�

In the particular case when � is already univalent on a leafwise neighborhood of
�z � Rf �i�e� no z�n is a critical point for n  ��� we can identify this neighborhood
with a neighborhood of z� and obtain this local formula for the a�ne chart�

��z��	� � lim
n��

�fn���z�n��	�n � z�n� �����

�if f is appropriately normalized� e�g�� if � is critical�� In the case of a leaf corre

sponding to a repelling �xed point this exactly corresponds to the classical formulas
for the linearizing coordinate� Note however that uniform expansion is not neces

sary for this formula to hold�

Namely� if � is a repelling �xed point� then the a�ne map � � L����� C is given
by the classical K�onigs linearizing function�

���	� � lim��n�	�n � ���

Note that �� �f���	� � ������	�� 	 � L����� so that � conjugates �f�� on the leaf to
the linear map z �� ���z�
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Let now � be a parabolic �xed point with combinatorial rotation number p�q� An
explicit a�ne map from the associated leaves Li���� to C is given by the Leau
Fatou
linearizing function�

���	� � lim�h�
�

�	�nq � ��s
�� n��

where s is the number of petals at �� and h is an appropriate local chart at a
sectorial region at � �compare Milnor ���� x�� � This function conjugates �f�q

on the leaf to a translation z �� z � a� This corresponds to a variation on the
construction in Lemma ���� where the rescaling map An is precomposed with a
�xed local chart in  C� in this case w �� h����w � ��s��

In general� a�ne structure on the leaves of Anf can be viewed as a simultanuous

linearization of the dynamics along the backward orbits� Indeed� �f becomes an
a�ne map between the leaves� In the a�ne local charts ����� these maps become
just multiplications by the derivative at the base point�

� �f �z�
�f �	� � f ��z� � ��z��	�� �����

provided no z�n is critical for n  ��

���� Density of leaves� Let us say that a leaf space X is minimal if all leaves are
dense in X �

Lemma ���� Any parabolic leaf L is dense in Nf � Thus the leaf space Anf is

minimal� Moreover J r � L is dense in the pullback ���J of the Julia set to Nf �

Proof� Since ��n is a non
constant analytic map on the parabolic leaf L� it can
miss at most two points in  C� Now consider any �z � Nf � and large n  �� Since
��n�L� is dense� there is some �w � L with w�n as close as we like to z�n� If it is
su�ciently close then the spherical dist�w�j � z�j� will be small for all � � j � n�
Thus L is dense� If �z � ���J then clearly �w can be selected from J r�

We remark that it seems plausible that L is dense even if it is hyperbolic� provided
that it is not a rotation domain�

Let J n

f denote J r

f � Anf � the Julia set in the a�ne leaf space�

Corollary ��� The Julia set J n

f  Anf is compact if and only if f is critically
non�recurrent�

Proof� If f is critically non
recurrent then by Proposition ��� J n

f � J r

f � ����J��
which is a closed subset of Nf � and thus compact�

Otherwise� by Lemma ���� f has irregular points on ���J � On the other hand� by
Lemma ���� J is dense in ���J � Hence J is not closed in Nf � thus not compact�
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���� Local leaves on a global leaf� Let �� be a repelling periodic point� and
L � L���� the leaf of ��� Let D   C be a topological disk which does not contain
� � ������ and let & be a topological disk compactly contained in D� Let �Di be
the connected components of ����D� � L which univalently project down onto D�
and let �&i  �Di be the corresponding components of ����&� � L�

The following lemma is a �natural extension� of the Shrinking Lemma �see Ap

pendix�� and will be applied in x��
Lemma ����� The size of the �&i shrinks relative to their distance to ���

diamL
�&i

distL� �&i� ���
� �� as i�� �����

Where diamL and distL are measured in any uniformizing chart � � L� C�

Remarks� �� Clearly the ratio in ����� does not depend on the choice of uni

formizing map �� �� The result is still valid if we take all components �Di with some
uniform bound on their branching over D�

Proof� Clearly we can assume that �� is �xed� Note then that the �&i escape to
in�nity in L �that is� eventually don	t intersect any given leaf
compact subset in
L�� since they have disjoint collars �Di n �&i of de�nite modulus�

Let �U  L be a leafwise neighborhood of �� such that cl �U  �f �U � and �f �U is
univalently projected down onto U   C� Let ni be the �rst positive integer such
that �f�ni �&i  �U � As &i escape to in�nity in L� ni goes to ��

The disks � �f�ni� �&i� are univalent pullbacks of & which are not contained in
a rotation domain� so by the Shrinking lemma their �spherical� diameters go to �
as i � �� As �j �U has bounded distortion �from the a�ne structure on �U to the
spherical structure on U�� we have

diamL� �f
�ni �&i�

distL� �f�ni �&i� ���
� � as i���

But since �f preserves the a�ne structure on L� the ratio in the last equation is
equal to the ratio in ������

�� Post�critically finite maps�

The a�ne leaf space Anf which we have constructed so far is not� in general�
a lamination� The missing ingredients are both topological � the lack of a local
product structure � and geometric � non
continuity of the a�ne structures in the
transverse direction� even where there is a product structure� As we shall see� these
two problems are related�

In this section we will give an explicit rearrangement ofAnf � a change of topology
and the addition of new leaves � in the special case of post
critically �nite rational
maps� This should serve as a motivating example� an indication of the kind of
structure that arises� and a demonstration of how orbifold leaves appear in a natural
way�

In x�� we will give a completely general construction of an a�ne orbifold lam

ination for any rational map� emerging naturally from the a�ne group action on
a space of meromorphic functions� Thus one could read that section without �rst
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reading this one� but the reader may �nd that the explicit examples given here help
to illuminate the more abstract approach�

We will �rst construct the orbifold lamination topologically� and then discuss
continuity of a�ne structures�

���� Topological orbifold lamination� To �x ideas� assume for the moment
that f is a post
critically �nite quadratic polynomial� and moreover that the critical
point is actually pre
�xed� there is a �xed point � such that f lc � � for some l  ��
�We will discuss the general postcritically �nite case in x����� It is standard that �
is a repelling �xed point �see discussion at the end of the section��

As usual� let �� � f�� �� � � � g denote the invariant lift of � toNf � and let L � L����

denote the �f 
invariant leaf of �� in Nf �
Recall that Anf and Rf are both equal to Nf n �� �Lemma ����� Our orbifold

lamination Af will consist of Anf � with the leaf L replaced by two copies named Lr

and Ls� The topology ��� and orbifold structure� is described as follows�
Let q � Af � Rf be the map that re
identi�es Lr and Ls� Let us consider the

pull
back topology q���n� where �n is the natural topology of R as a subset of N �
Note that �f is naturally lifted to a homeomorphism �f of Af with this topology�
However the pull
back topology is not Hausdor� since it does not separate the leaves
Lr and Ls� The actual topology �� will be the minimal strengthening of the pullback
topology q���n� which separates these leaves� keeps �f as a homeomorphism� and
gives Af the structure of an orbifold lamination�

Let �z � �z�� z��� � � � � � Nf �D be a topological disk containing z� and at most one
postcritical point fkc� � � k � l� and let N be an natural number� Let B�D� �z�N�
and B�D� z�� � ���D � B�D� �z� �� be the �n box neighborhoods de�ned as in ������
and recall that D�� D��� � � � are the pullbacks of D along �z�

If D�N does not intersect the postcritical set then B�D� �z�N� has a natural
product structure T �D�N � Moreover� the projection � � B�D� �z�N�� D is either
univalent or two
to
one branched covering on all leaves� The latter occurs when
D contains a postcritical point fkc� and then this point is the projection of the
branched point on any leaf�

This situation always occurs if �z �� ��� and N is su�ciently high� It is more
complicated for �z � ��� In this case some of the leaves are univalent and some are
branched� so that B�D� ���N� does not have a natural box structure�

Let us call a backward orbit �z with z� � � singular if it contains c �i�e� it is a
branch point of ��� and regular if it does not contain c� and is not equal to ���

Given a topological disk D � � �not containing other postcritical points�� let
Br�D� ���N� consist of the union of local leaves in B�D� ���N� containing regular
orbits� and Bs�D� ���N� be the union of local leaves containing singular orbits�
These are disjoint open sets in Nf with a natural product structure� Moreover�

together with the local leaf �D � �D���� containing the �xed point ��� they make up
all of B�D� ���N�� We set B��D� � B��D� ��� ��� where � stands for r or s�

Given a set X  Nf � let �X  Af denote q��X � Let also �D� denote the

component of q��� �D� lying in the corresponding leaf L�� The similar meaning is
given to a point �z� � �D� corresponding to �z � �D�

Let

Q��D� ���N� � �B��D� ���N� � eD� and Q��D� � Q��D� ��� ��� �����
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These sets are going to be neighborhood bases for points ����
Let us now de�ne the topology �� as the minimal strengthening of the pull
back

topology q���n for which the sets �fn�Q��D�� are open for all n � ��

Lemma ���� With the new topology Af is an orbifold lamination with one singular

point ��s� The projection q � Af � Nf is continuous and �f acts homeomorphically�

Proof� Given a �z � �D and a topological disk &  D containing z�� let

Q��&� �z�N� � Q��D� � �B�&� �z�N�� �����

When �z � ��� we go back to the sets Q��D� ���N� introduced above�
Let �B be the family of all sets �B�&� �z�N� for �z � Rf and any disk & � z�� Let

Q be the family of sets Q��&� �z�N�� where �z � �D� and &  D contains z�� Let
T � �B �Sn��

�fnQ� We claim that T is a neighborhood basis for the topology ���
All elements of T are open in ��� by de�nition� We need to check that� for any

U� V in T and x � U � V there is some W � T such that x � W  U � V �
Clearly the sets �B�&� �z�N� form a basis for the pullback topology q���n� Also�

restricting & or increasing N without changing other parameters clearly makes a
set from T smaller� Taking additionally into account ������ we conclude that it is
enough to check the case when U � �fmQ��D� and V � �fnQ��D� �Here � and �
are independently either r or s�� By pulling back� we may assume that m � ��

Assume that x does not belong to the local leaf �D� of ��� in Q��D�� Note that
' � Q��D� n �D� is open in the pullback topology� Hence �f�n' contains a basic
X � �f�nx of family �B� By ����� Q��D� �X � Q� Thus �fn�Q��D� �X� � T is a
desired set W �

Assume now that x � �D�� We can select the basis of disks D in such a way that
�f �D� over�ows �D�� Then �f�nx � �D�� and hence � � �� Moreover� the component
X of Q��D� � �f�nQ��D� containing �f�nx is just Q��D� ��� n�� a set of family Q�
Now the desired statement follows�

It is clear that Af is Hausdor� � the doubled points have separating neigh

borhoods� by the construction� Note that� away from the postcritical points� the
topology has been changed only in the �ber direction� where a dense set of �bers
has been doubled�

Let us now check that �f � Af � Af is a homeomorphism� Obviously �f�� is

continuous� To verify that �f is continuous� it is enough to check that �f��Q��D�
are open� Let f��D � D� �D� where D� � � while D� � f l��c� Then

�f��Q��D� � Q��D�� � B�D�� f
l��c��

Finally let us check that all sets of the basis T are orbifold boxes� Indeed� all sets
B�D� �z�N� � D�T are regular lamination boxes� Hence the sets �B�D� �z�N� � D�
�T are also regular boxes with �T obtained from T by doubling points coresponding
to the leaf L�

The sets Qr�D� ���N� are also regular boxes D�T with the transversal T consist

ing of all backward orbits �� � � � � �� � � � �at least N �	s� which never pass through
c�

Let us now consider the set K of singular backward orbits �� � � � � �� � � � �at least
N �	s� together with the point a �  � �in the natural extension topology�� Then



LAMINATIONS IN HOLOMORPHIC DYNAMICS ��

Qs�D� ���N� is homeomorphic to the orbifold box with transversal �K� a� described
in Example ����

Finally if �z �� �� and D �� � then the sets Q��D� �z�N� are regular boxes with the
same transversal K�

Thus Af is indeed an orbifold lamination�

���� Orbifold a�ne structure� By Corollary ��� all leaves of the lamination Af

are parabolic� Let us supply all leaves except Ls with their unique a�ne structure�
As to the leaf Ls� let us consider a branched double covering p � (s � Ls with
a single branched point over ��s� Then (s is a parabolic plane which hence has a
unique a�ne structure� Pushing this structure down to Ls we obtain an orbifold
a�ne structure on Ls with one singular point at ��s�

There is no ambiguity in the above construction as the double covering p is
uniquely de�ned up to pre
 and post
compositions with a�ne maps� So after ap

propriate selection of the a�ne coordinates z and 	 on Ls and (s correspondingly�
p just becomes the quadratic map z � 	�� But z is a linearizing coordinate on the
leaf Ls �see x����� Thus the orbifold a�ne coordinate 	 on Ls can be viewed as the
square root of the linearizing coordinate�

Let SN denote the family of a�ne structures on the leaves of Anf � and SL denote
the family of orbifold a�ne structures on the leaves of Af � Let us also consider the
pullback a�ne structures q��SN on the leaves of Af � They coincide with SL on all
leaves except the singular leaf Ls�

Lemma ���� The orbifold a�ne structures SL on the leaves of Af make it an
a�ne orbifold lamination�

Proof� We need to check that the a�ne structure depends continuously on the leaf�
We will use the box basis of Af described above and the explicit formula for the
a�ne coordinates of x����

