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Introduction

In these lecture notes we will present, starting from scratch, main
recent advances in real and complex one-dimensional dynamics. They
include three major themes: rigidity, renormalization, and measurable
dynamics. All these phenomena will be discussed in the context of the
quadratic family f. : z — 2% + ¢ which has proved to be a great model
for chaotic dynamics.

For ¢ € [—2,1/4], the map f, preserves an interval I.. When c is
“close” to 1/4, namely ¢ € (—3/4,1/4), the dynamics of f, is very sim-
ple: all orbits except the endpoints of 1., converge to a fixed point, the
dynamics is “regular”. On the other hand, for the endpoint, ¢ = —2,
the situation is very different: typical orbits behave like independent
random variables, the dynamics is “chaotic”.

For intermediate parameters, regular and chaotic regimes are inter-
twined in an intricate way. The dynamics is called regular if almost all
orbits converge to an attracting cycle (the corresponding maps are also
called hyperbolic). Tt is called stochastic if almost all orbits are equidis-
tributed with respect to an invariant measure with positive entropy.
The ultimate goal of these lecture notes is to present the following re-
sult, which provides us with a complete measure-theoretic picture of
dynamics in the quadratic family:

Regular of Stochastic Theorem. Almost all maps f., ¢ € [—2,1/4],
are either regular or stochastic.

Note that the set of regular maps is obviously open, while the set of
stochastic maps has positive measure Lebesgue measure [J, BC]. Thus,
non of these sets can be neglected in the measure-theoretic picture of
dynamics.

Three themes are hidden behind the Regular or Stochastic Theo-
rem.

The first theme is the Rigidity Phenomenon asserting that combi-
natorics of a non-hyperbolic map determines the map itself (Lecture 4).
This phenomenon is reminiscent to the Mostow Rigidity: geometry of
a (compact) hyperbolic manifold of dimension > 3 is determined by its
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6 INTRODUCTION

topology. And indeed, dynamical and geometric rigidity are intimately
related.

Quasiconformal maps and “puzzle techniques” will provide us with
the main tools to tackle the rigidity problem. The idea of the puzzle
techniques introduced in the context of the quadratic family by Yoccoz
is to break a dynamical picture (the Julia set) into pieces of differ-
ent scales and to study these pieces recursively passing from scale to
scale. Putting them back again, one gets an important topological and
geometric information about the original picture.

In Lecture 3 we describe the combinatorics of the puzzle based on
its “principal nest’ and the “generalized renormalization”. We then
outline a proof of the crucial geometric property of the puzzle, linear
growth of its “principal moduli” [L4].

The Rigidity theory yields density of hyperbolic maps in the real
quadratic family.

The second theme is the Stochastic Phenomenon (Lecture 5). Only
maps that are not “infinitely renormalizable” have a chance to be sto-
chastic. In fact, only maps with sufficiently slow recurrence of the
critical point have this chance. So, the game is to find such a con-
dition on the recurrence which yields stochasticity, on the one hand,
and which is satisfied for almost all maps which are neither hyperbolic
nor infinitely renormalizable. Such a criterion can be formulated in
terms of the principal nest of the puzzle (Martens & Nowicki [MN]).
Applying the puzzle techniques to the parameter plane (by breaking
the Mandelbrot set into “parapuzzle pieces”), one can prove that this
criterion is indeed typically satisfied:

Theorem A [L5]|. Almost all quadratic polynomials f. which are nei-
ther hyperbolic nor infinitely renormalizable are stochastic (satisfying
the Martens-Nowicki criterion).

The last theme is the Renormalization Theory (Lecture 6). It gives
us an explanation of quantitative universalities observed in different
families of dynamical systems. After its discovery in 1970’s by Feigen-
baum and independently by Coullet & Tresser, a major effort has been
made in order to justify it mathematically. It was recently completed
in the works of Sullivan [S2], McMullen [McMZ2]|, and the author [L6]
consecutively dealing with different parts of the Conjecture. A charac-
teristic feature of this development is that it is almost completely based
upon the methods of holomorphic dynamics, though the final results
can be formulated in purely real terms.

A generalization of the Renormalization Theory to all possible com-
binatorial types given in [L7] leads to the following assertion:
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Theorem B [L7]. The set of infinitely renormalizable real parameters
has zero Lebesgue measure

Theorems A and B together imply the Regular or Stochastic The-
orem.

Theory of quadratic-like maps originated by Douady & Hubbard
[DHZ2] has played a crucial role in all stages of the above development.
The 2nd lecture is devoted to this theory.

The basic background in real and complex one-dimensional dynam-
ics (in the context of the quadratic family) is given in the 1st lecture.

These notes are based on the European Lectures given by the author
in May - June, 1999, in Barcelona, Copenhagen, and St Petersburg.
(Similar lecture series were given in Kyoto (2000), Trieste (2001), and
at the Dynamics seminar in UCLA (1998).) Of course, the notes do
not exactly correspond to the lectures, even as the number of lectures
is concerned. However, we tried to follow the spirit of the lectures, by
focusing on the conceptual background and basic constructions at ex-
pense of technical work-out, and by making various informal comments
throughout the text.

For a preview of these lectures, the reader can look at author’s
article in the Notices of the AMS (October 2000) “The quadratic family
as a qualitatively solvable model of chaos”.

Notations and terminology

As usual, C is the complex plane; R is the real line;
N = {1,...} is the set of natural numbers; Z is the set of integers,
Z, = NU{0};

D(a,r) = {z: |z —a|] < r} is the open round disk of radius r,

D, =D(0,r), D= Dy; D" =D\ {0};

T, = 0D, is the circle of radius r, T = Ty;

A(r,R) ={z:r < |z| < R};

cl X denotes the closure of a set X;

U € V means that U is compactly contained in V', that is, clU is
compact and is contained in V.

A topological disk means a simply connected domain in R?;

An (open/closed) Jordan disk in R? is a (domain/closure of a domain)
bounded by a Jordan curve.

A topological annulus means a doubly connected domain in C.

A tiling of a set X C R? is a covering of X with closed Jordan disks
(tiles) D; C X with disjoint interiors.
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Given a measurable set X C R, |X| will stand for its Lebesgue
measure.

A dynamical system is a self-map f of some topological space M,
the “phase space”. Usually f is assumed to be continuous; however,
we will also deal with discontinuous and even partially defined maps.
The n-fold iterate of f, wherever it is defined, is denoted by f".

The orbit (= trajectory) of a point © € M, orbs(r) = orb(x), is
{ffe}nez,.
The limit set of the orb(x) is denoted ws(z) = w(x).

A point « is called fized if fa = a.

A point « is called periodic if fPa = a for some p € N. The smallest
p with this property is called the period of . The orbit of a periodic
point, {f”a}ﬁ;t, is naturally called a periodic orbit, or a cycle.

A point z is called preperiodic if f™x is periodic for some n € N, but x
itself is not periodic.

Assuming f is smooth, a point z is called precritical if f¥x is critical
for some N|inZ,.

A set X is called invariant if fX C X; an invariant set is called
completely invariant if f~'(X) C X.

Given two dynamical systems, f on space S and f on space S, a

map h : S — S (maybe partially defined) is called (f, f)-equivariant
on aset X C S if h(fz) = f(ha) for z € X. We will skip the reference
to (f, f) as long as it is clear from the context.
If h above is a continuous surjection then it is called a topological
semi-conjugacy between f and f. If h is a homeomorphism then it is
called a topological conjugacy, and the maps f and f are called topologi-
cally conjugate. This notion can be further refined to smooth/quasiconformal /conformal
etc. conjugacy depending on the regularity of h.

In these notes, a “proot” will usually mean an idea or an outline of
the proof. We will rarely supply full proofs of the results. The reader
interested in the full technical proofs should either reconstruct them
him/herself or consult the sources referred to in the Bibliographical
Notes at the end of every lecture.

We will use the following reference system. A reference to, say, §3.1
from the 2nd lecture, will look like “see Theorem I1.2.1”. However,
if the reference is given in the same (2nd) lecture, then “IT” will be
skipped: “see §2.1”7. In the references to mathematical statements
(Theorems, Propositions, etc.) the first digit stands for the chapter
where the statement appeared.



LECTURE 1

Julia sets and the Mandelbrot set

Let f = f.: 2+ 22 + c. Dependence of a certain object on f will
be also marked as dependence on the parameter ¢, e.g., J(f) = J.,
Bf = Bc.

1. Julia sets

1.1. Looking from infinity. Extend f to an endomorphism of
the Riemann sphere C. This extension has a critical point at co fixed
under f. We will start exploring the dynamics of f from there. The
first observation is that C \ Dy is f-invariant for a sufficiently big
R, and moreover f"z — oo as n — oo for z € C ~ Dg. This can be
expressed by saying that C~\. Dy belongs to the basin of infinity defined
as the set of all escaping points:

D¢(oco) ={z: f"z2 = 00, n = o0} = [j F7"(C \ Dg).
n=0

PROPOSITION 1.1. The basin of infinity D¢(0c0) is a completely in-
variant domain containing oo.

1.2. Basic Dichotomy. We can now introduce the fundamental
dynamical object, the filled Julia set K(f) = C ~ D;(00). Proposi-
tion 1.1 implies that K(f) is a completely invariant compact subset of
C. Moreover, it is full, i.e., it does not separate the plane (since Ds(oco)
is connected).

The filled Julia set and the basin of infinity have a common bound-
ary, which is called the Julia set, J(f) = OK(f) = 0Ds(c0). Figures
1.1-1.2 show several Julia sets J. = J(f.) for different parameter values
c. Generally, topology and geometry of the Julia set is very compli-
cated, and it is hard to put a hold on it. However, there is the following
rough classification:

THEOREM 1.2. The Julia set (and the filled Julia set) is either con-
nected or Cantor. The latter happens if and only if the critical point
escapes to infinity: f"(0) — 0o as n — 0o (see Figure 1.3).

9



10 1. JULIA SETS AND THE MANDELBROT SET

FIGURE 1.1. The Julia set of z — 22 — 1. This map has
a superattracting cycle of period 2.

FiGURE 1.2. The “Douady rabbit”. This map has a
superattracting cycle of period 3.

This Basic Dichotomy is the first example of how the behavior of
the critical point influences the global dynamics. In fact, at least on
the philosophical level, the dynamics is completely determined by the
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Ficure 1.3. A Cantor Julia set.

behavior of this single point. We will see many confirmations of this
principle.

EXERCISE 1.3. Assuming c is real, let 3 stand for the positive fixed
point of f.. Show that J. is connected if and only if ¢ € [—7,3].
Moreover, in the connected case, J. "R = [—7, 3].

2. View from inside

According to Poincaré (in free translation), periodic orbits give us
the only opening to otherwise unaccessible corners of dynamics. So, let
us try to look through this opening at the phase space of the quadratic
maps.

2.1. Rough classification of periodic points. Consider a pe-
riodic point « of period p. The local dynamics near its cycle depends
first of all on its multiplier A = (f?)'(z).

If |]A\| < 1 then « is called attracting. The orbits of all nearby
points exponentially fast converge to the cycle a = {f*a 2;(1) and, in
particular, are bounded. Thus, attracting cycles belong to F(f).

A particular case of an attracting cycle is a superattracting one
when |A] = 0. Nearby points converge to a superattracting cycle at a

superexponential rate.
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The basin of attraction of an attracting cycle a is the set of all
points whose orbits converge to a:

Di(a) ={2: f"2 > avasn — 0.}

The union of components of Df(a) containing the points of a is called
the immediate basin of attraction of the cycle a. We will now state
one of the most important facts of the classical holomorphic dynamics:

THEOREM 1.4. The immediate basin of attraction of an attracting
cycle contains the critical point 0.

It follows that a quadratic polynomial can have at most one at-
tracting cycle. Of course, the period of this cycle can be arbitrary big.
If a quadratic polynomial does indeed have an attracting cycle, it is
called hyperbolic. For instance, polynomials z — 22, z — 22 — 1 (see
Figure 1.1 ) are hyperbolic. Though dynamically non-trivial, it is a
well understood class of quadratic polynomials:

THEOREM 1.5. If a quadratic polynomial f has an attracting cycle
a, then Dy(a) = int K(f) and J(f) has zero Lebesgue measure.

Note that quadratic polynomials with Cantor Julia set are also
called hyperbolic. A reason is that in this case the orbit of the critical
point still converges to an attracting fixed point (at 0o). Quadratic
polynomials with connected Julia set but without attracting periodic
points are not hyperbolic (by definition).

If |[A\| > 1 then « (and its cycle) is called repelling. Nearby points
exponentially fast escape from a neighborhood of a repelling cycle.
Repelling periodic points belong to the Julia set and, in fact, they are
dense in the Julia set, so that the Julia set can be alternatively defined
as the closure of repelling cycles. It gives us a view of the Julia set
“from inside”.

If |]A\| =1 then « (and its cycle) is called neutral. Local dynamics
near a neutral point delicately depends on the arithmetic of the rotation
number 6 = % arg \. If # is rational then « is called parabolic; otherwise
it is called errational.

Parabolic points belong to the Julia set. The basin of attraction of
a parabolic cycle a is defined as follows:

Di(a) ={z: f"2 > aasn — oo but f"z € a for any n € Z,}.

(By excluding the orbits landing at « one makes the basin open.) As
in the attracting case, the basin of a parabolic cycle also must contain
the critical point. Hence a quadratic polynomial can have at most one
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parabolic cycle. A polynomial with a parabolic cycle is naturally called
parabolic.

Irrational periodic points may or may not belong to the Julia set
(depending on the Diophantine properties of its rotation number). Ir-
rational periodic points lying in the Fatou set are called Siegel, and
those lying in the Julia set are called Cremer. The component of F'(f)
containing a Siegel point is called a Siegel disk. Local dynamics on a
Siegel disk is quite simple: If U is a Siegel disk of period p containing
a periodic point « with rotation number 6, then f?|U is conformally
conjugate to the rotation of D by 6.

THEOREM 1.6. A quadratic polynomial can have at most one non-
repelling cycle

If it has one, it can be non-contradictory classified as either hyper-
bolic, or parabolic, or Siegel, or Cremer. We will refer to a parameter
value ¢ € C as hyperbolic, parabolic, etc, if the corresponding map f,
is such. We will also say that f. (and the corresponding parameter c)
is purely repelling if all periodic points of f. (except oo, of course) are
periodic.

A polynomial f, (and the corresponding parameter value c) is called
Misiurewicz if the critical point 0 is preperiodic. In this case, the orbit
of 0 lands at some repelling cycle.

3. External rays and equipotentials

3.1. Bottcher coordinate. The fact that oo is a superattracting
fixed point leads to a precise dynamical model for any polynomial near
00:

THEOREM 1.7. Any quadratic polynomial f. near oo is conformally
conjugate to z — 2%. The conjugacy B, : U, — C ~\ Dy is unique and
15 given by the following explicit formula:

B.(z) = lim(ffz)lﬂn, (1.1)

where the root in the right-hand side is selected so that (f12)Y?" ~ 2
as z — 00. Moreover, B.(z) ~ z near 0.

The function B, is called the Béttcher coordinate near oo, or the
Bottcher function associated with f.. By definition, it satisfies the
equation

B(fez) = (Be(2))” (1.2)
called the Bottcher equation.
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3.2. Analytic extension. The first question asked in classical
analysis about an analytic function is what is its natural domain of
definition. It turns out that in the case of the Bottcher function, this
question can be fully addressed by means of the Bottcher equation. If
the domain U, does not contain the critical value ¢ then by means of
(1.2) B. can be lifted to the preimage f;'U,. This give the analytic
extension of f. to this bigger domain. If it does not contain c¢ either
then we can lift B, to the next preimage f,2U.,, etc.

In the case of disconnected Julia set, this process can be continued
to infinity given the analytic extension of B, to the whole basin of oo,
C \ K(f.). In the disconnected case, we can proceed until we hit the
critical value and then carry one more lift so that the boundary of the
domain will contain 0. Summarizing this consideration, we obtain:

ProprosITION 1.8. The Bottcher function admits the analytic ez-
tension to a univalent map B, : Q. — C\Dg, on an invariant domain
Q.. If J(f.) is connected then Q. = C\ K(f.) and R. = 1. Otherwise
Q. is bounded by a “figure eight” centered at the origin, and R, > 1.
picture

Notice that in the case of disconnected Julia set, ¢ € €2, so that
the Bottcher function is well defined at ¢. This function, B.(c), will
play a very important role.

In the connected case, we obtain an explicit dynamical formula (1.1)
for the Riemann map C' \ K(f.) - C~ D. Given very complicated
fractal structure of the Julia set, this is quite a surprise! In fact, the
logic can be reversed, and the Bottcher function can be produced by
means of the Riemann Mapping Theorem:

EXERCISE 1.9. If the Julia set J(f.) is connected, then the Rie-
mann mapping C \ K(f.) — C \ D tangent to z at oo conjugates f,
to fo: 2 22

3.3. Two invariant foliations. The map f; : z — 2% has two
invariant foliations on C\ D, the foliation by straight rays {re* ™, 0 <
r < oo} and the foliation by round circles {re* 0 < § < 2r}. By
means of the Bottcher function, these two foliations can be transferred
to the domain €. providing us with two invariant foliations for f.. The
leaves of these foliations are called external rays and equipotentials re-
spectively. An external ray is specified by its external angle #, while
an equipotential is specified by its radius 7. Under the dynamics, the
external angle is doubled, # +— 26 mod 1, while the radius is squared,
r — r2. It follows that the rays with rational external angles # = ¢/p
are either periodic or preperiodic depending on whether the denomi-
nator p is is odd or even.



3. EXTERNAL RAYS AND EQUIPOTENTIALS 15

In the disconnected case, the Bottcher function starts to branch if
we try to extend it further to preimages of €).. However, the Green
function, G.(z) = log|B.(z)|, does not branch. Indeed, by means of
equation G(fz) = 2G(z) it can be harmonically extended to the whole
complement of K(f.). This allows us to extend two external foliations
to the whole complement of K(f). However, these foliations will have
singular points at the origin and all its preimages under iterates of f..

3.4. Landing rays. This provides us with a good dynamical pic-
ture outside the filled Julia set (particularly, in the connected case).
The next idea is to try to understand the Julia set by exploring how
these foliations degenerate near it. This leads us to the problem of
landing of external rays: is it true that any ray lands at some partic-
ular point of the Julia set? If the function B, : C\D — C \ K(f.)
admitted a continuous extension to the unit circle T, the answer would
certainly be “yes”. But continuity of B, ! depends on fine topological
properties of the Julia set:

Carathéodory Theorem. Let K be a full compact subset of the
complex plan and 1) : C~ D — C ~. K be the corresponding Riemann
mapping. Then v admits a continuous extension to T if and only if the
set K is locally connected.

It turns out that unfortunately the Julia set is not necessarily locally
connected. Still, there are always some landing rays:

THEOREM 1.10. Assume that the Julia set J(f) is connected.

Any ray with rational external angle with odd denominator lands at
some repelling or parabolic periodic point of the Julia set. Vice versa,
any repelling or parabolic periodic point is the landing point of at least
one but at most finitely many external rays. All these rays have external
angles with odd denominators.

Similar statements hold for rays with rational external angles with
even denominators if to replace periodic points with preperiodic ones.

3.5. Fixed points. In particular, the ray with external angle § =
0 (the “zero-ray”) lands at some fixed point of f. Moreover, this point
is either repelling or parabolic with multiplier 1. This fixed point is
called 8 = ;. It turns out that the zero-ray is the only ray landing at
B.
Another fixed point is called o = ay. Note that if o = 3 then this
is a parabolic fixed point with multiplier 1. This happens only for one
quadratic map, f: z — 2% +1/4.
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FIGURE 1.4. The Mandelbrot set

ProprosiTION 1.11. Let f be a quadratic polynomial with connected
Julia set. If the fixed point a is repelling then it is the landing point of
p > 1 rays which are cyclically permuted by the dynamics.

The rays landing at the a-fixed point are called a-rays.

Thus, in the case of connected Julia set with both fixed points
repelling, these points can by dynamically distinguished: one of them,
B3, is the landing point of a single invariant ray, another one, «, is
a landing point of several cyclically permuted a-rays. One can also
characterize 8 as a non-dividing fixed point, in the sense that K(f) \
{3} is connected, while point « is characterized as dividing.

In the case of disconnected Julia set, there is no dynamical differ-
ence between the two fixed points.

4. The Mandelbrot set

4.1. Definition. The Mandelbrot set depicted on Figure 1.4 is the
bifurcation diagram of the quadratic family. This single picture encodes
all metamorphoses of the Julia sets J(f.) as ¢ varies, from simplest to
most intricate forms. The set itself is very complicated but its formal
definition motivated by the Basic Dichotomy is very simple:

The Mandelbrot set M is the set of parameter values ¢ € C such
that the corresponding Julia set J(f.) is connected. Equivalently,

C~M={ceC: f0)— ocoasn— oo}
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Note that p,(c) = f7(0) is the polynomial in ¢ of degree 2"~ !. Here
is an initial piece of this sequence of polynomials:

O crcdtem (E+e)+e— (F+o)+e) +em ...

EXERCISE 1.12. Show that if |p,(¢)| > 2 then ¢ € C\M. Moreover,
M C D, and MAR = [—2,1/4].

The first part of this exercise gives one a simple algorithm of plot-
ting the Mandelbrot set on the computer screen. It also easily implies:

ProprosiTION 1.13. The Mandelbrot set is a full compact subset of
the complex plane.

Since M is full, the connected components of int M are topological
disks. Since attracting cycles persist under perturbations, any hyper-
bolic parameter value ¢ belongs to int M. A component H of int M is
called hyperbolic if all parameters ¢ € H are hyperbolic. Otherwise,
H is called queer. If H is queer then non of the parameters ¢ € H is
hyperbolic. (Conjecturally, queer components do not exist at all.)

PROPOSITION 1.14. Any point ¢ € OM can be approximated by hy-
perbolic parameter values.

COROLLARY 1.15. If there are no queer components, then hyper-
bolic maps are dense 1n ML

Given a hyperbolic component H, let A(c) denote the multiplier
of the attracting cycle of f.. By the Implicit Function Theorem, A is
holomorphic. Moreover, A extends continuously to the closure of H
and maps 0H to the unit circle. Hence A\ : H — D is a finite degree
branched covering. In fact, much deeper fact is valid (see Theorem 4.13
in 4th lecture):

THEOREM 1.16. The multiplier function A univalently maps H onto
the unit disk D.

Hence A has a unique zero cy in H called the center of H. At
this point the attracting cycle becomes superattracting. Moreover, A
extends to a homeomorphism 0H — T, so that there exists a unique
parameter ¢ € 0H with A(¢) = 1. This parameter is called the root
of H. Furthermore, there is a dense set of parabolic points on O0H
corresponding to values A = > with rational rotation numbers q/p €
[0,1).

Siegel and Cremer parameters on 0H correspond to irrational rota-
tion numbers . Which case, Siegel or Cremer, actually occurs depends
on the Diophantine properties of 6.

Let us finish this section with the following easy result:
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PROPOSITION 1.17. All neutral parameters lie on OM.

4.2. Cascades of bifurcations. Let us now take a little walk
around M. Our departing point is the origin, ¢ = 0, which is the
beginning of the genealogy of the quadratic family. The map fy(z) = 2>
has a superattracting fixed point 0 which attracts all points of the unit
disk D. The corresponding Julia set J(fy) is just the round circle T.

If we perturb the parameter a little bit then this picture will topo-
logically persist: any nearby map f. : z ~ 22 + ¢ has an attracting
fixed point o, whose basin D(«) is a Jordan disk. The dynamics on
the Julia set J(f.) = 0D(«) is topologically conjugate to the dynamics
of 2% on the unit circle.

EXERCISE 1.18. Let Hy be the component of int M containing 0.
Show that Hy is a Jordan disk bounded by the cardioid

270 470
& &
0<0<1.

2 4’

The above cardioid is called the main cardioid of M. Call it C.
On C, the attracting fixed point a, becomes neutral with multiplier
A = 2™ The cardioid has a root at ¢ = 1/4 which is called the cusp
of the Mandelbrot set.

Parabolic points on C play a distinguished role since they are points
of bifurcations of attracting cycles. These bifurcations are easily visible
on the picture. For instance, if we cross the main cardioid at the real
point ¢ = —3/4 (corresponding to # = 1/2), we observe the doubling
bifurcation: the fixed point a, will become repelling and will pass its
attractiveness to a cycle =, of period 2. If we cross —3/4 moving along
the real line and watching only the real slice of the picture, then it
appears that -, is “born” from «, at the moment of bifurcation. (In
fact, the cycle v, was complex before the bifurcation, collapses into the
fixed point a,. at the moment of bifurcation, and afterwards appears
on the real line as an attractive cycle.)

Parameter values ¢ for which the cycle v preserves its attractiveness
fill a hyperbolic component H touching Hy at —3/4. At the center of
this disk, ¢ = —1, v becomes superattracting. The corresponding Julia
set is depicted on Figure 1.1

Similarly, if we cross the main cardioid at points with rotation num-
ber § = 1/3 or 2/3, we observe the tripling bifurcation and the cor-
responding hyperbolic components attached to the main cardioid at
the bifurcation points. The corresponding filled Julia sets are usually
referred to as Douady rabbits.

In general, if we cross the cardioid at a point with rotation number
0 = q/p, we observe a bifurcation of birth of an attracting cycle of

CcC =
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period p. The domain where this cycle preserves its attractiveness is
a hyperbolic domain attached to the main cardioid at the bifurcation
point. These components are called satellite hyperbolic components of
int ML

Similarly, the boundary of any satellite component contains a dense
set of parabolic bifurcation points where higher order attracting cycles
are born, etc. In this way we obtain an infinite tree of hyperbolic
components which are born through a series of the above bifurcations.
They, however, do not exhaust all hyperbolic components. For in-
stance, one can see on Figure 1.4 a distinguished component of period
3 which does not appear in this way. This component gives birth to
infinitely many new satellite components.

A hyperbolic component is called primitive if it is not born via
bifurcation from another hyperbolic component. There are infinitely
many primitive hyperbolic components in M. On the picture, it is
easy to distinguish primitive components from the satellite ones: the
former have cusps at the corresponding root points, while the latter
are bounded by smooth curves.

4.3. Uniformization of C ~ M.

THEOREM 1.19. The Mandelbrot set M is connected. The Rie-
mann mapping ¢ : C M — C D tangent to id at oo is explicitly
given by the formula

Dpp(c) = Be(c), (1.3)
where B, is the Bdttcher function of f..

PROOF. First, recall from §3.2 that the expression B.(c) makes
sense for ¢ € C M. Second, by (1.1), it admits the following explicit
formula:

B(0) = Jim po(@)

where p,(c) = f7(0). This formula implies that B.(c) is a proper
holomorphic map from C ~ M onto C \. ID. Moreover, it is tangent to
id at oo and hence has degree 1. Hence it is a univalent. O

Formula (1.3) gives a remarkable dynamical meaning to the Rie-
mann mapping ®y;. Given a quadratic map f., ¢ € C~ M, we can
interpret the point ¢ in two different ways: as the parameter of f. and
as the critical value of f.. Accordingly, we can calculate the uniformiz-
ing coordinate of this point by means of the parameter uniformization
®pr and by means of the dynamical uniformization B.. Formula (1.3)
shows that both ways lead to the same result!
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4.4. Parameter rays and equipotentials. The uniformization
&y allows us to construct two foliations in the complement of the
Mandelbrot set. Indeed, consider the foliations by straight rays and
round circles on C\ID and transfer them by means of ®,,' to C\M. The
leaves of these foliations are called parameter rays and equipotentials
respectively. As in the dynamical settings, the rays and equipotentials
are specified by their external angles and radii respectively. A ray is
called rational if it has a rational external angle 6 € Q/Z.

The dynamical meaning of the parameter rays and equipotentials is
not obvious at first glance but formula (1.3) provides it. For instance,
a parameter ¢ € C~ M belongs to a parameter ray of angle § when the
critical value ¢ belongs to the dynamical ray of the same angle 6.

As in the case of Julia sets (§3.4), we can now try to understand the
structure of the Mandelbrot set by describing how the above foliations
degenerate near it. This leads us to the problem of landing of the
parameter rays and, via the Carathéodory theorem, to the problem of
local connectivity of M. The latter problem turned out to be in the
very heart of holomorphic dynamics (see §4.7 and §IV.1.2). Though
it is still open, nice landing properties of rational parameter rays are
available (compare §3.4):

THEOREM 1.20. The main cusp ¢ = 1/4 is the landing point of the
zero parameter ray.

Any non-zero parameter ray with odd denominator lands at some
bifurcation parabolic point of the Mandelbrot set. Moreover, any such
point is the landing point of exactly two rational rays with odd denom-
wmator.

Any non-zero parameter ray with even denominator lands at some
Misiurewicz point.

The two rays landing at some bifurcation parabolic point ¢ divide
the parameter plane into two regions. The region W, that does not
contain the origin is called the wake of ¢. The set

L.=cMnW,)=MnW,) U{c}
is called the limb of M at c.

4.5. Ray portraits. Let . be a repelling or parabolic cycle of a
map f.. If J(f.) is connected then according to Theorem 1.10, there
are finitely many rational rays landing at this cycle. The configuration
of these rays (with external angles attached to them) up to a homeo-
morphism of the complex plane is called the ray portrait of a.. picture
We say that this portrait is non-trivial if there are different rays in the
portrait landing at the same point.
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If J(f.) is disconnected then the foliation of external rays has sin-
gularities. Still, we can consider the portraits of rays landing at a..
Note that this portrait can consist of infinitely many rays.

LEMMA 1.21. If the cycle . is repelling and all rays landing at o,
are non-singular, then the ray portrait of a. is stable under a small
perturbation of c.

Starting with this lemma, one can proceed to a full description of
the parameter regions with a given ray portrait:

THEOREM 1.22. Let ¢y € M be a bifurcation parameter and o,
be the corresponding parabolic cycle. Then there is a unique repelling
cycle o, ¢ € W, holomorphically depending on c such that o, — o,
as ¢ — cy.

The ray portrait of o is the same as the ray portrait of o, .

If c € M and ! is a repelling cycle of f. with a non-trivial ray
portrait, then there is a unique bifurcation point ¢y such that ¢ € L.,
and ol = a,.

In particular, let us consider bifurcation points on the main car-
dioid:

PROPOSITION 1.23. Let ¢y be the bifurcation point with rotation
number § = q/p on the main cardioid C, and let o, ¢ € W,,, be
the corresponding repelling fized point in the wake of cy. Then there

are exactly p external rays landing at o and these rays are cyclically
permuted by f. with rotation number 6.

The number # in the above proposition is called the combinatorial
rotation number of the fixed point c.

4.6. Combinatorics and local connectivity of Julia sets.
Given a quadratic polynomial f. with connected Julia set, consider
the following equivalence relation ~ on the rational circle Q/Z: 6 ~ ¢’

(&
if the external rays with angles 6 and #' land at the same point.
Now consider two quadratic polynomials f. and f; with connected
Julia set that do not have neutral cycles. They are called combina-

torially equivalent if the corresponding equivalence relations ~ and ~
[+

coincide.
The equivalence relation ~ gives rise to a “combinatorial model” of
c

the Julia set.

