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CHAPTER 0

Introduction

1. General terminology and notations

As usual, N = {1,2,...} stands for the set of natural numbers;
R stands for the real line;
C stands for the complex plane,
and C = C U {oo} stands for the Riemann sphere.
Fora e C, r > 0, let

D(a,r) ={z€C: |z—a|<r}; Da,r)={2€C: |z—a| <r}.

Let D, = D(0,r), and let D = Dy denote the unit disk.

Let T, = 0D,, and let T = T, denote the unit circle;

C' =C~ {0}, D* =D~ {0}.

A(r,R) = {z : r < |z| < R} is an open round annulus; The no-
taions Alr, R] or A(r, R] for the closed or semi-closed annuli are self-
explanatory.

The equator of A(r, R) is the curve |z| = V/Rr.

H = {z: Iz > 0 is the upper half plane.

SL(2, R) is the group of 2 x 2 matrices over a ring R with determinant
1 (we will deal with R =C, R, or Z);
PSL(2, R) = SL(2, R)/{+£I}, where I is the unit matrix.

X denotes the closure of a set X; int X denotes its interior.

U € V means that U is compactly contained in V, i.e., U is a compact
set contained in V.

A compact metrizable space is called perfect if it does not have isolated
points.

A Cantor set is a totally disconnected perfect set. All compact sets are
homeomorphic.

For two sets X and Y in a metric space with metric d, let

dist(X,Y) = inf d(z,v).

rzeX,yeY

If one of these sets is a singleton, say X = {z}, then we use notation
dist(z,Y") for the distance from X to Y.

7



8 0. INTRODUCTION

diam X = sup d(z,y).
z,yeX

Notation (X,Y") stands for the pair of spaces such that X D Y. A pair
(X, a) of a space X and a “preferred point” a € X is called a pointed
space.
Notation f : (X,Y) — (X', Y’) means a map f : X — X’ such that
f(Y) € Y'. In the particular case of pointed spaces f : (X,a) —
(X', a") we thus have: f(a) =d'.
Similar notations apply to triples, (X,Y, Z), where X DY D Z, etc.



Part 1

Conformal and quasi-conformal
geometry






CHAPTER 1

Conformal geometry

1. Riemann surfaces

1.1. Topological surfaces.
1.1.1. Definitions and examples.

DEFINITION 1.1. A (topological) surface S (without boundary) is
a two-dimensional topological manifold with countable base. It means
that S is a topological space with a countable base and any z € S
has a neighborhood U > z homeomorphic to an open subset V' of R?.
The corresponding homeomorphism ¢ : U — V' is called a (topological)
local chart on S. Such a local chart assigns to any point z € U its local
coordinates (x,y) = ¢(z) € R?.

A family of local charts whose domains cover S is called a topological
atlas on S. o .
Given two local charts ¢ : U — V and ¢ : U — V, the composition

pod t:p(UNU) = p(UNT)

is called the transition map from one chart to the other.

A surface is called orientable if it admits an atlas with orientation
preserving transition maps.  Such a surface can be oriented in ex-
actly two ways. In what follows we will only deal with orientable (and
naturally oriented) surfaces.

Unless otherwise is explicitly said, we will assume that the surfaces
under consideration are connected. The simplest (and most important
for us) surfaces are:

e The whole plane R? (homeomorphic to the open unit disk D C R?).

e The unit sphere S? in R* (homeomorphic via the stereographic pro-
jection to the one-point compactification of the plane); it is also called
a “closed surface of genus 0” (in this context “closed” means “compact
without boundary”).

e A cylinder or topological annulus C(a,b) = T x (a,b), where —oo <
a < b < +o00. It can also be represented as the quotient of the strip
P(a,b) = Rx(a,b) modulo the cyclic group of translations z — z+27n,

11



12 1. CONFORMAL GEOMETRY

n € Z. All the cylinders C(a,b) are homeomorphic to any annulus
A(r, R), to the punctured disk D* and to the punctured plane C*).

e The torus T? = T x T, also called a “closed surface of genus 17. It
can also be represented as the quotient of R? modulo the action of a
rank 2 abelian group z — z +am + (n, (m,n) € Z?*, where « and f3 is
an arbitrary basis in R?.

It is intuitively obvious that (up to a homeomorphism) there are
only two simply connected surfaces: the plane and the sphere.

If we have a certain standard surface S (say, the unit disk or the unit
sphere), a “topological S” (say, a “topological disk” or a “topological
sphere”) refers to a surface homeomorphic to the standard one.

One can also consider surfaces with boundary. The local model of
a surface near a boundary point is given by a relative neighborhood
of a point (z,0) in the closed upper half-plane H. The orientation
of a surface naturally induces an orientation of its boundary (locally
corresponding to the positively oriented real line).

For instance, we can consider cylinders with boundary: Cfa,b] =
T x [a, b] or Cla,b) =T x [a,b). They will be still called “cylinders” or
“topological annuli”. Cylinders C'(a,b) without boundary will be also
called “open”, while cylinders C[a, b] will be called “closed” (according
to the type of the interval involved).

Cylinders (with or without boundary) are the only topological sur-
faces whose fundamental group is Z.

A Jordan curve v C S on a surface is a topologically embedded
unit circle. A Jordan disk D C S is a topological disk bounded by a
Jordan curve. Both open and closed Jordan disks are allowed.

1.1.2. New surfaces from old ones. There are two basic ways of
building new surfaces out of old ones: making holes and gluing their
boundaries. Of course, any open subset of a surface is also a surface.
In particular, one can make a (closed) hole in a surface, that is, remove
a closed Jordan disk. A topologically equivalent operation is to make
a puncture in a surface. By removing an open Jordan disk (open hole)
we obtain a surface with boundary.

If we have two open holes (on a single surface or two different sur-
faces S;) bounded by Jordan curves -;, we can glue these bound-
aries together by means of an orientation reversing homeomorphism
h : v — 7. (It can be also thought as attaching a cylinder to these
curves.) We denote this operation by S LI, Sy. For instance, by gluing
together two closed disks we obtain a topological sphere: DL, D ~ §2.

Combining the above operations, we obtain operations of taking
connected sums and attaching a handle. To take a connected sum of
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two surfaces S; and Sy, make an open hole in each of them and glue
together the boundaris of these holes. To attach a handle to a surface
S, make two open holes in it and glue together their boundaries.

If we attach a handle to a sphere, we obtain a topological torus. If
we attach ¢ handles to a sphere, we obtain a “closed surface of genus
g”. It turns out that any closed orientable surface is homeomorphic to
one of those. Thus closed orientable surfaces are topologically classified
by a single number g € Z., its genus.

One says that a surface S (with or without boundary) has a finite
topological type if its fundamental group 7(S) is finietly generated (e.g.,
any compact surface is of finite type). It turns out that it is equivalent
to saying that S is homeomorpic to a closed surface with finitely many
open or closed holes. Clearly such a surface admits a decomposition

S:KUuhiCia

where K is a compact surface and C; =~ T x [0,1) are half-open cylin-
ders. The set K = Ky is called the compact core of S. Note that it
is obviously a deformation retract for S. We say that the cylinders C;
represent the ends of S.

Each end can be compactified in two ways, by adding a missing
boundary curve to the cylinder, or by adding one point. In the former
case, the added boundary curve is called the ideal boundary of the end.
Let S denote the compactification of S by adding ideal boundaries to
all ends.

1.1.3. Euler characteristic. Let S be a compact surface (with or
without boundary) Its Fuler characteristic is defined as

X(S)=f—e+uw,

where f, e and v are respectively the numbers of faces, edges and
vertices in any triangulation of S.
The Euler characteristic is obviously additive:

X(S1 Up S2) = x(S1) + x(S2).

~

Since the cylinder T x [0, 1] has zero Euler characteristic, x(5) = x(Ks)
for a surface S of finite type. We can use this as a definition of x(S)
in this case.

Making a hole in a surface drops its Euler characteristic by one;
attaching a handle does not change it. Hence x(S) =2 — 2¢g —n for a
surface of genus g with n holes.
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Note that the above list of simplest surfaces is the full list of sufaces
of finite type without boundary with non-negative Euler characteristic:

X(R*) =1, x(8%)=2, x(Tx(0,1)) =x(T*) =0.

1.1.4. Marking. A surface S can be marked with an extra topo-
logical data. It can be either several marked points a; € S, or several
closed curves 7; C S up to homotopy (usually but not always they form
a basis of 71 (5)), or a parametrization of several boundary components

The marked objects may or may not be distinguished. (for instance,
two marked points or the generators of 7, may be differently colored).
Accordingly, the marking is called colored or uncolored.

A homeomorphism & : S — S between marked surfaces should re-
spect the marked data: marked points should go to the corresponding
points (h(a;) = a;), marked curves ~; should go to the corresponding
curves 4; up to homotopy (h(7;) =~ %), and the boundary parametriza-
tions should be naturally related (h o ¢; = ¢;).

1.2. Analytic and geometric structures on surfaces. Rough
topological structure can be refined by requiring that the transition
maps belong to a certain “structural pseudo-group”, which often means:
“have certain regularity”. For example, a smooth structure on S is
given by a family of local charts ¢; : U; — V; such that all the tran-
sition maps are smooth (with a prescribed order of smoothness). A
surface endowed with a smooth structure is naturally called a smooth
surface. A local chart ¢ : U — V smoothly related to the charts ¢;
(i.e., with smooth transition maps) is referred to as a “smooth local
chart”. A family of smooth local charts covering S'is called a “smooth
atlas” on S. A smooth structure comes together with affiliated notions
of smooth functions, maps and diffeomorphisms.

There is a smooth version of the connected sum operation in which
the boundary curves are assumed to be smooth and the boundary glu-
ing map h is assumed to be an orientation reversing diffeomorphism.
To get a feel for it, we suggest the reader to do the following exercise:

EXERCISE 1.1. Consider two copies Dy and Dy of the closed unit
disk D C R%. Glue them together by means of a diffeomorphism h :
0D, — 0Dy of the boundary circles. You obtain a topological sphere
S?2. Show that it can be endowed with a unique smooth structure com-
patible with the smooth structures on Dy and Dy (that is, such that the
tautological embeddings D; — S% are smooth). The boundary circles
0D; become smooth Jordan curves on this smooth sphere. Show that
this sphere is diffeomorphic to the standard “round sphere” in R?.



1. RIEMANN SURFACES 15

Real analytic structures would be the next natural refinement of
smooth structures.

If R? is considered as the complex plane C with z = x + iy, then we
can talk about complex analytic = holomorphic transition maps and
corresponding complex analytic structures and surfaces. Such surfaces
are known under a special name of Riemann surfaces. A holomorphic
diffeomorphism between two Riemann surfaces is often called an iso-
morphism. Accordingly a holomorphic diffeomorphism of a Riemann
surface onto itself is called its automorphism.

Connected sum operation still works in the category of Riemann
surfaces. In its simplest version the boundary curves and the gluing
diffeomorphism should be taken real analytic. Here is a representative
statement:

EXERCISE 1.2. Assume that in Ezercise 1.1 R? = C and the gluing
diffeomorphism h is real analytic. Then S? can be supplied with a
unique complex analytic structure compatible with the complex analytic
structure on the disks D; C C. The boundary circles 0D; become real
analytic Jordan curves on this “Riemann sphere”.

More generally, we can attach handles to the sphere by means of real
analytic boundary map, and obtain an example of a Riemann surface
of genus g. It is remarkable that, in fact, it can be done with only
smooth gluing map, or even with a singular map of a certain class. This
operation (with a singular gluing map) has very important applications
in Teichmliler theory, theory of Kleinian groups and dynamics (see ??).

If R? is supplied with the standard Euclidean metric, then we can
consider conformal transition maps, i.e., diffeomorphisms preserving
angles between curves. The first thing students usually learn in com-
plex analysis is that the class of orientation preserving conformal maps
coincides (in dimension 2!) with the class of invertible complex analytic
maps. Thus the notion of a conformal structure on an oriented surface
is equivalent to the notion of a complex analytic structure (though it
is worthwhile to keep in mind their conceptual difference: one comes
from geometry, the other comes from analysis).

One can go further to projective, affine, Euclidean or hyperbolic
structures. We will specify this discussion in a due course.

One can also go in the opposite direction and consider rough struc-
tures on a topological surface whose structural pseudo-group is bigger
then the pseudo-group of diffeomorphisms, e.g., “bi-Lipschitz struc-
turs”. Even rougher, quasi-conformal, structures will play an impor-
tant role in our discussion.



16 1. CONFORMAL GEOMETRY

To comfort a rigorously-minded reader, let us finish this brief excur-
sion with a definition of a pseudo-group on R? (in the generality ade-
quate to the above discussion). It is a family of local homeomorphisms
f: U — V between open subsets of R* (where the subsets depend on
f) which is closed under taking inverse maps and taking compositions
(on the appropriately restricted domains). The above structures are
related to the pseudo-groups of all local (orientation preserving) home-
omorphisms, local diffeomorphisms, locally biholomorphic maps, local
isometries (Euclidean or hyperbolic) etc.

1.3. Three geometries.

1.3.1. Affine geometry. Consider the complex plane C. Holomor-
phic automorphisms of C are complex affine maps A : z — az + b,
a € C, b e C. They form a group Aff bi-transitively acting on the
plane: any pair of points can be moved (in a unique way) to any other
pair of points. Thus the complex plane C is endowed with the affine
structure canonically affiliated with its complex analytic structure.

Of course, the plane can be also endowed with a Euclidean metric
|z|2. However, this metric can be multiplied by any scalar ¢ > 0, and
there is no way to normalize it in terms of the complex structure only.
All these Euclidean structures have the same group Euc of Fuclidean
motions A : z — az + b with |a| = 1. This group acts transitively on
the plane with the group of rotations z — >z, 0 < § < 1, stabilizing
the origin.

The group Aff has very few discrete subgoups acting freely on C:
rank 1 cyclic group actions 2z — 2z +an, n € Z, and rank 2 cyclic group
actions z — an + bm, (m,n) € Z?, where (a, b) is an arbitrary basis in
C over R. All rank 1 actions are conjugate by an affine transformation,
so that the quotients modulo these actions are all isomorphic. Taking
a = 27 we realize these quotients as the bi-infinite cylinder C/27Z. It is
isomorphic to the puncured plane C* by means of the exponential map
C/2nZ — C*, z — €?™. The quotients of rank 2 are all homeomorphic
to the torus. However, they may represent different Riemann surfaces
(see below 1.4.2).

Note that the above discrete groups preserve the Euclidean struc-
tures on C. Hence these structures can be pushed down to the quotient
Riemann surface. Moreover, now they can be canonically normalized:
in the case of the cylinder we can normalize the lengths of the closed
geodesics to be 1 (or 27). In the case of the torus we can normalize its
total area. Thus, complex tori and the bi-infinite cylinder are endowed
with a canonical Euclidean structure. For this reason, they are called

flat.
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1.3.2. Spherical (projective) geometry. Consider now the Riemann
sphere C = C U {oco}. Its bi-holomorphic automorphisms are Mdbius

transformations
az+b a b
f'Zch—i—d’ det(c d>7€0.

We will denote this M6bius group by M6b(C). It acts triply transitive
on the sphere: any three points (a, b, ¢) on the sphere can be moved by
a unique M6bius transformation to any other three points (a', ¥, ¢').

Note that the Riemann sphere is isomorphic to the complex projec-
tive line CP'. For this reason M&bius transformations are also called
projective. Algebraicly the Mobius group is isomorphic to the linear
projective group PSL(2,C) = SL(2,C)/{£I} of 2 x 2 matrices M with
det M = 1 modulo reflection M — —M.

Any Mobius transformation has a fixed point on the sphere. Hence
there are no Riemann surfaces whose universal covering is C. In fact,
any non-identical Mobius transformations has either one or two fixed
points, and can be classified depending on their nature. The multiplier
of a fixed point « is the derivative f’(«) calculated in any local chart
around «.

We wish to bring a Mobius transformation to a simplest normal
form by means of a conjugacy ¢! o f o ¢ by some ¢ € Mob(C). Since
Mo6b(C) acts double transitively, we can find some ¢ which sends one
fixed point of f to oo and the other (if exists) to 0. This leads to the
following classification:

(i) A hyperbolic Mébius transformation has an attracting and re-
pelling fixed points with multipliers A\ amd A™!, where |\ < 1. Tts
normal form is a global linear contraction z — Az (with possible spi-
ralling if A is unreal).

(ii) An elliptic Mobius transformation has two fixed points with
multipliers A and A\~ where A\ = €*™ ¢ € [0,1). Its normal form is
the rotation z — €272,

(iii) (i) A parabolic Mobius transformation has a single fixed point
with multiplier 1. Its normal form is a translation z — z + a (which
can be further normalized so that a = 1.

EXERCISE 1.3. Prove all the above statements which look new to
you.

1.3.3. Hyperbolic geometry.

1.4. Annulus and torus.
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1.4.1. Modulus of an annulus. Consider an open topological annu-
lus A. Let us endow it with a complex structure. Then A can be
represented as the quotient of either C or H modulo an action of a
cyclic group < v >. As we have seen above, in the former case A is
isomorphic to the flat cylider C/Z ~ C*. In the latter case, we obtain
either the punctured disk D* (if v is parabolic) or an annulus A(r, R) (if
7 is hyperbolic). In the hyperbolic case we call A a conformal annulus.

EXERCISE 1.4. Write down explicitly the covering maps H — D*
and H — A(r, R).

EXERCISE 1.5. Prove that two round annuli A(r, R) and A(r', R')
are conformally equivalent if and only if R/r = R'/r".
Let
1 R
d(A) = — log =
mod(A) 5, 108
for a round annulus A = A(r, R). For an arbitrary conformal annu-
lus A, define its modulus, mod(A), as the modulus of a round annulus
A(r, R) isomorphic to A. According to the above exercise, this defini-
tion is correct and, moreover, mod(A) is the only conformal invariant

of a conformal annulus.
If A is isomorphic to C* or D* then we let mod(A) = oc.

If A is a topological annulus with boundary whose interior is en-
dowed with a complex structure, then mod(A) is defined as the modulus
of the int(A).

The equator of a conformal annulus A is the image of the equator
of the round annulus (see §1) under the uniformization A(r, R) — A.

EXERCISE 1.6. (i) Write down the hyperbolic metric on a confor-
mal annulus represented as the quotient of the strip S, = {0 < Sz < h}
modulo the action of the cyclic group generated by z — z + 2n. (What
is the relation between h and mod A?)

(ii) Prove that the equator is the unique closed hypebolic geodesic of
a conformal annulus A in the homotopy class of the generator of m(A).

(iii) Show that the hyperbolic length of the equator is equal to 1/ mod(A).
Relate it to the multiplier of the deck transformation of H covering A.

Even if A is a hyperbolic annulus, it is possible to endow it with
a flat, rather than hyperbolic, metric. To this end realize A as the
quotient of a strip S, modulo the cyclic group of translations (see the
above exercise). Since the flat metric on Sj, is translation invariant, it
descends to A. In this case we call A a flat cylinder.
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1.4.2. Modulus of the torus. Let us take a closer look at the actions
of the group I' &~ Z? on the (oriented) affine plane P ~ C by transla-
tions (see §1.3.1). We would like to classify these actions up to affine
conjugacy, i.e., two actions 7" and S are considered to be equivalent if
there is an (orientation preserving) affine automorphism A : P — P
and an algebraic automorphism ¢ : I' — [ such that for any v € I" the
following diagram is commutative:

P — P

T

Al A (1.1)

P — P
Si(v)

This is equivalent to classifying the quotient tori P/T" up to conformal
equivalence (since a conformal isomorphism between the quotient tori
lifts to an affine isomorphism between the universal covering spaces
conjugating the actions of the covering groups).

The conjugacy A in the above definition will also be called equi-
variant with respect to the corresponding group actions.

The problem becomes easier if to require first that ¢ = id in (1.1).
Fix an uncolored pair of generators a and (3 of I'. Since T acts by
translations and since P is affine, the ratio

CTP(z) -z

m=7(T) = Te(z) — 2

makes sense and is independent of z € P. Moreover, by switching the
generators « and [ we replace 7 with 1/7. Thus, we can color the
generators in such a way that 7 > 0. (With this choice, the basis of
P corresponding to the generators {«, #} is positively oriented.)

EXERCISE 1.7. Show that two actions T and S of I' =< «a, 3 > are

affinely equivalent with i = id if and only if 7(T) = 7(T).

According to the discussion in §1.1.4, the choice of generators of
[ means (uncolored) marking of the corresponding torus. Thus, the
marked tori are classified by a single complex modulus 7 € H.

