ALMOST EVERY REAL QUADRATIC MAP
IS EITHER REGULAR OR STOCHASTIC

MIKHAIL LYUBICH

ABSTRACT. In this paper we complete a program of study measur-
able dynamics in the real quadratic family whose goal was to prove
that almost any real quadratic map P, : z — 2% +¢, ¢ € [-2,1/4],
has either an attracting cycle or an absolutely continuous invariant
measure. The final step filled in here is to prove that the set of
infinitely renormalizable parameter values ¢ € [—2,1/4] has zero
Lebesgue measure. We derive it from a Renormalization Theo-
rem which asserts uniform hyperbolicity of the full renormaliza-
tion operator. This theorem gives the most general real version
of the Feigenbaum-Coullet-Tresser Universality, simultanuously for
all combinatorial types.

1. INTRODUCTION

1.1. The goal of dynamics. The main goal of dynamical systems
theory is to describe the typical behavior of orbits for a typical dynam-
ical system. There can be different points of view on the meaning of
“typical” but it is generally accepted today that the probabilistic notion
based on Lebesgue measure makes the best physical sense. This view-
point going back to Boltzman, Poincaré, Birkhoff and Kolmogorov,
was precisely shaped in the sixties and seventies by Arnol’d, Moser,
Sinai and Ruelle, and has been a guiding principle since then. Roughly
speaking, the goal is the following: Given a finite dimensional mani-
fold M and a “representative” finite parameter family f, : M — M of
dynamical systems on M, describe the asymptotic behavior of almost
all orbits of f; for almost all parameters t. (By “almost all”, we always
mean “all outside of a set of Lebesgue measure zero”.)

It was soon realised that this problem is transcendentally hard in
general, so that one has to start with the simplest models. The model
that shortly attracted a great deal of attention was the one-dimensional
real quadratic family P, : z — 2% + ¢, with ¢ € [-2,1/4]. (For these
parameter values, the map P, has an invariant interval I..) It turned
out that even this elementary formula hides very rich dynamics, which
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depends sensitively on the parameter c. In this paper, we will give a
complete measure-theoretic picture for this family.

1.2. The main theorem on measurable dynamics in the real
quadratic family. There are two opposite types of dynamics observed
in the quadratic family. A quadratic map P. is called regular if it has
an attracting cycle (i.e., a cycle whose multiplier has absolute value
less than 1). In this case, the attracting cycle is unique and attracts
(Lebesgue) almost all orbits of the invariant interval I. ([Fa], [Ju], [Si],
G1)).

A quadratic map is called stochastic if it has an absolutely continu-
ous invariant probability measure p. Such a measure is unique, has a
positive characteristic exponent x,(f) = [log|Df|dp, and Lebesgue
almost all orbits on I, are asymptotically equidistributed with respect
to it ([BL2]). Moreover it has support

p—1

supp i = | Ly,
k=0

where the Lj are intervals with disjoint interiors which are cyclically
permuted under f, and f?|L, is weakly Bernoulli [Le].

So, in both the regular and stochastic cases, the asymptotic behavior
of almost all orbits is well understood.

Theorem 1.1 (regular or stochastic). Almost every real quadratic
polynomial P.(z) = 2° +¢, ¢ € [—2,1/4], is either regular or stochastic.

Regular quadratic maps are said to be (uniformly) hyperbolic, since
they are uniformly expanding outside the basin of the attracting cy-
cle [Fa], [Ju], [G1]. On the other hand, stochastic maps are always
(nonuniformly) hyperbolic in the sense of Oseledets-Pesin theory, since
Xu(f) > 0. Thus, one can say that almost any real quadratic map is
hyperbolic, in either the uniform or the nonuniform sense.

Previously it was known that stochastic maps are observable with
positive probability ([J], [BC1]), but are nowhere dense. In fact Yoc-
coz showed that any interval of nonregular maps would have to be
infinitely renormalizable (see [H]); but it was known that no infinitely
renormalizable map can be stochastic [G2],[BL1], [S2]. More recently it
was proven that the open set consisting of all regular maps is actually
dense. (See [L3] for the proof of this result and further references.) So,
neither regular nor stochastic phenomena can be neglected in the real
quadratic family.
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F1GURE 1. Real quadratic family. This picture presents
how the limit set of the orbit {f(0)}>°, bifurcates as
the parameter ¢ changes from 1/4 on the right to —2 on
the left. Two types of regimes are intertwined in an in-
tricate way. The gaps correspond to the regular regimes.
The black regions correspond to the stochastic regimes
(though of course there are infinitely many narrow invis-
ible gaps therein).

1.3. Two parts of the main theorem. To put the main theorem
into context, let us recall the topological classification of unimodal
maps (see [MS] for a detailed discussion). Take a closed interval I > 0.
A smooth map f : I — I is called unimodal if it has only one critical
point in int I, and this point is an extremum. In what follows we
assume that the critical point is located at 0.

A unimodal map f = P, is called renormalizable if there exists a
p > 1 and an interval L > 0 such that fP(L,0L) C (L,0L), while
int(f*L)Nint L = P for 1 < k < p. The smallest p = p(f) with this
property is called the renormalization period. The restriction fP|L is
again a unimodal map. If L is the maximal interval as above, then
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fP|L, considered up to rescaling, is called the renormalization of f and
is denoted by Rf. If Rf is also renormalizable, f is called “twice renor-
malizable”, and its second renormalization is denoted by R%f. Contin-
uing this process, we naturally define “n times renormalizable” maps,
“infinitely renormalizable” maps, and “at most finitely renormalizable”
maps.

Evidently we have the following decomposition of the parameter in-
terval of the quadratic family: [—2,1/4] = RUN UZ, where R stands
for the set of regular parameter values, N stands for the set of nonreg-
ular at most finitely renormalizable parameter values, and Z stands for
the set of infinitely renormalizable parameter values.

The set S of stochastic parameter values is contained in N,! and it
is known that the difference N'\ S is non-empty ([Jo], [HK], [Bru]). In
[MN], Martens and Nowicki gave an efficient geometric condition for a
map P,, ¢ € N, to have an absolutely continuous invariant measure.

Thus, Theorem 1.1 follows from the following two results:

Theorem 1.2 ([L4]). Almost every nonregular real quadratic polyno-
maal which is at most finitely renormalizable satisfies the Martens-
Nowicki condition. Hence, meas(N \ S) = 0.

Theorem 1.3. The set of infinitely renormalizable real quadratics has
zero Lebesgue measure: meas(Z) = 0.

We will derive the last result from a renormalization theorem for all
possible real combinatorial types. Roughly speaking, this theorem says
that the renormalization operator R is hyperbolic in an appropriate
space of unimodal maps. A proof of this theorem will be the main
subject of this paper.

Remark. It is worthy to compare the Density Theorem of [L3] with
Theorem 1.3. The former asserts that the set Z is nowhere dense; the
measure-theoretic assertion of the latter is much stronger.

1.4. Renormalization theory. The renormalization conjecture was
stated by Feigenbaum [F1, F2] and independently by Coullet and Tresser
[CT, TC] in 1976-78, for the particular case of doubling combina-
torics. It suggested a renorm-group explanation (motivated by statis-
tical physics) of numerically observed universal properties of unimodal
maps. Its importance both for mathematics and physics was soon re-
alized (see [C]), and there has been a sustained effort since then to
explore this phenomenon and to give its mathematical justification.

! This follows from a theorem that for f € Z, almost all orbits converge to an
attractor of measure 0, see [G2, BL1, S2].
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In the work of Lanford, Epstein, Eckmann, Sinai, Sullivan, de Melo,
McMullen (see [Lall, [E], [EE], [VSK], [S1], [S2], [MS], [McM2]), among
others, spectacular progress in this problem has been achieved (see [L5]
for more historical comments and references). However, until recently
even the doubling case was not completely resolved. In [L5] the conjec-
ture was proved for bounded combinatorics. In the present paper, we
extend the conjecture and prove it simultaneously for all real combina-
torial types. (Compare Lanford’s conjecture [La2] for circle maps.)

Following Sullivan’s program [S1], we approach renormalization the-
ory from the point of view of holomorphic dynamics. This approach is
based on the notion of quadratic-like map introduced by Douady and
Hubbard [DH2], which is a complex analogue of the notion of unimodal
map. A quadratic-like map is a holomorphic double branched cover-
ing f: U — U, where U € U’ are topological disks. Let Qr stand
for the space of real analytic unimodal maps f : I — I which admit
quadratic-like extensions f : U — U’ to the complex plane, U D [
(compare §2.1).

Renormalizable unimodal maps f differ combinatorially not only by
the renormalization period p but also by the order of the intervals L,
fL,..., fP"'L on the real line (up to change of orientation), where L is
the domain of the renormalization fP|L. Thus the set of renormalizable
maps f € Qg is decomposed into the union of renormalization strips
T r consisting of maps renormalizable with the same combinatorial
type.

The intersection of the strip 7;r with the real quadratic family
{P.: —2 < ¢ < 1/4} is a closed interval J;, C [—2,1/4] called the
renormalization window. In fact, any map f € Tyr is topologically
conjugate to some quadratic map P, in the corresponding window Ji.
The renormalization period py = p(Ji) = p(Tx ) is constant through-
out the renormalization strip.

On each renormalization strip 7 g one can consider the correspond-
ing renormalization operator Ry : Tyg — Or. These operators are
real analytic with respect to the natural real analytic structure on
Or, and altogether, they form a single piecewise analytic operator
R :UTir — Qg (see Figure 2).

Let us now define real hybrid classes Hr(f), f € Or (the motivation
for this notion will become clear in the complex setting). If f is not
hyperbolic then let Hg(f) be the topological class of f (i.e., the set of
maps g € Qg topologically conjugate to f). If f is hyperbolic then it
has an attracting cycle with multiplier A(f). Then let Hg(f) be the
set of ¢ € Qg in the topological class of f such that A(g) = A(f).
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guadratic family

Space of unimodal maps

FI1GURE 2. Full renormalization operator

Let X stand for the space of two-sided sequences of natural numbers,
and w stand for the shift on this symbolic space.

Now we will state a somewhat simplified version of the Renormal-
ization Theorem for all real combinatorial types.

Theorem 1.4 (Renormalization Theorem). There is a set A C UTyr
( “the full renormalization horseshoe”) such that:

e A is R-invariant and R|.A is topologically conjugate to the two-
sided shift w.

e The topological classes Hg(f), f € A, are codimension-one real
analytic submanifolds in Qr which form an R-invariant lamina-
tion in Qg. Moreover, if g € Hr(f), then the forward orbits of f
and g under R are exponentially asymptotic.

e Through any point f € A there is a real analytic curve WE(f)
transverse to Hg(f). This family of curves is R '-invariant. If
g € WE(f) then the orbits of f and g under R~ are exponentially
asymptotic.

This theorem expresses the fact that the renormalization operator is
hyperbolic in the space Qg, with the topological classes Hr(f) = WE(f)
as stable manifolds and the curves W{(f) as unstable ones. In fact,
there are several technical issues to be addressed to make this statement
precise:
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- What is the real analytic structure on the space Qgr?

- With respect to what metric are the expansion and contraction
measured?

Also, for the sake of applications, finer properties of the above hyper-
bolicity picture are needed (uniform bounds on the expansion/contraction
rates and on the unstable non-linearity of R, uniform size of the unsta-
ble leaves, and a certain transverse regularity of the stable foliation).

The complete technical formulation of the Renormalization Theorem
will be given in Section 3.

1.5. More consequences. Let us state a few more consequences of
the renormalization theorem. For any renormalization window .J;, there
is a canonical map o : J; — [—2,1/4] defined as the renormalization
postcomposed with the straightening (where the straightening asso-
ciates to a unimodal map f € Qr a unique quadratic polynomial P,y
in the hybrid class Hg(f)). Let {J} stand for the collection of domains
of definition of ¢™, that is, the windows for the n-fold renormalization,
and let J'(e) = o "[—2,1/4 — ¢ N J".

Theorem 1.5. The maps o" : J'(e) — [—2,1/4 — €] are uniformly
quasi-symmetric (with dilatation independent of n and i).

Given a renormalizable map f, let p(f) stand for the period of the
first renormalization. The following result improves Theorem VIII of
[L3]:

Theorem 1.6. There is a number p with the following property. If f =
P, is an infinitely renormalizable real quadratic map with p(R™ f) > p
for a subsequence ny — 00, then the Mandelbrot set is locally connected
at c. Moreover, the corresponding little Mandelbrot sets M™ shrinking

to ¢ are uniformly quasi-conformally equivalent to the standard Man-
delbrot set M°.

1.6. Structure of the proof of the Renormalization Theorem.
There are three types of combinatorics to take care of: bounded, “essen-
tially bounded”, and “high”. For any bounded combinatorics, Sullivan
[S2] and McMullen [McM2] constructed the corresponding renormal-
ization horseshoe and its strong stable foliation. It was proven in [L5]
that the renormalization horseshoe is hyperbolic. The idea of the proof
is that, in the complex analytic context, lack of hyperbolicity yields ex-
istence of “slowly shadowing orbits”. On the other hand, such orbits
are ruled out by the rigidity theorem [L3].

Note that an important part of [L5] is the construction of a complex
analytic structure for the space of quadratic-like germs (modulo affine
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conjugacy), and a proof that the Douady-Hubbard hybrid classes [DH2]
form a foliation of the connectedness locus by analytic leaves of complex
codimension one. By means of the A-lemma, this allows us to relate
parameter geometry of the quadratic family and other quadratic-like
families.

The unbounded combinatorics can be split into two types: essentially
bounded and high. In the former case, the unboundedness is produced
by the saddle-node behavior of the critical point (see [L3], [LY]). This
phenomenon can be analyzed by means of parabolic bifurcation the-
ory (see [D2]). Extending the work of A. Epstein [Ep] and McMullen
[McM2], Ben Hinkle has proved a rigidity theorem for “parabolic tow-
ers” [Hi|, that is, geometric limits of dynamical systems generated by
infinitely renormalizable maps with essentially bounded combinatorics.
Using this result, we prove hyperbolicity of the renormalization opera-
tor with essentially bounded combinatorics. Note that McMullen’s ar-
gument for exponential contraction does not seem to work in this case,
and instead we make use of the Schwarz Lemma in Banach spaces.

To treat the remaining case of high combinatorics we need the exten-
sive analytic preparation on the geometry of the puzzle and parapuzzle
which was carried out in [L3] and [L4]. The main geometric result of
these papers is the linear growth of the conformal moduli of the “prin-
cipal nest” of dynamical and parameter annuli. This implies that the
image of a renormalization “horizontal” strip of high type is a narrow
“vertical strip” close to the quadratic family. Using the Schwarz lemma
and the Koebe distortion theorem, this yields strong hyperbolicity of
the high type renormalization, with large contraction and expansion
factors. Note that it is crucial for our argument that the results of
[L3, L4] are proved for complex parameter values, even though in the
present paper we are ultimately interested in real quadratics.

Moreover, the parameter results of [L4] (accompanied by the Koebe
Distortion Theorem and the A-lemma) provide us with transverse con-
trol of the renormalization which allows us to relate global expansion
to the multipliers of periodic points.

Finally, we construct a special family of Banach bidisks which cap-
ture hyperbolic properties of the renormalization. These bidisks allow
us to generalize the argument of [L5] (slowly shadowing orbits versus
rigidity) which yields Theorem 3.1.

This paper completes a program of studying the real quadratic fam-
ily by complex methods, carried in the series of papers [LM], [L2], [L3],
[LY], [L4], [MN], [Hi], [L5]. The results were announced in the Pro-
ceedings of the National Academy of Sciences [L6] (1998) and in the
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Notices of the AMS (October 2000). Their preprint version appeared
in the IMS at Stony Brook preprint series (1997, # 8).

1.7. Why the quadratic family? One can ask what is special about
the quadratic family? Besides the attractive simple formula and the
advantage of being globally holomorphic, there are several good reasons
why the quadratic family plays a distinguished role.

First, it is a global transversal to the lamination of the space of
quadratic-like maps into real hybrid classes. For this reason, the dy-
namical picture in the quadratic family is also valid in generic quadratic-
like families.

Second, there are several tight links between (sufficiently) smooth
and holomorphic dynamics. One of the links is that the renormaliza-
tions of smooth unimodal maps (with a nondegenerate critical point)
are asymptotically quadratic-like [S2]. This should make it possible
to reduce many questions about generic smooth families to the qua-
dratic situation. In particular, the renormalization horseshoe and its
unstable foliation as described above will surely yield universal prop-
erties of generic families of smooth unimodal maps. Another link is
that smooth maps admit an asymptotically conformal extension to the
complex plane and can be studied there by the methods of holomorphic
dynamics [L7], [L3, §12.2].

For these reasons, holomorphic dynamics is not an exotic branch but
rather an intrinsic part of smooth dynamics, and provides a powerful
approach to the latter. Work in this direction is already on the way
(see [LM, K, MP, FMP, ALM]).

1.8. Further perspective. Theorem 1.2 was recently strengthened
by Avila and Moreira [AM] who have proven that almost all qua-
dratic maps which are at most finitely renormalizable satisfy the Collet-
Eckmann condition for existence of an absolutely continuous invariant
measure. One more natural question is whether the complement to the
set, of regular or stochastic maps has Hausdorff dimension strictly less
than 1.

In one-dimensional theory, it will be natural to proceed to higher de-
gree polynomials and then to polymodal C?-smooth maps. We expect
an analogous “regular or stochastic” result to be valid in generic one
parameter families. There is still a lot of interesting work to be done in
this direction, but we believe that the “quadratic theory” has prepared
basic tools to deal with this more general situation.

One can also formulate an analogous conjecture for the complex qua-
dratic family z — 22 +c. Here absolute continuity of an invariant mea-
sure can be understood with respect to Sullivan’s conformal measure on
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the Julia set. “Almost all” in the parameter plane can be understood
in the sense of Hausdorff dimension as “outside a set of strictly smaller
dimension”. Of course, such a conjecture cannot be proved prior to the
MLC conjecture (though it could be disproved).

There is a parallel development in the closely related branch of one-
dimensional dynamics, the theory of critical circle maps. In this field,
some pieces go easier but others are more involved. Work in this di-
rection is also close to completion (see Yampolsky [Ya] and further
references therein).

A general program in higher-dimensional dynamics was explicitly
formulated by Palis [Pa]. Roughly speaking, it asserts that in a generic
finite parameter family of smooth dynamical systems, there are typi-
cally only finitely many attractors each of which carries an SRB mea-
sure and such that almost any orbit is equidistributed with respect to
one of them. This program initiated by the work of Benedicks & Car-
leson [BC2| on the dynamics in the Hénon family has been intensively
carried on (see Viana [V], Young [Y]).

There are many issues in the higher-dimensional situation which
make it significantly different from the one-dimensional case. Among
them is the necessity to deal with infinitely many “critical points”
(which are not even precisely defined) and the related necessity to deal
with infinitely many sinks (the Newhouse phenomenon). Another prob-
lem is to find a transparent combinatorial model for higher-dimensional
maps (compare [CH]). And last but not least is the lack of the com-
plex analytic machinery (quasi-conformal maps, conformal invariants),
which is so powerful in the one-dimensional theory. Note, however, that
the work in complex two-dimensional dynamics which has been inten-
sively carried out since the mid eighties, by Hubbard, Sibony, Bedford
and Smillie, among others, may eventually provide useful tools for real
dynamics.

1.9. Basic notations and definitions. C, R, Z and N denote as
usual the complex plane, the real line, and the sets of integer and
natural numbers respectively;

C is the Riemann sphere;

D(a,r) = {z: |z —a| <r} is the open disk of radius r;

D, =D(0,r), D =Dy;

T, = 0D, is the circle of radius r, T = T;.

The closure of a set X will be denoted either by X or by cl(X);
U & V means that U is compactly contained in V, that is, the
closure U is compact and is contained in V;
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Given two subsets X and Y in a metric space Z, we let
dist(X,Y) = inf dist(z,y).

reX,yey
(To specify other meanings of the distance we will use subscripts, e.g.,
diStT, diSthyp.)

The Hausdorff distance between two compact subsets X and Y of
Z is defined as the infimum of ¢ > 0 such that X is contained in an
e-neighborhood of Y and the other way around. It determines the
Hausdorff topology on the space of compact subsets of M.

A pointed space (X, a) is a space X with a base point a € X.

A sequence of pointed open sets (V,,a,) in R Carathéodory con-
verges to a pointed open set (V,a) if:
(i) ap — a;
(ii) Any compact subset K C V' is contained in all but finitely many
sets V,;

(iii) Any open connected set K 3 a contained in infinitely many sets
V,, is contained in V.

If A C Cis a topological annulus (perhaps with boundary) , then
mod(A) stands for log(R/r), provided int A is conformally equivalent
to {z: r <|z| < R}.