Consider the unit disk D as a model of the hyperbolic plane. Recall
that the hyperbolic geodesics in this model are given by arcs of circles
orthogonal to the unit circle T.
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Two pairs of points 6y, 6 and %, t; on T are called linked if the
hyperbolic geodesics 7y, 9, and v, 4, intersect in . In this case any
two arcs 6, and 09 in D ending respectively at 6, 6 and t;, to must
intersect. Two subsets X and Y on the unit circle are called linked if
they contain two pairs of linked points 0;,0, € X and t;,t, € Y.

Let us now extend the equivalence relation ~ to the whole unit circle

c
by declaring two angles # and ¢ equivalent if there are two sequences of
pairwise equivalent rational angles #,, — 6 and ¢,, — t. We will use the
same notation ~ for the extended equivalence relation. Note that the

corresponding ecquivalence classes are closed. One can show that any
two of these classes are unlinked. clear??
A convex hull h(X') of a closed set X C T is the union of all geodesics
joining various pairs of points of X. It is closed and A(X)NT = X.
Consider now convex hulls h(X) of all equivalence classes X C T
of ~ Since the equivalence classes are pairwise unlinked, the corre-

sponding convex hulls are pairwise disjoint. Thus, the complex plane
is partitioned into a disjoint union of these convex hulls and single
points. Let us think of this partition as an equivalence relation on
C that extends ~. We will keep the same notation for the extended

C
relation.

THEOREM 1.24. The quotient C/ ~ is homeomorphic to the plane
c

R?. There erists a natural continuous surjection j, : K. — D/ ~.

C
Moreover, j. is a homeomorphism if and only if K. is locally connected.

The set D/ ~ is called the combinatorial model for the filled Julia

set, K.. Note that this set is always locally connected, so that the “only
if” statement in the last theorem is obvious. Clearly, combinatorially
equivalent quadratic maps have the same model.

It is instructive to understand fibers of the projection j. in Theorem
1.24. To this end, let us introduce a couple of terms. A pair of rational
external rays of f landing at the same (periodic or pre-periodic) point
is called a dividing pair of rays (since it divides the plane into two
regions). A puzzle piece of f is a closed Jordan disk bounded by finitely
many dividing pairs of rays and arcs of equipotentials.

It is clear that two points z and ( of J. belong to different fibers
of the projection j. if there is a dividing pair of rays which separates z
from (. This leads to the following statement:

LEMMA 1.25. Assume ¢ € M 1is purely repelling. Then the fiber of
Je containing z € J. is the intersection of all puzzle pieces around z.
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Hence, local connectivity of the Julia set .J. at some point z € J,
is equivalent to shrinking to z of the puzzle pieces around z. This
observation is a powerful key to the problem of local connectivity of
Julia sets (see §II1.3.5).

Let us finish with a statement which directly relates local connec-
tivity to shrinking of puzzle pieces:

LEMMA 1.26. For any puzzle piece P for f. (c € M), the intersec-
tion PN K, is connected.

ProoF. The intersection P N K, consists of finitely many points
ag. Moreover, for any connected component X of K.\ P, the closure
X touches P at a single point a,.

Assume PN K. can be decomposed into two disjoint closed subsets
Q"' and Q2. Let K* be the union of * and those components of K.~ P
that touch Q°. Then the K* are disjoint closed sets such that K, =
K'U K? contradicting connectivity of K.,. O

4.7. MLC and the combinatorial model of M. We will now
carry a similar construction in the parameter plane. Starting with
rational parameter rays, we can define an equivalence relation ~ on

the rational circle Q/Z, and then promote it to an equivalence relation
on the whole parameter plane (denoted in the same way). Similarly
to the dynamical situation, it gives us a combinatorial model for the
Mandelbrot set:

THEOREM 1.27. The quotient C/ ~ 15 homeomorphic to the plane

R?. There exists a natural continuous surjection jyr : M — D/ ~.

Moreover, the fiber F° of jm at ¢ is a single point if and only if M is
locally connected at c. Thus, jy 1s a homeomorphism if and only of M
15 locally connected.

Thus, if the Mandelbrot set was locally connected, we would have
an explicit topological model of it. There is a general belief that this
is indeed the case:

MLC Conjecture. The Mandelbrot set is locally connected.

We can proceed further with the definition of parameter puzzle
pieces (or briefly, parapuzzle pieces) which is completely analogous to
the above definition of dynamical puzzle pieces but uses rational pa-
rameter rays instead of the dynamical rays.

LEMMA 1.28. Assume c € M is purely repelling. Then the fiber F°
of Jm 1s the intersection of all puzzle pieces containing c.
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Hence, local connectivity of the Mandelbrot M at some point ¢ €
OM which does not belong to the boundary of a hyperbolic component
is equivalent to shrinking to ¢ of the parameter puzzle pieces around c.
Also, similarly to Lemma 1.26 we have:

LEMMA 1.29. For any parameter puzzle piece P, the intersection
P NM s connected.

Let us finally mention that in the above discussion (in both dynam-
ical and parameter settings) it is sufficient to work only with rational
rays with odd or even denominators.

5. Real quadratic family

5.1. Real bifurcations. According to Exercise 1.12, the real slice
of the Mandelbrot set is the interval [—2,1/4]. Moreover, for ¢ €
[—2,1/4], the map f. has an invariant interval /., and we will be much
interested in the dynamics on this interval. It is illustrated on Fig-
ure 1.5

Let us consider the open set of hyperbolic parameters ¢ € [—2,1/4].
Connected components of this set are called hyperbolic windows. On
Figure 1.5 one can see quite a few hyperbolic windows but of course
there are infinitely many invisible ones. The first hyperbolic window
is the interval Wy = (—3/4,1/4) where there exists an attracting fixed
point . (in other words, this window is the real slice of the hyperbolic
component Hy bounded by the main cardioid, see §4.2).

After the first doubling bifurcation at point ¢ = —3/4 the attracting
cycle of period 2 is born and we observe the corresponding hyperbolic
window [—5/4, —3/4]. This is the beginning of the cascade of doubling
bifurcations and the corresponding sequence of satellite hyperbolic win-
dows of periods 2". These windows converge to the Feigenbaum point
cp,=—1.401....

Another distinguished window visible on the picture corresponds
to period 3. It originates its own cascade of doubling bifurcations and
satellite windows. In fact. on the real line only doubling bifurcations
can occur, so that other satellite components are not presented over
there.

If we remove all hyperbolic windows then we are left with a closed
set, of non-hyperbolic maps. Its connected components which are not
singletons are called queer intervals. We will show in §IV.4.4 that in
fact they do not exist, so that the hyperbolic windows are dense in
[—2,1/4].
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FiGURE 1.5. Real quadratic family.  This picture
presents how the limit set of the orbit {f(0)}2°, bifur-
cates as the parameter ¢ changes from 1/4 on the right
to —2 on the left. Gaps in the black regions represent
hyperbolic windows. In the beginning (on the right) you
can see the cascade of doubling bifurcations. This picture
became symbolic for one-dimensional dynamics

5.2. S-unimodal maps. Since the iterates of quadratic polyno-
mials are not quadratic any more, we need to consider a bigger class of
interval maps.

Let I = [—f3, 3] be a 0-symmetric interval and f : (I,01) — (I, 0I)
be a continuous even map. Assume that f is strictly monotone on each
component = of I ~ {0} and has a single extremum at 0. Such a map
is called unimodal. Assume for definiteness that 0 is the minimum, and
hence [ is a fixed point of f. Let ¢ = f(0).

The theory of unimodal maps is particularly complete under some
regularity assumptions. A unimodal map is called S-unimodal if it is
three times differentiable, does not have critical points except 0, and
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has negative Schwarzian derivative:

f/// 3 f// 2
Sf= 7 2<f’> < 0.
We will also include into the definition of “S-unimodal” the assump-
tions that 0 is non-degenerate (i.e., f”(0) # 0) and that the fixed point
(3 is not attracting: f'(3) > 1 (the last assumption allows one to avoid
some boring subtleties).

Note that all the above conditions are satisfied for quadratic maps
fe:l.— 1., ce[-2,1/4].

The Schwarzian derivative satisfies the chain rule

S(fog)=(Sfog)(d) + Sy,

which shows that the condition of negative Schwarzian derivative is
preserved under iterates.

Remark. Of course, iterates f™ of unimodal maps are not unimodal
any more. However, by restricting f™ to an appropriate interval we
sometimes can recover unimodality. This observation is the beginning
of the Renormalization Theory which will be a central theme of these
lectures.

In many respects, S-unimodal maps are similar to quadratic poly-
nomials:

THEOREM 1.30. If an S-unimodal map f : I — I has a non-
repelling cycle a then 0 belongs to its immediate basin. Hence f can
have at most one non-repelling cycle.

An open interval J C I is called homterval if all iterates f™, n =
0,1,... are homeomorphisms on .J. An interval J is called wandering
if all intervals f".J, n =0,1,... are pairwise disjoint. A wandering in-
terval (resp., homterval) is considered to be trivial if its orbit converges
to a non-repelling cycle.

EXERCISE 1.31. If J is a wandering interval then fV.J is a homter-
val for some N € Z,. Vice versa, any non-trivial homterval is wander-
ing.

THEOREM 1.32. S-unimodal maps do not have non-trivial homter-
vals/wandering intervals.

5.3. Kneading Theory. The Kneading Theory provides a com-
plete combinatorial classification of unimodal maps.

Let K = {k,}2_,, N € Z, U oo, be either an infinite sequence of
+1’s, or a finite sequence of +1’s except for the last entry xy which is

equal to 0. Let & be the space of all such sequences, and let o be the
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shift which acts on a sequence k (different from {0}) by forgetting the
first symbol.

Consider now a unimodal map f : I — I. To any point x € [
we can associate its itinerary k(z) = kp(x) € S in the following way.
If x is not precritical then k is an infinite sequence of +1’s defined
according to the rule f*(x) € I*". If fNz = 0 for some N € Z,, then
select the smallest NV with this property and let & be the sequence of
length N such that xy(z) = 0, while the other entries of k are defined
according to the same rule as in the first case.

EXERCISE 1.33. Show that k(z) = k(y), x # vy, if and only if =
and y belong to the same homterval.

The order on the interval I translates into a natural order on &
which is a modification of the lexicographic order taking into account
that f is orientation-reversing on I~. Given two sequences K and K in
S, let N be the first moment when their entries differ. Let [ be the
number of —1’s among the previous entries. Then k > K if either [ is
even and Ky > Ky, or [ is odd and Ky < Ry.

EXERCISE 1.34. Show that x <y if and only if k(z) < k(y)

The kneading sequence k(f) of f is the itinerary of the critical value,

ie., k(f) =ks(c).

PROPOSITION 1.35. The kneading sequence is periodic if and only
if f has an attracting (but not superattracting) cycle. If p is the period
of the cycle then the period of k(f) is either p or 2p depending on
whether the multiplier of the cycle is positive or negative.

EXERCISE 1.36. Consider a one-parameter family of unimodal maps
f. which passes through a superattracting parameter * in a generic way,
so that the multiplier of the attracting cycle changes the sign. Compare
the kneading sequences just before and after passing through *. Show
that the kneading sequence corresponding to the negative multiplier is
bigger than the other one.

EXERCISE 1.37. Consider a one-parameter family of unimodal maps
fe which does not contain superattracting parameters on some param-
eter interval J. Then the kneading sequence k(c) = k(f.) is constant
over .J.

In other words, kneading sequence can change only at superattract-
ing parameter values (in particular, it does not change at the moments
of doubling bifurcation!):
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ProprosITION 1.38. Let f. be a smooth family of S-unimodal maps.
If k(c1) # K(ca) for some parameters ¢; and cy then there is a super-
attracting parameter a € [c1, ¢a].

This result can also be deduced from the Implicit Function Theorem
(stated below) and density of finite kneading sequences:

EXERCISE 1.39. For any two kneading sequences k < K, there is a
finite kneading sequences p such that Kk < p < K.

The following result shows that the kneading sequence provides an
essentially complete topological invariant for S-unimnodal maps:

THEOREM 1.40. Let f and f be two S-unimodal maps with the
same kneading sequence K.
(i) If k is aperiodic (finite or infinite) then f and f are topologically
equivalent.

(ii) Assume K is periodic. If the non-repelling periodic points of f and

[ have the same period and are either both attracting or both parabolic,
then f and f are topologically conjugate.

Proor. The idea is that the kneading sequence of f allows one to
build up a combinatorial model of the map. This model is provided by
the shift o acting on the interval [k(f),o(k(f))] C S. One can show
that the map 7 : = — k(z) is a (surjective) semi-conjugacy between
f on [c, f(c)] and the model. By Exercise 1.33, homtervals make the
difference between the map and its model. But the No Wandering
Intervals Theorem (1.32) implies that in case (i), 7 is in fact injective.
(Case (ii) requires a more careful treatment.) O

A sequence k € S is called admissible if Kk < 0"(k) < o(k) for all
n € N. Let K stand for the space of admissible sequences.

PROPOSITION 1.41. A sequence k is admissible if and only if it is
the kneading sequence of some unimodal map.

Note that one direction of this statement is obvious: Since the
interval [c, f(c)] is f-invariant, ¢ < f"c < f(c¢), n = 2,3,..., which
implies admissibility of x(f).

In what follows, we will also refer to admissible sequences as “knead-
ing sequences”.

EXERCISE 1.42. Consider a finite sequence Kk € § of length N.
Mark some points ¢y, ...,cy_1,c¢y = 0 on R which are ordered on R in
the same way as the sequences k,0(k),...,0" (k) = {0}. Consider
a piecewise linear function 7" on the convex hull L of these points
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such that T'(ct) = c¢x+1 (where k is considered mod N). Show that
Kk is admissible if and only if 0 is a minimum point which is the only
extremum of 7" in int L. Prove Proposition 1.41 for finite sequences.

In general case, Proposition 1.41 follows from the following main
result of the kneading theory:

Intermediate Value Theorem. Let f. be a smooth family of S-
unimodal maps. If two kneading sequences ki < ko are realizable in
this family, then any intermediate kneading sequence k € [ki, ks] Is
realizable as well.

EXERCISE 1.43. Show that the kneading sequence
Kmin = (—1,-1,-1,...)

(corresponding to the parabolic map fi/4 : © — z* + 1/4) is minimal
among all kneading sequences. The kneading sequence

Kmax = (—1,1,1,...)

(corresponding to the Ulam-Neumann map f_5 : z — 2% — 2) is maxi-
mal.

A smooth family f. of S-unimodal maps is called full if all admissi-
ble kneading sequences are realized in this family. By the Intermediate
Value Theorem, any family containing K, and K.y is full. In partic-
ular, we have:

THEOREM 1.44. The real quadratic family f., ¢ € [—2,1/4], is full.

By Theorem 1.40, any S-unimodal map is topologically equivalent
to some quadratic polynomial, so that the quadratic family is “repre-
sentative” in this topological sense. Remarkably, the quadratic family
is in fact representative in much stronger geometric sense. This will be
one of most important lessons of this course.

For quadratic polynomials with real parameters, the kneading se-
quence contains in a concise way the same amount of information as
the combinatorial model described in §4.6.

PrRoOPOSITION 1.45. Consider two complex quadratic polynomials
fe and f; with real parameter values c¢,é € [—2,1/4] and aperiodic
kneading sequence (maybe, finite). Then f. and fz are combinatori-
ally equivalent if and only if they have the same kneading invariant.

EXERCISE 1.46. Study the relation between combinatorial equiva-
lence and kneading invariant in the periodic case.
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5.4. Structural stability. A real quadratic map f, (and the cor-
responding parameter * € [—2, 1.4]) is called structurally stable (in the
real quadratic family) if it is topologically conjugate to all nearby maps
is this family. By Theorem 1.40 (ii), hyperbolic but not superattract-
ing maps are structurally stable. In fact, the kneading theory yields a
much better result:

THEOREM 1.47. Structurally stable maps are dense in the real qua-
dratic family.

PROOF. Let us show that any parameter interval J C [—2,1/4]
contains a structurally stable parameter. If J contains a hyperbolic
parameter then it contains a non-superattracting hyperbolic parameter
as well, and we are done. If it does not, then k(c) is constant on .J
by Proposition 1.38. Then all maps on J are structurally stable by
Theorem 1.40. H
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LECTURE 2

Quadratic-like maps and renormalization

One of the most fascinating feature of the Mandelbrot set is that it
contains a lot of little copies of itself. Similarly, the parameter interval
[—2,1/4] contains a lot of subintervals with the same dynamical struc-
ture as the original interval. These phenomenona can be explained by
means of complex and real renormalization theory.

1. Quadratic-like maps

1.1. First definitions. To build up the renormalization theory, it
is important to enlarge the one-parameter quadratic family. The real
quadratic family is naturally enlarged to a space of unimodal maps.
Quadratic-like maps are complex analogues of unimodal maps.

DEFINITION 2.1. A quadratic-like map is a holomorphic branched
double covering f : U — U’ between two topological disks such that
U € U'. The point of this definition is that the domain U is not
invariant under the map, for otherwise the dynamics would be quite
trivial. For technical reasons, we will assume that the domains U and
U’ are bounded by piecewise smooth curves without cusps.

The topological annulus U’ \ U is called the fundamental annulus
of f. The filled Julia set of f is the set of non-escaping points:

K(f)y={z: f"f2€U, n=0,1,2,...}.

The Julia set of f, J(f), is the boundary of K(f). (Sometimes, when
it cannot lead to a confusion, we call K(f) the “Julia set” as well.)

Any quadratic-like map has a single critical point. Unless otherwise
is specified, we will assume that the map is normalized so that this point
is located at the origin.

Restricted quadratic polynomials, f, : f~!(D.) — D,, where |c| <
r, provide examples of quadratic-like maps. Such quadratic-like maps
are briefly called “quadratic polynomials”.

Similarly to the polynomial case, we have:

THEOREM 2.1 (Basic Dichotomy). The Julia set (resp., filled Julia
set) of a quadratic-like map f is either connected or Cantor. It is
connected if and only if the critical point is non-escaping: 0 € K(f).

33
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A quadratic-like map f is called real if the domains U and U’ are
symmetric with respect to the real line and f(UNR) C R. The restric-
tion of such an f to the real line is unimodal.

At this point we can ask ourselves whether the topological dynamics
of quadratic-like maps can be at all different from that of quadratic
polynomials. It turns out that it is not the case: any quadratic-like
map is topologically conjugate to a restricted quadratic polynomial.
Moreover, this conjugacy has nice regularity properties. To state this
result, we need a brief account of the theory of quasiconformal maps.

2. Quasiconformal maps

It is a remarkable class of maps fine enough to be a subject of
analysis and at the same time rough enough to describe fractal objects.
The formal definition follows.

A homeomorphism A : U — V between open subsets of the complex
plane is called quasiconformal (abbreviated as “qc”) if
e It has distributional partial derivatives 9h and Oh of class L] (and
hence it is differentiable a.e. in the classical sense);

e There exists k € [0,1) such that |0h(z)| < k|0h(z)] for a.e. z € U.

The differential (-1,1)-form

Oh(z) dz

H= Oh(z) dz

is called the Beltrami differential associated with the map h. To see

its geometric meaning, let us consider the family of infinitesimal circles

C¢ C T;V over V. Their pullbacks E, = h™(C},) form a measurable

family of infinitesimal ellipses defined almost everywhere on U. The

eccentricity of F, is equal to (1+|u(2)])/(1—]|u(2)]), while the direction

of the small axis of E, is equal to arg u(z)/2 mod . Thus, the second

property on the definition of qc maps means that the ellipses F, have
essentially bounded dilatation.

The dilatation of a qc map, Dil(h), is the essential supremum of the
eccentricities of the associated infinitesimal ellipses.

A measurable field of infinitesimal ellipses on U C C considered up
to similarity is called a conformal structure on U. The dilatation of the
structure is the essential supremum of the eccentricities of the ellipses.
To any conformal structure one can associate a measurable Beltrami
differential j1(2)0z/0z whose modulus and argument are related to the
eccentricity and orientation of the infinitesimal ellipses by the rules
described above. A conformal structure has bounded dilatation if and
only if the L*>-norm of the corresponding Beltrami differential is less
than 1.

(2.1)



2. QUASICONFORMAL MAPS 35

O O

OQQQ oLH
OQQO h O O

Qo O ©

O 00
u (6)

Ficureg 2.1. Pullback conformal structure.

The standard conformal structure on U is given by the field of in-
finitesimal circles. It corresponds to the vanishing Beltrami differential
and will be denoted by o.

This discussion of qc maps, Beltrami differentials and conformal
structures can be generalized to the case of Riemann surfaces, in par-
ticular, to the Riemann sphere C. Conformal structures and measur-
able Beltrami differentials give us respectively geometric and analytic
description of the same object. We will freely pass from one language
to the other.

Quasiconformal maps act on conformal structures by pullbacks A*.
In particular, any qc map h : U — V generates a conformal structure
it = h*o on U with bounded dilatation satisfying the Beltrami equation
(2.1) (see Figure 2.1). One of the most remarkable facts of analysis is
that this statement can be reversed:

Measurable Riemann Mapping Theorem. For any conformal struc-
ture . with bounded dilatations on the Riemann sphere C, there exists
a qc map h : C — C such that ;o = h*o. This map is unique up to
post-composition with a Mébius transformation C — C.

In the analytic language, p is a Beltrami differential on C in the
unit ball of L>° and h is a solution of the Beltrami equation (2.1).

The uniqueness part of the theorem is the consequence of the fol-
lowing result:

Weyl’s Lemma. Ifa qc map h satisfies almost everywhere the Cauchy-
Riemann equation O0h = 0, then h is conformal.

Note that the notion of a conformal structure with bounded dilata-
tion makes perfect sense on a quasiconformal surface (in particular, on
a compact smooth surface). In this context the Measurable Riemann
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Mapping Theorem can be formulated as follows: Any conformal struc-
ture p with bounded dilatation on a quasiconformal surface S admits a
compatible complex structure on S.

A map f is called quasiregularif it is a composition of a holomorphic
map and a qc map. Quasiregular maps also act on conformal structures
by means of pull-backs.

Let us now formulate two more fundamental properties of qc maps
which play a crucial role in dynamics:

Compactness Lemma. The space of K-qc maps h : C — C normal-
ized by h(0) = 0 and h(1) = 1 is compact in the uniform topology on
the Riemann sphere.

A quasiare/ quasicircle is the image of an interval/circle under a qc
map.

Gluing Lemma. Let D; and D, be two disjoint domains. Let v be
a quasiarc such that v = 0Dy N 0D, N U for some domain U . Let
D =DyUDyU~. If h: D — C is a homeomorphism such that h|D; is
K-qc, then h is K-qc.

3. Straightening and hybrid classes

3.1. Hybrid equivalence. In accordance with general terminol-
ogy introduced in the preamble, two quadratic-like maps f : U — U’
and g : V' — V" are called topologically equivalent, or topologically con-
jugate, if there exists a homeomorphism h : U’ — V'’ which makes
commutative the following diagram:

U 7> U’

hl Lh

Vv — VvV
g9

The classes of topologically equivalent maps are naturally called topo-
logical classes. If h satisfies an additional regularity property (say,
quasiconformality /smoothness/conformality), then we say that f and
g are qc/smooth/conformally equivalent or conjugate. The correspond-
ing equivalence classes are called qc¢/smooth/conformal classes.

The notion of qc equivalence admits the following useful refinement.
Two quadratic-like maps are called hybrid equivalent if they are qc
conjugate by a map h satisfying the Cauchy-Riemann equation 0h(z) =
0 a.e. on the filled Julia set K(f). Note that by Weyl’s Lemma, such
an h is in fact conformal on int K(f). On the Julia set J(f) this
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FIGURE 2.2. Gluing two hemi-spheres.

condition is automatically satisfied provided J(f) has zero Lebesgue
measure (and until now there are no examples of Julia sets of positive
measure).

The hybrid classes in the connectedness locus can be endowed with
the following Sullivan’s Teichmiiller metric:

distr(f,g9) = i%f log Dil(h), (2.2)

where h : C — C runs over all qc maps which are hybrid conjugacies
between f and g near their filled Julia sets.

3.2. Straightening Theorem.

THEOREM 2.2. Any quadratic-like map f : U — U’ is hybrid equiv-
alent to a restricted quadratic polynomial f.. If the Julia set J(f) is
connected then ¢ = x(f) € M is uniquely determined by f.

Proor. We will give an idea of the proof of the existence part of the
theorem which is a nice illustration of the efficiency of the Measurable
Riemann Mapping Theorem. Take any r > 1. View the topological
disk U’ and the round disk C \. D, as two hemi-spheres endowed with
dynamics f : U — U' and fy : C ~ D, — C ~ D,> respectively (see
Figure 2.2). Let us glue them by means of a qc map

H:U' \U— D2 D, (2.3)

which is equivariant on the boundary of the annuli, i.e. such that
H(fz) = fo(Hz) for z € OU. We obtain a qc sphere S endowed with a
double covering F such that F~'(c0) = oo, which can be viewed as a
“topological polynomial”.

Now we wish to turn this topological polynomial into a genuine one.
To this end we will endow S with an F-invariant conformal structure
f. On the hemi-sphere C \ D, let 4 = o be the standard structure.
Transfer it to the fundamental annulus U ~. U’ by means of H, and
then pull it back to the preimages of this annulus by the iterates of
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f. We obtain an f-invariant conformal structure on U’ ~ K (f). Since
conformal pull-backs preserve the dilatation of the structure, it has a
bounded dilatation. Extend this structure to K(f) as the standard
one.

It provides us with an F-invariant conformal structure p on S with
bounded dilatation. By the Measurable Riemann Mapping Theorem,
there exists a qc map h : (S, 00) — (C, 00) such that u = h*o. Then the
map P = ho Foh ! is a quasi-regular double covering of the Riemann
sphere preserving the standard conformal structure. By Weil’s Lemma,
it is holomorphic and hence is a quadratic polynomial. Normalizing h
appropriately, we can bring P to a normal form z — 22 + c.

Note that this construction proceeds canonically, once we have se-
lected the qc map H (2.3) uniformizing the fundamental annulus. The
point of the uniqueness part of the theorem is that in the connected
case this choice H is irrelevant. (In the disconnected case it is quite
relevant since all quadratic polynomials with disconnected Julia set are
in fact hybrid equivalent.) O

The map H (2.3) is called a tubing of f. Note that the dilatation of
the map h conjugating f to P is equal to the dilatation of the tubing.

DEFINITION 2.2. Given a quadratic-like map f with connected Ju-
lia set, the quadratic-like map x(f) = fy(), ¢ € M, which is hybrid
equivalent to f is called the straightening of f.

Since quadratic-like maps are topologically equivalent to quadratic
polynomials, they have a similar classification of the fixed points (see
§1.3.5). If the Julia set J(f) is connected then one of these points, called
B3, is a non-dividing repelling or parabolic with multiplier 1. Another
one, called « is either non-repelling or a dividing repelling point.

3.3. Distortion. To study further the geometry of quadratic-like
maps, we need to recap some fundamental properties of univalent func-
tions.

Let ¢ be a conformal diffeomorphism U — U’ between two do-
mains in the complex plane, and let X be a subset of its domain. The
distortion of ¢ on X is defined as follows:

Dist(¢|X) = sup 1Dé(x)]

ryex [Do(y)|

The nonlinearity of ¢ on X is:

o)
) = s 1
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The nonlinearity can be bounded in terms of distortion on slightly
bigger set, and vice versa.

Given a pointed topological disk (D, a) in the complex plane, let
Rp, and rp, stand respectively for the outer and inner radii of D
relative a (i.e.. the radii of the disks centered at a which are respectively
circumscribed around and inscribed in D).

Koebe Distortion Theorem. Let ¢ : (D,0) — (D, a) be a conformal
map, and let r € (0,1), D, = ¢(D,). Then there exist constants
K = K(r) and L = L(r) (independent of a particular ¢!) such that

Dist(¢|D,) < K(r)

and
L(r)~"¢'(0)] < 7p,.a < Rp,a < L(r)[4'(0)].

3.4. Geometry of quadratic-like maps. There are two ways
to control the geometry of a quadratic-like map: by the dilatation of
the map h conjugating f to its straightening f. and by distortion the
“diffeo part” of the map. It turns out that both methods depend on
the modulus of the fundamental annulus of f, mod(U’ \ U).

Any conformal annulus A can be uniformized by one of the following
standard models: a round annulus A(1,r), r > 1, the punctured disk
D*, or the punctured plane C*. In the first case one let mod A = logr,
while in the two other cases one let mod A = oco. In the first case, the
modulus is the only conformal invariant of the annulus.

Any quadratic-like map f : U — U’ can be decomposed as ¢ o fy,
where fo(z) = 22 and ¢ : f(U) — U’ is a conformal diffeomorphism
(called the “diffeo part” of f).

To control the geometry of a quadratic-like map, we should allow to
shrink its domain a bit (without touching its Julia set). Let us say that
a quadratic-like map ¢ : V' — V' is an adjustment of a quadratic-like
map f: U —» U if V. Cc U, 9V’ Cc U' \ U, and f|V = g. Obviously,
K(g) = K(f).

We say that the geometry of a quadratic-like map f :V — V' is
(v, K)-bounded if mod(V' \ V) > v and

(i) The distortion of the diffeo part of f|V is bounded by K;

(ii) f|V can be straightened by means of a K-qc homeomorphism.
PROPOSITION 2.3. Let f : U — U’ be a quadratic-like map such

that f(0) € U. Let p = mod(U' \ U). Then f can be adjusted to a

quadratic-like map f:V — V' with (u/2, K(p))-bounded geometry.
Moreover, K(u) — 1 as p — oo.
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PRrROOF. Let V' be the domain bounded by the hyperbolic geodesic
in U'\U, and let V = f~'V'. Since f(0) ¢ V', the restriction f : V —
V' is a quadratic-like map. It satisfies (i) by the Koebe Distortion
Theorem.

One can show that the fundamental annulus of this adjustment,
A = V'V, can be mapped onto a round annulus A(,/7,7) with
log r = p by means of a qc map H which is equivariant on A and whose
dilatation K depends only on p (and moreover, K — 1 as p — 00).
The proof of the Straightening Theorem shows that this map H can
be turned into a qc map h with the same dilatation which straightens
f. O

This proposition shows that a quadratic-like maps with a definite
modulus is “purely quadratic up to bounded distortion”. The last
assertion of the proposition shows that a quadratic-like map with a big
modulus is “close” to being purely quadratic.

4. Hybrid lamination in the space of quadratic-like germs

4.1. Quadratic-like germs.

4.1.1. Notion. The need to adjust the domain of a quadratic-like
map leads us to the notion of a quadratic-like germ. We say that two
quadratic-like maps f and ¢ represent the same quadratic-like germ if
one is obtained from the other through a finite sequence of adjustments
or reverse operations. Any quadratic-like germ has the well-defined
filled Julia set. Quadratic-like germs are considered up to affine con-
jugacy. Such a germ can be normalized so that at the origin it has an
expansion

f(z)=2"+c+0(z"). (2.4)

Let Q be the space of quadratic-like germs (up to affine conjugacy).
It contains the one-parameter quadratic family QP = {f.} with the
Mandelbrot set M inside. The connectedness locus C C Q is the set of
quadratic-like germs with connected Julia set (by definition, M is the
slice of C by the QP).

