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1. INTRODUCTION

The Mandelbrot set M is the bifurcation diagram of the complex quadratic family
P.: z +— 2*4cviewed dynamically (see Figure 1). Despite the one line definition (see
below), this set has quite a complicated structure, so that there is a little chance to
understand it in full. Still, it is one of the simplest models to test some fundamental
dynamical issues.

One of the central problems is to understand the “geometry” of M. As this set
is “fractal”, this requires special geometric terms. There are some “macroscopic”
quantities which (like temperature or pressure in thermodynamics) can be measured
and characterize the global geometry of a set. The best established quantities of such
kind are associated to the notion of Hausdorff dimension. In particular, a “fractal set”
is usually defined as a set whose Hausdorft dimension is greater than the topological
dimension (see Mandelbrot [Man]). (Keep in mind a plane Jordan curve of positive
Lebesgue measure).

It is still unknown whether the boundary of the Mandelbrot set has zero Lebesgue
measure. However, by a remarkable result of Shishikura [Shl], M has Hausdorff
dimension 2, so that it is indeed fractal according to the previous definition.

The quadratic family is extremely rich. There is a great combinatorial diversity
in this family, and one wishes to estimate which combinatorial types prevail. A
basic classification of quadratics is motivated by the renormalization theory. At the
computer pictures one can see inside of M little copies of itself, all over the place
(see Figure 2). A quadratic polynomial P. is said to be renormalizable if ¢ belongs
to such a copy (different from the whole set). It is said to be twice renormalizable
if it belongs to a nest of two copies, etc. Let Z C M stand for the set of infinitely
renormalizable quadratics (which belong to infinite nests of little Mandelbrot sets),
and F = M\T.

Shishikura’s Theorem actually shows that the set FOM has dimension two but
does not tackle the problem of how big the set Z N dM is. This problem has been
floating around for a while. All kind of guesses has been made in the whole range

1



2 MIKHAIL LYUBICH

from naive 0 to 2. In this paper we develop a method which shows that the dimension
of TN OM is at least 1/2 of the dimension of the whole boundary 9M.

Figure 1. The Mandelbrot set.

Theorem 1.1. The set INAIM of infinitely renormalizable complex parameter values
on the boundary of M has Hausdorff dimension at least 1. The set TNR of infinitely
renormalizable real parameter values has Hausdorff dimension at least 1/2.

Briefly, the proof goes as follows. GGiven some non-renormalizable quadratic poly-
nomial f, we construct (by means of the “puzzle” machinery) a family of little Man-
delbrot sets whose geometry is under control. We estimate the critical exponent for
this family by one half of the “hyperbolic Hausdorff dimension” of the Julia set J(f).
Taking Shishikura’s polynomial f with the Julia set of hyperbolic dimension 2, we
obtain the above estimate.

Acknowledgement. Mitsu Shishikura has told me that by means of parabolic
bifurcation he can construct a set of infinitely renormalizable complex parameter
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values of dimension at least 1/2, and a set of infinitely renormalizable real parameter
values of dimension at least 1/3.
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Figure 2. A little copy of the Mandelbrot set.

2. PRELIMINARIES

2.1. General terminology and notations. Let C denote as usual the complex
plane; N={1,2,,...}; D(z,r) ={( € C:|( — z| < r}.

A topological disk is a simply connected domain in C. A topological annulus is a
doubly connected domain. The modulus of a topological annulus, mod A, is equal to
log(R/r), provided A is conformally equivalent to a round annulus {z : r < |z| < R}.
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We assume that the reader is familiar with the standard theory of quasi-conformal
maps (see e.g., [A] for a reference). We will use the abbreviation “qc¢” for quasi-
conformal maps, and “K-qc” for qc maps with dilatation bounded by K > 1.

2.2. Hausdorff dimension. For a detailed account of the notion of Hausdorfl di-
mension see e.g., [Mat]. To be definite, let everything below happen inside the com-
plex plane C.