Let

0= 0z’ 0z
We refer to the book of Ahlfors [A] for the basic theory of quasi-
conformal maps. The quasi-conformality property will be often ab-
breviated as “qc”. Similarly, “qs” will stand for “quasi-symmetric”.
Let

Oh — Oh
stand for the dilatation of a qc map h.

A Jordan curve v C C is called a k-quasi-circle if for any two points
x,y € 7y there is an arc 0 C v bounded by these points such that

Dil(h) = ‘

ah+5hH

diam ¢ < K|z — y.

A curve is called a quasi-circle if it is a k-quasi-circle for some k. The
best possible  in the above definition is called the dilatation Dil(vy) of
the quasi-circle. A Jordan disk is called (k-)quasi-disk if it is bounded
by a (k-)quasi-circle.

Let P.(2) = 22 + ¢;
M? is the Mandelbrot set;
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Given two maps f and f partially defined on sets X and X re-
spectively, we say that a map h : V — V is (f, f)—equivariant if
h(fz) = f(hz), whenever both z and fz belong to X. (Thus, “equiv-
ariance” means “semi-conjugacy for partially defined maps”.) We will
skip reference to (f, f) unless it may lead to a confusion.

The notation a < [ means as usual that the ratio o/ is bounded
away from 0 and oo.
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2. QUADRATIC-LIKE GERMS, PUZZLE, RENORMALIZATION, AND
TOWERS

2.1. Quadratic-like germs. In this section we give a refined sum-
mary of [L5, §§3,4].

2.1.1. Notion of quadratic-like map and germ. A map f : U — U' is
called quadratic-like if it is a double branched covering between topo-
logical disks U, U’ such that U € U’. It has a single critical point which
is assumed to be located at the origin 0, unless otherwise is stated. For
expositional reasons, we will also make the following assumptions:

e The boundaries U and dU' are quasi-circles. Hence f is contin-

uous on U and maps OU onto AU’ as a double covering.

e UU is symmetric with respect to the origin and f is even, i.e.,

f(=2) = f(2).

The filled Julia set is defined as the set of non-escaping points:
K(f) ={z: frz € U,n=0,1...}. Its boundary is called the Ju-
lia set, J(f) = OK(f). The sets K(f) and J(f) are connected if and
only if the critical point itself is non-escaping: 0 € K(f). Otherwise
these sets are Cantor.

The fundamental annulus of a quadratic-like map f: U — U’ is the
annulus between the domain and the range of f, A =U'~U. We let
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mod(f) = mod(A). For a quadratic polynomial P, : C — C, we let
mod(P,) = oo.

Any quadratic-like map has two fixed points counted with multi-
plicity. In the case of connected Julia set these two points can be
dynamically distinguished. One of them, usually denoted by «, is ei-
ther non-repelling or dividing, i.e., removing it makes the Julia set
disconnected. Another one, denoted by 3, is always non-dividing.

A quadratic-like map f : U — U’ is called real if the domains U and
U’ are R-symmetric and f commutes with the conjugacy z — Z.

We allow to change the domains (U,U’) of a quadratic-like map
without changing “its germ” near the Julia set. More precisely, let
us say that a quadratic-like map g : V. — V' is an adjustment of
another quadratic-like map f : U — U if V.C U, g = f|V, and
OV' Cc U'\U. (In particular, we can restrict f to V = f~'U, provided
f(0) € U.) Let us say that two quadratic-like maps f and f represent
the same quadratic-like germ if there is a sequence of quadratic-like
maps f = fo, f1,---, fn = f, such that f;,; is obtained by an adjust-
ment of f; or the other way around. Clearly a quadratic-like germ has
a well-defined Julia set.

Remark. Note that this notion of a quadratic-like germ is slightly
different from the one given in [L5]. We found the modified notion
more convenient to work with.

We will consider quadratic-like maps/germs up to affine conjugacy
(rescaling), so that near the origin they can be normalized as follows:

f(z)=c+2%+ Zakz%
k=2

(quadratic-like germs modulo affine conjugacy will still be called briefly
“quadratic-like maps/germs”). We will usually not make notational
difference between quadratic-like germs and quadratic-like maps rep-
resenting them but in some cases we will use notation fi; : U — f(U)
for the quadratic-like representative of a germ f on a disk U.

A quadratic-like germ is called real if it has a real representative.

Note also that any quadratic polynomial P, : z — 2%2+c determines a
quadratic-like germ by restricting it to the preimage P, '(D,) of a suf-
ficiently big round disk D,. These germs will still be called “quadratic
polynomials”.

2.1.2. Space of quadratic-like germs. Let QM be the union of the
space of normalized quadratic-like maps and the quadratic family
{P. : C — C}.ec. The space QM is endowed with the following
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convergence structure [McM1, §5.1]. A sequence of maps f, : V, = V!
converges to a map f : V. — V' if the pointed domains (V,V},0)
Carathéodory converge to (V',V,0), and the maps f, converge to f
uniformly on compact subsets of V.

For p > 0, let QM(u,p) stand for the union of the disk in the
quadratic family {F.}c<, and the space of normalized quadratic-like
maps f : V' — V' such that the curves 0V and 0V’ are p-quasi-circles,

mod(V' N\ V) > p, |£(0)] < p, and distyy, (0, f(0)) < p,
(2.1)

where the hyperbolic distance is measured in V.
The following two compactness lemmas are slight variations of [McM1,
Theorems 5.6, 5.8] and [L5, Lemma 4.1].

Lemma 2.1. The space QM(u,p) is compact. Moreover, if f, €
OM (pin, p) with p, — oo, then all limits of the sequence {f,} are
quadratic polynomials.

Similarly, let Q stand for the space of quadratic-like germs, and let C
be its connectedness locus, that is, the subset of germs with connected
Julia set. We endow Q with topology and complex analytic structure
described in Appendix 2. Recall the main notations from there:

e V is the set of topological disks V' 5 0 with piecewise smooth bound-
ary symmetric with respect to the origin;

e BBy is the space of normalized even analytic functions f(z) = c+ 2%+
. on V €V continuous up to the boundary supplied with sup-norm

-l

e By (f,¢e) is the e-ball in this space centered at f;

e For X C Q, Xy = XN By(f,¢e) is a Banach slice of X (f and ¢ are
implicit in this notation);

e For a germ f € Q, V; is the set of topological disks V' € V such that
f has a quadratic-like representative fi-: V' — f(V) in the space By.

By Lemma 6.2, compactness in Q is equivalent to sequential com-
pactness. Moreover, any compact set I C Q sits in a finite union of
Banach slices By and possesses a Montel metric disty,, well-defined
up to Holder equivalence.

Let QP = {P.}.cc stand for the quadratic family. It is a complex
one-dimensional submanifold of Q. By definition, the Mandelbrot set
M° C QP is equal to QP NC.

Given a quadratic-like germ f, let mod(f) = supmod(A) where A
runs over the fundamental annuli of quadratic-like representatives of
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f. For u > 0, let Q(u,p) stand for the set of normalized quadratic-
like germs which have representatives f : V' — V' satisfying (2.1).
Furthermore, let

Q(p) = {f € Q:mod(f) > u}.
Given a set X C Q, let X' (u) = A N Q(w).
Lemma 2.1 and the remark afterwards yield:

Lemma 2.2. For any p > 0 and p > 0, the sets Q(u,p) and C(u)
are compact. Moreover, if fn, € Q(pn, p) with p, — oo then the limit
points of the f, are quadratic polynomials.

Let Qg stand for the space of real quadratic-like germs.

2.1.3. Hybrid lamination. Two quadratic-like maps/germs f and g are
called hybrid equivalent if they are conjugate by a qc map h with 0k = 0
a.e. on K(f). By the Douady-Hubbard Straightening Theorem [DH2],
any quadratic-like map f : V — V' is hybrid equivalent to a quadratic
polynomial
P.: Q. (V1) = Qc(r),

where Q.(r) C C is the topological disk bounded by the equipotential
of P, of some radius r > 1. Moreover, the polynomial P. and the qc
map h conjugating it to f are uniquely determined by the choice of an
equivariant qc map

H:C\V >C\D,, H(fz)=PF(Hz) for ze€ V.
(2.2)

Such a map H is called a tubing of the fundamental annulus V'V, and
the quadratic polynomial P, (as well as the corresponding parameter
value ¢ = xy(f)) is called the straightening of f. We will also say that
f is equipped with the tubing H.

In the case of connected Julia set the straightening P, is, in fact,
independent of the choice of H. Thus, every hybrid class H(f) in C
intersects the quadratic family QP at a single point ¢ = x(f) of the
Mandelbrot set AM°. Such hybrid classes can be also labeled as .,
ce M°.

The hybrid classes in the connectedness locus can be endowed with
the Teichmiiller-Sullivan metric (see [S1]). Below we modify its defini-
tion so that it takes into account that the maps are considered up to
affine (rather than conformal) conjugacy. Let

disty(f, g) = i%f log Dil(h),

where h : C — C runs over all qc maps which are hybrid conjugacies
between f and ¢ near their filled Julia sets. If f : V — V' is a
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quadratic-like representative of f, then let us also define distyy as a
similar infimum where h : C — C provides a hybrid conjugacy on V'
(warning: unlike disty, distr,;- is not a metric).

Lemma 2.3. Let W € V € V' C C be three topological disks. Let us
consider a normalized quadratic-like map f : V. — V' with connected
Julia set. Then for any € > 0 there is a 0 > 0 such that for any
normalized quadratic-like map g € H(f) we have:

o If disty v (f, g) <9 then g belongs to By and ||f — gllw < e.
e Vice versa, if g € By(f,0) then distyw (f,g) <e.

Proof. Let h : C — C be a qc map with dilatation K < €% < 2 which
provides on V' a hybrid conjugacy of f to g. Since h transfers V'~V
to a fundamental annulis of g, mod(g) > mod(V' \ V)/2. By Lemma
2.2, g stays within a compact family of maps. It follows that its 3-fixed
point 3, stays away from 0 and oo.

As h(Bf) = By, h belongs to a compact family of maps in the uniform
topology (by compactness of the space of normalized at two points qc
maps C — C with bounded dilatation). Hence h with sufficiently small
dilatation, Dil(h) < 4, is uniformly close to an affine map z — az. Since
¢ is normalized at the origin, a = 1, so that h is uniformly close to id.
This proves the first statement.

To prove the second one, observe that if g € By (f,d), then f and
g have (1 + ¢)-qc equivalent fundamental annuli Ay and A, such that
the corresponding (1 +¢)-qc map h : (C, Af) — (C, A,) is equivariant
on 0Ay, i.e., h(fz) = g(hz) for z on the inner boundary of A; (see
[L5, Lemma 4.2]). By a standard pullback procedure, such an h can
be turned into a hybrid conjugacy between f and g, with the same
dilatation (1 +¢). O

It is proven in [L5] that the hybrid classes H,, c € M", are connected
codimension-one holomorphic submanifolds of @ in the sense defined
in Appendix 2. They form a foliation (or rather, a lamination) F called
horizontal. This foliation is transversally quasi-conformal everywhere,
and holomorphic on int C.

Let us state the last result more precisely. Take two hybrid equivalent
germs f; € C, and two holomorphic transversals S; to the leaf H =
H(f;) through f;. The holonomy v:CNS; — CNS, along F is called
locally quasi-conformal at fy if it admits a local qc extension 7 : Q; —
9, where €); C S; are neighborhoods of the f; in the transversals S;.

The local dilatation of v at f; is defined as

inf Dil(),
Y



REGULAR OR STOCHASTIC DYNAMICS 17

where the infimum is taken over all local qc extensions 7 of ~.

Theorem 2.4 ([L5], Theorem 4.19). Given two quadratic-like germs
and two transversals as above, the holonomy v : C NSy — CN .Sy is
locally quasi-conformal. If the transversals S; are represented by holo-
morphic one-parameter families { f; »} of quadratic-like maps such that
mod(fix) > p > 0, then the local dilatation of v at fi is bounded by

K(p).

2.1.4. Ezternal maps. Let £ denote the space of real analytic expanding
circle endomorphisms g : T — T of degree 2 considered up to conjugacy
by rotation and such that g(z) = g(—z). Any ¢g € £ admits a holo-
morphic extension to a double covering g : V' — V', where V and V'
are two symmetric annuli neighborhoods of the circle T with piecewise
smooth boundary such that V' € V' (here “symmetric” means being
invariant under the circle involution z — 1/Zz and the central involution
z +— —z). Note that such a map can be normalized so that g(1) = 1.
There is a natural projection

T:Q — €, (2.3)

which associates to f € Q its external map g = w(f) € € (see [DH2],
[L5, §3.2]). For readers’ convenience we will outline the construction of
the external map. Take a quadratic-like representative f : U — U’ and
consider the fundamental annulus A = U'\U. Let yp = mod(A). Using
the map f : I — O from the inner to outer boundary of A, attach to the
inner boundary of A an abstract annulus A; of modulus p/2. It comes
together with a double covering A; — A which extends f : I — O.
Using this covering, attach in a similar way an annulus A of modulus
p/4 to the inner boundary of A;, etc. Taking the infinite union of
these annuli together with C ~\. U’, we obtain a conformal punctured
disk S (with the puncture corresponding to co) and a double covering F'
between annuli neighborhoods of its ideal boundary. Let us uniformize
it, ¢ : S — C D, and consider a map ¢ o F'o ¢ '. It is a double
covering between outer annuli neighborhoods of T. Reflecting it about
the circle, we obtain the desired external map g : V' — V', where V
and V' are symmetric annuli neighborhoods of T, and V' 3 V.

Since the uniformization ¢y is uniquely defined up to post-composition
with rotation, the external map ¢ is well-defined up to conjugacy by
rotation. We normalize it so that ¢g(1) = 1. By [L5, §3.2], the external
map depends only on the germ of f.

Note further that the uniformization ¢, provides an (f, g)-equivariant
conformal isomorphism between the fundamental annuli U’ ~ U and
V' (VUD). Let n be the smallest natural number such that f(0) ¢
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FiGURE 3. Space of quadratic-like germs

cl(f"U). Using the equivariance equation ¢ o f = g o ¢y, the uni-
formization can be analytically extended to the domain

QO = C~ cl(f~U) (2.4)

containing the critical value f(0). (Note that Q; depends on the map
f rather than its germ.) Thus we can consider the image of the critical
point under this map:

§(f) = ¢¢(£(0)) (2.5)

(it is well-defined once g is normalized).
Lemma 2.5. The point £(f) depends only on the germ of f.

Proof. We need to verify that £(f) = f(f), provided f: U — U’ is an
adjustment of f: U — U'. It is easy to see that ¢f| (C ~\ cl(U)) is the

restriction of ¢ 7| (C \ cl(U)).
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_Let U" = f"U, U = fU. Take n as in (2.4). Note that U" C
Ut c U If ¢ € cl(U") then Q; = C\ cl(U,) C Qf and ¢5 if the

restriction of ¢y to Q7. Otherwise Q7 = C~\ cl(Uy11) D Oy, and ¢y is
the restriction of ¢ to 5. O

The “Green function” G =log|¢|: Q@ N~ C — R, provides us with a
dynamically natural way to measure the “distance” from an f € Q~C
to the connectedness locus.

The inverse map ¢y = gb;l will be called the uniformization of f at
00.

Restricted to any hybrid class H,., ¢ € M?, the projection ™ becomes
a homeomorphism onto £. The inverse map i, : & — H,. is provided
by the “mating” of a circle map g € £ with the quadratic polynomial
P, (see [DH2, L5]).

The homeomorphism 7 : Hy — £ allows us to transfer the complex
analytic structure from the hybrid class H, of z — 22 to the space &.
This complex structure makes the projection 7 : @ — £ and all the
parametrizations i, : & — H., ¢ € M°, holomorphic (see [L5, §4.3]).
The fibers of 7 turn out to be holomorphic curves in Q [L5, Theorem
4.23]. They are called vertical fibers. The vertical fiber through a point
f € Q will be denoted Z(f).

In what follows we will often use the hybrid class H, (in place of £) to
parametrize holomorphically all other hybrid classes. Let us introduce
the corresponding notations:

H=ijon:Q—=Hy, I, =i,om:Hy— H. ce M.
(2.6)

Note that for G € Hy, Z(G) = II }(G).

2.1.5. Dependence of the uniformization on f. The following statement
on the continuous dependence of the uniformization ¢y on f is a slight
variation of Lemma 4.15 of [L5].

Lemma 2.6. Consider a quadratic-like map f: U — U’ and let Wy =
¢r(2f). Let a sequence of quadratic-like maps f, € By converges to
fin By. Then the uniformizations vy, converge to ¢y uniformly on
compact subsets of Wy.

Let us consider a conformal representation Wy = s o z/)gl, where
G =1II(f). In the case of connected Julia set J(f), ¥ is the conformal
mapping C \ K(G) — C ~ K(f). In general, ¥; conformally maps
some domain A¢ onto 2y, where  is defined in (2.4).
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Lemma 2.7. Consider a quadratic-like map fo : U — U’ and let AcC
Ay,. Ife > 0 is sufficiently small, then for f € By(fy,€), the conformal

representation Uy is well-defined on A and depends holomorphically on

f.

Proof. If ¢ > 0 is sufficiently small, then by Lemma 2.6, ¥ is well-
defined on A and depends continuously on f.

To prove holomorphic dependence on f, let us consider a one-parameter
holomorphic family of quadratic-like maps f) € By(fo.€), A € A C C,
where fy = f),. Objects corresponding to f; will be labeled with 0.

Select a fundamental annulus A for f, with smooth boundary, and
let Wy denote the outer component of C \. Ag. For A near Ay, we can
select a fundamental annulus A, holomorphically moving with A (so
that its outer boundary is not moving at all) in such a way that the
corresponding holomorphic motion Ay : Ay — A, is equivariant and is
equal to the identity on Wy (see [DH2, Prop. 9] or [L5, Lemma 4.2]).
Let us consider the corresponding holomorphic family of conformal
structures py = (hy o 9p)*(0), where o is the standard structure on
Ay U Wy. Pulling them back by the external map gy, we obtain a
holomorphic family of conformal structures on C \ D. Extend these
structures to D as the standard ones. We obtain a holomorphic family
of complex structures on C which will still be denoted as ).

By the Measurable Riemann Mapping Theorem, there is a family of
gc maps wy holomorphically depending on A which solves the Beltrami
equations (wy).px = o. It maps C ~ D onto C \ K(G), where G =
II(f) € Ho. Then ¥y = hy oy owgl, and we conclude that it depends
holomorphically on A (see Remark on p. 345 of [L5]). O

2.2. Quadratic-like families.

2.2.1. Basic definitions. The reader is referred to [DH2, L4] for the
background in the theory of quadratic-like families. Let us consider a
domain A € C. A domain V C AxC is called a topological bidisk over A
if it is homeomorphic over A to a straight bidisk AxD. Let V) = 77 {\}
stand for the vertical fibers of a bidisk V, where m; : V' — A is the
natural projection. We will assume that they are quasi-disks containing
0. Denote by 9"V = U, 0V, the horizontal boundary of V.

By definition, a map f : V — V' between two bidisks V C V' over
A is called a quadratic-like family over A = Ag if £ is a holomorphic
endomorphism preserving the fibers such that every fiber restriction
s Va = VY 2z 22+ ¢(A\) + ..., is a normalized quadratic-like map
with a critical point at 0. Clearly any quadratic-like family f represents
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a holomorphic curve in Q. We will use the same notation, f, for this
curve.

Let us say that a quadratic-like family f : V. — V' over (A, x) is
equipped if the base map f, is equipped with a tubing H, (see (2.2))
and there is an equivariant holomorphic motion h,

hy: (C, (V)N V4) = (C, (V) N V3)), A€EA,

*

where equivariance means that hy(f.z) = fi(haz) for z € 9V..

For instance, the Bottcher coordinate naturally equips the restricted
quadratic family P, : Q.(y/r) — Q.(r) over the domain A, C C
bounded by the parameter equipotential of radius r.

In what follows, all quadratic-like families are assumed to be equipped.
In particular, H, and h will often be implicit in the notations.

Remark. Any quadratic-like family can be equipped (Kahn & Lyubich,
1998).

Let M ={AeA:0e€ K(fy)} ={Ne A: f, € C} stand for the
Mandelbrot set of f. The family f is called full if M} is compact.
Let ¢(A) = f1(0) denote the critical value of fy, and let ®(\) =

(A, 6(\)). Let
Al=Al={ e A: ¢(\) eVr}

Consider a natural map
n=npt ANA = VISV n(A) = hyH(6(N) (2.7)

from the parameter region A \ A! to the dynamical annulus V, \ V..
A family f is called proper if the map 7 is proper, i.e., n(\) — 9V, as
A — OA. Any proper family is full.

For a full family, one defines the winding number w(f) as the winding
number of the curve A — ¢(\) about the origin (which is the critical
point), as A goes once anti-clockwise around a Jordan curve v C A~ M
surrounding M. A full family is called unfolded if w(f) = 1. In this
case there is a single superattracting parameter value x (the root of ¢)
called the center of A. It is a natural base point in A.