4.1.2. Banach slices. Let U be the set of topological discs U 3 0
with piecewise smooth boundary symmetric with respect to the origin.
For U € U, let By be the affine space of even holomorphic functions
on U continuous on U normalized by (2.4) at the origin (endowed with
the uniform norm || - ||/). We will identify the affine space By with its
tangent linear space by putting the origin at the point f(z) = 2%

Let By (f, ) denote the ball in By of radius £ centered at f.
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Given a quadratic-like map f : U — U’, all nearby maps g €
By (f, ) are quadratic-like on slightly smaller domains. Thus, we have
a natural inclusion jy of the ball By (f,¢) into Q. We will call it a
Banach ball or a Banach slice of Q. Somewhat loosely, we will also
use notation Qp for such a Banach slice (without specifying f and ).
More generally, given a set X' C Q, the intersections X N By (f,¢e) are
called the Banach slices of X.

Endow Q with the finest topology that makes all the inclusions j;
continuous. In this topology, a set Y C Q is open if all its Banach slices
are open in the corresponding Banach spaces. (Note that the intrinsic
topology of the Banach slices is finer than the topology induced from
0)

4.1.3. Compactness criteria. Let pn > 0 and C' > 0. Let QM (u,C)
stand for the union of the quadratic family QP and the space of nor-
malized quadratic-like maps f : U — U’ such that

mod(U'\U) >, f(0) €U, [f(0)<C,

and let Q(u, C') be the corresponding space of quadratic-like germs.
Similarly, let C(1) be the set of quadratic-like germs that can be repre-
sented by normalized quadratic-like maps f : U — U’ with connected
Julia set such that mod(U’ \ U) > p.

EXERCISE 2.4. Show that C(u) C Q(u,C) for some C.

The following important fact easily follows from Proposition 2.3:
PROPOSITION 2.5. The sets Q(u, C) and C(p) are compact in Q.

Propositions 2.3 and 2.5 explain why it is so important to control
the fundamental annuli of quadratic-like maps in question.

It is easy to check that if f: V — V' is a normalized quadratic-like
map from Q(u,C) then V' 5 D, = U for some r = r(u,C') > 0. Hence
the space Q(u,C') can be endowed with the metric induced from the
Banach space By. We call it a Montel metric distyon, on Q(p, C'). One
can show (using Hadamard’s Three Circle Theorem) that all Montel’s
metrics are Holder equivalent. In what follows, the particular choice of
a Montel metric will not matter, so we will refer to this metric without
further specifications.

Starting with the space of real quadratic-like maps, we can define a
real quadratic-like germ. Let Qg stand for the space of real quadratic-
like germs (the “real slice” of Q).

4.2. Banach manifolds and laminations.



42 2. QUADRATIC-LIKE MAPS AND RENORMALIZATION

4.2.1. First definitions. Basic analytic function theory in Banach
spaces is a well established subject mostly analogous to the classical
theory. Below we will recall for convenience some initial facts. By
default, all Banach spaces in this course will be assumed complex, unless
otherwise is explicitly said.

Let B and D be two Banach spaces, and let &/ be an open set in
B. A continuous map R : U — D is called holomorphic (= complex
analytic) if for any complex line L = {a+ v |\ € C} in B, a € U, and
for any linear functional ¢ € D*, the function ¢ o R| L is holomorphic
in A near the origin. It turns out that such a map is smooth, i.e., for
any a € U there is a bounded linear operator DR(a) : B — D such
that

R(a+v) = R(a) + DR(a)v+o(||v]|), as |v|| =0,

and the differential DR(a) depends continuously on a.

Now the notions of holomorphic (= complex analytic) Banach man-
ifold and submanifold, embedding, submersion, and biholomprhic dif-
feomorphism can be introduced by repeating the standard finite dimen-
sional definitions.

We can now formulate an important adding to the Measurable Rie-
mann Mapping Theorem.

THEOREM 2.6. Let h, : (C,0,1) — (C,0,1) be the normalized so-
lution of the Beltrami equation with differential ;. Then h, depends
holomorphically on .

In this statement p is considered as a point of a complex Banach
space L*°(C'), while h, is considered as an element of a complex Banach
space of continuous functions C — C.

4.2.2. Laminations. Consider a complex analytic Banach manifold
B and a closed subset A C B. Assume that A is decomposed into
disjoint connected holomorphic submanifolds (leaves) of the same ( co-
Jdimension. Such a decomposition is called a holomorphic lamination
L in B (supported on A) if it has the following local product structure.
For any point a € A, there is a neighborhood & > a in B, a neigh-
borhood W = W" x WY 3 0 in the direct product D" x D of two
complex Banach spaces D" and DY, and a homeomorphism ¢ : U — W
(“straightening”) such that for any leaf L intersecting U and for any
component Ly, of LNU we have: ¢(Lioc) = W" x {t} for some t € WY
and the restriction ¢ | Lio is holomorphic. The (co-)dimension of L is
the (co-)dimension of the leaves.

Laminations with full support (i.e., A = B are called foliations.
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A transversal to £ is a holomorphic submanifold S C B transver-
sally intersecting the leaves of £ at isolated points (so that dimS =
codim £). If S intersects all the leaves, it is called a global transversal.
A global transversal intersecting every leaf at a single point is called
unfolded.

Consider now two transversals §; and S, intersecting some leaf L at
points a; and ay respectively. Then there exist relative neighborhoods
U, C § and Uy C S, of these points and a homeomorphism ¢ : U; N
A — UyN A such that ¢(a;) = as and points x € U;NA and ¢(x) belong
to the same leaf of the lamination. Such a map is called a holonomy
along the lamination.

If every holonomy map as above admits a quasiconformal (respec-
tively, smooth, holomorphic, etc.) extension to U; (at least, for a suffi-
ciently small neighborhood U, ), then the lamination is called transver-
sally quasiconformal (respectively, smooth, holomorphic, etc.).

Codimension-one laminations are also known as “holomorphic mo-
tions”.

4.3. Holomorphic motions.

DEFINITION 2.3. Let X C C and let (A, *) be a pointed domain
in some Banach manifold B. A holomorphic motion of X over A is a
family of maps hy : X — C, A € A, such that:

e h, =id;

e For any A € A, h, is injective;

e For any z € X, the orbit A — f\(2) is holomorphic in A.

The following two main properties of holomorphic motions are usu-
ally referred to as the A-lemma.

Extension Theorem. There exists a neighborhood A’ C A of the
base point x such that any holomorphic motion hy of a set X C C over
A admits an extension to a holomorphic motion of the whole complex
plane C over A\'.

Consider a Banach ball B, = {z : ||z|| < r} in a Banach space
B. Let us define the hyperbolic distance between x € B, and the
origin as the hyperbolic distance between these two points in the one-
dimensional slice {\z : |A] < r/||z||}. (In fact, there is a “Kobayashi
metric” in the whole ball coinciding with the hyperbolic metric on the
above slices.)
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Quasiconformality Lemma. Let {hy,} be a holomorphic motion over
a Banach ball (A, ) = (B,,0). Then all maps hy, A\ € A, are quasicon-
formal. Moreover, the dilatation of h, depends only on the hyperbolic
distance between \ and % in A.

By definition, the orbits A — (A, hyz), A € A, of a holomor-
phic motion are codimension-one holomorphic submanifolds in A x C.
The continuity of the maps hy tells us that the decomposition into
these submanifolds has a product structure with the straightening map
(A, 2) = (A, hy'2). Thus, if the set X is closed then we obtain a holo-
morphic codimension-one lamination in A x C. Vice versa, any holo-
morphic codimension-one lamination can be locally represented as a
holomorphic motion.

The Extension Lemma tells us that any such lamination locally
extends to a foliation. The Quasiconformality Lemma tells us that this
lamination is transversally quasiconformal. 1t is a remarkable “free”
regularity property of codimension-one holomorphic laminations.

4.4. Complex structure in Q. The inclusions j; of the Banach
balls can be viewed as local charts in the space @ which endow Q with
a natural complex analytic structure (though they do not turn Q into
a Banach manifold).

For U C V, let jyv : By — By stand for the restriction operator.
They satisfy the following properties:

LEMMA 2.7. P1l: countable base and compactness. There exists a
countable family of Banach slices Q,, = Qy, with the following
property. For any f € Qy, there is a 6 > 0 and a Banach slice
Q, such that V,, € V, and the Banach ball By (f,§) C Q is
compactly embedded into Q,,.

P2: lifting of analyticity. For W C V, the inclusion jw,y : Qv — Bw
15 complex analytic. Moreover, let U € V. Let us consider a
continuous map ¢ : V — By defined on a domain V in some
Banach space. Assume that the map jwy o ¢ : V — Bw is
analytic. Then the map juv o ¢V — By is analytic as well.

P3: density. If W C V, then the space By is dense in By .

We say that the family of local charts jy endows Q with complex
analytic structure modeled on the “sheaf” of Banach spaces By,. More
generally, if we have a set § and a family of inclusions j, : Sy — S,
where Sy is an open set in By, satisfying properties P1-P3, we say that
S is endowed with complex analytic structure modeled on the sheaf of
Banach spaces By. In what follows we will say briefly that S is a
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complex space. For instance, the hybrid class of 22,
Ho={f€Q: f(0) =0}, (2.5)
is clearly a complex space.

Remark. Since the transit maps jy,y in Q are affine, Q is actually
endowed with a complex affine structure. Then the hybrid class H,
becomes a codimension-one affine subspace in Q.

Let us consider two complex spaces S' and S2. A map ¢ : St — S?
is called holomorphic if for any f € S' and any Banach slice S} > f,
there is an € > 0 and a Banach slice S such that

¢(Bu(f,e)) C S¢, (2.6)

and the restriction ¢ : By(f,¢) — SZ is holomorphic in the Banach
sense. Note that by P2, this property is independent of the choice of
slice 82 satisfying (2.6) if to allow a little shrinking of V. In the case
when €2 is a domain in C, a holomorphic map v : € — S is called a
holomorphic curve in S.

Let us consider a complex space S and a point f € §. Let Uy =
{UeU: fe Qu}. Letuscall apoint f of a complex space S regular if
Uy is a directed set, i.e., for any U and V' in Uy, there exists a W € Uy
contained in U N'V. At such a point we can define the tangent space
T;S as the inductive limit of the Banach spaces By, V € Uy;. If all
points of a space § are regular, we call it a complex manifold modeled
on the sheaf of Banach spaces.

In the case of S = Q, Uy is the set of topological disks V' on which
f is quadratic-like. All points of the connectedness locus C are regular
(in particular, all points of the space H, are regular). The tangent
space T;Q, f € C, is identified with the space of germs of holomorphic
vector fields v(z) near the filled Julia set K (f).

If ¢ : S' — &% is a holomorphic map between complex spaces and
f, o(f) are regular points in the corresponding spaces, then we can
naturally define the differential D¢(f) : T;S* — Ty S? by restricting
¢ to the Banach slices.

Let us now discuss a notion of a submanifold in a complex space S.
We will deal with two situations.

1) Finite dimensional submanifold (more generally, a Banach sub-
manifold) is a subset in S which locally sits in some Banach slice By
and is submanifold therein. By P2, this definition is independent of
the choice of the slice By (up to a slight shrinking of U).

2) Regular parametrized submanifold. Let M be a complex manifold
modeled on a family of Banach spaces. A holomorphic mapi: M — S
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into a regular part of S is called immersion if for any m € M the dif-
ferential Di(m) is a linear homeomorphism onto its image. The image
X of an injective immersion ¢ is called an immersed submanifold. 1t is
called an (embedded) submanifold if additionally i is a homeomorphism
onto X supplied with the induced topology. For example, if there is
an analytic projection 7 : § — M such that 7 o7 = id then X is a
submanifold in M.

Ifi: (M,m)— (X, f) C(S,f)is an embedding, then the tangent
space T;X is defined as the image of the differential Di(m). It is a
closed linear subspace in T;Q. Its codimension is called the codimen-
sion of X at f. We say that a submanifold X has codimension d if it
has codimension d at all its points.

Two submanifolds X and ) in § are called transverse at a point
geXNYifT,X®T,Y=T,S.

A family of disjoint Banach submanifolds in & which partition some
closed subset A of § form a lamination if for any f € A there exists a
Banach ball By (f,¢) such that the slices of the manifolds by this ball
form a Banach lamination.

4.5. External maps.

4.5.1. Construction. Next, we will construct a natural projection 7
from the space Q to a space £ of circle expanding maps.

Let g : T — T be a degree two real analytic endomorphism of the
unit circle T. It can be also viewed as a complex analytic germ near
the circle. We call g expanding if it admits an analytic extension to a
double covering g : V' — V' between annular neighborhoods of T such
that V' € V’'. We consider such a map up to conjugacy by rotation,
which is equivalent to normalizing it in such a way that 1 € T is a fixed
point. Let &£ stand for the space of such circle endomorphisms (up to
rotation).

There is a projection m : @ — & which associates to f € Q its
external map g € £. In the case when f € C, the construction is easily
provided by the Riemann Mapping Theorem. Namely, let f : U — U’
be a quadratic-like representative of the germ. Let us conjugate f :
UNK(f) = U ~ K(f) by the Riemann mapping

¢p=¢;: CNK(f) >C~\D

to a double covering g : V' — V' between annuli with inner boundary T.
By the Reflection Principle, g extends to a circle endomorphism of class
£. Since the Riemann mapping ¢ is well-defined up to post-composition
with rotation, g is well-defined up to conjugacy by rotation.
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In the case of disconnected Julia set the construction is more subtle.
Take a fundamental annulus A = U’ \. U with real analytic boundary
curves £ = 0U’ and I = 0U. Then f : I — FE is a real analytic double
covering.

Let 4 = mod A. Let us consider an abstract double covering &; :
A; — A of an annulus A; of modulus /2 over A. Let I} and E; be
the “inner” and “outer” boundary of A;, i.e., & maps I; onto I and
E, onto E. Then there is a real analytic diffeomorphism 6, : £y — [
such that & = fo#;. This allows us to stick the annulus A; to the disk
C~\.U bounded by I. We obtain a Riemann surface Ty = (C\U)Uy, A;.
Moreover, the maps f on A and & on A; match to form an analytic
double covering f; : A} — A.

This map f; restricts to a real analytic double covering of the inner
boundary of A; onto its outer boundary. This allows us to repeat this
procedure: we can attach to the inner boundary of 77 an annulus A,
of modulus iu, and extend f; to the new annulus 75. Proceeding in
this way, we will construct a Riemann surface

TA=T4(f)=lm T, = (C~U) Uy, A U, Ay. .. (2.7)

and an analytic double covering F': Uy,>1 4, — Up>04, extending f.

Since the trajectories of F' do not converge to the ““inner” ideal
boundary of T4, it is a punctured (at oo) disk which can be confor-
mally mapped onto C ~. D. Now by the reflection principle, this con-
formal representation of F' can be extended to an analytic expanding
endomorphism g4 : T — T.

It is not hard to check that the map g4 : V' — V' is well-defined up
to rotation and that the corresponding circle endomorphism g4|T does
not actually depend on A. Thus, we have a well defined projection
m: Q — & that associates to a quadratic-like germ f its external map

g=7(f).

LEMmMA 2.8. A quadratic-like map f is a quadratic polynomial if
and only if its external map is fo : 2 — 2% Thus, QP = 7~ 1(2?).

4.5.2. Topology on €. Analogously to Q, the space £ can be en-
dowed with an inductive limit topology based on a family of (real)
Banach spaces. Namely, let us represent T as R/(y : 2 +— x4+ 1) so
that 1 € T corresponds to 0 € R. Let V' be a y-invariant R-symmetric
neighborhood of R, and let Dy, stand for the Banach space of functions
[ analytic on V, real on R, normalized as f(0) = 0, and satisfying the
following equation: f(z+1) = f(z)+2. (This corresponds to the space
of degree two circle maps analytic in a given neighborhood of T and
fixing 1.)
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FIGURE 2.3. Space of quadratic-like germs.

Let £, be the set of expanding circle maps f € £ which belong
to Dy. It is clearly an open subset of By. Thus, we have a natural
representation of £ as the inductive limit of real Banach manifolds &y, .
This endows £ with the inductive limit topology.

LeEMMA 2.9. The projection w: Q@ — £ is continuous.

As the space £ is R-symmetric, it is not at all obvious that it can
be also endowed with a natural complex analytic structure. However,
as we will see next, it can actually be done.

4.6. Hybrid lamination and complex structure on £. By
the Straightening Theorem, there is the straightening map x : C - M
whose fibers H, = x!(c) are the hybrid classes of quadratic-like germs
(see Figure 2.3). In fact, the projection 7 : H, — &£ is a homeomor-
phism:
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LEMMA 2.10. Any parameter ¢ € M can be “mated” with any circle
map g € £ to obtain a unique (up to affine conjugacy) map f =i.(g) €
Q such that x(f) = ¢ and ©(f) = g. Moreover, the map i.: € — H. is
continuous.

Combining this lemma with Lemma 2.9, we conclude that for any
c € M, the maps 7 : H. — &€ and 1. : £ — H,. are inverse homeomor-
phisms.

Consider now the hybrid class Hg of z — 2? (2.5). As we have
already mentioned, it is a complex space. The promised complex struc-
ture on £ is obtained by transferring the complex structure from Hy to
E by means of the homeomorphism ig : € — Hy. Then we have:

Using holomorphic dependence in the Measurable Riemann Map-
ping Theorem (2.6), one can now show:

LEMMA 2.11. For anyc € M, both mapsm: Q — & andi.: € — Q
are holomorphic.

Since mo1i. = id, the projection 7 is a holomorphic submersion onto
&, while ¢, is a holomorphic embedding of £ into Q. In this sense, the
hybrid classes H, = i.(€) are parametrized holomorphic submanifolds
in Q. However, to make this structure useful, we need to consider
Banach slices of these manifolds.

Let F denote the partition of the connectedness locus C into hybrid
classes H..

LEMMA 2.12. For any fo € C, there exists a domain Vo € Uy such
that for any V-C Vi, V € Uy, the slice Fy of the partition F near fo
s a codimension-one holomorphic lamination in By .

In this sense, the hybrid classes form a lamination F of the con-
nectedness locus. Moreover, since by Lemma 2.8 the quadratic family
QP is a fiber of 7, it is transverse to this lamination. Since by the
Straightening Theorem, it intersects every leaf of F at a single point,
we conclude that the quadratic family QP is a global unfolded transver-
sal to the lamination F.

From this point of view, the straightening y is interpreted as the
holonomy to the quadratic family along the lamination F. Applying
the Quasiconformality Lemma from §4.3, we obtain:

THEOREM 2.13. The lamination F is transversally quasiconformal.

5. Quadratic-like families

5.1. Definitions. A quadratic-like family over a domain A C C is
a holomorphic family f = {f\ : Uy — Uj}iea of quadratic-like maps.
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Thus, the domains U, are vertical fibers of a domain U C A x C and
fr(z) is a holomorphic function on U. Any quadratic-like family can
be viewed as a holomorphic curve in Q.

The M-set M is defined as {\ € A : J(f,) is connected}. By means
of the straightening (or rather, the holonomy along F), the M-set Mg
can be projected to M. If f is a global transversal to F then one can
expect that this projection is a homeomorphism from Mg onto M. To
make this statement precise we need a few more definitions.

A quadratic-like family f\ : Uy — Uy is called equipped if it is
supplied with the holomorphic motion h) of the fundamental annulus
U \ Uy equivariant on the boundary. In what follows we will consider
only equipped quadratic-like families.

Assume that the family f admits an analytic extension to a neigh-
borhood of U C C2. Such a family f is called proper if f,(0) € OU;
for A € OA. Note that in this case, My € A (that is, the family f
“overflows” the connectedness locus C).

A proper quadratic-like family is called unfolded if the winding num-
ber of the curve A — f,(0), A € A, around the origin is equal to 1.
(This property ensures that f is transverse to the foliation F.)

5.2. Straightening of families. The following result is funda-
mental in the renormalization theory:

THEOREM 2.14. Let £ be a proper unfolded quadratic-like family.
Then the straightening x : Mg — M is a homeomorphism.

In fact, the straightening y admits an extension to a homeomor-
phism from A onto some neighborhood €2 of M. To see it, select some
base point * € A (the most natural choice is the “origin” % € H,).
Then select a tubing of f, (2.3). By means if the holomorphic mo-
tion h) it can be spread around to the whole family. As we noted in
§3.2, the choice of the tubing determines uniquely the straightening of
a quadratic-like map. This gives us a desired extension of .

5.3. Space of quadratic-like families.

5.3.1. Convergence. Let G stand for the class of proper unfolded
equipped quadratic-like families up to affine change of variable in .
We will normalize such a family so that the superattracting parameter
value * sits at the origin and diam My = 1. We will impose the following
convergence structure on G: A sequence of normalized families (f, :
U, — U, h,) over (A,, *) is declared to converge to a family (f : U —
U, h) over (A, %) if:

(i) Parameter domains (A, x) Carathéodory converge to (A, x); de-

fine
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(ii) Holomorphic motions h, converge to h uniformly over any do-
main Q € A; i.e., hyx(2) — hx(2) uniformly for (X, 2) € Q@ x C
(where C is endowed with the spherical metric);

(iii) The maps f,, converge to f uniformly on compact subsets of U.

Note that the convergence of quadratic-like families yields uniform
on compact sets convergence of the corresponding holomorphic curves
in Q.

5.3.2. Geometry of a quadratic-like family. Given an equipped quadratic-
like family (f, h) over (A, ), let

mod(f) = /{Iel/f; mod (U} \ Uy), Dil(h) = s;elg Dil(h,).

For C,u > 0, let
Gop={(f,h) € G:diamU < C, f, € QM(p,C),
Dil(H,) < C, Dil(h) < C}, (2.8)
where H, is the tubing of f, (see §3.2).

We will say that a quadratic-like family (taken from some collec-
tion under consideration) has a “bounded geometry” if it belongs to
a certain class G¢, with C and p being uniform over the collection.
A statement that certain bound “depends only on the geometry” of a
quadratic-like family means that this bound is uniform over any class
gC,u-

5.3.3. Shape of M-sets. Theorem 2.13 provides a control of the
shape of the M-sets in quadratic-like families:

LEMMA 2.15. Let us consider a quadratic-like family (£, h) over
(A, %) of class Ge. Then the straightening xe @ (A, Mg) — (A, M)
is a K(C, p)-qc map onto an appropriate neighborhood A of the Man-
delbrot set ML

We will briefly say that the sets Mg have a K (C, u)-standard shape.
If we do not need to specify dilatation K, we say that the sets have
quasistandard shape.

5.3.4. Compactness criterion. Similarly to the situation with a sin-
gle quadratic-like map (see Proposition 2.5), uniform geometric bounds
on a quadratic-like family yield compactness:

LEMMA 2.16. For any C,p > 0, the space G¢,, is compact.

5.4. Vertical tubes. Along with the projection 7 : Q@ — £ intro-
duced in §4.5, let us consider a projection [l =iyo7m : Q — Hy. The
fibers
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of these projections are called wertical fibers. For a set P C Q, let
Zp(G) =P N Z(G) stand for the vertical fibers in P.

Let us say that P is a wvertical tube over a Banach neighborhood
VY C H, if its vertical fibers are topological disks and it has a topological
product structure over V (i.e., there exists a topological disk W C C
such that P and V x W are homeomorphic over V). Let us say that a
vertical tube P is equipped if

e There is a base map G, € V equipped with a tubing H, (2.3);

e There is an equivariant holomorphic motion of the fundamental an-
nulus Ay,

hf : ((CaA*) — (CaAf)a fep;

e The vertical fibers Zp(G) equipped with the above motion are proper
unfolded quadratic-like families. (In particular, these fibers are holo-
morphic curves in Q.)

By §5.2, for any equipped tube P, there is a well defined straight-
ening

xp: P —C. (2.9)

LEMMA 2.17. Any G, € Hy belongs to an equipped vertical tube P
over a Banach neighborhood V C Hy. The straightening xp s a trivial
fibration over some domain A D M whose fibers are holomorphic leaves
Lp(f), f € P, parametrized by V.

Denote the above foliation by Fp. It will be naturally called the
horizontal foliation in P.

For f € C, let E}’ stand for the tangent space to the hybrid class
H(f) at f (the horizontal space), and let E} stand for the complemen-
tary vertical line tangent to the vertical fiber Z(f).

For f € C NP, we have the horizontal-vertical decomposition

T,P=El,® E, (2.10)

where Ef, = E} N'TP. These two distributions admit an extension
to the whole tube P as the tangent distributions respectively to the
horizontal and the vertical foliations in P. To simplify notations, we
will often suppress the label “P” in the notation for the horizontal
spaces in P.

Vertical tubes can be endowed with a Banach manifold structure.
A local chart of this structure near a point f € P is

g (I(g),73(g)) € V x EY,

where 7% is the linear projection of g onto EY} parallel to E}’
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5.5. Uniform transversality. Though the Montel metric on com-
pact sets (see §4.1.3) is well defined up to Holder equivalence only, it
induces a Lipschitz structure in the vertical direction:

LEMMA 2.18. Given a vertical tube P, there exists a v > 0 and
a Riemannian metric || - ||y on the vertical distribution {E7}sep such
that || - || is uniformly Lipschitz equivalent to the Banach norm on any
slice By, provided U € Uy and the geometry of the quadratic-like map
f:U = U is v-bounded (see §3.4).

This vertical metric will also be called “Montel”.
Thus, for any tangent vector u € TP we can measure the angle
a € (0,7/2) between u and E} by letting:

Az ()l
[[DTL(w) |

We say that a collection X' of quadratic-like families is uniformly
transverse to the foliation F if there exist finitely many vertical tubes
P; and an « > 0 such that any curve f = {fy\} ea € X belongs to
UP; and if f\ € P; then the angle between f) and the horizontal space
EY p, is greater than .

tga =

Compactness Lemma 2.16 yields:

LEMMA 2.19. Given C' > 0 and p > 0, the holomorphic curves
f € G, are uniformly transverse to the foliation F.

6. Real and complex renormalization

6.1. Real renormalization.

6.1.1. Definition. Consider an S-unimodal map f : I — I with
critical point at 0. Assume there is an interval J 5 0 and p > 1 such
that the intervals J, = f*J, k =0,1,...,p — 1, have disjoint interiors,
and fP(J,0J) C (J,0J). Then the map f is called renormalizable with
period p, and the restriction PRf = f?|.J good notation? is called the
(real) pre-renormalization of f. This map considered up to rescaling
of J is called the (real) renormalization Rf of f. It can be naturally
normalized by rescaling J to [—1, 1], i.e., by letting

Rf =To (f°|J)oT 1,
where T': J — [—1,1] is the dilation which preserves or reverses orien-

tation depending on whether 0 is the minimum of f? or otherwise. We
will call J the central interval of the renormalization.

EXERCISE 2.20. If f has an attracting cycle of period p > 1 then
f is renormalizable with period p. If f has a parabolic cycle of period
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p > 1 with multiplier A = 1 (resp. A = —1) then f is renormalizable
with period p (resp. 2p).

Note that though f? is a multi-modal map, the renormalization R f
is still unimodal, so that it is a (partially defined) operator in the space
of unimodal maps.

Among possible renormalization periods there is the smallest one
corresponding to the “first” renormalization. In what follows we will
use the notation R for the first renormalization, unless otherwise is
explicitly specified.

Note that period 2 has a special feature: in this case the renormal-
ization intervals J = [, —«| and f(J) touch at the fixed point o with
negative multiplier. Because of this subtlety the doubling renormaliza-
tion often requires a special treatment.

EXERCISE 2.21. Show that the central renormalization interval J
is the biggest fP-invariant interval such that f?|J is unimodal. Show
that J = [£7(0), f27(0)] is the minimal such an interval. It will be
called the smallest central interval of the renormalization Rf.

6.1.2. Combinatorics. Combinatorial type of the renormalization is
the order of intervals Ji, k = 0,1,...,p — 1, on the real line. Equiv-
alently it can be described in terms of the kneading theory in the
following way. Let ¢; € J; be the preimage of 0 under f7~1: J, — J.
Then the itinerary of ¢; is a finite kneading sequence & of length p.
Combinatorics of the renormalization is determined by k.

EXERCISE 2.22. Show that any finite kneading sequence of length
greater than 1 can be realized as combinatorics of some renormalizable
map (compare Exercise 1.1.42). All periods, except 2 and 3, admit
several renormalization combinatorics. Find all renormalization com-
binatorics of period 4 and 5.

If, in turn, Rf is renormalizable, then f is called twice renormaliz-
able with the second renormalization R?f. If it is renormalizable again,
then f is three times renormalizable with the third renormalization R3 f,
and so on. In this way, we can classify all unimodal maps according to
the number of times they can be renormalized. In particular, a map
can be infinitely renormalizable.

EXERCISE 2.23. Let f be renormalizable with combinatorics k and

let Rf be renormalizable with combinatorics p. Describe combinatorics
of R%f.

An S-unimodal map f is called (real) Yoccoz if is not infinitely
renormalizable, neither hyperbolic nor parabolic.
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6.1.3. Feigenbaum attractor. Infinitely renormalizable maps have a
very nice topological structure. Let p; < py < ... be the consecutive
periods of the renormalizations and let J* O J2 O ... be the corre-
sponding central intervals. The intervals J? = fkJ" k=0,1,...p,—1,
are cyclically permuted by f forming a nest of cycles of intervals.
Let us also consider the smallest renormalization intervals J" (see
Exercise 2.21) and the corresponding cycles of intervals j,? = fkjn,
k=0,1,...p, — L.

THEOREM 2.24. Let f be an infinitely renormalizable S-unimodal
map f. Then

oo pn—1 00 pn—1
or=YU7=NUJr (2.11)
n=0 k=0 n=0 k=0

is a Cantor set equal to the postcritical set w(0). It has a natural group
structure (projective limit of cyclic groups of order p,) such that the
map f acts on Of as a group translation (“adding machine”).

Note that the property that the set O is Cantor depends on the
No Wandering Intervals Theorem (I.1.32). This set is also called the
Feigenbaum attractor.

The ratios ¢, = pn_1/pn are called the relative renormalization
periods. Every interval of level n — 1 contains exactly ¢, intervals of
the next level n. The most famous example of infinitely renormalizable
map is the Feigenbaum polynomial z — 2? + ¢y (see §1.5.1) whose
relative periods are all equal to 2. In this case, the dynamics on the
postcritical set is the adding machine on the dyadic group,

EXERCISE 2.25. Find the kneading sequence of the Feigenbaum
map.

One says that f has bounded combinatorics if the relative periods
are bounded.

We will see in §6.4 that for any string of admissible combinatorial
types, (Ko, K1, .. ), there is an infinitely renormalizable quadratic map
with this combinatorics.

6.1.4. Injectivity. Let us finish with a result saying that the renor-
malization operator is injective in the space of real analytic maps:

LEMMA 2.26. Let f and g be two real analytic unimodal renormal-
izable maps (maybe with different combinatorics). If Rf = Rg then

f=g
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6.2. Complex renormalization. To define the complex renor-
malization, we will replace in the above “real definition” the intervals
by topological disks and unimodal maps by quadratic-like maps. Here
is a precise notion.