Given a 6 > 0, the Hausdorff é-measure hs is defined as follows

hs(X) = 11_{% inf Z(diam U;)?,

where the infimum is taken over all coverings of X by sets U; of diameter at most
¢ > 0. For any X there is a unique critical exponent separating infinite and vanishing
values of the measure hs(X). This exponent is called the Hausdorff dimension of X
and is denoted by HD(X). Note that one can clearly use only round disks for the
sets U; in the above definition. Note also that if X = UX; then

(2.1) HD(X) = sup HD(X,).

Given a Borel measure g, the Hausdorff dimension HD(p) is defined as the infimum
of the HD(.X) when X runs over all measurable sets of full measure.

Let X C C be a compact set invariant under certain analytic map f defined in a
neighborhood of X. Let us call such a set “dynamical”. A dynamical set X is called
hyperbolic if there exist C' > 0 and A > 1 such that for all z € X

IDf"(z)] > CA\", n=0,1,...

The hyperbolic dimension HDyy,(X) of a dynamical set X is defined as the supre-
mum of the dimensions of all invariant hyperbolic subsets of X (see [DU, Sh1]).

2.3. Quadratic family. Let us consider the complex quadratic family P, : z s 22+
c. The filled Julia set K. = K(P.) is defined as the set of non-escaping points (where
“escaping” means convergence to oo). The Julia set J. = .J(P.) is the boundary of
K.. 1t is a compact invariant subset of C. Moreover, J. is either totally disconnected
(Cantor) or connected depending on whether the the critical point 0 is escaping or
not.

The Mandelbrot set M is defined as the set of parameter values ¢ € C for which
the Julia set J. is connected. Notice that the Mandelbrot set is originated from a
big domain containing 0 and bounded by the “main cardioid”. It is specified by the
property that the maps in this domain have an attracting fixed point. This domain
will play a special role for our discussion.

Theorem A (Shishikura [Shl]). For a generic ¢ € OM, HDypyp(J.) = 2.

Here “genericity” is understood in the sense of Baire category as a property which
occurs on the complement of a countable union of nowhere dense sets.
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Note that, on the other hand, it is well-known that for a generic ¢ € dM, the orbit
of the critical point is dense in the Julia set J.. Such maps are non-renormalizable
in the sense explained below.

2.4. Quadratic-like maps and little Mandelbrot sets. There is a very fruitful
generalization of the notion of a quadratic polynomials due to Douady and Hubbard
[DH]. Let U € V be two topological discs. A branched double covering f: U — V' is
called a quadratic-like map. Unless otherwise is assumed, we normalize such a map
to put its critical point at the origin.

A quadratic-like map is usunally considered up to choice of domains U and V, so
that it should be more carefully called a quadratic-like germ. Let mod (f) = sup
mod (V \ U) where the supremum is taken over all possible choices of U and V. The
bigger mod (f), the better geometric control over f we have (the closer f to being
purely quadratic).

The filled Julia set K(f) of a quadratic-like map is also defined as the set of non-
escaping points (where now “escaping” means landing at the fundamental annulus
V' \ U under some iterate of f), and the Julia set J(f) is defined as the boundary of
K(f). For the Julia set of a quadratic-like map, there is the same dichotomy (either
Cantor or connected) as for a polynomial.

Assume now that we have an analytic quadratic-like family f = {f\ : Uy — Vi }
over a parameter domain D. Let us call such a family proper if f\0 € 9V, for
A € dD. For a proper quadratic-like family, let us define the winding number w(f) as
the winding number of the critical value f,0 around the critical point 0 when A goes
once around dD. A proper family is called unfolded if it has winding number 1.

Similarly to the polynomial case, the Mandelbrot set M(f) of a quadratic-like
family is defined as the set of parameter values A € D for which the Julia set J(f))
is connected. Let us now state the following fundamental result:

Theorem B (Douady & Hubbard [DH]). For any unfolded proper holomorphic
family f, the Mandelbrot set M(f) is canonically homeomorphic to the standard
Mandelbrot set M.