Forgetting the marking amounts to replacement one basis {a, f} in
[' by another, {&, 5}. If both bases are positively oriented then there

exists a matrix
a b
< . d) € SL(2,Z)
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such that ® = aa+ b3, = ca+d . Hence

at + b

cr+d
Thus, the unmarked tori are parametrized by a point 7 € H mod-
ulo the action of SL(2,Z) on H by Mobius transformations. The
kernel of this action consists of two matrices, 1, so that the quo-
tient group of Mé&bius transformations is isomorphic to PSL(2,Z) =
SL(2,Z)/ mod{£I}. This group is called modular. (In what follows,
the modular group is identified with PSL(2,Z).)

Remark. Passing from SL(2,Z) to PSL(2,Z) has an underlying
geometric reason. All tori C/T" have a conformal symmetry z — —z.
It change marking {«, §} by —I{«, 3}. Thus, remarking by —I acts
trivially on the space of marked tori.

7=

The modular group has two generators, the translation z — z + 1
and the second order rotation z +— —1/2z. The intersection of their
fundamental domains gives the standard fundamental domain A for
this action.

EXERCISE 1.8. a) Verify the last statement.

b) Find all points in A that are fized under some transformation of
PSL(2,Z). What are the orders of their stabilizers?

c) What is the special property of the tori corresponding to the fized
points?

d) Show that by identifying the sides of A according to the action of
the generators we obtain a topological plane @ ~ R?.

e) Endow the above plane with the complex structure so that the natural
projection H — @Q is holomorphic. Show that Q ~ C. (The correspond-
ing holomorphic function H — C is called modular).

Thus, the unmarked tori are parametrized by a single modulus p €
H/PSL(2,Z) ~ C.

In the dynamical context we will be dealing with the intermadiate
case of partially marked tori, i.e., tori with one marked generator « of
the fundamental group. This space can be viewed as the quotient of the
space of fully marked tori by means of forgetting the second generator,
3. If we have two bases {«, 3} and {a, 3} in I with the same «, then

B = B3+ na for some n € Z. Hence 7 = 7 + n.

Thus, the space of partially marked tori is parametrized by H mod-
ulo action of the cyclic group by translations 7 — 7+ n. The quotient
space is identified with the punctured disk D* by means of the expo-
nential map H — D*, 7 +— \ = e?™". So, the partially marked tori are
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parametrized by a single modulus A € D*. We will denote such a torus
by T%.

This modulus A makes a good dynamical sense. Consider the cov-
ering p : S — T3 of the partially marked torus corresponding to the
marked cyclic group. Its covering space S is obtained by taking the
quotient of C by the action of the marked cyclic group z — 2z + n,
n € Z. By means of the exponential map z — €?™, this quotient is
identified with C*. Moreover, the action of the complementary cyclic
group z — z+nt1, n € Z, descends to the action ¢ — "¢ on C*, where
the multiplier A = €*™™ is ezactly the modulus of the torus!

Thus, the partially marked torus T2 with modulus A € D* can be
realized as the quotient of C* modulo the cyclic action generated by
the hyperbolic M6bius transformation ¢ +— A{ with multiplier A.

2. Uniformization Theorem

2.0.3. The following theorem of Riemann and Koebe is the most
fundamental result of complex analysis:

THEOREM 1.1. Any simply connected Riemann surface is confor-
mally equivalent to either the Riemann sphere C, or to the complex
plane C, or the unit disk D.

2.0.4. Classification of Riemann surfaces. Consider now any Rie-
mann surface S. Let m : S — S be its universal covering. Then the
complex structure on S naturally lifts to S turning S into a simply
connected Riemann surface which holomorphically covers S. Thus, we
come up with the following classification of Riemann surfaces:

THEOREM 1.2. Any Riemann surface S is conformally equivalent
to one of the following surfaces:

e The Riemann sphere C (spherical case);

e The complex plane C, or the punctured plane C*, or a torus T?,
T € H (parabolic case);

e The quotient of the hyperbolic plane H? mmodulo a discrete group
of isometries (hyperbolic case).

Thus, any Riemann surface comes endowed with one of the three
geometries described in §1.3: projective, affine, or hyperbolic.
2.0.5. Simply connected plane domains.

3. Principles of the hyperbolic metric

3.1. Schwarz Lemma.
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3.2. Normal families and Montel’s Theorem. Let U be an
open subset of C, and let M(U) be the space of meromorphic func-
tions ¢ : U — C. Supply the target Riemann sphere C with the
spherical metric d; and the space M(U) with the topology of uniform
convergence on compact subsets of U. Thus ¢,, — ¢ if for any compact
subset K C U, ds(¢n(2), ¢(2)) — 0 uniformly on U.

EXERCISE 1.9. Endow M(U) with an invariant metric compatible
with the above convergence (invariance means that dist(¢, ¢) = dist(¢p—
1,0)). Show that M(U) is complete with respect to this metric. Thus
M(U) is closed in the space C(U) of continuous functions ¢ : U — C
(endowed with the topology of uniform convergence on compact subsets

of U).

It is worthy to remember that the target should be supplied with
the spherical rather than FEuclidean metric even if the original family
consists of holomorphic functions. In the limit we can still obtain a
meromorphic function, though of a very special kind:

EXERCISE 1.10. Let ¢, : U — C be a sequence of holomorphic
functions converging to a meromorphic function ¢ : U — C such that
#(z) = oo for some z € U. Then ¢(z) = oo, and thus ¢,(z) — o0
uniformly on compact subsets of U. (Recall the Hurwitz Theorem.)

A family of meromorphic functions on U is called normal if it is
precompact in M(U).

EXERCISE 1.11. Show that normality is the local property: If a fam-
ily is normal near each point z € U, then it is normal on U.

EXERCISE 1.12. If the domain U C C is supplied with the Eu-
clidean metric |dz| while the target C is supplied with the spherical
metric |dz|/(1+ |z|?), then the corresponding “ES norm” of the differ-
ential Do(2) is equal to |¢'(2)|/(1+|d(2) ), 2 € U. Show that a family

of meromorphic functions ¢, : U — C is normal if and only if the ES
norms || D¢, (2)|| are uniformly bounded on compact subsets of U.

THEOREM 1.3 (Little Montel). Any bounded family of holomorphic
functions is normal.

PRrROOF. It is because the derivative of a holomorphic function can
be estimated via the function itself. Indeed by the Cauchy formula

: max v [(0)]
< ————
#(2) < dist(z, 0U)
Thus if a family of holomorphic functions ¢, is uniformly bounded,
their derivatives are uniformly bounded on compact subsets of U. By
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the Arzela-Ascoli Criterion, this family is precompact in the space C(U)
of continuous functions. Since uniform (on compact subsets) limits of
holomorphic functions are holomorphic (compare with Exercise 1.9),
the original family is precompact in the space M(U). O

PROPOSITION 1.4. A sequence of holomorphic functions is normal
of and only if from any subsequence one can extract a further subse-
quence which is either bounded or divergent to oo.

THEOREM 1.5 (Montel). If a family of meromorphic functions ¢, :
U — C does not assume three values then it is normal.

THEOREM 1.6 (Refined Montel). Let {¢, : U — C} be a family of
meromorphic functions. Assume that there exists three meromorphic

functions v; : U — C such that for any z € U and i # j we have:
VYi(2) # ¥j(2) and ¢,(2) # i(2). Then the family {¢,} is normal.

EXERCISE 1.13. What would happen if we allowed ;(z) = 1;(2)
for some z € U?

Given a family {¢,} of meromorphic functions on U, we can define
its set of normality as the maximal open F' C U set on which this
family is normal.

EXERCISE 1.14. Show that the set of normality is well-defined.

3.3. Koebe Distortion Theorem. We are now going to discuss
one of the most beautiful and important theorems of the classical geo-
metric functions theory.

The inner radius rp, = dist(a,0D) of a pointed disk (D, a) is as
the biggest round disk D(a, p) contained in D. The outer radius Rp , =
H-dist(a, dD) is the radius of the smallest disk D(a, p) containing D.
(If @ = 0, we will simply write rp and Rp.) The eccentricity of a
pointed disk (D, a) is the ratio Rp o/7pq-

THEOREM 1.7 (Koebe Distortion). Let ¢ : (D,0) — (D,a) be a
conformal map, and let k € (0,1), Dy, = ¢(Dg). Then there exist
constants C' = C(k) and L = L(k) (independent of a particular ¢!)
such that

< C(k) for all z,¢ € Dy, (3.1)

and

L(k)"M¢'(0)] < rppe < Rpya < LK) |¢/(0)]- (3.2)

99
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In particular, the inner radius of the image ¢(D) around a is bounded
from below by an absolute constant times the derivative at the origin:

ro()e > p|#'(0)] > 0. (3.3)

The expression in (3.1) is called the distortion of ¢, its logarithm
is called the non-linearity of ¢. Thus estimate (3.1) tells us that the
function ¢ restricted to D, has a uniformly bounded distortion. Es-
timate (3.2) tells that the eccentricity of the domain Dy around a is
uniformly bounded. Note that since any topological disk in C, except
C itself, can be uniformized by D, there could be no possible bounds
on the distortion and eccentricity in the whole unit disk . However,
once the disk is shrunk a little bit, the bounds appear!

The Koebe Distortion Theorem is equivalent to the normality of
the space of normalized univalent functions:

THEOREM 1.8. The space U of univalent functions ¢ : (D,0) —
(C,0) with |¢'(0)] = 1 is compact (in the topology of uniform conver-
gence on compact subsets of D).

PROOF. Note first that the image ¢(D) cannot contain the whole
unit circle T. Otherwise the inverse map ¢ ! would be well-defined on
some disk D, with 7 > 1, and by the Schwarcz Lemma, |D¢~'(0)] <
1/r < 1 contrary to the normalization assumption.

Hence for any ¢ € U there is a f € R such that the rotated function
e ¢ does not assume value 1. Since the group of rotation is compact, it
is enough to prove that the space Uy C U of univalent functions ¢ € U
which do not assume value 1 is compact.

Let us puncture D at the origin, and restrict all the functions ¢ € U
to the punctured disk D*. Since all the ¢ are univalent, they do not
assume value 0 in D*. By the Montel Theorem, the family i, is normal
on D*.

Let us show that it is normal at the origin as well. Take a Jordan
curve v C D* around 0, and let A be the disk bounded by ~. Restrict
all the functions ¢ € Uy to v. By normality in D*, the family i is either
uniformly bounded on ~, or admits a sequence which is uniformly going
to oo. But the latter is impossible since all the curves ¢, () intersect
the interval [0, 1] (as they go once around 0 and do not go around 1).
Thus, the family U, is uniformly bounded on 7. By the Maximum
Principle, it is is uniformly bounded, and hence normal, on A as well.

Thus, the family U, is precompact. What is left, is to check that
it contains all limiting functions. By the Argument Principle, limits of
univalent functions can be either univalent or constant. But the latter
is not possible in our situation because of normalization |¢'(0)| = 1. O
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EXERCISE 1.15. (a) Show that a family F of univalent functions
¢ : D — C s precompact in the space of all univalent functions if and
only if there exists a constant C' > 0 such that

16(0)| < C and C~1 < |¢/(0)] < C for all ¢ € F.

b) Let (2, a) be a pointed domain in C and let C > 0. Consider a
family F of univalent functions ¢ : Q@ — C such that |p(a)| < C. Show
that this family s normal if and only if there exists p > 0 such that
each function ¢ € F omits some value ¢ with |C| < p.

Proof of the Koebe Distortion Theorem. Compactness of the family

U immediately yields that functions ¢ € U and their derivatives are
uniformly bounded on any smaller disk Dy, & € (0,1). Combined
with the fact that all functions of U/ are univalent, compactness also
implies a lower bound on the inner radius r4p,) and on the derivative
¢'(#2) in Dy. These imply estimates (3.1) and (3.2) on the dsitortion
and eccentricity by normalizing a univalent function ¢ : D — C, i.e.,
considering

) —a

b(2) 71(0) euU.
(Note that this normalization does not change either distortion of the
function, or the eccentricity of the image.)

Estimate (3.3) is an obvious consequence of the left-hand side of
(3.2). O

We have given a qualitative version of the Koebe Distortion The-
orem, which will be sufficient for all our purposes. The quantitative
version provides sharp constants C'(k), L(k), and p, all attained for a
remarkable extremal Koebe funcion f(z) = z/(1 — 2)?> € U. The sharp
value of the constant p is particularly famous:

Koebe 1/4-Theorem. Let ¢ : (D,0) — (C,0) be a univalent function
with ¢'(0) = 1. Then ¢(D) O D4, and this estimate is attained for
the Koebe function.

We will sometimes refer to the Koebe 1/4-Theorem rather than
its qualitatve version (3.3), though as we have mentioned, the sharp
constants never matter for us.

EXERCISE 1.16. Find the image of the unit disk under the Koebe
function.

Let us finish with an invariant form of the Koebe Distortion Theo-
rems:
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THEOREM 1.9. Consider a pair of conformal disks A € D. Let
mod(D ~\ A) > u > 0. Then any univalent function ¢ : D — C has a
bounded (in terms of u) distortion on A:

|9'(2)]
< C(u) for all z,¢ € A.
|6'(C)
The proof will make use of one important property of the modulus
of an annulus: if an annulus is getting pinched, then its modulus is
vanishing:

LEMMA 1.10. Let 0 € K C D, where K is compact. If
mod(DNK)>pu>0
then K C Dy, where the radius k = k(p) < 1 depends only on p.

PROOF. Assume there exists a sequence of compact sets K; satis-
fying the assumptions but such that R; — 1, where R; is the outer
radius of K; around 0. Let us uniformize D \ K; by a round annulus,
hi : A(p;,1) = D~ K;. Then p; < p=e * < 1. Thus, the maps h; are
well-defined on a common annulus A = A(p, 1). By the Little Montel
Theorem, they form a normal family on A, so that we can select a
converging subsequence h; — h.

Let v C A be the equator of A. Then h(y) is a Jordan curve in
D which separates the sets K; (with sufficiently big n) from the unit
circle - contradiction. 0J

Remark. The extremal compact sets in the above lemma (minimiz-
ing k for a given p) are the straight intervals [0, ke®).

Proof of Theorem 1.9 Let us uniformize D by the unit disk, h: D —
D, in such a way that h(0) € A. Let A = h 'A and ¢ = po h. By
Lemma ??, A C Dy, where k = k(u) < 1. By the Koebe Theorem, the

distortion of the functions # and ¢ on A is bounded by some constant
C = C(k). Hence the distortion of ¢ is bounded by C?. O

We will often use the following informal formulation of Theorem 1.9:
“If ¢ : D — C is a univalent function and A C D is well inside D, then
¢ has a bounded distortion on A”.

Or else: “If a univalent function ¢ : A — C has a definite space
around A, then it has a bounded distortion on A”.

3.4. Relation between hyperbolic and Euclidean metrics.
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LEMMA 1.11. Let D C C be a conformal disk endowed with the
hyperbolic metric pp. Then

L L <dpp(z) < e
4 dist(z,0D) — PR = dist(z,0D)

Remark. Of course, particular constants in the above estimates will
not matter for us.

ProOOF. Let r = dist(z,0D); then D(z,r) C D. Consider a linear
map h : D — D(z,7) as a map from D into D. By the Schwarz Lemma,
it contracts the hyperbolic metric. Hence

dpp(2) < h.(dpp(0)) = h.(|dC|) = |dz|/r.

To obtain the opposite inequality, consider the Riemann mapping
Y : (D,0) — (D, z). By definition of the hyperbolic metric,

d
dpol) = v dp0) = (dCl) =
But by the Koebe 1/4-Theorem, r < [¢'(0)|/4, so that dpp(z) >
|dz|/4r. O

4. Proper maps and branched coverings

A continuous map f : S — T between two topological spaces is
called proper if for any compact set K C T, its full preimage f 'K is
compact. In other words, fz — oo in T as z — oo in S (where the
neighborhoods of “c0” are defined as complements of compact subsets).
Full preimages of points under a proper map will also be called its
fibers. Note that discrete fibers are finite. If a proper map f: S — T
is injective then we say that S is properly embedded into T'.

EXERCISE 1.17. Assume that S € T are precompact domains in

some ambient surfaces and that f admits a continuos extension to the
closure S. Then f is proper if and only if f(0S) C OT.

EXERCISE 1.18. LetV C T be a domain and U C S be a component
of f7YV. If f : S — T is proper, then the restriction f : U — V is
proper as well.

Let now S and T be topological surfaces, and f be a topologically
holomorphic map. The latter means that for any point a € S, there
exist local charts ¢ : (U,a) — (C,0) and ¢ : (V, fa) — (C,0) such that
Yo fogpt(z) = 2% where d € N. This number d = deg, f is called the
(local) degree of f at a. If deg, f > 1, then a is called a branched or
critical point of f, and f(a) is called a branched or critical value of f.
We also say that d is the multiplicity of a as a preimage of b = f(a).
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EXERCISE 1.19. Show than any non-constant holomorphic map be-
tween two Riemann surfaces is topologically holomorphic.

A basic property of topologically holomorphic proper maps is that
they have a global degree:

ProprosiTION 1.12. Let f : S — T be a topologically holomorphic
proper map between two surfaces. Assume that T is connected. Then
all points b € T have the same (finite) number of preimages counted
with multiplicities. This number is called the degree of f, deg f.

PRrROOF. Since the fibers of a topologically holomorphic map are
discrete, they are finite. Take some point b € T, and consider the
fiber over it, f'b = {a;}._,. Let d; = deg, f. Then there exists a
neighborhood V' of b and neighborgood U; of a; such that any point
2z € V, z # b, has exactly d; preimages in U;, and all of them are
regular.

Let us show that if V' is sufficiently small then all preimages of
z € V belong to UU;. Otherwise there would exist sequences z, — b
and ¢, € S\ UU; such that f((,) = z,. Since f is proper, the sequence
{C¢x} would have a limit point ¢ € S\ UU;. Then f(¢) = b while ¢
would be different from the q; - contradiction.

Thus all points close to b have the same number of preimages
counted with multiplicities as b, so that this number is locally con-
stant. Since T is connected, this number is globally constant. O

COROLLARY 1.13. Topologically holomorphic proper maps are sur-
jective.

The above picture for proper maps suggests the following gener-
alization. A topologically holomorphic map f : S — T between
two surfaces is called a branched covering of degree d € N U {oco}
if any point b € T has a neighborhood V' with the following prop-
erty. Let f~'0 = {a;} and let U; be the components of f~'V con-
taining a;. Then these components are pairwise disjoint, and there
exist maps ¢; : (U;,a;) — (C,0) and ¢ : (V,b) — (C,0) such that
Yo fogr(z) = 2L Moreover, Y d; = d. (A branched covering of
degree 2 will be also called a double branched covering.)

We see that a topologically holomorphic map is proper if and only
if it is a branched covering of finite degree. All terminilogy developed
above for proper maps immediately extends to arbitrary branched cov-
erings.

Note that if V' C 71" is a domain which does not contain any criti-
cal values, then the “map f is unbranched over V7, i.e., its restriction
f7'V — V is a covering map. In particular, if V' is simply connected,
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then f~'V is the union of d disjoint domains U; each of which home-
omorphically projects onto V. In this case we have d well-defined
branches f' : V' — U; of the inverse map. (We will often use the same
notation f~! for the inverse branches.)

Let us finish with a beautiful relation between topology of the sur-
faces S and T, and branching properties of f.

Riemann - Hurwitz formula. Let f : S — T be a branched covering
of degree d between two topological surfaces of finite type. Let C be
the set of branched points of f. Then

X(S) = deg f - X(T) =) (deg, f —1).

acC

Let us define the multiplicity of a € C' as a critical point to be equal
to deg, f — 1 (in the holomorphic case it is the multiplicity of a as the
root of the equation f’(a) = 0). Then the sum in the right-hand side of
the Riemann-Hurwitz formula is equal to the number of critical points
of f counted with multiplicities.

EXERCISE 1.20. A double branched covering between two topologi-
cal disks has a single branched point of degree 2.

4.1. Topological Argument Principle. Consider the punctured
plane R? \ {b}. If v : ST — R? \ {b} is a smooth oriented Jordan curve
then one can define the winding number of « around b as

w() = | dlasg(a 1),
v
Since the 1-form d(arg(z—b)) is closed, the winding number is the same
for homotopic curves. Hence we can define the winding number wy(7)
for any continuous Jordan curve v : ST — R? \ {b} by approximating
it with a smooth Jordan curves.

Furthermore, the winding number can be linearly extended to any
simplicial 1-cycle in R? \ {b} with integer coefficients (i.e., a formal
combination of oriented Jordan curves in R? \ {b}) and then factored
to the first homology group. It gives an isomorphism

w: Hi(R* N {b}) = Z, [y]— ws(v). (4.1)
EXERCISE 1.21. Prove the last statement.