A quadratic-like map f : U — U’ is called renormalizable of period
p is there is a topological disk V' 3 0 such that

e The map g = fP: V — fPV = V' is quadratic-like;
e The [ittle Julia set K(g) is connected,;

e The little Julia sets K, = f*K(g), k=0,1,...,p—1, do not intersect
except perhaps touching at their g-fixed points (see §§1.3.5 and 3.2).
picture

Remarks. a) Notice that the K}, are the (filled) Julia sets of quadratic-
like maps g, = f? : f*V — f¥PV which are not normalized for
k = 1,...,p — 1. the critical point of g, is not 0 but rather f*0.
(Neither they are symmetric with respect to the critical point.)

b) In most cases, the little Julia sets Ji, are actually pairwise disjoint
and the domains f*V, k = p,...,p—1, can be selected pairwise disjoint
as well. Such a renormalization is called primitive. Otherwise it is
called satellite. For real maps, only the renormalization of period 2 is
satellite.

¢) In the satellite case, the little Julia sets are organized in bouquets
of [ sets (for some [ dividing p) touching at their common g-fixed point.
For the first renormalization, there is only one bouquet of little Julia
sets touched at the a-fixed point of f.

d) Finally, we should remark that the notions of real and complex
renormalizations do not exactly match. If a real map is renormalizable
in the complex sense then it is renormalizable in the real sense as well,
and its renormalization intervals are just the real slices of the little
Julia sets. However, the real map = — z? — 3/4 (corresponding to
the first doubling bifurcation) is renormalizable in the real sense but
is not renormalizable in the complex one. As the first renormalization
is concerned, this doubling situation is the only one that makes the
difference.

As in the real case, the first complex renormalization corresponds
to the smallest period for which a map is renormalizable. For this
period, the map f? : V — V' is called (complex) pre-renormalization
PRf of f. This map considered up to rescaling is called the (complex)
renormalization Rf of f. It can be normalized at the origin as (nor-
malization at 0). (We use the same notations for the real and complex
(pre-)renormalizations: it will always be clear which one is considered.)
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As in the real case, the complex renormalizations are distinguished
not only by the period but also by their combinatorial types. Roughly
speaking, this is the combinatorics of the little Julia sets K} in the big
set K(f).

Let us give a precise definition. Consider two renormalizable maps
f and f. Assume first that the corresponding renormalization is prim-
itive. Then the renormalization domains V and V can be selected in
such a way that the domains f*V (respectively, f*V) , k=p,...,2p—1,
are pairwise disjoint. The maps f and f are combinatorially equivalent
if there exist homeomorphisms A and A’ of the complex plane such that
WV = Vi, k = 0,1,...,p — 1, h is homotopic to h' rel Uo<k<p-10Vi,
and ho f=foh

If the first renormalization happens to be satellite , then its combi-
natorics is specified by the combinatorial rotation number of the a-fixed
point of f.

Obviously, if two renormalizable quadratic-like germs f and ¢ are
hybrid equivalent then their renormalizations Rf and Rg are hybrid
equivalent as well (since an appropriate restriction of the conjugacy be-
tween f and g gives a hybrid conjugacy between their pre-renormalizations).
Hence R preservers the hybrid foliation F and, moreover, contracts
Sullivan’s Teichmiiller metric (2.2).

Note finally that similarly to the real case we can classify complex
quadratic-like maps according to the number of times (from 0 to oo)
it can be renormalized. This makes sense of notation R¥f. As in the
real case, a quadratic-like map is called Yoccoz if it is purely repelling
and is not infinitely renormalizable.

6.3. Little Mandelbrot copies. One of the most fascinating fea-
tures of the Mandelbrot set easily observable on computer pictures is
the presence inside of it little copies of itself, “M-copies”, (see Fig-
ure 2.4. This phenomenon can be completely understood by means of
the complex renormalization.

Consider some primitive hyperbolic component H of int M of period
p > 0 (i.e., H is not the component bounded by the main cardioid).
It turns out that one can find a domain A  H and a holomorphically
moving domains 0 € V, € V!, ¢ € A, such that:

e the maps ¢g. = f? : V. — V! are quadratic-like and, moreover, form a
proper unfolded quadratic-like family g over A;

e for any ¢ € A, the domains f*V!/ k = 0,1,...,p — 1, are pairwise
disjoint.



58 2. QUADRATIC-LIKE MAPS AND RENORMALIZATION

FIGURE 2.4. A little copy of the Mandelbrot set.

By Theorem 2.14, the Mandelbrot set My = M, of this family
is homeomorphic, by means of the straightening y, to the standard
Mandelbrot set M. This is how little M-copies appear.

Note that according to the definition of §6.2, the maps f. are renor-
malizable for ¢ € My and g, = R(f.) is the corresponding renormaliza-
tion. However, even for ¢ € A \. M we view g. as the renormalization
of f., the analytic continuation of R|Mpy to the domain A. In terms
of this renormalization and the picture described in §4.6, we have the
following description of the homeomorphism o : My — M. Consider
the renormalization operator R : A — Q which associates to ¢ € A the
quadratic-like germ g.. It maps A to a quadratic-like family S in Q.
The straightening xy maps S back to the quadratic family QP. Then

o=xoR|My. (2.12)

We call o the stretching homeomorphism.

In the case of a satellite hyperbolic component H C int M, there
is still a domain A D H endowed with a quadratic-like family ¢, : f? :
V. — V!. However, A does not contain H but instead A touches OH
at the root of H. Because of that, the family g over A is not proper.
Despite that, the Mandelbrot set Mg is homeomorphic to M ~\ 1/4
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and this homeomorphism extends to a homeomorphism o : Mg — M.
Thus, we have:

THEOREM 2.27. Any hyperbolic component H of int M, except the

component Hy bounded by the main cardioid, is contained in a canon-
teally defined copy My of the Mandelbrot set M.

The little M-copies corresponding to the first renormalization are
mazimal in the sense that they are not contained in any other M-copy
except M itself. Let M stand for the family of maximal Mandelbrot
copies. Each copy M € M corresponds to a certain combinators of
the renormalization: the maps in the same M-copy are renormalizable
with the came combinatorics while the maps in different M-copies have
different combinatorics of the renormalization. Thus, we can label
different combinatorial types of the first renormalization by symbols
M e M.

Moreover, this correspondence between the copies and combinato-
rial types implies that different copies M € M are disjoint. Hence we
can define the stretching map

o: M= M —-M
U

MeMm

on the whole set M" of renormalizable maps.

Note that the maximal satellite M-copies are attached to the main
cardioid C' of the Mandelbrot set at the bifurcation points.

The set M? of twice renormalizable maps is equal to M N o=t M!
and consists of infinitely many copies of second order. In general,

M'=M'Nno*M'n---no V!

is the set of n times renormalizable maps. It consists of infinitely
many pairwise disjoint copies M € M" corresponding to different
combinatorics of the n-fold renormalization.

Their intersection,

oo
M>* =\ M"
n=0
is the set of infinitely renormalizable maps.

PROPOSITION 2.28. The connected components of M are equal to
the combinatorial classes of infinitely renormalizable maps (see §1.4.6).

Hence any infinitely renormalizable combinatorics can be encoded
by an infinite string M,,, M,,, M,,, ... of maximal M-copies M, . In
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terms of the stretching map o, this string is determined as follows: for
any cc€ C,o0'ce M,,,1=0,1,2,..., ie,

C = ﬁ o' M,,.
i=0

It follows that to any string (M,,, My, , M,,,...) of maximal M-copies
corresponds a non-empty compact connected combinatorial class.

6.4. Renormalization windows. Let us now consider the M-
copies centered at the real line. Such copies and the corresponding
renormalization combinatorics will be called real. Each real copy M
intersects the real line along a closed interval W C [—2,1/4] called
a renormalization window. It consists of parameter values which are
renormalizable with a certain real combinatorics as described in §6.1.

Remark. Note that unreal parameters ¢ in a real M-copy are also
considered to be renormalizable with a real combinatorics.

Let Mp stand for the family of maximal real M-copies. Their real
slices are mazimal renormalization windows J; corresponding to differ-
ent combinatorics of the first renormalization. This family of intervals
will also be denoted by M.

EXERCISE 2.29. Find the window corresponding to the doubling
renormalization.

Each window is homeomorphic ally mapped onto [—2,1/4] by the
stretching homeomorphism o : .J; — [—2,1/4]. Altogether they form
a set J' = UW; of once renormalizable real maps. The set J? =
J'No~ LTt consists of twice renormalizable real maps. In general, the
set

J" = jl mo_fljlﬂ___mo_f(nfl)jl

consists of n times renormalizable real maps. Its connected components
are renormalization windows of order n corresponding to different com-
binatorial types. Their intersection,

I=J%=nJ"

is the set of infinitely renormalizable maps. It is now obvious that any
string (K, Ki,, Ki, - - - ) of real combinatorial types is represented by a
closed interval of infinitely renormalizable maps of this type (compare
§6.1).
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6.5. Structure of the parameter interval. Let us say that a
map f. (or the corresponding parameter value ¢) is regular if it is either
hyperbolic or parabolic. Let R C [—2,1/4] stand for the set of regular
parameter values.

The above discussion leads to the following structure of the param-
eter interval:

[—2,1/4] = (=3/4,1/4]U T U N,

where (—3/4,1/4] is the initial window of regular parameters where the
a-fixed point is either attracting or parabolic with multiplier 1, and A/
is the set of non-renormalizable irregular parameters.

Consider now a maximal renormalization window .J of period p.
Stretching it onto [—2, 1/4] by means of o, we find a similar structure
inside of it:

J=HU(JT*NnJ)uN'n.J),

where H is the semi-closed interval of regular parameters for which one
of periodic points of period p is attracting or parabolic with multiplier
1 (called the initial regular window in H), and N'*N.J is the set exactly
once renormalizable irregular parameters in .J.

Putting these decompositions together, we obtain:

T =R'UJ?UNT!

with the obvious meaning of the notations. Proceeding to the deeper
renormalization levels, we obtain:

Jn — Rn U Jn—l—l UNn,

where R™ is the union of initial regular subwindows in all renormaliza-
tion windows of level n (consisting of exactly n times renormalizable
regular maps), and N™ is the set of exactly n times renormalizable
irregular maps.

Note that R = UR™. Furthermore, ) = UN™ is the set of real
Yoccoz maps (recall §6.1). Altogether, we obtain the following decom-
position of the parameter interval into three disjoint subsets:

[—2,1/4] =RUYUL. (2.13)

Note that, in fact, this decomposition is valid formally by the definitions
of the sets R, F, and Z. However, it is very important to see the
structure of these sets as described above.
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LECTURE 3

Puzzle and a priori bounds

1. Combinatorics of the puzzle

Kids know well the “puzzle game” of cutting a picture into small
pieces and then trying to put them back together. Such a game can
be played with dynamical pictures like Julia sets and the Mandelbrot
set as well. It turned out to be a very efficient way to describe the
combinatorics of the corresponding dynamical systems and to control
their geometry.

Our standing assumption will be that both fized points of a map f
are repelling. We will first assume that f is a quadratic polynomial and
will later explain how to generalize the construction to the quadratic-
like case.

1.1. Description of the puzzle. The puzzle game starts by cut-
ting the complex plane with the a-rays R;, + = 1,...p, landing at the
a-fixed point. These rays are cyclically permuted by the dynamics (see
Proposition 1.11). The important feature of this initial configuration
is that it is forward invariant under the dynamics.

Let us also select some equipotential £ = E, and consider p closed
Jordan disks bounded by this equipotential and two consecutive rays
R;. picture Denote these disks by Pi(fl) and call them puzzle pieces of
depth —1.

Consider now the preimage of this configuration under f. It consists
of the equipotential F(® = E s and 2p external rays landing at the
points « and o/ = —a. These curves bound 2p — 1 closed topological
disks called puzzle pieces of depth 0, Pi(o). One of these puzzle pieces,

VO = PO(O), contains the critical point. It is called critical. Under f,
the puzzle pieces of depth 0 are mapped onto appropriate puzzle pieces
of depth 1. This map is univalent for off-critical pieces and is a double
covering for the critical one.

Let us keep taking preimages of this configuration of curves. The
configuration of depth n consists of the equipotential E™ = E /m
and 2"t! external rays landing at different points of f "«. They tile
the Jordan disk Q™ bounded by E™ into closed Jordan disks called

63
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puzzle pieces of depth n, Pj(n). Among these puzzle pieces there is one,
PO(”), containing the critical point. It is called critical. Under f, every
puzzle piece Pj(") of level n is mapped onto some puzzle piece P}”fl) of
level n — 1. This map is univalent if Pj(") is off-critical, and is a double
covering if Pj(n) is critical (i.e., if 7 = 0) .

Moreover, given some puzzle piece Pi”_1 of depth n — 1, consider

those puzzle pieces PZ-(") of depth n whose interior intersects Pin’l.

These puzzle pieces form a tiling of the disk Pi("_l) N QM. It follows
that the family of puzzle pieces of level n satisfies the following Markov

property:
o If ij(n) intersects the interior of P™ then ij(n) > P™. In fact,
the whole family of puzzle pieces satisfies the following property:

e Property N. Any two puzzle pieces are either nested or have dis-
joint interiors.

Note also that the boundary of each puzzle piece P is a piecewise
analytic Jordan curve. The analytic pieces are arcs of equipotentials
and external rays. Moreover, QP intersects the filled Julia set at finitely
many points, iterated preimages of «.

Thus, we obtain tilings of finer and finer neighborhoods Q™ of K (f)
by more and more puzzle pieces which nicely behave under the dynam-
ics. We will describe next how these tilings capture the recurrence of
the critical orbit.

1.2. Principal nest. Consider a puzzle piece P of depth n and a
point z such that f™z € int P for some n > 0. The puzzle piece @) of
depth n + m containing z is called the pull-back of P along the orbit
{fFz}m . Clearly, the map f™ : @ — P is a branched covering of
degree 2!, where [ is the number of critical puzzle pieces among f*Q,
k=0,1,...,m — 1. In particular, if there are no critical puzzle pieces
among them, then f™ : () — P is univalent. This yields:

LeEmMA 3.1. Let P be a critical puzzle piece and let Q) be the pull-
back of P along { f¥2}m,.

If f™z us the first landing of the orb z at int P, m > 0, then f™ :
Q) — P 1is univalent.

If z € int P and f™z is the first return of the orb z to int P, m > 0,
then f™ . QQ — P is uniwvalent or a double covering depending on
whether Q) s off-critical or otherwise.
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FiGURrE 3.1. Central and non-central returns.

We are now ready to introduce the principal nest of critical puzzle
pieces,

Vo VIoVEs ... 30, (3.1)

and associated double coverings g, : V" — V7L

Let V0 = PO(O). good? Assume inductively that we have defined
the nest up to V1. If the orb(0) never returns to int V"' then the
construction stops here. Otherwise consider the first return f0 of the
critical point back to V"=, Let V" be the pull-back of V"' along this
orbit and let g, = f'» : V® — V»~!. By Lemma 3.1, this map is a
double covering. This completes the construction.

We call V™ the principal puzzle piece of level n (pay attention to
the difference between the “level” and the “depth”).

A map f is called combinatorially recurrent if the critical orbit visits
all critical puzzle pieces. In this (and only this) case, the principal nest
is infinite.

1.3. Central returns and renormalization. There are two dif-
ferent combinatorial possibilities on every level which are important to
distinguish. The return of the critical point to level n — 1 (and the
level itself) is called central if g,,0 € V™ (see Figure 3.1). In this case,
the critical orbit returns to level n — 1 at the same time as to level n,
so that [, = [,.1 and g1 : V"™ — V"™ is just the restriction of g, to
VL Central returns indicate the fast recurrence of the critical orbit.

If N consecutive levels, m —1, m, ..., m+ N — 2, are central then
the nest

yml o ym oL Nl (3.2)

is called a central cascade of length N +1. In this case, gm0 € VN -1
and the maps

Gk VIR VL =1, N,

are just the restrictions of g,, to the corresponding puzzle pieces.
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If this cascade is maximal then the levels m —2 and m+ N — 1 are
non-central. In this case, the length N 41 is equal to the escaping time
it takes for the critical orbit to escape V"™ under the iterates of g,,.

If the return to level m — 1 is non-central, we will formally consider
{V™=11 to be a “central cascade” of length 1. With this convention, the
whole principal nest is decomposed into consecutive maximal central
cascades. In fact, one of these cascades, the last one, can have an
infinite length:

PROPOSITION 3.2. A map [ is renormalizable if and only if its
principal nest ends up with an infinite central cascade V™1 D V™ O
.... Moreover, in this case the map ¢, : V™ — V™! is the renormal-
wzation of f.

Proor. We will explain the “if” direction of this assertion.

Assume that we immediately observe an infinite central cascade
VO > VIS .... In this case we say that f is immediately renormaliz-
able. One can show that this corresponds to parameters in the satellite
M-copies attached to the main cardioid (compare §11.6.2 and §I1.6.3).

In the immediately renormalizable case, the critical orbit never es-
capes V! under the iterates of g; = f? : V! — VO (where p is the
number of a-rays). The map ¢; is a double covering of a smaller do-
main onto a bigger one but it is not a quadratic-like map, since the do-
mains V! and V? have a common boundary (consisting of four external
arcs). To turn this map into a quadratic-like, one should “thicken” the
domains VY and V! a little bit (see Figure ...).

Assume that f is not immediately renormalizable. One can show
that in this case, V™ @ V™! so that g,, : V™ — V™ ! is a quadratic-
like map with non-escaping critical point, which can be identified with
the first renormalization of f. O

Let us define the height of f as the number of the maximal central
cascades in the principal nest. We see that f is renormalizable if and
only if it has a finite height.

Thus, the principal nest provides an algorithm to decide whether
the map in question is renormalizable, whether this renormalization is
of satellite type or otherwise, and to capture this renormalization.

On the negative side, the puzzle provides us with dynamical in-
formation only up to the first renormalization level. If we wish to
penetrate deeper, we need to cut the Julia set of the renormalization
into pieces and to go through its principal nest. Since the renormaliza-
tion is a quadratic-like map rather than a quadratic polynomial, this
motivates the need of the puzzle for quadratic-like maps. It will be
discussed in §1.7.
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1.4. The first return maps and generalized renormaliza-
tions.

DEFINITION 3.1. Let {V;} be a family of Jordan disks with disjoint
closures compactly contained in a disk U, V4 2 0. A holomorphic map
g+ UV; = U is called a generalized quadratic-like map if the restriction
g : Vo — U is a double branched covering (with critical point at the
origin), while all other restrictions g : V; — U are diffeomorphisms. We
will also assume that the central domain Vj is symmetric with respect
to the origin and the restriction g|V4 is even. The continuous extension
of g to a map UV; — U will also be called a generalized quadratic-like
which will not be distinguished from the original one.

Main examples of generalized quadratic-like maps are provided by
the “first return maps” g, : UV;* — V! to the principal puzzle pieces.
They are defined as follows. Take a point z € int V"~! which returns
back to int V*~! and consider this first return f!*)z. Let V(z) be the
pull-back of V"~! along {sz}ic(i)() and let g,|V(z) = f“*). Property N
and Lemma 3.1 easily imply:

PROPOSITION 3.3. For two points z and (, the puzzle pieces V(z)
and V (C) either coincide or have disjoint interiors, so that they can be
labelled as V™ starting with the critical puzzle piece V" = Vi = V™(0)
(provided 0 returns to int V*=1). The map g, : V{* — V"' is a double
covering while the maps g, : V* — V™! are univalent for i > 0.
Moreover, if V'L Cint V"2, then V* C int V"~ and all these pieces

are pairwise disjoint.

To keep track of the recurrence of the critical orbit, consider the
itinerary (iy,...,4,_1) of it under iterates of g, until it returns back to
V™. This itinerary is defined by the following rule:

eV, k=1,...,r—1,
where ¢;0 is the first return of the critical point back to V™. These
itineraries contain the most basic combinatorial information about f.

It is often sufficient to consider only the puzzle pieces V;" inter-
secting the critical orbit. The restriction of g, to those puzzle pieces
(considered up to rescaling) is called the generalized renormalization of
f on V"1 In many interesting cases the generalized renormalizations
are defined on finitely many puzzle pieces V;™:

PROPOSITION 3.4. Let f be a quadratic map with an infinite prin-
cipal nest. The property that all levels n — 1 contain only finitely many
puzzle pieces V" intersecting orb(0) is equivalent to one of the following
conditions:
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FIGURE 3.2. Solar system.

e f is renormalizable,
e or f is non-renormalizable and the postcritical set w(f) is mini-
mal (i.e., all orbits of x € w(f) are dense in w(f)).

1.5. Bernoulli scheme. We will now describe a Bernoulli scheme
which performs a transit from the bottom to the top of a central cas-
cade. Such transits will be treated as single steps of the generalized
renormalization procedure (“cascade renormalization”).

Consider a central cascade (3.2) and let g = g,,, : V™ — V™ L,
Then the restrictions

g:VES VL S VEL VR k=m,... , m+ N —1,

are double branched coverings. Pull the non-central puzzle pieces
vm o c VMl V™ from the top annulus to the consecutive annuli
vk Vngrl We obtain a family of puzzle pieces W} C V¥~ V¥ such
that ¢*~™ univalently maps Wf onto some puzzle piece V™ = W™ (see
Figure 3.2).

change m to m-1

Let us consider the following map

G : UWE V™l GIWE =g, 09" ™ (3:3)
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v (rescaled)

FIGURE 3.3. Fibonacci renormalization scheme.

This map is (unbranched) Bernoulli in the sense that it univalently
maps each domain W}* onto Vm=Ll This yields the following decompo-
sition of the next renormalization, g, +yy1:

PROPOSITION 3.5. The map gminy1 @ V™V — VPN can be

represented as by, ni10f, where hy,  n11 ts a univalent map with range
ym=t,

1.6. The Fibonacci map. There is a remarkable non-renormalizable
real quadratic map fap, : 2 — 22 + cqp called Fibonacci. It is combi-
natorially determined by the property that the closest returns of the
critical point to itself occur at the Fibonacci moments 1,2,3,5,8,....
Many interesting phenomena of the quadratic dynamics can be tested
on this example.

The most efficient way of understanding combinatorics of the Fi-
bonacci map is provided by the generalized renormalization discussed
above. For this map, the domain of g, consists of only two puzzle
pieces, so that

Gn VUV = VL (3.4)

where g, : Vi* — V5 ! is a double branched covering, while g,, : V* —
Vo=t is univalent. Moreover, g,(0) € V;*, while g,(g,0) € V7, i.e.,
after landing at the non-central piece V", the critical point immediately
returns back to the central piece V{'. Thus, the Fibonacci map is the
most recurrent among maps without central cascades.
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Figure 3.3 n -; n+1 shows how to pass from one level of the Fi-
bonacci map to the next under the generalized renormalization. No-
tice that V™" is mapped under g, strictly inside V{*, and that the
annulus V* \ g, (V") is conformally equivalent (by means of g,) to
V=1 V™. This annulus provides a comfortable extra space securing
nice properties of the generalized renormalization.

Even if you never heard about Fibonacci map, the generalized renor-
malization analysis would inevitably lead you to this extreme renormal-
ization scheme.

1.7. Quadratic-like case. In the case of a quadratic-like map
f U — U, there are no canonically defined external rays and equipo-
tentials. However, one can make a choice which will suit to all purposes.
Namely conjugate f to its straightening f. : € 7 — €2, by means of
some qc map h : U — Q,, where €, is the domain bounded by the
equipotential of radius r. Then external rays and equipotential of f
can be defined as the pull-backs of the corresponding curves of f..

With this choice we can start the puzzle by cutting U’ with the
a-rays of f. We obtain p puzzle pieces Pi(_l). Taking the preimages of
these puzzle pieces, we obtain a tiling of U by 2p — 1 puzzle pieces Pi(o),
etc.: the whole above discussion can be carried on without changes.

To control the geometry of this puzzle, we will need to control the
qc dilatation of h. According to Proposition 11.2.3, A can be selected
in such a way that its dilatation depends only on the modulus of the
fundamental annulus, mod(U’ \ U) (after some adjustment of f). In
what follows we will always assume that h is selected in this way.

1.8. Real principal nest. If f : I — [ is a real quadratic map
then taking the real traces of puzzle pieces V,* we obtain the real prin-
cipal nest of puzzle pieces,

[~a,a]=1°D>I'D>1°D ...,

and corresponding first return maps g, : UI* — I"~'. The restriction
of g, to the central interval, g, : (I",0I") — (I"~',0I"!), is uni-
modal, while its restrictions to the non-central intervals I}}, k # 0, are
diffeomorphisms onto /™.

In the real case, non-central returns to I" ! are naturally classi-
fied as high and low depending on whether g,(I™) > 0 or otherwise.
Accordingly, there are two types of central cascades

Im*tormos...o (3.5)

depending on whether the return g,, : I — I"™ ! is high or low. In the
high case, the central cascade is called Ulam-Neumann or Chebysheuv.
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In the low case, it is called saddle-node or parabolic. The reason is that
in the high case the map g,, : I™ — I"™ ! is combinatorially close to
the Ulam-Neumann map f 5 : & — 22 — 2, while in the low case it is
close to the parabolic map fi/4 : @ — x> +1/4.

The principal nest ends with an infinite central cascade if and only
if the map f is renormalizable. In this case, the intersection NI" is the
maximal domain J of the first pre-renormalization.

The above discussion admits a straightforward generalization to all
S-unimodal maps. In this case, we let I° = [~a, ] and define I"
inductively as the pullback of ™! corresponding to the first return
of the critical orbit to I"! (that is, I" is the component of f~!(1" 1)
containing 0, where [ is the first return time of 0 to I"1).

The notions of generalized renormalization,

G I — 1" (3.6)
Bernoulli scheme, etc. also extend readily to the S-unimodal setting.

1.9. Essentially bounded combinatorics. We will now intro-
duce a combinatorial parameter, “essential period”, which will control
geometry of the puzzle.

Let us consider a maximal saddle-node cascade (3.5). Take a point
r € w(0) N (I™' \ I™) and assume that g,,(z) € I7 . [+, Then let

d(x) = max(j —m, m+ N — j).

(If g,n(z) € IT™N+1 then let d(x) = 0.) This parameter, the depth
of return, shows how deep inside the cascade the point x lands under
the return map. Let d = maxd(x) over x as above. Then the levels
[ € (m+d,m+ N —d) of the cascade are called neglectable.

Let now f be a renormalizable unimodal map of period p. Consider
the orbit {f"0}>°,, and and remove from it all “neglectable” points,
i.e., such that f"0 € I' . I'=! for some neglectable level [ in some
saddle-node cascade. The number of intervals that are left is called the
essential period of f, per,(f). Roughly speaking, it is the renormaliza-
tion period neglecting time spent near “ghost parabolic points”, deep
inside saddle-node cascades.

We say that an infinitely renormalizable map has essentially bounded
combinatorics if sup,, per,(R" f) < oco.

Note that a bound on the essential period is equivalent to a bound
on the following combinatorial parameters:

(i) the height (see §1.3);
(ii) the return times of the intervals I} (the domains of the generalized
renormalizations) to I"~! under iterates of g, i;
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(iii) the lengths of the Ulam-Neumann cascades;
(iv) the depths of landings at the saddle-node cascades.

2. Geometry of the puzzle

2.1. Principal moduli. The main geometric parameters that con-
trol the geometry of the puzzle are the moduli of the annuli in the
principal nest:

= mod (V"L V™),

called the principal moduli of the puzzle. If the principal moduli are
definite (i.e., p, > p for some g > 0), then the situation is under
control (see §11.3.4). Note, however, that p,11 = p,/2if n—11s a
central level, so that the principal moduli decay exponentially within
central cascades. This does not cause a big trouble, though, because
the Bernoulli scheme of §1.5 allows us to control the whole cascade by
the top principal modulus (Proposition 3.3). So, what is important is
to have definite moduli on the top of the cascades.

It turns out that the actual situation is even much better: the
principal moduli on those levels grow at linear rate, so that by Propo-
sition 2.3 the corresponding quadratic-like maps are getting close (ex-
ponentially fast) to pure quadratic polynomials. This is the crucial
geometric property of the puzzle:

THEOREM 3.6. Let f: U — U’ be a quadratic-like map with
mod(U' \ U) > v.
Assume that the critical orbit escapes VO U; 4 Pi(fl) in no longer than

N iterates. Let {ny — 1} stand for the sequence of non-central levels in
the principal nest. Then

mod(V"™ V™) > COF,

where the constant C depends only on N and v. In particular, the
constant C' 1s uniform over all real polynomials.

EXERCISE 3.7. Show that for a real map, which is not renormaliz-
able with period 2, one can take N = 2.

Below we will outline key ideas of the proof of Theorem 3.6.

2.2. First modulus. The bound N on the escaping time allows
us to control the geometry of the initial levels of the puzzle:

LEMMA 3.8. Let VO D VI D V™! be the first central cascade of
the puzzle. Then the principal modulus mod(V™ . V™1 s bounded
away from 0 by some constant B, depending only on N and v.
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2.3. Asymmetric moduli. The principal moduli do not behave
nicely under the generalized renormalization, most notably, they de-
cay within central cascades. For this reason, we will consider other
geometric parameters, “asymmetric moduli” o,, which monotonically
grow under the generalized renormalization. They are made of some
combinations of moduli of certain annuli in the puzzle.

In the Fibonacci case (see §1.6), the definition is quite simple. Let
R denote the maximal annulus in V"~ 1\ (Vy*UV}") which goes around
V" but does not go around Vj*,. Then

1
o, = mod Ry + 3 mod RY.

To estimate inductively the asymmetric moduli, we need the following
classical inequality:

Grotzsch Inequality. Let A be a conformal annulus which is divided
by a homotopically non-trivial Jordan curve vy into two annuli, A, and
AQ. Then

mod A > mod A; + mod As,.

Now, the Fibonacci renormalization scheme depicted on Figure 77?7
yields:
mod R > mod Ry;

1 1
mod Ryt > 5 mod(V" 1\ g, (V) > i(mod R{ 4+ mod RY),

where the last line follows from the Grotzsch inequality and the fact
that the annulus V* \ g, (V™) is conformally equivalent to V"1 V™,
Taking the combination of the above two estimates with coefficients 1/2
and 1, we conclude that o, > o,.

The general estimate given below is much more involved.

Let us fix a level n > 0, and denote V"1 = A V; = V" g = g,
i = ji,. Mark the objects of the next level n+1 with prime: A’ =V =
Vo, and ¢’ : UV — A’. (However, we restore the index n whenever we
need it).

Let {V;}iez be a finite family of disjoint puzzle pieces consisting of
at least two pieces (that is |Z| > 2) and containing the critical puzzle
piece Vj. Let us call such a family admissible. We will freely identify
the label set Z with the family itself.

Given a puzzle piece D C A, let Z|D denote the family of puzzle
pieces of Z contained in D. Let D be a puzzle piece containing at least
two pieces of family Z. For V; C D let

R; = R,(Z|D) C D\ U Vi

JETID
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FIGURE 3.4. Annulus R;

be an annulus of maximal modulus enclosing V; but not enclosing other
pieces of the family Z (see Figure 3.4). (Such an annulus exists by
Montel’s Theorem).

Let us define the asymmetric modulus of the family 7 in D as

1
o(Z|D) =) S5, mod Bi(Z| D),
i€T

where 0;; is the Kronecker symbol. So the critical modulus is supplied
with weight 1, while the off-critical moduli are supplied with weights
1/2 (if D itself is off-critical then all the weights are actually 1/2).

In the case D = A = V" let 0,,(Z) = o(Z|V""!). The asymmet-
ric modulus of level n is defined as follows:

o, = min on(Z),
where 7 runs over all admissible subfamilies of V™.