The canonical homeomorphism 7 : M(f) — M is also called straightening.

Theorem B provides a way to construct little Mandelbrot copies inside of M (see
Douady [D]). Assume that we managed to find an n € N, a parameter region
D C C and a proper unfolded quadratic-like family g. = P” : U. — V. over ¢, where
0 € U. @ V. are topological disks around the origin. Then by Theorem B this family
generates a little homeomorphic copy of the Mandelbrot set. Moreover, the maps P.
for which ¢ € M(f) are called renormalizable, and ¢. (considered up to rescaling) is
called the renormalization of P..

Note that for a renormalizable map f, the orbit of the critical point cannot accu-
mulate on the both fixed point. In particular, it is not dense in J(f).
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Given a quadratic-like family f = {f,\}, A € D, let

mod (f) = i&f; mod (fy).

Theorem C [L4]. For a proper unfolded quadratic-like family f over D, the straight-
ening 7 : M(f) — M admits a K-qc extension to D, with dilatation K depending
only on mod (f). Moreover K — 1 as mod (f) — oc.

2.5. Puzzle and parapuzzle. “Puzzle” is a powerful technique which opens many
locks of holomorphic dynamics. For complex quadratic polynomials it was introduced
by Yoccoz in 1990 (see [H] and [M]) as a tool to the celebrated MLC Conjecture
(“the Mandelbrot set is locally connected”), and has been successfully applied to
many other problems since then (see the survey [L5]). Let us start with a simple but
important consequence:

Proposition D [L1]. Let f be a non-renormalizable quadratic-like map, and @) C
J(f) be a compact invariant set which does not contain the critical point. Then ()
is hyperbolic.

(Note that, vice versa, obviously hyperbolic sets may not contain the critical point).

Below we will outline the author’s treatment on the puzzle whose detailed account
is given in [L2] - [L3]. Our approach is based on the idea of a generalized quadratic-like
map and a generalized renormalization. Let us consider a finite or infinite family of
topological disks U; compactly contained in a topological disk V. A map g : UU; — V
is called generalized quadratic-like if it is quadratic-like on one of these disks, labeled
as Uy, and a conformal diffeomorphism U; — V on the others. The filled Julia set
K(g) is defined as the set of points which never escape UU;.

Given a quadratic-like map, we construct (by means of the puzzle) a “principal
nest” VO O V! O ... of topological disks, and a sequence of generalized quadratic-
like maps ¢, : UV* — V"1 (where Vj* = V") called generalized renormalizations.
The map g, is constructed inductively as the first return map to V*=! (and a quite
special initial construction is needed for V?; note that this initial construction is not
quite canonical but involves some choice). The domains V" will also be called puzzle
pieces.

Let us now consider a proper unfolded quadratic-like family f, over a region D.
Let A\g € D. Then for each n, there is a parameter domain P" = P"(\o) (“parapuzzle
piece” ) such that all the maps fy, A € P™ have “the same combinatorics” up to level n.
This means that the domains of the generalized renormalizations g, : V", — ot

move continuously with A € P" (after an appropriate choice of the initial domains

VY).
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We call a holomorphic function ¥ ~-linear if it is univalent and has non-linearity

bounded by ~:
Y¥'(2)

<.

P (C)‘

We call it y-quadratic if it is a compos1t10n of a purely quadratic and a ~-linear
function.

Theorem E [L3]. Let f = {f\, A € D}, be a proper unfolded quadratic-like family.
Let Ao € D be a non-renormalizable parameter value. Then there is a subsequence
of levels n with the following properties:

o The quadratic-like family g, = {g,\ : Vi* — V™', X € P"(X) = P}, is

proper and unfolded;

e mod (g,) — oo;

o The maps g, are v,-quadratic, where ,, — 0 as n — oo;

e The critical value ¢,,(A) = ¢, (0) is v,-linear on P".

sup log

The last statement will allow us to compare the sizes of certain Julia and Mandel-
brot sets (according to the general philosophy of correspondence between dynamical
and parameter objects).