Let x € D be an isolated preimage of b = fx. Then one can define
the ind,(f) as follows. Take a disk V' C D around x that does not
contain other preimages of b = fx. Take a positively oriented Jordan
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loop v C V {2} around = whose image does not pass through b, and
calculate the winding number of the curve f: v — R% \ {b} around b:

lndw(f) = wf:zz(f © 7)
Clearly it does not depend on the loop -, since the curves corresponding
to different loops are homotopic without crossing b.

PROPOSITION 1.14. Let D C R? be a domain bounded by a Jordan
curve T, and let f : D — R? be a continuous map such that the curve fo
[ does not pass through some point b € R?. Assume that the preimage
of this point f~'b is discrete in D. Then

> indo(f) = wy(f o),

zef~-1b

provided ' 1s positively oriented.

PRrOOF. Note first that since f~'b is a discrete subset of a compact
set D, f~'z is actually finite, so that the above sum makes sense.

Select now small Jordan loops 7; around points z; € f 'b, and
orient them anti-clockwise. Since I' and these loops bound a 2-cell,
1) = S0l in Hy(D~ f'b). Hence £.[T] = ¥ ful] in H, (R? . {b}).
Applying the isomorphism (4.1), we obtain the desired formula. O

EXERCISE 1.22. Let f : D — R? be a continuous map, and let
a € D be an isolated point in the fiber f~'b, where b = f(a). Assume
that ind,(f) # 0. Then f is locally surjective near a, i.e., for any € > 0
there exists a § > 0 such that f(De(a)) D Dy (b).

Hint: For a small e-circle v around a, the curve f oy stays some
positive distance § from b. Then for any o' € D;(b) we have: ind,(f o
v) = indy(f o) # 0. But if o' ¢ f(D.(a)) then the curve f o~ could
be shrunk to b without crossing b'.

4.1.1. Degree of proper maps.

4.2. Lifts.

LEMMA 1.15. Let f : (S,a) — (T,b) and f : (S,a) — T,b) be two
double branched between topological disks (with or without boundary)
coverings branched at points a and a respectively. Then any homeomor-
phism h : (T,b) — (T,b) lifts to a homeomorphism H : (S,a) — (S, @)
which makes the diagram

(S,a) — (S,a)
fl L
(T,b) — (T,b)
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commutative. Moreover, the lift H is uniquely determined by its value
at any unbranched point z # a. Hence there exists exactly two lifts.

If the above surfaces are Riemann and the map h is holomorphic
then then the lifts H are holomorphic as well.

PrROOF. Puncturing all the surfaces at their preferred points, we
obtain four topological annuli. The maps f and f restrict to the un-
branched double coverings between respective annuli, while h restricts
to a homeomorphism. The image of the fundamental group m; (S~ {a})
under f consist of homotopy classes of curves with winding number 2
around b, and similar statement holds for f. Since the winding number
is preserved under homeomorphisms,

he(fe(m (S N A{a})) = fu(m(S ~ {a})). (4.2)
By the general theory of covering maps, h admits a lift
H:S~{a} = S~ {a}

which makes the “punctured” diagram (4.2) commutative. Moreover,
this lift is uniquely determined by the value of H at any point z €
S~ {a}.

Extend now H at the branched point by letting H(a) = a. It is
clear from the local structure of branched coverings that this extension
is continuous (as well as the inverse one), so that it provides us with
the desired lift.

If all the given maps are holomorphic then the lift H is also holo-
morphic on the punctured disk S\ {a}. Since isolated singularities are
removable for bounded holomorphic maps, the extension of H to the
whole disk is also holomorphic. O

EXERCISE 1.23. Similar statement holds for branched coverings f
and f with a single branched point (of any degree). Analyse the situa-
tion with two branched points.

EXERCISE 1.24. Assume that all the topological disks in the above
lemma are R-symmetric and that all the maps commute with the re-

flection o with respect to R. Assume also that h(f(TNR)) = f(I'NR).
Then both lifts H also commute with o (in particualar, they preserve

the real line).

5. Conformal Invariants

5.1. Extremal length. Given a family [' of plane Jordan arcs,
we will define a conformal invariant A(I") called the extremal length of
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I". Consider a measurable conformal metric p|dz| on C with finite total

mass
my = [ lasP

(such metrics will be called admissible). Let

lp(7) = [/pleI,

stand for the length of v € ' in this metric (with the convention that
it is infinite if v is non-rectifiable, or p is non-integrable over 7). Let

(L) = inf 1,(7).

Normalize the length in the scaling invariant way:

and define the extremal length of T as follows:

A = sup Ao(D),

where the supremum is taken over all admissible metrics.

EXERCISE 1.25. If a family of curves A contains a family T', then
A(A) < A(T).

5.2. Modulus of an annulus.

5.2.1. Modulus and extremal length. We will now calculate the mod-
ulus of an annulus in terms of the extremal length. Consider a flat
cylinder A = S* x (0, k) where S* x (0,1) with the circumferance equal
to a. Vertical arcs 7y, # € S*, joining the top to the bottom of A will
be called vertical sections of A.

If A is a conformal annulus, then it is isomorphic to a flat cylinder,
A= S x (0,h), and we will freely identify them. In particular, curves
in A corresponding to vertical/horizontal curves in the cylinder will
be also referred to as vertical/horizontal. By saying that an arc 7 :
(0,1) — A “joins the bottom of A to its top” we mean that it happens
in the cylinder model (so that this arc does not necessarily land at
some points of 0A).

PROPOSITION 1.16. Let I" be any family of Jordan arcs in the an-

nulus A joining its bottom to the top and containing almost all vertical
sections. Then A(T') = mod(A).
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PRrOOF. We will identify A with the cylinder S x (0, h). Take first
the flat metric E on the cylinder. Then [x(y) > h for any v € T, so
that {g(I') = h. On the other hand, mg(I') = ah. Hence A\g(I') =
h*/ah = mod(A).

Take now any admissible metric p on A. Then for any vertical
section 79 € T, 6 € S, we have: )\,(I') < [,(7). Integrating this over
S' (using that vy € I' for a.e. § € S') and applying the Cauchy-Schwarz
inequality, we obtain:

2
(a- \(T))?2 < </ pdm) < ahm,(A).
A
Hence A\,(A) < mod(A), and the statement follows. O

To evaluate the modulus, one can also consider the “dual” family
of curves:

EXERCISE 1.26. Let ' be a family of homotopic closed Jordan curves
in A containing almost all horizontal curves. Then mod(A) = 1/\(T).

5.2.2. Euclidean geometry of an annulus. The length-area method
allows one to relate mod(A) to the Euclidean geometry of A. As a sim-
ple illustration, let us show that mod(A) is bounded by the “distance
between the inner and the outer complements of A rel the size of the
inner complement”:

LeMMA 1.17. Consider a topological annulus A C C. Let K and
Q stand for its inner and outer complements respectively. Then

mod(A4) < Cdist(K,Q)/ diam K.

PROOF. Let I' be the family of horizontal curves in A. According
to the last Exercise, we need to bound A(I') from below.

Take points a € K and ¢ € ) on minimal distance dist(K, @), and
then select a point b € K such that dist(a,b) > diam K/2. Consider
a family A of closed Jordan curves v C C \ {a,b,c} with winding
number 1 around e and b and winding number 0 around c¢. Since
A AT) > AA).

Let us estimate A\(A) from below. Rescale the configuration {a, b, ¢}
(without changing notations) so that |a —b| = 1 and |a — ¢| = d, where

1
3 dist(K, Q)/ diam K < d < dist(K, @)/ diam K.

Consider a unit neighborhood B of the union [a, b] U [a, ¢] of two inter-
vals, and endow it with the Euclidean metric £ (extended by 0 outside
B). Then lz(A) > 1 while mg(B) < Ad. Hence Ap(A) > 1/Ad, and
we are done. O

define
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EXERCISE 1.27. For an annulus A as above, prove a lower bound:
mod(A) > pu(dist(K,Q)/ diam(K)) > 0.

5.3. Groztsch Inequality.
5.3.1. The following inequality plays an outstanding role in holo-
morphic dynamics:

THEOREM 1.18 (Groztsch Inequality). Consider a conformal an-
nulus A containing two disjoint conformal annuli A, and Ay homo-
topically equivalent to A. Then

mod(A) > mod A; + mod As.

PRrROOF. Consider the family I' of Jordan curves in A representing
a generator of m(A) and its subfamilies T'; of curves contained in A;,
i = 1,2. Recall that mod(A) = 1/A(I") (Exercise 1.26) and similarly
for annuli A;.

For any admissible conformal metric p, we have:

mp(A) 2 m,(Ar) +m,(Az)

and
[L,(T) <1,(T), i=1,2.
Hence
mo(A) L my(Ay) | mylAy) 1 1
L) 7 L) L) — AT A()
Minimizing the left-hand side over all admissible metrics, we obtain
the desired inequality. O

5.3.2. Shrinking nests of annuli. Let X C C be a compact con-
nected set. Let us say that a sequence of disjoint annuli A4, C C is
nested around X if for any any n, A, separates both A, and X from
oo. (We will also call it a “nest of annuli around X”.)

COROLLARY 1.19. Consider a nest of annuli A, around X. If
> mod A,, = 0o then X is a single point.

PROOF. Only the first annulus, A, can be unbounded in C. Take
some disk D = Dg containing Ay, and consider the annulus D \ X.
By the Groztsch Inequality,

mod(D \ X) > ZmodAn = 00.

n>2

Hence X is a single point. O

5.4. Dirichlet integral.
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5.4.1. Definition. Consider a Riemann surface S endowed with a
smooth conformal metric p. The Dirichlet integral (D.I.) of a function
x : S — C is defined as

D(x) = / 19xll, dmy,

where the norm of the gradient and the area form are evaluated with
respect to p. However:

EXERCISE 1.28. The Dirichlet integral is independent of the choice
of the conformal metric p. In particular, it is invariant under conformal
changes of variable.

In the local coordinates, the Dirichlet integral is expressed as fol-
lows:

D) = [ (el + 1y P = [ (b + |00 ).

In particular, for a conformal map h : U — C we have the area formula:

D(h) = / |B'(2)|*dm = h(U).
5.4.2. D.I. of a harmonic function.

EXERCISE 1.29. Consider a flat cylinder A = S' x (0, h) with the
unit circumference. Let x : A — (0,1) be the projection to the second
coordinate (the “height” function) divided by h. Then D(x) = 1/h.

Note that the function x in the exercise is a harmonic function with
boundary values 0 and 1 on the boundary components of the cylinder
(i.e., the solution of the Dirichlet problem with such boundary values).

EXERCISE 1.30. Such a harmonic function is unique up to switch-
ing the boundary components of A, which leads to replacement of x by

1—x.

Due to the conformal invariance of the Dirichlet integral (as well as
the modulus of an annulus and harmonicity of a function), these trivial
remarks immediately yield a non-trivial formula:

PRrROPOSITION 1.20. Let us consider a conformal annulus A. Then
there exist exactly two proper harmonic function x; : A — (0,1) (such

that x1 + x2 = 1) and D(x;) =1/ mod(A).
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5.4.3. Multi-connected case. Let S be a compact Riemann surface
with boundary. Let 9S = (05)o U (9S)1, where each (05); # 0 is the
union of several boundary components of 9S. Let us consider two
families of curves: the “vertical family” ' consisting of arcs joining
(0S)o to (0S)1, and the “horizontal family” T consisting of Jordan
multi-curves separating (95)y from (0S);. (A multicurve is a finite
union of Jordan curves.)

Let x : S — [0, 1] be the solution of the Dirichlet problem equal to
0 on (05)y and equal to 1 on (95);.

THEOREM 1.21.
1 1

M= 5T ~ oy

The modulus of S rel the boundaries (0S)y and (95)1, is defined as
the above extremal length:

mod((9S)o, (8S)1) = A(I™).

Remark. Physically, we can think of the pair (0S)y and (9S5),
in S as an electric condensator. The harmonic function y represents
the potential of the electric field created by the uniformly distributed
charge on (05);. The Dirichlet integral D(x) is the energy of this field.
Thus, mod((95)o, (0S)1) = 1/D(x) is equal to the ratio of the charge
to the energy, that is, to the capacity of the condensator.

6. Carathéodory topology

6.1. Hausdorff convergence. Let (X, d) be a metric space. The
Hausdorff distance between two subsets Y and Z in X is defined as
follows:

H-dist(Y, Z) = max(sup d(y, Z), supd(Y, z))
yey z€Z

Note that H-dist(Y, Z) < € means that Z is contained in an e-neighborhood

of Y and vice versa.

Let X be the space of closed subsets in X.

EXERCISE 1.31. (i) Show that that H-dist defines a metric on X';
(1i) If X is complete then X is complete as well;
(111) If X is compact then X is compact as well.
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6.2. Carathéodory convergence. Let us consider the space D
of all pointed conformal disks (D, a) in the complex plane. This space
can be endowed with a natural topology called Carathéodory. We will
describe it it terms of convergence:

DEFINITION 1.2. A sequence of pointed disks (D,,a,) € D con-
verges to a disk (D, a) € D if:
(i) a, — a;
(ii) Any compact subset K C D is eventually contained in all disks D,
AN: KC D,Vn>N;

(iii) If K is a topological disk contained in infinitely many domains D,
then K is contained in D.

Note that this definition allows one to pinch out big bubbles from
the domains D, (see Figure ...).

EXERCISE 1.32. a) Describe a topology on D which generates the
Carathéodory convergence.

b) Show that if OD,, converges to OD in the Hausdorff metric then
the disks D,, converge to D in the Carathéodory sense.

The above purely geometric definition can be reformulated in terms
of the uniformizations of the disks under consideration. Let us uni-
formize any pointed disk (D,a) € D by a conformal map ¢ : D — D
normalized so that ¢(0) = a and ¢'(0) > 0.

PROPOSITION 1.22. A sequence of pointed disks (D,,a) € D con-
verges to a pointed disk (D,a) € D if the corresponding sequence of
normalized uniformizations ¢ . D,, — D converges to D uniformly on
compact subsets of D.

PROOF. O

Recall that 7p , stands for the inner radius of the domain D with
respect to a € D (see §3.3). For r € (0,1), let D, stand for the family
of pointed disks (D, a) € D with r <rp, < 1/r.

COROLLARY 1.23. The space D, is compact.

ProoF. Let ¢p : (D,0) — (D, a) be the normalized uniformization
of D. Then .

< d'H(0) < —
r < ¢p(0) Ar

(The left-hand estimate follows from the Schwarz Lemma applied to
¢! : D(a,r) — D. The right-hand estimate follows from the Koebe
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1/4-Theorem applied to ¢p itself.) By the Koebe Distortion Theo-
rem, the family of univalent functions ¢p, D € D,, is compact. By

Proposition 1.22, the space D, is compact as well.
O



CHAPTER 2

Quasi-conformal geometry

7. Definition and regularity properties

7.1. Linear discussion. Let us cosider an R-linear automorphism
A of the complex plane Cg ~ R? viewed as the two-dimensional ori-
ented real Euclidean space with the positively oriented orthonormal
basis {1,i}. According to a well-known structural theorem for linear
maps, A can be decomposed into a product of a self-adjoint operator
S and an orthogonal operator O, A = O -S. This decomposition is
unique up to multiplying O by —1. We can normalize it so that the
bigger eigenvalue A\, of S is positive.

Let A_ stands for the smaller eigenvalues of S; it is positive or
negative depending on whether A preserves or reverses the orienta-
tion. Let ey and e_ stand for the corresonding eigenvectors. We
can select this basis to be orthonormal and positively oriented. Then
E = A"'D = S'O'D is the ellipse with big axis along u_ of length
1/|A_] and small axis along e, of length 1/, . The accentricity of this
ellipse, i.e., the ratio of the axes, is equal to A, /|A_|. This accentricity
will be also called the dilatation of A, Dil A.

This ellipse E determines a new Euclidean structure in Cg. If A
is replaced by a proportional linear map A’, the ellipse is scaled and
the Euclidean structure is replaced by a conformally equivalent (i.e.,
proportional). Thus an operator A up to a scalar factor determines a
conformal structure on Cg, and vice versa.

Let us calculate the above quantities in coordinates z, z of Cgx. The
operator A can be represented as z — az + bz = a(z + pz), where
1= b/a is called the Beltrami coefficient of A. Let u = €. Then the
maximum of A on the unit circle T = {e’?} is attained at the direc-
tion ¢ = —f/2 mod 7, while the minimum is attained at the orthognal
direction —0/2 4+ 7/2 modw. These are the eigendirections of S co-
inciding with the small and big axes of the ellipse A~'ID respectively.
The corresponding eigenvalues are equal to Ay = |a|(1+ |p]) = |a|+ 10|
and \_ = |a|(1 — |pu|) = |a| — |b|]. Thus

_ 14yl

Dil(A) = 3=

det(A) = |af* — [b. (7.1)

39

picture
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So the shape and orientation of the ellipse E is controlled by |u| and
arg p respectively. We also see that A is orientation preserving if and
only if |b| < |a|, i-e., |¢| < 1, and A is conformal (i.e., proportional to
an orthogonal operator) if and only if u = 0.

Consider now a non-linear map f : U — C on a domain U C C
differentiable at a point z € U, and apply the above discussion to its
differential Df(z) = 0f(2)dz + 0f(z)dz, where Of = 0f/0z, Of =
0f/0z. Assume that Df(z) is non-singular. The Beltrami coefficient
of this map is equal to pu(z) = 0f(2)/0f(2). We conclude that the
infinitesimal ellipse

Ei(2) = Df(2) 'Ty, € T,U (7.2)

(where Ty, is a round circle in the tangent space Ty,) has a small axis
in the direction — arg(u(2))/2 modm and the eccentricity

_ L (2]

Dil E;(z) = Dil Df () = e

(7.3)

Moreover,
Jac(f,2) =det Df(2) = |0f(2)]* — |0f(2)]%,

and f is orientation preserving at z if and only if |pu;(2)] < 1. It is
conformal at z if and only if pf(2) = 0, which is equivalent to the
Cauchy-Riemann equation df(z) = 0.

7.2. Conformal structures. A (measurable) conformal structure
on a domain U C C is a measurable family of conformal structures in
the tangent planes T,U, z € U. In other words, it is a measurable
family of infinitesimal ellipses F(z) C T,U defined up to scaling by a
measurable function p(z) > 0, z € U. (As always in the measurable
category, all the above objects are defined almost everywhere.) Accord-
ing to the linear discussion, any conformal structure is determined by
its Beltrami coefficient u(z), z € U, a measurable function in z assum-
ing its values in D, and vice versa. Thus conformal structures on U are
described analytically as elements p from the unit ball of L>*(U). We
say that a conformal structure has a bounded dilatation if the eccen-
tricities of the ellipses F(z) are bounded almost everywhere. In terms
of Beltrami coefficients, it means that ||y||.o < 1. The standard con-
formal structure o is given by the family of infinitesimal circles. The
corresponding Beltrami coefficient vanishes almost everywhere: p = 0.

Denote by DHT (U, V) (standing for “differentiable homeomorphisms”)
the space of orientation preserving homeomorphisms f : U — V', which
are differentiable almost everywhere (with respect to the Lebesgue mea-
sure) with a non-singular differential D f(z) measurably depending on
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z. (If we do not need to specify the domain and the range of f we write
simply f € DH'; if we do not assume that f is orientation preserving,
we skip “+7). Consider some homeomorphism f € DHT (U, V) between
two domains in C. Then by the above discussion we obtain a measur-
able family £ of infinitesimal ellipses Ef(z) = Df(2)"'Ty, C T,U. If
f is postcomposed with a conformal map ¢ : V' — C, then the fam-
ily of ellipses is scaled by a real factor (depending on z). Thus any
homeomorphism f € DH*(U,V) (defined up to a postcomposition
with a conformal map) determines a (measurable) conformal structure
&r = f*o on U. The Beltrami coefficient of this structure is equal to
pp(z) = 0f(2)/0f(2). It is also called the Beltrami coefficient of f.
We say that f has a bounded dilatation if the corresponding conformal
structure £ does. In this case we set

1+ ([l

Dil(f) = Dil(ey) = 3=

What happens with conformal structures under conformal changes
of variable? Let us consider a conformal map ¢ : U — U. Let
E(z) be an infinitesimal ellipse in 7,U and E(Z) = D¢~"E(z) be the
corresponding ellipse in T:U. Then the dilatations of these ellipses
are equal, while the small axis of E(z) is obtained from the small
axis of E(Z) by rotation through the angle arg f'(z). It follows that
w(2)/u(z) = f'(2)/f'(2), so that the differential (-1,1)-form u(z)dz/dz
is invariant under the above change of variable.