2.4. Non-decreasing of the moduli. Let {V}'};cz be an admis-
sible subfamily of V'. Let us organize the pieces of this family in isles
in the following way. A puzzle piece D' C A’ is called an island (for
family I') if
e D’ contains at least two puzzle pieces of family Z’;

e Thereis at > 1such that ¢*D' C Vyyy, k=1,...¢—1, with i(k) # 0,
while ¢'D = A.

Given an island D', let ¢p = ¢' : D' — A. This map is either a
double covering or a biholomorphic isomorphism depending on whether
D' is critical or not. In the former case, D' D V{ (for otherwise D' C Vj
contradicting the first part of the definition of isles).
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We call a puzzle piece Vj C D' ¢p-precritical if ¢pi(V]) = Vj.
There are at most two precritical pieces in any D'. If there are actually
two of them, then they are off-critical and symmetric with respect to
the critical point 0. In this case D' must also contain the critical puzzle
piece V.

Let D' = D(Z') be the family of isles associated with Z'.

Let us call an island D' innermost if it does not contain any other
isles of the family D(Z'). As this family is finite, innermost isles exist.

LEMMA 3.9. Let Z' be an admissible family of puzzle pieces. Let D'
be an innermost island associated to the family ', and let J' = T'|D.
For j € J', let us define i(j) by the property ¢p(V)) C Vi, and let
T =Ai(j): 7€ TJ}yu{0}. Then {V;}icr is an admissible family of

puzzle pieces, and

o(Z'|D") > (T = s)p+ s mod Ry + Z mod Ry | ,

JeT',i(§)#0

DN =

where s = #{j : i(j) = 0} is the number of ¢pr-precritical pieces, and
R; are the mazimal annuli enclosing V; in A rel .

Since x> mod Ry, we conclude:

COROLLARY 3.10. For any island D' of the family T'
1
o(Z'|D") > 3 M and o(Z'|D'") > o(Z) > o.

Hence:

COROLLARY 3.11. The asymmetric moduli o,, do not decrease un-
der the generalized renormalization: o, > 0p_1 > =+ > 09 > /2.

This yields a prior: bounds on the principal moduli:
THEOREM 3.12. Under the circumstances of Theorem 3.6,
mod (V"™ \ V™) > 4 > 0,
where the constant p depends only on N and v.

PROOF. It is easy to see that if n — 1 is a non-central level, then
fint1 > 0y /2. With this, the assertion (with p = p /4) follows from
Corollary 3.11 and Lemma 3.8. O
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2.5. Linear growth of the moduli. To obtain the linear growth
of the principal moduli, we need to exploit Lemma 3.9 more carefully.
There are several circumstances that can give us some extra gain in
Corollary 3.11 and to show that o’ > o + a with a definite a > 0, at
least on every other level, except for the tails of long central cascades.
Clearly, it is enough to show that

o(Z'|D") >0 +a (3.7)

for any innermost island D'.

Assume that level n—1 is not in the tail of a central cascade, so that
the modulus gz > 0 is definite by Theorem 3.12. We will use notation
of Lemma 3.9 and refer to the estimate therein as the “key estimate”.

e If the innermost island D contains at least three puzzle pieces,
i.e., |J'| > 3, then we can split off one x in the key estimate to obtain:

1
o(Z|D) = su+o(l),

and we get that extra gain with a = p/2.
In what follows we assume that all innermost isles contain two puz-
zle pieces.

e Let us consider the disk A as the hyperbolic plane. Fix some
big constant L. If the hyperbolic distance from any off-critical puzzle
piece Vi;) C A to 0 is bounded by L, then 1 > mod(Ry) + a, where
a = a(L) > 0. This lower bound on the p’s in the key estimate, yields
(3.7).

e Assume now that the hyperbolic distance from any off-critical
puzzle piece Vi(;) to 0 is at least L. The case when both puzzle pieces
Vi¢jy are off-critical is easy to treat, so that we assume that one of these
puzzle piece, V = V', is critical, and the other one, V; = V", is off-
critical. But for the same reason we can assume that the images of
these two puzzle pieces under g, ; satisfy the same properties, which
brings us to one of the following situations:

1) Fibonacci return: g, V@ C V"' and g, V* = V"' (see
Figure 3.3);

2) Central return: g,_Vy = Vg ' and g, V" C V"""

The Fibonacci return is the most delicate case to analyze. In this
case we use the last reserve in our disposal:

Definite Grotzsch Inequality. Under the circumstances of the Grétzsch
Inequality (§2.3), let K be the set of points in A which are separated
by Ay U Ay from OA. Then

mod(A) > mod(A;) +mod(A4y) + 3,
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FiGure 3.5. A puzzle piece for the Fibonacci map.
There is a good reason why it resembles the Julia set
of 22 — 1.

where the constant 3 > 0 depends only on the width of K in A as
defined below.

To define the width of K, uniformize A by a round annulus and
inscribe K (in this round model) into the smallest concentric annulus
R. Then width(K) = mod(R).

One can now show that in the Fibonacci case, the boundary oV "!
is pinched in between Vj* and V]" (see Figure 3.5), and this pinching
yields (3.7) due to the Definite Grotzsch Inequality.

In the central case, one should go all way from the top to the bot-
tom of the central cascade and carry similar estimates for this cascade
renormalization.

2.6. Scaling factors. In the real case, a natural replacement for
the principal moduli y,, is provided by scaling factors

"]
An = |In—1|’

where {I"} is the real principal nest from §1.8. Since A\, = O(e #»),
Theorem 3.6 implies exponential decay of the scaling factors:

THEOREM 3.13. Let f : U — U’ be a real quadratic-like map with
mod(U' \ U) > v. Let {ny — 1} stand for the sequence of non-central
levels in the principal nest. Then

)\nk+1 S Cpka

where the constants C' and p < 1 depends only on v. In particular, the
constants are uniform over all real quadratic polynomials.
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In the non-holomorphic case the situation is similar:

THEOREM 3.14. Let f be a non-renormalizable S-unimodal map,
and let {ny — 1} be the sequence of non-central levels of its principal
nest. Then A, +1 < Cp¥, where p < 1.

3. A priori bounds

3.1. Distortion principles. The reason why Schwarzian deriva-
tive is so important for one-dimensional dynamics is because the clas-
sical Schwarz Lemma and Koebe Distortion Theorem (see §I1.3.4) are
valid for maps with positive Schwarzian derivative. This leads to dis-
tortion techniques which plays a fundamental role in the field.

Any interval I = (a,b) can be viewed as a hyperbolic line endowed
with the hyperbolic metric dz/(x — a)(b— ). In the metric, the length
of an interval J = (¢,d) € I is given by the logarithm of the following
cross-ratio:

_szo @ 0] @
[y =1 g(c—a)(b—d) lg(l—i— |L|>le g(l—i- |R|>7

where L and R are the left-hand and the right-hand components of
I ~ J respectively.

Recall that maps with vanishing Schwarzian derivative preserve
cross-ratios (as such maps are actually M&bius). So, it is not surprising
that maps with positive Schwarzian derivative must either contract or
expand cross-ratios (depending on the particular choice of the cross-
ratio). This can be expressed in the following geometric way:

Real Schwarz Lemma. A diffecomorphism ¢ : I — I' with positive
Schwarzian derivative is contracting with respect to the hyperbolic met-
ric. Hence, for any interval J € I, if |L| > ¢|J| and |R| > ¢|J| then

[6(L)] = dl¢(J)| and [¢(R)| = d[o(T)];
where § = 6(¢) > 0 depends only on € > 0.

Distortion and nonlinearity for real diffeomorphisms are defined ex-
actly in the same way as for conformal ones (see §I1.3.4). An important
consequence of the Schwarz Lemma is:

Real Koebe Distortion Theorem. Let ¢ : I — I' be a diffeomor-
phism with positive Schwarzian derivative, and let K € I.

If |L| > ¢|J] and |L| > ¢|J|, then n(¢|J) < log K, where K = K(¢)
depends only on € > 0.
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3.2. Real bounds. The results of this section constitute the first
important step towards the Universality Phenomenon which will be
discussed in the last lecture.

Let f : I — I be an infinitely renormalizable S-unimodal map.
Recall from §I1.6.1 that J™ stand for the central interval of the the
n-fold renormalization, and J? = fkJ* k=0,1...,p, — 1.

Note that any even unimodal map can be decomposed as ¢ o fj,
where fo : @ — 2% and ¢ : fo(I) — I is a diffeomorphism onto its
image. If f is S-unimodal and n(¢) < log K, we say that f is a
K-quasiquadratic map. Since the bound on the non-linearity yields a
bound on the second derivative, we have:

LEMmMA 3.15. The space of K-quasiquadratic maps f : I — I 1is
compact in C*-topology.

not quite true: go to the Epstein class

We say that an interval .J is well inside T > J if |L| > 6|I| and
|R| > 0|I| for both connected component L and R of T'\..J, where § > 0
depends only on some specified quantifiers (e.g., on the distortion K
in Theorem 3.16).

THEOREM 3.16. Let f be an infinitely renormalizable K -quasiquadratic
map. Then:

(i) There is a 6 = §(K) > 0 and intervals T™ O S™ D J" 5 0 such that
fPr (S™,08™) — (T, 0T™) is a unimodal map, and |T"| > (149)|S™|;
(ii) The real renormalizations R"f are C-quasiquadratic maps, with C
depending only on K. Moreover, they form a precompact family in C*
topology.

All the above bounds are eventually uniform, that is, they do not
depend on K on sufficiently big (depending on f) renormalization lev-
els.

We express property (i) by saying that the maps f» : J* — J"
admit a definite extension, or that there is a definite space around J".

ProOF. The argument whose idea is given below is called the
Shortest Interval Argument. It is based on the observation that there
is some “space” around the shortest interval J;! of level n which can be
pulled back to produce space around the central interval J". Consider
next to J; intervals of level n and their midpoints. (There are two such
intervals unless J is the first or the second iterate of J".) Let H" be
the convex hull of J;! and these midpoints. Since J}! is the shortest
interval, |L| > (1/2)|J| for any connected component L of H" \ J}.

Let 7™ 5 0 be the pullback of J under f*. It is a fun exercise
to show that the map f* : T® — H™ is unimodal, i.e., that the map
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fEL: f(T™) — H™ is a diffeomorphism onto its image. Moreover, by
the Real Schwarz Lemma, the interval J" is well inside 7.

Let now S™ 3 0 be the pullback of T™ under fP». For the same
reason as above, the map fP» : S™ — T™ is unimodal and J" is well
inside 7. This yields (i).

Bounded nonlinearity follows by the Real Koebe Distortion The-
orem. It implies bounded second derivative for the renormalization,
which in turn implies C!'-precompactness.

Let f|J" = ¢, o fo. Notice that all the above bounds depend only
on the non-linearity of ¢,. Since n(¢,) — 0 as n — oo, the bounds are
eventually uniform. O

Recall that in the doubling case the two renormalization intervals
touch each other. To deal with this situation, let us replace the maxi-
mal central intervals J” by the minimal central intervals J” (see Exer-
cise 2.21). Then the intervals j,? = fJ" k=0,1,...,p, — 1, do not
touch any more. The connected components of j,?_l \ Ujjjn are called
the gaps of level n. It is not hard to deduce from Theorem 3.16 that
the gaps cannot be too small compared with the adjacent intervals j,?:

LeEMmMA 3.17. Let f be an infinitely renormalizable K -quasiquadratic
map. Then there exists an € = e(K) > 0 such that for any gap G} ad-
jacent to an interval Ji we have: |G| > €| J}|.

Now the Lebesgue Density Points Theorem yields:

COROLLARY 3.18. Let f be an infinitely renormalizable S-unimodal
map. Then the postcritical set Oy has zero Lebesgue measure.

One says that f has bounded geometry if for any interval J,?_l, all
intervals and all gaps of level n in j,?’l are commensurable with j,’;’l,
with a constant independent of level n and the interval J,?’l. If the
commensurability constant becomes uniform on sufficiently big levels,
then the geometry is called beau (“bounded and eventually uniform”).

PROPOSITION 3.19. An infinitely renormalizable quasiquadratic map
with bounded combinatorics has bounded geometry. Moreover, it is
beau.

PROOF. It is easy to see that infinitely renormalizable maps with
g-bounded combinatorics form a closed subset in the space of unimodal
maps (with uniform topology). By Lemma 3.15, the space of infinitely
renormalizable K-quasiquadratic maps with ¢g-bounded combinatorics
is compact. Hence they have uniformly bounded geometry. Now The-
orem 3.16 (ii) implies the assertion. O



3. A PRIORI BOUNDS 81

3.3. Essentially bounded geometry. Long saddle-node cascades
make the geometry of a map unbounded (namely, the scaling factors
A become close to 1 in the middle of the cascade). But this unbound-
edness can occur only in a specific controlled way as formalized below.

Let f be an S-unimodal map. Recall that I} stand for the domains
of the real generalized renormalizations (3.6).

DEFINITION 3.2. Let us say that f has essentially K-bounded ge-
ometry (until the first renormalization level) if the scaling factors A, are
bounded from below by K !, while the configurations (1"~ ~ I", ")
have K-bounded geometry. The latter means that all the off-central in-
tervals I7, k # 0, and all the gaps (i.e., the components of I" ™' \ U, I}")
are K-commensurable.

THEOREM 3.20. A real quadratic map has essentially bounded pe-
riod if and only iof it has an essentially bounded geometry. More pre-
cisely:

e For any € > 0, there exists a p such that if per,(f) > p then \, < ¢
for some n;

e For any K there exists a p such that if per,(f) < p then f has
K-bounded geometry.

The proof of this result consists of analyzing how different combina-
torial parameters, (i)-(iv) from §1.9, influence the geometry of f. For
instance, if the first parameter, height, is big, then the scaling factors
become small by Theorem 3.13. It is relatively easy to see that once
any of other parameters (ii)-(iv) becomes big, a small scaling factor is
created.

On the other hand, if all parameters (i)-(iv) are bounded then an-
alyzing long saddle-node cascades as perturbations of parabolic maps,
one can see that the geometry of f stays essentially bounded.

3.4. Complex bounds. Given a quadratic-like germ f, let
mod(f) = sup mod(U' \ U),

where the supremum is taken over all quadratic-like representatives
f:U — U’ of f. Theorem 3.6 shows that the geometry of the puzzle is
controlled by mod(f). To control the geometry on all renormalization
levels, we need to control the moduli of all the renormalizations R" f.
This motivates the following definition:

Let f be an infinitely renormalizable map. One says that f has a
priori bounds if there is a p > 0 such that mod(R"f) > pu.

THEOREM 3.21. Any infinitely renormalizable real quadratic-like map
f:U —= U has a priori bounds depending only on v = mod(U' \. U)
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(hence these bounds are absolute for quadratic polynomials). Moreover,
there exists an absolute p and N = N(v) such that mod(R"f) > p for
n> N.

This result establishes one of the basic features of real dynamics
which is not generally valid in the complex case.

The proof of Theorem 3.21 is split into two cases depending on the
essential period. The case of high combinatorics is treated as follows:

THEOREM 3.22. There exists a p with the following property. If
f:U = U is a renormalizable real quadratic-like map with per,(f) > p
and mod(U' ~U) > v > 0, then there exists a quadratic-like renor-
malization Rf : V. — V' such that mod(V' \ V) > pu(v,p), where
p(v,p) = 0o as p — oo (while v being frozen,).

The idea is that by Theorem 3.20, a big essential period will create
a small scaling factor A,. Taking a round disk V' = D(I™) based upon
I™ as the diameter and pulling it back by the central branch of g,,
we obtain a domain V' based upon ™. The double branched covering
gn : V. — V' is the desired quadratic-like map.

The case of bounded combinatorics is treated as follows:

THEOREM 3.23. Let f : U — U’ be N + 1 times renormalizable
real quadratic polynomial with per,(R"f) <p,n=0,1,...,N—1, and
mod(U' \U) > v. Then there exists an N = N(p,v) and a quadratic-
like renormalization RN f : V — V' such that mod(V' \ V) > u > 0,
where p is an absolute bound.

In this case, consider the intervals SV and TV from Theorem 3.16.
Consider the slit plane C \ (R ~ T") as the hyperbolic plane. By
symmetry, the interval T represents a hyperbolic geodesic in this
plane. Hyperbolic r-neighborhoods of this geodesic are bounded by
two circle arcs (see Figure ?77). Take a sufficiently big such a neigh-
borhood V' and pull it back by the N-fold pre-renormalization, fP~.
We obtain a domain V based on SV, and a branched double covering
fP¥ oV — V', Once can show using essentially bounded geometry of
f (Theorem 3.20) that V is “well inside” V', so that fP~¥ : V — V' is
the desired quadratic-like map.

Putting the last two theorems together, we obtain a prior: bounds
from Theorem 3.21.

3.5. Local connectivity of Julia sets. Notice the the Grotzsch
Inequality implies:
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LEMMA 3.24. Let A,, C C be a nested sequence of pairwise disjoint
annuli surrounding a compact set K. If > mod A, = oo then K is a
single point.

This yields an important conclusion about the structure of Julia
sets (compare §1.4.6):

THEOREM 3.25. If f is a non-renormalizable quadratic polynomial,
then the Julia set J(f) is locally connected.

Proor. We will restrict ourselves to a more interesting case when
the principal nest is infinite. Since f is non-renormalizable, the princi-
pal nest contains infinitely many non-central levels (Proposition 3.2).
By Theorem 3.12,

Zmod(V”’l N V) = o0.

By Lemma 3.24, diam V" — 0. By Lemma 1.26, the Julia set is locally
connected at 0.

Using Lemma 3.1 and the Koebe Distortion Theorem, this property
can be spread around the whole Julia set. O

From a priori bounds of Theorem 3.21 one can also derive:

THEOREM 3.26. Any real quadratic polynomial f., ¢ € [—2.1/4],
has locally connected Julia set.

PRrROOF. It is not hard to see that a priori bounds imply shrinking
of little Julia sets .J, to the critical point. On the other hand, any
little Julia set is the intersection of some puzzle pieces of f (in the
sense of §1.4.6). Hence, there is a nest of puzzle pieces shrinking to
0. By Lemma 1.26, this implies local connectivity of J(f) at 0. A
priort bounds and the Koebe Distortion Theorem allow one to spread
it around the whole Julia set. O

However, there exist complex quadratic polynomials whose Julia
set is not locally connected.

4. Bibliographical notes

This lecture is mostly based upon [L4], part I. The central result
here is Theorem 3.6 [L4]. A related result in the particular case of real
polynomials was independently proven in [GS1].

For quadratic polynomials, puzzle was introduced by Yoccoz who
proved Theorem 3.25 (see [M2]). Yoccoz’s work was preceded by the
work of Branner & Hubbard [BH] where the puzzle was introduced for
cubic polynomials with one escaping critical point.
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Real a priori bounds (§3.2) appeared in [BL1, MS, S2]|. Theorem
3.21, and Theorem 3.26 as a consequence, were proven in [LS, LY]. The
corresponding results in the case of bounded combinatorics had been
earlier proven in [S2, MS] and [HJ] respectively. For other important
results on a priori bounds and local connectivity of Julia sets see
P, Y1, PZ].



LECTURE 4

Rigidity phenomenon

1. Rigidity Conjecture

1.1. We will now discuss the classification of quadratic polynomi-
als f. up to various equivalence relations introduced above. Given a
purely repelling point ¢ € M, we have the following inclusions:

Comb(c) D Top(c) D Qc(c) D He D Conf(c) = {c},
(4.1)

where Comb(c) stands for the combinatorial class of ¢, and all other
notations have a similar self-explanatory meaning (except the notation
H. for the hybrid classes defined in §I1.3.1). The corresponding classes
in the real quadratic family will be labelled by R: Combg(c), Topg(c),
etc.

EXERCISE 4.1. Two quadratic maps are conformally equivalent if
they are conjugate by a Mobius transformation. Show that any qua-
dratic map z — «az? + 8z + v is conformally equivalent to a unique
map f.: 2z — 2° + ¢ (the uniqueness part is the last equality in (4.1)).
Thus, the family {f.} can be identified with the quotient of the full
3-parameter family of quadratic polynomials modulo the conformal
equivalence.

A central open conjecture in holomorphic dynamics asserts that in
the purely repelling case, all these classes are actually reduced to a
single point:

Rigidity Conjecture. If a parameter ¢ € M is purely repelling then
Comb(c) = {c}. (4.2)

In other words, combinatorics of a quadratic map should uniquely
determine the map itself! This phenomenon is intimately related to
the rigidity phenomenon in hyperbolic geometry, particularly in dimen-
sion 3. The classical Mostow Rigidity theorem tells us that if two com-
pact hyperbolic 3-manifolds are topologically equivalent then they are
isometric. In the non-compact case, Thurston described the combina-
torics of a 3-manifold (homotopically equivalent to a compact surface)

85
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in terms of “ending laminations” and conjectured that these lamina-
tions determine the manifold. This certainly sounds very similar to
the above Rigidity Problem, and it turns out that the connection be-
tween the rigidity phenomena in hyperbolic geometry and holomorphic
dynamics is very deep indeed.

A map f. (and the corresponding parameter ¢) is called combina-
torially rigid if (4.2) holds.

The above discussion can be naturally reduced to the real slice f,,
c € [=2,1/4], of the quadratic family, which leads us to a notion of
really rigid maps and the corresponding Real Rigidity Conjecture. In
fact, this conjecture has been already proven:

Real Rigidity Theorem. If a parameter ¢ € [—2,1/4] is purely re-
pelling then

Combg(c) = {c}. (4.3)
The main goal of this lecture is to outline a proof of this theorem.

1.2. Rigidity and MLC. There is a deep and surprising connec-
tion between the two conjectures stated above (§1.1 and §1.4.7):

PROPOSITION 4.2. The Rigidity Conjecture is equivalent to the MLC
Congecture.

Proor. Recall from §1.4.6 that the combinatorics of a purely re-
pelling quadratic polynomial is determined by the portrait of rational
external rays landing at various repelling periodic points. By Theo-
rem 1.22, the portrait of rays landing at a repelling point persists in a
wake of a certain parabolic point and it bifurcates when the parameter
exits the wake.

Let us consider parapuzzle pieces (in the sense of §1.4.7) bounded by
several pairs of rays landing at parabolic points and several equipoten-
tials. Let P(c) stand for the family of such parapuzzle pieces around
c. We see that

Comb(c) = (] P (4.4)
)

PeP(c

Thus ¢ is combinatorially rigid if and only of ((pcp(y P = {c}.
On the other hand, (Npep(y P = F° where F° is the fiber of the

projection j; from Theorem 1.27. (We use the remark that the combi-
natorial model of M can be constructed by means of rational rays with
odd denominators only.) By that theorem, F¢ = {c} if and only if M
is locally connected at c.

Altogether, this yields the result. O
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remarks on neutral case

1.3. Density of hyperbolic maps. There is yet one more im-
portant open conjecture in holomorphic dynamics:

Density Conjecture. Hyperbolic parameters are dense in the Man-
delbrot set.

It turns out that this conjecture is intimately related to the previous
ones:

PROPOSITION 4.3. The Rigidity Conjecture (or equivalently, the
MLC Conjecture) implies the Density Conjecture:

Proor. By Corollary 1.15, only existence of a queer component
U of int M can violate the Density Conjecture. But since the divid-
ing pairs of rational rays cannot cut through the interior of M, the
whole queer component U would belong to the same combinatorial
class, which would violate the Rigidity Conjecture. U

The situation is similar on the real line:

ProPoOSITION 4.4. The Real Rigidity Theorem implies density of
hyperbolic parameters in [—2,1/4].

PRrROOF. Take two non-hyperbolic parameters ¢; and ¢ in [—2,1/4].
Since they are rigid, they have different kneading invariants. By Propo-
sition 1.38, the interval (¢;, ¢y) contains a hyperbolic parameter. a

1.4. Reduction to the rough geometry. Let us start with a
quick outline of a classical approach to the Mostow rigidity theorem.
Represent a 3-manifold M3 as a quotient of the hyperbolic space H?
modulo an action of a Kleinian group I' of hyperbolic motions. The ap-
proach is to prove first that topology of a manifold determines its rough
geometry, i.e., determines the manifold up to quasi-isometry. This
translates into quasi-conformal conjugacy between the corresponding
group actions on the sphere at infinity, C = 0H>. Then, by means of a
certain ergodic argument, one can show that this conjugacy must me
conformal (if M? is compact).

A similar approach proved to be quite efficient in the context of
holomorphic dynamics as well: first prove that combinatorics deter-
mines rough geometry of the map (i.e., determines it up to qc conju-
gacy) and then prove that rough geometry determines the map itself.
In fact, it turns out that in the situation under consideration the second
step goes through automatically:

LEMMA 4.5. Assume c is not hyperbolic. If Comb(c) = Qc(c) then
Comb(c) = {c}.
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This result is a consequence of the following two lemmas:

LEMMA 4.6. Quasiconformal classes of quadratic polynomials are
either domains or single points.

PROOF. Let ¢ € M and ¢ € Qc(c). Consider a qc map h: C — C
conjugating f = f. to f = f;. The Beltrami differential y = Oh/0h of
this map is invariant under the f-action. Then all Beltrami differentials
pr = A, [N < 1/||p]|oo, are also f-invariant. By the Measurable
Riemann Mapping Theorem, there is a qc solution h, : C — C of the
Beltrami equation 0hy/0hy = uy. If hy is appropriately normalized
then the map f) = h,\ofoh;\1 is a quadratic polynomial z — 2% +c(\).
Moreover, ¢(0) = ¢, ¢(1) = ¢, and ¢(A) is holomorphic in A (by Theorem
2.6). Since holomorphic maps are open, the range of A\ — c¢()) fills a
domain containing both ¢ and ¢é. Since this range is contained in Qc(c),
the conclusion follows. O

On the other hand, the following statement easily follows from the
definitions:

LeEMmMA 4.7. Combinatorial classes of non-hyperbolic quadratic poly-
nomials are closed.

Proof of Lemma 4.5. Assume Comb(c) = Qc(c) = C. If C # {c}
then by the last two lemmas C' would be simultaneously closed and
open.

2. Stability theory

2.1. Structural stability. The rigidity phenomenon is opposite
to a structural stability phenomenon, which is very important in the
general theory of dynamical systems and its applications. In our con-
text, a quadratic map f, (and the corresponding parameter value x)
is called structurally stable if all nearby complex quadratic maps f,.
are topologically conjugate to f, (compare §1.5.4). By general meth-
ods of dynamical systems one can prove that all hyperbolic quadratic
maps, except superattracting ones, are structurally stable (and thus,
non-rigid). However, there is a better way of doing it based on the
theory of holomorphic motions. Moreover, though we do not yet know
whether hyperbolic maps are dense in the quadratic family, the theory
of holomorphic motions allows us to show that structurally stable maps
are in fact dense (compare with Theorem 1.47):

THEOREM 4.8. Any non-superattracting quadratic map f, with x €
C \ OM is structurally stable.



2. STABILITY THEORY 89

The idea is to construct an equivariant holomorphic motion of the
complex plane (which conjugates f, to nearby maps). Let us start the
construction with the Julia set:

LEMMA 4.9. Let x € C~ OM. Then there exists a holomorphic
motion h. : J. — J. over a neighborhood A of x conjugating f.|J, to

felJe-

Proor. Take a repelling periodic point a, of f, of period p. By the
Implicit Function Theorem, nearby maps f. have a repelling periodic
point a. moving holomorphically with ¢. Note that the condition of the
[F'T is satisfied as long as a, stays repelling, so by Proposition 1.17 the
function ¢ + a. can be analytically extended to any simply connected
domain A C C\OM (in particular, to any component of int M). So, all
repelling periodic points move holomorphically over the same domain
A. Moreover, these points do not collide as collisions can occur only at
parabolic parameters. Thus, we obtain a holomorphic motion of the set
of periodic points over A. Obviously, this motion is equivariant under
the dynamics.

By the Extension Lemma of §4.3, this motion extends to an equi-
variant holomorphic motion of the Julia set. 0

The next step is to construct an equivariant holomorphic motion
in the basin of co. This is particularly simple when the Julia set is
connected:

LEMMA 4.10. Assume x € int M and let A be the component of
int M containing c. Then there is an equivariant holomorphic motion
he : Dy(00) = D.(00) such that h.(z) is a holomorphic function in two
variables.

Proor. Consider the Bottcher function B, of f., ¢ € A. Since the
Julia set .J, is connected, B. conformally maps D.(co) onto C \ D
(and conjugates f. to z — 2%). Hence h. = B.! o B, is an equivariant
conformal isomorphism from D, (oc) onto D.(c0). Moreover, explicit
formula (1.1) shows that h.(z) is holomorphic in ¢ as well. O

To complete the proof, we need to take care of some other dynamical
regions:

LEMMA 4.11. (i) Let % be a hyperbolic but not superattracting pa-
rameter value. Let D, be the basin of the attracting cycle for ¢ near
x. Then there exists an equivariant holomorphic motion h. : D, — D,
over some neighborhood of *.

(ii) Let x € C~ M. Then there exists an equivariant holomorphic
motion he : Dy(00) = D.(00) over a neighborhood of .
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PrOOF. The idea is to construct first an equivariant holomorphic
motion of a neighborhood of the attracting point (in case (i)) or a
neighborhood of oo (in case (ii)) and then pull it back equivariantly to
the whole basin. The local motion h, can be constructed by means of
the linearizing coordinate or the Bottcher coordinate respectively. It
should be done in such a way that h.(f'(0)) = f*(0) whenever fI*(0)
lands in the domain of h.. This would allow one to extend h, to the
whole basin. O

Putting the above motions together, we obtain an equivariant holo-
morphic motion h. of the whole complex plane over some neighborhood
A of x. By the A-lemma, the maps h,. are automatically continuous,
which proves Theorem 4.8. In fact, by the A-lemma, these maps are
automatically quasiconformal, so that we come up with the following
gs stability result:

THEOREM 4.12. Two non-superattracting quadratic polynomials which
belong to the same component of C~. OM are gc conjugate.

2.2. Centers of hyperbolic components. We can now give an
idea of the proof of the Multiplier Theorem from the 1st lecture (The-
orem 1.16):

THEOREM 4.13. Any hyperbolic component of int Ml contains a unique
superattracting parameter (its center). More generally, it contains a
unique parameter with a given multiplier A € D.

PROOF. Assume there are two different parameters with the same
multiplier, A(¢) = A(€), in some hyperbolic component of period p.
Combining Lemma 4.10 with the A-lemma we see that the maps [ =
fo and f = f: are conjugate on the complements of the basins of
their attracting cycles. On the other hand, since A(¢) = A(¢), fP is
conformally conjugate to f” on the immediate basin of the attracting
cycle. One can show that these two conjugacies can be combined into a
global qc conjugacy. Since this conjugacy is conformal outside the Julia
set (which has zero measure by Theorem 1.5), it is globally conformal,
and hence ¢ = ¢. O

f—

2.3. Qc classification. At this point we are ready to give a full
qc classification of quadratic maps:

THEOREM 4.14. The parameter plane C of the quadratic family is
partitioned in the following qc classes:

(i) The complement of the Mandelbrot set, C \ M;
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(ii) Punctured hyperbolic components H \ cy, where cy is the center

of H;
(iii) Queer components;

(iv) Single points on the boundary OM or the centers of hyperbolic
components.

Thus, parameters on dM and superattracting parameters are gc
rigid, while all the rest are gc flexible.

ProOF. By Theorem 4.12, any set in the above list belongs a single
qc class.