The straightening (see §2.1.3) provides a continuous map

X = Xf: (A7 Mt(']) - (AraMO) (28)

(which depends on the choice of the equipment but is canonical on MY).
If f is full and unfolded, then y : MY — M" is a homeomorphism. If f
is proper than y is a homeomorphism on the whole domain A (Douady
& Hubbard [DH2]).
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There is a special situation of doubling renormalization when we
need to truncate the Mandelbrot set near its cusp. For e € (0,1/4], let

Mez{CEMO: lc —1/4] > €}, MEZX;I(MS), CSZX_I(MS).

We say that a family f is almost full if Mg € A. For such families
the winding number, and hence the notion of being unfolded, are well-
defined. We say that a family f is almost proper if the straightening xg¢
homeomophically maps A onto some neighborhood of M.

From now on we will fir the truncation parameter € (e.g., € = 1/4)
and will not mention dependence of different parameters on this choice.

2.2.2. Compactness and shapes of Mandelbrot sets. Let G stand for the
class of proper unfolded equipped quadratic-like families up to affine
change of variable in A\. We will normalize such a family so that the
superattracting parameter value * sits at the origin and diam M} = 1.
We will impose the following convergence structure on G: A sequence
of normalized families (f, : V,, — V! h,) over (A,,x) is declared to
converge to a family (f : V. — V' h) over (A, %) if:
(i) Parameter domains (A, *) Carathéodory converge to (A, x);
(ii) Holomorphic motions h,, converge to h uniformly over any domain
Q € A;ie., hyx(2) = ha(2) uniformly for (A, 2) € Q x C (where
C is endowed with the spherical metric);
(iii) The maps f,, converge to f uniformly on compact subsets of V.

Note that the convergence of quadratic-like families yields uniform
on compact sets convergence of the corresponding holomorphic curves
in Q.

Given an equipped quadratic-like family (f,h) over (A, x), let

mod(f) = inf mod(Vy N\ V3), Dil(h) = sup Dil(h,).
AEA A€A
For C,u > 0, let

Gop={(f,h) € G:diamV < C, f, € OM(p,C),
Dil(H,) < C, Dil(h) < C}, (2.9)
where H, is the tubing of the fundamental annulus of f,.

Similarly, let G¢ stand for the class of almost proper quadratic-like
families. Let G¢, , C G° be its subclass consisting of families (f,h),
satisfying (2.9) and such that mod(A \ Mg) > p.

We will say that a quadratic-like family (taken from some collec-
tion under consideration) has a “bounded geometry” if it belongs to
a certain class G, or G, (depending on whether we consider full or
truncated families) with C' and g being uniform over the collection.
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A statement that certain bound “depends only on the geometry” of a
quadratic-like family means that this bound is uniform over any class

Ge,p (resp. QEC’H).

Theorem 2.4 provides a control of the shape of the Mandelbrot sets
in quadratic-like famillies:

Lemma 2.8 ([L4], Lemma 3.2). Let us consider a quadratic-like fam-
ily (£,h) over (A, %) of class Go . Then the straightening xs = (A, M§) —
(A, M%) is a K(C,p)-qc map onto an appropriate neighborhood A of
the Mandelbrot set M°. For a family of class G the similar state-
ment holds for the straightening xg : (A, M§) — (A, M°).

We will briefly say that the Mandelbrot sets M (respectively, M§)
have a K (C, u)-standard shape. If we do not want to specify dilatation
K, we say that the sets have quasi-standard shape.

Lemma 2.9. For any C,pu > 0, the spaces Gc,, and G¢,, are compact.

Proof. Let us consider a sequence of normalized quadratic-like families

(f.,hy) € Go over (Ay, ). The maps of these families will be naturally

denoted as f,x : Vo — Vn’,)\ and h, . We will consecutively select

several subsequences of this sequence without using double indices.
By Lemma 2.1, we can select a convergent subsequence

fow = (fe : Vi = V]) € QM(p, C).

Since mod(A, ~ Mg ) > p and diam My = 1, the family of pointed
domains (A, *) = (Ag,,*) is Carathéodory precompact (see [McMI,
Thm 5.2]). Select a converging subsequence: (A,,*) — (A, x).

Let Q € A. It is easy to see that the family of holomorphic functions
A+ h,2(2), 2 € C, is normal, and hence equicontinuous over Q2. On
the other hand, since Dil(h,) < C, the family of maps h,x, A € A, is
equicontinuous on C. Putting these two remarks together, we conclude
that the family of maps (X, 2) — hy, x(2) is equicontinuous on Q x C.
Hence, an appropriate subsequence of these maps converges, uniformly
on compact subsets of A x C, to a continuous map h : (), 2) — hy(2).

Since uniform limits of holomorphic functions are holomorphic, the
functions A — hy(z), z € C, are holomorphic. Further, the graphs
of these functions do not intersect, for otherwise the graphs of the
corresponding approximating functions A\ — h,,(2) would intersect
at nearby points for all sufficiently big n. Hence h is a holomorphic
motion. Moreover, Dil(h) < C| since uniform limits of C-qc maps are
C-qc.

The limit holomorphic motion h provides us with topological bidisks
V' O V such that (V{,Vy) = hy(V/,Vi). Clearly the bidisks (V/ ,V,)
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converge to (V| V) in the Hausdorff topology on compact subsets of
A x C. Hence, the maps f, are eventually defined on any compact
subset of A x C. Since this sequence of maps is uniformly bounded, it
admits a further subsequence converging, uniformly on compact subsets
of V, to some holomorphic map f : V — V'. It represents a quadratic-
like family {f\} over A.

Let us show that the family (f,h) is proper. Consider a compact
subset Q C V/. Then there exists an annulus A € V! \ @) separating
Q from OV!. Let n, = ng, (see (2.7)). Then the annuli 7,'A sep-
arate n, 'Q) from dA,. Since the holomorphic motions h, are C-qc,
modn,'A > v = C 'mod A. Tt follows that n '@ is also separated
from OA by an annulus of modulus v. Hence n~'Q is compact.

The family (f,h) is unfolded by continuity of the winding number.

As the bounds of (2.9) are clearly carried to the limit, (f,h) is an
equipped quadratic-like family of class G¢ .

The argument for the space G, , is similar. If we are given a sequence
of quadratic-like families (f,,h,) in the space Gf, ,, then in the same
way we construct a limit quadratic-like family (f, h) over A. By contin-
uous dependence of the straightening on the (equipped) quadratic-like
map, xs, (A) — xe(A) for any A € A. Since the straightenings g,
are uniformly qc (Lemma 2.8), this convergence is uniform. Hence
mod(A ~\ M) > p and thus the family f is almost proper. All other
required properties of f are obvious. O

2.2.3. Vertical tubes. Recall from §2.1.4 that Z(G) = II7'(G) is the
vertical fiber though G € H,. For aset P C Q, let Zp(G) = PN Z(G)
stand for the vertical fibers in P.

Let us say that P is a vertical tube over a Banach neighborhood V C
Ho,v if its vertical fibers are topological disks and it has a topological
product structure over V (i.e., there exists a topological disk W C C
such that P and V x W are homeomorphic over V). Let us say that a
vertical tube P is equipped if

e There is a base map G, € V equipped with a tubing H, (2.2);
e There is an equivariant holomorphic motion of the fundamental an-

nulus Ay,
hf : ((CaA*) - (CaAf)a f € P;
e The vertical fibers Zp(G) equipped with the above motion are proper
unfolded quadratic-like families.
By §2.1.3, for any equipped tube P, there is a well defined straight-
ening

xp:P —C (2.10)
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Lemma 2.10. Any G, € Hy belongs to an equipped vertical tube P
over a Banach neighborhood V C Hy. The straightening xp s a trivial
fibration over some domain A D M° whose fibers are holomorphic
leaves Lp(f), [ € P, parametrized by V. If B = By(f,0) is a Banach
ball in P with sufficiently small VO K(f) and 6 > 0, then B it foliated
by codimension-one holomorphic submanifolds, the slices of the leaves

Lp(g)-

Proof. By [L5, Theorem 4.23], external fibers Z(G) are holomorphic
curves in Q. In order to equip them, we will make use of the conformal
representations ¥y : Ag — Qy, f € Z(G) (see §2.1.5).

Consider a quadratic-like representative G, : W, — W/ with the
filled Julia set K, = K(G.). By [L5, Lemma 4.2], there is a Banach
neighborhood V = Hy N By, (G, e) that can be equipped with an

equivariant holomorphic motion
hg: C~\W,—=C~Wqg, GEeYV,

(ie., G: Wg — G(Wg) = W, is a quadratic-like map and hg conju-
gates G, : OW, — OW/ to G : OWg — 0OW/,). This motion admits a
natural dynamical extension to an equivariant holomorphic motion

hg : (C,W., W,) — (C,W,, Wg)

which is conformal on K,.

By [L5, Theorem 3.4], for any G € V and a € cl(W]) \ K,, there
exists a unique germ f = m(G, a) € Z(G) such that hg(a) = \Iffl(f(O))
(“mating” of G and a). Define P as the union of Cp = I 'V NC (the
connectedness locus of the tube) and the set of all matings of G € V
with a € W).

For G =II(f), the conformal representation ¥ is well defined on C~\
We. By Lemma 2.7, U;(Ag), G = II(f), is a holomorphically moving
fundamental annulus of f € P. Moreover, Zp(G)\C ~ W/\NK(G,)is a
topological annulus, and hence Z5(@G) is a topological disk representing
a full unfolded quadratic-like family. If (f : Uy — U}) € 0Zp(G) then
by definition, a € 0W, and hence f(0) € OU}. Thus, this family is
proper.

The mating m gives a homeomorphism P\C — Vx (W/\ K,) fibered
over V. Moreover, any map f = m(G,a) € P \ C is equipped with a
tubing Hy = H, o hgl o \I/JTI, where H, is a tubing of the fundamental
annulus of the base map G.,. For this tubing, H¢(f(0)) = H.(a), which
implies that the sets £, = {m(a,G) : G € V} coincide with the fibers
of the straightening yp.

On the other hand, we have the mating m : ¥V x M — Cp in-
verse to the map f +— (II(f), x(f)) on the connectedness locus (see
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§2.1.4). Putting these ingredients together, we see that the map f +—
(II(f), xp(f)) is a homeomorphism P — V x A fibered over V, where
A = xp(Zp(Gy)). Thus, P is a tube and xp is a trivial fibration.

The property that its fibers (and their Banach slices) are holomorphic
manifolds is a slight variation of Theorem 4.18 and Lemma 4.17 of
[L5]. O

Denote the above foliation by Fp. It will be naturally called the
horizontal foliation in P.

For f € C, let E'} stand for the tangent space to the hybrid class #(f)
at f (the horizontal space), and let E} stand for the complementary
vertical line tangent to the vertical fiber Z(f). For a tangent vector u €
TrQ, let u" and u¥ denote its “horizontal” and “vertical” projections
onto the spaces E}L and E7 respectively.

Consider a vertical tube P. For f € C NP, we have the horizontal-
vertical decomposition

T;P = E}p & EY,

where E}’,p = E}’ N TP. These two distributions admit an extension
to the whole tube P as the tangent distributions to the foliation Fp
and to the vertical foliation respectively. To simplify notations, we will
often make the label “P” implicit in the notation for the horizontal
spaces in P.

2.2.4. Transverse overflowing. Let r > 0. We say that a quadratic-like
family f over A transversally r-overflows the connectedness locus C (or
the truncated connectedness locus C°) if there exists a finite collection
of vertical tubes P; and a domain Q@ € A containing My (resp. Mf)
such that

(i) fr € UP; for A € Q;
(ii) If f\ € Pi, A € 09, then dist(xp,(fr), M) >

(resp. dist(xp,(fx), M) = r);
(iii) The curve A — fi, A € Q, is transverse to the leaves of P;.

Lemma 2.11. Given C > 0 and p > 0, there is an r > 0 such that any
quadratic-like family £ € Ge, (resp. f € gg,u) transversally r-overflows
C (resp. C°).

Proof. The arguments in the full and truncated cases are the same, and
we will restrict ourselves to the former case.

There exists a p > 0 such that any curve f € G, belongs to the
compact set Q(su, p). Since II(Q(u, p)) C H,p is also compact, it can be
covered with finitely many Banach neighborhoods U; € H, satisfying
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the property of Lemma 2.10, i.e., such that there exist equipped vertical
tubes P; based on the ;. Then f € UP; for any f € G¢ ..
Let

A) = in dist(y»p, M A €A
T( ) zrfrilel%’@ 1S (sz(f/\)a )7 S

Compactness of the class G¢,, (Lemma 2.9) implies that r(\) >
r(C, p) for all A € A sufficiently close to dA. Hence for r < r(C, p),
the domains Q, = {\ € A: r()\) < r} satisfy property (ii)

Let us show that (iii) is also satisfied for r sufficiently close to 1.
Otherwise, by compactness of G¢,, some curve f € G¢, would be
tangent to some leaf £ C C of Fp. Let us apply to it (or rather, to its
Banach slice L) the results of Appendix 1. By the Hurwitz Theorem,
f would have the same number of intersection points (counted with
multiplicity) with the slices of all nearby leaves of Fp. But by the
Intersection Lemma, the intersection points with the slices of nearby
leaves in int C are simple, so that there would be more than one such
a point. On the other hand, any unfolded family f has a single point
of intersection with any hybrid class — contradiction. O

2.2.5. Uniform transversality and Montel metric on transverse curves.
We will now reformulate the above result in terms of Banach slices.
Let us cover Q(u, p) with finitely many Banach balls B; each of which
is contained in some tube Pj and foliated by the slices of the leaves
Lp, (see Lemma 2.10). Denote the corresponding foliations by F; (if
the ball is contained in several tubes, make an arbitrary choice). Let
L;(f) denote the leaf of this foliation through f.

For f € Bj, the tangent space T¢B; splits into the direct sum of the
horizontal and vertical subspaces, E}; = T;L;(f) and E}. A Banach
bidisk T centered at f is the product of a horizontal and a vertical
Banach balls, 7" C E}; and T* C E}.

Consider a collec’mon W of holomorphlc curves ' in O and a subset Y
of their union. We say that the curves I' € W are uniformly transverse
to F overY (or, that the collection W is normal over Y') if there exists
a k € (0,1/2), a finite collection of vertical tubes Py covering Y, and
a finite collection of Banach bidisks T; C UPy centered at some points
fi € Y, each of which contains a family W; of graphs of holomorphic
functions T — T, satisfying the following properties:

e Bidisks 7] obtained from 7; by two-fold shrinking in the vertical

(3
direction, cover Y.

o If f € T] C B; then the slice of the leaf £;(f) by 7; is a graph over
T! with horizontal slope bounded by some r/2.

e The curves v € W; have vertical slopes bounded by 1/k.
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e Any curve 7 € W, is a slice of some curve I' € W by T;.

e For any curve [' € W, the intersection ['NY is covered by the union
of some curves 7; € W, where W, stands for the family of slices of
curves v; € W; by T}.

If we do not specify Y, then we let

Y = UFEWF NC or Y = UI‘EWF NncCe

in the above definition, depending on whether we consider full or trun-
cated families.
Lemmas 2.11 and 2.9 imply:

Corollary 2.12. Giwen C > 0 and p > 0, the holomorphic curves
feGe, (resp. fe ggyu) are uniformly transverse to the foliation F.

Hence for any f € G¢,,, the projections of fN7T; onto the vertical disks
T? are uniformly Lipschitz. On the other hand, by [L5, Lemma 4.10],
the norms on the vertical disks induced from different Banach slices are
comparable (with constants depending on the slices but independent of
the particular choice of the disk). Hence the metrics on different slices
of f by bidisks 7; are comparable as well. Gluing these metrics together
by means of some partition of unity we obtain a “Montel metric” on
f (in a neighborhood of M) whose Lipschitz class is independent of
the particular choices made. In this sense we have the Lipschitz struc-
ture on curves f € G, near the connectedness locus. Moreover, the
Koebe Distortion Theorem implies that the hyperbolic metric on f in-
duced from the disk A¢ has a bounded distortion (independent of the
particular curve f € G¢,,) with respect to the Montel metric.

Similarly, the curves of class G¢ , possess a Montel metric near the
truncated connectedness locus.

2.2.6. Perturbations of the quadratic family. Let us show that if mod(f)
is big then the family f is close to the quadratic family QP:

Lemma 2.13. For any positive €, L, and r, there is a . and a Banach
space By containing disk QP, = {P.: ¢ € D, } in the quadratic family
QP =~ C with the following property. If (f,h) is a proper unfolded
quadratic-like family over A with mod(f) > p and Dil(h) < L, then
there is topological disk A C A such that the family {f\}rea belongs
to By and is represented in that space as a graph of a holomorphic
function ¢ : QP, — E with ||¢|| < e (where E is a complement of QP

Proof. In what follows, u is assumed to be greater than 1. Let v €
(0, 11/2). By restricting dynamical and parameter domains, the family
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(f : V — V' h) can be adjusted to a family (f : V. — V', h) over A
which belongs to class G¢, with some C' = C(v, L) such that

mod(V/ \ V) € [v/2,v], Dil(h) = Dil(h) < L.
If v is fixed and p is sufficiently big (depending on v), then there is
a symmetric (with respect to 0) topological disk W C C such f € By,
and K(f\) C W, A€ A.
Select a complement E to QP in By, and let p : By — QP be the
projection of By onto QP parallel to E. By Lemma 2.1,

||Pc()\)_f/\||V:5<€(/u7V)7 (211)

where P,y = p(fy) and e(p,v) — 0 as p — 00, v being fixed.
Consider a curve I' = {FP,)(0)},cox in C. Let us show that if
v > v(r) and p > p(v) then I' encloses the disk D,. Indeed, since
f is proper, f,(0) € AV} for A € OA. Hence the critical value fy(0)
is separated from the Julia set J(f)) by a fundamental annulus of
modulus at least v/(2L), A € OA. By (2.11), the critical value ¢()\)
is separated from the Julia set J(P,y)) by a fundamental annulus of
modulus at least v/(2L) — d(g) where 0(¢) — 0 as ¢ — 0. It follows
that for A € A we have: |¢()\)| > 7, provided v > v(r) and p > p(v).
Since f is unfolded, it has the winding number 1 about the origin.
Hence the winding number of I about the disk D, is equal to 1. Hence,
the projection of f onto QP univalently covers disk QP,. Together
with (2.11) this yields the assertion (with A C A being the pullback of
QP, under the projection). 0O

2.3. Puzzle, parapuzzle and renormalization.

2.3.1. Complex renormalization. The notion of compler renormaliza-
tion was introduced by Douady and Hubbard [DH2, D1] in order to
explain computer observable little Mandelbrot copies inside the Man-
delbrot set (see [L3, M, McM1] for an extensive discussion of this no-
tion).

Let f be a quadratic-like map. Assume that we can find topological
disks U" € U around 0 and an integer p such that ¢ = f? : U — U’
is a quadratic -like map with connected Julia set. Assume also that
the “little Julia sets” f*J(g), k = 0,...,p — 1, are pairwise disjoint
except, perhaps, touching at their non-dividing [-fixed points. Then
the map f is called renormalizable (with period p) and the map g is
called its pre-renormalization. The quadratic-like germ of g considered
up to rescaling is called a renormalization Rf of f.

Take a quadratic-like representative f : V' — V. If the pre-renormalization
g : U — U’ above is selected in such a way that f*U € V, k =
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0,1...,p — 1, then we say that ¢ is subordinate to V. The germ
of subordinate pre-renormalizations considered up to rescaling will be
called a subordinate renormalization R fy of f. Moreover, mod(Rfy) =
sup mod g, where ¢ runs over all subordinate pre-renormalizations of
f:V=v.

The map f can be renormalizable with different periods, finitely or
infinitely many. Accordingly it is called at most finitely or infinitely
renormalizable.

Lemma 2.14. No quadratic polynomial P, can be realized as the renor-
malization Rf of a quadratic-like map.

Proof. Indeed, the renormalization Rf admits the analytic continua-
tion to the domain of f? as a branched covering of degree 2P > 2. It
is certainly not compatible with the quadratic extension to the whole
complex plane. O

We will now describe a canonical way to produce the first renormal-
ization Rf of f, with the smallest period.

2.3.2. Principal nest of the Yoccoz puzzle. The reader can consult [L3],
§3, for a detailed discussion of the combinatorics of the Yoccoz puzzle.
That discussion is based on the notion of principal nest of puzzle pieces
VO > VI 5 ... The first puzzle piece V° is the domain bounded by
two external rays landing at the dividing fixed point «, two rays landing
at the symmetric point o/, and two arcs of some equipotential. Then
V™ *Llis inductively defined as the pull-back of V" corresponding to the
first return of the critical point back to V". The corresponding return
map g, : V"® — V" !is a branched double covering. The return to
level n — 1 is called central if g,(0) € V™. Let ny count the non-central
levels. If this sequence is infinite then the map f is non-renormalizable.
Otherwise the principal nest ends up with an infinite central cascade
Vvl > vm o ..., and the map g, : V™ — V™! (after perhaps little
thickening of the domain and the range, in the doubling case) is a
quadratic-like map with connected Julia set. The germ of this map
(up to rescaling) is called the first renormalization Rf of f.