This allows us to generalize the above discussion to arbitrary Rie-
mann surfaces. A (measurable) conformal structure on a Riemann
surface S is a measurable family of infinitesimal ellipses defined up to
scaling. Analytically it is described as a measurable Beltrami differ-
ential (i.e., (1,-1)-differential form) g with ||p|| < 1. To any homeo-
morphism f € DH'(S,S’) between two Riemann surfaces corresponds
a conformal structure £y = f*o on S with the Beltrami differential
py = 0f/0f (where Of and 9f are now understood as differential 1-
forms). Note that the ellipses Ef(z) are well-defined only up to scaling
since the round circles on S’ are well-defined only up to scaling (as
there is no preferred metric on S’).

Remark. A key problem is whether any conformal structure £ is
associated to a certain map f. This problem has a remarkable positive
solution in the category of quasi-conformal maps.

Let us consider a smaller class ACT (U, V) c DH"(U,V) of abso-
lutely continuous orientation preserving homeomorphisms from U onto
V. (Reminder: f is absolutely continuous if for any set X of zero

picture
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Lebesgue measure, the preimage f'X has also zero measure.) Then
we can naturally pull back any measurable conformal structure £ on S’
to obtain a structure £ = f*(&’') on S. If f~! is also absolutely contin-
uous then we can push forward the structures: £ = f,(£). We will use
similar notations for pull-backs and push-forwards of Beltrami differ-
entials. In fact, in what follows we will not make notational differences
between conformal structures and Beltrami differentials.

EXERCISE 2.1. Calculate the Beltrami differential f  pu in terms of
p and Df. Show that Dil(f*u(z)) < DilDf(z)-Dil u(f(2)). Moreover,
dilatation behaves submultiplicatively under compositions:

Dil(f o g) < Dil(f) - Dil(g).

Thus, if a conformal structure v on S’ has a bounded dilatation
and f has a bounded dilatation, then the pull-back structure f*v has
a bounded dilatation as well.

More generally, let us consider a (non-invertible) map f : U —
V' which locally belongs to class ACT outside a finite set of “critical
points”. For such maps the push-forward operation is not well-defined,
but the pull-back v = f*u is still well-defined. The fact that f has
critical points does not cause any troubles since we need to know p
only almost everywhere. The property that Dil(f*u) < Dil(f) - Dil(u)
is obviously valid in this generality.

7.3. Distributional derivatives and absolute continuity on
lines. Let U be a domain in C = Cg. All functions below are as-
sumed to be complex valued. A test function ¢ on U is an infinitely
differentiable function with compact support. One says that a locally
integrable function f : U — C has distributional partial derivatives of
class L\ _if there exist functions h and ¢ of class L. on U such that

loc loc
for any test function ¢,

/Uf-a¢dm=—[]h¢dm; /Uf-éqsdmz—/(]gqsdm,

where m is the Lebesgue measure. In this case h and g are called 9 and
0 derivatives of f in the sense of distributions. Clearly this notiona is
invariant under smooth changes of variable, so that it makes sense on
any smooth manifold (and for all dimensions).

EXERCISE 2.2. Prove that a function f on the interval (0,1) has
a destributional derivative of class L. if and only if it is absolutely
continuous. Moreover, its classical derivative f'(x) coincides with the

distributional derivative.
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There is a similar criterion in the two-dimensional setting. A con-
tinuous function f : U — C is called absolutely continuous on lines
if for any family of parallel lines in any disk D € U, f is absolutely
continuous on almost all of them. Thus, taking a typical line [ of the
above family, the curve f : [ — C is rectifiable. Clearly such functions
have classical partial derivatives almost everywhere.

ProrosiTiON 2.1. Consider a homeomorphism f : U — V be-
tween two domains in the complex plane. It has distributional partial
derivatives of class Li,. if and only if it is absolutely continuous on
lines.

In fact, in the proof of existence of distributional partial deriva-
tives (the easy direction of the above Proposition), just two transversal
families of parallel lines are used. Thus one can relax the definition of
absolutele continuity on lines by taking any two directions (“horizon-
tal” and “vertical”).

ProprosITION 2.2. Consider a homeomorphism f : U — V which
15 absolutely continuous on lines. Then for almost any z € U, [ is
differentiable at z in the classical sense, i.e., f € DH.

This result can be viewed as a measurable generalization of the
elementary fact that existence of continuous partial derivatives implies
differentiability.

7.4. Definition. We are now ready to give a definition of quasi-
conformality. An orientation preserving homeomorphism f : S — S’
between two Riemann surfaces is called quasi-conformal if

e [t has locally integrable distributional partial derivatives;
e [t has bounded dilatation.

Note that the second property makes sense because the first prop-
erty implies that f is differentiable a.e. in the classical sense (by the
results of §7.3).

We will often abbreviate “quasi-conformal” as “qc”. A qc map f is
called K-qc if Dil(f) < K.

A map f:85 — 5 is called K- quasi-regular if for any z € S there
exist K-qc local charts ¢ : (U, z) — (C,0) and ¢ : (V, f(z)) — (C,0)
such that ) o f o ¢! :— 2. Sometimes we will abbreviate K-quasi-
regular maps as “K-qr”. A map is called quasi-regular if it is K-qr for
some K.

EXERCISE 2.1. Show that any quasi-regular map f : S — S" can be
decomposed as g o h, where h : S — T is a qc map to some Riemann
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surface T and g : T'— S’ is holomorphic. In particular, if S = 5" = C
then also T'= C and g : C — C s a rational map.

7.5. Absolute continuity and Sobolev class H. We will now
prove several important regularity properties of quasi-conformal maps.
Let us define a Sobolev class H = H(U) as the space of uniformly
continuous functions f : U — C whose distributional partial deriva-
tives on U belong to L*(U). The norm on H is the maximum of the
uniform norm of f and L2-norm of its partial derivatives. Infinitely
smooth functions are dense in H. This can be shown by the standard
regularization procedure: convolute f with a sequence of functions
bn(x) = n*¢(n'z), where ¢ is a non-negative test function on U with
[¢dm =1 (see [?,Ch V, §2.1]).

PROPOSITION 2.3. Quasiconformal maps are absolutely continuous
with respect to the Lebesgue measure, and thus for any Borel set X C U,

m(fX):/XJac(f,z)dm.

The partial derivatives Of and Of belong to L?

loc*

PROOF. Since both statements are local, we can restrict ourselves
to homeomorphisms f : U — U’ between domains in the complex
plane. Consider the pull-back of the Lebesgue measure on U’, y = f*m.
It is a Borel measure defined as follows: p(X) = m(fX) for any Borel
sett X C U. Let us decompose it into absolutely continuous and singular
parts: 4 = h-m + v. By the Lebesgue Density Points Theorem, for
almost all z € U, we have:

1 1
hdm — h(z); —v(D(z,¢)) -0 as e€—0.

2 2
me IXz,€) e

Summing up we obtain:
m(f(D(z,¢)) _ p(D(z,¢€)
m(D(z, €)) m(D(z, €)

But if f is differentiable at z then the left hand-side of the last
equation goes to Jac(f,z). Hence Jac(f,z) = h(z) a.e. It follows that
for any Borel set X,

— h(z) as e€—0.

/XJac(f, 2)dm :/ hdm < p(X) = m(fX). (7.4)

X



7. DEFINITION AND REGULARITY PROPERTIES 45

But Jac(f,=) = [0f () ~ [0f(2)* > (1 = k2)[0f(2)F", where k =
Il Thus
1 - k2
[1osPam < =m0 [ jarean < 0,

and we see that the partial derivatives of f are locally square integrable.

What is left is to prove the opposite to (7.4). As we have just shown,
f locally belongs to the Sobolev class H. Without loss of generality we
can assume that it is so on the whole domain U, i.e., f € H(U). Let
us approximate f in H(U) by a sequence of C*° functions f,. Take a
domain D € U with piecewise smooth boundary (e.g., a rectangle).

Let V,, C f,D be the set of regular values of f,,. By Sard’s Theo-
rem, it has full measure in f,D. Let R = f, 'V, N D. Note that the
fRn Jac f,, dm is equal to the area of the image of f,|R, counted with
multiplicities:

/ el 2 dm = | cand(s, 26 dm = m(Vi) = m(f,D)

n

Since f, — f uniformly on D, lim inf m(f,D) > m(fD). Since Jac(f,) —
Jac(f) in LY(U),

/RJac(fn,z)dm—>/RJac(f,z)dm§/DJac(f,z)dm.

Putting the last estimates together, we obtain the desired estimate for
D.

For an arbitrary Borel set X C U, the result follows by a simple
approximation argument using a covering of X by a union of rectangles
D; with disjoint interiors such that m(UD; \ X) < e. O

7.6. Weil’s Lemma. This lemma asserts that a 1-qc map is con-
formal. In other words, if a qc map is infiniesimally conformal on the
set of full measure (i.e., df(z) = 0 a.e.), then it is conformal in the
classical set. Since 0f(z) = 0 is just the Cauchy-Riemann equation,
this statement is classical for smooth maps.

Let us formulate a more general version of Weil’s Lemma:

LEMMA 2.4 (Weil). Assume that a contmqous function f: U — C
has distributional derivatives of class L .. If 0f(z) =0 a.e., then [ is
holomorphic.

ProOOF. By approximation, Weil’s Lemma can be reduced to the
classical statement. Since the statement is local, we can assume without
loss of generality that the partial derivatives of f belong to L!'(U).
Convoluting f with smooth bump-functions we obtain a sequence of
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smooth functions f, = f * 6, converging to f uniformly on U with
derivatives converging in L'(U). Let us show that df, = 0. For a test
function ¢ on U, we have:

/ 5f.(2) 6(2) dm(2) / f(2) 6(2) dim(z) =
- [ 5@ () [0ue=100) i) = [ 1€ tm(e) [ 30,(-00o(2) dm(z) =

[ o) [ 11000~ ¢)dm(c) = [ o(2) 85, dm(z).

Here the first and the third equalities are the classical integration by
parts, the last one expresses the property that O(f * 6,) = f * 00,
(which we leave to the reader as an exercise), and the rest is the Fubini
Theorem.

It follows that the smooth functions f,, satisfy the Cauchy-Riemann
equations and hence holomorphic. Since uniform limits of holomorphic
functions are holomorphic, f is holomorphic as well.

O

7.7. Devil Staircase. The following example shows that Weil’s
Lemma is not valid for homeomorphisms of class DH (i.e., differentiable
a.e.). The technical assumption that the classical derivative can be
understood in the sense of distributions (which allows us to integrate
by parts) is thus crucial for the statement.

Take the standard Cantor set K C [0,1] and construct a devil
staircase h : [0,1] — [0, 1], i.e., a continuous monotone function which
is constant on the complementary gaps to K.

EXERCISE 2.3. Do the construction. (Topologically it amounts to
showing that by collapsing the gaps to points we obtain a space home-
omorphic to the interval.)

Consider a strip S = [0,1] x R and let f : (z,y) — (z,y + h(x)).
This is a homeomorphism on S which is a rigid translation on every
strip G X R over a gap G C [0,1] \ K. Since m(K x R) = 0, this map
is conformal a.e. However it is obviously not conformal on the whole
strip P.

Clearly f in not absolutely continuous on the horizontal lines: it
translates them to devil staircases.
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8. Further important properties of qc maps

8.1. Qc Removability and Gluing. A closed set K C Cis called
gc removable if any homeomorphism A : U — C defined on an neigh-

borhood U of K, which is quasiconformal on U \ K, is quasiconformal
on U.

Remark. We will see later on (§77) that qc removable sets have
zero measure and hence Dil(f|U) = Dil(f|U \ K).

EXERCISE 2.4. Show that isolated points are removable.
PROPOSITION 2.5. Smooth Jordan arcs are removable.

PROOF. Let us consider a smooth Jordan arc I' C U and a home-
omorphism f : U — C which is quasi-conformal on U ~\ I'. We should
check that f is absolutely continuous on lines near any point z € I'.
Take a small box B centered at z whose sides are not parallel to T,T".
Then any interval [ in B parallel to one of its sides intersects I' at a
sinle point (. Since for a typical [, f is absolutely continuous on the
both sides of I \ {(}, it is absolutely continuous on the whole interval
[ as well.

Moreover, Dil(f) is obviously bounded since it is so on U \ I" and
I' has zero measure. O

The above statement is simple but important for holomorphic dy-
namics. It will allow us to construct global qc homeomorphisms by
gluing together different pieces without spoiling dilatation.

Let us now state a more delicate gluing property:

LEMMA 2.6 (Bers). Consider a closed set K C C and two its neigh-
borhoods U and V. Assume that we have two quasi-conformal maps
f:UNK —Candg:V — C that match on 0K, i.e., the map

f(2), ze UNK
h(z):{ g((z)), ze K

is continuous. Then h is quasi-conformal and pp(2) = pg(2) for a.e.
z € K.

PRroor. Consider a map ¢ = f~! o h. It is well-defined in a neigh-
borhood € of K, is identity on K and is quasi-conformal on Q2 K. Let
us show that it is quasi-conformal on 2. Again, the main difficulty is
to show that h is abosultely continuous on lines near any point z € K.

Take a little box near some point z € K with sides parallel to the
coordinate axes. Without loss of generality we can assume that z # oo
and ¢B is a bounded subset of C. Let 1 denote the extension of d¢/0x
from B~ K onto the whole box B by 0. By (7.5), ¢ is square integrable
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on B and hence it is square integrable on almost all horizontal sections
of B. All the more, it is integrable on almost all horizontal sections.
Take such a section 7, and let us show that ¢ is absolutely continuous
on it.

Let I; C I be a finite set of disjoint intervals; A¢; denote the
increment of ¢ on ;. We should show that

D A¢;l =0 as Y I 0. (8.1)

Take one interval I; and decompose it as LU .J U R where 0.J C K and
int L and int R belong to B ~. K. Then

|Ag;| < |J|+/ gdx < |Ij|+/ gdx.

LUR I
Summing up the last estimates over j and using integrability of g on
I;, we obtain (8.1).

Absolute continuity on the vertial lines is treated in exactly the
same way. 0

8.2. Quasi-invariance of modulus. Next we will show by the
length-area method that the modulus of an annulus is a quasi-conformal
quasi-invariant.

ProprosITION 2.7. Consider a K-qc map f : A — A between two
topological annuli. Then

K~'mod(A) < mod(4) < K mod(A).

PrROOF. We will use the notations of (§?7) for objects related to
the extremal length. Take any measurable conformal metric p|dz| on
the annulus A with finite total mass, and transfer it to A by the rule:
p=(pof)(|0f|—|0f]). Let I be the family of vertical segments joining
the bottom to the top of A on which f~* is absolutely continuous; while
let I' be the family of all rectifiable curves joining the bottom to the
top of A (by Proposition 1.16, either family can be used to evaluate
the modulus of an annulus). Take any curve 5 € T and let v = f7'5.
Since |Df| > |0f| — |0f]| at the points of differentiability of f, we have
the following length estimate:

() = 15(3) = / pldc| >

[@o 110011~ 101D Idz| = 1,0) = 1,0).
gl
Since f is absolutely continuous with respect to the Lebesgue mea-

sure (Proposition 8.1), we have the following area estimate:
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mp(d) = [ dm= [ (5o £ (05~ 105) dm =

[ 7t < Kl

(We see by the way that p has also finite total mass.) Dividing the
square of the former estimate by the latter, we obtain:

M(T) > K1\, (I).

Taking the supremum over p, we conclude that mod(A) > K" mod(A).
The opposite inequality is obtained by changing the roles of A and A.
]

EXERCISE 2.2. Prove that C and D are not qc equivalent.

8.3. Weak topology in L2. Before going further, let us briefly
recall some background in functional analysis. Consider the space L? =
L?(X) on some measure space (X,m). A sequence of functions h,, €
L? weakly converges to some function h € L% h, — h, if for any

¢ € L?, [ ho¢pdm — [ hédm. The main advantage of this topology is
the property that the balls of L? are weakly compact (see e.g., [?, ]).
Note also that vice versa, any weakly convergent sequence belongs to
some ball in L? (Banach-Schteinhaus [?, ]).

However, one should handle the weak topology with caution: for
instance, product is not a weakly continuous operation:

EXERCISE 2.3. Show that sinnx — 0 in L?[0, 27], while sin® nx —
w w
1/2.

At least, the weak topology respects the order:

EXERCISE 2.4. Let h,, — h.
w

e Ifh, >0 then h > 0;
e Ifh, =0 a.e. on some subsetY C X, then h=0 a.e. onY;
o After selecting a further subsequence,

(hn)y — hy and (hy)— — h_, so that |h,| — |h|.

Here h,(z) = max(h(z),0), h(z) = min(h(z),0).

invertibility of qc
!
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8.4. Compactness. We will proceed with the following funda-
mental property of qc maps:

THEOREM 2.8. The space of K-qc maps f : C — C firing 0,1 and
o0 18 compact in the topology of uniform convergence on C

PROOF. Denote the space in question by X'. First, we will show
that the family of maps f € X is equicontinuous. Otherwise we would
have an € > 0, a sequence of maps f, € X, and a sequence of points
Zny Cn € C such that such that d(z,,(,) — 0 while d(f,zn, fuCn) > €,
where d stands for the sperical metric. By compactness of C, we can
assume that the z,,(, € C converge to some point a and the f,a
converge to some b. Postcomposing or/and precomposing the f,’s with
z + 1/z if necessary, we can assume make |a| <1, [b] < 1.

Consider a sequence of annuli A, = {z: r, < |z —a| < 1/2} where
r, = max(|z, — al, |, — a]) — 0. Since the disk D(a, 1/2) does not
contain one of the points 0 or 1, its images f,D(a,1/2) have the same
property. Hence the Euclidean distance from the point f,a (belonging
to the inner complement of f,A,) to the outer complement of that
annulus is eventually bounded by 3. On the other hand, the diameter
of the inner complement of f,A, is bounded from below by ¢ > 0.
By Lemma 1.17, mod(f,A,) is bounded from above. But mod(A4,) =
1/r, — 0 contradicting quasi-invariance of the modulus (Proposition
2.7).

Hence X is precompact in the space of continuous maps C — C.
Since X is invariant under taking the inverse f — f~!, and the com-
position is a continuous operation in the uniform topology, X is pre-
compact in Homeo(C). Since Homeo™ (C) is closed in Homeo(C), X is
precompact in the former space as well.

To complete the proof, we should show that the limit functions
are also K-qc homeomorphisms. Let a sequence f, € X uniformly
converges to some f. Given a point a € C, we will show that in some
neighborhood of a, f has distributional derivatives of class L?. Without
loss of generality we can assume that a € C. Take a neighborhood B >
a such that fB is a bounded subset of C. Then the neighborhoods f, B
are eventually uniformly bounded. By (?7), the partial derivatives 0f,
and 0f, eventually belong to a ball of L?(D). Hence they form weakly
precompact sequences, and we can select limits along subsequences
(without changing notations):

Of, — h € L*(D); Of, — g € L*(D).
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It is straightforward to show that h and ¢ are the distributional partial
derivatives of f. Indeed, for any test functions ¢ we have:

/f8¢dm:lim/fn8¢dm:—lim/@fn(bdm:—/hqﬁdn(zé.m

and the similarly for the d-derivative.

What is left is to show that |h(z)] < k|g(z)| for a.e. z, where
k= (K+1)/(K —1). To see it, select a further subsequence in such
a way that |0f,] — |hl, [0fs] — ¢ and use the fact that the weak

topology respects the order (see Exercise 2.4). O

EXERCISE 2.5. Fiz any three points ay,as,as on the sphere C. A
family X of K-qc maps h : C — C is precompact in the space of all
K-qc homeomorphisms of the sphere (in the uniform topology) if and
only if the reference points are not moved close to each other (or, in
formal words: there exists a § > 0 such that d(ha;, ha;) > § for any
h € X and i # j, where d is the spherical metric). Consider first the
case K = 0.

We will also need a disk version of the above Compactness Theorem:

COROLLARY 2.9. The space of K-qc homeomorphisms f : D — D
fixzing 0 is compact in the topology of uniform convergence on D.

PrROOF. Let Y be the space of K-qc homeomorphisms h: D — D
fixing 0, and X be the space of T-symmetric K-qc homeomorphisms
H : C — C fixing 0 and co. (To be T-symmetric means to commute
with the involution 7 : C — C with respect to the circle.) Clearly
maps H € X preserve the unit circle (the set of fixed points of 7); in
particular, they do not move 1 close to 0 and co. By Theorem 2.8 (and
the Exercise following it), X is compact.