3. LINEAR MODEL.

Let us start with a piecewise linear model which will provide us good heuristics
of the phenomenon (see [PW] for a detailed discussion of this kind of models). Let
g : UU; — V be a piecewise linear map defined on the union of (perhaps infinitely
many) topological disks {/; with pairwise disjoint closures compactly contained in V.
Let Q(g) = {2z : ¢"z € UU;, n = 0,1,...} stand for the " Julia set” of g. Let X
denote the derivative of ¢|U;.

Let é.. denote the critical exponent for the sequence (A;)™!, defined by the following
equation:

(3.) Y=t

Lemma 3.1. For a piecewise linear map g : UU; — V', the Hausdorff dimension and
the critical exponent are equal: HD(Q(g)) = ber.

Proof. Let us start with the upper estimate for the dimension. Let

PE) =Y o

Then for any § > 6., P(8) < 1. For i = (ig,...1n_1), let UF = UL denote the

202

“cylinders” of rank n, that is, the topological disks mapped onto V under g", and
such that
g U cU,, k=0,...n—1.

10w ebn—1



8 MIKHAIL LYUBICH

Normalizing V' in such a way that diam V' =1, we have

1
diam Uﬁmin = ;|

NI

A

Hence
> (diamU7 ;) =P8)" —0 as n— oo.

Hence hs(Q(g)) = 0, and HD(Q(g)) < 6. As this holds for any 6 > 6., we conclude
that HD(K(g)) < e,

To estimate the dimension of Q(g) from below we will use a well-known Billingsley’s
trick exploiting measures with certain local properties (see [B]).

Take any 6 < é... Then P(6) > 1. Let us keep finitely many sets U; which
still satisfy this property. It is enough to show that the Hausdorff dimension of the
corresponding Julia set is at least 6. So keeping the same notations let us work
further with this truncated system.

Let p,, s denote a probability measure which assigns to every cylinder U the mass
(diam U7)°/ P(8)" (the particular choice of the measure with this property is not
important). Let 4 be any limit measure for sequence y,, 5. Clearly p is supported on

Q(g)-
Let us show that for any cylinder U;,

(3.2) ,u(U}) < (diam U;’i)ﬁ.
As supp 4 = Q(g) does not intersect (()U}{, it is enough to show that for any n,
figns(UF) < (diam UF)°.
This means by definition that
i(diam U")°
Pé)
or P(&§)" < P(8)"*. This is certainly true as P(6§) > 1, and (3.2) follows.

Let us now prove a similar estimate for disks D(z,r) centered at z € Q(g):

(3.3) u(D(z,r)) < Cre,

< (diam U;lz)é7

let U = U;l be the smallest cylindrical set circumscribed about D(z,r). Let us
first show that

(3.4) r > qdiam U,
with a ¢ independent of D(z,r). Indeed, f'D(z,7) = D(f'2, R) does not belong

to any U; (since otherwizse there would be a smaller cylinder circumscribed about
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D(z,r)). Hence

| R > int dlst(?UiaQ(Q))
diam V i diam V/

Since the map f' is linear, (3.4) follows.
Now (3.3) follows from (3.2) and (3.4):

p(D(z,7r)) < p(U) < (diam U)* < ¢~
Finally, let {X; = D(z;,7;)} be a covering of Q(g) by disks. Then
> (diam X;)° > OV p(X;) > O
Hence hs(Q(g)) > 0, and HD(Q(g)) > 6. O

=q> 0.