Let us show that two different sets on the list belong to different qc
classes. Take two parameters ¢ and ¢ from different sets but in the same
qc class Q). Obviously, parameters in C ~ M are not even topologically
equivalent to parameters in M, so we can assume that both ¢ and ¢
belong to M. It is also obvious that superattracting parameters are
not topologically equivalent to attracting parameters, so that we can
assume that ¢ and ¢ do not belong to the same component of int M. So,
either one of the parameters belongs to OM or they belong to different
components of int M. In ether case, () would intersect C~\ M (since by
Lemma 4.6, @) is a domain), which is certainly impossible. O

2.4. Monotonicity of the real quadratic family. We know
from the kneading theory that the real quadratic family f. is full, that
is, its kneading invariant k(c) assumes all admissible values from Ky,
t0 Kmax as ¢ moves from the cusp 1/4 to the tip —2. We will now prove
that this dependence is monotone. This was historically the first deep
application of holomorphic dynamics to real dynamics.

THEOREM 4.15. The kneading invariant ¢ — k(c) depends mono-
tonically on c € [—2,1/4].

PROOF. Assume there are two parameter values ¢; < ¢y such that
k(c1) < K(cy). Then by Proposition 1.38, there exist a superattracting
parameter values a € [c1,cz]. By the Intermediate Value Theorem,
there exist two distinct superattracting parameters a; € (—2,¢;] and
as € [cg,1/4) with the same kneading invariant as a. This contradicts
Theorem 4.14 (iv). O

COROLLARY 4.16. Combinatorial classes of real quadratic maps are
either intervals or single points in the parameter interval [—2,1/4].

One more monotonicity property is noteworthy:
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THEOREM 4.17. Let J = (a,b) C [—2,1/4] be a hyperbolic window
in the real quadratic family. Let A(c) be the multiplier of the correspond-
ing attracting cycle, ¢ € J. Then N(c) > 0, and A(c) monotonically
decays from 1 to —1 as ¢ moves from b to a.

ProoF. Obviously, A assumes values 1 or —1 at the endpoints of
J. By the Multiplier Theorem (1.16), its derivative does not vanish in
J. By the monotonicity of the kneading invariant and Exercise 1.36,
A(c) changes sign from + to — as ¢ passes through the center of J in
the negative direction. Hence A\(b) =1, A(a) = —1. O

2.5. Invariant line fields. Let P, be the projective line associ-
ated with the tangent plane 7,C. Points of P, are tangent lines L C
T,C. They can be represented as points of the unit circle, y = €™ € T,
where 0 € R/7Z is the direction of the line. These projective lines P,
are fibers of the projective bundle P over C.

A (measurable) line field on a set J C C is a measurable section
X — P, where X is a measurable set X C J of positive Lebesgue
measure. It can be represented as a measurable function p : X — T (or
rather, a measurable Beltrami differential pu(2)dz/dz). We will always
assume that p is extended to the whole plane by 0.

If z is not a critical point of f then the differential of f induces a
natural map Df : P, — Py,. This makes an obvious sense of the notion
of tnwvariant line field. It is represented by an f-invariant Beltrami
differential p, f*u = pu.

The following result provides a remarkable connection between the
Rigidity Problem and ergodic theory:

PROPOSITION 4.18. A parameter x € C belongs to a queer compo-
nent if and only if f. has a measurable invariant line field on its Julia
set.

ProoF. If x belongs to a queer component then by Lemma 4.10 f,
is conjugate to any nearby map f. by means of a qc map h, which is
conformal on the basin of co. The small axes of the field of infinitesimal
ellipses associated with h. (represented by the normalized Beltrami
differential of h.) form an f,-invariant line field on the Julia set of f,.

Vice versa, assume f, has an invariant line field on its Julia set
represented by a Beltrami differential p. Since the Julia set of a hyper-
bolic map has zero Lebesgue measure (Theorem 1.5), f, can only be of
type (iii) or (iv) from Theorem 4.14. Consider a Beltrami differential
Ap with some A € D* and the solution A of the corresponding Beltrami
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equations. If A is appropriately normalized then ho f, o h~! is a qua-
dratic polynomial f, with some ¢ # *. Hence % is qc deformable which
leaves us only with one possibility: * is of type (iii). O

3. Pullback Argument

3.1. Besides holomorphic motions, there is one more powerful
tool to construct a qc conjugacy between two combinatorially equiva-
lent maps called the Pullback Argument. The idea, due to Thurston
and Sullivan, is to start with a qc “pseudo-conjugacy” equivariant on
some dynamically significant part of the plane, and then promote it,
by pulling it back and passing to a limit, to a genuine qc conjugacy.

Consider two quadratic-like maps f : U — U’ and f : U — U’
with connected Julia set. Assume they are topologically conjugate by
a homeomorphism ¢ : U" — U’. Let

O = Oy =orbs(0) and OEszorbf(O).

We say that f and f are Thurston equivalent if there is a qc map
h: (C,0) = (C,0) homotopic to ¢ rel O (in particular, h conjugates
f to f on the postcritical sets).

The quint-essence of the method is contained in the following lemma:

LeEMmMA 4.19. Any Thurston equivalence promotes to a qgc conju-
gacy with the same dilatation.

PROOF. It is easy to turn h into a q¢ map U’ — U’ coinciding with
h on O and homotopic to ¢ rel OUQU. We will keep the same notation
h for the modified map.

Let U" = f~"U’ (so that U° = U', U' = U). The corresponding
objects for f will be marked with “tilde”. Let h has dilatation K.

Since h(f(0)) = f(0), we can lift h to a K-qc map hy : U' = U*
homotopic to ¢ rel (O,0U",dU?). Since the lift is holomorphic, the
dilatation of h; is the same as the dilatation of A. Since h; = h on
OU!, we can extend hy to U \ U' as h (keeping the same notation hy).
By the Gluing Lemma from §I1.2, this extension has the same dilatation
K. Moreover, this map is homotopic to ¢ rel (O UdU' U dU?). Also,
it is equivariant on the annulus U' \ U? (notice that h; is equivariant
on a bigger set than h).

Let us now replace h with h; and repeat the procedure. We will
construct a K-qc map hy : U' — U’ homotopic to ¢ rel (OuUoU* U
OU? U OU?) and equivariant on the annulus UM\ U?.

Proceeding in this way we construct a sequence of K-qc maps h,
homotopic to ¢ rel (O U QU U ---U U™ and equivariant on the
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annulus UN\U"*!. By the Compactness Lemma from §I1.2, we can
select a converging subsequence h,,y — h. The limit map 5 is a desired
qc conjugacy. ]

Putting together Lemma 4.19 and Theorem 4.14, we conclude:

THEOREM 4.20. A superattracting parameter value is uniquely de-
termined by its Thurston type.

Thus, hyperbolic components are labelled by Thurston types of
their centers.

3.2. Removability. We will need some background on removable
sets.

DEFINITION 4.1. A compact set () C C is called (gc) removable
if for any neighborhood U D> K, any (quasi-)conformal embedding
h:U N @ — C extends to a (quasi-)conformal embedding h : U — C.

EXERCISE 4.21. (i) Show that removability is equivalent to qc re-
movability.
(ii) Show that it is sufficient to take U = C in the above definition of
removability.

Assume that we have a family of disjoint annuli A} C C\Q, n € N,
such that:

e For any given n, the annuli A} are not nested and U, A} separates ()
from oo;

e For n > 1, any annulus A}, is surrounded by some annulus A?_l;

e Divergence property: For any = € @),
o
ZmodA”(x) = 00,
n=1

where A"(z) stands for the annulus A}, surrounding z.
Then we say that () satisfies the divergent property. Such a set is
necessarily Cantor.

THEOREM 4.22. A compact set () C C satisfying the divergent
property is removable.

In particular, Cantor sets with bounded geometry are removable.
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3.3. Rigidity of the Feigenbaum map. Next, we will show that
the Feigenbaum map (and, more generally, any infinitely renormaliz-
able real map with bounded combinatorics) is really rigid.

LEMMA 4.23. Consider two infinitely renormalizable real parame-
ters ¢, ¢ € [—2,1/4] of bounded combinatorial type. If the maps f = f.
and f = fz are combinatorially equivalent then there is an R-symmetric
qgc homeomorphism h : (C,Of — (C,Of) conjugating the maps on the
postcritical sets.

ProOF. The key is bounded geometry of the maps (Proposition 3.19).
We will use the notations preceding that Proposition (Letting I° = T
and using “tilde”to mark the corresponding objects for f)

Let D} be the closed R-symmetric round disk based upon the in-
terval I as a diameter, and let D" = D?, PP = DR~ UD!*!. Each P}
is a “generalized pair of pants”, i.e., a disk with finitely many disjoint
smaller disks removed. Moreover, the geometry of the P is bounded
in the sense that all the removed disks and the distances in between
them are commensurable with the diameter of D}. (It is called a “pair
of pants decomposition with bounded geometry”, see Figure ?7.)

It follows that there exist R-symmetric diffeomorphisms h,, . : P —
PP with bounded dilatation which are affine on the boundaries OP}.
Since these diffeomorphisms match on the boundaries of the pairs of
pants, they glue together into a global homeomorphism A : D°\. Oy —
DO\OJ;. By the Gluing Lemma from §I1.2, this homeomorphism is qua-
siconformal. Since the Cantor set Oy is removable (by Theorem 4.22),
h admits a qc extension through it, which yields the assertion. O

THEOREM 4.24. There is only one infinitely renormalizable real pa-
rameter ¢ of bounded type with a given combinatorics.

PROOF. Let us consider some real combinatorial class Cg C [—2,1/4]
of infinitely renormalizable maps of bounded type. By Corollary 4.16,
it is either an interval [c, ¢] or a single point. Assume it is an interval.
Let h be a q¢c homeomorphism given by Lemma 4.23. It is easy to
see that it provides a Thurston equivalence between f and f. By the
Pullback Argument (Lemma 4.19), f. and f; are qc equivalent. But
then by Theorem 4.14, ¢ and ¢ belong to a queer component of int M|,
so that they cannot be the endpoints of the combinatorial class Cg.

We concludes that Cg is reduced to a single point. O

As a byproduct of this result (together with Proposition 4.18) we
obtain:
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COROLLARY 4.25. Let ¢ be an infinitely renormalizable real param-
eter of bounded type. Then there are no invariant line fields on the Julia

set J(fe).

It is still unknown, though, whether such a Julia set can have pos-
itive Lebesgue measure.

3.4. Rigidity of the Fibonacci map. Let us consider a qua-
dratic Fibonacci map f. For this map we have a sequence of gener-
alized renormalizations g, : Vi U V* — V"' with linearly increas-
ing moduli mod(V"~'\ V") (by Theorem 3.6). So the pairs of pants
Vet \ (Vg U V) do not have bounded geometry. However we will
check that the corresponding pairs of pants stay bounded “Teichmiiller
distance away”, that is, they are K-quasi-conformal equivalent with a
uniform K. }

We will mark the objects corresponding to f with tilde. Note that
all puzzle pieces come together with the boundary parametrization,
induced e.g., by the Bottcher coordinate in the complement of the
Julia set. Let us have a K-quasiconformal map

hfn . (‘/n—l7 %na V'ln) — (Vn—l, ‘;bn, ‘71”)7

respecting the boundary parametrization of the pieces. We would like
to lift this map to a quasiconformal map

hn-l-l : (Vn+17 ‘/E)nv ‘/1”) — (f/'n-i-l’ ‘7()”, ‘71”)
picture with the same property. What causes a problem is that h,
does not carry the critical values v, = ¢,(0) to 9, = g,(0). However,
as mod(Vy* 1\ V) is linearly big, h,(v,) is exponentially close to 7,
in the hyperbolic metric of V"1,

By lifting h, to the off-central puzzle pieces V" — ‘71" via the
univalent maps g, : V;* — V"' and g, : V* — V", we obtain a K-
quasiconformal map h,, : V"~! — V"~ matching with k, on V"~ 1\ V2,
with even better property: ﬁn(vn) is exponentially close to v, in the
hyperbolic metric of V.

Now we can replace huy by another map H, matching with it on
Vr=b\ V', respecting the critical values and having dilatation

K (1 + exp small term).

This map can be already lifted to Vj**'. It needs not yet respect
boundary parametrization of VZ-”Jr2 but one more repetition of the pull-
back procedure will do the job.

Repeating this procedure we will construct a quasiconformal equiv-
alence between the pairs of pants of all levels with uniformly bounded
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dilatation (as the dilatation increases by exponentially small amount
on every step, it stays bounded). Spreading it around the postcritical
set, we conclude that the two Fibonacci maps in question are Thurston
equivalent. By the Pullback Argument, they are qc conjugate.

4. Main rigidity results

The Feigenbaum and the Fibonacci maps considered above repre-
sent two main phenomena: bounded geometry based on a priori bounds
and decaying geometry. We have seen that both phenomena lead to
rigidity. These phenomena will be the core of general rigidity results
presented below.

4.1. Rigidity of non-renormalizable maps.

THEOREM 4.26. Any non-renormalizable quadratic polynomial is
combinatorially rigid.

ProoF. By Lemma 4.5, it is enough to prove that if two qua-
dratic polynomials f and f are combinatorially equivalent then they
are qc equivalent. The idea is to construct inductively a sequence of
qc pseudo-conjugacies

h’n : (Vn_lv kan) — (Vn—l, U‘ch)a
k k

i.e., qc maps respecting the boundary marking of the puzzle pieces
(and hence (gn, gn)-equivariant on the corresponding boundary). To
this end, start with some qc map H : (U',U) — (U, U) equivariant on
OU which maps the configuration of a-rays for f to the configuration of
a-rays of f (respecting the natural parametrization of the rays). Call
this map “initial” pseudo-conjugacy.

The initial map can be lifted to a pseudo-conjugacy h; on the first
level of the principal nest. Then by means of the generalized (cas-
cade) renormalization (similarly to the Fibonacci case outlined above),
hy can be consecutively lifted from one non-central level of the prin-
cipal nest to the next one. Every lift will spoil dilatation by factor
1+ O(exp(—fin(k))), Where jin is the principal modulus on the corre-
sponding non-central level. Since the principal moduli grow linearly (by
Theorem 3.6), the dilatation of these pseudo-conjugacies stay bounded.

Then one can spread these pseudo-conjugacies around to off-critical
puzzle pieces without loss of dilatation, and pass to a limit to obtain a
desired qc conjugacy. O
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4.2. A priori bounds and invariant line fields.

THEOREM 4.27. A infinitely renormalizable quadratic-like map with
a priori bounds. does not have invariant line fields on its Julia set.

4.3. A priori bounds and rigidity. Let N = N; stand for the
escaping time from Theorem 3.6, that is, the number of iterates it takes
for the critical point to escape VOU P(=1). Let us say that an infinitely
renormalizable map f has a bounded escaping times if the escaping
times Ngm s of all renormalizations are bounded by some N.

THEOREM 4.28. Let f and f be two infinitely renormalizable quadratic-
like maps with a priori bounds and bounded escaping times. If f and f
are combinatorially equivalent then they are hybrid equivalent.

Since a quadratic polynomial with connected Julia set is uniquely
determined by its hybrid class, we conclude:

COROLLARY 4.29. Let f. and fz be two infinitely renormalizable
quadratic polynomials with a priori bounds and bounded escaping times.
If f. and fz are combinatorially equivalent then ¢ = ¢.

PROOF. Since the principal nest does not carry any information be-
yond the first renormalization level, on every renormalization levels we
have to start over again. The dilatation of the initial pseudo-conjugacy
H,, between R™f and R™f depends only on the a priori bounds and
the bounds on the escaping times. Then, when we go through the prin-
cipal nest of R™f (as in §4.1), we spoil this dilatation only by bounded
amount, so that we obtain pseudo-conjugacy with uniformly bounded
dilatations on all levels. These pseudo-conjugacies can be glued to-
gether and spread around to obtain a Thurston equivalence between
the maps.

By the Pullback Argument, this Thurston equivalence can be turned
into a qc conjugacy h. By Theorem 4.27, Oh = 0 a.e. on the Julia set
J(f), so that h is a hybrid equivalence between f and f. O]

4.4. Density of real hyperbolic maps. Since by Theorem 3.21
all real maps have a priori bounds, we conclude:

THEOREM 4.30. Any non-hyperbolic parameter ¢ € [—2,1/4] is re-
ally rigid.

By Proposition 4.4,

THEOREM 4.31. Hyperbolic maps are dense in the real quadratic
family.
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5. Bibliographical notes

This lecture is mostly based on [L4], part II. The Real Rigidity
Theorem and its consequence, the Density Theorem (4.31), are the
main results here.

Theorem 4.27 is due to McMullen [McM1]. Theorem 4.26 (with a
different proof) is due to Yoccoz (see [H|). It is proven by Kahn [K]
that the Julia set of any Yoccoz quadratic is removable (in a somewhat
different sense than defined in §3.2). This result implies Theorem 4.26.

For general theory of structural stability of hyperbolic dynamical
systems see, e.g., [Shu]. Structural stability theory in holomorphic
dynamics was developed in [L2, MSS].

The Monotonicity Theorem (4.15) appeared in [MT]. On the Pull-
back Argument, see [DH3| and [MS]. Rigidity Theorem 4.20 is due to
Thurston (see [DH3]). Rigidity Theorem 4.24 is due to Sullivan (see
[MS]).

On the Mostow Rigidity Theorem, see [Mo]. See [Th2, Min| on
Thurston’s Ending Lamination Conjecture.
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LECTURE 5

Measurable dynamics and parapuzzle geometry

1. Measurable dynamics

1.1. Almost all orbits follow the critical one. Measurable dy-
namics studies the behavior of Lebesgue almost all orbits of a smooth
dynamical system. For interval maps, it starts with a crucial observa-
tion that almost all orbits either follow the critical orbit or else densely
fill some interval:

LeEmMA 5.1. Let f : I — I be an S-unimodal map. Then for almost
all points x € I, one of the following two (overlapping) possibilities
occur:

(i) The map f is at most finitely renormalizable, and
p—1
w(z) = 1*J,
k=0

where p is the period of the last renormalization and J is the corre-
sponding smallest central interval.

(ii) w(z) = w(0).

COROLLARY 5.2. (i) If f is hyperbolic (or parabolic) then almost
all orbits converge to the attracting (or resp. parabolic) cycle.
(ii) If f is infinitely renormalizable then almost all orbits converge to

the Feigenbaum attractor Oy (see §6.1 of Lecture 2).

In mid 1980’s Milnor posed a problem whether case (i) of Lemma 5.1
always occurs for a Yoccoz map f. It turned out that it is indeed the
case:

THEOREM 5.3. If f : I — I is a quasiquadratic Yoccoz map then
for almost all x € I,

w(zr) = O frT.
k=0

The crucial geometric quality of quasiquadratic Yoccoz maps re-
sponsible for Theorem 5.3 is the exponential decay of scaling factors

101
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(Theorem 3.14 from Lecture 3). One can deduce from it that the do-
mains of the first return maps g, : UI — I"! have exponentially
decaying measure relative to the lengths of I"~!.

1.2. Elements of ergodic theory.
1.2.1. Ergodicity. Let (K, u) be a measure space and f : K — K
be a measurable map. The measure p is called quasi-invariant if

p(X) =0= pu(f'X) =0,

and it is called invariant if u(f~1X) = u(X) for any measurable subset
XCK.

A quasi-invariant measure is called ergodic if K cannot be decom-
posed into two disjoint invariant measurable subsets X; and X, of
positive measure.

Birkhoff Ergodic Theorem. Let f : K — K be a map preserving
an ergodic probability measure u, and let ¢ € L*(u). Then for almost
all x € K,

lim @ OO+ 4 H) /cbdu. (5.1)

n—00 n

This theorem tells us that the time averages of an observable ¢
under ergodic evolution exist and coincide with its space averages.

Let now f : K — K be a continuous map on a compact metriz-
able space. By the Bogolyubov-Kryloff Theorem, f has at least one
invariant Borel probability measure pu.

As usual, §, stands for the Dirac §-measure of a point x € K. Recall
that a sequence of measures u, on K weakly converges to a measure p
if for any continuous function ¢, [ ¢du, — [ ¢dp. In what follows, the
convergence of measures will always be understood in the weak sense.

A point x € K is called u-typical if

1
ﬁ(6x+5fx+---+5fnf1x)—>,u as n — oo.

In other words, the orbit of a u-typical point is equidistributed with
respect to p.

Applying the Ergodic Theorem to a dense family of continuous
functions and passing to a limit, we obtain:

Proposition. Let i be an invariant measure of a continuous map on
a compact metrizable space. Then p-almost all points are u-typical.
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1.2.2. Mixzing and Bernoulli properties. One of the main concerns
of the classical ergodic theory (in 1950-60’s) was the exploration of
stochastic properties of dynamical systems with invariant measures.
Recall that such a dynamical system (f,p) is called mizing if for any
two measurable subsets X and Y,

p(f7"XNY) = p(X)py) asn— oo.

An example of a mixing dynamical system is provided by one-sided or
two-sided Bernoulli shift. The one-sided Bernoulli shift o, of degree d
acts on the space X of one-sided sequences (g9,&1,...) in d symbols
by forgetting the first symbol. The two-sided Bernoulli shift o acts on
the space ¥, of two-sided sequences (..., 1,£¢,€1,...) by shifting the
sequence by 1 to the left. Either space is endowed with a stationary
product measure with each coordinate distributed according to a prob-
ability distribution (p1,...,pq) (S0, for each degree we actually have a
simplex of Bernoulli shifts).

The Bernoulli shifts are systems with strongest imaginable stochas-
tic properties: its typical trajectories look like sequences of independent
random variables. An invertible dynamical system is called Bernoulli
if it is isomorphic (i.e., conjugate by a measure preserving map) to a
two-sided Bernoulli shift. It turns out that the analogous property for
non-invertible systems is too restrictive, so it is replaced by the follow-
ing weaker notion based on the construction of “natural extension”.

Given a surjective map f : K — K, let us consider the space K
of all possible backward orbits 2 = (--- + 2z 9 — 21 > 2). There
is a natural surjective projection 7 : K — K, z — zp, and natural
equivariant lift f : K — K, f(2) = (--- — 2_y — 2y — fz). This lift
is invertible with the inverse given by forgetting z.

If f is a continuous map on a topological space then K can be
endowed with the weak topology, and all the above maps become con-
tinuous. If f preserves a measure p then it can be lifted to a unique
measure fi preserved by f On the cylindrical sets this measure is
defined as follows:

A(Xo x Xy x -+ x X)) = u(Xon fFIXi NN FX).

An invariant measure p of a map f is called weakly Bernoulli if the
natural extension (f, 1) is isomorphic to a two-sided Bernoulli shift.

1.3. Absolutely continuous invariant measures. For a con-
tinuous interval map f, the Bogolyubov-Kryloff Theorem is obvious
since the d-measure of a fixed point is invariant. In fact, an inter-
val map f usually has a plenty of invariant measures, for instance,
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uniform measures supported on periodic cycles. However, most of in-
variant measures are singular with respect to the Lebesgue measure
A, so that the Ergodic Theorem tells us nothing about the behavior
of Lebesgue typical orbits. And what about invariant measures which
are absolutely continuous with respect to A (such a measure will be
abbreviated as a.c.i.m.)? It turns out that such a measure (if exists)
governs the behavior of Lebesgue almost all orbits:

THEOREM 5.4. Let o be an a.c.i.m. for an S-unimodal map f :
I — I. Then the Birkhoff averages of Lebesgue almost all points v € 1
weakly converge to .

Invariant measures that govern in this sense the behavior of Lebesgue
almost all points are called SRB measures, after Sinai, Ruelle and
Bowen who introduced such measures in the context of hyperbolic dif-
feomorphisms. (In fact, an important phenomenon they discovered is
that such a measure may often be singular with respect to the Lebesgue
measure, compare Corollary 5.2).

Theorem 5.4 follows from the Ergodic Theorem and the following
result:

THEOREM 5.5. Any non-hyperbolic S-unimodal map is ergodic with
respect to the Lebesgue measure. Hence it has at most one a.c.i.m.

Thus, any completely invariant set of positive Lebesgue measure
has full Lebesgue measure. Applying it to the set of u-typical points
(for an a.c.im. p), we conclude that Lebesgue almost all points are
p-typical, as Theorem 5.4 asserts.

The following result describes the support of an a.c.i.m.:

THEOREM 5.6. If an S-unimodal map has an a.c.i.m. u, then f is
a Yoccoz map. Moreover,

p
supp(u) = [ J 1*7,
k=1

where p is the period of the last renormalization of f, and J is the small-
est central interval for the last renormalization (see Exercise 2.21).

PrOOF. Let us explain why only Yoccoz maps can have a.c.i.m.
Indeed, by Corollary 5.2 (i), an a.c.i.m. of a hyperbolic or parabolic
map would be supported on its limit cycle, which is certainly impos-
sible. By (ii), an a.c.i.m. of an infinitely renormalizable map would
be supported on the Feigenbaum attractor Oy, which is impossible by
Theorem 3.18 of Lecture 3. O
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Let us finish this section with two results on stochastic properties
of a.c.i.m. that manifest strong chaotic nature of the dynamics.

The Ergodic Theorem implies that for any ergodic invariant mea-
sure u, the following limit exists for u almost all points:

6lf) = lim log|DF" (@) = [ log |Df() d

It is called the characteristic exponent of pu. If x,(f) > 0 then p-typical
orbits are exponentially unstable in the sense that nearby orbits are
repelled away exponentially fast. It turns out that a.c.i.m.’s have this

property:

THEOREM 5.7. Any a.c.i.m. p of an S-unimodal map f has posi-
tive characteristic exponent.

Note that the characteristic exponent of an a.c.i.m. is equal to its
entropy h,(f).

THEOREM 5.8. Under the circumstances of Theorem 5.6, the mea-
sure p|J is mizing, in fact weakly Bernoulli, under f?|J.

An S-unimodal map which has an absolutely continuous invariant
measure is called stochastic. This terminology is justified by the last
two theorems.

1.4. Existence Problem.

1.4.1. Ezpansion versus contraction. The first example of a sto-
chastic unimodal map was studied by Ulam and Neumann (1947) by
means of one of the first available computers. It was the “Chebyshev
map” g : x +— 4z(1 — z) on the interval [0, 1].

EXERCISE 5.9. Show that ¢ is affinely conjugate to the map f 5 :
z— 2> —2on[-2,2] and to ¢ : & — 22? — 1 on [—1,1]. Using the
functional equation cos(26) = ¢(cos ) show that dx/\/x(1 — z) is an
a.cim. of g. (In fact, the map ¢ is a classical “Chebyshev map”.)

The basic phenomenon responsible for stochastisity properties of
a map is the competition between expanding and contracting mecha-
nisms. Expansion created by repelling cycles leads to stochastic regimes,
in favor of existence of a.c.i.m. On the other hand, contraction near
the critical point attempts to destroy it. The question is which phe-
nomenon prevail.

Note that in the Ulam-Neumann example the critical point lands,
under the second iterate of the map, at the repelling fixed point, so
that the contraction near 0 is compensated by the expansion near the
fixed point. It suggests that sufficiently strong expansion along the
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critical orbit should lead to existence of an a.c.i.m. Let us say that an
S-unimodal map f satisfies the Collet- Eckmann condition if there exist
constants C' > 0 and p > 1 such that

[Df"(e)] = Cp",
where ¢ = f(0) is the critical value.
THEOREM 5.10. Collet-Eckmann maps are stochastic.

A softer condition was suggested by Nowicki and van Strien. An
S-unimodal map satisfies the summability condition if

1
2 JFa <>

THEOREM 5.11. Let f be an S-unimodal map with non-degenerate
critical point. If f satisfies the summability condition then it is sto-
chastic.

1.4.2. Martens-Nowicki criterion. It is intuitively natural to expect
that the rate of expansion along the critical orbit should be related to
the rate of recurrence of the orbit: more frequently the critical point
returns back to itself, less expanding the dynamics is. An efficient way
to formalize this intuition is provided by the principal nest and scaling
factors (recall §I11.2.6).

THEOREM 5.12. Let f be an S-unimodal map with non-degenerate
critical point. If > /A, < oo then f satisfies the summability condition
and hence is stochastic.

Together with Theorem 3.14, this implies:

COROLLARY 5.13. Let f be an S-unimodal map with non-degenerate
critical point. If all but finitely many returns in the principal nest are
non-central then f is stochastic.

Since central returns correspond to fast recurrence of the critical
orbit, this result confirms our intuitive expectations.

1.4.3. Typicality. We are now ready to formulate one of the main
results of this course (see Theorem A in the Introduction):

THEOREM 5.14. Almost all parameters ¢ € Y are stochastic.

Remark. Along the lines we will give a new proof that meas()) > 0.

Let us give a heuristic proof of Theorem 5.14. Since ) = UN™
(recall §11.6.5), it is enough to prove the result separately for each N™.
We will restrict ourselves to the set A" of non-renormalizable irregular
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FIGURE 5.1. How the critical value g¢,.(0) moves
through the moving interval "'

parameters (the other sets are treated by renormalizing the family over
renormalization windows).

Imagine a one parameter family of return maps g, : [» — I/}
depending on ¢ € J. Imagine that when the parameter ¢ runs over the
interval J, the critical value g,,(0) runs through I”~! with a more or less
uniform speed (see Figure 5.1). Then the probability that ¢,(0) lands
at I (i.e., the probability of the central return) is comparable with
|I™|/|I"~1|. But Theorem 3.13 tells us that the latter is exponentially
small, provided that the previous level was not central.

Hence if we start on a sufficiently deep level of the principal nest
then the probability to observe a central return on one of further lev-
els will be exponential small as well. Hence the complementary set
(which is contained in the set of non-renormalizable stochastic maps)
has positive measure. This proves the first assertion of the theorem.

Furthermore, by Borel-Cantelli Lemma, the probability of infinitely
many central returns is equal to zero, which proves the second assertion.

fix the picture

There is one big assumption in this heuristic argument, namely that
the critical value moves with uniform speed through the interval 17!
(which is also moving with ¢). To justify it, we need to prove transver-
sality of two motions involved. With real methods only, it would be
a desperate problem. However, one of the miracles of complex world
is that transversality can be obtained for purely topological reasons (a
la Argument Principle). In the following sections we will develop a
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complex machinery which will allow us to justify the above heuristic
argument.

2. Parapuzzle combinatorics

Parapuzzle describes a hierarchical structure of the parameter do-
main of the quadratic family by splitting it into nests of (para-)puzzle
pieces. These partitions explicitly correspond to the partitions of the
dynamical plane into nests of puzzle pieces described in Lecture 3.
Renormalization and parapuzzle together provide a full combinatorial
picture of the quadratic famaly.

2.1. Parabolic limbs. Let us start with recalling the bifurcation
picture described in the previous lectures. The quadratic family orig-
inates at 0 with a simple well-understood map z ~ 2. The origin
belongs to the hyperbolic component H; bounded by the main car-
dioid C' (see Exercise 1.18), where the map f. has an attracting fixed
point a,.. For ¢ € C, the map f. has a neutral fixed point with some
rotation number 6 € [0, 1).

Denote this parameter by ¢(#). When 6 = p/q is rational, the
parameter ¢,/, is a parabolic bifurcation point. At this point, another
hyperbolic component, H,/,, is attached to the main cardioid. For
c € H,/,, the map f. has an attracting cycle of period p. Moreover,
there are two parameter external rays landing at c,/, that bound the
parabolic wake W, , (see Proposition 1.23). Within this wake, there are
exactly p dynamical rays landing at the fixes point a, that are cyclically
permuted with rotation number ¢/p. Moreover, this ray portrait moves
holomorphically as ¢ ranges over the wake.