Let us show that X and ) are homeomorphic. The restriction of
a map H € X to the unit disk gives a continuous map 7 : X — ).
The inverse map i ' : Y — X is given by the following extension
procedure. First, extend h € ) continuously to the closed disk D
(Theorem ?7), and then reflect it symmetrically to the exterior of the
disk, i.e., let H(2) = Toho7(2) for z € C\D. Since 7 is an (orientation
reversing) conformal map, H is K-qc on C \ T. By Lemma 2.5, it is
K-qc everywhere, and hence belongs to X.

Hence ) is compact as well. O
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9. Measurable Riemann Mapping Theorem

We are now ready to prove one of the most remarkable facts of
analysis: any measurable conformal structure with bounded dilatation
is generated by a quasi-conformal map:

THEOREM 2.10 (Measurable Riemann Mapping Theorem). Let y1 be
a measurable Beltrami differential on C with ||p||e < 1. Then there
is a quasi-conformal map h : C — C which solves the Beltrami equa-
tion: Oh/Oh = u. This solution is unique up to post-composition with
a Mébius automorphism of C. In particular, there is a unique solution
fizing three points on C (say, 0,1 and o0).

The local version of this result sounds as follows:

THEOREM 2.11 (Local integrability). Let 1 be a measurable Bel-
trami differential on a domain U C C with |||l < 1. Then there
1 a quasi-conformal map h : U — C which solves the Beltrami equa-
tion: Oh/Oh = u. This solution is unique up to post-composition with
a conformal map.

The rest of this section will be occupied with a proof of these two
theorems.

9.1. Uniqueness. Uniqueness part in the above theorems is a con-
sequence of Weil’'s Lemma. Indeed, if we have two solutions A and g,
then the composition ¢ = go h~! is a qc map with 91 = 0 a.e. on its
domain. Hence it is conformal.

9.2. Local vs global. Of course, the global Riemann Measurable
Riemann Theorem immediately yields the local integrability (e.g., by
zero extantion of p from U to the whole sphere). Vice versa, the
global result follows from the local one and the classical Uniformization

ref Theorem for the sphere . Indeed, by local integrability, there is a
finite covering of the sphere S? = C by domains U; and a family of
qc maps ¢; : U; — C solving the Beltrami equation on U;. By Weil’s
Lemma, the gluing maps ¢; o ¢j_1 are conformal. Thus the family of
maps {¢;} can be interpreted as a complex analytic atlas on S?, which
endows it with a new complex analytic structure m (compatible with
the original qc structure). But by the Uniformization Theorem, all
complex analytic structures on S? are equivalent, so that there exists a
biholomorphic isomorphism A : (S2,m) — C. It means that the maps
ho qﬁi_l are conformal on ¢;U;. Hence h is quasi-conformal on each U;
and h.(p) = (ho ¢;'),0 over there. Since the atlas is finite, h is a
global quasi-conformal solution of the Beltrami equation.
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9.3. Strategy. The further strategy of the proof will be the fol-
lowing. First, we will solve the Beltrami equation locally assuming
that the coefficient y is real analytic. It is a classical (and elementary)
piece of the PDE theory. By the Uniformization Theorem, it yields a
global solution in the real analytic case. Approximating a measurable
Beltrami coefficient by real analytic ones and using compactness of the
space of normalized K-qc maps, we will complete the proof.

9.4. Real analytic case. Assume that p is a real analytic Bel-
trami coefficient in a neighborhood of 0 in R? = Cg with |u(0)| < 1.
Then it admits a complex analytic extension to a neighborhood of 0 in
the complexification C2. Let (z,y) be the standard coordinates in C?,
and let u = x + 4y, v = x — iy. In these coordinates the complexified
Beltrami equation assumes the form:

Fee (u,v)% = 0. (9.1)

This is a linear equation with variable coefficients, which can be solved
by the standard method of characteristics. Namely, let us consider a
vector field W (u,v) = (1, —pu(u,v)) near 0 in C?. Since the left-hand
side of (9.1) is the derivative of h along X, we come to the equation
Wh = 0. Solutions of this equation are the first integrals of the ODE
w = W. But since W is non-singular at 0, this ODE has a non-
singular local first integral h(u,v). Restricting h to R?, we obtain a
local solution h : (R?*,0) — C of the original Beltrami equation. Since
h is non-singular at 0, it is a local (real analytic) diffeomorphism.

By means of the Uniformization Theorem, we can now pass from
local to global solutions of the Beltrami equation with a real analytic
Beltrami differential p(2)dz/dz on the sphere (see §9.2). Note that
the global solution is real analytic as well since the complex structure
generated by the local solutions is compatible with the original real
analytic structure of the sphere (as local solutions are real analytic).

EXERCISE 2.6. For a real analytic Beltrami coefficient

wu(z) = Z Q2" 2™
on C, find the condition of its real analyticity at oco.

There is also a “semi-local” version of this result:

If p is a real analytic Beltrami differential on the disk D with
lillo < 1, then there is a quasi-conformal (real analytic) diffeomor-
phism h : D — D solving the Beltrami equation Oh/0h = p.

To see it, consider the complex structure m on the disk generated
by the local solutions of the Beltrami equation. We obtain a simply
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connected Riemann surface S = (D, m). By the Uniformization The-
orem, it is conformally equivalent to either the standard disk (DD, o)
or to the complex place C. But S is quasi-conformally equivalent to
the standard disk via the identical map id : (D,m) — (D, o). By Ex-
ercise 2.2, it is then conformally equivalent to the standard disk, and
this equivalence h : (D,m) — (D, o) provides a desired solution of the
Beltrami equation.

By §9.1 Such a solution is unique up to a postcomposition with a
Mobius automorphism of the disk.

9.5. Approximation. Let us consider an arbitrary measurable
Beltrami coefficient 1 on a disk D with ||u|] < oo. Select a sequence
of real analytic Beltrami coefficients p, on D with ||u,llec < k < 1,
converging to p a.e.

EXERCISE 2.7. Construct such a sequence (first approzimate p with
continuous Beltrami coefficients).

Applying the results of the previous section, we find a sequence
of quasi-conformal maps h, : (D,0) — (D,0) solving the Beltrami
equations 5hn/8hn = p,. The dilatation of these maps is bounded
by K = (1 +k)/(1 — k). By Corollary 2.9, they form a precompact
sequence in the topology of uniform convergence on the disk. Any limit
map h : D — D of this sequence is a quasi-conformal homeomorphism
of D. Let us show that its Beltrami coefficient is equal to pu.

By (7.5), the partial derivatives of the h,, belong to some ball of
the Hilbert space L?(D). Hence we can select weakly convergent sub-
sequences Oh, — @, Oh,, — . We have checked in (8.2) that ¢ = Oh
and ¢» = Oh. What is left is to check that 1 = u¢. To this end, it is
enough to show that p, 0h,, — u¢ weakly (to appreciate it, recall that
the product is not weakly continuous, see Exercise 2.3). For any test
function g € L*(D), we have:

‘/(g:u¢ — gln ahn) dm‘ S

< | [ auto~ omyan| + [ latu = ) ot .

The first term in the last line goes to 0 since the dh,, weakly converge
to ¢. The second term is estimated by the Cauchy-Schwarz inequality
by |lg(1t — tn)]|2]|Ohy |2, which goes to 0 since u,, — p a.e. and the Oh,,
belong to some Hilbert ball. This yields the desired.
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It proves the Measurable Riemann Mapping Theorem on the disk
D, which certainly implies the local integrability. Now the global the-
orem on the sphere follows from the local integrability by §9.2. This
completes the proof.

9.6. Conformal and complex structures. Let us discuss the
general relation between the notions of complex and conformal struc-
tures. Consider an oriented surface S endowed with a ¢s structure, i.e.,
supplied with an atlas of local charts v; : V; — C with uniformly qc
transit maps v; oz/)j_l (“uniformly q¢” means “with uniformly bounded
dilatation”). Note that a notion of a measurable conformal structure
with bounded dilatation makes perfect sense on such a surface (in what
follows we call it just a “conformal structure”).

Endow S with a complex structure compatible with its gs structure.
By definition, it is determined by an atlas ¢; : U; — C on S of uniformly
gc maps such that the transit maps are complex analytic. Then the
conformal structures u; = ¢f(o) on U; coincide on the intersections of
the local charts and have uniformly bounded dilatations. Hence they
glue into a global conformal structure on S.

Vice versa, any conformal structure p determines by the Local Inte-
grability Theorem a new complex structure on the surface S compatible
with its qc structure (see §9.2).

Thus the notions of conformal and complex structures on a qc sur-
face are equivalent. In what follows we will not distinguish them either
conceptually or notationally.

Fixing a reference complex structure on S (so that S becomes a Rie-
mann surface), complex/conformal structures on S get parametrized by
measurable Beltrami differentials 1 on S with ||u|l- < 1.

9.7. Moduli spaces. Consider some qc surface S (with or without
boundary, possibly marked or partially marked).

The moduli space M(S), or the deformation space of S is the
space of all conformal structures on S compatible with the underly-
ing qc structure, up to the action of qc homeomorphisms perserving
the marked data. In other words, M(S) is the space of all Riemann
surfaces qc equivalent to S, up to conformal equivalence relation (re-
specting the marked data).

If we fix a reference Riemann surface Sy, then its deformations are
represented by qc homeomorphisms A : Sy, — S to various Riemann
surfaces S. Two such homeomorphisms A and h represent the same
point of the moduli space if there exists a conformal isomorphism A :
S — S such that the composition H = h o Ao h: Sy — Sy respects
all the marked data. In particular, H = id on the marked boundary.
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In the case when the whole fundamental group is marked, H must be
homotopic to the id relative to the marked boundary.

For instance, if S has a finite conformal type, i.e., S is a Riemann
surface of genus ¢ with n punctures (without marking), then M(S) is
the classical moduli space M9". If S is fully marked then M(S) is
the classical Teichmiiller space T9". This space has a natural complex
structure of complex dimension 3g — 3 4+ n for ¢ > 1. For g = 1 (the
torus case), dimT'° =1 (see §1.4.2) and dimT+" = n — 1 for n > 1.
For g = 0 (the sphere case), dimT%" = 0 for n < 3 (by the Riemann-
Koebe Uniformization Theorem and 3-transitivity of the Mobius group
action) and dim7%" = n — 3 for n > 3.

EXERCISE 2.8. What is the complex modulus of the four punctured
sphere?

There is a natural projection (fogetting the marking) from 79"
onto M9"™. The fibers of this projection are the orbits of the so called
“Teichmiiller modular group” acting on 79" (it generalizes the classical
modular group PSL(2,7Z), see §1.4.2).

By the Riemann Mapping Theorem, the disk D does not have mod-
uli. However, if we mark its boundary T, then the space of moduli,
M(D, T), becomes infinitely dimensional! By definition, M(D, T) is
the space of all Beltrami differentials g on D up to the action of the
group of q¢c homeomorphisms h : D — D whose boundary restrictions
are Mobius: h|T € PSL(2,R). It is called the universal Teichmiiller
space, since it contains all other deformation spaces. This space has
several nice descriptions, which will be discussed later on. It plays an
important role in holomorphic dynamics.

9.8. Dependence on parameters. It is important to know how
the solution of the Beltrami equation depends on the Beltrami differ-
ential. It turns out that this dependence is very nice. Below we will
formulate three statements of this kind (on continuous, smooth and
holomorphic dependence).

PROPOSITION 2.12. Let p, be a sequence of Beltrami differentials
on C with uniformly bounded dilatation, converging a.e. to a differ-
ential 1. Consider qc solutions h, : C — C and h : C — C of the
corresponding Beltrami equations fizing 0,1 and oo. Then the h,, con-
verge to h uniformly on C.

ProoF. By Theorem 8.4, the sequence h,, is precompact. Take any
limit map g of this sequence. By the argument of §9.5, its Beltrami
differential is equal to u. By uniqueness of the normalized solution of
the Beltrami equation, ¢ = h. The conclusion follows. O
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Consider a family of Beltrami differentials y; depending on parame-
ters t = (t1,...,t,) ranging over a domain U C R". This family is said
to be differentiable at some t € U if there exist Beltrami differentials
a! of class L>(C) (but not necessarily in the unit ball of this space)
such that for all sufficiently small € = (¢1,...,¢,) € R, we have:

Hite — et = Zaiﬁi + |€| ﬁ(ta 6)7
=1

where the norm || || stays bounded and (3, .(z) — 0 a.e. on C as
e — 0.

Assume additionally that the family p, is differentiable at all points
t € U, that the norms ||a}|| are locally bounded, and that the a!(z)
continuously depend on ¢ in the sense of the convergence a.e. Then the
family p, is said to be smooth.

Let us now consider a family of qc maps h; : C — C depending on
parameters t € U. Considering these maps as elements of the Sobolev
space H, we can define differentiabilty and smoothness in the usual
way. This family is differentiable at some point ¢ € U if there exist
vector fields v¢ on C of Sobolev class H such that

n
hiye — hy = Zewi + [€lgt,e,

i=1
where ¢, — 0 in the Sobolev norm as ¢ — 0 (in particular g, — 0
uniformly on the sphere). If additionally the v! depend continuously
on ¢ (as elements of H), then one says that h; smoothly depends on t.
Of course, in this case, any point z € C smoothly moves as parameter
t changes, i.e., hy(z) smoothly depends on ¢.

THEOREM 2.13. If uy,, t € U C R, is a smooth family of Bel-
trami differentials, then the normalized solutions hy : C — C of the
corresponding Beltrami equations smoothly depend on t.

Let us finally discuss the holomorphic dependence on parameters.
Let U be a domain in C* and let B be a complex Banach space. A
function f : U — B is called holomorphic if for any linear functional
¢ € B*, the function ¢ o f : U — C is holomorphic. Beltrami differ-
entials are elements of the complex Banach space L, while qc maps
h : C — C are elements of the complex Sobolev space H. So, it
makes sense to talk about holomorphic dependence of these objects
on complex parameters ¢t = (¢1,...,t,) € U. Note that if h; depends
holomorphically on ¢, then any point z € C moves holomorphically
as t changes (in fact, holomorphic dependence on parameters is often
understood in this weak sense).

be careful here!
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THEOREM 2.14. If the Beltrams differential p; holomorphically de-
pends on parameters t € U, then so do the normalized solutions hy :
C — C of the corresponding Beltrami equations.

The proofs of the last two theorems can be found in [AB].
9.8.1. Simple conditions.

LEMMA 2.15. Let B be a Banach space, and let {fr}, A € D,, be
a uniformly bounded family of linear functionals on B such that for
a dense linear subspace L of points x € B, the function X — fy\(z)
is holomorphic in A. Then {f\} as an element of the dual space B*
depends holomorphically on .

PRrOOF. For x € L, we have a power series expansion

@) =) an(z)\"
convergent in ID,. By the Cauchy estimate,

o) < DL wer,
where C' is an upper bound for the norms ||fi||, A € D,. Clearly,
the a,(z) linearly depend on z € L. Hence, a, are bounded linear
functionals on L; hence they admit an extension to bounded linear
functionals on B. Moreover, ||a,|| < Cp~™. It follows that the power
series > a, A" converges in the dual space B* uniformly in A over any
disk D,, » < p. Hence it represents a holomorphic function D, — B*,
which, of course, coincides with A — f. O

For further applications, let us formulate one simple condition of
holomorphic dependence:

LEMMA 2.16. Let p > 0 and let U C C be an open subset in C
of full measure. Let uy € L*(C), A € D,, be a family of Beltrami
differentials with ||pa||l < 1 whose restriction to U is smooth in both
variables (X, z) and is holomorphic in X\. Then {u\} is a holomorphic
family of Beltrams differentials.

PROOF. Let us first assume that U = C. Then
pa(z) = Zan(z))\", AeD,

where the a, are smooth functions on C, and the series converges uni-
formly over C x I, for any r < p. It follows that the series 3" a, \" in
L> converges uniformly over D, and hence represents a holomorphic
function I, — L.
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Let us now consider the general case; put K = C ~ U. Consider
a sequence of smooth functions x; : C — [0,1] such that x; = 0 on K
and for any z € U, x;(2) = 1 as [ — o0.

Consider smooth Beltrami differentials p = y;ux. By the above
consideration, they depend holomorphically on A. Moreover, since K
has zero area, y;uy — pa a.e. as [ — oo. Note also that ||g} || < 1.

Take any smooth test function ¢ on C and let

() = / dA;  g(n) = / i A,

where dA is the (normalized) area element on C. The family {g;} is
uniformly bounded: |g;(A)] < [|¢]|s By the Lebesgue Bounded Con-
vergence Theorem, ¢;(\) — g(\) as | — oo

By the previous discussion, functions g; are holomorphic functions
on D,. By the Little Montel Theorem, this family is normal. Hence we
can select a subsequence conveging to g uniformly on compact subsets
of C. It follows that g is holomorphic on D).

Since smooth functions are dense in L', Lemma, 2.15 can be applied.
It implies the assertion. O

EXERCISE 2.9. Let f: S — T be a holomorphic map between two
Riemann surfaces, and let {u\} be a holomorphic family of Beltrami
differentials on T. Then f*(py) is a holomorphic family of Beltrami
differentials on S.

10. Quasi-symmetric maps

DEFINITION 2.1. A map h : X — Y between two metric spaces is
called k-quasi-symmetric (“k-qs”) if for any triple of points a, b, ¢ with
dist(a, ¢) < dist(a,b) we have: dist(h(a),h(c)) < kdist(h(a), h(b)). A
map is called quasi-symmetric (“qs”) if it is k-qs for some . The
dilatation of a gqs map is the smallest x with this property.

EXERCISE 2.10. A metric space is called geodesic if any two points
in it can be joined with an isometric image of a real interval [x,y].
Assume that X is geodesic and h : X — Y is k-qs. Then for any
L > 0 there exists an M = M(k,L) > 0 such that

dist(a, ¢) < Ldist(a, b) = dist(h(a), h(c)) < M dist(h(a), h(D)).
On the plane, the class of orientation preserving quasi-symmetric

maps in fact coincides with the class of quasi-conformal maps. In one
direction, it is a simple consequence of the Compactness Theorem:

ProPOSITION 2.17. Any K-quasi-conformal map h : C — C is
k(K)-quasi-symmetric in the Euclidean metric of the plane.
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ProOF. Otherwise there would exist a sequence of K-qc maps h,, :
C — C and a sequence of triples of points ay, b,, ¢, in C such that

lan, — cn| < lan —by| but  |hy(an) — hyu(en)|/|hn(an) — ha(by)] — oc.
(10.1)

Consider two sequences of affine maps S,, and 7, such that
Sn(0) = ay, Ty(hp(an)) =0 and  S,(1) = by, Ty(hn(by)) = 1.

Then the normalized maps H, = T,, o h, o S, fix 0 and 1. By the
Compactness Theorem 2.8, they are uniformly bounded on the unit
disk D. On the other hand, (10.1) implies that the points z, = S, ¢,
belong to D, while H,(z,) = T,,(h,(c,)) — oo - contradiction. O

In particular, if we consider a quasi-conformal map A : C — C
preserving the real line R, it restricts to a quasi-symmetric map on the
latter. Remarkably, the inverse is also true:

THEOREM 2.18 (Ahlfors-Boerling Extension). Any k-qs orientation
preserving map h: R — R extends to a K(k)-gc map H : C — C.

PROOF. O

Note that in the Ahlfors-Boerling extension is obviously affinely
equivariant (that is, commutes with the action of the complex affine
group z — az +b).

It looks at first glance that the class of 1D quasi-symmetric maps is
a good analogue of the class of 2D quasi-conformal maps. However, this
impression is superficial: two-dimensional qc maps are fundamentally
better than one-dimensional qs maps. For instance, qc maps can be
glued together without any loss of dilatation (Lemma 2.5), while gs
maps cannot:

EXERCISE 2.11. Consider a map h : R — R equal to id on the
negative axis, and equal to x — 2% on the positive one. This map is
not quasi-symmetric, though its restrictions to the both positive and
negative axes are.

Another big defficiency of one-dimensional qs maps is that they can
well be singular (and typically are in the dynamical setting - see ?7),
while 2D qc maps are always absolutely continuous (Proposition 8.1).

These advantages of qc maps makes them much more efficient tool
for dynamics than one-dimensional gqs maps. This is a reason why
complexification of one-dimensional dynamical systems is so powerful.

Let us now state an Extension Lemma in an annulus which will be
usefull in what follows:



10. QUASI-SYMMETRIC MAPS 61

LEMMA 2.19 (Interpolation). Let us consider two round annuli A =
A[L,7] and A = A[1,7], with 0 < ¢ <mod A < €' and ¢ < mod A <
e t. Then any k-gs map h : (T, T.) — (T,T;) admits a K(k,e€)-qc

extension to a map H : A — A.