4. PROOF OF THEOREM 1.1

4.1. Basic construction. Let f = {f\} be a proper unfolded quadratic-like family
with M(f) = M. Let us start with a Shishikura’s non-renormalizable map f =
Fro = fo with HDyyp(J(f)) = 2 (see Theorem A). Let us consider the principle nest
of puzzle pieces V° O V! O ..., and the corresponding sequence of the generalized
renormalizations g, : U2, V" — V7L,

The map ¢, : Uz V)" — V=1 generates a Cantor set

(4.1) Q" ={zeV"liglrzeJV", m=0,1,...}.
i£0

Proposition D easily implies that

(4.2) limsup HD(Q") = HDyy, (J(f)) = 2

(and moreover, the subsequence for which HD(Q") — oo can be selected from the
subsequence provided by Theorem E).
Given a small p, let us fix a level n for which HD(Q") > 2 — p. Let us use the

following notation:

gzgn:UUi—>V,

=0
where Uy is the critical puzzle piece. We will also skip the label n in all associated
objects: (" = () etc.
Given a finite string ¢ = (79,...,%-1), tm € N, consider the cylinder

U={z:¢"2€U;,,, m=0,...,[—1}.
Let W5 C U; be the pull-back of Uy under the map ¢': U; — V.

Furthermore, let us consider the parapuzzle piece P 3 \g given by Theorem E, so
that for A € P all the maps f\ admit a generalized renormalization ¢y : UU; \ — V),
with the same combinatorics.
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The generalized quadratic-like family {g\} produces the following families M™! of
little Mandelbrot sets M; labeled by strings ¢ = (g, ...,%,-1), m € N. Let us consider
a proper unfolded quadratic-like family

(4.3) Gian=g Wiy = Vi, Ae P
Let M; C P be the Mandelbrot set of this family.

Let us consider the straightening map on the union of these Mandelbrot sets:
(4.4) 7:UM; — M.

Let Y = Y% C M be the set of infinitely renormalizable parameter values whose
“combinatorial type” is encoded by the sets M;:

(4.5) Y={\:m"(\) e uUM;, k=0,1...}.
We will show that HD()') is at least 1 — ¢ provided [ is sufficiently big.

4.2. Heuristic argument. Take a small quantifier v > 0. Let us pretend that the
maps ¢|U;, ¢ # 0, are y-linear. Then the linear model suggests that the dimension of
the corresponding Julia set ) = Q(g) is almost equal to the critical exponent 4., for

the series 3_(diam(U;))° (we normalize gy so that diam V; = 1). As HD(Q) > 2 — p,
> (diam U;)*7¢ > 1,

for some € = €(,p) — 0 as v — 0, p — 0. Hence for any A, there is a level [ such
that

(4.6) Z(dia,m Ui )P > A

li]=1
But diam W5,/ diam U; , = diam Uy (1 4+ O(7)). From here and (4.6) we conclude
that

(4.7) Z(diam Wiy )™ > A
HE
where A’ is arbitrary big for sufficiently big /.
Note now that the Julia set J(g;,) has size of order (diam W;,)>. Indeed, let
diam W; , = exp(—pu»), where py = mod (Vy \ W;,). Then

diam J(g;.,) ~ exp 11y /2" = (diam Wiy )2
k>0
Hence the critical exponent for the sequence of the diam J(g; ) is at least 1 — ¢/2.
But since the critical value function ¢(A) = ¢,(0) has bounded distortion, the
Mandelbrot sets M; have the comparable diameters (rel diam P), so that that their
critical exponent is also at least 1 —¢/2. Pretending that the map 7 is almost piecewise
linear we conclude from the linear model that the Hausdorfl dimension of ' is not
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much smaller than 1 as well. (Warning: one should be really careful here since 7 is
not even smooth. However, all the iterates 7 turn out to be uniformly (1 + v)-qc,
with a small v, which is good enough.)

4.3. Formal argument. Let us start with an estimate of the size of the Mandelbrot
set of a quadratic-like family (actually we will estimate the size of the domain bounded
by the main cardioid):

Lemma 4.1. Let ¢ : W — V be a quadratic-like map which ts of the form z +—
¢ o (2)*, where ¢ and b are univalent maps with distortion bounded by D, and
(0) = 0. Let ¢ = g(0) be the critical value of g. Then there is a constant L = L(D)
such that for ¢ < L(diam W)?/ diam V', g has an attracting fized point.