The number of the non-central levels in the principal nest is called
the height of f.

The map g, : V™ — V"~ is a restriction of the full first return map
gn : UV" — V™1 (denoted by the same letter). Here V* C V"~!
are puzzle pieces with disjoint interiors, Vj* = V", and the restrictions
gn 2 V" — V"1 are univalent for ¢ # 0. If f is renormalizable, then
only finitely many puzzle pieces V;" meet the w-limit set w(0) of the

(3
critical point. Restriction of g, to the union of these puzzle pieces is
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called the generalized renormalization of f on V™. It will be denoted
by ¢, as well.

2.3.3. Parapuzzle and Mandelbrot copies. Let us consider the quadratic
family P, : z — 22 + c. For any parameter value ¢y € M° outside the
main cardioid, there is a nest of parapuzzle pieces

Al(CO) D) A2(Co) DR N

corresponding to the dynamical principal nest. For parameter values
¢ € A™(¢p), the combinatorics of the first return maps to the puzzle
piece V" stay the same (see [L4] for the precise definition which,
however, does not matter for the following discussion).

If P. is non-renormalizable then the parapuzzle pieces A™(c) shrink
to ¢ (Yoccoz, see [H] or [L4]). Otherwise the return maps

Gue=PP: V" 5 V"l ceA™

on some level (called a “renormalization level”) form a quadratic-like
family g naturally equipped with a holomorphic motion j.

In the primitive case (when the little Mandelbrot set x(Mg) is not
attached to the main cardioid), g is a proper unfolded family. In the
satellite case, g is unfolded and almost proper, which means that the
straightening y homeomorphically maps Mg onto “unrooted” Mandel-
brot set M% ~\ {1/4} (see [D1]).

We allow to restrict the parameter domain of the family (g, j) keeping
these properties. The quadratic-like family (g, j) up to such restrictions
will be called the renormalization of (f, h). By saying that the renor-
malization belongs to some class Gy, or ggy,, we mean that there is
restricted family (g, j) in this class.

The little copies M = x(Mg) produced by the renormalized families
are mazximal in the sense that they are not contained in any other
copy except for the whole set MY. Each maximal copy encodes the
combinatorial data of the renormalization: all maps P. with ¢ € M
are “renormalizable with the same combinatorics”. The period of this
renormalization is certainly constant throughout the copy, p = p(M).

A Mandelbrot copy M is called real if it is centered on the real line.
The real slice J = M NR C (—2,1/4) of a real Mandelbrot copy is an
interval called the renormalization window. Denote by M the family of
maximal real Mandelbrot copies. The set of maximal renormalization
windows (formally coinciding with M) will be denoted by J.

For any M € M, there is a canonical stretching o : M — MY defined
as the composition of the renormalization and the straightening, o =
x o R ([DH2, M]). (Note that though R is not defined at the root of
the doubling Mandelbrot copy, the stretching ¢ admits a continuous
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extension to it.) If a map f € Q is renormalizable a few times, then
its combinatorics is encoded by a sequence (finite or infinite) 7(f) =
{My, My, ...} such that o"f € M,, n = 0,1.... One says that an
infinitely renormalizable map f has a bounded type if the periods p(M,,)
are bounded.

2.3.4. Renormalization strips. For the doubling Mandelbrot set M €
M, let M = M ~ {—3/4} be the corresponding unrooted set; for
all others M € M, let M = M. Let Ty C Q stand for the set
of quadratic-like germs which are hybrid equivalent to the quadratic
maps P. with ¢ € M (that is, 7y is the union of the hybrid classes
passing through M ). We call it a renormalization strip. We say that
the maps f € Ty, are renormalizable with real combinatorics encoded
by the little Mandelbrot set M. Thus the renormalization operator R
is canonically defined on the union of all renormalization strips. We
let Ry = R| T

Recall that Qg denotes the space of real quadratic-like germs. The
real slice of the renormalization strip 73, will be denoted as 7, where
J = M N R is the corresponding renormalization window.

2.3.5. Injectivity.

Lemma 2.15 (de Melo & van Strien [MS]). The renormalization op-
erator

R:UjesTr — Qr
18 tnjective.
2.3.6. Contracting property. Moreover, the renormalization is non-expanding
with respect the Teichmiiller-Sullivan metric on the hybrid classes:

distr(Rf, Rg) < distr(f, g). (2.12)

This immediately follows from the fact that a hybrid conjugacy h be-
tween f and g provides a hybrid conjugacy between the renormaliza-
tions Rf and Rg. This observation was a starting point for Sullivan’s
renormalization theory [S1].

2.3.7. Analytic extension. Any Rj; admits a complex analytic exten-
sion to Banach neighborhoods of maps f € 7T,,. Namely, if Ry, fy =
fP . U — U’ is a subordinated quadratic-like pre-renormalization of
f € Cy, then any nearby map g € Qy admits a quadratic-like return
map ¢* : U, — U’ with the same range. Since ¢g” analytically depends
on g, this provides us with the desired extension (see [L5, §5.3] for a
more detailed discussion).
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Let us say that a map f is non-escaping under the renormalization
of type 7 = { My, My, ...} if all the maps

fo=Ru, 0 0 Ry f (2.13)

are well-defined (where the Ry, stand for the analytic extensions of
the renormalizations) and mod(f,) > >0,n=0,1,....

Lemma 2.16 ([L5], Lemma 5.7). If a quadratic-like map f is non-
escaping under the renormalization of type T = {My, My,...} then
it 1s infinitely renormalizable with type T.

Any equipped quadratic-like family (f = {fy\}xea, h) € G can be
tiled into the parapuzzle pieces, the pullbacks of the parapuzzle pieces
in QP under the straightening x¢ (see [L4]). They depend on the
equipment but canonical on the Mandelbrot set. Let us take a renor-
malizable map fy = f\, € f of type M. Then as in the quadratic
case, the renormalization gg = R, fp is included into a full or almost
full unfolded quadratic-like family g = Ry f = {g» : Vi — V]} over
an appropriate parapuzzle piece A > )\;. This provides us with the
analytic continuation of Ry, to A. Moreover, this quadratic-like family
is equipped with a holomorphic motion j, so that we can write that

In particular, by Lemma 2.10 this discussion is applied to the ver-
tical fibers. Moreover, if we consider an equipped tube P, then the
parapuzzle pieces A} in the vertical fibers Zp(G) will holomorphically
move with G' € V. This motion is obtained by the holonomy along the
foliation Fp. Indeed, the parapuzzle pieces are specified by the external
coordinates of the critical value, which determine the leaves of the fo-
liation Fp (see the discussion in §2.2.3). Thus, we obtain an equipped
tube UgeyAg of the parapuzzle pieces to which the renormalization
Ry, analytically extends along the vertical fibers.

2.3.8. The iterate RY. In what follows, it will be sometimes handy to
work with an iterate RY of the renormalization operator instead of R
itself. Let us give a brief description of the structure of this operator
which is quite similar to the structure of R. Let us say that a little
Mandelbrot copy M has rank N if it is included in the nest of distinct
Mandelbrot copies of length N + 1,

MEM()CMlC"'CMNEMO,

and cannot be included in a longer nest like this. (In particular, max-
imal Mandelbrot copies have rank 1.) Let MY stand for the family of
real Mandelbrot copies of rank N.
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If M is obtained by the doubling bifurcation from some hyperbolic
component, then let M stand for the unrooted M. Otherwise let
M = M. Then UMeMNM is exactly the set of [V times renormalizable
quadratics.

The renormalization strip 7, is the union of the hybrid classes
through ¢ € M. The domain of the renormalization operator RV is
the union of the renormalization strips Ty, M € MY, For f € Ty,
M € MY, the renormalization RY f is equal to a restricted iterate
fP considered up to rescaling. Here p = py(f) = pn(M) = p(M) is
naturally called the period of M (or the renormalization period of f
under RY).

2.4. Essentially bounded combinatorics.

2.4.1. Central cascades. There is a special type of combinatorics re-
lated to the parabolic bifurcation which usually requires a special treat-
ment. In this section we will describe this phenomenon.

Let f be a renormalizable map of period p with real combinatorics
M € M. Let us consider a central cascade

ym oyt oL el (2.14)
meaning that the levels m—1 and m+ N —1 are non-central, while all the
levels m,m+1,...,m+ N —2, are central: g,,,,0 € VN1 ym+N,

Then the quadratic-like map ¢,,41 : V™ — V™ is combinatorially
close to either the Ulam-Neumann map z ~— 22 — 2, or to the para-
bolic map z + z? — 1/4 (depending on whether g,,1(V™) 3 0 or
otherwise, see [L3], §§8, 12). In the former case the cascade is called
Ulam-Neumann, while in the latter it is called saddle-node.

Remark. If N = 1 then the “cascade” (2.14) does not have central levels
at all. Still, we will consider it as a (degenerate) cascade of length 1.

2.4.2. FEssentially bounded combinatorics. Recall that
Gl Vm-l-l Vm-l—l—l

is a generalized renormalization of f on V™H=! ie., the first return
map to V™ =1 restricted to (finitely many) puzzle pieces V;m“ meet-
ing the postcritical set w(0). To make the notations simpler, let us
temporarily suppress m from all labels so that V™ = V! ¢, ., = g,
and g1 =¢g. Let A=V Vi 1=1,..., N.

Let us say that the combinatorics of the cascade is essentially bounded
by p if
e The g-orbit of any point € w(0) N VY passes through the top
annulus A' at most p times before it returns back to V;
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o If v € w(0)N A then gz & A’ withp <1 < N —p.

The levels [ = p,p+1,..., N — p are “neglectable” for the cascade
like that: there is a simple transit machinery acting on these levels. All
other levels are “essential”.

Note that the length N is not incorporated in the essential bound
on the combinatorics of the cascade. This will allow us to consider
geometric limits of the cascades as N — oo.

2.4.3. Markov machinery. Let us describe the Markov machinery as-
sociated with a saddle-node cascade (2.14) whose combinatorics is es-
sentially bounded by p (compare [L3, §3.6]). First, let U! = V;! C AL
Then define puzzle pieces U}, [ = 2,..., N + 1, inductively in [ as com-
ponents of (g|V!)~'(UI™") which meet w(0). Note that U} c A for
[=1,...,N, while UiNJr1 C VY. Among the latter puzzle pieces there
is one, U, which contains the critical point 0. It is called critical.
(Off-critical puzzle pieces U! are labeled by 7 > 0 in an arbitrary way.)

Let d(l) = min(l, N — [) stand for the “depth” of level I € [1, N] in
the cascade. Consider the transit map

h=g"r: [ Ju' = Ut (2.15)
i J

and the Markov map
¢: |J Jul=-Vv° (2.16)
d(l)

(H<p @

defined as follows: ¢|U! = gifl # N—p and ¢|U," ™" = h. It univalently
maps every puzzle piece U} onto V°, and every off-critical puzzle piece
Ul, 1> 1, onto some puzzle piece Uf((il)) with k(I) < I. The critical piece
U is mapped onto its image Uf\(fo) as a double covering branched at
0.

Let us define the renormalization of a saddle-node cascade (2.14) as
the generalized renormalization of ¢ on the critical puzzle piece P =
UéV“, i.e., the first return map UV — P restricted to the puzzle pieces
V! meeting w(0).

2.4.4. Modified nest. Let us modify the principal nest as follows. Once
we see a saddle-node cascade (2.14) of length > 100, we renormalize
it as just described. Then we continue the nest in the usual way (as
the nest of consecutive first return maps) starting with this renormal-
ization. If in this process we observe another saddle-node cascade of
length > 100, we again modify the nest by renormalizing the cascade,
and so on.
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FIGURE 4. A map of class £

The modified nest is naturally decomposed into y central cascades
(some of which may be degenerate), where x = x(f) is called the
“height” of f.

Let us say that the combinatorics of f is essentially bounded by p if

® X < p;

e the length of all Ulam-Neumann cascades is bounded by p;

e all cascades have essentially p-bounded combinatorics.

The best essential bound on the combinatorics will be called the essen-
tial period pe(f) of f.

Let Q, stand for the space of quadratic-like maps with real combi-
natorics essentially bounded by p.

2.4.5. Class L. Let us consider the space L; of Markov maps
¢ : Up<i<sU; — P (up to rescaling) defined on the disjoint union of s+1
topological disks U; compactly contained in a topological disk P > 0.
The disk Uy is assumed to be symmetric with respect to 0 and is called
critical. The map ¢|Up is a double covering onto a disk Uj(g) branched
at 0. Moreover, we assume that this map is even: ¢(z) = ¢(—z2) for
z € Uy. Each off-critical disk U; is univalently mapped onto either P
or another disk Uj;).

Moreover, we assume that this Markov map does not have cycles,
i.e., there are no ¢+ and m such that ¢"U; = U;. It follows that any
U;, i # 0, is eventually mapped onto P under some iterate ¢4(). The
corresponding map

G:UU; —» P, G|U; = ¢1® (2.17)

will be called the Bernoulli map associated with ¢.
Let £ = UL,.
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Let us mark the point z; = (¢|U;)~%?(0) in every off-critical disk U;.
In the critical disk Uy mark the origin o = 0. Impose a Carathéodory
topology on the spaces L;. In this topology, a sequence of maps ¢, :
UU* — P" converges to a map ¢ : UU; — P if (U, z}) — (U;,x;),
(P™,0) — (P,0) in the sense of Carathéodory, and ¢,, — ¢ uniformly
on compact subsets of UU; (where z!" stand for the marked points in
ur).

Let us say that a map ¢ of class £ has a K-bounded geometry if all the
distances dist(0U;, ;) and dist(U;, U;), @ # j, are at least K~ diam P.
Let L£4(K) denote the space of maps of class £, with K-bounded ge-
ometry.

Lemma 2.17. The space L,(K) is compact.

Proof. Consider a sequence of maps ¢, : UU" — P" in L (K) nor-
malized so that diam P™ = 1. Since the space of pointed disks (W, x)
with

C ! < dist(0W, z) < diam W < C
is Carathéodory compact, we can select convergent subsequences

(P",0) = (P,0), (U",a") — (U, ).

[ %

The limit configuration {(P,0), (U;,z;)} has obviously a K-bounded
geometry as well. By normality argument, we can select a further
subsequence of the maps ¢, uniformly convergent on compact subsets
of UU; to some Markov map ¢. O

2.4.6. Markov nests. Let us define a Markov nest ® of height x as a
sequence of maps ¢, : UU]" — P", n=0,1,...,, of class £ such that
(i) ¢o : U® — P% and ¢, : UX — PX are quadratic-like maps with
connected Julia set;

(ii) P! = VY is the first puzzle piece of the principal nest of ¢p;

(iii) U = P+,

(iv) If ¢pyr (U™ = P then ¢, |U™ is the first return map of
the U*! to P"! under iterates of ¢,.

(A single quadratic-like map ¢ : U — P is considered to be a nest of
height 0.)

A nest is called real if all the domains P", U* and the corresponding
maps ¢, are symmetric with respect to the real line. A nest is called
Jordan if all its domains are Jordan domains.

Let us consider a domain U of the nest such that ¢, (U") = P",
n > 1. Then according to property (iv) , ¢,|U" = ¢L_,|UM!, where
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p = p(n,i) is the first return time of U] to P™ under the iterates of
¢n—1- Let

Ul =on(U8), j=0,...,p(n,4) — 1,
stand for the orbit of U under iterates of ¢,,_; until its first return to
P U = U
Two Jordan Markov nests ® = {¢,} and ® = {¢,} have the same
combinatorics if there is a homeomorphism

H:(C, upP", UU;) — (C, uP", UU;)
which is equivariant on the boundary of the pieces, i.e.,

H (¢, 12) = énq(HZ) for ze€ U 8UZ~’?]-

5]

If the Markov nests in question are not Jordan, to define “the same
combinatorics” one should shrink the domains a little to make them
Jordan.

We say that the combinatorics of the nest is bounded by p if all the
numbers:

e the height;
e the number of the domains U;" on every level;
e the return times of the domains U™ to P"*! under iterates of ¢,

are bounded by p. Let A, stand for the space of Markov nests with
combinatorics bounded by p.

Let us say that the geometry of the Markov nest is K-bounded if
all the maps ¢,, have K-bounded geometry. Let N,(K) stand for the
space of Markov nests (up to rescaling) with p-bounded combinatorics
and K-bounded geometry. Endow it with the Carathéodory topology:
convergence of a sequence of nests means the Carthéodory convergence
of the corresponding maps on every level. Lemma 2.17 immediately
yields:

Lemma 2.18. The space N,(K) is compact.

2.4.7. Compactification. To any map f € Q, we have associated in
§2.4.4 a modified principal nest. The Markov maps associated to the
cascades of this nest (§2.4.3) form a Markov nest. This provides us
with an embedding i : @, — N,. (The map i is obviously continuous,
and it is injective by Lemma 2.15 since the last map ¢, in this nest is
the renormalization Rf).

Recall that Q,(n) = {f € Q, : mod(f) > p}. The following state-
ment is a variation of [L.3, Lemma 8.8].
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Lemma 2.19. The Markov nest ® = i(f) corresponding to f € Q,(u)
has a K-bounded geometry, with K = K(p, j).

Proof. The map f is combinatorially equivalent to a real map g. By
Main Lemma of [L3, §11], the Markov cascades i(f) and i(g) are qc
equivalent, with dilatation depending only on x. Hence without loss of
generality we can assume that f is real.

Let ® = {¢,}, where ¢, : ;U — P™. Let G,, : UU» — P™ be the
associated Bernoulli map (2.17). Then by [L3, Theorem II] and [L3,
Lemma 8.8] (for the last property) we have:

e Every U/ has a collar R} C P" \ U;U* with a definite modulus;
e The maps G, |U", i # 0, have bounded distortion;

e The maps G,,|U are compositions of the quadratic map z — 2% and
maps with bounded distortion;

e The real slices U' N R are commensurable with diam P".

(All the above bounds depend only on p and p.)

These properties easily imply the assertion. O

Thus, we can embed the space Q,(x) into a compact space N,(K).
Let Q, (1) denote the closure of @, (1) in N,(K), and 9Q, (1) = Q, (1)~
Q, (1) be the “boundary at infinity” of Q,(x). Boundary Markov nests
® € 09,(p) will be called parabolic (since the base map of @, ¢y, is
parabolic). Parabolic nests are geometric limits of quadratic-like maps
with essentially bounded combinatorics and a definite modulus, as the
renormalization period goes to oo.

2.4.8. Mandelbrot copies with essentially bounded combinatorics. Let
us now describe the structure of the family M, of Mandelbrot copies
with essential combinatorics bounded by p. These copies are in one-
to-one correspondence with the different real combinatorial types es-
sentially bounded by p. So let us fix some essentially p-bounded com-
binatorial type 7 of height x (by selecting some nest ® € A,). Let us
consider the family of Mandelbrot copies M¥* of height k& < y whose
essential combinatorics coincides with 7 on the first k£ levels. These
copies can be distinguished by specifying the lengths

N = (N(1),N(2),...,N(k))

of the cascades in the principal nest. We will describe the hierarchical
structure of these families by induction in k.

Let £ = 1. Then we have a sequence M?' of Mandelbrot sets M},
with the cascade of length N. As N — oo, these cascades converge to
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a parabolic combinatorics representing a cusp of some maximal Man-
delbrot set M°. Thus, the copies M} converge to this cusp.

Remark. The convergence of Mandelbrot sets can be understood either
combinatorially, or as convergence of their centers (since combinatorics
uniquely determines the cusp). However, we will see below (Corol-
lary 2.23) that the maximal real Mandelbrot sets shrink, so that they
converge to the cusp uniformly.

For k = 2 we have a double sequence M? of Mandelbrot sets M]%f(l),N(Z)‘
If N(1) — oo, then these Mandelbrot sets converge to M°. If N(2) —
oo while N(0) is eventually constant, then the corresponding Mandel-
brot sets accumulate on the cusp of Mzir(o)-

Proceeding in this way, we construct a hierarchical sequence of fami-
lies M* of Mandelbrot set Mz’ffu),...,zv(k) accumulating on the cusps of the
previous families. Namely if N(I 4+ 1) — oo while N(s) are eventually
constant for s < [, then the corresponding Mandelbrot sets converge
s>1+1). -

We refer to Hinkle [Hi] for a further discussion of the essentially
bounded combinatorics.

2.5. Geometric bounds. An infinitely renormalizable map f : V —
V" is said to have a priori bounds if mod(R"fy) >v >0,n=0,1,...,
where the R"fy, stand for the subordinate renormalizations of fy (see
§2.3.1). We say that amap f € C is close to the cusp if |x(f)—1/4| < e.
Note that renormalizable maps are not close to the cusp.