Take an x � Af with qx � �z � �z�� z��� � � � � � Nf � Let us �rst assume that �z
does not lie on the invariant leaf L � L����� Then there is a subsequence z�n�k�
staying distance at least an �  � from the postcritical set�

Take now a neighborhood D � z� containing at most one point of the postcritical
set� Let D�k denote the pullback of D along �z� Let us consider boxes Bn �
B�D� �z� n�� Take a big k and let �	 � Bn�k�� By Lemma ��� the a�ne structure on

the leaf �D��	� of such a box is given by rescaling ��m � �� �f�m and passing to limit�
But for m  n�k�� ��m � f��m�n�k�� � ��n�k� for an appropriate branch of the

inverse function� Since diam�D�n� is small for n su�ciently big� and f��m�n�k��

allows analytic extension in the � neighborhood of z�n�k�� by the Koebe Distortion

Theorem it is almost linear on D�n�k� uniformly in �	� It follows that the variation
of the a�ne structure on the leaves of Bn�k� is small� provided k is su�ciently big�

Hence the variation of the pullback structure q��SN on the leaves of the box
�Bn�k� � �B�D� �z� n�k�� is also small for big k� Thus the variation of the structure

SL on all regular leaves of �Bn�k� is small as well�

Let now y � �Bn�k� � �Ls� and �Ds�y� be the singular local leaf of y in �Bn�k�� Let

� � ��Ls� ��� � �C� �� be a regular uniformization of �Ls� Then according to the
discussion preceeding this lemma� an orbifold a�ne chart on �Ds�y� is given by

p
��

But the image �� �Ds�y�� escapes to� in C when y � x� Moreover� by Lemma ����
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its size relative to the distance to the origin is vanishing� Hence the non
linearity
of the square root map on this set goes to zero� Thus the a�ne structure SL on
�Ds�y� is close the pullback structure q��SN on this local leaf� Consequently� it is
close to the a�ne structure on the leaf �D�x� when y is close enough ot x� We are
done with the case when �z �� L�

Let now �z � L� so that x � �L� for � � r or � � s� We wish to check that
the a�ne structures SL on leaves �&�y� of a box fnQ��&� �z�N� de�ned by �����
approach the a�ne structure on �&�x�� By pulling back and enlarging the box� we
see that it is enough to check this for x � ��� and boxes Q��D� de�ned in ������

Let �rst x � ��r � Let us consider a regular orbit

�	 � ��� � � � � �� 	��N���� � � � � � Br�D� ���N��

Then the inverse branches of f��n�N� � �D�N � �� � �D�n� 	�n� along �	 allow
a uniform �  �
enlargement� and hence have small non
linearity for big N � It
follows that the a�ne structure SN on the local leaf �D��	� is close to the regular
a�ne structure on �Dr���� �given by the linearizing coordinate near ��� Now we
can pass to the orbifold structures on Qr�D� in the same way as in the above case
�z �� L�

Finally let x � ��s� Let us now consider a singular orbit

�	 � ��� � � � � �� 	��N���� � � � � 	�n � c� � � � � � Bs�D� ���N��

where n � N � l� Then for su�ciently big N the rescaled branch f��n��� � D �
D��n��� � fc is close to the linearizing coordinate near �� The next inverse branch
f�� � D��n��� � D�n is almost the square root map �since D�n is small�� while
all further inverse iterates are almost linear on D�n� It follows that the a�ne
coordinate on the local leaf �Ds��	� is close to the square root of the linesrizing
coordinate� which is exactly the orbifold a�ne coordinate on �Ds�����

Now we again can pass from the box Bs�D� to Qs�D� in the same way as
above�

���� General post	critically 
nite construction� Let f be an arbitrary post

critically �nite map� If a critical point lands in a cycle then the cycle is either
repelling or super
attracting �contains a periodic critical point� � see e�g� ��� Thms�
�������� Prop� ������ In the latter case this cycle is omitted from Rf � Thus we need
only consider repelling cycles� It also follows that there is a uniform bound on the
branching index of � at all points in Rf � since a backward orbit in Rf can only hit
the critical set a bounded number of times� Given a postcritical repelling periodic
point �� let us consider all occurring branching indices � � d���� � � � � � dl������
of the leaves over ��

A general construction of the orbifold lamination for a post
critically �nite map
has the following di�erences as compared with the previous particular case�

� Make l��� copies of the post
critical periodic leaf L�����
� Supply these copies with orbifold structures of degrees di����
� Organize the leaves of the lamination over �� into the boxes according to
their branching indices and then compactify them by adding the corre

sponding orbifold leaves� These boxes will be open in the new topology�



LAMINATIONS IN HOLOMORPHIC DYNAMICS �	

���� Structure of the Chebyshev and Latt�es laminations� Let us consider
the quadratic Chebyshev polynomial p � z �� �z���� J�p� � ��� ��� Let T �z� � z��
and ��z� � ����z � ��z�� Then � � T � p � �� so that p is conformally equivalent
to T on the quotient space of C� by the involution � � z �� ��z�

Then the natural extension Np is the quotient of the natural extension NT mod

ulo the involution �� � �z�� z��� � � � � �� ��z�� �z��� � � � �� The only invariant leaf of
this involution is the invariant leaf L � L���� of �p� Since AnT � RT is a regular a�ne
lamination� we obtain a natural orbifold a�ne lamination structure on Anp �with
one singular leaf L�� The orbifold lamination Ap constructed above is obtained
from this one by adding an isolated copy of L �with regular a�ne structure��

The situation for the higher degree Chebyshev polynomials is completely analo

gous�

Similarly� the regular leaf associated with the post
critical �xed point of a Latt!es
map is isolated� Proposition ���� shows that these are the only postcritically �nite
maps with isolated leaves �see Proposition ��� for a more general statement�� After
removing this leaf� the lamination becomes the quotient of the �torus solenoid�
�that is� the natural extension of the torus endomorphism� modulo an involution�

�� Hyperbolic ��laminations�

���� A�ne extensions in the abstract� In this section� let us forget the speci�c
construction of Section � and take an �axiomatic� approach to what we call a�ne
extensions� The general construction of Section � will yield objects of this type�

Let f �  C�  C be a rational map� An a�ne extension of f is an a�ne �orbifold�

�
lamination A with simply connected leaves� together with a homeomorphism �f �
A � A� acting by conformal automorphisms on leaves� and a projection � � A �  C�
such that

��� f � � � � � �f
��� � is continuous� and restricted to any leaf is non
constant and complex


analytic�

Condition ��� immediately implies that � factors through a map p � A � Nf � given
by

p�z� � ���z�� � �f���z�� � �f���z�� � � � ��

Let �k � � � �fk� as usual�
In fact p is continous by ���� and we immediately see that p�A� is contained

in Rf � on any leaf L� � factors through fn for any n  � and so the pullbacks

� � �f�n�U� for any disk U  L with compact closure are eventually unbranched�
Thus p restricted to each leaf is a complex analytic map to a leaf of Rf � and we
further conclude that the leaf must be parabolic� Hence p � A � Anf �

The construction in x� yields just such an object� and as in that case the map
p need not be injective� it re
identi�es the leaves which we separated in our con

struction�

���� Extending to three dimensions� Even before we consider the action on
A we can associate to it a naturally de�ned H�
lamination H� by attaching a copy
of hyperbolic �
space� realized as its upper half
space model� to �a �nite cover of�
every leaf� Since transition maps for a�ne charts on the leaves of A are a�ne� they
extend naturally to isometries on the hyperbolic �
spaces�
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In particular given two a�ne charts �� �� � C� L� the corresponding transition
map from H� to H� multiplies heights by the norm of the derivative of ��� � ���
Thus we can consider a copy ofH� for each chart �� and de�ne the leaf HL attached
to L as the identi�cation of all these copies via the transition maps� However� we
prefer to make the following de�nition� which will be easier to work with�

Consider the group A� of complex
a�ne maps A � C � C �henceforth just
�a�ne��� We can identify the complex plane C and the hyperbolic space H� �
C � ����� �with a preferred point at �� as homogeneous spaces for A�� namely
C 
� A� �C� and H� 
� A� �S�� In other words� consider the projections p� �
A� � C and p� � A� � H� given by

p� � g �� g��� � C �����

and

p� � g �� g��� �� � �g���� jg�j� � H�� �����

Fibres of p� are orbits of the right action of the subgroup C� � Fix���  A�� that
is fz �� �z � � �� �g� Fibres of p� are orbits of the right action of S�� that is the
group fz �� �z � j�j � �g� The left
action of A� on itself projects to complex
a�ne
maps on C� and to hyperbolic isometries on H��

Now suppose �rst that A has no orbifold leaves� and for a leaf L consider the
set f� � C � Lg of a�ne isomorphisms ��charts�� from C to L� which admits a
�xed
point
free right
action by A�� We may identify L with f�g�C� by taking �
to ����� The space f�g�S� is naturally identi�ed with H� as above� and we call
this the hyperbolic leaf HL associated to L�

Thus� the total space H may be de�ned as f� � C � Ag�S�� where the maps
� vary over all charts for leaves of A� This clearly inherits the structure of a
hyperbolic �
lamination� We will usually write �� for an equivalence class of charts
modulo rotation in S��

The same construction works for the orbifold leaves� with the charts replaced
by �nite coverings� Thus an orbifold a�ne �
lamination extends to a hyperbolic
�
orbifold lamination�

One should think of a chart � � C � L as determining a point and a choice of
scale for the leaf L� Changes of scale correspond to vertical motion in the upper half

space model� Indeed� let eR denote the subgroup of C� acting by scaling without
rotation� The R
action induced on A by the right
multiplication r � �� �� � � er�
is simply the vertical geodesic �ow in each leaf� where r measures arclength and
increasing r corresponds to increasing heights in each leaf �as is evident from ������

Finally� we remark that this extension of an orbifold a�ne lamination to an
orbifold H�
lamination is unique� in the sense that if H� is another orbifold H�

lamination with a projection H� � A such that on each leaf� �bres of points are
geodesics with a common endpoint at in�nity� then H and H� are related by an
isomorphism �xing A�
���� Proper discontinuity of actions� The action �f on A �even without assum

ing that it projects to a rational map� extends naturally to an action� which we

also call �f � on H by hyperbolic isometries� namely

�f � �� ��  �f � ��� �����
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It is useful to note that we now have two commuting actions on A� a Z
action
generated by �f on the left� and an R
action� the vertical geodesic �ow� generated
by eR on the right� These actions have a certain coherence� forward iterates of
�f tend to increase heights� as a result of the general expansive properties of the
rational map f � Let us make this precise with the following statement�

Lemma ���� Let �A� �f� �� be an a�ne extension of a rational map f  and let H
be the hyperbolic ��lamination associated to A� For any two points p� q � H there
are neighborhoods Up� Uq for which the following holds� if ni� ri are sequences such
that

� �fni � Up� � �Uq � eri� �� �
then ni � �� if and only if ri � �� and ni � �� if and only if ri � ���

In other words� whenever high forward"backward iterate of z � Up is comparable
with � � Uq in the sense that these points lie on the same vertical geodesic� the
former point is much higher"lower than the latter�

Proof� Represent p by a chart � � C� A and q by a chart � � C� A� Recall that
� � � is analytic� and hence its image misses at most two points in  C� Thus there
exists an open set W which meets the Julia set Jf � and a disk D  C around �
such that W  � � ��D�� Let Up be small enough that for any ��� � Up� ���

��D��
contains W � This is possible since � is continuous in A� In addition choose Up
small enough that there is some upper bound on the degree of � � �� in D �here by
�degree� we mean the maximal degree over any point in the image��

Now we can see that � � �fn � ���D� will tend to blow up as n � �� and down
�in diameter� as n � ��� Indeed� there is some n� such that fn�W � contains all
of Jf for n  n�� and as n�� the degree of fn on W increases without bound �

hence the same is true for � � �fn � �� on D� for any ��� � Up�

To see what happens to � � �f�n � ���D� � ��n��
��D�� as n � �� we may

invoke the Shrinking Lemma given in the appendix� once we observe two things�
��� the degree of fn on ��n�

��D� is bounded by the degree of � on ���D�� and
hence uniformly over Up� ��� Since every leaf of A is a�ne� ��n�

��D� is eventually
outside the closure of the rotation domains� so that diam���n�

��D��� � as n���
uniformly for all ��� � Up�

Now let us choose Uq such that for ��� � Uq the degree of ���� on D is uniformly

bounded� Suppose that we have �fni ���i � ��i � eri in A for ��i� � Up and ��i� � Uq�
Then if ni �� then ri �� as well� so that the degree of � ���i on eri�D� can go
to in�nity� Conversely� suppose that ni � ��� Then the above Shrinking Lemma
argument implies that diam� ���i�eriD�� �� and so ri must go to ��� The other
two implications are similar�

Recall that a group action on a space X is proper if� for any two points p� q � X �
there exist neighborhoods U � p and V � q so that the subset of group elements g
such that gU�V �� � has compact closure in the group� If the group has the discrete
topology this set must be �nite� and we say the action is properly discontinuous�

A consequence of the Shrinking Lemma� as used in Lemma ���� is the following
central fact�
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Proposition ���� Let �A� �f� �� be an a�ne extension of a rational map f  and

let H be the hyperbolic ��lamination associated to A� The induced action of �f on
H is properly discontinuous� Similarly the vertical geodesic �ow on H is a proper
R�action�

Proof� Given p and q in H� choose Up and Uq as in lemma ���� Then in particular

� �fn � Up� � Uq � � for all but �nitely many n� Geometrically� we say that forward
iterates of Up cannot continue to intersect Uq � since their heights are going to in�nity
whenever comparison is possible�

Similarly� Up � �Uq � er� � � for all but a bounded set of r�

At this moment we can conclude that the quotient H� �f is a Hausdor� space
which inherits the structure of the hyperbolic orbifold �
lamination� On the other
hand� the quotient via the �ow action recovers the a�ne lamination A� This duality
between H� �f and A will be useful in what follows �see Proposition �����

���� Convex Hulls� In analogy with the situation in Kleinian groups� we denote
by C�J � the convex hull in H of the lift J � ����J� of the Julia set to A� This is
simply the union of the convex hulls of �J � L� � f�g in HL for every leaf HL of

H bounded by a leaf L of A� The quotient C�J �� �f can be called the convex core

of Hf� �f �

Using lemma ���� we can obtain the following� Let C� denote the leafwise �

neighborhood of C�J ��

Corollary ���� For �  � C� inherits the structure of a ��lamination with bound�
ary� In fact C� is homeomorphic to H �F� �f  where �C� is taken to the �boundary

at in�nity� F� �f �
Except when the Julia set of f is smooth the above holds for � � � and we

note also that �C inherits a metric from Hf which makes it into a hyperbolic ��
lamination�

Proof� Since Jf is the pullback of Jf by � and � varies continuously in the trans

verse direction� for any product box T � D� if T is su�ciently small then the
intersections of Jf with the local leaves ftg � D are close to each other in the
Hausdor� topology in D� The same applies to the �nite covers of orbifold boxes�
and hence for any �large� closed disk on a leaf we can take a small transversal
neighborhood so that the Julia sets vary only slightly in the Hausdor� topology�

It follows� applying lemma ���� from the appendix� that for any point x in
the H� leaf bounded by L �or its �nite cover in the orbifold case� there is a box
neighborhood in H which C�� up to bilipschitz homeomorphism� intersects in a set
of the form T �C� Here C is the intersection with a leafwise neighborhood of x of
the leafwise convex hull�

The homeomorphism from C� to H�F� �f comes directly from the leafwise home

omorphism discussed in section ����� The case where Jf is smooth corresponds
exactly to the case where J � L is contained in a straight line in L �again� the
shrinking lemma�� and this is the only case where the discussion fails for � � ��
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The z��� case� The simplest possible quadratic polynomial is f�z� � z��� where
� is small �more precisely� let � lie in the main cardioid of the Mandelbrot set� so
that f has one attracting �xed point�� In this case J is a quasi
circle� the Fatou
domain lifts to two components in Rf � each of which has quotient homeomorphic
to Sullivan	s solenoidal Riemann surface lamination S �see Appendix ��� and in fact
Rf is already an a�ne lamination �lemma �����

In each leaf� J is a quasi
line separating the plane in two� where one component
projects to the outside and one to the inside of J in C� We claim that the convex
core C is �for � �� �� simply a product S � �� ��� This makes concrete the analogy
between z� � � and a quasi
Fuchsian group�

To prove this� or the equivalent fact that H�F� �f 
� S��� ��� make the following
leafwise construction� Let H be a leaf of H bounded by L� Foliate each component
D of F � L by Poincar�e geodesics coming from in�nity in L �vertical geodesics
in the upper half
plane uniformization�� Above each such ray r lies a �curtain�
in H � bounded by the vertical line above the point r � J � Let l be the union of
two rays on opposite sides meeting at J � The curtain above l is� in the induced
metric� isometric to H�� and the vertical line v above l � J is a geodesic� Use the
orthogonal projection to v in this surface to de�ne a product structure� This varies
continuously with the lines l in L� and varies continuously in the transverse direction
of the lamination� Thus it gives a product structure for the entire lamination� which
is also preserved by �f � since it is clearly a�nely invariant�

Note in particular that the convex core is compact� In section � we will discuss
this phenomenon more generally�

���� The scenery �ow� In Bedford
Fisher
Urbanski �� a construction called the
�scenery �ow� is discussed� which is related to the constructions of this paper� in
the case of an axiom A rational map f �

The scenery �ow is� roughly� the set of all �pictures� of the Julia set at small
scales� That is� one considers all �complex� a�ne rescalings �and rotations� of
J in C and takes limits in the Hausdor� topology� The resulting collection of
subsets of C is indexed by backward orbits of f � using the linearization formula
������ for each backward orbit �z we consider the Hausdor� limit J��z� of the sets
Jn � An�J� where A�z� � �fn���z�n��z � z�n�� The natural action of f on such a

set is �f�J��z�� � J� �f��z�� � f ��z�� � J��z�� The �ow on the set of pictures is de�ned
by J��z� �� etJ��z��

Translating this into our terminology� given �z � J a point in H lying above
�z can be written as �� where � � C � L��z� is a chart such that ���� � �z� The
corresponding picture J��z� is given by ����J �L��z��� and the scaling �ow is exactly
the vertical geodesic �ow �this interpretation of rescaling as geodesic �ow was part
of the original motivation for ��� � Thus the scenery �ow is taken to the �curtain�
above the lift of the Julia set�

�� Universal orbifold laminations

In this section we introduce the machinery for a general construction of an a�ne
orbifold �
lamination and accompanying hyperbolic orbifold �
lamination� for any
rational map�

In the original construction we were faced with the following issue� A small disk
D in the a�ne part could be approached �in Nf � by a sequence of disks Di in
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such a way that the projections � on Di do not converge in any sensible way to
the projection on D� For example there could be branching on the Di whereas D
projects univalently� We resolved this in the post
critically �nite case by creating
new leaves and rede�ning the topology so as to sort out the di�erent branching
possibilities�

From the point of view of this section� the projection maps themselves from
the a�ne leaves to the sphere will be the basic objects� so that the topology will
automatically include convergence of the maps� Thus we will consider a space of
meromorphic functions� with an associated action by a�ne transformations of the
domain which gives rise to a leaf structure �that is� we can think of a leaf as a
set of choices of basepoint for a meromorphic function� with precomposition with
a�ne maps giving the change of basepoint�� This will be our �universal� orbifold
foliation� and any rational map will act naturally on it and give rise to an invariant
lamination in which our original a�ne space Anf will be a subset� The new topology

A�
f is induced from this space� and a �nal closure step will yield the added leaves�

���� Leaves of the a�ne action in the Universal space� Let �U denote the
space of meromorphic functions on C� with the topology of uniform convergence on
compact sets� and U denote the open subset of non
constant functions� Since �U is a
complex vector space� U can be viewed as an in�nitely dimensional complex analytic
manifold �anlyticity amounts to analytic dependence on Taylor coe�ecients��

The space U admits two natural commuting analytic actions� a left�action � ��
f � � by the semigroup of rational maps f �  C�  C� and a right�action � �� � �A
by the group A� of complex
a�ne maps A � C� C�

Let us �rst consider the structure of the individual orbits � � A� of the right

action of A� on U � and later show that they �t together into a foliation� On each
orbit we place the leafwise topology� in which open neighborhoods are sets of the
form u � V where u � U and V is an open set in A�� Note that this may be a
stronger topology �more open sets� than the induced topology from U � since a leaf
may accumulate on itself in U �

The map A� � � � A� is locally non
singular � that is� the derivative map
D	 � Tid�A��� T	�U� is non
singular� as one may check by explicit computation�

Note that the tangent space T	�U� can be identi�ed with the space �U � It follows
that� for h su�ciently close to but not equal to the identity� � � h �� �� Thus the
isotropy subgroup %	 � f� � A� � � � � � �g is discrete in A�� We may therefore
make the identi�cation

� �A� 
� %	nA� �
which is a homeomorphism if � � A� is taken with the leafwise topology� �The
quotient is on the left since A� acts on the right� so that ��g � ��h �� g � ��h
for � � %	��

Note also that %	 must in fact consist of isometries of C since a non
constant
meromorphic function cannot be invariant under a dilation�

Now as in Section �� we may think of C and H� as the quotients C 
� A� �C�
and H� 
� A� �S�� with associated left
action of A��

Since right and left actions commute� we may form the quotients

Laff ��� � � �A� �C� 
� %	nA� �C� 
� %	nC�



LAMINATIONS IN HOLOMORPHIC DYNAMICS ��

which is a Euclidean �
orbifold� and

Lhyp��� � � �A� �S� 
� %	nA� �S� 
� %	nH��

which is a hyperbolic �
orbifold� Note that the singularities� always arising from
rotations in %	� are cone axes�

The natural projection Lhyp��� � Laff ��� is a one
dimensional �ber boundle
whose leaves are the orbits of the vertical �ow Vr � � � � � er �this �ow is well

de�ned since C� is commutative��

As an example� consider ��z� � zm� so that %	 is the cyclic group generated by
� � z �� e�
i�mz� The leaf � �A� �C� is then the orbifold h�inC with one order m
cone point� More interesting examples are Chebyshev polynomials associated with
trigonometric functions and Latt!es maps associated with elliptic functions�

A local �orbifold� a�ne chart on a leaf Laff ��� near � is given by translations
t �� ��z � t�� where t � C is small� In these coordinates the map f � Laff ��� �
Laff �f � �� becomes the identity� Thus f is a�ne on the leaves� Hence it is
automatically a covering�

Similar statements are valid for the hyperbolic leaves of Lhyp���� with local
charts �t� er� �� ��erz � t��

���� Foliation structure� With this point of view on individual leaves� let us
consider how they �t together into the total space U � and its quotients�

Lemma ���� The A� action supplies the space U with an analytic foliation with
complex two dimensional leaves�

Proof� This is a generality about any non
singular analytic Lie group action� How

ever� rather than using deep Implicit Function Theorems �see ����� we can check
the statement directly�

Let � � U � Without loss of generality we can assume that ����� �� �� Let

T � f� � U � ���� � ����$ ����� � �����g�
We will show that T is a local transversal to the action of A�� Indeed take a � � U
near � and a � � A� near id� ��z� � az� b� The condition that � � � � T amounts
to the following system of two equations for a and b�

��b� � ����� a���b� � ������ �����

If � is close to � then the �rst equation has a unique root b near � by the Hurwitz
theorem� Then the second equation has a unique root a near ��

It follows that the A� action has a local product structure near � given by the
map T � A� � U � ��� �� �� � � � near ��� id�� This structure is analytic since
this map is� The inverse map is also analytic as the solutions of ����� analytically
depend on the Taylor coe�cients of � �by the Implicit Function Theorem��

Now we may form the quotients Ua � U�C� and Uh � U�S�� and we claim that
they are orbifold �
 and �
foliations� respectively�

This follows from the following general fact� Suppose L is a lamination with
�nite
dimensional smooth leaves and a Lie group G acts on L �say from the right�
preserving leaves� We call the action smooth if its leafwise derivative exists� and is
continuous in L �in the transverse direction as well��
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Lemma ���� Let L be a lamination with �nite�dimensional leaves admitting a
nonsingular proper smooth action by a Lie group G� Then L�G is an orbifold
lamination where the leaves have dimension equal to the codimension of G�orbits
in the leaves of L� If L is actually an analytic foliation and the action of G is
anlytic then L�G is an analytic orbifold foliation as well�

Proof� Note �rst that the properness of the action ensures that the quotient L�G
is Hausdor��

Let now p � B  U where B is a product box B � T � V � with V a leafwise
neighborhood� Write p � �t� v� � B� Then because the G
action is smooth and
non
singular� we can �nd a continuous family of transversals Ks to the G
orbits in
each local leaf fsg � V � The union K is a transversal to the G action� which itself
has a product box structure�

The subgroup Gp �xing p is discrete by the non
singularity assumption� and is
�nite by the properness assumption� We now get a ��rst return� action of Gp on
a small enough neighborhood of p in the transversal K� and the quotient of this
neighborhood by this action is our orbifold box in the quotient L�G� To see this�
note that if K � is a su�ciently small neighborhood of p in K then for any q � K �

and g � Gp� qg is in the original neighborhood B� and hence can be uniquely pushed
toK along its G
orbit in B� Thus each element of Gp induces a mapK � � K �xing
p and altogether we obtain a �nite group action on the union of images of K ��

Finally� it is obvious that if the lamination L and the action of G have some
transversal regularity �e�g�� analytic�� then the quotient lamination inherits it�

Let us summarize the above discussion�

Corollary ���� The quotient Uh � U�S� is a hyperbolic orbifold ��foliation The
quotient Ua � U�C� is an a�ne orbifold ��foliation and the projection Uh � Ua
is a �ber bundle� On the leaves of Uh it is identi�ed with the vertical projection in
each half�space to the bounding plane�

Remark� The projection U � Uh is similar to a Seifert �bration� A function
admitting rotational symmetries around � gives rise to a singular �ber� its S�

orbit is �nitely covered by the S� action� whereas for nearby functions without the
symmetry the orbit is an injective image of S�� However� note that singular �bers
are not isolated� as they are in Seifert
�bred three
manifolds�

Proof� To apply Lemma ��� we need to check that the actions of C� and S� are
proper� For S� this is clear since it is compact� For C� we just have to consider the
vertical �ow � �� � � er� r � R �as in Section ��� But it is easy to see that as r goes
to �� � � er diverges in U � it becomes a constant in one direction� and blows up
at every point in the other� In fact for a small enough neighborhoods U � � and
V � � there is a �xed R so that for jrj  R the rescaling u � er is outside V for any
u � U � This proves that C� acts properly�

Note �nally the local a�ne charts are transversally analytic� so that we obtain
an a�ne foliation� Indeed taking an analytic transversal K to the foliation Ua� the
map ��� t� �� ��z � t�� where � � K� t � C is small� provides us with an orbifold
a�ne box� Similarly� the hyperbolic structure on Uh is transversally analytic�
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We remark that it is easy to see that U is metrizable� and in fact one can give it
a complete metric which is invariant under the right C�
action� However� we shall
not need this explicitly�

���� Characteristic laminations� Now given a rational map f �  C �  C� we
extract from our universal space U the characteristic orbifold laminations for f �
First consider the �global attractor�

Kf � K �
�
n��

fn�U�

which is the maximal invariant subset for which f � K � K is surjective� Note also
that K is naturally a sublamination since it is leafwise saturated�

Let us show that K is closed in U � It is enough to check that for any rational
map g� g�U� is closed� Let g � �n � �� Then f�ng is a normal family� Indeed�
given any point a � C� consider two neighborhoods U c V � a� Then eventually
for all n� �n�V �  g�� ���U�� Take U so small that the complement of g�� ���U�
has non
empty interior� By Montel	s Theorem� the family f�ng is normal on V � As
normality is a local property� f�ng is normal� Let � � C�  C be any limit function�
Then � � g � �� and we are done�

It is not necessarily true that f jK is injective �see remark below�� Thus we take
the natural extension� or inverse limit� of the system K 	

f
K 	

f
� � � � Call this new

system �f � �Kf � �Kf � Elements in �K � �Kf are simply sequences �� � f�n � Ugn��
such that �n�� � f � �n�

Note that �K is still naturally a leaf space� K is invariant under the right action
of A�� which then extends to �K via f�ng �A � f�n �Ag� so that the leaves project
down to cover leaves in K� We want to check that �K is in fact a lamination� i�e�
that there is a local product structure�

Lemma ���� �Kf is a lamination whose leaves are the right A��orbits� The pro�

jection from �Kf to Kf is a covering on leaves� Similarly �Kaf � �Kf�C� and
�Khf � �Kf�S

� are orbifold a�ne �� and hyperbolic ��laminations respectively�

Proof� Fix �� � f�ng in �K� We will describe the structure of a neighborhood of
�� as follows� Let D be some disk in C on which �� is univalent� and let D� be
compactly contained in D� Let U be an open neighborhood of �� in K for which
any u � U is univalent in D and takes D� into ���D�� Note that we may assume
U is a product neighborhood of the form T � V where V is a neighborhood of the
identity in A��

The preimage �U of U in �K consists of sequences �u � fung for which u� � U � For
any such �u� notice that� since u� � fn � u�n for any n � �� u�njD is univalent and
fn is univalent on u�n�D�� Thus the possibilities for pullback at the n
th stage
are enumerated by the inverse branches g�� � � � � gmn

of f�n which are univalent on
���D�� Once the branch gj is determined� u�n is determined uniquely by u��

Let # denote the set of all possible in�nite pullback sequences D � D�� D��� � � �
where f is univalent at each step� This is a closed subset of the set of all possible
pullback sequences for D� and hence a closed subset of a Cantor set�

Thus every point of �U can be uniquely described by a point in # � U � giving
u� and the sequence of pullbacks� The subset obtained is saturated in the leaf
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direction� since any composition u� � A for A � V can be pulled back along the
same sequence� Thus there is some subset Q  # � T so that we may identify �U
with Q� V � This is the desired product box�

The fact that �K�C� and �K�S� are orbifold laminations now follows by another
application of Lemma ����

Remark� We expect that in most cases the natural extension step is unnecessary$
that is� f is already injective on K� Counterexamples are maps with symmetry�
for example� the leaf of ���z� � ez in U�C� is a cylinder C���i� and if f�z� � zd

then f is a d
fold cover from this leaf to itself� It follows that the lift of this leaf to
�Kf�C� is a solenoidal Riemann surface lamination �in fact it is just the original Anf
in this case�� We conjecture that non
injectivity only happens when f or a power
of f has a M�obius symmetry�

���� Completion� There is an equivariant inclusion of Anf into our new object �Ka�
as follows� Let �z be a point on a leaf L of Anf � and let � � C� L be an isomorphism
such that ���� � �z� Then for n � �� �n � � is an element of K �compare x��� The
choice of � was determined only up to precomposition by C�� so that �z determines
a well
de�ned sequence in Ka� which gives an element ���z� � �Ka�

The map � takes leaves to leaves� since another element of L can be written as
��A���� with A � A�� � is injective� since at least one of the coordinates zn must
di�er for di�erent points on Anf �

On the other hand� �Ka is also an a�ne orbifold extension of f � in the sense of
Section ���� and hence there is also a continuous� equivariant projection p � �Ka �
Anf � That is� for any  ��� � f�n�g � �Ka� let p� ���� be the backward orbit f�n���g�

It is immediate from the de�nitions that p � � is the identity� but we note that
the opposite is false� since in fact p is not injective and hence � is not surjective�
Indeed� let g � C � C be any non
a�ne entire function and L a leaf of Anf with

chart � � C� L� Then the sequence f�n ���gg is on a leaf of �K�C� which projects
to L but is di�erent from ��L��

Note that the topology on Anf induced from �Ka is in general stronger than its
own topology� induced from Nf �so that the inclusion � is discontinuous�� This is
in fact the main point of the construction� Let A�

f denote ��Anf �� with the topology

induced from �Ka� We also think of Anf and A�
f as being the same underlying space�

with di�erent topologies� which we call �natural� and �laminar��

Our �nal step is to take the closure� in �Ka� of A�
f � obtaining automatically an

a�ne orbifold extension of f �in the sense of x�� which we call Af � We think of Af

as a completion of A�
f �

Going through the same construction replacing C�
action with S�
action� we
obtain the hyperbolic �D
extension Hf  �K�S� � �Kh� with the hyperbolic action

of �f �

Remark� The laminated spaceAf inherits from the universal space U the quality of
a metrizable separable space� Moreover� it has a natural uniform structure coming
from the linear structure of U � and complete with respect to it� However� Af may
presumably inherit from U also a bad fortune of not being locally compact�



LAMINATIONS IN HOLOMORPHIC DYNAMICS �	

���� Induced topology� Let us give a dynamical description of the new laminar
topology A�

f on the leaf space Anf �
By a local leaf Lloc��z� V � over a domain V   C containing ���z� we mean the

connected component of L��z� � ���V containing �z�

Proposition ���� A sequence �zn � A�
f converges to �	 � A�

f if and only if

�i� �zn � �	 in the natural topology and

�ii� For any N and a neighborhood V of 	�N  if the local leaf Lloc� �f
�N �	� V � is

univalent over V  then for su�ciently large n Lloc� �f
�N �zn� V � is univalent

over V as well�

We remark that convergence to a point in Af nA�
f is more subtle to characterize

in general� Proposition ��� does this in the post
critically non
recurrent case�

Proof� Assume �rst that conditions �i� and �ii� are satis�ed�

Represent �	 as a sequence �� � f�jg in �Kf � and each �zn as ��n � f�nj g� in
particular noting �j��� � 	j and �nj ��� � znj �

The statement that Lloc� �f
�N �	� V � is univalent over V is equivalent to saying

that ��N is univalent in the component of ���N �V � containing � �henceforth we say

���N is locally univalent over V ��� and similarly for �f�N �zn and �n�N �
Whenever� for some n�N� V � both ��N and �n�N are locally univalent over V �

there is a unique univalent map hn � W � C� where W is the component of ����N
containing �� satisfying ��N � �n�N � hn on W � Note that� applying f a �nite
number of times� we have

��j � �n�j � hn �����

on W for any j � N � Thus if we increase V or change N �but preserve the local
univalence�� we obtain hn equal to the original on the original domain� or in other

words hn is locally independent of N and V � Choose the normalization of each ��n

�mod C�� so that �hn����� � ��

Because �	 � A�
f � for any disk Dr around � there is some N�r� for which ��N

is univalent on Dr whenever N  N�r�� Let V � ��N�Dr�� For su�ciently large
n�r�� by �i� we have that �n�N ��� � zn�N � V � and by �ii� that �n�N is locally
univalent over V � Thus we have hn de�ned as above on Dr if n  n�r��

If we let xn be the preimage of zn�N in Dr by ��N �note that xn is independent
of N if N  N�r��� we note that hn�xn� � �� and by �i�� xn � � as n���

Thus� the sequence of functions hn now has these properties� �hn����� � ��
hn�xn� � � where limn�� xn � �� and hn is eventually de�ned on any compact
set in C� It is an application of the Koebe distortion lemma now to show that
hn converges to the identity on compact sets� and indeed that the image of hn

eventually contains any compact set in C so that �hn��� converges to the identity
on compact sets as well�

Applying ����� for any j� we conclude that �nj � �j on compact sets for all j�

Thus �zn � �	 in A�
f �

Conversely� let �zn � A�
f converge to �	 � A�

f � Assertion �i� is obvious$ it is just

the statement that p � �Kf � Anf is continuous� which we have already observed�
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For �ii�� let V be a neighborhood of 	�N such that Lloc� �f
�N �	� V � is univalent

over V � and let ��N � C �  C be as above� If W is the component of ����N �V �
containing � we then have ��N univalent on W �

Because a slight enlargement V � of V �so that V b V �� pulls back along the rest

of �	 with bounded branching �by de�nition of Anf �� it follows that W has compact
closure in C� LetW bW �

bW �� be a pair of enlargements ofW � also with compact
closure� By de�nition of convergence in A�

f � there are representatives ��n � f�nj g of
�zn in �Kf such that �n�N converges on W �� to ��N � It follows that for large enough
n� �n�N is univalent on W � and �n�N �W �� contains V � and thus �ii� holds�

���� Uniqueness� Let us now consider� for an abstract a�ne orbifold extension A
of f in the sense of Section ���� what properties force it to be equal to our universal
construction �Ka�

There is a natural map I � A � �Ka� de�ned similarly to �� for any z � A� let
� � C � L�z� be �the inverse of� any a�ne chart for the leaf of z that takes � to
z� Then the sequence f�n � ��g gives a well
de�ned element of �Ka� where �n are
the projections of A to  C� The di�erence between I and � is that� because of the
transverse continuity of the a�ne structures in A� I is automatically continuous�

We now observe that if the following conditions hold�

��� The map I is an embedding�
��� A�

f is dense in I�A�� and
��� I�A� is closed

then I�A� is equal to �Ka� In particular� the �rst condition reduces to checking that
I is both injective and proper� i�e� that an element of A is determined uniquely by
the sequence of functions �n��� and that convergence in A follows from convergence
of the sequence of functions�

For the construction of Section � of orbifold laminations for post
critically �

nite maps� these properties evidently hold� and therefore the general construction
produces the same object�

���� Minimality� Let us show that the laminations we constructed are minimal�
Note that this does not follow from Lemma ��� since topology of Af is stronger
than that of Nf �

Proposition ���� The laminations Af and Hf are minimal except for the Cheby�
shev and Latt�es examples� In those cases the lamination becomes minimal after
removing the isolated invariant leaf associated with a post�critical �xed point�

Hence every open set K of either lamination contains a global cross
section for
it �except the isolated leaves in the above special cases��

Proof� Clearly it is enough to consider Af � Since A�
f is dense in Af � it su�ces to

demonstrate density of leaves in A�
f �

Let us �rst show that any invariant leaf L is dense� Take a point �z � fz�� z��� � � � g
in A�

f � and a �nitely branched pullback of neighborhoods fU�� U��� � � � g along it�
In the case when f is Latt!es or Chebyshev assume that �z is not a postcritical �xed
point� Then Proposition ���� and the expansion property of f on the Julia set
easily yield existence of a limit point a �  C for �z and �  � such that one of the
local leaves Lloc over D�a� �� is not branched�
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For su�ciently large N � U�N pulls back univalently along the rest of �z� and by
the Shrinking Lemma� there is a sequence Ni �� such that U�Ni

 D�a� ���

Thus Lloc is univalent over U�Ni
� Let �bi be the point on this local leaf which

projects to z�Ni
� Then by Proposition ���� the sequence �fNi�bi � L converges to �z

in the Af topology as i��� which proves density of L�

Replacing f by its iterate� we conclude that every periodic leaf is dense in Af �

Let us now show that every leaf L��z�  A�
f accumulates on some periodic leaf�

To this end take �ve periodic points �k and associated periodic leaves Lk � L��k��
Select �ve disjoint topological discs Dk � �k� By Ahlfors	 Five Islands Theorem
�see ���� Theorem VI���� for any n� each �f�nL��z� has a univalent local leaf over
one of the domains Dk� Take a k for which this happens for in�nitely many n	s�
Then by the same argument as above L��z� accumulates on the periodic leaf Lk�

�� Convex�cocompactness� non�recurrence and conical points

De�ne the Julia set Jf in Af to be the pullback of Jf by � � Af �  C� Let J �
f

denote Jf �A�
f � Note that J �

f and J n

f have the same underlying set and di�erent

topologies� and that Jf is the closure of J �
f �

We say that f is convex cocompact if the quotient C�Jf �� �f of the convex hull is
compact� In this section we prove several criteria for convex cocompactness� The
main criterion is the following�

Theorem ���� A rational map f is convex cocompact if and only if it is postcriti�
cally non�recurrent and has no parabolic points�

Remark� This criterion is closely related to the �John domain criterion� given by
Carleson� Jones and Yoccoz for polynomials ����

���� Convergence and compactness� For a critically non
recurrent map f with

out parabolics� we can give a dynamical criterion for convergence in Af �note that
Proposition ��� only applied to convergence within A�

f � This criterion includes the
possibility that a bounded amount of branching persists in the limit and yields a
point outside A�

f �� Let p � Af � A�
f denote the natural projection�

Proposition ���� Let f be critically non�recurrent without parabolics� A sequence
of points �zn � A�

f converges to � � Af  with p��� � �	 if and only if

�i� �zn � �	 in the natural topology and

�ii� For any N and a neighborhood V of 	�N  if the local leaf Lloc� �f
�N �	� V � is

univalent over V  then the following holds�
There is a �nite set of points fckg   V such that for any neighborhood ' of
fckg there exists M � M�'� so that if n  M  the local leaf Lloc��z

n� V n'�
covers V n ' without branching and for any n�m  M the coverings are
topologically equivalent�

Moreover the projection L���� L��	� is a �nitely branched covering with uniformly
bounded degree�
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Proof� By Ma�n�e	s Theorem� there is a neighborhood W of Jf � and ��  � and K�

with the following property� for any backward trajectory �z � fz�� z��� � � � g � Nf

with z� � W � the pullback of the disk D�z�� ��� along �z branches at most K� times�
�Compare the proofs of Lemma ��� and Proposition �����

Furthermore� for any �z which is not an attracting cycle� there is an N���z� such
that z�n � W for n  N��

Assuming that �i� and �ii� hold� represent �	 using a sequence f��Ng � �Kf � For
any disk D  C� for large enough N  N� the map ��N is univalent in D and
has image in W � and in fact in D�	�N � ���� For su�ciently close �zn to �	� zn�N is
also in W � and hence the pullback of D�zn�N � ��� along the rest of �zn has uniformly
bounded branching�

Condition �ii� now gives a branched cover of D which is conformally equivalent to

the coverings of Lloc� �f
�N �zn� ��N �D��� ��N �D� away from a small neighborhood

of the critical points� for large enough n� This branching is uniformly bounded no
matter how large D is taken� so we obtain a polynomial h � C� C� The sequence
f��N � hg � �Kf will represent the limit � of the �zn in Af � by an argument similar
to that in Proposition ���� where condition �ii� keeps the branching consistent�

More precisely� let D� � h��D and assume that D� is large enough that the
��nite� set C of critical points of h is separated from �D� by an annulus of modulus
M  �� For each n represent �zn by a sequence of functions �n�N � C �  C�
normalized so its �
jet agrees with ��N � h at a �xed non
critical point w � D��
Let Y be a neighborhood of C so that D� n Y contains an annulus of modulus M
around each puncture� Then condition �ii� gives� for large enough n� a univalent
map un � D� n Y � C such that ��N � h � �n�N � un� and un�w� � w� u�n�w� � ��
Note that un� once de�ned on D� n Y � remains the same there as we enlarge D��
shrink Y and increase N � and that ��N � h � �n�N � un wherever it is de�ned�
Again using Koebe distortion �this time on a multiply connected domain�� we have
un � id on compact subsets of CnC� It follows that for every N � �n�N � ��N �h�
so that �zn � � as n���

Moreover� p � L��� � L��	� is a �nitely branched covering with bounded degree
since h is�

Conversely� suppose that the sequence �zn converges in Af � Since by the same
discussion the branching over each disk D�z� ���� z � Jf � is eventually uniformly
bounded� there must be some subsequence of the �zn for which the branching con

verges in the sense of �ii�� and so the limit is equal to the limit de�ned in the
previous paragraph� It follows that the same holds for any subsequence� so that in
fact �ii� holds for the whole sequence�

Corollary ���� Let f be critically non�recurrent without parabolics� A set K  A�
f

is pre�compact in Af if and only if its closure in the natural extension Nf does not
contain attracting cycles�

Proof� If a sequence f�zng  A�
f does not accumulate on attracting cycles then

Mane	s Theorem easily yields existence of a subsequence satisfying �i� and �ii� of
the previous proposition�

���� Proof of Theorem ���� Let us split the proof into two steps represented by
the following two criteria�
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Lemma ���� The Julia set Jf is compact if and only if f is critically non�recurrent
and has no parabolic points�

Proof� If Jf is compact then J n

f is compact in Anf � since J n

f � p�Jf � where
p � Af � Anf is the natural continuous projection� Hence by Corollary ��� f is
critically non
recurrent without parabolic points�

Vice versa� if f is critically non
recurrent without parabolic points then com

pactness of Jf follows from Corollary ����

Proposition ���� A rational map f is convex cocompact if and only if the Julia
set Jf is compact�

Proof� Let V � V�J � denote the �curtain� over J � Jf in H� That is� the union

of vertical geodesics over points of J � We will �rst show that V� �f is compact if
and only if J is compact�

Observing that J is just the quotient V�eR by the vertical geodesic �ow� we
may view this equivalence in slightly generalized terms�

Let X be a Hausdor� space admitting commuting actions by two closed non
trivial subgroups G and H of R� Let G act on the left and H on the right� for
clarity� Suppose G and H both act properly� and that they are coherent in the
sense of Lemma ���� any x� y � X are contained in neighborhoods Ux� Uy for which
giUx �Uyhi �� � only if gi� hi both remain bounded� both go to �� or to ��� We
claim that GnX is compact if and only if X�H is compact�

Suppose without loss of generality that GnX is compact� and let K  X be a
compact fundamental domain� i�e� GK � X � Let x � K and consider the positive
return time g��x� for the orbit xH to return to KH under G� That is� let g� be
the smallest positive element of G such that g�xH � KH �� �� We claim this is
bounded for x � K� Choose h � � in H su�ciently far from � that Kh �K � �
�by the proper action of H�� and that gK �Kh �� � only for g � � �this is possible
by coherence� after covering K with a �nite number of neighborhoods Up��

Thus the point xh is not in K so there is some g�  � such that g�xh � K�
Thus g�Kh �K �� � for each g�� so that �xing h we have an upper bound for g�
independent of x� by the proper action of G�

Reversing the signs in the argument we also obtain a bounded negative return
time for every x � K� We conclude that� in the action of G on X�H � every point
has a bounded negative and positive return time to the projection KH of K� Since
X�H is covered by G
translates of KH � it follows that there is a bounded subset I
of G such that IKH covers X�H � Thus X�H is compact�

In our situation the groups are Z and R� and we conclude that V� �f is compact if
and only if V�eR � J is compact �note� it would be more consistent to denote the

�rst quotient �fnV�� It remains to check that compactness of V� �f is equivalent to
compactness of the convex core quotient� Since the curtain is closed in the convex
core� one implication is clear� Conversely� if we know that V� �f is compact� we need
only to observe that the convex core lies in a bounded neighborhood of the curtain�
That is� let p � C be some point� represented as �z� t� in a half
space model of the
leaf Lhyp�p� of H� If z� is the nearest point to z in the local Julia set J � L� then
t  jz � z�j because otherwise p lies in a hemisphere over z disjoint from J � and
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therefore outside the convex hull� It follows that the hyperbolic distance from p to
�z�� t�� which lies in V � is less than ��

It is easy to check that a leafwise �
neighborhood of a compact subset of a
hyperbolic �
lamination is itself compact� so this concludes the proof�

���� Conical points� Given a point z � J � let �z be the vertical geodesic in Hf

terminating at z� By analogy with Kleinian groups� let us say that z � A is a
conical point if the projection of the geodesic �z to the quotient lamination H� �f
does not escape to in�nity �which means that there is a sequence of points pn � �z
tending to z whose projection to H� �f converges�� Note that in this de�nition the
vertical geodesic can be replaced by any geodsic terminating at z since all of them
are asymptotic in the hyperbolic metric�

Equivalently� z � Af is conical i� its forward orbit f �fnzg�n�� is non
escaping in
Af � that is� the 

limit set 
�z� is non
empty� Indeed� given two proper commuting
group actions G and H on a space X � the G
orbit of a point x � X is non
escaping
in the quotient by H if and only if its H
orbit is non
escaping in the quotient by
G �since either is equivalent to non
escaping of the double orbit GxH in X�� In

our situation we have a Z
action by �f on Hf � and the R
action of the vertical

geodesic �ow �as in Section ��� The directionality of our statement �forward �f 

orbits accumulate in Hf�e

R � Af if and only if backward R
orbits accumulate in

Hf� �f� comes directly from the coherence of the actions� lemma ����

Let ( � (f denote the set of conical points�

We further note that the property of being conical depends only on the projection
to  C� Let us say that a set X  A is �ber saturated if X � ������X��� The reason

is that the �bers play the role of local stable manifolds for �f �the proof below makes
precise the sense of this statement��

Proposition ���� The set of conical points is �ber saturated�

Proof� Let us show that the 

limit sets of z and w are equal� up to �nite branched
cover� Represent z and w in �Kaf by sequences of meromorphic functions f�ng and
f�ng such that ����� � ����� � ��z�� To compute the 

limit sets it su�ces to
consider just the �rst coordinate functions� � � �� and � � ��� Suppose �rst that
� is non
singular at z and w� so that we may assume ����� � ����� � ��

Now suppose that h is a limit point of fn � � in Ua� This means that for some
sequence ni� and �i � C�� fni � � � �i converges to h on compact subsets of C� By
Lemma ���� we know that j�ij � �� Now �xing a disk D  C around �� we see
that for i su�ciently large� � and � are both invertible in �iD� and by the Koebe
distortion theorem� the combined map �� � �i����� � �i� converges to the identity
on D� It follows that fni � � � �i also converges to h�

If� on the other hand� � and"or � have branched points at �� say with degrees

k and m respectively� let d � lcm�k�m� and write e� � � � bd�k and e� � � � bd�m�

where bj�z� � zj � Now e� and e� both have degree d at �� and for small j�ij we still
make sense of � e� � �i����e� � �i� as a univalent map� Hence the Koebe distortion

argument goes through and we may conclude that ffn � e�g and ffn � e�g have the
same 

limit points in Ua�
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Let & � �(  Jf   C� By the above proposition� it is justi�ed to call the
points of this set conical as well� Let us show that it is trapped in between two
well
studied sets�

First� let &� denote the set of points z � Jf such that there is an r  � and
a sequence ni � � �depending on z� such that the multi
valued inverse branch
f�ni � D�fniz� r�� Ui � z has a bounded degree �compare �����

The second set� &� is the union of all expanding subsets of the Julia set �a
compact invariant set X   C is called expanding if f � X � X is surjective and
some iterate fnjX has spherical derivative strictly greater than ���

Proposition ���� &�  &  &��

Proof� Let us start with the right
hand inclusion� Let z � ��z� for z � (f � Then

there exists a sequence ni � � such that �fniz � � � Af � Translation of this to
the language of meromorphic functions provides us with a desired family of inverse
branches with bounded degree�

For the left
hand inclusion� take a point z in an expanding set X   C� First
notice that by Lemma ��� any backward orbit �z in the invariant lift �X  Nf

belongs to a parabolic leaf� Then� take any convergent subsequence fni �z � �	 � �X
in the natural topology and apply Proposition ��� to see that it is convergent to
the same point in the laminar topology as well �the local leaves in condition �ii� of
this proposition can be selected univalent��

Proposition ���� If f is convex cocompact then all points of the Julia set Jf are
conical�

Conversely if the lamination Af is locally compact and all points of the Julia
set Jf are conical then f is convex cocompact�

Proof� Assume f is convex cocompact� that is� the convex core Cf� �f is compact�
hence bounded� Since �z  Cf for any z � Jf � the conical property of z follows�

For the converse� suppose the lamination Af is locally compact� Then there is
a compact set K with non
empty interior� By Proposition ���� K meets every leaf
of the lamination� Since the set K �Lhyp�p� is closed in the intrinsic leaf topology�
for any p � H� there is a unique length minimizing geodesic %p joining p to K� Let
dist�p�K� denote the hyperbolic length of this geodesic� It can be also de�ned as
the in�mum of lenths of all curves joining p and K�

Given a set X  H� let N�X� r� � fp � H � dist�p�X� � rg denote the leafwise
R
neighborhood of X � Then any compact set Q  H is covered by some N�K�R��
Indeed� for every q � Q there is a curve � joining q with a point in the interior of
K� If the length of this curve is r then all su�ciently nearby points can be joined
with intK by a curve of length less than r � �� Now compactness of Q yields the
statement�

Note also that the space G of one
sided geodesics beginning in K is parametrized
by the unit tangent bundle over K and hence is compact�

Assuming that the convex core Cf� �f is not compact let us construct in it an

escaping geodesic� Consider a sequence of points qn � C� �f escaping to � and the
corresponding minimizing geodesics %n � %qn � By compactness of G� there is a
limit geodesic % beginning at K� Let us show that this geodesic escapes to ��
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Indeed� otherwise there is a compact set Q  C� �f which % does not escape� Let
us consider the leafwise �
neighborhood N�Q� �� of Q� Its closure is compact and
hence is contained in some leafwise neighborhood N�K�R� of K�

Since the %n accumulate on %� for some n there are two points a� b � %n�N�Q� ��
such that the distance berween them along %n is greater than R� On the other hand�
there is a curve from b to K of length less than D which contradicts the minimality
of %n�

Let us say that a set X  A is locally �ber saturated if for any point p � X
there is a box neighborhood U � x such that if q � U � X then the whole �ber
�����q� � U belongs to X � We can then say that such a set X is measurable and
has �zero�� �positive� or �full� measure if the corresponding property is satis�ed
leafwise� that is for its intersection with every leaf� Note that these notions are well
de�ned on the a�ne leaves though the Lebesgue measure is not� Note also that
they don	t require any transversal measure�

Given a measurable locally �ber saturated �f
invariant set X  A� we say that
�f jX is ergodic if every measurable locally �ber saturated �f 
invariant subset Y  X
has either zero or full measure�

An invariant line �ne �eld onA is a measurable real one
dimensional distribution
in the tangent bundle TA over a set of positive measure� which is transversally
continuous in measure and invariant under �f � We say that the line �eld is constant
if it is constant in the a�ne chart on any leaf� Note� if we are considering an orbifold
leaf then this must take place in a �nite cover � this allows the case of an orbifold
point of order two� and a line �eld with a simple pole singularity� This is exactly
what occurs for the deformable Latt!es example�

Given a measurable set X and a set of positive Lebesgue measure Y on an a�ne
leaf L� let dens�X jY � � meas�X � Y ��meas�Y � �note that this is a well de�ned
quantity�� Let us formulate some general ergodic properties of the conical set�

Proposition ��� � The set (f of conical points has either zero or full
Lebesgue measure�

� In the latter case f is ergodic except for the Latt�es examples�
� Any invariant line �eld on (f is constant except for the isolated leaves of
Latt�es examples�

Proof �� This proof demonstrates how the blow
up method works in the lamination
context�

Take any invariant locally �ber saturated set X  (f of positive measure� Then
X � L has positive measure for any leaf L  A� Take a leaf L and a density
point z of X in L� Since z is conical� there is a convergent sequence �fn�k�z � ��
Take an arbitrary round disc D  L�z� and a box neigborhood D � T of z� Let
� � �	� ��� zn�k� � �zk� tk� � D � T �

Let us consider round discs &k � �f�n�k��D � tk� on the leaf L�z�� By the

Shrinking Lemma� they shrink to z and hence dens�X j&k�� �� Since �f is leafwise
a�ne� dens�X j�D � tk�� � � as k � �� Since X is �ber saturated� dens�X j�D �
��� � �� Since the disc D is arbitrarily big� X has full measure on the leaf L����

Since the leaf L��� is dense in Af �except the isolated leaves in the Latt!es
examples� and X is locally �ber saturated� it has full measure on every leaf� This
proves the �rst two statements� except for the Latt!es examples�
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Finally� the �rst statement holds for the Latt!es examples since (f � Af by
Theorem ��� and Proposition ���� The second statement fails for the trivial reason
that the isolated leaf is an invariant locally �ber saturated subset of Af � However�
the previous argument shows that this leaf and its complement are the only subsets
like this�

If now X supports an invariant line �eld �� take z to be a Lebesgue continuity
point for this �eld on the leaf L�z�� so that � is almost constant on &k�X nY where
dens�Y j&k�� � as k ��� It follows that �j�D � tk� accumulates in measure on
constant line �elds� Since � is transversally continuous in measure� �j�D � �� is
constant almost everywhere� and hence almost everywhere on the leaf L���� As
this leaf is dense in A� except for the isolated leaves of Latt!es examples� the last
statement follows as well� tu
Proof �� This proof �for �rst two statements only� exploits Ahlfors	 harmonic ex

tension method� Namely� let X  ( be a locally �ber saturated set of positive
measure� Then we construct a harmonic function on H� �f by solving a Dirichlet
problem on each leaf� That is� given an a�ne leaf L  A and the attached hyper

bolic leaf HL  H� construct harmonic h � HL � R� whose boundary values are �
on F and � on ( �L� It is perhaps best to think of h�x� for x � HL as the area of
(�L as measured in the �visual metric� at x� That is� we map HL �L by M�obius
transformation to the unit ball taking x to �� and measure the area of the image
of J � L on the unit sphere� This is the same as integrating the Poisson kernel
against the characteristic function of ( � L�

One must check that h is continuous �in the transverse direction�� But if we �x
a box neighborhood T �D for a large D in L �in the orbifold case this should be
the �nite cover of a box neighborhood�� then for points near x �in the transverse
direction� the visual measure induced on the leaves near L changes continuously
on D �and if we choose D large enough� is very small on the complement of D
in each leaf�� The intersections of ( with nearby leaves is a continuous family of
analytic branched covers� It follows that area measure on ( varies continuously in
the transverse direction� and therefore so does its integral with respect to the visual
measure�

Consider now a density point z � X and the geodesic �z  L�z� terminating at
this point� Then h�p�� � as p� z along �z� since the visual are of X as seen from
p is going ��

Observing also that h is invariant by �f � we obtain a continuous leafwise harmonic
function g on the quotient H� �f � Since z is conical� the projection of �z to H� �f has
a limit point q� By continuity� g�q� � �� By the Maximum Principle� g is identically
equal to � on the whole leaf L�q�� By Proposition ���� this leaf is dense� except for
the Latt!es examples� and thus g is identically equal to � on the whole lamination�
It follows that X has full measure� tu
Remark� Given Proposition ���� the results of the above proposition are not really
new �compare ���� �� Lemma ���� ��� Theorem ������ However� the laminations
give a new insight on them� and strengthen the connection to the corresponding
results for Kleinian groups �

Corollary ����� If f is not Latt�es then there are no invariant line �elds on (f

which come from the sphere C�
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Proof� It is easy to see that one can always �nd two leaves L��z�� and L��z��� with
���z�� � ���z�� � z such that L��z�� is branched at �z� while L��z�� is regular at �z��
Then the push
forward of a constant line �eld from L��z�� has a singularity� while
the push
forward from L��z�� does not�

The only case when this does not lead to a contradiction is when one of the
above leaves is isolated� so that the invariant line �eld is not necessarily constant
on it� But this may happen only for the Latt!es examples�

���� Elliptic structure of the Latt�es examples� Let us show in conclusion how
the invariant line �eld imposes the �elliptic structure� of the Latt!es examples� We
have seen that the invariant line �eld may exist only if there is an isolated leaf Lr�
But then there should exist a non
isolated orbifold leaf Ls with an orbifold
constant
line �eld�

Considering the projection � � Ls �  C we see that the line �eld on  C is locally
�a�e�� the image of the constant line �eld under a branched cover� It follows that the
branching of � can be at most degree �� and that the line �eld on  C can only have
isolated index ���� �pole� singularities� By the index theorem on line �elds� there
must be exactly four of these� Thus  C has the structure of an orbifold with four
order
� singular points� the ��������� orbifold �this is exactly Thurston	s orbifold for
this map��

Let X   C denote the above set of four singular points� It is clearly forward
invariant under f � The property that the leaf Lr is isolated means that all backward
orbits �z with z� � X eventually escaping X hit a critical point� In other words�
� � Ls �  C is double branched at all points of Ls � ���X � except the singular
periodic point� Thus this map is an orbifold cover� �See e�g� Thurston ��� or Scott
��� for a discussion of orbifolds and orbifold covers��

Let q � eLs � Ls be the double covering associated to the orbifold structure of
Ls� eLs � C� It follows that � � q � eLs � �  C� X� is an orbifold universal cover� The
group of deck translations for such a cover is generated by a lattice of translations
and the involution z �� �z�

Let m be a period of the leaf Ls� Note that �fm � Ls � Ls lifts �in two ways�

because of choice of sign� to a multiplication map g � z �� nz on eL� The constant n
must be real� since g preserves the line �eld� On the other hand g commutes with
� � q� so it preserves the lattice� Hence n is an integer� In other words the original
map f is the projection of an integral torus endomorphism� i�e� a deformable Latt!es
example�

�� Quasi�isometries and rigidity

��� Rigidity� In this section we will use the convex
cocompactness of the quotient
�
lamination to prove rigidity of critically non
recurrent maps without parabolic
points� which extends Thurston	s rigidity theorem �see �����

Theorem ��� Let f and g be two critically non�recurrent rational maps without
parabolic periodic points�

��� If f and g are topologically conjugate then they are quasi�conformally con�
jugate�

��� If the conjugacy is equivariantly homotopic to conformal on the Fatou sets
then f and g are M�obius conjugate except for the Latt�es examples�
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In particular the second case holds automatically when the Julia sets of f and g
coincide with the whole sphere�

Remarks� Thurston	s proof of rigidity for post
critically �nite maps used a con

traction principle on a Teichm�uller space� which is another aspect of the connection
between rational maps and Kleinian groups �see ��� �����

Our proof uses another familiar scheme from both dynamics and hyperbolic
geometry� which is roughly as follows� In step one� a topological conjugacy is
promoted to a quasi
conformal conjugacy� using some geometric information� In
step two� the quasi
conformal conjugacy is found to be conformal by an ergodic
reasoning� because it induces an invariant line �eld on the Julia set�

In the convex cocompact case� the topological conjugacy is almost immediately
quasi
conformal� because it gives rise to a homeomorphism on compact sets �the
convex cores�� which is automatically a quasi
isometry of the �
laminations� This
is directly analogous to the proof of Mostow	s rigidity theorem in the case where
the Fatou domain is empty� and to Marden	s isomorphism theorem otherwise�

The second step� absence of invariant line �elds� follows from the properties of
the conical limit set given in the previous sections�

Proof� Let Af and Ag be the a�ne orbifold laminations constructed from the
natural extensions of f and g� and let Hf and Hg be the hyperbolic orbifold �

laminations built over Af and Ag �

Let ) �  C �  C be the homeomorphism conjugating f to g� Let �) � Nf � Ng

denote the natural extension of )� which conjugates the action of �f to that of �g�
This map admits a continuous extension to a homeomorphism� which we also call �)�
from Af to Ag � again conjugating �f to �g� and preserving orbifold a�ne structure�
Indeed� Proposition ��� describes convergence in Af in dynamical terms which are
respected by topological conjugacy� �Note� this is not obvious and maybe not true
for critically recurrent maps��

We may assume that ) is a C� di�eomorphism �in particular quasi
conformal�
on the Fatou set F �f�� possibly after applying an equivariant homotopy� Let us
give a sketch of this well
known procedure� Let  a be an attracting cycle� If it is not
superattracting� we may choose a fundamental annulus around one of its points a�
On this annulus we may homotope )� �xing it on the post
critical points� to some
C� di�eomorphism which conjugates f to g on the boundary� This homotopy can
then be transported by the action of f and g to the rest of the attraction basin B
of  a� By a Poincar�e length argument the tracks of the homotopy have vanishing
Euclidean length near �B� so that it can be extended as the identity to �B� Finally�
Man!e	s Theorem implies that the diameters of the Fatou components tend to �� so
that the homotopy can be extended as the identity to the rest of the sphere�

If  a is superattracting� the B�ottcher coordinate provides us with an invariant
circle foliation in a punctured neighborhood of a� Moreover� this foliation is a�ne
�that is� there is a canonical a�ne structure on the leaves�� as the B�ottcher coordi

nate is unique up to scaling and rotation� Select now a fundamental annulus� with
the a�ne circle foliation inside and marked post
critical points� There is a homo

topy of ) in the fundamental annulus to some di�eomorphism� which respects this
extra structure� and conjugates f and g on the boundary� By means of dynamics
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this homotopy can be spread around the whole basin B� By the same reason as
above it can be extended to the rest of the sphere as id�

In the post
critically �nite case the action of a power of f on the immediate
basin of a �that is� the component of D containing a� is conjugate to z �� zd� and
similarly for g �see ���� Theorem ����� Then ) can be homotope in the fundamental
annulus to a di�eomorphism which is linear in the B�ottcher coordinates� Hence it
is conformal on the basin� and we are in case ��� of the theorem�

We next extend �) to a conjugacy of the �
laminations� using the following ele

mentary fact�

Lemma ��� For any homeomorphism � � C � C there is a homeomorphism
e��� � H� � C � H� � C which restricts to � on C such that the following are
satis�ed�

��� The extension is a�nely natural� If �� � are 	complex
 a�ne maps of C
then e��� and e��� are the unique possible similarities of H� and

e�� � � � �� � e��� � e��� � e����
��� e��� depends continuously on � in the compact�open topology on maps of

C and H��
��� e����� depends continuously on � or equivalently on ����

Proof� The de�nition of e��� is the following�

e����z� t� �

�
��z��max

jwj�t
j��z � w�� ��z�j

�
�

Note in particular that the vertical line over each z � C is mapped homeomorphi

cally to the vertical line over ��z�� since the max is monotonic in t as a result of
the assumption that � is a homeomorphism� Hence the map is a homeomorphism�
The other properties follow easily� Note that part ��� is not completely automatic
since e����� is not in general equal to e������

As a corollary� we can extend �) leafwise to a map �E � Hf � Hg � which is a
homeomorphism on every leaf� The extension is well
de�ned because it is a�nely
natural� Note that� on the orbifold leaves� we must apply the lemma to the ap

propriate branched cover of the leaf� Since the map back to the orbifold leaf is
quotient by rotations� the a�ne naturality of the extension implies that the exten

sion is well
de�ned downstairs�

Continuity of �E follows from part ��� of lemma ���� applied to a local triv

ialization� i�e� a product
box �or orbifold
box� neighborhood in Hf and in Hg�

Continuity of �E�� follows from the same argument� using part ��� of lemma ����
Thus �E is a homeomorphism�

Again the a�ne naturality of the extension and the fact that �f and �g act by
a�ne isomorphisms on the leaves imply that �E conjugates �f to �g� We conclude
that it projects to a homeomorphism

E � Hf� �f � Hg��g�

We next show that the E can be deformed to a quasi
isometry�
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Lemma ��� There exist K� �  � and a map �E� � Hf � Hg which agrees with �E
on Af and which is a �K� ���quasi�isometry on each leaf�

Proof� Note that to show a map h � H� � H� is a quasi
isometry it su�ces to show
that there exist ��� �� such that for all balls B of radius ��� diam�h�B�� � ��� and
similarly for h��� Let us call this property quasi
Lipschitz� so that quasi
isometry
is equivalent to quasi
Lipschitz in both directions�

Consider �rst the case that f �and therefore g� has no Fatou domain� In this

case the convex cores are the entire quotients� and by theorem ��� Hf� �f and Hg��g

are both compact� If we �x ��  � then the function x �� diam� �E�B�x� ����� is
continuous in x � Hf � as one can see by considering a local trivialization of the
lamination� �Here B�x� ��� is a leafwise hyperbolic ball of radius ��� and diam refers
to diameter measured inside a leaf�� By compactness� then� it has a �nite upper
bound� Since we can do the same for �E��� we are done in this case�

In the case where the convex core Cf is not all of Hf � we �rst adjust the map so
that it takes a small neighborhood of Cf to Cg �

Let Cf ��� denote the closed �
neighborhood of Cf � by which we mean the union

of leafwise �
neighborhoods� Note that Cf ���� �f is still compact� Recall the product
structure on HnCf ���� discussed in Appendix � for the leafwise case� but extended
to the global lamination by virtue of the discussion in x��� and lemma ���� on
continuous variation of convex hulls� This product structure �in particular projec

tion along the gradient lines� gives a C� identi�cation between �Cf ��� and Ff � and
moreover we obtain a homeomorphism Pf � Hf � Ff � Cf ��� which is the identity
on Cf � and equal to *� on Ff � On each leaf Pf is the map h����J discussed in the

proof of lemma ����� Because the construction is natural� Pf commutes with �f �
Letting Pg denote the corresponding construction for g� we then have ��xing

�  �� a map
�E� � Pg � �E � P��f � Cf ���� Cg���

which is a homeomorphism that restricts to a C� di�eomorphism on �Cf ���� and
conjugates �f to �g� We can extend this to a map� also called �E�� on all of Hf � using
the product structure$ that is� sending gradient lines to gradient lines at unit speed�

This map is the desired quasi
isometry� On Cf ��� it is quasi
Lipschitz as before�
by the same compactness argument on the quotient$ and similarly for � �E���� on
Cg���� In the exterior� proposition ���� determines the metric up to bilipschitz
homeomorphism in terms of the metric on the boundary of Cf ��� �or Cg����� If

follows that� since �E� is a C� di�eomorphism on the boundary� it is bilipschitz on
the exterior� �We are also using the fact that �Cf ���� �f is compact to bound the
derivatives of the map on the boundary��

Since �E� is a quasi
isometry it extends continuously to a quasiconformal home

omorphism on the boundary at in�nity� namely Af � It remains to check that the

boundary values of �E� agree with the origional ones of �E� namely �)� In the Fatou
domain this is automatic from the construction� For any point in Jf � we note that
it lies in the closure of Cf � For any point x � Cf � the maps �E and �E� di�er by an
application of Pg � so their leafwise distance is �again by compactness of the quo

tient� uniformly bounded� It follows that the two maps have identical boundary
values on Jf �
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We can now complete the proof of theorem ���� Lemma ��� implies that �)
extends to a quasi
isometry of the �
laminations � that is� a map which is a quasi

isometry on every leaf� with uniform constants� and therefore �lemma ����� �) is
in fact a quasiconformal map on every leaf� with uniform constant� Since �) is just
the lift of the original conjugacy )� we conclude that ) itself is quasiconformal�

This concludes step one of the proof �that topological conjugacy implies quasi

conformal�� which is case ��� of the theorem� To �nish the proof we need to show
that a quasi
conformal conjugacy which is conformal on the Fatou set is M�obius�
except for the Latt!es examples� But this is equivalent to the absence of invariant
line �elds on the Julia set which follows from Proposition ��� and Corollary �����

��� Further program

Let us outline some possible directions for further development� problems and
conjectures�

�� Regular leaf space� Study the regular leaf space Rf in more detail� What is
the behaviour of the leaves of Rf near irregular points+ In particular� look at the
Feigenbaum case� What happens to Rf at a parabolic bifurcation+ Other than
rotation domains� are there any leaves which are not dense+ �Lemma ��� shows
that all parabolic leaves are dense�� Can it happen that a leaf other than a rotation
domain does not intersect the Julia set+

�� Type Problem �see x��� Are there hyperbolic leaves in Rf except for Siegel
disks and Herman rings+ It seems that the right place to look for hyperbolic leaves
are maps with non
locally connected Julia set �Cremer points or in�nitely renor

malizable polynomials of highly unbounded type� see ����� Prove that all leaves
of a �fake Feigenbaum� quadratic �that is� a rational map which is topologically
equivalent to the Feigenbaum quadratic� are parabolic� Conjecturally there are no
fake Feigenbaum maps �a special case of the rigidity problem�� but this would be
the �rst step of trying to apply the laminations to this problem� More generally
does the topological type of the map determine the conformal types of the leaves+

�� Uniqueness problem� In general� can one reconstruct f from its �
lamination+
How does the lamination detect the di�erence between polynomial and polynomial

like maps+

�� Geometric �niteness� There are many de�nitions of geometrically �nite
Kleinian groups� all equivalent for dimensions � and � �see Maskit ���� Bowditch
���� The de�nition in terms of �nite
sided fundamental domain �see Ahlfors ���
seems to fail altogether in the lamination context$ it is also not equivalent to the
others for hyperbolic manifolds in higher dimensions ��� The de�nition in terms
of conical and parabolic points �Beardon
Maskit ��� can be translated into the
lamination setting� We expect it to pick out critically non
recurrent maps with
or without parabolic points� Thurston	s de�nition in terms of �nite volume of a
neighborhood of the convex core� or compact thick part of the convex core �similar
also to Marden	s de�nition in ���� seems harder to transport to laminations� Is
there a good replacement for the notions of volume and injectivity radius which
would make this translation work+

�� Deformation theory� Describe the space of H� laminations� or a�ne �

laminations� or just those arising from rational maps� A fundamental di�culty



LAMINATIONS IN HOLOMORPHIC DYNAMICS �

here is that there is no common �universal cover�� as there is for hyperbolic mani

folds�

�� Topology of Hf� �f � What is the topological structure of Hf and Hf� �f+ Does

Hf� �f always have two ends for quadratic f+

Particular cases are the Axiom A polynomials �take z �� z� � � �rst� and the
Feigenbaum quadratic� Is there an internal structure to Hf that mirrors the se

quence of bifurcations going from z �� z� to f �degree � case�+

Let us consider the following model� Let fc � z �� z� � c� c � c�� ��� where c� is
the Feigenbaum point� or any point preceding it� Let Kc and Jc denote the �lled
Julia set and the Julia set for fc� Consider their lifts Kc and Jc to Rf � Consider
the set M � f�c� �z� � c� � c � �� �z � Kcg�

There is a natural projection from Jc onto Jc� � since Jc� is obtained from Jc by
some �pinchings� �compare Douady ����� This induces a projection rc � Jc � Jc� �
Let us consider the quotientM� 
 where the equivalence relation
 identi�es �c� �z��
�z � Jc with �c�� rc�z�� The map f induces a self
map �f of M� 
�

Is �f �M� 
�M� 
 topologically equivalent to �fc� � Hfc�
�Afc�

� Hfc�
�Afc�

+

�� Geometry of Hf� �f � Give a quasi
isometric model for Hf� �f � Does topology
of this lamination determine its geometry+ �It is certainly a quite strong version of
the Rigidity Problem��

Can one place �pleated solenoids� inside Hf� �f � and use them in analogy with
pleated surfaces in hyperbolic �
manifolds+ �In the Feigenbaum case� one can con

sider the pullback of the little Julia set J�Rnf� to Af �where R denotes the renor

malization operator�� take the boundary of its convex hull in Hf � and spread it

around by iterates of �f��

�� Spectral Theory� We de�ne the three dimensional Poincar�e series of �f by tak

ing a transversalK of Hf � averaging exp���� �f�nx�K�� along a natural transversal
measure on K �where � stands for the leafwise hyperbolic distance�� and summing
up over n �see Su ��� for a discussion of the transversal measure�� Is it true that
the corresponding critical exponent coincides with the Hausdor� dimension of the
conical limit set+ A natural further project is to develop a spectral theory on the
lamination Hf� �f � and to study measure and dimension of the Julia sets from this
point of view �compare Sullivan ��� ���� Canary ���� Bishop
Jones ��� Denker

Urbanski ����� The Ahlfors
type argument used in x� of this paper is a �rst step
in this direction�

�� Added leaves of Af � Can it happen that Af is not locally compact+ This prob

lem requires understanding of the added leaves of Af � What one can say about the
entire function corresponding to the leaf projection p � Laff �z�� Laff �p�z��+ Can
it have asymptotic values+ �In the critically non
recurrent case it is polynomial��

��� Action of rational functions in the Universal space� It would be interesting
to have a general idea of this action� What is the structure of the characteristic
attractor Kf+ Is a generic f � U � U injective+ More precisely� let us consider a
functional equation f � � � f � � where �� � � U are meromorphic� Is it true that
any solution of this equation has a form � � � �� where � is a symmetry of f �that
is� a M�obius transformation such that f � � � f�+
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��� Appendix �� Circle and polynomial�like maps

����� Sullivan�s laminations for circle maps� Let f � S� � S� be a C� ex

panding map of the circle of degree d  �� The expanding property means that
there exist constants C  � and �  � such that jDfn�x�j � C�n� n � �� �� � � �
Sullivan	s construction goes as follows �see Sullivan ��� ���� and de Melo
van Strien
�����

Step �i�� Consider the natural extension �f � Nf � Nf � Topologically Nf is the

standard solenoid over the circle� Dynamically �f is a hyperbolic �in the sense of
Anosov and Smale� map with one
dimensional unstable leaves�

Step �ii�� Supply the leaves with the a�ne structure by means of the explicit
formula ����� �existence of the limit follows from the standard distortion estimates

for hyperbolic maps�� The map �f preserves this structure�

Step �iii�� Attach hyperbolic planes to the leaves and extend �f to the corresponding
hyperbolic �
lamination H�

f acting isometrically on the leaves�

Step �iv�� Take the quotient H�� �f � This is Sullivan	s Riemann surface lamination
associated to f � Topologically it is a solenoidal �bration over the circle�

The main di�erence between this construction and the one outlined in the Intro

duction is related to the critical points on the Julia set� These tend to distort the
a�ne structures and complicate the transversal behavior of the leaves� Also� as we
have seen� even in the Axiom A case the topological structure of the �
lamination
is not at all obvious�

Sullivan constructed �
laminations to build up the deformation space of expand

ing circle maps� We try to study rigidity phenomenon by means of �
laminations�
This is a usual philosophical di�erence between dimensions two and three�

����� Polynomial	like maps� globalization of the leaves� Polynomial
like
maps are not globally de�ned� and certainly cannot be in general extended to the
whole sphere� However� such a globalization can be carried out on the natural
extension level� Lemma ���� shows that it leads to the same object� provided the
map was a priori globally de�ned�

Let U and V be two open sets of C such that clU  V � and f � U � V be an
analytic branched covering� Keep in mind Douady
Hubbard polynomial
like ���
maps� generalized polynomial
like maps ���� or a rational function R restricted on
the sphere minus an invariant neighborhood of attracting cycles�

For such a map we can consider the space Nf of backward orbits� and lift f��

to this space as the map which forgets the �rst coordinate� �g � �f�� � Nf � Nf �
This map is injective but not surjective� its image consists of the orbits which start
with a z� � �Ui�

To make it invertible� let us consider the inductive 	direct
 limit of

N �
�g
N �

�g
N �

�g
� � � �

which is de�ned in the following way� Take in�nitely many copies Nm of the same
space N � Let us embed Nm into Nm�� by means of the map

im � �g � Nm � N � N � Nm���
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In other words� we identify a point �z � Nm with the point im�z � Nm��� Thus we
obtain an increasing sequence of the spaces

N � �� N � �� N � �� � � � ������

Let D � Df � �Nm� To de�ne a topology on on D� let us call a set W  D open
if W � �Wi where Wi is an open set in N i�

The map �g � N k � N k respects the embeddings im � Nm �� Nm��� and hence
induces the self
map of D� which we will denote by the same letter� Moreover� �g
homeomorphically maps Nm onto im��Nm��� m  �� so that it is invertible on D�
We will keep the notation �f for �g���

Lemma ����� Assume that a branched covering f � U � V is the restriction of
a rational endomorphism R �  C �  C such that C n V is contained in the basin of

attraction of a �nite attracting set A� Then �f � Df � Df is naturally conjugate to
�R � NR n �A� NR n �A�

Proof� Let us consider the following commutative diagram�

N � ��
i�

N � ��
i�

N � ��
i�
� � ���yid ��y �R

��y �R�

N ��
i

�RN ��
i

�R�N ��
i
� � �

where N � Nf � the upper line is the sequence ������ for �f � while the lower one is
the sequence of natural inclusions� It induces a homeomorphism between Df and

� �RnN � NR n �A� which is the desired conjugacy�

��� Appendix �� Background material

����� Dynamics� We assume the following background in holomorphic dynamics�

� Classi�cation of periodic points as attracting repelling parabolic Siegel
and Cremer� and the local dynamics near these points$

� Notions of the Julia set J�f� and the Fatou set F �f�$
� Classi�cation of components of the Fatou set as attracting basins parabolic
basins Siegel disks and Herman rings$ Siegel disks and Herman rings will
be also called the rotation sets�

� The notion of an Axiom A or hyperbolic rational function� There are two
equivalent de�nitions of this property�

� All critical points are in basins of attracting cycles$
� The map is uniformly expanding on the Julia set� that is� there exist

constants A  � and �  � such that for any z � J�f��

kDfn�z�k � A�n� n � �� �� � � � � �

where k � k denotes the spherical metric�

All this material can be found in any book or survey in holomorphic dynamics
� e�g� ��� ��� ����
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As usual� 
�z� � 
f �z� denotes the 

limit set of a point z� A point z is called
recurrent if z � 
�z�� Given a set Z� let

orb�Z� �
�
z�Z

orb z� 
�Z� �
�
z�Z


�z��

Let C denote the set of citical points of f � and Cr denote the set of recurrent critical
points�

The critical values of fn are the points of fkC� � � k � n� So if a simply
connected neighborhood U does not meet orbC then all inverse branches of f�n

are well de�ned univalent functions in U �
The non�linearity� or distortion of a conformal map � � U �� C is de�ned as

Dis��� � sup
z���U

log

�������z����	�

���� �
Koebe Distortion Theorem� Let � � B�a� r� �� C be a conformal map� k � ��
Then the distortion of � in B�a� kr� is bounded by a constant C�k� independent of
�� Moreover C�k� � O�k� as k � ��

Let U   C be any domain� Let us select a base point z � U � and count its n
fold
preimages� zni � Let U

�n
i denote a component of f�nU containing zni � This speci�es

a �multi
valued branch� f�ni of the inverse map� �The reader can think of these
branches as functions living on appropriate Riemann surfaces� or as equivalence
relations� or just as a convenient way of describing the situation�� Singular points
for an inverse branch are critical values for the direct map� There is a natural way
of composing and restricting the inverse branches �with an appropriate adjustment
of the base points� which may change only the way of counting��

The following lemma is a variation of a well
known fact �compare ���� Proposi

tion ������ As it plays a crucial role for this paper� we will include the proof�

Shrinking Lemma� Let f be a rational map of degree d  �� Let U  C be
a domain which is not contained in any rotation set of f � and let k be a natural
number� Let us consider a family ff�ni g of all inverse branches in U with at most k
singular points �counting with multiplicities�� Then for any domain W compactly
contained in U � diam�f�ni jW � � � as n � � independently of i �where diam
denotes spherical diameter��

Proof� We �rst consider the case that U � and every pullback U�ni � are disks� Let
z � U be a point outside any rotation domain of f �

Let )n�i � D � U�ni be a Riemann mapping taking � to a preimage of z� where
D is the unit disk� Then �n�i � fn � )n�i is a proper branched covering from D
to U � with at most k critical points counted with multiplicity� �One can think of
the disk D here as the Riemann surface over U for the corresponding branch of the
inverse function��

Let ��� � � � � �k be a periodic cycle of f of length at least �� not meeting some
neighborhood of z� Then no preimage of this neighborhood meets the cycle either�
By normality of the family f�n�ig� there must be some disk D� compactly contained
in D such that )n�i�D

�� omits ��j for all n� i� and such that �n�i�D
�� � z� Thus

f)n�ig is a normal family on D��
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Because of the bound k on the number of critical points of �n�i� there is some �
such that the disk B � B�z� �� is contained in �n�i�D

�� for all n� i �one can show this
for example by noting that ���n�i�U n B�z� ��� contains an annulus whose modulus
is bounded below depending only on k and �� and goes to � as � � ��� We now
claim that the diameters diam�B�ni � go to � uniformly�

If not� we can extract a convergent subsequence )nk�ik jD� � and conclude that
for the limit point z� � lim)nk�ik ��� there is a neighborhood B� whose images
under arbitrarily high iterates are in U � This implies in particular that B� �and
therefore B� is disjoint from the Julia set �as any neighborhood intersecting the
Julia set covers it under some iterate of f�� By a smaller choice of � we may assume
it is compactly contained in the Fatou set� Thus� either forward iterates of B�
under f limit to an attracting"parabolic periodic cycle� or B� is contained in a
rotation domain� The former is impossible since fnk�B�� limits onto all of B� The
latter is ruled out by the choice of z�

It now follows that diam�W�n
i �� � for any W compactly contained in U � since

)�n�i must converge to � uniformly on compact sets�
To treat the general case� take a �nite covering of W by disks D compactly

contained in U � none of which are contained in a rotation domain� We must consider
the possibility that some of the pullbacks D�n

i are not disks� For any �  � there
exists N � N�D� ��  � such that� if D�n

i is a disk and n � N � then diamD�n
i � ��

For if not� we could �nd a subfamily of pullbacks� all disks� whose diameters fail to
shrink to �� The previous argument applies� so this is impossible�

Thus� let � be less than half the distance between any two critical values of
f � Then the preimage of any disk of diameter less than � is a disjoint union of
disks� It follows that� if some D�n

i is not a disk then some image D�m
i of it� with

� � m � N � is also not a disk� That is� the transition from disk to non
disk occurs
in the �rst N levels� Thus� if we remove from consideration the �nite number of
non
disks D�n

j with n � N � and all their preimages� we are left with a family in
which all preimages are disks� For this subfamily� we have uniform shrinking by
the previous arguments�

For each of the �nitely many non
disks D�n
j �n � N�� we can now repeat the

argument� covering W�n
j with disks not contained in rotation domains� and so on�

However now the bound on the number of singular points is k � �� since in the
transition from disk to non
disk at least two singular points must be used� We can
therefore obtain a uniform rate of shrinking for this family� by induction on k� This
concludes the proof�

A key result on critically non
recurrent rational maps is the following theorem
of Ma�n�e ��� closely related to the Shrinking Lemma�

Ma�n�e�s Theorem ���� Let f �  C �  C be a rational map� If a point x � J�f�
is neither a parabolic periodic point� nor belongs to the 
�limit set of a recurrent
critical point then� for all �  �� there exists a neighborhood U of x such that for
all n � � every connected component of f�n�U� has diameter � ��

Chebyshev and Latt�es examples� Let us �nally dwell on the remarkable ex

amples of rational functions whose dynamics often present some special features�

The Chebyshev polynomial pd of degree d can be de�ned by means of the func

tional equation pd�cosz� � cos�dz�� In other words� consider the dilation map
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Td � z �� dz on the cylinder C � C���Z� Then pd is the quotient of this map via
the involution z �� �z�

Its Julia set of pd coincides with the interval ��� ��� The endpoint � is always
�xed� while 
� is either �xed �for odd degrees� or pre
�xed �for even degrees�� Any
critical point is mapped by pd to one of the endpoints�

Similarly� the Latt!es examples come from the functional equations fd�P �z�� �
P �dz�� where P � C �  C is a Weirestrass P 
functin� deg fd � jdj� where d is not
necessarily integer� They can be viewed as quotients of torus endomorphisms� That
is� let T � C�( be a torus� where ( is a lattice� Then identifying z with �z sends
T to  C via a two
fold branched cover� If Td�(�  ( then the dialtion Td induces
a torus endomorphism� which further projects to a rational map of  C of degree
jdj�� �This occurs for all integer d	s on any torus� but also for some special tori and
special non
real values of d� take� e�g�� the standard lattice ( � Z� and d � �� i��

The Julia set of the Latt!e s examples is the whole sphere� Like in the Chebyshev
case� every critical point of a Latt!es map is pre
�xed�

The following dynamical characterization of these examles is well
known�

Proposition ����� Assume that a rational map f has a periodic point a � J�f�
such that every backward trajectory a � a�� a��� � � � which passes through a only
�nitely many times hits a critical point� Then f is either Chebyshev or Latt�es�

We will see in this paper how this property manifests itself in the lamination
structure�

For integer values of d the Latt!es maps are quasi
conformally deformable� since
( may be varied �or� since the constant line �eld on the torus is dilation invariant��
Conjectually they are the only examples which admit quasi
conformal deformations
on the Julia set� We will see a lamination reasoning behind this conjecture�

����� Geometry�

Hyperbolic geometry and convex hulls� We assume familiarity with the hy

perbolic space H� and its boundary at in�nity the Riemann sphere� �See e�g�
Beardon ��� Thurston ����� Most natural for us will be the upper half space model
C�R��

We recall some fundamental facts about hyperbolic convex hulls� Most of these
facts appear in Epstein
Marden ���� or can be obtained from that paper with a
small amount of e�ort�

The convex hull C � C�E�  H� of a closed set E on the Riemann sphere  C
is de�ned as the smallest convex set in H� whose closure in H� �  C contains E�
Equivalently� C is the intersection of all closed half
spaces in H� containing E at
in�nity� Provided E is not contained in a round circle� C � E is homeomorphic
to a closed �
ball� and �C is a subsurface of H�� which is isometric to a complete
hyperbolic surface� using the metric of shortest paths in �C�

The geometry of the complement H� �C is well
understood We begin with the
projection * � H� � C assigning to x � H� the point in C nearest to x� which is
unique by the convexity of C� This projection also extends continuously to  C�E�

Let d � H� � ���� be the distance function d�x� � dH��x�C�� This is a C�

function in H� � C� and its gradient is the unit vector tangent to the geodesic
through x and *�x�� and pointing away from *�x� �lemma ����� in ����� In fact
these geodesics are the integral lines of this gradient �eld� and they foliate H� nC�
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The gradient vector �eld itself is Lipschitz� with a uniform constant outside a
neighborhood C� � d����� ���� for any �xed �  � �see x���� in �����

The level surfaces S� � d����� are� therefore� C� submanifolds for �  �� and
are all homeomorphic via the gradient �ow� Since each gradient line terminates
at in�nity� the level surfaces can be identi�ed with  C n E� which we may label
S�� Thus we have a natural product structure identifying H� �  C n �C � E� with
������ S� for � � ������

The identi�cation between S� and S� is a quasiconformal map� and in fact the
following is a consequence of Theorem ����� in ����

Proposition ����� Let � denote the Poincar�e metric on S� �  C � E� Let �
denote the metric on ������ S� given in�nitesimally as

d�� � dr� � �cosh� r�d��

where r � ����� is the �rst coordinate� The identi�cation of ����� � S� with
H� � C��E� is bilipschitz with constant L depending only on �  ��

The dependence of C�E� �or C��E�� on E is continuous� with respect to the
Hausdor� topology on closed subsets of the ball H��  C� This is easy in our setting$
a proof for a more general context appears in Bowditch ��� In fact more is true�
on compact sets in H�� a small variation of E produces a locally homeomorphic
deformation of C� �

Lemma ����� Let there be given a closed E�   C a hyperbolic R�ball B�x�R�
around a point x � H� and �  �� For each �  � there is a neighborhood U of E�

in the Hausdor� topology on closed subsets of  C such that for any E � U  there
is a �� � ���bilipschitz map ,E � B�x�R� � H� �xing x such that ,���C��E�� �
C��E�� � B�x�R��

Remarks� ��� In particular� note that ��
neighborhoods of� convex hulls of
su�ciently nearby sets are� locally� homeomorphic� even if the sets themselves are
not homeomorphic� ��� We take C� rather than C itself here in order to avoid
the exceptional case when E� lies on a round circle� Then the convex hull fails to
have interior� and is not homeomorphic to convex hulls of nearby sets� In all other
situations the lemma holds for C� � C�

Proof� We give only a sketch� and refer the reader to ��� for a thorough treatment
of the techniques�

Using the product structure on H� � C��E� discussed above� there is a homeo

morphism h��E � C��E�� H� �S��E�� which collapses gradient lines to segments�
and is the identity on C�E�� Now note that� for a �xed ball B�x�R� and E suf

�ciently close to E�� the image h��E�

�B�x�R� � C��E��� misses E� Therefore the
map h����E � h��E�

is de�ned on B�x�R� � C��E��� Extend to the rest of B�x�R��
again using the product structure�
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Quasi	isometries and QC maps� We call a map h � H� � H� a �K� �� quasi

isometry if the following holds for all p� q � H��

�

K
d�p� q�� � � d�h�p�� h�q�� � Kd�p� q� � ��

The connection �in one direction� of quasi
isometries to quasi
conformal maps
is given by the following lemma� For a proof� see Thurston ��� or �in the more
general context of hyperbolic spaces in the sense of Gromov� ��� ����

Lemma ����� Given �K� �� there exists L so that any �K� ���quasi�isometry h �

H� � H� extends continuously to an L�quasiconformal homeomorphism eh �  C �
 C�
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