Proof. Since the desired inequality is scaling invariant, we can assume that diam V' =

1. Then
de <19 < Ale| and a2 < Jglz) — o] < A2,
with the ratio A/a depending on D only. It follows that

1
Ea(diam W) < diamV + |¢] < 2,
and hence

(4.8) (diam W)? < %,

with C' = C(D).
Let now « denote the fixed point of ¢ with the smaller multiplier. If |a| < 1/A
then |¢'(a)] < 1, so that « is attracting. On the other hand, for |o| = 1/(2A4),

1
> la| — Ala)? > —.
2 ol — Ao 2 14
Thus for |¢| < 1/(4A) the map ¢ has an attracting fixed point. But by (4.8), this
happens once
(diam W)?
o] £ —=—
4C
and we are done. [

We have selected above a generalized renormalization ¢ so that HD(Q(g)) > 2 — e,
and thus hs_.(Q(g)) = oco. By the definition of the Hausdorff measure, for any A
there is a level [ such that (4.6) holds.

Furthermore, Theorem E implies that the maps (4.3) are quadratic up to a bounded
distortion, and hence

diam W \/ diam U, > K~" diam Uy »,
so that (4.7) follows.
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Let 7(\) be the critical point of the quadratic-like map g¢;, : W5, — V), so that
g\(¥7(X)) = 0. This is a non-vanishing function with bounded (uniformly in n and
i) derivative (see [L3]). Hence it can be normalized so that 1;(\) = 1, and after
this normalization the critical value function ¢(A) = ¢,(0) will still have bounded
distortion.

Note also that for the fixed level n, all the domains V) has the size of order 1. By
Lemma 4.1, the little Mandelbrot set M; contains the following set:

(4.9) X;={X o) — 1] < L(diam W; ,)*}.

As ¢ has a bounded distortion, diam X; > Lq(diam W5 ,)?. All the more diam M; >
Lyi(diam W ,)?. Together with (4.7) this implies that Y (diam M;)'=¢/? > [, with a
big Ly. Let J be a finite subfamily of this family of little Mandelbrot sets which still

satisfies the last inequality. ;From now on we will drop the “bar” and use simple
labeling M;, 5 € J, for the sets of this family:

(4.10) S (diam M;) =% > L.
J
Let us consider the straightening map (4.4) on this family. It naturally produces
a family N; = N7 . of the Mandelbrot sets such that

Tk(N‘%LP“]‘m_l) C M]M k = O,l...,m — 1

If n (selected in §4.1) is big then the little Mandelbrot sets M; have a “big combi-
natorial type” in the sense of [L.2]. Theorem IV’ of [L2] implies that the Mandelbrot
sefs N7* are generated by proper unfolded quadratic-like families with big modulus
over disjoint parameter domains A% . Moreover, the Mandelbrot sets N" are tiny
inside these domains (i.e., the topological annuli AT\ N7* have big moduli).

By Theorem C, for appropriate choice of the domains, the straightenings Tm|A§”
are (1 + 7)-qc, provided n is big enough.

Since the Mandelbrot sets N7 are well inside the A”, there is a neighborhood A
of M covered by all the images 7 AZ. Shrinking the domains AT, we can assume
that 7™A¥ = A. Moreover, the maps 7 : AT — A are Holder continuous with an
exponent 1 — x such that k = k(y) — 0 as ¥ — 0, and a uniform constant. Together

with (4.10) this implies that for 6 = (1 — ¢/2)(1 — &)
(4.11) S (diam N 3% > 2(diam N7 P

ZAT N g ) = ST R
Let Y be the set of infinitely renormalizable parameter values whose combinatorial
type is encoded by the sets of family J as in (4.5). We are ready to show that

HD(Y) > 6. The argument imitates the linear model. Let
Pp= > (diam N"*)’,

lil=m
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where the summation is taken over all multi-indices j = (jo,...,Jm-1), jx € J, of
length m. Let us consider a probability measure p1,, which assigns to each N7* mass