Theorem 2.20 (A priori bounds [LS, LY]). Let f : V — V' ben times
renormalizable real quadratic-like map with mod(V' V) > p > 0.
Then
mod(R" fy) = vy () = v(p) >0,

unless the last renormalization is of doubling type and R"f is close
to the cusp. Moreover, liminfuv,(u) > v > 0, where v is an absolute
constant. Thus all real infinitely renormalizable maps have a priori
bounds.

The following two geometric results are crucial for our study.

Theorem 2.21 (Big dynamical moduli [L3], Theorem V). Let mod(f) >
> 0. Then for any M € M,

mod(Ry f) > v(p, M) > v(p) >0, fe M,

unless p(M) = 2 and [ is close to the cusp. Moreover, v(pu, M) — oo
as pe(M) — oo (u being fixed).
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Remark. A related result on moduli growth for real quadratics was
independently proven in [GS]. Note in this respect that in this paper
we need in a crucial way the above Theorem 2.21 for complex parameter
values (even though in this paper we are ultimately interested in the
real case).

The corresponding parapuzzle result is:

Theorem 2.22 (Parameter moduli [L4]). Consider an equipped quadratic-
like family (f,h) € G, and its renormalization (g,j) = Ry (f,h),
M e M. If p(M) > 2, then

mod(g) > A(M,C, ) > A(C,p) >0, Dil(j) < K(C, ),

where AN(M,C, p) — 00 as pe(M) — oo (C,u > 0 being fized). More-
over, the family (g,j) can be restricted so that it belongs to some class
Gr with L,v depending only on C, . If p(M) = 2 then (g,]) € Gi .

This result will give us a transverse control of the full renormalization
operator.

Corollary 2.23. Let us consider an equipped quadratic-like family (£, h) €
Gops and let M; = M; e C D be the corresponding family of mazimal
real Mandelbrot copies except the doubling copy. Then the sets M; have
K(C, p)-standard shape and diam(M;) — 0 as p(M;) — 0 at rate de-
pending only on C and p.

Proof. By Lemma 2.8, the Mandelbrot set M{ has K(C, u)-standard
shape. Hence it is enough to check shrinking of the M; in the case
of the quadratic family QP. By the same lemma and Theorem 2.22,
all the sets M; have quasi-standard shape. Hence it is enough to have
shrinking of their real traces M; N R. But these traces are pairwise
disjoint as the copies M; are maximal. O

2.6. Combinatorial rigidity.

Theorem 2.24 ([L3]). Let f € C(u) and g € C(u) be two infinitely
renormalizable quadratic-like germs with the same real combinatorial
type

T:{Mo,Ml,...}, Mk EM,
(but not necessarily real), and with a priori bounds. Then f and g
are hybrid equivalent. Moreover, the dilatation of the hybrid conjugacy
depends only on p.

Together with a priori bounds (Theorem 2.20) this Rigidity Theorem
yields:

Corollary 2.25. For any real combinatorial type T = { My, My, ...},
there is a single real quadratic P. with this combinatorics.
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2.7. McMullen towers. A McMullen tower f is a sequence {f;}7_,
of quadratic-like maps with connected Julia sets such that fy.1 = Rfy.
The numbers [ and t are called the dimensions of the tower. A tower
is called two-sided if t = —[ = oo.

Combinatorial type 7(f) of a tower f is a sequence of maximal Man-
delbrot copies M such that f, € M;. We will consider towers with
real combinatorics only, so that M, € M.

Let p(f) = supp(fr) and p.(f) = sup pe(fr) stand respectively for
the “period” and the “essential period” of the tower. One says that

the tower has a p-bounded (or essentially p-bounded) combinatorics if

p(f) (respectively p.(f)) is bounded by p.
The space of towers is supplied with the weak topology: g, =

{gmi}r — f as m — oo if for each index k, g, x — fr (Where the
dimensions of the towers in a converging sequence can vary but should
converge to the dimensions of the limit tower). Let 7 stand for the
spaces of towers.

The modulus of the tower, mod(f), is defined as inf mod(f;). One
says that a tower has a priori bounds if mod(f) > 0. Compactness of
C(p) yields:

Lemma 2.26. The space of towers with uniformly bounded combina-
torics and common a priori bounds is compact.

Theorem 2.27 (Towers rigidity). Two bi-infinite towers with the same
bounded combinatorics and a priori bounds are affinely equivalent.

Proof. By the Rigidity Theorem 2.24, two bi-infinite towers with the
same combinatorics are quasi-conformally equivalent. By McMullen’s

Rigidity Theorem [McM2], qc equivalent towers are affinely equivalent.
U

Later on we will prove a similar rigidity theorem for towers with
arbitrary real combinatorics (see Theorem 3.7).

2.8. Parabolic towers.

2.8.1. Rigidity. Let us say that a Markov nest ¥ = {4,,,} is a renormal-
ization of a Markov nest ® = {¢,}X_;, ¥ = R®, if ¢, = 1)y (this kind of
renormalization is also called “parabolic renormalization”). A Markov
tower ® is a sequence of Markov nests {@k}fﬂzl such that @1 = R®y.

A tower has a p-bounded combinatorics if all the nests &, belong to
N,. It has a K-bounded geometry if all the nests @, belong to N,(K).

We will use the following notations:

e 7 is the space Markov towers endowed with the topology of coordi-
natewise convergence;
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° 7; is the space of Markov towers ® € 7 with p-bounded combina-
torics;

e 7,(K) is the subspace of towers ® € 7, with essentially K-bounded
geometry.

Lemma 2.18 implies that the latter space is compact.

Two towers are combinatorially equivalent if the corresponding Markov
nests are. Two towers are gc equivalent if there is a qc map h: C — C
conjugating the corresponding nests.

Let 7, be the space of McMullen towers with essentially p-bounded
combinatorics. Then we have a natural coordinatewise embedding

i (T, T,) = (T, T,).

Markov towers in the closure of 7, in 7; will be called parabolic towers.
They represent geometric limits of McMullen towers f,, with essentially
bounded period pe(f,,) as the period p(f,) goes to co.

Theorem 2.28 (Hinkle [Hi)). If two parabolic towers ® and ¥ in T,(K)
are combinatorially equivalent then they are affinely equivalent.

2.8.2. Injectivity. Let us finish with an extension of Lemma 2.15 to the
case of parabolic renormalization.

Lemma 2.29. Let f be a renormalizable real quadratic-like map, and
let @ = {¢,}x_y be a real parabolic nest. Then Rf # R® = ¢, .

Proof. Let A = K(f)NR; this is the maximal f-invariant interval. Let
g : J — J be the real pre-renormalization of f, where J = K(g)NR C A
is the maximal g-invariant interval.

Recall that the nest ® consists of maps

¢n VU = P", n=0,1,...,x,

of class £, where the last map v = ¢, : UX — PX is a quadratic-like
map with connected Julia set. Normalize it so that ¢|J = g|J.
Note that the relation g = fP|.J gives the analytic extension of g to
A. Hence, it provides the analytic extension of 1 to A as well.
Let I™ = P"NR. We will prove by induction that A contains all the
intervals I, n=y,x—1,...,0.
Since
o 1= K@) NR =1/,
keN
the map v does not have any invariant intervals in IX disjoint from
J. Since g must have such an invariant interval in A (and since both
intervals A and IX are O0-symmetric), we conclude that A D IX.
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Assume by induction that A D I". Consider the Bernoulli map
G (2.17) associated with ¢ = ¢,_; : UU™" — P Let r be the
first return moment of the orbit {G*(0)} back to J. By definition,
Y| J=G"|J.

Let us push I™ forward under “cut-off iterates” of G until the first
return of the critical point back to .J. More precisely, let us consider
the itinerary of the critical point through the intervals 7; = U ' N R;

Gk(O)ETi(k), k=0,1,...,r

Let Hy = I", and define Hy, inductively as G(Hy_1 N Tj—1y). By the
Bernoulli property of G, one of the endpoints of Hj, belongs to 91" *.
Hence the interval H, contains one of the components of 1" '~ J. Call
it S.

But H, = G" | L, where 0 € L C A and G" is continuous on L. By
analytic continuation, G" | L = ¢ | L. Since A is ¢-invariant, A D H, D
S. Since the interval A is 0-symmetric, it contains the convex hull of
S and —S, which is equal to 1"t

Thus, ¢ admits analytic extension to the whole interval I° and co-
incides with g over there.

Furthermore, the base map of the nest, ¢ = ¢¢ : T° — I°, is para-
bolic, with the interval J contained in its parabolic basin B (in fact,
already the interval I' is contained in B). Hence the orbit {¢"(J)}
converges to the parabolic fixed point of ¢.

But one of the endpoints of .J, say (3, is fixed under . Since 1
commutes with ¢, the whole orbit {¢™3} consists of fixed points of
1) = g. But ¢ has only finitely many fixed points — contradiction. [

3. HYPERBOLICITY OF THE RENORMALIZATION OPERATOR

3.1. Renormalization Theorem. Let us start with a complete tech-
nical formulation of the Renormalization Theorem whose simplified
version was stated in the Introduction. Recall from §2.3.4 that 7,
J € J, stand for the real renormalization strips, whose union form the
domain of definition of the renormalization R in the space Ogr of real
quadratic-like maps.

Theorem 3.1. There is a set A C UT; (called the full renormalization
horseshoe), a constant p € (0,1), and a neighborhood V' of the origin
in C such that:

(i) A is precompact in Qr, R-invariant, and R|.A is topologically con-
jugate to the two-sided shift w : ¥ — ¥ in countably many symbols.
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(ii) The topological classes Hr(f), f € A, are codimension-one real
analytic submanifolds in Qr (“stable leaves”) which form an R-
invariant lamination in Qg. Moreover, if g € Hg(f) and mod(g) >
v, then R"g € By and ||R"f, R"g||y < Cp"™ for n > N(v).

(iii) There exists an R~ -invariant family of real analytic curves WE(f),
f € A, (“unstable leaves”) which transversally pass through all
real hybrid classes ¢ € [-2,1/4 — €], and such that

|IR"f—R"g|lly <Cp*, n>0,

provided g € WE(f).
(iv) The renormalization operator has uniformly bounded distortion
with respect to the Montel metric on the unstable leaves (see §3.5.1).
(v) The stable lamination is transversally quasi-symmetric.

3.2. Exponential contraction.

3.2.1. Macroscopic contraction. Let

Cn(n) ={f: fis n times renormalizable and
mod R™(f) > p, m=0,1,...,n.}

Lemma 3.2. The renormalization is macroscopicly contracting in the
following sense: For any € > 0 there is an N = N(u) such that

distyon(R™f,R™g) <&, m=N,N+1,...,n,
provided f and g are hybrid equivalent and belong to C, ().

Remark. We call this property “macroscopic” since it provides con-
traction only in big scales but allows expansion in small scales (< €).

Proof. By the contracting property with respect to the Teichmiiller-
Sullivan metric (see §2.3.6) and the relation between this metric and
Banach metrics (Lemma 2.3), the renormalization is Lyapunov stable:
There exists a 0 = 0(¢) > 0 such that

distpyron(f, 9) < 0 = distpyon(R™f,R™g) <&, m=1,...,n,

provided f and g belong to C,(u) (where 6 = d(¢) is independent of n
and the combinatorics of f and g).

Take a renormalizable map f : V' — V' with mod(V ~\ V') > u. By
Theorem 2.21, if p.(f) > pe(d), then the renormalization Rf is §/2-
close to a quadratic map P., where ¢ = x(Rf). Thus for two hybrid
equivalent maps like that we have: distys,,(Rf, Rg) < 0.

Furthermore, let us show that there is an N = N(u,p.) with the
following property: If for 2/N consecutive renormalizations of maps
f and g in Con(u), their essential periods stay bounded by p., then
distaron (RN f, RN g) < §. Otherwise there would be a sequence of maps
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fn and gy as above with distyren(fx, gn) > 6. Let Fy,, = RVNT™fy
and Gy, = RN ™™gy, m = —N, ..., N. Consider a sequence of hybrid
equivalent finite towers Fy = {Fy})__yx and Gn = {Gym}l__y.
By compactness (see §2.4.7), these towers converge along a subsequence
to bi-infinite parabolic towers F = {F},,} and G = {G,,} with essen-
tially bounded combinatorics and a priori bounds. By the Rigidity
Theorem 2.28 for parabolic towers, F = G up to rescaling. On the
other hand, distyson(Fo, Go) > 1/2 - contradiction.

Thus in any case (with no restrictions on the combinatorics), there
is an [ < N(u,p.) such that distp.,(R'f, Rlg) < §. By the choice of §,
distpron (R™f, R™g) < € for all further moments m =1{+1,...,n. O

3.2.2. Absolute a priori bounds. Let S C C stand for the union of
(complex) quadratic-like germs f with the real straightening, i.e., such
that x(f) € [-2,1/4]. Let S(u) = SNC(i) and let S, (i) be the set of
n times renormalizable germs of S(u). The following lemma provides
us with absolute a priori bounds in S:

Lemma 3.3. There is an absolute o > 0 such that if the germ of
f V. — V' belongs to S,+1(v), then mod(R™(fv)) > pu for m =
Nv),...,n.

Proof. 1t is true for real maps by Theorem 2.20. In particular, it is true
for the straightening g = P, of f, ¢ = x(f) € [-2,1/4].

Let us take quadratic-like representatives ¢ : V' — V'and f : U — U’
with mod(V' V) > 1, mod(U’' \ U) > v/2 conjugated by a qc map
h: V' — U'" with a dilatation K depending on v only. Consider repre-
sentatives ¢,, : V,, = V! and f,, : U, — U/ of the renormalizations
subordinate to the maps ¢ and f and qc conjugate by the same map h.
By Theorem 2.20, there is a choice of these representatives such that

mod(V,, \ V) >pu>0, m=0,1,...,n,
with an absolute p. Hence
mod(U;, ~\Uy,,) > u/K, m=0,1,...,n.

Thus, we can apply Lemma 3.2 to these two maps and conclude that for
some [ = I(v), there exist 2-qc conjugate representatives g; : V; — V}/
and f, : Uy — U} with a definite modulus (depending only on v). But
this conjugacy provides a 2-qc conjugacy between the further renor-
malizations of ¢, : V,, — f/,;l and f, : U, — ﬁ;n, m > N(v) >,
subordinate to the above representatives. Since mod(V' ~ Vi,) > pu,
we conclude that mod(U!, \ U,,) > /2 for m > N(v). O
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3.2.3. Invariant family of Banach slices. The above result allows us to
select a family of Banach slices invariant with respect to some iterate
of the renormalization:

Lemma 3.4. Let p be an absolute bound from Lemma 3.3 and 0 <
v < p. There exist N = N(v), 6 > 0, and a family of quadratic-like
representatives f : V(f) — V'(f) of germs f € C(v), with the following
properties:

e mod(V'(f) N V(f)) >~(v) > 0;
o If f € Sny1(v) and g € By(0) NH(f), then RVg € By ;(p), where
p = p(v,0) = 0 asd — 0 (v being fized), By = By, Bf(d) =

By (f,0), and the notations with “prime” have a similar meaning.

Proof. Since diam K (f) depends continuously on f € C, it is bounded
away from 0 for f € C(v). Hence there exists an ¢ = ¢(v) > 0 such
that dist(OU, K(f)) > ¢ for any f € C(v) and any topological disk U
containing K (f) with mod(U ~ K (f)) > u/2.

Recall that Q.(r) is the domain bounded by the equipotential of
radius r > 1 of a quadratic map P..

For any f € C(v), there exists a quadratic-like representative f :
U(f) — U'(f) which is K(v)-qc conjugate to the quadratic polyno-
mial P, : Q.(2) — Q.(4), where ¢ = x(f). Since for given r > 1
dist(K (P.), 02.(r)) depends continuously on ¢ € M, the domains €.(r)
uniformly shrink to K(P.) as  — 1, ¢ € M. Hence the domains
U(f) = fY(U(f)) uniformly shrink to K(f) as [ — oo, f € C(v).
Thus, there exists an [ = [(v) such that dist(OU' 2(f), K(f)) < ¢ for
any f e C(v).

Let V(f) =U'(f), V'(f) = U"(f). Then

mod(V'(f) NV (f)) > v/2' = y(v) for any f € C(v).

By Lemma 3.3, there exists an N = N(v) and a renormalization ¢ =
RNf : W(g) — W'(g) subordinate to f : V(f) — V'(f) such that
mod(W'(g) ~ W(g)) > p. By the choice of ¢,

Wi(g) D U%(g9) > U (g) = V'(g9) and mod(W(g)~V'(g)) > v/27".

Furthermore, by Lemma 2.3, any map f € H(f)NB;(J) is conjugate
(on an appropriate domain) to f : V/(f) — V'(f) by a globally defined
K-qc map h : C — C, where K = K(r,6) — 1 as 6 — 0. The
appropriately rescaled h conjugates the renormalizations RY f and RY f
on the corresponding W-domains. Hence § = RN f is defined and p-
close to g on V'(g), where p = p(v,d) — 0 as § — 0 (v being fixed). O
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Remark. Using Lemma 6.2(iv), one can make the choice of the domains
V(f) in such a way that there are only finitely many distinct domains
among them.

3.2.4. FExponential contraction. We will now apply the Schwarz Lemma
in Banach spaces (see Appendix 1) in order to pass from the macro-
scopic contraction to the exponential contraction.

Theorem 3.5. Let us consider two hybrid equivalent quadratic-like
maps f € Sp11(v) and g € Sp11(v). Then

distyron(R™f, R™g) < Cp™, m=0,1,...,n,

where dist o, is a Montel distance on C(v), p € (0,1) depends only on
the choice of distyron, while C' > 0 depends also on v.

Remark. 1t is a priori clear that this statement is qualitatively inde-
pendent of the particular choice of Montel metric since all of them are
Hoélder equivalent (see Lemma 6.2(iii)). In similar statements to follow
dependence of the constants on the Montel metric will be implicit.

Proof. By Lemma 3.3, there exists an N = N(v) such that R™f and
R™g belong to S(p) with an absolute p. It follows that it is enough to
consider the case v = p.

Let us consider the projection Il : C — Hy and the parametrizations
I.: Ho — H. (see (2.6)). We know that both of them are continuous
(and, in fact, analytic). Moreover, the family of parametrizations I,
¢ € M, is equicontinuous on Ho(p). It follows from the observation
that I.(Ho(p)) C C(u) and compactness of C(u).

Let us now consider a family of operators

T =1loR"ol,:Hy— Hy

defined for n times renormalizable parameter values ¢ € [—2,1/4].
Lemma 3.2 together with the above equicontinuity property imply that
these operators are macroscopicly contracting: For any € > 0 there ex-
ists an [ such that

distpron (T2 f, Tg) <&, m=1,...,n,

provided that ¢ € [—2,1/4] is n + 1 times renormalizable, and f & ¢
belong Ho ().

Furthermore, since mod(II(f)) = mod(f), the absolute bounds of
Lemma 3.3 are carried to the operators T If f € Ho and mod(f) >
v, then mod(TN) > u (where the relations between p, v and N are
the same as in the lemma). It implies by repeating the argument
of Lemma 3.4 that there is a family of quadratic-like representatives
f:=V(f)=V'(f), f € Ho(v), and a 6 > 0 such that
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e mod(V'(f) N V(f)) > y(v) > 0;
o If g € By,s(6) then TVg € Bf ;. ;(p), where p = p(v,d) and sub-
script “0” indicates slicing by Ho, e.g., By y = By N Hy.

Since the Banach distance in the BE),TCN f(p) induced from By g is
uniformly Hoélder equivalent to the Montel distance, we conclude that
the operators TN : By (0) — By gnvy are macroscopicly contracting
with respect to the Banach norms in the corresponding spaces. By the
Schwarz Lemma in Banach spaces this contraction is actually micro-
scopic:

1
||TcNf_TcNg T f < §||f_g||f7 gGBf(6)7

where || - || stands for the norm in B;. This implies that the operators
T? are exponentially contracting with respect to the Banach metrics
involved. Since these metrics dominate over the Montel metric, the
operators T are exponentially contracting with respect to the latter
metric too. By uniform continuity of the I., the iterates of the renor-
malization R are exponentially contracting as well. O

3.3. Realization and rigidity of general towers.

3.3.1. Contraction in the middle of the tower. Let us consider an orbit
{R™f}r __, (assuming that f is n times renormalizable and [ times
anti-renormalizable and using notation R™ f with negative m for some
anti-renormalization of f). Its (I, n)-itinerary is a sequence of Mandel-
brot copies {M,,}"_ , such that R™f € Ty,,.

Lemma 3.6. Consider two maps f and g in S with the same (I,n)-
itinerary and such that

mod(R*f) > > 0 and mod(R*g) > >0, —[ < k < n.

Then distyon(f, g9) < e =¢e(u,l,n), where e - 0 as l,n — oo (u being

fized).