PROOF. Since A and A are €2-qc equivalent, we can assume without
loss of generality that A = A. Let us cover A by the upper half-plane,

—logri

6 :H — A, 0(z) =z = , where the covering group generated by the

2
dilation T : z + Az, with A = ebsr. Let A : (R,0) — (R,0) be the
lift of h to R such that h(1) € [1,A) = I, and h(1) € (=), —1] (note
that Ry covers T,, while R covers T). Moreover, since degh = 1, it
commutes with the deck transformation 7.

A direct calculation shows that the dilatation of the covering map 6
on the fundamental intervals I, and —I is comparable with (logr)~'.
Hence h is C(k,7)-gs on this interval. By equivariance it is C'(k, r)-qc
on the rays R, and R_.

It is also quasi-symmetric near the origin. Indeed, by the equivari-
ance and normalization,

(L+A) < R < @+ A)]

for any interval J containing 0, which easily implies quasi-symmetry.
Since the Ahlfors-Borling extension is affinely equivariant, the map

h extends to a K (x,r)-qc map H : H — H commuting with 7. Hence

H descends to a K(k,7)-qc map H : A — A. O

KKk sk koK ok ok sk ok sk sk sk sk sk sk ko koK ok sk Rk kok sk sk skosk sk ok sk kokok kok sk skosk sk skokoskoskoskok sk sk sk skokoskokokok skok skosk sk skoskoskokoskokoskoskosk sk skoskokoroskokokok

Note that the Gluing Lemma makes a difference between complex
qc and real gs maps which is crucial for the pull-back argument.

Let D be a simply connected domain conformally equivalent to the
hyperbolic plane H?. Given a family of subsets {S;}?_, in D, let us
say that a family of disjoint annuli Ay C D \ US; is separating if Ay
surrounds Sy but does not surround the S;, @ # k. The following lemma
is used in the present paper uncountably many times:

Moving Lemma. e Let a,b € D be two points on hyperbolic distance
p < p. Then there is a diffeomorphism ¢ : (D,a) — (D,b), identical
near 0D, with dilatation Dil(¢) = 1+O(p), where the constant depends
only on p.

o Let {(ax,br)}i_y be a family of pairs of points which admits a
family of separating annuli Ay with mod Ay > p. Then there is a
diffeomorphism ¢ : (D, ay,...a,) — (D, by, ..., by,), identical near D,
with dilatation Dil(¢) =1+ O(e *).
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PROOF. As the statement is conformally equivalent, we can work
with the unit disk model of the hyperbolic plane, and can also assume
that a = 0, b > 0. Also, it is enough to prove the statement for
sufficiently small p.

There is a smooth function ¢ : [0,1] — [b, 1] such that ¢(z) = b
near 0, () = 0 near 1, and ¢'(z) = O(p), with a constant depending
only on p.

Let us define a smooth map ¢ : (D,0) — (D,b) as z — z + ¢(|z|).
Then

z z

0¢(z) =1+ W(M)M =1+0(p), 0¢(z) = ¢'(|Z|)M = O(p).
(10.2)
Thus B
Jac(f) = 0¢(2)|* = [06(2)[* = 1 + O(p).
Hence for sufficiently small p > 0, f is a local orientation preserving
diffecomorphism. As f : 0D — 0D, f is a proper map. Hence it is a
diffeomorphism.
Finally, (10.2) yields that the Beltrami coefficient iy = O(p), so
that the dilatation Dil(f) =1+ O(p). O

Let Q C C, h: @ — C be a homeomorphism onto its image. It is
called quasi-symmetric (qs) if for any three points a, b, ¢ € @) such that
¢! < la—bl/|b—c| < g, we have: £(q)~" < [h(a) — A(B)|/|1(B) — h(c)| <
k(q). It is called k-quasi-symmetric if k(1) < k. It follows from the
Compactness Lemma that any K-qc map is k-quasi-symmetric, with a
k depending only on K.

Let us discuss quasi-symmetric maps of the circle T = {z : |z| = 1}.
Given an interval J C T, let |J| denote its length. An orientation
preserving map h : T — T is called k-quasi-symmetric (k-qs) if for any
two adjacent intervals I, .J C T, |hI|/|hJ| < k.

Let T, ={z: |2 =7}, T=T. Let A(r,R) = {2z : r < |z| < R}.
Similar notations are used for a closed annulus Ar, R| (or semi-closed
one).

proclaim Ahlfors-Borling Extension Theorem. Any k-quasi-symmetric
map h : T — T extends to a K(x)-qc map H : C — C. Vice versa:
The restriction of any K-qc map H : (A(r',r),T) — (U, T) (where
U c Q) to the circle k(K, r)-quasi-symmetric.

Let us note that in the upper half-plane model, the Ahlfors-Borling
extension of a gs map R — R is affinely equivariant (that is, commutes
with the action of the complex affine group z — az + b).

10.1. Quasicircles. Let us start with an intrinsic geometric defi-
nition of quasicircles:
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DEFINITION 2.2. A Jordan curve v C C is called a k-quasicircle if
for any two points x,y €  there is an arc 6 C 7 bounded by these
points such that

diam ¢ < k|z — y|.

A curve is called a quasicircle if it is a x-quasicircle for some k.
The best possible x in the above definition is called the dilatation of
the quasicircle. A Jordan disk is called (k-)quasidisk if it is bounded
by a (k-)quasicircle.

EXERCISE 2.12. Let D be a k-quasidisk, 0D = . Show that

sup dist(z,v) > cdiam D
z€D

for some constant ¢ > 0 depending only on k.

On the other hand, quasicircles can also be characterized as qc
images of the circle (which explains the importance of this class of
curves). Recall from §?7 that rp, denote the inner radius of a pointed
disk (D, a).

THEOREM 2.20. Let (D, a) a pointed k-quasidisk, and let ¢ : (D, 0) —
(D, a) be the normalized Riemann mapping. Assume thatrp, > c¢diam D,
where ¢ > 0. Then ¢ admits a K-qc extension to the whole complex
plane, where K depends only on k and c.

Vice versa, let (D, a) be a Jordan disk such that there exists a K-qc
map h : (C,D,0) — (C,D,a). Then D is a k-quasidisk and rp, >
cdiam D, where the constants k and ¢ > 0 depend only on K.

Recall the definition of the inner and the outer radia, rp, and Rp,
of a pointed domain (D, a). Let QD,,, r > 0, denote the space of
pointed r-quasidisks (D, 0) with r < rpg < Rpo < 1/r, endowed with
the Carathéodory topology.

PROPOSITION 2.21. The space QD,, , is compact.

PrOOF. Consider a quasidisk (D,0) € OD,,. By Theorem 2.20,
the normalized Riemann mapping A : (D,0) — (D,0) admits a K-qc
extension to the whole complex plane C, where K depends only on
and 7. Moreover, r < |h(1)| < 1/r. By the Compactness Theorem (see
Exercise 2.5), this family of qc maps is compact in the uniform topology
on C. Since uniform limits of k-quasidisks are obviously x-quasidisks,
the conclusion follows. O

A set is called “0O-symmetric” if it is invariant under the reflection
with respect to the origin.

EXERCISE 2.13. Let v be a 0-symmetric k-quasicircle. Then the
eccentricity of v around 0 is bounded by 2k + 1.
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11. Removability

11.1. Conformal vs quasiconformal. Similarly to the notion of
gc removability introduced in §8.1 we can define conformal removabil-
ity:

DEFINITION 2.3. A compact subset X C C is called conformally
removable if for any open sets U D X in C, any homeomorphic em-

bedding h : U < C which is conformal on U \ X is conformal/qc on
U.

It is classical that isolated points and smooth Jordan curves are
conformally removable. By §8.1 of Ch. 2, they are qc removable as
well. In fact, these two properties are equivalent:

ProprosITION 2.22. Conformal removability is equivalent to qc re-
movability.

Thus, we can unambiguously call a set “removable”.

11.2. Removability and area. The Measurable Riemann Map-
ping Theorem yields:

PROPOSITION 2.23. Remouvable sets have zero area.

PROOF. Assume that m(X) > 0. Then there exists a non-trivial
Beltrami differential p supported on X. Let h : C — C be a solution
of the corresponding Beltrami equation. Then A is conformal outside
X but is not conformal on X. 0J

The reverse is false:

EXAMPLE 2.1.

11.3. Divergence property.

DEFINITION 2.4. Let us say that a compact set X C C satisfies the
divergence property if for any point z € X there exists a nest of annuli
A"(z) around z such that

Z A" (z) = oo.

Without loss of generality we can assume (and we will always do so)
that each annulus in this definition is bounded by two Jordan curves.

LEMMA 2.24. Compact sets satisfying the divergence property are
Cantor.

Proor. Consider any connected component X, of X, and let z €
Xo. Then the annuli A"(z) are nested around X,. By Corollary 1.19
of the Grotzsch Inequality, X is a single point. O
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LEMMA 2.25. Let X C C be a compact set satisfying the divergence
property. Then for any neighborhood U O X, any qc embedding h :
U~ X — C admits a homeomorphic extension through X.

PrROOF. Let h: UN X — C be a K-qc embedding. If X Cc U' € U
then h(U') is bounded in C. So, without loss of generality we can
assume that h(U) is bounded in C.

For z € X, let us consider the nest of annuli h(A"(z)). Since h is
quasiconformal,

Z mod h(A"(z)) > K ! Z mod A" (z) = oo.
Let A™(z) be the bounded component of C \ h(A™(z)), and let
A®(z) = ﬂD”(z)

By Corollary 1.19 of the divergence property, A*(z) is a single point
¢ = ((2). Let us extend h through X by letting h(z) = (.

This extension is continuous. Indeed, let D"(z) be the bounded
component of C \ A™(z). Then by Corollary 1.19, diam D™(z) — 0, so
that D"(z) is a base of (closed) neighborhoods of z. But

diam h(D"(z)) = diam A"(z) — 0,

which yields continuity of A at z.

Switching the roles of (U, X) and (h(U),h(X)), we conclude that
h~! admits a continuous extension through h(X). Hence the extension
of h is homeomorphic. O

It is worthwhile to note that, in fact, general homeomorphisms ex-
tend through Cantor sets:

EXERCISE 2.14. (i) Let us consider two Cantor sets X and X in C
and their respective neighborhoods U and U. Then any homeomorphism
h:U~X — U~ X admits a homeomorphic extension through X.

(ii) It was essential to assume that both sets X and X are Cantor!
For any compact set X C C, give an example of an embedding h :
C ~\ X — C which does not admit a continuous extension through X .

LEMMA 2.26. Compact sets satisfying the divergence property have
zero area.

We will show now that sets satisfying the divergence property are
removable, and even in the following stronger sense:

THEOREM 2.27. Let X C C be a compact set satisfying the diver-
gence property. Then for any neighborhood U O X, any conformal/qc
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embedding h : U N X — C admits a conformal/qc extension through
X.

Proor. Let h : U ~ X — C be a K-qc embedding. By Lemma
2.25, h extends to an embedding U — C, which will be still denoted
by h. Let us show that h belongs to the Sobolev class H(U).

Since X is a Cantor set, it admits a nested base of neighborhoods
U™ such that each U™ is the union of finitely many disjoint Jordan
diks. Take any ;> 0. By the Grtzsch Inequality, for any n € N there
is k = k(u,1) > 0 such that mod(dU™™ 0U™) > > 0. Let x, be
the solution of the Dirichlet problem in U™ \. U™** vanishing on QU™ **
and equal to 1 on 0U". By Theorem 1.21, D(x,) < 1/pu.

Let us continuously extend x to the whole plane in such a way
that it vanishes on U"** and identically equal to 1 on C ~ U". We
obtain a piecewice smooth function y : C — [0, 1], with the jump of
the derivative on the boundary of the domains U™ and U"*.

Let h, = xn h. These are piecewise smooth functions with bounded
Dirichlet integral. Indeed,

D(hy) = /(|vXn|2|h|2+|Xn|2|Vh’|2)dm < diam(h(U))/ p+C(K)m(h(U)),

where C(K) = (1 + k%)/(1 — k%) comes from the area estimate (area
estimate). By weak compactness of the unit ball in L?(U), we can
select a converging subsequence 0h, — ¢, Oh, — 1. But h, — h
pointwise on U ~\ X, so that by Lemma 2.26, h,, — h a.e. It follows
that ¢ and ¢ are distributional partial derivatives of h (see (8.2)).
Finally, if A is conformal on U ~ X then by Weil’s Lemma it is
conformal on U. O

Compactness in H of functions with bounded D.I. - formulate
as a lemma?
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CHAPTER 3

Dynamical plane

12. Glossary of topological dynamics

This glossary collects some basic notions of dynamics. Its purpose
is to fix terminology and notations and to comfort a reader who has no
experience with dynamics.

Consider a continuous endomorphism f : X — X of a topological
space X. The n-fold iterate of f is denoted by f", n € N. A topo-
logical dynamical system (with discrete positive time) is the N-action
generated by f, n — f™. The orbit or trajectory of a point z € K is
orb(z) = {f"x}nen. The subject of topological dynamics is to study
qualitative behavior of orbits of a topological dynamical system.

Here is the simplest possible behavior: a point x is called fired if
fxr = x. More generally, a point z is called periodic if it has a finite
orbit, i.e., there exists a p € N such that fPx = x. The smallest p with
this property is called the period of x. The orbit of x (consisting of
p permutted points) is naturally called a periodic orbit or a cycle (of
period p).

The asymptotic behavior of an orbit can be studied in terms of its
limit set. The w-limit set w(x) of a point x is the set of all accumulation
points of orb(z). If X is compact then w(x) is a non-empty compact
subset of X. We say that the orbit of = converges to a cycle (of a
periodic point «) if w(z) = orb(a).

A point z is called recurrent if w(z) > x. Existence of non-periodic
recurrrent points is a feature of non-trivial dynamics.

Two dynamical systems f : X — X and g : Y — Y are called
topologically conjugate (or topologically equivalent) if there exists a
homeomorphism A : X — Y such that ho f = go h, i.e., the following
commutative diagram holds:

X 7) X

hl L h

Yy — Y
g

69
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Classes of topologically equivalent dynamical systems (within an a
priori specified family) are called topological classes. If X and Y are
endowed with an extra structure (smooth, conformal, quasi-conformal
etc.) respected by h, then f and g are called smoothly/conformally/quasi-
conformally conjugate (or equivalent). The corresponding equivalence
classes are called smooth/conformal /quasi-conformal classes.

Topological conjugacies respect all properties which can be formu-
lated in terms of topological dynamics: orbits go to orbits, cycles go
to cycles of the same period, w-limit sets go to w-limit sets, converging
orbits go to converging orbits etc.

A homeomorphism A : X — X commuting with a dynamical system
f:X — X (i.e., conjugating f to itself) is called an automorphism of
f.

A continuous map which makes the above diagram commutative is
called equivariant (with respect to the actions of f and g). A surgective
equivariant map is called a semi-conjugacy between f and g. In this
case ¢ is also called a quotient of f.

It will be very convenient to extend the above terminology to par-
tially defined maps. Let f and g be partially defined maps on the spaces
X and Y respectively (i.e., f maps its domain Dom(f) C X to X, and
similarly does ¢g). Let A C X. A map h: A — Y is called equivariant
(with respect to the actions of f and g) if for any € ANDom(f) such
that fr € A we have: hx € Dom(g) and h(fz) = g(hx). (Briefly speak-
ing, the equivariance equation is satisfied whenever it makes sense.)

13. Holomorphic dynamics: basic objects

Below
f=fiz=22+c
unless otherwise is stated. Dynamical objects will be labelled by ei-
ther f or ¢ whatever is more convenient in a particular situation (for
instance, Dy(00) = D.(0c0) by default). Moreover, the label can be
skipped altogether if f is not varied.

13.1. Critical points and values. First note that f" is a branched
covering of C over itself of degree 2". Its critical points and values have
a good dynamical meaning:

EXERCISE 3.1. The set of finite critical points of f* is Uy—, f*(0).
We let

oo n—1

cr=JUr*o

n=0 k=0
be the set of critical points of iterated f.
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The set of critical values of f™ is {f*0}2_,. (There are much fewer
critical values than critical points!)

Thus, f™ is an unbranced covering over the complement of { f*0}7_,.

COROLLARY 3.1. Let V' be a topological disk which does not con-
tain points f*0, k = 1,2,...,n. Then the inverse function f~™ has
2" single-values branches f; " which univalently map V' onto pairwise
disjoint topological disks U;, 1 =1,2,...,2".

These simple remarks explain why the forward orbit of 0 plays a
very special role. We will have many occasions to see that this one
orbit is responsible for the diversity of the global dynamics of f.

However, f has one more critical point overlooked so far:

13.2. Looking from infinity. Extend f to an endomorphism of
the Riemann sphere C. This extension has a critical point at oo fixed
under f. We will start exploring the dynamics of f from there. The
first observation is that C \ Dy is f-invariant for a sufficiently big
R, and moreover f"z — oo as n — oo for z € C ~ Dg. This can be
expressed by saying that C~\. Dy belongs to the basin of infinity defined
as the set of all escaping points:

D¢(oo) ={z: f"z2 = 00, n = o0} = [j F7"(C \ Dg).
n=0

PROPOSITION 3.2. The basin of infinity Ds(0c0) is a completely in-
variant domain containing oo.

ProOF. The only non-obvious statement to check is connectivity
of D¢(00). To this end let us show inductively that the sets U, =
f"(C \ Dg) are connected. Indeed, assume that U, is connected
while U,,, is not. Consider a bounded component V' of U,,;. Then
the restriction f : V' — U, is proper and hence surjective (see §4). In
particular f would have a pole in V' - contradiction. O

Let Dy(oc0) = Dy(00) U {oo}.

13.3. Basic Dichotomy for Julia sets. We can now introduce
the fundamental dynamical object, the filled Julia set K(f) = C ~
D¢(00). Proposition 3.2 implies that K(f) is a completely invariant
compact subset of C. Moreover, it is full, i.e., it does not separate the
plane (since Df(0o) is connected).

EXERCISE 3.2. The filled Julia set consists of more than one point.
(Consider fized points of f and their preimages.)

def
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The filled Julia set and the basin of infinity have a common bound-
ary, which is called the Julia set, J(f) = OK(f) = 0Ds(c0). Figure
. shows several pictures of the Julia sets J(f.) for different parame-
ter values c¢. Generally, topology and geometry of the Julia set is very
complicated, and it is hard to put a hold on it. However, there is the
following rough classification:

THEOREM 3.3 (Basic Dichotomy). The Julia set (and the filled Ju-
lia set) is either connected or Cantor. The latter happens if and only
if the critical point escapes to infinity: f*(0) — oo as n — oo.

PROOF. As in the proof of Proposition 3.2, let us consider the in-
creasing sequence of domains U, = f~"(C \ Dg) exhausting the basin
of infinity. Assume first that the critical point does not escape to oo.
Then f : U,y1 — U, is a branched double covering with the only
branched point at co. By the Riemann-Hurwitz formula, if U,, is sim-
ply connected then U, ., is simply connected as well. We conclude
inductively that all the domains U,, are simply connected. Hence their
union, Dy (00), is simply connected as well, and its complement, K (f),
is connected. But the boundary of a full connected compact set is
connected. Hence J(f) is connected.

Assume now that the critical point escapes to infinity. Then 0
belongs to some domain U,,. Take the smallest n with this property.
Adjust the radius R in such a way that the orbit of 0 does not pass
through Tz = 0U,. Then 0 ¢ 0U,_;, and hence 0U,_; is a Jordan
curve. Let us consider the complimentary Jordan disk D = D° =
C ~ U,_;. Since f(0) € U,_1, f is unbranched over D. Hence f~'D =
D} U D}, where the D} @ D are disjoint topological disks conformally
mapped onto D.

Take now the f-preimages of D} U D} in D}. We obtain two Jordan
disks D2, and D2, with disjoint closures conformally mapped by f onto
D} and D{ repsectively. Similar disks, D%, and D?, we find in D] (see
Figure ....).

Iterating this procedure, we will find that f~™D is the union of
2" Jordan disks D} such that D . is compactly contained in

1021 ...n in

D™ and is conformally mapped by f onto D?!

10 dn—1 P10
Since D} U D} is compactly contained in D, the branches of the in-
verse map, f~' : D} — D}, are uniformly contracting in the hyperbolic
metric of D (by the Schwarz-Pick Lemma). Since the domains D?; .
are obtained by iterating these branches, they uniformly exponentially
shrink as n — oco. Hence the filled Julia set K(f) =Nf~"D is a Cantor

set. Of course, the Julia set J(f) coincides with K (f) in this case. O
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The Basic Dichotomy is the first example of how the behavior of
the critical point influences the global dynamics. In fact, at least on
the philosophical level, the dynamics is completely determined by the
behavior of this single point. We will see many confirmations of this
principle.