(diam N}m)‘SPT;l. Then for any little Mandelbrot set N7 and any s > 0,
(4.12) fns(AZ) < (diam N7*)°,
Indeed, this inequality can be rewritten as

i AT
(diam /\f]im)‘S = e

Since the straightening N" — M is (1 + 7)-qc, it follows from the estimate 2P, <
Prts, which is true by (4.11).
Let 1 be any limit measure for the sequence p,,. Since Y is compactly contained

in AT, u(0AT) = 0. Hence (4.12) yields
(4.13) (A7) = Hm propn (A7) < (diam N7*)°.

S5—00

Let us now prove a similar estimate for round disks D(A,r) with A € V:
(4.14) (DA, r)) <o

Let A% be the smallest domain of our family containing D(A,r). Since the straight-
ening 7' : A% — Ais (I + 79)-qc, the image D = 7'D(A,r) is an “ellipse” with
bounded shape. Since D is not contained in any domain A} and Y 3 7%\ is com-
pactly contained in UA}, D is commensurable with M. As 7% is (1 + 7)-qc, D(A,r)
is commensurable with N]f Hence

p(D(A, 1)) < p(Af) < (diam Nf)* < Kr’,

and we are done.

This proves the complex theorem. To obtain the corresponding estimate for real
parameter values, start with, say, the Ulam-Neumann map z +— 2% — 2. It is easy
to see that its Julia set [—2,2] has hyperbolic dimension 1. Then for any nearby

quadratic z +— 22

— ¢, ¢ < 2, the hyperbolic dimension of its invariant interval is
close to 1. Take a nearby quadratic which is non-renormalizable and has a recurrent
critical point. Then the real trace of the above construction produces a parameter

set Y C R of dimension at least 1/2 — e.

5. CONCLUDING REMARKS.

Let us finish by mentioning a few related results on the geometry of the Mandelbrot
set and quadratic Julia sets.

It is known that if ¢ € F is at most finitely renormalizable and does not have neutral
periodic points then meas(J(P.)) = 0 ([L1, Sh2]). Moreover, these Julia sets are
actually “removable” which is a stronger property [K]. Many infinitely renormalizable
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quadratics also have the Julia set of zero measure [Y] but it is unknown whether it
is always so.

Moreover, the boundary of the set F has zero Lebesgue measure as well (though
Hausdorff dimension 2!) [Sh2] . It is not known whether the complementary set of
infinitely renormalizable maps, Z, has zero measure. The MLC Conjecture would
assert that at least this set has empty interior.

Note that the class 7 C 7 of infinitely renormalizable maps of “big type” consid-
ered in [L2] (for which MLC is established to be true) has zero measure. Indeed, by
[L2] and Theorem C, any ¢ € T is the intersection of a nest of little Mandelbrot sets
M;(¢) of bounded shape (i.e., uniformly K-qc equivalent to M). Hence the domain
bounded by the main cardioid of M;(¢) occupies a definite proportion of M;. As the
parameters in this domain don’t belong to Z, ¢ may not be a density point of Z. Still,
7 is quite a big set: HD(7) > 1 by the result of this paper.

Note also that [L2, L4] (see also [DD]) imply that all maximal Mandelbrot copies
centered at the real line have indeed a bounded shape (a copy is called mazimal if it
is not contained in any other copy except the whole set M). We are confident that
all little Mandelbrot sets centered at the real line actually have bounded shape.

Let us finally state our most recent result:

Theorem 5.1. The set TN R of real infinitely renormalizable parameter values has
zero linear measure.

We derive this result from the Renormalization Conjecture which we have recently
proven for arbitrary combinatorial types ([L.6]). We have also proven that the Haus-
dorff dimension of the set of real infinitely renormalizable maps of bounded type
(by some N) is strictly less than 1 [L4]. We don’t know yet whether the Hausdorff
dimension of the whole set Z N R is strictly less than 1.
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