Proof. Let x(f) = P. and x(g) = Py, where b and ¢ are real by the as-
sumption. Corollary 2.25 implies that the renormalization windows of
order n in the parameter interval [—2,1/4] (i.e., the connected compo-
nents of the set of real n times renormalizable maps) uniformly shrink
as the order grows. Thus, |b—¢| < d(n) — 0 as n — oo, so that f and
g lie on the nearby leaves of the foliation F. The same is applicable to
fr=RFf and g, = RFg, k= —1,..., N, for any given N.

For any integer k € [—[, 0], let us consider a map hy, € H(f) belong-
ing to the vertical fiber via gy, i.e., m(hy) = 7(gx). Then mod(hy) =
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mod(gx). By Theorem 3.5, there exist p and N depending only on p
such that
diStMon(Rka, RNh,k) S pdiStMon(fk, hk)

The results of §2.2.3 imply that the vertical fibers through g near the
connectedness locus can be equipped so that they become quadratic-
like families of some class Gy, 5, with geometry (i.e., the constants L, \)
depending only on p. Hence by Theorem 2.22, RN h;, and RY g belong
to the same quadratic-like family of class G¢,, with €' and v depending
only on y. Since by Lemma 2.9 G¢, , is a compact class of families, the
holonomy QP — S, § € G¢,,, is equicontinuous. Hence

distMon(RNhk, RNgk) < 01(n) — 0 as n — 0.

Take some £ > 0 and pf € (p,1), and find an n such that §; = d;(n) <
(0= p)e/(p+1). If distaron(fr, gx) > € > 0 then

diStMon(Rkaa RNgk) S diStMon(Rkaa RNhk)+diStMon(RNhk7 RNgk) S
pdiStMon(fka hk) +51 S p((dIStMon(fka gk) +61) +51 < Pl diStMon(fka gk)

Thus, RY uniformly contracts the distance between the f; and g, as
long as it stays greater than . Hence in a bounded number of steps
(depending on ¢) this distance must become smaller than «. O

3.3.2. Realization and rigidity. Let us now prove that any real combi-
natorics 7 = { My }3° My, € M, can be be realized by a unique real

k=—00"

tower. Let S stand for the space of towers f with f, € S.

Theorem 3.7. For any two-sided real combinatorics T there is a unique
tower f € § with this combinatorics and a priori bounds. Moreover,

this tower is real and mod(f) > v with an absolute v > 0.

Proof. By Theorem 2.20, there is an absolute v > 0 such that for any
infinitely renormalizable quadratic polynomial f = P. € Z, R"f €
Qv),n=0,1,....

Let us take a combinatorial sequence 7 = { My }. For any [ > 0, there
is a real infinitely renormalizable quadratic polynomial P, = P, with
combinatorics 7(P) = {M _;,..., My,...}. Let fo; = R'P,. These are
infinitely renormalizable real quadratic-like maps with common combi-
natorics { My, My, ...} and mod(fo;) > v. Since the set of such maps is
compact, we can pass to a quadratic-like limit fo = lim;_, fo, (along
a subsequence) with the same properties.

Let us now do the same thing for every i < 0. Let f;; = R'"P,
and let f; = lim;_, f;; be a limit point. The map f; is real and has
combinatorics 7; = {M;, M4, ... }.
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Selecting the above converging subsequences diagonally, we con-
struct a sequence of real infinitely renormalizable quadratic-like maps
{fi}2_ such that Rf; = fi11, x(fi) € M; and mod(f;) > v. This

sequence represents a real tower f with combinatorics 7 and a moduli
bound v.

Thus, any real combinatorics 7 is represented by a tower f € S with
a priori bounds. Moreover, this tower is unique. Indeed, if f and g are
two such towers, then by Lemma 3.6 dist sz, (fo, go) is arbitrary small,

so that fy = go. For the same reason f; = g; for any 1. O

Let us now state a more general realization and rigidity theorem for
one-sided towers.

Theorem 3.8. For any real combinatorial past T = {M};>° |, My €
M, and any ¢ € [—2,1/4), there is a unique tower f = {fx};°5 in S
with a priori bounds such that x(fo) = ¢ and x(fr) € My for k < 0.

Moreover, this tower is real and mod(f) > v(e) > 0, provided ¢ <
1/4 —e.

Proof. A priori bounds for real finitely renormalizable quadratic-like
maps (Theorem 2.20) imply the existence part of the theorem in the
same way as for two-sided towers.

Since the stretching o : J — [—2,1/4] is homeomorphic on every
renormalization window J € J (see §2.3.3), all the parameter values
X(fx) € Jx = My NR are uniquely determined by the combinatorics 7
and the parameter ¢ = x(fy). Hence, for any other tower g = {g;},>3
with the same data, the maps g, are hybrid equivalent to the f;. If
both towers have a priori bounds, then by Lemma 3.2,

dist aron (fr, gr) = distazon (BY fo—n, RN gr—n) < e(N) — as N — oo,
and hence f, =gr, k=—1,-2,.... O

3.4. Full renormalization horseshoe. Let us now consider the space
¥ of all possible real combinatorial types 7 = {My}3> _, where the
My € M are selected arbitrarily from the family of real maximal Man-
delbrot copies. Supply X with the weak topology. Let w : ¥ — ¥ stand
for the left shift on this space.

Let us say that an infinitely renormalizable map f € Q is completely

non-escaping under the renormalization if some full renormalization

orbit {R"f}> __ is well-defined, R"f € C, and
mod(f,) > p=u(f) >0, neZ.

Note that we do not ask R"f to be uniquely determined for negative
n but by Lemma 2.15 this is the case for real maps.

—00
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Let A C Q stand for the set of completely non-escaping maps with
real combinatorics. We call this set the (full) renormalization horse-
shoe.

Theorem 3.9. There exist absolute > 0 and p € (0,1) with the
following properties. The set A belongs to Qr(v) and R : A — A
is a homeomorphism. There exists a homeomorphism n : ¥ — A
conjugating w and R|A. Moreover, for any infinitely renormalizable
map [ € S there exists a g € A such that

distpron(R"f, R"g) < Cp", (3.1)
where C' depends only on mod f.

Proof. By Theorem 3.7, any combinatorics 7 € ¥ can be realized by a
unique real tower f = {f;} with absolute a priori bounds. Thus, we
can define a map n : ¥ — C(u) by associating to a combinatorics 7 € X
the zero coordinate fy of the corresponding tower f = {f;}. This map
is continuous by Lemma 3.6. Let A be its image. Clearly, A is R-
invariant, consists of completely non-escaping maps, and 7 conjugates
the shift w and R|A. Moreover, by Lemma 2.15 this map is injective
and thus bijective.

Since w is a homeomorphism, R : A — A is bijective as well. Let us
show that it is a homeomorphism.

Recall that 7; stand for the strips of real quadratic-like maps cor-
responding to renormalization windows J € J (see §2.3.4). Let A, =
ANT; € AN Ty(p). As the boundary points of J are at most once
renormalizable, A N OT; = O for any J € J. Hence any map f C Aj
belongs to 7; together with some neighborhood Y. Since every branch
Ry of the renormalization is continuous, R | A is continuous at f.

Let us show that (R|A)™! is also continuous. Let f € A and
g = R'f € A;. Let I be any other interval of family . Then
by Lemma 2.15 R(7;(n)) # f. Since the strip 7;(u) is compact, its
image R(7;(x)) misses some neighborhood of f.

Let us show that these images cannot accumulate on f. Indeed,
assume that Rhy, — f, where hy belong to distinct strips 7Ty, (u).
If the essential period p.(hg) is unbounded then by Theorem 2.21 f
must be a quadratic polynomial. But it is impossible since by Lemma
2.14 quadratic polynomials are not anti-renormalizable. On the other
hand, if the hj have uniformly essentially bounded combinatorics (i.e,
Pe(hr) < p) then by §2.4.7 we can pass to a geometric limit, a Markov
nest ® € N,(K), K = K(u). Then f is equal to a parabolic renormal-
ization of the Markov nest @, so that R® = Rg contrary to Lemma
2.29.
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Thus, there is a neighborhood U of f which misses all the images
R(T;(p)) with I # J. Hence on this neighborhood (R|A)~! is the
restriction of (R|77(u))™'. But the latter map is continuous since 7;(p)
is compact.

Let us now show that n : ¥ — A is also a homeomorphism. The
only thing to check is that the inverse map is continuous. Let f € A
be a map with itinerary {J;}3> . Let n > 0. Since RFf € int Ay,
for all £ and R|A is a homeomorphism, all the maps g € A near f
have the same itinerary (J_,,...,J,). But this exactly translates into
continuity of n .

Finally, for any infinitely renormalizable quadratic-like map f € S,
there is a map g € A with the same combinatorics (by the Realization
Theorem 3.7). By Corollary 2.25, f and ¢ are hybrid equivalent, and
Theorem 3.5 yields (3.1). O

3.5. Transverse control of the renormalization.

3.5.1. Transverse distortion. Let us consider a conformal map f : S —
S’ between two Riemann surfaces endowed with conformal metrics.
The distortion (or non-linearity) of f is defined as follows:
1Df(2)]]
S S G

The following statement shows that the renormalization has transver-
sally bounded distortion with respect to the Montel metric on quadratic-
like families:

Lemma 3.10. Consider a quadratic-like family £ of class G¢,,. Take
a little Mandelbrot set M € M and let Mg be the corresponding set
in the family £. If p(M) > 2, then there is A = A(C,p) > 0 and a
domain Q¢ C £ of the renormalization Ry with mod(Qe~ Mg) > X such
that the curve Ry (Qg) is uniformly (in terms of C' and u) transverse
to the foliation F, and Ry on Q¢ has a K(C,p)-bounded distortion
(independent of M ) with respect to the Montel metric. If p(M) = 2,
then the analogous statement holds for the truncated set M€.

Proof. Assume for definiteness that P(M) > 2 (the argument in the
doubling case is analogous).

Let A = A} C f be the parapuzzle piece around Mg on which the
renormalization Ry, is defined (see §2.3.3), and let Ay = A}, By
[L4], mod(Af \ Ag) > ¢(C, ) > 0. Moreover, the holomorphic curve
Ry @ Af — Q belongs (after appropriate restriction of the domain
A¢) to some class € Gy, where L, v depend only on C, y (Theorem
2.22). By Corollary 2.12, it is uniformly transverse to the foliation F.
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Hence on some domain Q¢ C A with mod (e \ M¢) > X it is endowed
with a Montel metric which has a bounded distortion with respect to
the hyperbolic metric induced from A} (see §2.2.5). Now the assertion
follows from the Koebe Distortion Theorem. O

3.5.2. An estimate of the transverse derivative. It is proven in [L5] that
any real infinitely renormalizable map f with periodic combinatorics
is a hyperbolic periodic point for R. For what follows we will need the
following weaker statement:

Lemma 3.11. Real periodic points of R are not attracting.

Proof. Let RPfy = fo, Py = x(fo). If fo is attracting than there
is a neighborhood of the hybrid class H(fy) attracted to the cycle of
fo- By Lemma 2.16, all the maps in this neighborhood are infinitely
renormalizable with the same combinatorics as fy. In particular, if ¢ is
nearby to ¢y then P. is an infinitely renormalizable map with the same
combinatorics as P,, contradicting Corollary 2.25. O

Consider the one-dimensional quotient bundle TQ/TF over C and
supply it with the transverse metric || ||, induced by the Montel metric
on the line bundle {E7} (see §2.2.4). Let DRy, stand for the tangent
action of DR in the quotient bundle. If RPf = f then the value
Mf) = [|DRE(F)||VP will be called mean transverse multiplier at f
(note that it is independent of the choice of the norm on the one-
dimensional space T;Q/T;H(f)). Let

A=inf inf A 3.2

ot inf A(f) 32
stand for the “smallest” mean transverse multiplier of the periodic
points of R. By Lemma 3.11, A > 1. If A > 1 then we say that the
periodic points of R are uniformly hyperbolic (this term is justified as
by Theorem 3.5 R is uniformly contracting on the foliation F).

Lemma 3.12. For any q € (0,1), there exist § > 0 and ¢ > 0 with the
following property. For any f € A,

IDRL()I] = c(g\’)"-

Proof. Fix some v > 0. Let us consider two hybrid equivalent germs
f,g € C with the modulus at least v > 0. Let distason(f,g) < e. Then

IDRw(F)]| > q | DRu(9)II’, (3.3)

where 0 = d(g) > 0, ¢ = ¢(¢) € (0,1), and ¢ — 1 as ¢ — 0. Moreover,
there is a p such that if p(M) < p then we can let § = 1, and otherwise
we can let ¢ = 1.
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This follows from the fact that the holonomy from ¢ to f is transver-
sally qc¢ (Theorem 2.4). Indeed, (3.3) is obviously true for any particu-
lar renormalization Ry, with § =1 and ¢ = ¢(M), since Ry, is smooth.
So let us take a Mandelbrot copy M with a big period p(M). Then by
Corollary 2.23, diam M is small.

Let us now take the vertical fibers S, X’ through ¢g and f respectively.
By Theorem 2.22, there is a disk D C § around g of small size £ > 0
whose image under the renormalization has size of order 1 representing
a quadratic-like family of class G¢ ,, with absolute C' and ;. By Lemma
3.10, R has a bounded distortion on D. Hence ||DR;.(g)|| =< L.

Furthermore, since the holonomy v : § — X is quasi-conformal, it is
Hoélder continuous with some exponent 6 = §(p) > 0 and an absolute
constant. Hence diam(yD) = O(£°), so that

IDRc(f)]] = (diam(yD)) ™" > q|| DRuc(9)|".

Finally, since ||DRy(g)|| is big, we can kill the constant ¢ by a small
decreasing of the exponent. This yields (3.3).

Since by Lemma 3.10 the transverse distortion of R is bounded, we
conclude that the same estimate holds under the assumption that f and
g belong to the same renormalization strip and |y(Rf) — x(Rg)| < ¢
(with the constants independent of the strip).

Given an f € A, let us consider the periodic point g € A of period p
which has the same itinerary (My,... M, 1) as f. Then by Lemma 3.6
the orbit {RFg}?_Y ec-shadowes the corresponding orbit of f, where
N = N(e), and the desired estimate follows from (3.3) by the chain
rule (with the constant ¢ coming from the first and the last N points
of the trajectory). O

3.6. Invariant cone field and line bundle. Let us consider the fam-
ily By = By(y), f € A, of Banach slices constructed in Lemma 3.4. Let
|- ||y denote the norm in By and let #; = By NH(f), E} = TyH;. For
f € A, let us consider the vertical #-cone

Cp={ueBs: |u'l; > tgf|u"}. (3.4)

Lemma 3.13. There exist @ > 0 and N such that DR™(C}) C C%e]vf
for any f € A.

Proof. By Theorem 3.5, R is uniformly exponential contracting in the
F-direction. On the other hand, by Lemmas 3.11 and 3.12, R can only
slowly contract in the transverse direction: || DRL(f)|| > c¢™, [ € A,
with ¢ arbitrary close to 1 (and ¢ = ¢(q)).

Recall that given a tangent vector u € By, u” and u’ stand for its
horizontal and vertical components, i.e., the projections to E}L and E%
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respectively. Then for N big enough, there exist p’ > p > 0 with
arbitrary small ratio p/p’ such that

1B ) [rx g < pllully, 1(RYu) g > plu”ll

(3.5)
Let p < r < p'/2. Then for any u € 80;‘3,
NR¥ ) s g = IR+ (B0 s <
< pllu(ly + 0@l |lp) < rlluly, (3.6)

provided 0 is sufﬁciently small. By the second inequality of (3.5) and
(3.6), RNu € CRNf

Thus, RN(9CY) C C’fgvf. Since the cones under consideration con-
sist of two convex parts with bounded base (“above” and “below” the
horizontal hyperplanes), this implies the assertion. ]

We are ready to construct the unstable-to-be line bundle O over A.

Lemma 3.14. The renormalization operator has a continuous invari-
ant tangent line field O" = {E} C By}, f € A, transverse to F.

Proof. This is a standard construction by going backwards and pushing
the cones forward. Take # and N from Lemma 3.13. Then for any
f € A, the cones C’ = RN”CR Nnj ATe nested. Let E}‘ = ﬂnZO qﬂ’”.

Let us consider the projective cone C’a, i.e., the space of lines in
C’j‘f. It can be realized as the cross-section of C? by the hyperplane
{u : u” = const}.

Supply the projective cones with the projective distance as follows:
For @, € Cy, consider the line interval (i, 0) = {w = @+t € C'f}
and view it as the one-dimensional hyperbolic line H' Then the pro-
jective distance between u and v is defined as the hyperbolic distance
between @ and ¢ in I(4, 0).

The embedding C;‘g — Cﬁ uniformly contracts the projective dis-
tance on these cones, while the differential DRY : C%,N ;o CJ%G is

at least simply contracting. Hence DRV : C°,
contracting.

It follows that the projective cones C?’" uniformly exponentially
shrink to some projective points. These points represent the tangent
lines £ transverse to F. This line field, O, is clearly RN-invariant.
Moreover, these properties uniquely determine the line field O* (since
RY is projectively contracting). But R(O") is also a transverse one-
dimensional RY-invariant line field. Hence R(O%) = O".

R-Nf C’? is uniformly
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Finally, the line field O" is continuous, since the cone field {Cji’”}
is continuous for any given n and well localizes the line field for n big
enough. O

3.7. Slow shadowing and hyperbolicity.

3.7.1. We will now prove that R|.A is uniformly hyperbolic. The idea
is to construct (assuming the contrary) an orb(g), ¢ &€ H(f), which
slowly shadows some orb(f) on A, which would contradict the Rigidity
Theorem 2.24.

Let Of stand for the field of tangent subspaces to F over A (the
“horizontal field”) and let O" denote as above the transverse line field
given by Lemma 3.14.

Theorem 3.15. The renormalization operator R : A — A is uni-
formly hyperbolic with O° and O serving as the stable and unstable
fields.

3.7.2. Special bidisks. We will begin the proof with a special choice
of Banach slices and bidisks. Let > 0 be an absolute bound from
Lemma 3.3. In particular, A C C(u).

Consider a number N = N(u), a bound v = v(u), and and a family
of Banach slices By, f € C(u), from Lemma 3.4. In what follows we
will allow ourselves to increase N (replacing it with some multiple of
it) without changing the notations.

Select a dg > 0 in such a way that

II U By (260) | € Ho(v/2).
fec(w)

Since Ho(y/2) is compact, it can be covered with finitely many Banach
neighborhoods U; €@ H, satisfying the property of Lemma 2.10, i.e.,
such that there exist equipped vertical tubes P; C I17'14;.

There exists a 0 € (0,00) such that for any f € C(y), the ball B(26)
belongs to some tube P; of the above finite family, and this property

is persistent (i.e., it is satisfied for all f € C(u) near f).
Let

My =iypom: Q—H(f); Uy =T1;(Py).

Take a small p € (0,1/2). Then by Lemma 3.4 and Theorem 3.5, N =
N(4, p) can be increased so that

RY(Uy) € Bry ;(p3/8). (3.7)



58 MIKHAIL LYUBICH

Furthermore, by Lemma 2.10, the tube Py is foliated by holomorphic
leaves ﬁf(g), g € Py, parametrized by the neighborhood U;. Denote
this foliation by F;. The slices of these leaves,

Li(g) = L;(g) N Bs(26),

are codimension-one complex analytic submanifolds in B(2§). We de-
note by F; the foliation of B;(29) by these slices.

Let E$(g) C By stand for the tangent plane to the leaf L;(g) at g,
and E}(g) C By stand for the complementary line through g parallel
to the unstable line E¥(f) = E} from Lemma 3.14. The d-balls in

these spaces centered at ¢ and f will be denoted as E;/u(g,é) and
E;/u(é) = E;/u(f, §) respectively.

Since the leaves £ (g) are almost parallel to £(f) for g near f, their
slices Lf(g) are locally graphs of holomorphic functions

Vrg: E3(1.56) — B with a small slope o, < 1/2. )
3.8

Let
Vi = v5(E3(0)), (3.9)

where ¢y = 1)y .

Let us now define a special bidisk Qf C By centered at f. Take a
small topological disk Sy C EY containing f, and consider its motion
Sy — S¢(g) under the holonomy along Fy, as g runs over V; (in Lemma
3.16 below we will make a specific choice of Sy). Then

Qr = Ss(9). (3.10)

We call the disks Sy(g) the vertical cross-sections of Q@ and we call the
domain V; the base of QQ¢. Let

Qr=J 0S1(9) and 0"Q;= |J Si(g) (3.11)
gEVy geV)

stand respectively for the horizontal and vertical boundaries of the
bidisk Q.
Given a tangent vector v € Ty By, its projections to E%(g) and E¥(g)
will be respectively denoted as v* and v“. Let
Ap(g) = {v e TyBy« [lv]| > [lv"[I}

stand for the tangent vertical “m/4-cone” at g.
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Let YTy stand for the family of holomorphic curves I' properly em-
bedded into @ in the sense that OI' C 0°Q, whose tangent lines T,I"
belong to the cones As(g).