13.4. Bernoulli shift. When the Julia set is Cantor, there is an
explicit symbolic model for the dynamics of f on it. Consider the space
¥ = XJ of one-sided sequences (igi; . ..) of zeros and ones. Supply it
with the weak topology (convergence in this topology means that all
coordinates eventually stabilize). We obtain a Cantor set. Define the
shift 4 on this space as the map of forgetting the first coordinate,

ﬁ : (Z(ﬂl) — (7,122)
It is called the (one-sided) Bernoulli shift with two states.

EXERCISE 3.3. Show that:

e For any open set U C X, there exists ann € N such that 3"(U) =
3

e (3 is topologically transitive;

e Periodic points of 3 are dense in 3.

EXERCISE 3.4. Show that the only non-trivial automorphism of the
one-sided Bernoulli shift with two states is induced by the relabeling
0« 1.

If some endomorphism f : X — X of a compact space is topo-
logically conjugate to a one-sided Bernoulli shift with two states, then
X can be partitioned into two pieces Xy and X; corresponding to se-
quences which begin with 0 and 1 respectively. This partition is called
a Bernoulli generator for f. The statement of Exercise 3.4 is equiva-
lent to saying that a Bernoulli generator is unique. For a Cantor Julia
set J(f.), the Bernoulli generator was constructed in the course of the
proof of Theorem 3.3:

EXERCISE 3.5. If J(f) is a Cantor set, then the restriction of f
onto J(f) is topologically conjugate to the one-sided Bernoulli shift
with two states.

13.5. Real dichotomy. In the case of real parameter values c,
the Bernoulli coding of J(f.) becomes particularly nice:

EXERCISE 3.6. Consider a quadratic polynomial f, : z — 2° + ¢
with a real c. Let J = J(f.).
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o If c < =2 then J is a Cantor set on the real line. In this case
the Bernoulli generator for f. consists of

Jo=JN{z: Rz <0} and J, = JN{z: Rz > 0}.

e [fc> 1/4 then J is a Cantor set disjoint from the real line. In
this case the Bernoulli generator for f. consists of

Jo=JN{z:Iz>0} and Jy =JN{z: Sz <0}.

The boundary parameter values ¢ = 1/4 and ¢ = —2 play a special
role in one-dimensional dynamics (both real and complex).

The former map (¢ = 1/4) is specified by the property that it has a
multiple fixed point « = = 1/2, i.e., f.(a) = a, fl(a) = 1. The Julia
set of this map is a Jordan curve depicted on Figure ... (see §7? for an
explanation of some features of this picture). It is called cauliflower,
and the map f.: z — 22 +1/4 itself is sometimes called the cauliflower
map.

The latter map (¢ = —2) is specified by the property that the second
iterate of the critical point is fixed under f.: 0 — —2 +— 2 — 2 (see
Figure ...). This map is called Chebyshev or Ulam-Neumann. The Julia
set of this map is unusually simple:

EXERCISE 3.7 (Chebyshev map). Let f = f_o: 2+ 2% — 2.

e The interval I = [—2,2] is completely invariant under f, i.e.,
FU=1.

e J(f) =1. (To show that all points in C ~\ I escape to oo, use
Montel’s Theorem.)

e Consider the the sawlike map

g:[-1,1] - [-1,1], ¢g:z—2z]—1.

Show that the map h : x — 2sin Sz conjugates g to f|I.

e The map f|I is nicely semi-conjugate to the one-sided Bernoulli
shift o : ¥ — X. Namely, there exists a natural semi-conjugacy
h: ¥ — I such that card f~'o = 1 for all x € I except countable
many points (preimages of the fized point f = 2 under iterates
of f). For these special points, card f~'(z) = 2.

Let us finish with a statement which will complete our discussion
of the Basic Dichotomy for real parameter values:

EXERCISE 3.8. (i) For ¢ € (—o0,1/4), the map f. has two real
fized points o, < B.. (We have already observed that these two
points collide at 1/2 when ¢ = 1/4.) Point 3. is always repelling.
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(ii) For c € [—2,1/4], the interval I. = [—f,, B.] is invariant under
fe, and it is the maximal f.-invariant interval on the real line.

(iii) For ¢ € [—2,1/4], the critical point is non-escaping and hence
the Julia set J(f.) is connected.

The above fixed points, a. and 3., will be called a- and [-fixed
points respectively. As one can see from the second item of the above
Exercise, they play quite a different dynamical role. In §??7 a similar
classification of the fixed points will be given for any quadratic poly-
nomial with connected Julia set.

Let us summarize Exercises 3.6 and 3.8:

PROPOSITION 3.4. For real ¢, the Julia set J(f.) is connected if
and only if c € [—2,1/4].

13.6. Fatou set. The Fatou set is defined as the complement of
the Julia set:

F(f) =C~ J(f) = Dy(o0) Uint K(f).

Since K (f) is full, all components of int K (f) are simply connected.
Only one of them can contain the critical point. Such a component (if
exists) is called critical.

Let U be one of the components of int K. Since int K is invariant,
it is mapped by f to some other component V. Moreover, f(oU) C 0V
since the Julia set is also invariant. Hence f : U — V is proper, and
thus surjective. Moreover, since V' is simply connected, f : U — V
is either a conformal isomorphism (if U is not critical), or is a double
branched covering (if U is critical).

The Fatou set can be also characterized as the set of normality (and
was actually classically defined in this way):

PROPOSITION 3.5. The Fatou set F'(f) is the mazimal set on which
the family of iterates f™ is normal.

PROOF. On Dy(00), the iterates of f locally uniformly converge to
00, while on int K (f) they are uniformly bounded. Hence they form a
normal family on F(f). On the other hand, if z € J(f), then the orbit
of z is bounded while there are nearby points escaping to co. Hence
the family of iterates is not normal near z. O

14. Periodic motions

14.1. Periodic points: rough classification. Poincaré said that

Consider a periodic point « of period p. The local dynamics near
its cycle depends first of all on its multiplier A = (f?)'(2).



76 3. DYNAMICAL PLANE

If |A| < 1 then « is called attracting. The orbits of all nearby points
exponentially fast converge to a and, in particular, are bounded. It
follows that attracting cycles belong to F'(f).

A particular case of an attracting cycle is a superattracting one
when |A] = 0. Nearby points converge to a superattracting cycle at a
superexponential rate.

The basin of attraction of an attracting cycle a is the set of all
points whose orbits converge a:

Di(a) ={2: f"2 > avasn — 0.}

EXERCISE 3.9. Show that the basin Ds(cx) a completely invariant
union of components of int K(f).

The union of components of Ds(e) containing the points of a is
called the immediate basin of attraction of the cycle ac. We will denote
it by D}(c).

EXERCISE 3.10. Show that the immediate basin of an attracting cy-
cle consists of exactly p components, where p is the period of c.

We will now state one of the most important facts of the classical
holomorphic dynamics:

THEOREM 3.6. The immediate basin of attraction D}(cx) of an at-
tracting cycle a contains the critical point 0.

ProoF. Otherwise fP would conformally map each component U
of the immediate basin onto itsef. Hence it would be a hyperbolic
isometry of U, despite the fact that |f'(«)| < 1. O

COROLLARY 3.7. A quadratic polynomial can have at most one at-
tracting cycle.

Of course, the period of this cycle can be arbitrary big. If a qua-
dratic polynomial does indeed have an attracting cycle, it is called
hyperbolic. For instance, polynomials z — 2%, z — 22 — 1,... (see Fig-
ure ...) are hyperbolic. Though dynamically non-trivial, it is a well
understood class of quadratic polynomials.

Note that quadratic polynomials with Cantor Julia set are also
called hyperbolic. A reason is that in this case the orbit of the critical
point still converges to an attracting fixed point (at 0o). Quadratic
polynomials with connected Julia set but without attracting periodic
points are not hyperbolic (by definition).

If [A| > 1 then « (and its cycle) is called repelling. Nearby points
exponentially fast escape from a neighborhood of a repelling cycle.
Since (f™)'(a) = A™ — 00, the family of iterates is not normal near a
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repelling point, see ?7?7. Hence repelling periodic points belong to the
Julia set. In fact, they are dense in the Julia set (see §?7), so that the
Julia can be alternatively defined as the closure of repelling cycles. It
is a view of the Julia set “from inside”.

If |[\| =1 then « (and its cycle) is called neutral. Local dynamics
near a neutral point delicately depends on the arithmetic of the rotation
number 6 = % arg \. If # is rational then « is called parabolic; otherwise
it is called #rrational. Parabolic points belong to the Julia set:

EXERCISE 3.11. Show that if 0 = q/l, then (fP'")'(a) — oo.
The basin of attraction of a parabolic cycle ¢ is defined as follows:
Di(a) ={z: f"2 > aasn — oo but "z ¢ a for any n € N".}

It turns out that with this definition, Df(e) is a completely invariant
union of components of int K. Moreover, among these components
there are pl components cyclically permuted by f, while all others are
preimages of these. The union of these pl components is called the the
immediate basin of attraction of . It will also be denoted as D}(cx).
As in the attracting case, the immediate basin of a parabolic cycle
also must contain the critical point. Hence a quadratic polynomial
can have at most one parabolic cycle and in this case it cannot have
attracting cycles. A polynomial with a parabolic cycle is naturally
called parabolic. (It is a preview to a more detailed discussion in §77).

Irrational periodic points may or may not belong to the Julia set
(depending primarily on the Diophantine properties of its rotaion num-
ber). Irrational periodic points lying in the Fatou set are called Siegel,
and those lying in the Julia set are called Cremer. The component of
F(f) containing a Siegel point is called a Siegel disk. Local dynamics
on a Siegel disk is quite simple:

PrRoPOSITION 3.8. Let U be a Siegel disk of period p containing a
periodic point « with rotation number 0. Then fP|U is conformally
conjugate to the rotation of D by 6.

PRrOOF. Consider the Riemann map ¢ : (U,a) — (D,0). Then
g = ¢o fPo¢p ! isa holomorphic endomorphism of the unit disk fixing
0, with |¢'(0)| = |\| = 1. By the Schwarz Lemma, g(z) = Az. O

We will see later on that a quadratic polynomial can have at most
one non-repelling cycle ( see theorem 3.20). If it has one, it can be non-
contradictory classified as either hyperbolic, or parabolic, or Siegel, or
Cremer.
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14.2. Periodic components. The notions of a periodic compo-
nent of F'(f) and its cycle are self-explanatory. It is classically known
that such a component is always associated with a non-repelling peri-
odic point:

THEOREM 3.9. Let U = {U;}}_, be a cycle of periodic components
of int K(f). Then one of the following three possibilities can happen:

e U is the immediate basin of an attracting cycle;
o U is the immediate basin of a parabolic cycle o C OU of some

period q|p;
o U is the cycle of Siegel disks.

Proof Take a component U of the cycle U, and let ¢ = fP. By the
Schwarz-Pick Lemma, ¢|U is either a conformal automorphism of U,
or it strictly contracts the hyperbolic metric dist, on U. In the former
case, it is either elliptic, or otherwise. If ¢ is elliptic then U is a Siegel
disk. Otherwise the orbits of g converge to the boundary of U.

Let us show that if an orbit {z, = ¢"z}, 2 € U, converges to dU,
then it converges to a g-fixed point § € 9U. Join z and g¢(z) with a
smooth arc v, and let v, = f"y. By the Schwarz-Pick Lemma, the
hyperbolic length of the arcs v, stays bounded. Hence they uniformly
escape to the boundary of U. Moreover, by the relation between the
hyperbolic and Euclidean metrics (Lemma 1.11), the Euclidean length
of the +, shrinks to 0. In particular,

19(2n) = 2l = 12041 — 2a| = 0 (14.1)

as n — 00. By continuity, all limit points of the orbit {z,} are fixed
under g. But g being a polynomial has only finitely many fixed points.
On the other hand, (14.1) implies the w-limit set of the orbit {z,} is
connected. Hence it consists of a single fixed point .

Moreover, the orbit {(,} of any other point ( € U must converge
to the same fixed point 3. Indeed, the hyperbolic distance between z,
and ¢, stays bounded and hence the Euclidean distance between these
points shrink to 0.

Thus either U is a Siegel disk, or the g-orbits in U converge to a
g-fixed point 3, or the map g : U — U strictly contracts the hyperbolic
metric and its orbits do not escape to the boundary OU. Let us show
that in the latter case, g has an attracting fixed point « in U.

Take a g-orbit {z,}, and let d,, = dist, (29, 2z,). Since g is strictly
contracting,

diSth(2n+17 Zn) S p(dn) diSth(zna anl)a
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where the contraction factor p(d,) < 1 depends only on disty (2, 2o).
Since the orbit {z,} does not escape to OU, this contraction factor
is bounded away from 1 for infinitely many moments n, and hence
disty (241, 2n) — 0. It follows that any w-limit point of this orbit in U
is fixed under g.

By strict contraction, g can have only one fixed point in U, and
hence any orbit must converge to this point. Strict contraction also
implies that this point is attracting.

We still need to prove the most delicate property: in the case when
the orbits escape to the boundary point § € U, this point is parabolic.
In fact, we will show that ¢’'(3) = 1. Of course, this point cannot be
either repelling (since it attracts some orbits) or attracting (since it lies
on the Julia set). So it is a neutral point with some rotation number
6 € [0,1). The following lemma will complete the proof.

LEMMA 3.10 (Necklace Lemma). Let f: 2z +— Az +agz® + ... be a
holomorphic map near the origin, and let |\| = 1. Assume that there
exists a domain €2 C C* such that all iterates f™ are well-defined on 2,

f(QNQ#D, and f*(Q) — 0 as n — oo. Then A = 1.

Proor. Consider a chain of domains €2, = f"{) convergin to 0.
Without loss of generality we can assume that all the domains lie in a
small neighborhood of 0 and hence the iterates f™|Q) are univalent. Fix
a base point a € €2 such that f(a) € Q, and let

_ ")
fria)

These functions are univalent, normalized by ¢,(a) = 1, and do not
have zeros. By the Koebe Distortion Theorem (the version given in
Exercise 1.15,b), they form a normal family. ~ Moreover, any limit
function ¢ of this family is non-constant since ¢(fa) = X # 1 = ¢(a).
Hence the derivatives ¢/,|Q2 are bounded away from 0 and dist(1, 0€2,,) >
e > 0 for all n € N. It follows that

dist(f"a,00,) > e€r,, neN,

where 7, = |f™a|. On the other hand, f acts almost as the rotation by
0 near 0, where § = arg A € (0,1). Since this rotation is recurrent and
0 # 0, there exists an [ > 0 such that

dist(f"a, f*a) = o(r,) asn — oo

The last two estimates imply that €2,,,NQ, # () for alll sufficiently big
n.
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Hence the chain of domains €2, ..., $2,.; closes up, and their union
form a “necklace” around 0. Take a Jordan curve 7 in this necklace,
and let D be the disk bounded by 7. Then f™(y) — 0 as n — oc.
By the Maximum Principle, f¥(D) @ D for some N. By the Schwarz
Lemma, |A| < 1 — contradiction. O

15. Quasi-conformal deformations

15.1. Idea of the method.

15.1.1. Pullbacks. Consider a K-quasi-regular branched covering
f: S — S’ between Riemann surfaces (see §7.4). Then any confor-
mal structure p on S’ can be pulled back to a structure v = f*(u) on
S. Indeed, quasi-regular maps are differentiable a.e. on S with non-
degenerate derivative so that we can let v(z) = (Df(2)!).(u) for a.e.
z € S. This structure has a bounded dilatation:

oo+ _ oo+ 1
Wlloo =1 = [l — 1
If f is holomorphic then in any conformal local charts near z and f(z)
we have: _
f'(2)

fru(z) = f,(Z)u(fZ)

(since the critical points of f are isolated, this expression makes sence
a.e.). An obvious (either from this formula or geometrically) but crucial
remark is that holomorphic pull-backs preserve dilatation of conformal
structures.

15.1.2. Qc surgeries and deformations. Consider now a qr map
f : C — C preserving some conformal structure ¢ on C. By the
Measurable Riemann Mapping Theorem, there is a qc homeomorphism
hy : C — C such that (h,).(u) = 0. Then f, = h,o foh,is
a quasi-regular map preserving the standard structure o on C. By
Weil’s Lemma, f, is holomorphic outside its critical points. Since the
isolated singularities are removable, f, is holomorphic everywhere, so
that it is a rational endormorphism of the Riemann sphere. Of course,
deg(f,) = deg(f). Since h, is unique up to post-composition with a
Mobius map, f = f, is uniquely determined by pn up to conjugacy by a
Mobius map.

Thus, a qc invariant view of a rational map of the Riemann sphere
is a quasi-reqular endomorphism f : (S% u) — (S?, 1) of a qc sphere
S? which preserves some conformal structure p. This provides us with
a powerful tool of holomorphic dynamics: the method of qc surgery.
The recepie is to cook by hands a quasi-regular endomorphism of a
qc sphere with desired dynamical properties. If it admits an invariant
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conformal structure, then it can be realized as a rational endomorphism
of the Riemann sphere.

It may happen that f itself is a rational map preserving a non-
trivial conformal structure p. Then f, is called a qc deformation of f.
If f is polynomial, then let us normalize h, so that it fixes co. Then
f'(00) = 0o and hence the deformation f, is polynomial as well. If
[+ 2+ 2% +cis quadratic then let us additionally make A, fix 0. Then

0 is a critical point of f,, so that
fulz) = t(n)2* +b(p), teC. (15.1)

Composing h, with complex scaling z — ¢(;)z, we turn this quadratic
polynomial to the normal form z — 22 + ¢(u).

Assume now that u = p, depends holomorphically on parameter
A. By Theorem 2.14, the map hy = hy) is also holomorphic in A.
However, the inverse map h;l is not necessarilly holomorphic in \.

EXERCISE 3.12. Give an example.

It is a miracle that despite it, the deformation fy = f ) is still
holomorphic in A!

LEmMA 3.11. Let fy = hyo fo h;l, where f and fy are holomor-
phic functions and hy is a holomorphic family of gc maps. Then fy
holomorphically depends on A.

PRrROOF. Taking O-derivative of the expression hy o fo = fy o hy, we
obtain: B B B B
0 =0hyo fo = fy00hy+0fyohy=0f\o0hy.
U

COROLLARY 3.12. Consider a quadratic map f : z + 2% + cq. Let
iy be a holomorphic family of f-invariant Beltrami differentials on
C. Normalize the solution hy : C — C of the corresponding Beltrami
equiation so that the qc deformation fy = hAOthgl has a normal form
fa:z w22+ ¢(N). Then the parameter c¢()\) depends holomorphically
on A.

Proor. Consider first the solution Hy : C — C of the Beltrami
equation which fixes 0 and 1. It conjugates f to a quadratic polynomial
of form (15.1). By Lemma 3.11, its coefficients #(\) and b(\) depend
holomorphically on A. The complex rescaling T : z — t()\)z reduces
this polynomial to the normal form with ¢(\) = #(\)b()\), and we see
that ¢(\) depends holomorphically on A as well. O

15.2. Sullivan’s No Wandering Domains Theorem.
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16. Remarkable functional equations

Study of certain functional equations was one of the main motiva-
tions for the classical work in holomorphic dynamics. By means of these
equations the local dynamics near periodic points of different types can
be reduced to the simplest normal form. But it turns out that the role
of the equations goes far beyond local issues: global solutions of the
equations play a crucial role in understanding the dynamics.

We will start with the local analysis and then globalize it (though
sometimes one can go the other way around). For the local analysis we
put the fixed point at the origin and consider a holomorphic map

frzm Az tas® +. .. (16.1)

near the origin.

16.1. Attracting points and linearizing coordinates. Let us
start with the symplest case of an attracting fixed point. In turns out
that such a map can always be linearized near the origin:

THEOREM 3.13. Consider a holomorphic map (16.1) near the ori-
gin. Assume 0 < |\| < 1. Then there exists an f-invariant Jordan disk
V350, anr >0, and a conformal map ¢ : (V,0) = D, with ¢'(0) =1
satisfying the equation:

¢(f2) = Ag(2) (16.2)
The above properties determine uniquely the germ of ¢ at the origin.

The above function ¢ is called the linearizing coordinate for f near
0. It locally conjugates f to the linear map z — Az.

EXERCISE 3.13. Show that if a holomorphic germ f near the origin
commutes with the linear germ z — Xz, 0 < |A| < 1, then f is itself
linear.