The set Lq/, = cl(MNW,,,) is the ¢/p-limb of the Mandelbrot set.
Thus we have the first decomposition of the parameter plane:

M=cHU | Ly,
a/p#0

according to the properties of the a-fixed point: its “attractiveness”
and combinatorial rotation number.

2.2. Satellite M-copies. By Theorem 2.27, every hyperbolic com-
ponent H,/, originates a satellite copy M/, of the Mandelbrot set.
These copies can be nicely specified in terms of the top levels of the
puzzle described in §II1.1.1. Recall that puzzle pieces Pi(o) of zero depth
are bounded by an equipotential E° and external rays landing at points
a and —a. Let Q° be the domain bounded by E°
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Remark. One should keep in mind that all the maps and the sets
depend on c¢. To simplify the notations, we will often drop the label c.

The critical puzzle piece PO(O) was also called V°, the first piece in
the principal nest. Let ¥; = f{(V°)NQ°% ¢ =1,...,p — 1, be the non-
critical puzzle pieces of depth 0 attached to the a-fixed point, and let
Z; = —Y; be the symmetric puzzle pieces attached to —«. Note that

p—1
feYpe) NQ =V U Zi. (5.2)
=1

Hence under f? points from V° N K(f) either return to V° or escape
to one of puzzle pieces Z;. It turns out that the satellite copy M/,
consists of the parameters for which the critical orbit never escapes
Vo

THEOREM 5.15. My, ={c€ Ly, : fr*(0) eV’ n=0,1,2,...}.
In particular, the doubling renormalization window s described as fol-
lows (compare §11.6.4):

MipNR={ce[-2,1/4]: [ € la,,—aJ, n=0,1,2,...} =[d,b],

where b = —3/4 is the doubling bifurcation parameter and d is a root
of the equation f#(0) = —« (so that the renormalization

Rfy = fillaa, —od]
is a Chebyshev map).

2.3. Misiurewicz limbs. By logic, L,/, \ M/, consists of those
parameters in the limb L/, for which f?"(0) escapes through one of
the puzzle pieces Z; attached to —a. By specifying the escape time
and the “escape route” we can decompose Ly, ~ M/, into the union
of “Misiurewicz limbs” A7 ; described below.

We fix the rotation number ¢/p and will skip it from the notations
for the Misiurewicz limbs. There are p — 1 Misiurewicz limbs of level
1:

Al={c€ Ly, f2(0) € 7).

They are attached to M/, at the Misiurewicz point ¢ = ¢?/? for which
fP(0) = —a (so that the renormalization of f. is the Chebyshev map).
This point represents a distinguished tip of the satellite copy Mg/,
where the parabolic limb L/, visibly bifurcates into p—1 branches (see
Figure ...). Note that this gives us a way to figure out from the picture
what are the rotation numbers ¢/p of different bifurcation points ¢/,
on the main cardioid.
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FIGURE 5.2. Initial combinatorics of the puzzle.

Next, consider the equipotential E* = fPE? and let Q' > 0 be
the domain bounded by this equipotential and the appropriate pairs of
rays landing at o and —a. Then

VLl 10U Z
is a double branched covering. If fP(0) € V° then
Qt=vtuZzl

where V! > 0 and f? : V! — V0 is a double branched covering, while
the maps f? : Z; ; — Z} are univalent, o € 1/2.

If f2P(0) escapes through some Z; then f?(0) belongs to some do-
main Z, ; (see Figure 5.2). This specifies 2(p — 1) Misiurewicz limbs

Ag,i ={ce Loy ~ A fr(0) € Z;z}
attached to M, at Misiurewicz points for which f2(0) = —a.

Proceeding in this way, we see that the set of parameters ¢ € Ly,
for which the critical orbit escapes V' under fPV consists of (p — 1)2%
limbs A); attached to M, at 2" tips, appropriate Misiurewicz points.
These limbs are called Misiurewicz limbs. For ¢ € ALY, we have the
following dynamical decomposition of the first central ﬁuzzle piece:

PCYNK(f) = (VN U NL_JI U ZLZ) NK(f), (5.3)

k=1 o,

where for each k, the index o runs through 2*~! values while the in-
dex ¢ runs independently through p — 1 values. Moreover, the whole
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configuration moves holomorphically as ¢ ranges over the Misiurewicz
limb.

Note that for real parameters ¢ € [—2,¢'/?] = (L ~ Myj2) N R,
the escaping time N is equal to 1, and the whole interval [—2, 01/2] 1S
contained in a single Misiurewicz limb A attached to c*/?.

EXERCISE 5.16. Find ¢'/? and the external angles of the parameter
rays landing at this point.

2.4. First decomposition of the Misiurewicz limbs. Let us
fix a Misiurewicz limb A = A;. We will now decompose it according to
the route of the critical orbit back to the puzzle piece VN1, Let [ be the
return time of the point a = fPV(0) € Z; back to V¥~!. According to
decomposition (5.3), the orbit { f"a}._}) goes through the puzzle pieces
ijl The itinerary of this orbit through these puzzle pieces specifies
the parapuzzle piece A° = A%(c) of the decomposition.

Note that these puzzle pieces do not cover the whole limb A. Indeed,
in the set UZZ,“,Z- there are some points that never return back to VN=1.
They form an expanding Cantor set Q. If a = f¥?(0) € Q then the
critical orbit never returns back to VY1, This specifies a Cantor set
of Misiurewicz parameters that are left over in A after tiling it with the
parapuzzle pieces A%(c). (These Misiurewicz parameters are specified
by the itinerary of the infinite orbit {f"(a)}2%, through the puzzle
pieces ZF,.)

By definition, the next puzzle piece VN*! of the principal nest is
the the pullback of V¥ by f! containing 0. This puzzle piece has an
important virtue:

LEMMA 5.17. The puzzle piece VY is compactly contained in VN1,

This belongs to Lecture 37

In the real case, N = 1 and there is only one puzzle piece Z. Hence
a= f?(0) and f*(a) € Z,n=0,1,...,1—1. Thus, the real parapuzzle
piece A® = A? is completely specified by the return time [. The real
traces A) N R (“parapuzzle intervals”) cover the parameter interval
(—2,c?) from the right to the left. The only left-over point is the
Chebyshev parameter ¢ = —2 for which the critical orbit never returns
back to V.

Returning back to the complex situation, consider the full return
maps gy, : UVY — VN (see §IIL.1.4). They form a “full unfolded
generalized quadratic-like family” over the parapuzzle piece A’. Next,
we will define for you all these terms.
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2.5. Generalized quadratic-like families. Let m; : C2 — C be
the projection to the first coordinate. Given a set U C C?, we denote
by Uy = 77 {A} its vertical cross-section through A (the “fiber” over
A). Vice versa, given a family of sets Uy C C, A € D, we will use the
notation:

U=JUr={(\2) €eC: A€ D zel)}.
AeD
Consider a topological disk D C C and a domain U C (D) C C.
Let U be the closure of U in 7= 5(D). If , : U — D is a Jordan discs
fibration over D, we call U (resp, U) an open (resp., closed) topological
bidisk over D.
Let V; C U C C? be a family of topological bidisks over D (“tubes”)

with pairwise disjoint closures V; such that that 14, > 0. Let
be a fiberwise map whose fiber restrictions

g\ ) =g :|JVin = Un Ae€D,

are generalized quadratic-like maps with the critical point at 0 € V), =
Vo (see §III.1.4).

Pick further a base point x in D and assume that there is a holo-
morphic motion h over (D, %),

ha (U, Vi) = (Ox, [ 0Vin), (5.5)

which respects the boundary dynamics:
hyogi(2) = groha(z) for ze€UIV,. (5.6)

A holomorphic family (g,h) of (generalized) quadratic-like maps over
D is a map (5.4) together with a holomorphic motion (5.5) satisfying
(5.6). We will sometimes reduce the notation to g. In case when the
domain of g consists of only one tube Vj, we obtain a quadratic-like
family in the sense of §11.2.14.

Remark. 1t would be more consistent to call just g a holomorphic
family, while to call the pair (g, h), say, an equipped holomorphic family.
However, in this paper we will assume that the families are equipped,
unless otherwise is explicitly stated.

Let us now consider the critical value function ¢(A) = ¢g(A) =
gr(0), D(N) = Pg(N) = g(A,0) = (N, 4())). Let us say that g is a
proper (or full) holomorphic family if the fibration 7; : U — D admits
an extension to the boundary D, V; C U, and ® : D — U is a proper
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FIGURE 5.3. Generalized quadratic-like family.

section. Note that the fibration m; : Vi — D cannot be extended to D,
as the domains V) o pinch to figure eights as A — 0D.

Given a proper holomorphic family g of generalized quadratic-like
maps, let us define its winding number w(g) as the winding number
of the critical value ¢(\) about the critical point 0. By the Argument
Principle, it is equal to the winding number of the critical value about
any section D — U.

2.6. Generalized renormalization of holomorphic families.
Let us now consider a generalized quadratic-like family (g : UV; —
U,h) over (D, x). Let Z stand for the labeling set of tubes V;. Re-
member that Z > 0 and Vy > 0. Let Z4 stand for the set of all finite
sequences i = (ig, . ..,4;_1) of non-zero symbols i, € Z\ {0}. For any
i € Ty, there is a tube V; such that

ghV; ¢ iy k=0,...,t—1 and g'V;=U.
We call t = |i| the rank of this tube. The map g’ : V; — U is a holomor-
phic diffeomorphism which fibers over id, that is, giV;, = Ux, A € D.

Let us lift the holomorphic motion h of U to a holomorphic motion

h of the V;:
gf\ o ili,\(z) = h/\(giz)a z € Vi,
Note that by (5.6) it coincides with h on the 0V;.

Let I; C V; be such a tube that gliL; = V. The first landing
map T : UL; — Vj is defined as T|L; = gll. Tt is a holomorphic
diffeomorphism fibered over id. Extend the holomorphic motion hy to
the tubes L; by pulling it back from V by T. Then extend it by the

A-lemma to the whole tube U keeping it unchanged on the boundaries
oU, Uov;.
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Let ¢(\) = ¢gx0 and ®(\) = (X, ¢(A)). Let 7, be the itinerary of the
critical value ¢(*) under iterates of g, through the domains V; ,, until
its first return to Vg .. In other words, let g.(0) € L;, = L,.

Let us now consider the following parameter region around x:

D' =D'(x) = 'L,.

For A € D', the itinerary of the critical value under iterates of gy until
the first return back to Vj, is the same as for g, (that is, i,). Let us
define new tubes V; C V as the components of (g|Vy) ™' (1| D’). Let

g UV, =V, |D' =U (5.7)

be the first return map of the union of these tubes to Vj.

For A € D', the critical value ®(\) does not intersect the boundaries
of the the tubes I;. Hence we can lift the holomorphic motion on
U \ L, to a holomorphic motion h' on U \ V¥, over D’ and extend it
by the A-lemma to the whole tube U'. Thus we obtain a generalized
quadratic-like family (g', h') over D’ which will be called the generalized
renormalization of the family (g, h) (with base point ).

LEMMA 5.18. Let g : UV; = U be a generalized quadratic-like fam-
ily over (D, ). Assume it is proper and has winding number 1. Then
its generalized renormalization g' : UV — U over D' is also proper
and has winding number 1.

Thus, the “parapuzzle piece” D admits a tiling into parapuzzle
pieces D} according to the route of return of the critical point back to
the central domain V). The residual set D "M \ UD; is a Cantor set
of Misiurewicz parameters A for which the critical point never returns
back to V.

2.7. Through the central cascades. We will now describe the
cascade renormalization of a generalized quadratic-like family, which
will be then treated as a single step in the procedure of parameter
subdivisions. Let us consider a holomorphic family (g : UV; — U, h)
of generalized quadratic-like maps over (A,x*). We will subdivide A
according to the combinatorics of the central cascades of maps g,. To
this end let us first stratify the parameter values according to the length
of their central cascade. This yields a nest of parapuzzle pieces

A=D>D >--->DWM 5 .
check N For A € DY) the map g, has a central cascade
vzt on=vPo...opyW (5.8)
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of length N, so that ¢,0 € VA(N_I) ~ VA(N). Note that the puzzle pieces
Vik) are organized into the tubes V() over D=1 (with the convention
that D(-Y = D).

The intersection of these puzzle pieces, NDW) | is the little Mandel-
brot set M(g) centered at the superattracting parameter value ¢ = ¢(g)
such that g.(0) = 0. Let us call ¢ the center of D.

Let « € DV=1 < DW)_ Let us consider the Bernoulli map

G:UW;, - U (5.9)
associated with the cascade (5.8) (see §1.5). Here the tubes W; over
DW= are the pull-backs of the tubes V;|[ D=1 i =£ 0, by the covering
maps

gh . (VO Ly DYDY DWYY ) k=0,1...,N—1.
(5.10)
In the same way as in §2.6, to any string j = (jo,...,j;_1) corre-
sponds the tube over DWV-1),
W; ={peUDN Y :G"peW,,,n=0,...,t—1}.

Note that G* univalently maps each W; onto UIDW™=Y . Thus W
contains a tube LL; which is univalently mapped by G* onto the central
tube V&V) | These maps altogether form the first landing map to V()

T :UL; — VY. (5.11)

Remark. Note that

mod (W3, \ Lj\) = mod(Uy VA(N)) > mod(Uy \ V),
(5.12)

since G univalently maps the annulus W73, ",

Let us now consider the itinerary j, of the critical value ¢(*) = ¢
through the tubes W; until its first return to V), so that ®(*) € L;_
L,. Let W, = W;_and

A°(x) = ®'L,, A°(x) = O 'W,. (5.13)

AN Lj y onto Uy \ V)

00

Thus, the annuli D¥-1 < DY) are tiled by the parapuzzle pieces
A°()) according as the itinerary of the critical point through the Bernoulli
scheme (5.9) until the first return to V ). Altogether these tilings form
the desired new subdivision of A. (Agam, the new tiles do not cover
the whole domain A: the residual set consists of the Mandelbrot set
M(g) and of the parameter values A € D=1 < D®) for which the

critical orbit never returns back to VA(N).)
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The affiliated quadratic-like family over A°(x) is defined as the first

return map to VA(N) = Uy. Its domain UV is obtained by pulling back
the tubes L; from (5.11) by the double branched covering g : VIV —
VN1 |A°(x), and the return map itself is just T o g.

The affiliated holomorphic motion is also constructed naturally, as
in §2.6. Let us first lift the holomorphic motion h from the condensator
U \ V to the condensators (V) < VE&+D)| DIN=1) via the coverings
(5.10). This provides us with a holomorphic motion of (U\ VIV UW;)
over DV-Y " Extend it through VIV) by the A-lemma, lift it to the tubes
(W3,L;) and then extended again by the A-lemma to the whole domain
U over DV, Let us denote it by H.

Lifting this motion via the fiberwise analytic double covering over
A°(%),

g: (U~ WV, (Vi) = (V¥ D\ L,, (L),
i#0 J#d«
we obtain the desired motion of (U° \V°, [, V7) over A°(x). By the
A-lemma it extends through Vg.

2.8. Principal parapuzzle nest. Let us now summarize the above
discussion. Given a quadratic-like family (f,h) over D = A° we con-
sider the first tiling D! of a Misiurewicz wake A as described in §2.4.
Each tile A € D! comes together with a generalized quadratic-like
family (ga,ha) over A.

Now assume inductively that we have constructed the tiling D' of
level [. Then the tiling of the next level, D'*! is obtained by decom-
posing each tile A € D! by means of the cascade renormalization as
described in §2.7.

Let Al()\) stand for the tile of D! containing A\, while A/()\) C
AY(N) € AE()) stand for the other tile defined in (5.13). Each tile
A = AY()\) contains a central sub-tile I1'(A) = ®,'V; corresponding to
the central return of the critical point (here ®A(\) = (A, ga()))). Note
that I1/(\) may or may not contain A itself.

Let us then consider the sequence of renormalized families (g; », h, )
over topological discs AY(A). We call the nest of topological discs
A% > AY()) D A%(\) D ... (supplied with the corresponding fami-
lies) the principal parapuzzle nest of A. If A is not Misiurewicz and not
renormalizable, then this nest is infinite.

Let ¢;n € AY(N) be the centers of the corresponding parapuzzle
pieces. Let us call them the principal superattracting approximations
to A. If X is not renormalizable, then ¢y — A as [ — oo, since
diam A’(A) — 0 (see the next section).
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The mod(A'(A\)NAML(N)) are called the principal parameter moduli
of A e D.

When we fix a base point *, we will usually skip label * in the above
notations, so that Al = Al(x), g; = g;.., hy = hy, etc.

3. Parapuzzle geometry

We are now ready to formulate the main geometric property of the
parapuzzle:

THEOREM 5.19. Let us consider a proper unfolded quadratic-like
family (£, h) over D, and a Misiurewicz wake A C D. Then for any
Ae M(f)NA,

mod(A'(A) N A (\) > Bl,  and mod(A'(N) N TTY(N)) > B,
where the constant B > 0 depends only on A and mod(f).

In the rest of this section we will outline the proof of this theorem.

3.1. Initial parameter geometry. Let us start with a bound on
the geometry of the first level parapuzzle. Fix a quadratic-like family
(f,h) and its Misiurewicz wake A = A7) |o| = ¢, as in §2.3.

LeEMmMA 5.20. All parapuzzle pieces of the first level are well inside
the corresponding wake: mod(A ~ A') > v > 0. Moreover, the holo-
morphic motion hy of the condensator U . V' over A' is K-qc. The
constants v and K depend only on the geometry of (f,h) and the choice
of A.

3.2. Inductive estimate of the parameter geometry. The fol-
lowing lemma shows that the geometry of the parapuzzle changes grad-
ually under the cascade renormalization.

LEMMA 5.21. Let us consider a generalized quadratic-like family
(g : UV; = U, h) over A. Assume that the dilatation of h on U\ 'V is
bounded by K and mod (U, \Vo,*) > pu>0, A€ D. Then the dilatation
of the cascade renormalized motion h® on U° \V§ over D° (as described
in §2.7) is bounded by K° = K°(u, K).

3.3. Inscribing rounds condensators. In this section we will
show that the parameter annuli have definite moduli. Given a holo-
morphic motion hy and a holomorphic family of affine maps gy : z —
axz—+by, we can consider an “affinely equivalent” motion gyoh,. In this
way the motion can be normalized such that any two points z,( € U,
don’t move (that is, hy(z) = z and hy(¢) = ( for A € D). Let us start
with a technical lemma:
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LEMMA 5.22. Let us consider a holomorphic motion h : (U,, V,,0) —
(Ux, Vir,0) of a pair of nested topological discs over a domain D. As-
sume that the maps hy : (0U,,0V,) — (0U,,0Vy) admit K-qc exten-
sions Hy : (C,U,) — (C, V) (not necessarily holomorphic in \ but with
uniform dilatation K ). Then there exists an M = M(K) such that if
mod(U,\V,) > M then after appropriate normalization of the motion,
there exists a round condensator D x A(q,2q) embedded into U \'V.

PROOF. Let z, be a point on QU closest to 0. Normalize the motion
in such a way that z, = 1, and this point does not move. With this
normalization, V, C D.(0) where ¢ = e(m) — 0 as m = mod(U, \
Vi) — oo.

Since the space of normalized K-qc maps is compact, |Hy(ge¥|) < 4,
where § = d(¢, K) — 0 as ¢ — 0, K being fixed, and |Hy(e?)| > r
where 7 = r(K) > 0. It follows that the domain U contains the round
cylinder D x A(d,r), and we are done. O

COROLLARY 5.23. Under the circumstances of Lemma 5.22, let ® :
D — U be a proper analytic map with winding number 1. Let D' =
V. If mod(U, \V,) > M = M(K) then mod(D ~ D') > log?2.

PrOOF. By Lemma 5.22, UNV D D x A where A = A(q,2q). Let
Q = &7 '(D x A). By the Argument Principle, ¢ = 7y o ® univalently
maps  onto A, so that mod(D ~ D') > mod(@ = mod A =log2. O

3.4. Pseudo-conjugacies revisited. Let us consider a quadratic-
like family (f,h) and its parameter tilings. Let A € A’()\). Let us
consider the corresponding [-fold generalized renormalizations of these
two maps ¢, : UV; — U and § : UV; — U. Then the holomorphic
motion transforms the domains of g; to the corresponding domains of
gi respecting the boundary marking. In this sense fy and f5 have “the
same combinatorics up to level” [.

Proofs of Theorems 4.26 and 4.28 show:

THEOREM 5.24. Assume that X € A*Y()\), where the tile A©()) is
defined by (5.13). Then the corresponding generalized renormalizations
g and g are K-qc pseudo-conjugate, with K depending only on the
Misiurewicz wake A(N\) and geometry of (f,h).

3.5. Uniform bound of dilatation.

LeEMMA 5.25. Let * belong to a Misiurewicz wake A. For any prin-
cipal parapuzzle piece A = A!TL(x), the corresponding holomorphic mo-
tion ha of Ut Vg“ over A has a uniformly bounded dilatation, de-
pending only on the choice of the Misiurewicz wake A and the geometry

of (f,h).
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PRroOOF. Let K be a dilatation bound given by Theorem 5.24. Find
an M = M(K) by Corollary 5.23. By Theorem 3.6 and (5.12), there
exists an [y such that mod(W!~ L) > M for | > I,.

For [ < Iy, the desired dilatation bound is guaranteed by Lemmas
5.20 and 5.21.

Fix an [ > [y. Let us consider the generalized quadratic-like family
(g : UV; — U,h) over D = Al(x). In what follows we will use the
notations of §2.7. Let « € D=1 < D),

By Theorem 5.24, for A € A!1(x), there is a K-qc pseudo conjugacy
Yy 1 (Us, UVix) = (Ux,UV; ), with K depending only on the choice of
wake A and geometry of (f,h). As mod(W!~\ LL) > M, Corollary 5.23
can be applied. We conclude that

mod (A" (¥) AL (%)) > log 2 (5.14)

for [ sufficiently big (depending on A and geometry of (f,h)).

In §2.7 we have constructed a holomorphic motion H of (U, W;,L7)
over DN~ By the A\-lemma and (5.14), H is L-qc over A = A*L(x),
with an absolute L provided [ is big enough. But the holomorphic
motion hy on U\ VI*1 s the lift of H on VI¥=1 \(L;. over A by

means of the fiberwise analytic double covering
g: Ut v vV -D L,.

Hence ha on U < V*1 s also L-qc. O

3.6. Proof of Theorem 5.19. We are now prepared to complete
the proof:

mod (Al ~ A" > K~ mod (W5, \ L;.) > BI.

The first estimate in the above row follows from Lemma 5.25 and trans-
verse quasiconformality of holomorphic motions (§11.4.3). The last es-
timate is due to Theorem 3.6.

For the same reason,

mod (A" N 1I') < mod (U} \ Vj,) > B

4. Proof of Theorem A

With Theorem 5.19 in hands, we can turn the heuristic argument
of §1.4.3 into a rigorous proof. By renormalizing the quadratic family
over some Mandelbrot copy, we reduce the statement to the set A
of non-renormalizable parameters (of some full unfolded quadratic-like
family). The above discussion provides us with complete combinatorial
understanding and strong geometric control of this set.
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Given measurable sets X,Y C R, with |Y|) > 0, let dens(X|Y)
stand for the [X NY|/|Y].

We will restrict all tilings D' constructed above to the real line,
without change of notations. We will use the same notation, D', for
the union of all pieces of D'. For every A = A/()\) € D!, let us consider
the central piece I C A corresponding to the central return of the
critical point. By Theorem A, dens(II|A) < C¢! for absolute C' > 0
and ¢ < 1. Let I'" be the union of these central pieces. Summing up
over all A € D', we conclude that

T < dens(I'|D") < C¢ (5.15)

(the whole interval is normalized so that its length is equal to 1).
It follows that for [ sufficiently big,

dens(|_JT"*D") < Ci¢' < 1,

k>0

which means that with positive probability central returns will never
occur again. This proves that meas()) > 0.

To prove that almost all points ¢ € ) are stochastic, just notice
that (5.15) together with the Borel-Cantelli Lemma yield that infinite
number of central returns occurs with zero probability.

5. Shapes of the Mandelbrot copies

The above geometric results also provide us with control of the
shape of M-copies:

THEOREM 5.26. Let O be a Misiurewicz wake in a full unfolded
proper quadratic-like family £. Then all mazimal M-copies in O have
a K-quasistandard shape, with K depending only on the geometry of £
and the choice of O.

ProoF. By Theorem 5.19 and Lemma 5.25, the quadratic-like fam-
ilies creating the M-copies in question have a bounded geometry. By
Lemma 2.15, these M-copies have a quasistandard shape. O

Since all maximal real M-copies, except the doubling one, are con-
tained in a single Misiurewicz wake, we conclude:

COROLLARY 5.27. All mazximal real M-copies in the quadratic fam-
ily, except the doubling one, have a K-quasistandard shape with an
absolute K.
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6. Bibliographical notes

The central result of this lecture is the proof of Theorem A [L5]. §2
and §3 on the parapuzzle combinatorics and geometry are based upon
[L5].

The Collet-Eckmann criterion for existence of a.c.im. (Theorem
5.10) appeared in [CE]; the Nowicki-van Strien criterion appeared in
[NS]. The Martens-Nowicki criterion appeared in [MN].

The result that the set of stochastic parameters has positive Lebesgue
measure was first proved by Jacobson [J] and Benedicks - Carleson
[BC]. The proof given in these notes follows [L5].

Theorem 5.3 was proven in [L3]. The results of 1.3 on measurable
dynamics of S-unimodal maps are mostly taken from [BL2|. However,
Theorem 5.8 is due to Ledrappier [Le].

For an introduction to the basic ergodic theory see, e.g., [KFS].

For a further deep exploration of stochastic properties of typical
non-renormalizable quadratics, see [AMZ2]. In particular, it is proven
over there that for almost any non-renormalizable ¢ € [—2,1/4], the
polynomial f, satisfies the Collet-Eckmann property.
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LECTURE 6

Universality

1. Set-up

1.1. Discovery. In mid 1970’s a truly remarkable discovery was
made by Feigenbaum and independently by Coullet & Tresser. Con-
sider the real quadratic family x — 2 + ¢, and let ¢ decrease from 1/4
to —2. In the beginning we see the cascade of doubling bifurcations ¢,
converging to the Feigenbaum point ¢y (see §1.5.1 and Figure 1.5).

With the help of a calculator Feigenbaum observed that this con-
vergence is exponential: ¢, — ¢y ~ CA™", where A = 4.669.... It was
curious but what was really surprising is that if you take a similar fam-
ily of unimodal maps, say « + bsinz on [0, 7], then you will observe a
similar sequence of doubling bifurcations b,, exponentially converging to
a limit point b, with the same rate: b,—0b,, ~ C'\™", where A\ = 4.669....
In other words, the rate of convergence is universal, independent of the
particular family of unimodal maps under consideration.

1.2. Renormalization Conjecture. Motivated by the renorm-
group method in statistical mechanics, Feigenbaum and Coullet &
Tresser formulated a beautiful conjecture which would completely ex-
plain the above universality. Imagine an infinite dimensional space U
of unimodal maps, and consider the doubling renormalization operator
R in this space defined on the set of maps renormalizable with period
two (see §I1.6.1). The conjecture asserted that:

(i) R has a unique fixed point f,, i.e., a unique solution of the Feigenbaum-
Cuitanovié equation f(z) = p~1f o f(uz) with an appropriate scaling
factor p.

(i) R is hyperbolic at this fixed point, that is, there exist two transverse
R-invariant manifolds W* and W* through f, such that the orbits
{R"f}, f € W?*, exponentially converge to f,, while the orbits {R"f},
f € W, are exponentially repelled from f,.

(iii) dim W* = 1.

(iv) W" transversally intersects the doubling bifurcation locus By, where
an attracting fixed point bifurcates into an attracting cycle of period 2.

123



124 6. UNIVERSALITY

quadratic family

FI1GURE 6.1. Hyperbolic fixed point of the renormaliza-
tion operator.

Since the doubling bifurcations loci B,, of higher periods (from 2"
to 2"T1) are obtained by taking preimages of B; under R", one can
readily see that any one parameter family of unimodal maps (i.e., a
curve in &) which is transverse to W* intersects the B,, at the points
b, exponentially converging to a limit point b, € W?* where the rate
of convergence, A, is just the unstable eigenvalue of DR(f,). Thus, it
is independent of the particular family under consideration.

2. Renormalization Theory with stationary combinatorics

In this section we will discuss the Renormalization theory in a
slightly bigger generality than stated before, namely for an arbitrary
real stationary combinatorics. In the next section we will give a radical
generalization of the theory.

2.1. Set-up. Let us fix some finite kneading sequence k of length
p > 2 (see §1.5.3). Then we have the following associated objects:

e R : T — Q is the complex renormalization operator with combi-
natorics k (see §11.6.2), where Q is the space of quadratic-like germs
(see §I1.4) and 7T is the subspace of quadratic-like germs renormalizable
with combinatorics k;

e Of is the space of real quadratic like maps and Tz = 7 N Qg; thus,
R:Tg — Qr;

e M is the corresponding little M-copy, and o : M — M is the stretch-
ing homeomorphism (2.12);

e J = M NR is the corresponding renormalization window; thus,

o:J—[-2,1/4].
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2.2. Stable-manifold-to-be. By the Rigidity Theorem 4.24, the
stretching o : J — [—2,1/4] has a unique fixed point ¢ € J, which
is the unique infinitely renormalizable real parameter with stationary
combinatorics (K, K,...). Consider the hybrid class H. C C through
this point (see §I1.4.6). Since o = x o R, H,. is invariant under the
renormalization R. This is going to be the stable manifold of the
renormalization fixed point. It is big luck that the stable-manifold-to-
be can be recognized before the fixed point f, is found! In fact, it gives
us the first approximation to f,.

By the complex a priori bounds (Theorem 3.21) and Proposition
2.5, the orbits of the operator R : ‘H, — H. are non-escaping (that is,
pre-compact) in H,.

Remark. Note that the maps in H,. are not necessarily real. How-
ever, they are qc conjugate to a real map f.. Since f. has a priori
bounds, all the maps in H, also do.

Pick now some g € H, and consider the w-limit set w(g) C H, of the
orbit {R"g}2%,. It is an R-invariant compact set. It gives us the next
approximation to the fixed point. Note that the map R : w(g) — w(g) is
surjective. Indeed, if ¢ = lim R™ f then g = Rg_1, where g_; € w(g) is
a limit point of the subsequence { R"'g}. Hence for any f = fo € w(g)
we can consider a two-sided orbit

"'Hf—l'?fo'?fl'?--- (6.1)

of quadratic-like germs in w(g). It was McMullen’s insight that the
corresponding sequence of quadratic-like maps related by the renor-
malization should be viewed as a single dynamical system called a
“tower” .

2.3. McMullen towers.

2.3.1. Definitions. A McMullen tower £ (with stationary combina-
torics k) is a sequence of quadratic-like maps f, : U, — U] representing
a renormalization orbit (6.1), [ < n < r. Thus, f,11 = fP|U,. The
dimensions [ and r can be finite or infinite. If r = oo, | = —o0, the
tower is called bi-infinite.