For another special bidisk Q 7, we will naturally mark the correspond-
ing objects with “tilde”: S¢(g), Yy etc. However, we let
Ap(g) = {v e TyBy: [lv"]| > 8ll" [} € Ay(g)
For an N times renormalizable map f € C(p), let 7; denote the
renormalization strip Tpr, M € MY, containing f (see §2.3.8).

Lemma 3.16. There exists a family of special bidisks

Qr C Qs CBs(8), feA
based on the V¢, satisfying the following properties:

(i) The renormalization RN |T; admits the analytic continuation to
Qf, and RNQf C BRNf-
ii) Horizontal contraction: If g € Q¢ and v € E$(g), then
f f
IDR ||y < pllvlly,
where p € (0,1/8) is as above. )
iii) Invariance of the cone fields: If g € Q¢ and R"g € Qgn s, then
f f
RY(As(9)) C Apwy(RYg).
(iv) Querflowing property for high periods: There exists a p such that
RN(88f(g)) N QRNf =0 and RN(S?(Q)) € TRNf;
where 8Y(g) is the connected component of Sp(g) N R~ (Qpxy)
containing ¢.
(v) The slopes of the leaves L¢(g) are bounded by 1/2.
(vi) The bidisks Q and Q; have a definite horizontal size in By:
dist(f,0Vy) > & > 0.

(vil) The cross-sections S¢(g), g € Vy, have a bounded shape:
There exists a K > 0 such that for any M € MY,
there exist ' (M) > (M) > 0 with ¢’ < Ke such that

Ej(g,e) C Stlg) C Ef(g,€).

(Thus, the cross-sections S¢(g) have a definite size on every strip.)

(vili) The cross-sections Sy(g), g € Vy, have a bounded shape and an
absolute size:

EY(g,) C 8¢(9) C E¥(g.¢"),
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where 0 < € < & < K& are absolute constants.

Moreover, & can be assumed to be arbitrary small compared with

£: &'/€ < e for any a priori chosen

(thus, the bidisks QQ are “stretched” in the horizontal direction).
(ix) Bounded vertical distortion: the renormalization RN |S}(g) com-

posed with the projection Bpnp — ERNf has bounded distortion.

Remark. One can add to this list one more nice property: the image
RN (Qy) is precompact in Bgw .

Proof. By the discussion in §§2.3.3 and 2.2.3, the renormalization RY
analytically extends from 7 to the (truncated) parameter puzzle pieces
Aj(g) on the vertical fibers P;(g) of the tube Py, g € U;. By Theorem
2.22, RV (A(g)) is a quadratic-like family of some class G¢,,, where C
and v are independent on the particular f and ¢ in question. Moreover,
these puzzle pieces are related by holonomy along the foliation F 7, and
thus form a tube JA/f over Uy. We let Af = Af(f)

Take a small » € (0,1/2) and consider the hyperbolic disk A of
radius r centered at f in the puzzle piece Af (where A 7 is supplied
with the hyperbolic metric). For g € Uy, let Af( ) € As(g) stand for
the image of A; under the holonomy A; — A(g) along the foliation
F £. Since this holonomy is uniformly quasi-conformal, the hyperbolic
diameter of Af(g) in Aj(g) is bounded by some x = r(r) such that
k(r) — 0 as r — 0.

By the A-lemma, the holomorphic motion which equips the family
RN(A;(g)) has qc dilatation O(k) on RN (A(g)). It follows (compare
Lemma 2.3) that for a sufficiently small r,

R™(Af(9)) € Bray,  diam(RY(Af(g))) < po/8,
(3.12)
where the diameter is measured in Bgv .
For g € Vy, let us define Sy(g) C E}(g) as the image of Ay under

the holonomy to E(g) along the foliation .7:}. If r is sufficiently small,
then

S¢(g) C By(g,6/2). (3.13)

Taking the union of these cross-sections over g € Vy, we obtain a special
bidisk @ of type (3.10), see Figure 5.

By the definition of the bases Vy (3.9), the 1/2-bound on their slope
(3.8), and bound (3.13), the bidisks @y are contained in B;(2d) and
satisfies property (vi).
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u
Ef

f A (9)

FIGURE 5. Special bidisk

Note that @ can also be defined as the intersection of the ball
B;(26) C Py with the tube

Yi=J Al

QEUf

Thus, the analytic continuation of RY to the tube JAJf D Yy provides us
with the analytic continuation of RY to the bidisk Q. Together with
(3.12), this implies (i).

Property (v) is ensured by (3.8).

Each vertical tube P; is endowed with the qc straightening x; : P; —
C (2.10). These straightenings restrict to straightenings x; : Q; — C
on the bidisks. By construction of the bidisks, x s maps every vertical
cross-section of () onto some topological disk D; with bounded shape
(independent of p(f) and definite size (depending on p(f)):

dist(xs(f), x7(9°Qy)) = do(p(f)) > 0. (3.14)
These properties yield (vii).
Let us verify property (ii). By (3.7) and (3.12),
RY () < pbA.

Let go € E$(0) denote the projection of g € @y to E}. By the Schwarz
Lemma, the derivative of the map

RN ol/)f,g : E;(9075/2) — BRNf(p(S/Zl)
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at go is bounded by (pd/4) : (§/2) = p/2. Hence the derivative of
RYN|L;(g) at g is bounded by (p/2) : (1 —0y,,) < p, as asserted by (ii).

Let us now construct bidisks Q. Take a small # € (0,1/2), to
be specified below. For f € C(u), let Xy denote the hyperbolic disk
of radius 7 in the vertical fiber of the tube P; through f. Similarly

to (3.10), let us define S¢(g) C E%(g) as the image of Xy under the
holonomy to E%(g) along the foliation ﬁf. If 7 is sufficiently small,
then S;(g) C By(g,8/2). Let
Qf = U S}L(Q)-
gEVf
This is a family of special bidisks in Bf(20) satisfying condition (viii).
Furthermore, Corollary 2.12 implies that the curves RY(S;(g)) are

uniformly transverse to the foliations Fpwy - By the Koebe Distortion
Theorem, this implies the bounded distortion property (ix) (after some
shrinking of the radius r). By the almost repelling of the renormaliza-
tion in the transverse direction (Lemma 3.12), there exists a p’ € (8p, 1)
such that for any f € A and g € Qy,

IDRY(0)llpv s = pllvlly, v € Ef (3.15)

(after increasing NN if necessary). Together with (ii) this implies (iii).

We will now adjust the parameters to ensure the overflowing property
(iv) as well as the inclusions

Qs C Qs (3.16)

Let f € A, g € Vy, and X = S)(g). By (iii), RY(X) C Bpn;(20) is a
graph over E}y , with small vertical slope (bounded by 1/8). By (i),
RN f and RY g are very close:

IRYg — RV f|| < po/4 < d/4.

Hence the horizontal projection of RY (X') onto Ej,n ; belongs to By ;(6/2).
On the other hand, the vertical boundary 9“Qpv s is projected to

OB} ;(6). Hence RN (X) N 0"Qpry = 0.

Assume now that there exists an h € 0X such that RVh € QRNf.
Then h € 0S(g) and hence h € 0A¢(g). It follows that the hyperbolic
distance between RNh and RNg in RV (Af(g)) is bounded from below
by some x' = #'(r) > 0. But since R¥(A;(g)) belongs to a compact
class G¢,, of quadratic-like families (Theorem 2.22), distpy,(RVh, a) >

e =¢e(k') > 0, where a = II;(R" g) € Upn; and the hyperbolic distance
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is measured in the vertical fiber of the tube Pgn ;. But it is impossible,
provided 7 < .

So, if 7 satisfies the last estimate, then the R"-image of each box Q;
overflows Q) gy p. However, with this choice we can violate inclusions
(3.16). But by Corollary 2.23, the vertical diameter of the tubes )
goes to 0 as the renormalization period p(f) goes to co. Hence there
exists a period p such that (3.16) is satisfied provided p(f) > p. Let
us redefine the box @ with p(f) < p to coincide with Qf. Now all
the inclusions (3.16) are satisfied, while the overflowing property is still
satisfied for sufficiently high periods as required by (iv). O

Remark. 1t might be possible to work directly with the vertical tubes
Yy instead of the bidisks ().

3.7.3. Completion of the proof of Theorem 3.15. Let X be the disjoint
union of the Banach spaces By, f € A, and X° C X be the disjoint
union of the corresponding bidisks ();. The spaces By will be called
the Banach fibers of X over A. Due to property (i) of Lemma 3.16, the
renormalization RY : A — A naturally lifts to an operator RV : X —
X fibered over A.

By Lemma 3.12, hyperbolicity of R on A would follow from the
uniform hyperbolicity of the periodic points of R. Assume the contrary:
A=1.

For 7 € (0,1) near 1, let us consider the fiberwise linear contraction

T, X=X, f+o=f+19, feA ¢cbBy.

Consider the perturbation L, : X° — X of RN by postcomposing RV
with this contraction: L, = T, o RY. Since A = 1, some periodic point
fr of period p becomes attracting under this perturbation. Consider
its basin of attraction:

A={heX®: LE(h) € Qpusny, k=0,1,...,
ILE(h) — R*™(f,)||gev p — 0 as k — oo}

If the vertical size of the bidisks (), is sufficiently small compared with
their horizontal size (property (viii) of Lemma 3.16), then by Lemma
7.1 from Appendix 3, there is an [ and a map

gr € F°Qpy. NA. (3.17)
The overflowing property (iv) implies that
LT(asqu—) N QRNfT = @ if p(fT) Z p
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Hence f, shadowed by ¢, satisfying (3.17) may belong only to finitely
many renormalization strips Ty, with p(M) < p. By (3.14),

X7, (fr) = Xz, (97)] = 69 > 0. (3.18)

Since the curves R¥ (A[), f € A, belong to some class Gé,,» a similar
estimate is valid for them:

|XRNf7— (RNfT) — XRNf, (LT(gT))| > 51 > 07

and hence R f, also may belong only to finitely many renormalization
strips. Repeating this argument for the further iterates, we conclude
that all the renormalizations RV* f, may belong only to finitely many
renormalization strips (depending on k).

By Lemma 2.2, we can pass to limits f = lim f, and ¢ = limg,,
along some sequence 7, — 1. Since the renormalizations of the maps
fr may belong only to finitely many renormalization strips, the limit
map f is infinitely renormalizable. By Lemma 2.16, the map ¢ is also
infinitely renormalizable with the same combinatorial type as f. By
the Rigidity Theorem 2.24, g must be hybrid equivalent to f. But on
the other hand, by (3.18) xr(g) # x(f) - contradiction. O

3.8. Unstable foliation.

3.8.1. Statement. We will now construct the global unstable foliation of
the horseshoe A. We will show, in particular, that the global unstable
leaves transversally pass through all real hybrid classes except the cusp
one.

Theorem 3.17. There is a family W*" of holomorphic curves, “unsta-
ble leaves”, W"(f), f € A, satisfying the following properties:

a) There is a well-defined branch R™|W*"(f) such that
ROWY(f) C WH(R 1 f);

b) If g € W¥(f) then distpon (R g, R7"f) < Cp"
with C' = C(g) > 0 and p = p(e) € (0,1);

¢) Each unstable leaf WY(f) transversally intersects every hybrid
class H, with ¢ € [=2,1/4 — €] at a single point g € Or;

d) The family W* of the unstable leaves is normal? over

Y= wHnx-21/4—¢;
feA

e) The renormalization R has uniformly bounded distortion on all
the unstable leaves;

2See the definition of normality in §2.2.5
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f) The straightening x : W*(f) — QP is uniformly quasi-conformal;
g) The real traces W"(f) N Qg of the leaves are pairwise disjoint.

The proof will be based on the discussion in §3.7, and the notations
will be adopted from there without further comments. We will split
the proof into several steps.

3.8.2. Vertical expansion. We can now add to the properties (i)-(ix)
from Lemma 3.16 the property of uniform vertical expansion:

For any p € (0,1), there exists an N such that in the corresponding
family of special bidisks (); the following estimate holds:

IDRN(g) vl|lpny > p~ 0l fEA, g€Qy, veAyg). 519)
3.19

Indeed, hyperbolicity of the horseshoe (Theorem 3.15) implies that
there exists an N such that estimate (3.19) is valid for ¢ = f and
v € Ay. By the Holder estimate for the transverse derivative (3.3), it is
also valid for g € Vy and v € A¢(g). By the bounded vertical distortion
(ix), it is valid for any g € Q.

3.8.3. Local unstable manifolds. Take a small number ¢ € (0,1) and
scale down all the vertical cross-sections Sy, f € A, by this factor.
We obtain a family of special bidisks Q’f C Q. Let us consider the
family & of holomorphic curves v C Q) via f whose tangent lines stay
within the corresponding family of cones Af(g), g € Q;. Consider also
a similar family X} in @ but with additional assumption that these
curves are properly embedded into (), i.e., 9y € 9°Q)'.

Ify € Xpand R¥y C Qpey, k= 0,...,1, then R*yis a curve of Xps.
Let D; be the projection of R*y onto Sgey via the holonomy along
the foliation Fri;. The vertical expanding property (3.19), bounded
distortion property (ix), and the uniform transverse quasi-conformality
of the foliations Fy imply that the domains D}, are quasi-disks with
bounded shape around f; (i.e., these disks have comparable outer and
inner radii around f;). By the vertical expanding property, the size of
these disks grows exponentially in k.

It follows that there exists an [ such that the curves R¥~y intersect
O*Qpr g for k > 1. Since the disks Dy have bounded shape, the curves
RF~y are properly embedded into Q' Iz

Ry N Qs € X (3.20)
Now we can construct the local unstable leaves IV} in the usual way

by letting ‘ .
I/Vlzéc(f) = klggoR Yk
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where v_j, is an arbitrary curve of X+, and R is understood as the
“cut-off” iterate: Ry N Qg for v € &),. Moreover,

Weef)={9€Qr:39-n€Qrny, Rgn1=9,, n=0,1,...},
(3.21)

where R™"f € A is well defined by Lemma 2.15. By the overflowing
property (3.20), these leaves intersect @y properly

Let now W (f) = RN(WE.(R™Nf)). Property (iv) and (viii) of
Lemma 3.16 imply that for some § > 0 and ¢ > 0, the leaves W2 (f)
intersect bidisks E}(0) x E}(¢) C Q; properly. This implies that this
family of leaves is normal.

3.8.4. Global unstable leaves. We will now globalize the local leaves
I/Tfféc(f) by iterating them forward. For f € A, let J} stand for the set of
real quadratic-like maps g € W (f) which are n times renormalizable
with the same combinatorics as f and such that x(R"g) € [-2,1/4—¢].
In other other words, this is the truncated renormalization window of
R™ in W (f) around f (see §1.5 and §2.3.2). Let j}} = RN(JEJI,%).

Lemma 3.18. For all sufficiently big n, the leaves R"( ~}‘), f e A,
intersect all hybrid classes H. with ¢ € [—2, 1/4 — €].

Proof. By Theorem 3.8, any combinatorial past
T_:{...,J_Q,J_l,c}, JieJ, CE[—2, 1/4—6]

can be realized by a one-sided tower {..., g 1, go} with absolute bounds:
mod(g_x) > v > 0. On the other hand, take a two-sided tower
{fe}2 . C A with combinatorics {J;}52 . which has the same com-
binatorial past as 7_. By Lemma 3.6, distyon(f_x,9-x) < ¢ for all
k > lp(¢). Hence for sufficiently big k’s, g_, C By_, (if the slices By
were chosen appropriately), and

Ng—r — f-kllf, = 0 as k — oc. (3.22)

Remark. The “appropriate” choice of the slices By = By () means
under the circumstances that disty (0V (f), J(f)) < n(v), (where disty
stands for the Hausdorff distance between sets). This n > 0 should
be selected so small that if ¢ : U — U’ is a quadratic-like map with
mod(U' N\ U) > v and disty (K (g), K(f)) < n, then U D V(f).

Properties (iv) and (viii) of Lemma 3.16 imply that the straightening
x(RY(Q; N C)) covers an e-neighborhood of x(f) in M°, with an ab-
solute ¢ > 0. By (3.22), x(9-(nsn)) eventually (for n > 1 = I(g))
belongs to the e-neighborhood of f (,yn) in [-2,1/4 — €|. Hence
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X(9-m+n)) € X(Qf_yn))- Since the bidisks @ have a definite hor-
izontal size (property (vi)), g—m4n) € @y (., foralln > [. By (3.21),
G—n+n) € Wit f-(msn)), Since g_(m4n) is clearly n 4+ N times renor-
malizable, it belongs to JEJ_“(]LNV. Thus, gy € Jjnf for n > (), and
the conclusion follows. O

Normality of the family of local unstable manifolds W% (f) and
transverse control of the renormalization (Lemma §3.10) imply (simi-
larly to the proof of the overflowing property (iv) from Lemma 3.16)
that for any n there are simply connected domains €2} C Wi (f) con-
taining jj’} such that R"| jj’} admits an analytic continuation to QT} and
the family of curves R”(Q?), f € A, is normal. Let us define the global
unstable leaves as the images of these domains:

Wh(f) = R"(Q), f € A.

These global leaves W*( f) satisfy condition a) of the theorem since the
local leaves do. They satisfy b) by (3.19).

By Lemma 3.18, any leaf W*"(f) intersects any hybrid class #,,
¢ € [-2,1/4 — ¢]. By Theorem 3.8, the intersection point is unique.
Transversality of the intersection follows from the corresponding prop-
erty of the local unstable leaves and transverse non-singularity of R.

The normality condition d) is satisfied by construction. It implies
e) by the Koebe Distortion Theorem and f) by Theorem 2.4. The last
condition g) follows from Lemma 2.15.

Theorem 3.17 (and thus the Renormalization Theorem) is proven. O

4. CONSEQUENCES

4.1. Proof of Theorem 1.3. Let us take any infinitely renormalizable
parameter value ¢ € Z. By Theorem 3.7, there is a point f € A with

x(f) =c. Let
W (f) =w"(f)Nnx~'[-2,1/4 €.

Then J; = R (Wg(R"f)) C Wg(f) (see §3.8.4 for the definition of
J?). By Theorem 3.17,

diamJ}}—>Oasn—>oo.

Moreover, the same theorem implies (by means of the standard hyper-
bolic estimate of the distortion) that the map

R": T — WE(R"f) (4.1)

has a uniformly bounded distortion.
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For g € A, let us consider the interval

L(g) = Wi(g) N X~ (=3/4, 1/4 —¢)
consisting of maps h € Wj(g) with attracting fixed point. Since the
straightening x : W§(g) — [—2, 1/4 — €] is uniformly quasi-symmetric
(by Theorem 3.17),

diam L(g)/ diam Wg(g) > 6 >0

for all g € A.

Let now S,(f) = R™™(L(R"f)) C J}. Since the distortion of (4.1)
is bounded, diam S, (f)/diamJ} > 6, > for all f and n. But the
maps in S,(f) are only n times renormalizable. Hence the set of in-
finitely renormalizable maps has definite gaps in arbitrary small scales
on W§(f) near f. Using once more that the straightening is uniformly
quasi-symmetric we conclude that the same property holds in the pa-
rameter interval [—2, 1/4 — €| near ¢. Thus, ¢ is not a density point of
Z, and the Lebesgue Density Points Theorem completes the proof. O

4.2. Proof of Theorem 1.5. Let J = J/'(¢). As in the above proof,
let us consider the interval I = J} C W*(f), f € A, such that x(I) =
J. Then

o"J =xoR"ox!|J
As R"™|I has bounded distortion and x is uniformly quasi-symmetric,
the conclusion follows. O

4.3. Proof of Theorem 1.6. Since by Theorem 3.17, the family
W of unstable leaves is normal, there is a neighborhood € C M°
of [-2, 1/4 — €] in the Mandelbrot set covered by the straightening
X(W*(f)) of any leaf. On the other hand, by Lemma 2.23, the maxi-
mal Mandelbrot copies M € M shrink as p(M) — oco. Hence there is
a p such that x(W*(f)) D M for any f € A and any M € M with
p(M) = p.
Take a map f € A with x(f) = c. Let

MO(f) D M(f)=M'(f) D M*(f) D> f

stand for the nest of the Mandelbrot copies in the unstable leaf W*( f)
containing f. We have shown that if p(R"f) > p then M(R"f) €
W*(R"f). But M™(f) = R~"M(R"f), and the map R~" is contracting
on the unstable foliation. It follows that diam M™(f) — 0, provided
there is a subsequence ny — oo such that p(R™ f) > p.

The Mandelbrot sets M™ have a quasi-standard shape because on
the unstable foliation the renormalization iterates K=" have bounded
non-linearity and the straightening y has bounded dilatation. O
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5. APPENDIX 1: ELEMENTS OF ANALYTIC FUNCTION THEORY IN
BANACH SPACES

Here we will state several basic facts of the analytic function theory
in Banach spaces referring to [L5, §11.1] for proofs or references.

Given a complex Banach space B, let B,(x) stand for the ball of
radius 7 centered at x in B, and let B, = B,(0). Given another Banach
space D, D,(z) and D, will have the similar meaning,.

Cauchy Inequality. Let f : (By,0) — (D1,0) be a holomorphic map
between two Banach balls. Then ||Df(0)|| < 1. Moreover, for x € By,

1
L=l

IDf ()] <

The Cauchy Inequality yields:

Schwarz Lemma. Letr < 1/2and f : (B1,0) — (D,,0) be a complex
analytic map between two Banach balls. Then the restriction of f
onto the ball B, is contracting: ||f(z) — f(y)|| < q||lx — y||, where
g=r/(1-r)<1.

Let us state a couple of facts on the intersection properties between
analytic submanifolds which provide a tool to the transversality results.

Let X and S be two connected submanifolds in the Banach space
B intersecting at point . Assume that codimX = dimS$ = 1 and
S C X. Let us define the intersection multiplicity o between X and S
at x as follows. Select a local coordinate system (w, z) near z in such
a way that x = 0 and X = {z = 0}. Let us analytically parametrize S
near 0: z = 2(t),w = w(t), 2(0) = 0,w(0) = 0. Then by definition, o
is the multiplicity of the root of z(t) at ¢ = 0.

Hurwitz Theorem. Under the above circumstances, let us consider
a submanifold Y of codimension one obtained by a small perturbation
of X. Then S has o intersection points with ) near x counted with
multiplicity.

As usual, a foliation of some analytic Banach manifold is called
holomorphic/smooth if it can be locally straightened by a holomor-
phic/smooth change of variable.

Intersection Lemma. Let F be a codimension-one holomorphic fo-
liation in a domain of a Banach space. Let S be a one-dimensional
complex analytic submanifold intersecting a leaf Ly of the foliation at
a point x with multiplicity o. Then S has o simple intersection points
with any nearby leaf.



70 MIKHAIL LYUBICH

Corollary 5.1. Under the circumstances of the above lemma, S is
transverse to Lo at x if and only if it has a single intersection point
near x with all nearby leaves.

Let X C C be a subset of the complex plane. A holomorphic motion
of X over a Banach ball (B;,0) (or, more generally, over a pointed
complex analytic Banach manifold) is a a family of injections hy :
X — C, \ € By, with hy = id, holomorphically depending on A € B;
(for any given z € X). The graphs of the functions A — hy(z), z € X,
form a foliation F (or rather a lamination as it is partially defined) in
By x C with codimension-one complex analytic leaves. This is a ““dual”
viewpoint on holomorphic motions.

Given two complex one-dimensional transversals & and 7T to the
lamination F in B; x C, we have a partially defined holonomy & — T .
We say that this map is locally quasi-conformal if it admits local quasi-
conformal extensions near any (J,z) € S.

Given two points A,y € By, let us define the hyperbolic distance
p(A, 1) in By as the hyperbolic distance between A and g in the one-
dimensional complex slice A + (. — ) passing through these points in
B;.

A-Lemma. Holomorphic motion hy of a set X over a Banach ball B;
is transversally locally quasi-conformal. The local dilatation K of the
holonomy from (), z) € S to (i, () € T depends only on the hyperbolic
distance p between the points \ and p in By. Moreover, K =1+ O(p)
as p — 0.

6. APPENDIX 2: COMPLEX STRUCTURE ON THE SPACE OF
QUADRATIC-LIKE GERMS

Let us consider the space Q of quadratic-like germs.

Let V be the set of topological discs V' > 0 with piecewise smooth
boundary symmetric with respect to the origin. Let By denote the
affine space of normalized even analytic functions f(z) = ¢ + 2% +
Y kst apz?* on V € V continuous up to the boundary supplied with
sup-norm || -||y. Let By (f,e) stand for the e-ball in this space centered
at f. We will identify the affine space By with its tangent linear space
by putting the origin at the point f(z) = 22. For U C V, let jyyv :
By — By stand for the restriction operator.

If amap f:V — V'is quadratic-like then all nearby maps g € By
are also quadratic-like on a slightly smaller domain. Thus, we have a
natural inclusion jy of some Banach ball By (f,¢) into Q. We will call
it a Banach ball or a Banach slice of Q. Somewhat loosely, we will also
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use notation Qy for such a Banach slice (without specifying f and ).
The inclusions jy : Qy — Q play a role of Banach charts on @ (though
Q is not going to be a Banach manifold).

Lemma 6.1. The family of local charts jy satisfies the following prop-
erties:

P1: countable base and compactness. There exists a countable family
of Banach slices Q,, = Qy, with the following property. For any
f € Qy, there is ad > 0 and a Banach slice Q,, such that'V,, €V,
and the Banach ball By (f,0) C Q is compactly embedded into Q,, .

P2: lifting of analyticity. For W C 'V, the inclusion jw,y : Qv — Bw
15 complex analytic. Moreover, let U € V. Let us consider a
locally bounded map ¢ : V — By defined on a domain V in some
Banach space. Assume that the map jwyo¢ : V — By is analytic.
Then the map juy o ¢ : V — By is analytic as well.

P3: density. If W C V, then the space By is dense in By .

Proof. P1. Consider a countable family V of topological disks V,, € V
with polygonal boundary and rational vertices. Then any disk V € V
can be approximated by some V,, € V' from this family. Hence for any
quadratic-like map f € Qy, there exists a domain V,, € V such that
the restriction of f to V,, is still quadratic-like, i.e., f € Q, = Qy. .
Then the same is true for all nearby g € By (f, ).

Thus we have embedding By (f, ) — Q,. Since V,, € V, By (f,9) is
compact in @,, by Montel’s theorem.

P2. The first statement is obvious. Let us prove the lifting property.
Without loss of generality ¢ can be assumed to be bounded. Let us
first assume that V' and V are round disks in C centered at 0, V =
Dg, V = D.. Let us use the notation A — ¢,(2), A € V, z € V. Since
for any A € V, ¢, is a holomorphic in the round disk V', it admits an
expansion

PA(2) = Zak()\)z’“, NeV, zeV.
k=0

Let us show that this series converges uniformly on compact subsets of
Y xV.

Since the image of ¢ bounded in By, |¢x(2)] < M for all A € V,
z € V. By the Cauchy inequality,

M
lag(A)] < T AEV. (6.1)
Since jw,vo¢ : V — By is holomorphic, ¢5(z) is holomorphic in both
variables on VxW. Hence the Taylor coefficients ay () are holomorphic
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inA\eV=D.:
ag ()\) = Z ak,m)\m.
m=0
Then by (6.1) and the Cauchy inequality,
M
A< .
| <

Hence for |\| < 0 < ¢, |z| < p < R we obtain:

o0 o0
D lakml Al <)

Thus this series converges unformly in the bidisk Ds xD,, so that ¢, (z)
is holomorphic in V x V. Hence ¢ : ¥V — By is holomorphic for any
UeV.

Let now V be an arbitrary Banach domain. Then we have proven
that ¢ : V — By is holomorphic on analytic curves in V. Since ¢ is
bounded, it follows that ¢ is holomorphic (see [D1]).

Finally, if V' is an arbitrary domain in C, then considering analytic
continuation of ¢, along chains of round disks in V', we conclude that
¢ is holomorphic on V x V| which yields the assertion.

=0 (1) 2 () <

k=0

P3. This property follows from a classical theorem saying that any
function f € By can be uniformly approximated by a polynomial. [

Given a set X C @, the intersections Xy = X N Qy = j;lX well
be called a Banach slice of X. By the intrinsic (or Banach) topol-
ogy/metric on the slice Qy we mean the topology /metric induced from
the Banach space By. We endow Q with the finest topology which
makes all the local charts jy, continuous. In other words, a set V C Q
is declared to be open if and only if all its Banach slices Vy are intrin-
sically open.

Lemma 6.2. The topological space Q satisfies the following properties:

(i) A sequence f = {f.} C Q converges to f € Q if and only if there
exists a finite family of Banach slices Q; = Qy, such that f € NQ;,
f C UQ;, and the corresponding subsequences f* = fNQ; converge
to f in the intrinsic topology of Q;.

(i) A set K C Q is compact (or sequentially compact) if and only if
there exists a finite family of Banach slices Q; and intrinsically
compact subsets K; C Q; such that IC = UKC;. Thus, compactness
and sequential compactness in Q are equivalent.
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(i) A compact set K C Q is metrizable with a “Montel metric” distason
induced from some By containing IC. The Montel metrics induced
from different domains V' are Holder equivalent.

(iv) For a compact set K C Q, there exists d = d(K) > 0 with the
following property. Any covering of K with a family of Banach
balls By (5)(f,e(f)) such that dist(J(f),0V (f)) < d admits a finite

subcovering.

Proof. (i) Since the inclusions Qy — Q are continuous, any sequence
f = 1{f.} C Qv converging to f in Qy converges to f in Q as well.
Hence if f splits in finitely many subsequences converging to f in slices
Q;, then the whole sequence converges to f in Q.

Vice versa, let us consider the family F of Banach balls By (f, ¢) com-
pactly contained in some Qy,, W € V. Let us assume that a sequence
f converges to f in Q but is not covered by finitely many Banach balls
of F. By countability property P1, we can select a subsequence which
hits each Banach ball of F at most finitely many times (and never
hits f itself). By definition of the Q topology, the complement of this
sequence is a neighborhood of f - contradiction.

So let is consider finitely many Banach balls V, € F compactly
contained in Qj ) whose union covers f. Any limit point g € Qk(s) of
the subsequence f* = f NV, in the intrinsic topology of Qk(s) 1s also
a limit point of this subsequence in Q. Since f converges to f in Q, g
must coincide with f. Hence f* converges to f in the intrinsic topology
of Qk(s)-

(ii) The argument is similar to the previous one.

The “if” direction is obvious. So assume K is compact (or sequen-
tially compact). Let us consider the family F of Banach balls as above.
If I is not covered with finitely many of these balls, then there is a
sequence {f,} C K which hits every V; only finitely many times. By
definition of the Q topology, this sequence does not have accumulation
points - contradiction.

Thus K is covered with finitely many Banach balls V,. As each V; is
compactly contained in some slice Q;(,), the statement follows.

(iii) By the previous result, I belongs to a finite union of Banach
slices Qy.. Hence there is a neighborhood V' of 0 (not necessarily of
family V) such that V' € NV}, so that £ C By. Thus we can endow
KC with the Banach metric induced from By,. Since the inclusion jy :
K — By is continuous, it is a homeomorphism onto the image. Thus
the above Banach metric is compatible with the topology of K.

All these metrics are Holder equivalent by the Hadamard Three Cir-
cles Theorem (see [L5, Lemma 11.5]).
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(iv) Let us consider compact sets K; C Qy, = Q; from (ii). Select a
d = d(K) > 0 in such a way that for f € ;, dist(J(f),0V;) > d > 0.
Then for f € K;, V(f) C V; and hence Q; C By ). It follows that the
slice By (s)(f,e(f)) N Q; is open in the intrinsic topology of Q;. Since
IC; is compact in this topology, it admits a finite subcovering by these
slices. O

We say that the family of local charts jy endows Q with complex
analytic structure modeled on the family of Banach spaces By. More
generally, if we have a set § and a family of inclusions jy : Sy — S,
where Sy is an open set in By, satisfying properties P1-P1 we say that
S is endowed with complex analytic structure modeled on the family
of Banach spaces By. In what follows we will say briefly that S is a
complex space. For instance, the hybrid class of 22,

Ho={fe€Q: f(0) =0},

is clearly a complex space.

Remark. Since the transit maps jy,y in Q are affine, Q is actually
endowed with a complex affine structure. Then the hybrid class H,
becomes a codimension-one affine subspace in Q.

Let us consider two complex spaces S! and S2. A map ¢ : S' — S?
is called holomorphic if for any f € S8' and any Banach slice 8} > f,
there is an & > 0 and a Banach slice S such that

¢(Bu(f,e)) C S, (6.2)

and the restriction ¢ : By (f,e) — S% is analytic in the Banach sense.
Note that by P2, this property is independent of the choice of slice SZ
satisfying (6.2) if to allow a little shrinking of V. In the case when (2 is
a domain in C, a holomorphic map v : 2 — § is called a holomorphic
curve in S.

A subset Q% will be called a slice of Q if it is a union of some family
of Banach balls By (f,e) C Qy. It naturally inherits from Q complex
analytic structure.

Let us consider a complex space S and a point f € §. Let Vy =
{VeV: feQy}. Letuscall apoint f of a complex space S regularif
V is a directed set, i.e., for any U and V' in V, there exists a W € V;
contained in U N'V. At such a point we can define the tangent space
T (S as the inductive limit of the Banach spaces By, V € V¢ (see [L5,
Appendix 2] for a discussion of inductive limits). If all points of a space
S are regular, we call it a complex manifold modeled on the family of
Banach spaces.
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In the case of S = Q, V; is the set of topological disks V' on which
f is quadratic-like. All points of the connectedness locus C are regular
(in particular, all points of the space H, are regular). The tangent
space T;Q, f € C, is identified with the space of germs of holomorphic
vector fields v(z) near the filled Julia set K (f).

If $: S' — 82 is a holomorphic map between complex spaces and
f, o(f) are regular points in the corresponding spaces, then we can
naturally define the differential D¢(f) : T;S* — Ty S? by restricting
¢ to the Banach slices. The differential continuously depends on f in
the following sense. If f, — f and V' € Vy, then for sufficiently big n,
the differentials D¢(f,,) are well-defined on the space By, map it into
some By (independent of n), and converge to D¢(f) : By — By in the
operator topology.

Let us now discuss a notion of a submanifold in a complex space S.
We will deal with two situations.

1) Finite dimensional submanifold (more generally, a Banach sub-
manifold) is a subset in & which locally sits in some Banach slice By
and is submanifold therein. By P2, this definition is independent of
the choice of the slice By (up to a slight shrinking of U).

2) Regular parametrized submanifold. Let M be a complex manifold
modeled on a family of Banach spaces. An analytic map¢: M — S
into a regular part of S is called immersion if for any m € M the dif-
ferential Di(m) is a linear homeomorphism onto its image. The image
X of an injective immersion ¢ is called an immersed submanifold. 1t is
called an (embedded) submanifold if additionally i is a homeomorphism
onto X supplied with the induced topology. For example, if there is
an analytic projection 7 : § — M such that m o7 = id then X is a
submanifold in M.

Ifi: (M,m)— (X, f) C(S,f) is an embedding, then the tangent
space T;X is defined as the image of the differential Di(m). It is a
closed linear subspace in T;Q. Its codimension is called the codimen-
sion of X at f. We say that a submanifold X has codimension d if it
has codimension d at all its points.

Two submanifolds X and )Y in § are called transverse at a point
geXNYitT X T, Y =T,S.

Let is finally make a remark on the space £ of real analytic circle
double coverings f : V' — V' (see the definition in §2.1). This space is
modeled on the family of Banach spaces By, of even analytic functions
on f : V — C which commute with the involution about the circle.
This latter condition turns B§ into the real (rather than complex)
Banach space. Hence the above discussion allows us to supply &£ only
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with topology and real analytic structure modeled on the family of
real Banach spaces. However, it is shown in [L5, Lemma 4.3] that £ is
naturally homeomorphic to the hybrid class Hy and thus inherits the
complex structure from that space.

7. APPENDIX 3: BASINS OF ATTRACTION

In this appendix we will proof a modified version of Lemma 2.1 from
[L5], which is the key to the construction of shadowing orbits (see §3.7).
Consider a direct decomposition of a complex Banach space B into two
subspaces E" and E" called respectively “horizontal” and “vertical”.
Let pp/p : B — EMv stand for the horizontal /vertical projections, and
let u"/? stand for the corresponding components of a vector u € B. As
n (3.4), C% will stand for the vertical tangent 6-cones in B.

Take two domains A C E" and S C EV containing 0. Consider a do-
main () C B containing 0 which is foliated by codimension-one complex
analytic submanifolds H,. represented as graphs of analytic functions
¢ : A — C, c € S. (In other words, we consider a holomorphic motion
of S over A which “fills in” Q.) We call Q ~ A x S a foliated bidisk
over A with zero section S. Let 9"Q = 0Q \ pj 'OA.

Lemma 7.1. Let 0 < n < 6 < 7/2 and
0<e<tgh—tgn. (7.1)

Consider the following data:

(i) A decomposed complex Banach space B = E"® EY with dim E? =
d < oo;
(ii) A complex analytic operator T : (D,0) — (B,0) defined in a
neighborhood D of 0;
(iii) A foliated bidisk Q ~ A x S C D over the unit ball A in E" such
that dist(0,0S) < ¢;
(iv) A forward invariant domain A C Q such that A C D.
Assume the following properties:
H1. The spectrum of the differential DT (0) is contained in the open
unit disk;
H2. A s contained in a basin of 0; moreover, if g € 0A N Q then
Tge 0A;
H3. The cone field {CU} is invariant: DT (g)(CY) C C%,;
H4. The slopes of the leaves L., ¢ € S, are bounded by tgn.
Then there exists a point g € 0A N Q.
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Proof. Let "A = 0A N p, 'O\ and 9"A = 0A < 0'A. We will show
that 9"A N 0Q # (). Assume the contrary:

MANIQ = . (7.2)

Let us consider a family G of immersed analytic manifolds ¢ : (2,0) —
(I',0), where Q = Qy is a bounded domain in C* and I’ = Ty, C A,
with the following properties:

Al. For any z € Q, f = ¢(z), the tangent space T,I' = DT,(C?),
belongs to the cone C?.

A2. The manifolds are properly immersed into A in the sense that
if a curve y(t) C Q, 0 < t < oo, tends to 02 as t — oo then ¥(y(t))
tends to the boundary J0A.

Let us define OT', I' € G as the set of limit points of all curves ()
as above. Then

or C O"A, (7.3)

since assumptions H4, A1, (7.1) and (iii) imply that 0" does not inter-
sect 0" A.

Note that the family G is non-empty: just let I' be the connected
component of £V N A.

Furthermore, by Property Al, the projection p, : I' — E” of any
[' € G onto the vertical subspace is non-singular. Moreover, for any
tangent vector u € T I,

[l | =l (7.4)

Take now two balls D" = D} € E" and D" = D! C E" centered at
the origin where the radii r and p satisfy the property

p<rtgl (7.5)

and are so small that the bidisk A = D" x D? is contained in A. Let G
denote the family of immersed holomorphic submanifolds v:Q—Tin
A satisfying properties Al and A2 which are obtained from properties
Al and A2 by replacing the domain A with the bidisk A. Moreover, if
' € G, then by (7.5) oI C 9" A.

Given a manifold ¢ : @ — T of class G, the map p, o ¢ : Q — DV is
non-singular and proper. Hence it is a diffeomorphism. It follows that
the curve I is a graph of a holomorphic function D} — D!

There is a natural restrictiog operator G — é . Namely, given a curve
¢ : @ — [ in family G, let 2 be the connected component of A
containing 0, and let ¢) : 2 — I be the restriction of ¥ to it.
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Let us supply the manifolds I' € G with the Kobayashi metrics.
Recall that the Kobayashi norm of a tangent vector v € T%I" is defined
as

[o][p = inf lwllp,
v

where ||w||p stands for the Poincaré norm of a vector w € TyD, and
the infimum is taken over all holomorphic curves v : (D, w) — (T, v)
that factor via the parametrization ¢ : {2 — I'. The Kobayashi metric
is invariant under holomorphic coverings and increases under shrinking
the manifold.

Remark. A covering map between immersed manifolds is defined as a
local homeomorphism satisfying the curve lifting property (where local
homeomorphisms and curves are understood in terms of parametriza-
tions of the manifolds). A holomorphic covering of finite degree can be
also defined as a proper non-singular holomorphic map.

For a tangent vector u € To[, T € G, its Kobayashi norm is uni-
formly subordinate to the Banach one:

lullr < Clull, (7.6)

where the constant C' is independent of u. Indeed

lulle < flulls = [lpoullpe-

On the other hand, by (7.4),

[ull = {lpoull = [[pyull pv-

Let us now consider a manifold transformation 7, : I'y, = Droy,
I' € G. By the invariant cone field assumption H3, T o) : Q,, — A
is an immersion satisfying property Al. By assumption H3 and (7.2),
it satisfies A2 as well. Thus 7, transforms G into itself. Moreover,
the map 7" : ' — T,I' is proper and non-singular, and hence is a
holomorphic covering of finite degree.

Since the Kobayashi metric is invariant under holomorphic coverings,
for any tangent vector u € Tyl we have:

1DT™ (w)]

mer = |lullr.
On the other hand, since 0 is an attracting point,
|DT"(u)]| - 0 as n — oo.

These last two estimates contradict (7.6). O
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