The towers are considered up to affine equivalence, i.e., the simul-
taneous conjugacy of the maps f, by z — Az. The Julia set of the
tower, J(f), is the union of the Julia sets J(f,). It is not necessarily
closed. B

Two towers f and f are called topologically conjugate if there exists
a homeomorphism h : C — C conjugating f, to f, on some neighbor-
hoods of their Julia sets, n € Z. If h can be selected to be qc then the
towers are called qc conjugate. If additionally Oh = 0 a.e. on J(f) then
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f and f are called hybrid equivalent. (One can also define naturally
affine, smooth, etc. conjugacies between towers.)

A tower has a priori bounds if mod(U) N\ U,) > pu>0,ne€Z. It
represents a non-escaping renormalization orbit in C.

LEMMA 6.1. Let {f,} and~{fn} be two towers with a priori bounds.
If f, is hybrid equivalent to f, for all n € Z then the towers are qc
equivalent.

PROOF. By Proposition 2.3(ii), there exists a K such that the maps
fn and f, are K-qc conjugate, n € Z. A limit qc map provides a
conjugacy between the towers. O

2.3.2. Compactness. The space of towers is naturally endowed with
coordinatewise topology: A sequence of towers f,,, = { f,,»}n converges
to a bi-infinite tower g = {g,} as m — oo if for any n € Z, fr..., = 9n
as m — oo. Proposition 2.5 implies: (Note that the size of the towers
f,, can vary but eventually the maps f,,, should be well defined for
any n € Z.)

LEMMA 6.2. The space of towers with stationary combinatorics K
and common a priori bounds is compact.

2.3.3. Exzpanding property. Given a tower f = {f,, : U, — U]}, let
O¢ = UOy, stand for its posteritical set. Endow the domain C \ Of
with the hyperbolic metric.

THEOREM 6.3. Let f be a tower with combinatorics k and a priori
bounds. Let z € Uy ~\ J(f). Then there exists a A > 1 s € N, and
a sequence z, — 00 as n — 400 such that z,.1 = f", 2, for some
moments l, € N and

1D £ () lyp > A > 1.

PRrOOF. It is not hard to see that there is an s € N such that
after some adjustment of the quadratic-like maps f,, (compare Propo-
sition 2.3), we obtain: f,'U, D U}, . Moreover, one can make the
annuli U}, \ f,72U, disjoint from the postcritical set Og.

To make notations easier, let us assume that s = 1.

Note that for any quadratic-like map f : U — U’, the (multi-valued)
inverse map f~': U'\O; — U\ Oy can be decomposed as the inverse
of the covering f : U \ f~'O; — U’ \. Oy and the natural embedding

i:UNfHOy) = U N\ Oy.

The former map preserves the respective hyperbolic metrics while the
latter is contracting by the Schwarz Lemma. Moreover, the amount
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of contraction at z € U \ f'(Oy) depends only on the hyperbolic
distance from z to f1(Oy) in U’ \ Oy.

Hence the map f : U\ Oy — U’ \ Oy is ezpanding with respect to
the corresponding hyperbolic metrics. Moreover, amount of expansion
at point z € U \ Oy depends only on the hyperbolic distance from
z to f71(Oy) in U \ Oy. This amount is uniform if z belongs to the
fundamental annulus A = U ~ f~!U.

Now, as z € Uy \ J(f), there is a moment Iy such that z; = flz
escapes through the fundamental annulus Ay = Uy \ f, *Up of fy. For
the same reason, there is a moment /; when z, = fljlzl escapes through
the fundamental annulus A_; of f_;, etc. At every escaping moment,
the corresponding map enjoys some definite expansion with respect to
the corresponding hyperbolic metrics.

One can show (using disjointness of the fundamental annuli and O)
that these metrics are in fact comparable with the hyperbolic metric
in C \ O¢, which yields the desired assertion. O

2.3.4. Tower Rigidity.

THEOREM 6.4. Let £ and £ be two towers with a priori bounds. If
f and £ are qc equivalent then they are affinely equivalent.

ProoOF. Let h: C — C be a qc equivalence between the towers. If
this map is not affine, then the Beltrami differential dh/0h induces an
f-invariant line field 2 on some set of positive measure (i.e., a line field
which is invariant under the maps f,, on their domains).

However, by Theorem 4.27, there are no invariant line fields on the
Julia set J(f). Hence p is supported on C~\ J(f). Let us take a density
point z for p. Then the line field is almost parallel on a set of almost
full measure near z. Consider the orbit {z,} of this point constructed
in Theorem 6.3, and let g, be the appropriate iterates of the tower
maps that carry z to z,. Then ||Dgy||nyp — 0.

Consider a disk D,, of hyperbolic radius 1 centered at z,, and let
A, > z be the univalent pullback of D, under the branch of g,. Then
diam A,, — 0 and (by the Koebe Distortion Theorem) the maps g, :
A, — D, have uniformly bounded distortion. It follows that after
rescaling the disks D,, and A, to the unit (Euclidean) size, we can
pass to a limit ¢ of the rescaled maps g, and the corresponding line
fields. In the limit, we obtain a real analytic line field, the image of the
horizontal line field under ¢.

Let us now consider a sequence of towers f, obtained from f by
shifting it by ns (so that the map f_,s serves as the zero coordinate for
f,) and rescaling (so that the disk D, is scaled to the unit Euclidean
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size). By Lemma 6.2, we can pass to a limit tower g. This tower has
an invariant line field which is real analytic on some domain. It is easy
to see that such a line field cannot exist. O

2.4. Renormalization fixed point. Now we will show how the
tower rigidity yields existence of the renormalization fixed point which
is the global attractor in H..

THEOREM 6.5. There exists a unique renormalization fixed point
[« in the hybrid class H. (hence f. if the unique real renormalization
fized point). Moreover, R"g — f. for all g € H..

PROOF. Let us show that the limit set w(g) consists of a single
point f,. Indeed, pick two points f and f in w and include them into
towers representing two-sided orbits in w(g). By Lemma 6.1, these
towers are qc equivalent. By the Tower Rigidity Theorem, they are
affinely equivalent. Hence f = f (recall that quadratic-like maps are
considered up to affine conjugacy) as was asserted.

Since w(g) = {f.} is R-invariant, f, is a renormalization fixed point.

If there were another fixed point f* € H,, then for the same reason
two stationary towers

(o fim i fim ) and (o fos fus fu )

would be affinely equivalent — contradiction.

Hence w(g) = {f.} for any g € H,, so that f, is the global attractor
in H,.

Finally, f, is the only real renormalization fixed point since by the
Straightening Theorem 2.2 and the Rigidity Theorem 4.24, any such a
point belongs to H.. O

2.5. Exponential convergence. Exploiting more carefully the
Tower Rigidity Theorem, one can strengthen Theorem 6.5 to make
convergence uniform. The following lemma gives a precise meaning to
this statement. It makes use of the conceptual background developed
in §84.1-4.6 of the 2nd lecture.

LEMMA 6.6. Let g, = 7(f.) € € be the circle map corresponding to
the quadratic-like map f,. Let T = woRoi.: E — E. Then there exists
a Banach ball £y (g.,r) such that:

o TYEv(gs, 7)) C Evi(ge,r/2) for some | € N;

e for any g € £ there exists an N depending only on the above

Banach ball and on mod(g) such that T"f € Ev(gs,r).

To proceed further to the exponential contracting property of the
renormalization, we need to recall some basics of the analytic function
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theory in Banach spaces (see also §1.4.2). Given a complex Banach
space B, let B, stand for the ball in B of radius r centered at 0 (if the
space is called differently, say D, then the corresponding notation, D,,
will be used).

Cauchy Inequality. Let f : (By,0) — (Dy,0) be a holomorphic map
between two unit Banach balls. Then ||Df(0)|| < 1. Moreover, for
x € Bl,

IDf ()] <

1—[Jz|I
This immediately yields:

Schwarz Lemma. Let r < 1/2 and let f : (B1,0) — (D,,0) be a
holomorphic map between two Banach balls. Then the restriction of
[ onto the ball B, is contracting: ||f(z) — f(y)|| < ql|lz — y||, where
g=r/(1-r)<1.

Applying the Schwarz lemma to the operator
T": Ev(ge, r)raly(g.,7/2)

from Lemma 6.6, we conclude that it is contracting. Passing back
to the renormalization operator R|H., we see that it is ezponentially
contracting in the following sense:

THEOREM 6.7. There exist C > 0, A\ > 1, and a Banach ball

By (fe,r) with the following property. For any f € H. there exists
an N depending only on mod(f) such that RN f € By(f.,r) and

|IRNf — fullo <CA", n=0,1,...

It is a remarkable virtue of holomorphic dynamics that the exponen-
tial contraction comes for free from some purely topological qualities
of the map.

2.6. Small Orbits Theorem. To complete the proof of the hy-
perbolicity of the renormalization operator at f, we will need one more
remarkable property of holomorphic operators in Banach spaces which
will allow us to detect the unstable eigenvalue for a purely topological
reason.

2.6.1. One-dimensional case. Consider a local holomorphic map

R: (B,0) — (B,0)

in a Banach space B fixing the origin. We say that it has small orbits
if for any ¢ > 0 there exists a point x € B such that |R"z| < 0,
n=0,1,2,....
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In-one dimensional situation, the Small Orbit Theorem says that
any analytic map R : z + e?™ 2z + bz? 4+ ... near the origin has small
orbits. This situation is well understood. There are three possible cases
(cf. §12.1):

e Parabolic case when 6 = ¢/p is rational. In this case R is either
of finite order, that is RP = id, or there exist orbits converging to 0
(within the attracting petals).

e Siegel case when R is conformally equivalent to the rotation z —
e?™ . In this case all orbits which start sufficiently close to 0 don’t

escape a small neighborhood of 0.

e Cremer case (none of the above). In this case, for all sufficiently
small £ > 0, the connected component K. of the set

{z:|R"2| <e,n=0,1,...}
is a continuum intersecting the boundary circle {z : |z| = ¢}.

Thus, in all three cases small orbits exist.

2.6.2. Basin of attraction. Consider now a Banach space B de-
composed into two subspaces: B = E* @ E°. Let D* = D?*(J) and
D¢ = D*(0) stand for the open disks of radius  centered at 0 in £* and
E° respectively. Let us consider the bidisk D = D(d) = D*(d) x D(9).
Let 0°D stand for D® x 0D¢, and let 9°D have the similar meaning.

For h € B, let h® and h° denote the horizontal and vertical compo-
nents of h, i.e, the projections of h onto E° and E° respectively. Define
the angle 6(h) € [0,7/2] (between h and E*) by the condition:

hC
oty =21

Let C} = {h € B: 0(h) > 6} stand for the cone with angle 7/2 — ¢
about its axis E°.

LEMMA 6.8 (Basin of attraction). Let B be a Banach space as above
and let B' be another Banach space compactly included into B.' Let
R: (B,0) — (B',0) be a local holomorphic map fixing 0.

Assume that the decomposition B = E°@®E° is invariant with respect
to the differential DR(0), and moreover, the following properties are
satisfied.

HO. The origin is attracting: spec DRP(0) C Dy
H1. Horizontal contraction: There exists a q¢ € (0,1) such that for
any h € E}, [[(DR(f)h)*|| < ql|h]|, provided f € D, Rf € D;

li.e., there is a linear injection i : B’ — B such that the image of the unit ball
of B' is relatively compact in B.
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H2. Invariant cone field: There exists a 6 € (0,7/2) such that the
tangent cone field C? over D is R-invariant:

(DRy) C’? C C’}g{f ,provided f € D, Rf € D.
Then there is a point f € 0°D such that orb(f) C D and |R™f|| — 0.

Note that there are no assumptions relating the spectrum of DRP(0)
and the size of the bidisk D.
2.6.3.

THEOREM 6.9. Let B and B’ be two complex Banach spaces, and
let i : B" — B be a compact inclusion. Let T : (B,0) — (B',0) be a
local holomorphic map and let

R=1i0oT:(B,0) = (B,0).

Assume that the spectrum of DR(0) belongs to the closed unit disk and
15 not empty on the unit circle. Then R has “slow small orbits”, that
is, for any neighborhood ¥V 3 0, there is an orb(f) C V such that

1
lim — log || R™ f|| = 0.
m

Proor. We will deduce this result from Lemma 6.8.

Let E?° stand for the spectral subspace of R corresponding to the
part of spec R inside the unit disk D, and let E° correspond to the
part on the unit circle T. After replacing R by its iterate, R becomes
horizontally contracting and a cone field preserving on a sufficiently
small bidisk D = D(J).

For A € (0,1), let as consider the perturbation Ry = AR which
makes the origin attracting. This operator is even stronger horizontally
contracting than R and preserves the same cone field. Thus, it satisfies
assumptions HO-H2 of Lemma 6.8. Hence there is a point

A€ DNA,,

where A, is the attracting basin of 0 for R).

Since the set {Rf\} is pre-compact in B, there is a convergent
subsequence Rfy, — g as A\, — 1. It is obvious that orb(f) C D and
it is easy to see that this orbit is slow. O

2.7. Unstable direction. We are now ready to complete the proof
that the renormalization R is hyperbolic at the fixed point f,. It is
easy to see that for any quadratic-like representative f, : V' — V' and
any domain U € V containing J(f.), there exists an N and a do-
main W C U such that the restriction f?" |W is a pre-renormalization
PRY f, is affinely conjugate to f, : V — V.
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Since U € V, the natural inclusion i : By — By is compact (by
Montel’s Theorem). Moreover, by continuity argument, there exists
an £ > 0 such that if f € B(f.,e) then PRY f has a quadratic-like
representative on W. Hence the renormalization RY f has a quadratic-
like representative defined on V', so that RY : By(f.,c) — By.

If V and ¢ are selected sufficiently small then by Lemma 2.12 the Ba-
nach slice H.N By (f.,¢) is a codimension-one submanifold in By (f., ).
Let E° be the tangent space to this manifold at f,. Since R is con-
tracting in M., spec DR(f,) belongs to the unit disk.

This brings us to the setting of the Small Orbits Theorem (6.9).
Consider the eigenvalue \ of the quotient operator DRY(f,) on By /E®.
If |A\| < 1 then RY would have a small orbit { R"" f} ¢ H.. But then f
would be an infinitely renormalizable quadratic-like map with a priori
bounds. By the Rigidity Theorem (4.28), then f € H. — contradiction.

3. Full Renormalization Horseshoe

In this section we will develop the Renormalization Theory for all
real combinatorial types simultaneously.

3.1. Renormalization Theorem. Recall that Mg stands for the
family of maximal real M-copies (see §11.6.4). For any M € Mg, let

TM:UHCEC

ceM

stand for the corresponding renormalization strip. It consists of quadratic-
like maps which are renormalizable with combinatorics M. So, for ev-
ery strip we have a well-defined renormalization operator R : Ty, — C.
Let us put these operators together to obtain a single renormalization
operator

MeMpr

defined simultaneously for all real combinatorial types (see Figure 6.2).

THEOREM 6.10. There is a set A C Uprem Ty N Qr (called the full
renormalization horseshoe), a constant p € (0,1), and a neighborhood
V C C of the origin such that:

(i) A is precompact in Q, R-invariant, and R|.A is topologically con-
Jugate to the two-sided shift w : ¥ — ¥ in countably many sym-
bols (whose points represent all possible two-sided strings of real
combinatorial types).
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quadratic family

Space of unimodal maps

FIGURE 6.2. Full renormalization horseshoe.

(ii) The hybrid classes H(f), [ € A, are codimension-one complex
analytic submanifolds in Q (“stable leaves”) which form an R-
invariant lamination in Q. Moreover, if g € H(f) and mod(g) >
v, then R"g € By and |R"f — R™g||ly < Cp"™ for n > N(v).

(iii) There exists an R~ -invariant family of holomorphic curves WE(f),
f € A, (“unstable leaves”) which transversally pass through all
hybrid classes H., ¢ € [-2,1/4 — €|, and such that

||R_nf - R_ng“V S Opna n Z 07

provided g € W*(f).

(iv) The renormalization operator has uniformly bounded distortion
on the unstable leaves.

(v) The stable lamination is transversally quasisymmetric.

This Renormalization Theorem encodes diverse universality prop-
erties of the bifurcation sets in one-parameter families of unimodal
maps. In this way uniform hyperbolicity of an infinite dimensional op-
erator shed light on the dynamics of just one-dimensional but badly
non-hyperbolic maps.

This theorem is the culmination of the theory developed in this
lecture notes: its proof is based upon all the above machinery (puz-
zle and parapuzzle geometry, rigidity theorems, analysis and geometry
in manifolds modeled on sheaves of Banach Spaces,...) plus several



134 6. UNIVERSALITY

extra ingredients, like rigidity of towers with essentially bounded com-
binatorics and a Shadowing Theorem generalizing the Small Orbits
Theorem to arbitrary combinatorics.

In the rest of the section we will outline the proof of the Renormal-
ization Theorem emphasizing new ingredients as compared with the
stationary case.

3.2. Parabolic towers. Parabolic towers are geometric limits of
McMullen towers with essentially bounded combinatorics. The follow-
ing result extends the Rigidity Theorem 6.4 to this class of towers:

THEOREM 6.11. If two parabolic towers ® and W in T,(K) are com-
binatorially equivalent then they are affinely equivalent.

3.3. Exponential Contraction. To prove exponential contrac-
tion of the renormalization operator on the hybrid lamination we split
the analysis into two combinatorial cases: essentially bounded and
“high”. The essentially bounded is treated similarly to the station-
ary case by means of the above Rigidity Theorem for parabolic towers
(6.11). The treatment of the high combinatorics case will be based
upon Theorem 3.6 on the growth of the principal moduli. Altogether,
this yields the macroscopic contraction property for the renormaliza-
tion. The Schwarz Lemma in Banach spaces rounds up the argument.

Let us now detail the argument. Let S C C stand for the union of
(complex) quadratic-like germs f with the real straightening, i.e., such
that x(f) € [-2,1/4]. Let S(u) = SNC(i) and let S, (i) be the set of
n times renormalizable germs of S(u).

We will make use of the notion of Montel metric dist;,, introduced
in §4.1.3 of the 2nd lecture.

LEMMA 6.12. The renormalization is macroscopically contracting
in the following sense: For any ¢ > 0 there is an N = N(u) such that
distyon(R"f,R™g) <&, m=N,N+1,...,n,

provided f and g are hybrid equivalent and belong to S, ().
Remark. We call this property “macroscopic” since it provides con-

traction only in “big” scales but allows expansion in “small” scales
(<e).

ProoF. The contracting property of the renormalization in Sulli-
van’s Teichmiiller metric (see §I1.6.2) implies that it is Lyapunov stable
in the Montel metric (see §II.4), i.e., there exists a 6 = d(¢) > 0 such
that

distyron(f, 9) < 0 = distpyon(R™f,R™g) <2, m=1,...,n,
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provided f and g belong to S,(u) (where § = §(¢) is independent of n
and the combinatorics of f and g).

Take a renormalizable map f : V' — V' with mod(V ~ V') > pu.
By Theorem 3.6, if p.(f) > p.(9), then the renormalization Rf is §/2-
close to a quadratic map P., where ¢ = x(Rf). Thus for two hybrid
equivalent maps like that we have: distys,,(Rf, Rg) < 0.

Furthermore, let us show that there is an N = N(u,p.) with the
following property: If for 2/N consecutive renormalizations of maps
f and g in Syn(p), their essential periods stay bounded by p., then
distaron (RN f, RN g) < 6. Otherwise there would be a sequence of maps
fn and gy as above with distyron(fx,gn) > 6. Let Fy,, = RNT™fy
and Gy, = RN™™gy, m = —N, ..., N. Consider a sequence of hybrid
equivalent finite towers Fy = {Fy}Y__ 5 and Gn = {Gym}l__y.
By compactness (Lemma 6.2), these towers converge along a subse-
quence to bi-infinite parabolic towers F = {F,,,} and G = {G,,} with
essentially bounded combinatorics and a prior: bounds. By the Rigid-
ity Theorem for parabolic towers (6.11), F = G up to rescaling. On
the other hand, dist s, (Fy, Go) > J - contradiction.

Thus, in any case (with no restrictions on the combinatorics), there
is an [ < N(u, p) such that distase, (R f, Rlg) < §. By the choice of 4,
distpyron(R™f, R™g) < ¢ for all further moments m =1+1,...,n. O

As in the stationary case, by means of the Schwarz Lemma in Ba-
nach spaces, we can pass from the macroscopic to the exponential con-
traction:

THEOREM 6.13. Let us consider two hybrid equivalent quadratic-
like maps f € S11(v) and g € Sp41(v). Then

distpyon(R™f, R™g) < Cp™, m =0,1,...,n,

where p € (0,1) depends only on the choice of distyron, while C > 0
depends also on v.

3.4. Realization and rigidity of general towers. In this sec-
tion we will construct the horseshoe A.

3.4.1. Contraction in the middle of the tower. Let us consider an
orbit {R™f}" _ , (assuming that f is n times renormalizable and [
times anti-renormalizable and using notation R™ f with negative m for
some anti-renormalization of f). Its (I,n)-itinerary is a sequence of

M-copies {M,,}» __, such that R™f € Ty,,.

LEMMA 6.14. Consider two maps f and g in S with the same (I, n)-
itinerary and such that

mod(R¥f) > > 0 and mod(RFg) > >0, -1 < k < n.
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Then distyon(f, g9) < e =¢e(u,l,n), where e — 0 as l,n — oo (u being
fized).

PROOF. Let x(f) = P. and x(g) = P,, where b and ¢ are real by
the assumption. Theorem 4.30 implies that the renormalization win-
dows of order n in the parameter interval [—2,1/4] (i.e., the connected
components of the set of real n times renormalizable maps) uniformly
shrink as the order grows. Thus, |b —¢| < d(n) — 0 as n — o0, so
that f and ¢ lie on the nearby leaves of the foliation F. The same is
applicable to f, = R¥f and g, = R¥g, k = —1I,..., N, for any given N.

For any integer k € [—[,0], let us consider a map hy € H(fy) be-
longing to the vertical fiber via gy, i.e., 7(hy) = m(gx). Then mod(hy) =
mod(gg). By Theorem 6.13, there exist p and N depending only on p
such that

diStMon(Rka, RNh,k) S pdiStMon(fk, hk)

The results of §I1.5.4 imply that the vertical fibers through g
near the connectedness locus can be equipped so that they become
quadratic-like families of some class Gy, », with geometry (i.e., the con-
stants L, \) depending only on p. Hence by Theorem 5.19 and Lemma
5.25, RNhy;, and RY g, belong to the same quadratic-like family with
bounded geometry. By Lemma 2.8, the holonomy @ — S, § € ¢, is
equicontinuous. Hence

dist yron (R™ hi, RN gp) < 01(n) — 0 as n — oo.

It follows that RY uniformly contracts the distance between the f;,
and g, as long as it stays greater than €. Hence in a bounded number
of steps (depending on ¢) this distance must become smaller than €. [

3.4.2. Realization and rigidity. We will now prove that any real
combinatorics 7 = {M}32 _, My € Mg, can be be realized by a
unique real tower. Let S stand for the space of towers f with f € S.
make it script

THEOREM 6.15. For any two-sided real combinatorics T there is
a unique tower f € S with this combinatorics and a priori bounds.

Moreover, this tower is real and mod(f) > v with an absolute v > 0.

Proor. By Theorem II1.3.21, there is an absolute v > 0 such that
for any infinitely renormalizable quadratic polynomial f = P, € Z,
R'feQv),n=0,1,....

Let us take a combinatorial sequence 7 = {M;}. For any [ > 0,
there is a real infinitely renormalizable quadratic polynomial P, = P,
with combinatorics 7(P) = {M_y,..., My,...}. Let fo, = R'P,. These
are infinitely renormalizable real quadratic-like maps with common



4. UNSTABLE FOLIATION 137

combinatorics {My, My, ...} and mod(fy;) > v. Since the set of such
maps is compact, we can pass to a quadratic-like limit fo = limy_,o fo
(along a subsequence) with the same properties.

Let us now do the same thing for every ¢« < 0. Let f;; = R P,
and let f; = lim;_, fi; be a limit point. The map f; is real and has
combinatorics 7; = {M;, M1, ... }.

Selecting the above converging subsequences diagonally, we con-

struct a sequence of real infinitely renormalizable quadratic-like maps
{fi}22_ such that Rf; = fiv1, x(fi) € M; and mod(f;) > v. This

1=—00
sequence represents a real tower f with combinatorics 7 and a moduli
bound v.

Thus, any real combinatorics 7 is represented by a tower f € S
with @ priori bounds. Moreover, this tower is unique. Indeed, if f and
g are two such towers, then by Lemma 6.14 diston(fo, go) is arbitrary

small, so that fy = ¢go. For the same reason f; = g¢; for any 1. O

Let us say that an infinitely renormalizable map f € C is completely
non-escaping under the renormalization if some full renormalization

orbit {R"f}> __ is well-defined, R"f € C, and

mod(fy) = p=pu(f) >0, nez.

Note that we do not ask R"f to be uniquely determined for negative
n but by Lemma I1.2.26 this is the case for real maps.

Let A C C stand for the set of completely non-escaping maps with
real combinatorics. This is the full renormalization horseshoe promised
in Theorem 6.10. It follows from Theorem 6.15 that R|.A is topologi-
cally conjugate to the shift w on the space ¥ of all possible real combi-
natorial types 7 = {My}3> ., M} € Mg. This is part (i) of Theorem
6.10. Part (ii) of Theorem 6.10 now follows from Theorem 6.13. Let
us pass to part (iii).

4. Unstable foliation

4.1. Family of special bidisks. To capture hyperbolicity, we
construct a family of “special Banach bidisks” Q¢, f € A, nicely trans-
formed by the renormalization. These bidisks are contained in certain
Banach slices By which are in turn locally contained in some vertical
tubes Py (see 11.§5.4), and have the following structure. There is a
neighborhood Wy C E;} N By and a neighborhood &y C Ej (recall
the horizontal-vertical decomposition (2.10) ) such that @y is obtained
from Sy by the holomorphic motion along the foliation F over W.

Let V; denote the leaf of the above motion through f (the “base”
of @), and let S;(g) denote the vertical cross-section of (); through a
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point g € Q. (For special disks Qf C By, the corresponding objects
will be marked with tilde.)
Let || - || denote the Banach norm in By.

LEMMA 6.16. There exists an N € N and a family of special bidisks

QfCQfCBfa feA,
based on the V¢, satisfying the following properties:

(i) The renormalization RN | My admits the analytic continuation to
Qf, and RNQf C BRNf;'
(ii) Horizontal contraction: If g € Q and v € T,By is tangent to the
leaf of F through g, then ||DRYv||gv; < pllv|| s, where p € (0,1);
(iii) Invariance of the cone fields: If g € Q¢ and R™"g € Qgny, then

DRY(As(g)) € Apvy(RYg),

where Af(g) stands for the vertical w/4-cone in By based at g;

(iv) OQuerflowing property for high periods: There exists p such that if

the renormalization period of f is greater than p, then for g € Vy,
RN(S¢(g9))N QRNf is a manifold with vertical slope bounded by 1
properly embedded into Qf;

(v) The leaves of F in Qs have horizontal slopes bounded by 1/2;
(vi) The bidisks Qf and Qf have a definite horizontal size in By;
(vil) The cross-sections S;(g), g € Vs, have a bounded shape;

(viii) The cross-sections gf(g), g € Vs, have a bounded shape and an
absolute size;

4.2. Slow shadowing orbits. We can now use the above family
of special bidisks to prove the following generalization of the Small
Orbits Theorem:

THEOREM 6.17. If the renormalization R is not hyperbolic, then
there exist quadratic-like maps f € A and g € Hy such that R"g €

We say that ¢ “slowly shadows f”. It is easy to see that the shad-
owing map ¢ is infinitely renormalizable with the same combinatorics
as f. By the Rigidity Theorem (4.28), it must be hybrid equivalent
to f, i.e., g € H; — contradiction. This proves hyperbolicity of the
horseshoe A.

The last assertion of Theorem 6.10(iii) can be derived from a priori
bounds.

Point (iv) of the theorem follows from the Koebe Distortion Theo-
rem, while the last point, (v), follows from the A-lemma.
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5. Proof of Theorem B

We are now ready to prove Theorem B from the Introduction (and
thus, to complete the proof of the Regular or Stochastic Theorem).

THEOREM 6.18. The set T of real infinitely renormalizable param-
eters has zero Lebesgue measure.

Proor. By the Lebesgue Density Points Theorem, it is sufficient
to show that the set Z is “porous”, that is, it has definite gaps in
arbitrary small scales near any point ¢ € Z. Since this property is
quasisymmetrically invariant, by Theorem 6.10(v) it is enough to check
that the sets A N W*(f) are uniformly porous on the (real) unstable
manifolds W*(f).

By Theorem 6.10(iii), for any N, there is an interval Iy C W*(f)
which is stretched by RY to the whole manifold W*(RY f). Since this
manifold transversally intersects all hybrid classes H,. with ¢ € [—2, 0],
it contains an interval Jy corresponding under the straightening y to
the hyperbolic window (—3/4,0). Since Y is uniformly quasisymmetric,
this window occupies a definite proportion of W¥(RN f).

But Theorem 6.10(iv) implies (by standard distortion estimates)
that the map RY : Iy — W*(RY f) has a bounded distortion (inde-
pendent of N). Hence the interval R~V .Jy occupies a definite size in
Iy. Since the maps g € R~V .Jy are only N times renormalizable, this
interval is a gap in Z. Since diam Iy — 0, we are done. O

6. Bibliographical notes

The Renormalization Conjecture was formulated in [F1, F2] and
[CT, TC]. The first, computer-assisted, proof of the Renormalization
Conjecture for the period doublings was given by Lanford in 1982 [Lal].
The idea was to find numerically an approximation to the solution
of the Feigenbaum-Cvitanovi¢ equation and then to prove rigorously
that there exists a true hyperbolic solution nearby. In this way the
original conjecture was formally checked, at least locally, near the fixed
point f,.(This was perhaps the first experience with rigorous computer-
assisted proofs, which nowadays have become quite widespread.)

Still, the nature of the universality phenomenon remained myste-
rious. Also, computer-assisted proofs can conceivably handle only a
few small renormalization periods, while the renormalization operator
is well defined for arbitrary periods (triplings, quadruplings etc.), not
to mention arbitrary infinite strings of periods. So, people kept look-
ing for a “conceptual” proof of the Renormalization Conjecture: see
[VSK, E, Mar]| for advances in this direction.
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A complete proof of the conjecture in the stationary case (and in
fact, in the case of bounded combinatorics) was given in the works
of Sullivan [S2], McMullen [McMZ2]| and the author [L6] as outlined
in §2 of this lecture. Namely, the renormalization fixed point and it
stable manifold were constructed in [S2, McMZ2] (see also [MS]), while
hyperbolicity of this fixed point was proven in [L6].

The Full Renormalization Horseshoe was treated in [L7].

For the one-dimensional Small Orbits Theorem (going back to Birkhoff)
see Perez-Marco [PM]. Theorem 6.11 was proven in the thesis of Hin-
kle (Stony Brook, 1997), see [Hi].

For further advances in the Renormalization Theory, see [FMP,

Y2]. For further advances in the theory of regular and stochastic dy-
namics, see [ALM, AM2].
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