16.2. Superattractng points and Bottcher coordinates.

THEOREM 3.14. Let f: 2+ 2%+ ag12™ + ... be a holomorphic
map near the origin, d > 2. Then there exists an f-invariant Jordan
disk V'3 0, r € (0,1), and a conformal map ¢ : (V,0) — D, satisfying
the equation:

o(f2) = o(2)". (16.3)

The above properties determine uniquely the germ of ¢ at the origin.
Moreover, ¢'(0) = 1.
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The map ¢ is called the Béttcher map, or the Bottcher coordinate
near 0. Equation (16.3) is called the Bdttcher equation. In the Bottcher
coordinate the map f assumes the normal form z — 2.

EXERCISE 3.14. Let d > 2. Show that there are no holomorphic
germs commuting with g : z — 2% near the origin, except g itself.

16.3. Parabolic points and Ecale-Voronin cylinders.
16.4. Global leaf of a repelling point.

16.5. Bottcher vs Riemann. Let us now consider a quadratic
polynomial f. near co. Since oo is a superattracting fixed point of f of
degree 2, the map f. near oo can be reduced in the Béttcher coordinate
to the map 2z +— 22 (Theorem 3.14). Thus, there is a Jordan disk V, C C
whose complement C\ 'V, is f.—invariant, some R > 1, and a conformal
map ¢, : C V. = C \ Dg satisfying the Bottcher equation:

Oe(fez) = de(2)*. (16.4)
Moreover, ¢.(z) ~ z as z — 00.

We will now globalize the Bottcher function.
16.5.1. Connected case.

THEOREM 3.15. Let f. : z — 22 + ¢ be a quadratic polynomial
with connected Julia set. Then the Bottcher function admits an ana-
lytic extension to the complement of the filled Julia set. Moreover, it
conformally maps C ~ K(f) onto the complement of the unit disk.

Proor. We will skip label ¢ from the notations. Let, as usual,
folz) =2* )

Let U" = C~ f™V. Then U° c U' Cc U? C ... and UU" =
Dy(00). Since the filled Julia set K (f) is connected, the domains U™
are topological disks and the maps f : U"*! — U™ are double coverings
branched point at oo (recall the proof of Theorem 3.3).

Let A" = C\ Dpi/2n . By Lemma 1.15, the Bottcher map ¢ : U —
A% admits a lift & : U — A! such that fy o ® = ¢ o f. But the
Bottcher equation tells us that ¢ : U° — AP is a lift of its restriction
¢ : f(U°) — fo(AY). If we select ® so that ®(z) = ¢(z) at some finite
point z € U then these two lifts must coincide on U°: ®|U° = ¢.
Thus, @ is the analytic extension of ¢ to U'. Obviously, it satisfies the
Bottcher equation as well.

In the same way, the Bottcher map can be consecutively extended
to all the domains U™ and hence to their union D (c0). O

Thus, the Bottcher map gives the uniformization of C ~ K(f) by
the unit disk. Given the intricate fractal structure of the Julia set,
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this is quite remarkable that its complement can be uniformized in this
explixit way!

One can also go the other way around and costruct the Bottcher
map by means of uniformization:

EXERCISE 3.15. Let f = f. be a quadratic polynomial with con-
nected Julia set. Then the basin of infinity Dj(c0) is a conformal
disk. Uniformize it by the complement of the unit disk; ¢ : (D, 00) —
(Dg(0),00), normalized at oo so that 1(z) ~ Az with A > 0. Prove
(without using the Bottcher theorem) that v conjugates fo : 2 — 2% on
C D to f on the basin of <.

Let us finish with a curious consequence of Theorem 3.15:

COROLLARY 3.16. Let f.: z — 22+c. Then the conformal capacity
of the filled Julia set K(f.) is equal to 1.

16.5.2. Cantor case. In the disconnected case the Béttcher function
¢. cannot be any more extended to the whole basin of oo, as it starts
to branch at the critical point 0. However, ¢. can still be extended to
a big invariant region (2. containing 0 on its boundary.

THEOREM 3.17. Let f. : z — 22 + ¢ be a quadratic polynomial
with disconnected Julia set. Then the Bottcher function ¢. admits the
analytic extension to a domain €. bounded by a “figure eight” curve
branched at the critical point 0.  Moreover, ¢. maps §2. conformally
onto the complement of some disk Dr with R > 1.

PROOF. Again, we skip the label c.

Since 0 € D(00), the orb(0) lands at the domain V' of the Béttcher
function near oo. By shrinking V', we can make f"0 € 0V for some
n > 0. Then there are no obstructions for consecutive extensions of ¢
to the domains U¥ = C~\ f=*V, k = 0,1,...,n (in the same way as
in the connectef case). All these domains are bounded by real analytic
curves except the last one, U", which is bounded by a figure eight curve
branched at 0. This is the desired domain (2. O

Important Remark. Since the critical value ¢ € OU™"! belongs to
the domain of ¢., the expression ¢.(c) is well-defined (provided the
Julia set J(f.) is disconnected). It gives the Bdttcher coordinate of the
critical value as a function of the parameter ¢. This function will play
a crucial role in what follows.

16.6. External rays and equipotentials. The map fo: z — 22
on C . D has two invariant foliations: foliation by the straight rays
going to oo and foliation by round circles centered at the origin. By
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means of the Bottcher map, these two foliations can be transferred to
the basin of infinity of f, supplying us with a basic dynamical structure.

16.6.1. Connected case. Let us first assume that the Julia set J(f)
is connected. Then the Bottcher map ¢ : Df(oo) — C ~ D gives a
global uniformization of the basin of infinity, so that we obtain two
orthogonal invariant foliations therein. The leaves of these foliations
are called external rays and equipotentials:

R =Ri=¢{re™: 1<r<oc}, eR

E'=E=¢ e 0<0 <1}, >0,

where f is called the external angle of the ray R’ and t is called the
level of the equipotential £'. Moreover, f(R’) = R* and f(£') = £2.

We will use notation RY(t) for the point on the ray R’ whose equipo-
tential level is equal to t.

16.6.2. Disconnected case. In the disconnected case we can still de-
fine the rays and equipotentials in the domain €2 of analyticity of the
Bottcher function. Pulling these two foliations back under iterates of
f, we extend them to singular foliations on the whole basin of co. They
have singularities at the critical points of iterated f, i.e., at 0 and all
its preimages under the iterates of f. (Recall from §13.1 that this set
is called C}.)

In this context external rays will be understood as leaves of these
foliaitons which go to oo (i.e., the maximal non-singular extensions of
the rays in 2). Countably many rays land at the preimages of 0. All
other rays are properly embedded into the basin; they will be called
proper rays. Two (improper) rays landing at the critical point 0 will be
called the critical rays. The particularly important ray going through
the critical value will be called the principal ray (its external angle will
be also called principal). Of cource, it contains the (coinciding) images
of two critical rays.

16.7. Green function. The Green function of a quadratic poly-
nomial f = f. is defined as follows:

Ge(z) = log |¢.(2)], (16.5)

where ¢, is the Bottcher map of f.. The Green function is harmonic
wherever the Bottcher function is defined (since the Bottcher function
never vanishes) and has a logarithmic singularity at oo:

G(z) =log|z| + o(1).

In the connected case, (16.5) defines the Green function in the whole
basin D(oc0). In the disconnected case definition (16.5) can be used only



define

86 3. DYNAMICAL PLANE

in the domain 2. However, in either case the Green function satisfies
the equation:

G(fz) = 2G(2). (16.6)

This equation can be obviously used in order to extend the Green
function harmonically to the whole basin of oco. Let us summarize
simple properties of this extension:

EXERCISE 3.16. a) In the connected case the Green function does
not have critical points. In the disconnected case, its critical points
coincide with the critical points of iterated f.

b) Equipotentials are the level sets of the Green function, while external
rays (and their preimages) are its gradient curves.

¢) The Brolin formula holds:
1
G(z) = lim —log|f"z], =z € D().
n—soo 21

d) Extention of the Green function by 0 through the filled Julia set
K(f), gives a continuous subharmonic function on the whole complex
plane.

From the physical point of view, one should imagine that the filled
Julia set K is a conductor of electric charge put in the electric field of
the unit charge at co. Let the charges in K settle down in the equi-
librium state (according to the “harmonic distribution” on the Julia
set). Then the Green function is the electric potential in the space R?
created jointly by these charges on K and the charge at oco. (That is
why the name “equipotentials”).

EXERCISE 3.17. Assume that the Julia set J(f) is connected. En-
dow its basin D(0c0) with the hyprbolci metric p. Then for any external
ray R? we have:

G(z)
G(¢)

17. Quadratic-like maps

. 2, CeR’.

p(2,¢) = |log

17.1. The concept.

17.1.1. Definition and first properties. The notion of a quadratic-
like map is a fruitful generalization of the notion of a quadratic poly-
nomial.

DEFINITION 3.1. A quadratic-like map f : U — U’ is a holomorphic
double branched covering between two conformal disks U and U’ such
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that U € U'. The annulus A = U’ \ U is called the fundamental
annulus of f.

By the Riemann-Hurwitz Theorem, any quadratic-like map has a
single critical point, which is of course non-degenerate. We normalize f
so that the critical point sits at 0 (unless otherwise is explicitly stated).
Note that any quadratic polynomial f = f. restricts to a quadratic-like
map f: f~'(Dg) — Dr whose range is a round disk with sufficiently
big radius R.

Technical Conventions: In what follows we will consider only even
quadratic-like maps, i.e, such that f(z) = f(—z) for all z € U, with
0-symmetric domains U and U’. Moreover, we will assume that both
domains are bounded by piecewice smooth Jordan curves.

The notion of a quadratic-like map does not fit to a canonical dy-
namical framework, where the phase space is assumed to be invariant
under the dynamics. In the quadratic- like case, some orbits escape
through the fundamental annulus (i.e., f"z € A for some n € N), and
we cannot iterate them any further. However, there are still a plenty of
non-escaping points, which form a dynamically significant object. The
set of all non-escaping points is called the filled Julia set of f and is
denoted in the same way as for polynomials:

K(fy={z:f"2¢€U, n=0,1,....}

By definition, the Julia set of f is the boundary of the filled Julia set:
J(f) = OK(f). Dynamical features of quadratic-like maps are very
similar to those of quadratic maps (in §17.3 we will see a good reason
for it):

EXERCISE 3.18. Check that all dynamical properties of quadratic
polynomials established in in §§13 - 14 are still valid for quadratic-like
maps. In particular,

(i) The filled Julia set K(f) is a completely invariant full compact
subset of U.

(ii) Basic dichotomy: J(f) and K(f) are either connected or Can-
tor; the former holds if and only if the critical point is non-escaping:
0e€ K(f).

(111) Any periodic component of int K(f) is either in the immediate
basin of an attracting/parabolic cycle, or is a Siegel disk.

(iv) f can have at most one attracting cycle.

17.1.2. Adjustments. In fact, the notion of a quadratic-like map
with the fixed domain is too rigid. We want to allow some adjustment
of the domains which does not effect the essential dynamics of the map.

need?
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Let us say that a quadratic-like map ¢g : V' — V' is an adjustment of
another quadratic-like map f : U — U"if V. C U, g = f|V, and
OV' Cc U'\U. (In particular, we can restrict f to V = f~'U, provided

f(0)yeU.)

EXERCISE 3.19. (i) Show that adjustments do not change the Julia
set.

(i4) Consider a topological disk V' C U’ containing the critical value
f(0) and such that OV' C U'\U. LetV = f~'V'. Then the restriction
f:V = V'"is a quadratic-like map.

An appropriate adjustment allows one to improve the geometry of
a quadratic-like map:

LEMMA 3.18. Consider a quadratic-like map f: U — U' with
mod(U' \U) > pu> 0 (17.1)
and f(0) € U. Then there is an adjustment g : V- — V' such that:

(i) The new domains V' and V' are bounded by real analytic k-
quasicircles v and ~' with k depending only on u. Moreover, these
curves have a bounded (in terms of u) eccentricity around the origin.

(ii) mod(V' \ V) > u/2 > 0.

(iii) g admits a decomposition

g=ho fo, (17.2)

where fo(z) = 2% and h is a univalent function on W = fo(V) with
distortion bounded by some constant C'(p).

PROOF. Let us uniformize the fundamental annulus A of f by a
round annulus, ¢ : A(1/r,r) — A, where r > e*? = ry. Then v =
#(T) is the equator of A. Consider the disk V' bounded by +/, and let
V = f7V'. Since f(0) € V', V is a conformal disk and the restriction
f:V = V'is a quadratic-like adjsutment of f (see Exerecise 3.19).

Restrict ¢ to the annulus A(1/rp, 7). Take an arc o = [a,b] on T
of length at most § = (1 — 1/ry)/2. By the Koebe Distortion and 1/4
Theorems in the disk Dy (u),

|6(b) — d(a)| = g|f’(a)|; l(p(a)) < K(ro) [f'(a)],

where [ stands for the arc length. Hence ' = ¢(T) is a quasi-circle
with the dilatation depending only on rg.

Applying the same argument to the uniformization of f 1A, we con-
clude that its equator v = 0V is a quasicircle with bounded dilatation
as well.
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Since v and 7' are 0-symmetric x-quasicircle, the eccentricity of
these curves around 0 is bounded by some constant C'(k) (see Exercise
2.13). This proves (i).

Property (ii) is obvious since mod (V' V) > mod A(1,7y) = log 7.

Since ¢ is assumed to be even, it admits decomposition (17.2).
Moreover, h admits a univalent extension to the disk W = fo(U),
and

mod(W ~ W) = 2mod(U \ V) > /2.

The Koebe Distortion Theorem (in the invariant form 1.9) completes
the proof. O

If some map ¢ admits decomposition (17.2), we say that “it is a
quadratic map up to bounded distortion”.

17.1.3. Quadratic-like germs. Let us say that two quadratic-like
maps f and f represent the same quadratic-like germ if there is a se-
quence of quadratic-like maps f = fo, f1,..., fu = f, such that f;1q is
obtained by an ajustment of f; or the other way around. We will not
make notational differences between maps and germs.

According to Exercise 3.19, a quadratic-like germ f have a well-
defined Julia set J(f) (the notations for the dynamical objects of the
germs will be the same as for the maps).

We will usually consider quadratic-like maps/germs up to affine
conjugacy or rescaling. Thus, we allow ourselves to replace f(z) by
A7 f(Az) with some A € C*. This allows us to normalize f in different
convenient ways. For example, we can select the normal form

f(z)=c+22+... (17.3)
with the second order Taylor coefficient at the origin equal to 1.
Let us refine Lemma 3.18 a bit:
LEMMA 3.19. Let f : U — U’ be a quadratic-like map with con-
nected Julia set satisfying (17.1). Then the germ of f can be repre-

sented with a quadratic-like map g : V. — V' satisfying the following
properties:

(i) The same as in Lemma 3.18;

(ii) min(p/2,1/4) < mod(V'\V) < 1;

(iii) If f is normalized by (17.3) then
p<ry <Ry <1/p

for some constant p € (0,1) depending only on pu.
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PROOF. Let U" = f~"U" and let A" = U"! \ U™. Since the Julia
set is connected, the restrictions f : U" — U™ ! are quadratic-like
maps obtained by consecutive adjustments of f : U — U’. Hence they
represent the same germ. Since mod A™ = mod A'/2"~! we can select
n in such a way that i = min(p,1/2) < mod A® < 1. Let us now
adjust f|U™ once more as in Lemma 3.18. We obtain a quadratic-like
map ¢ : V — V' representing the same germ and satisfying properties
(i)-(ii). Moreover, both domains have eccentricity bounded by some
e=epn).

Assume now that f is normalized by (17.3), so is g. Then in repre-
sentation (17.2), g = h o fy, the univalent map h : (W,0) — (V' ¢) is
also normalized: A/(0) = 1. Since W = fo(V),

0<Cl'rw <ry.< Ry <CRy
for some constant C' = C'(u) depending only on p. Hence
C'ry <ryie <Ry < CR3-. (17.4)

But since V' D V, we have: Ry, > Ry /2. By the right-hand side
of (17.4), Ry > 1/2C. Since V has a bounded eccentricity, the inner
radius ry is also bounded away from 0: ry > 1/2Ce.

On the other hand, if ry, = L >> 1 then the left-hand side of
(17.4) (and bounded eccentricity of V') implies that the annulus V'V
contains the round annulus whose inner radius is of order L and the
outer radius is of order L?, so that mod(V' ~\ V) > vylogL, where
v = v(u) > 0. Since the modulus of V' \ V' is bounded, we conclude
that L is bounded as well. O

17.2. Uniqueness of a non-repelling cycle. We will now give
the first illustration of how useful the notion of a quadratic-like map
is. It exploits the flexibility of this class of maps: small perturbations
of a quadratic-like map are still quadratic-like (on a slightly adjusted
domain):

EXERCISE 3.20. Let f : U — U’ be a quadratic-like map with the
fundamental annulus A. Take a Jordan curve v C A generating mi(A),
and let V' be the domain bounded by ~'. Let ¢ be a bounded holomorphic
function on U with ||@]|e < dist(y,0U"). Let g = f+¢ andV = g~'V".
Then g : V' — V' is a quadratic-like map. (Hint: Take a Jordan curve
I’ close to OU with winding number 1 around the origin and, look at
the curve g : I' — C, and apply the Argument Principle.)

THEOREM 3.20. Any quadratic-like map (in particular, any qua-
dratic polynomial) has at most one non-repelling cycle.
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PROOF. Assume that a quadratic-like map f : U — U’ has two
non-repelling cycles a = {ay}i_, and 8 = {f}{_,- Let p and v be
their multipliers. Take two numbers a and b to be specified below.

Using the Interpolation formulas, find a polynomial ¢ (of degree
2p + 2q — 1) vanishing at points «; and [, such that ¢'(ag) = a,
@' (By) = b, while the derivatives at all other points «y and S (k > 0)
vanish.

Let g = f + e¢p, where € > (0. Then e and 3 are periodic cycles for
¢g with multipliers

N =)+ aer’(ak) and p' = p+ bGHfl(ﬁk)

k>0 k>0

respectively. Since |[A\| < 1 and | < 1, parameters a and b can be
obviously selected in such a way that |\'| < 1 and [¢/| < 1 for all
sufficiently small € > 0. Thus the cycles @ and 3 become attracting
under g. But for a sufficiently small €, g is a quadratic-like map on a
slightly adjusted domain containing both cycles (see Exercise 3.20). As
such, it is allowed to have at most one attracting cycle (Exercise 3.18)
- contradiction. O

This result together with Theorem 3.9 immediately yields:

COROLLARY 3.21. A quadratic polynomial can have at most one
cycle of components of int K(f).

17.3. Straightening Theorem. If the reader tried to extend the
basic dynamical theory from quadratic polynomials to quadratic-like
maps, quite likely he was stuck with the No Wandering Domains The-
orem. The only known proof of this theorem crucially uses the fact that
a polynomial of a given degree depends on finitely many parameters.
The flexibility offered by the infinitely dimensional space of quadratic-
like maps looks at this moment like a big disadvantage. It turns out,
however, that the theorem is still valid for quadratic-like maps, and
actually there is no need to prove it independently (as well as to re-
peat any other pieces of the topological theory). In fact, quadratic-like
maps do not exibit any new features of topological dynamics, since
all of them are topologically equivalent to polynomials (restricted to
appropriate domains)!

The proof of this theorem was historically the first application of
the so called quasi-conformal surgery technique. The idea of this tech-
nique is to cook by hands a quasi-regular map with desired dynamical
properties which topologically looks like a polynomial. If you then
manage to find an invariant conformal structure for this map, then by
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the Measurable Riemann Mapping Theorem it can be realised as a true
polynomial.

To state the result precisely, we need a few definitions. Two quadratic-
like maps f and ¢ are called topologically conjugate if they become
such after some adjustments of their domains. Thus there exist ad-
justments f : U — U’ and g : V — V' and a homeomorphism
h : (U,U) — (V',V) such that the following diagram is commuta-
tive:

U T> U’
h Lh
vV — VvV
9
In case when one of the maps is a global polynomial, we allow to take
any quadratic-like restriction of it.

If the homeomorphism A in the above definition can be selected
quasi-conformal (respectively conformal or affine) then the maps f
and g are called quasi-conformally (respectively conformally or affinely)
conjugate. Two quadratic-like maps are called hybrid equivalent if they
are qc conjugate by a map h with Oh = 0 a.e. on the filled Julia set
K(f).

Remark. The last condition implies that A is conformal on the
int K(f). On the Julia set J(f) it gives an extra restriction only if
J(f) has positive measure (and so far there are no examples of Julia
sets of positive measure).

The equivalence classes of topologically (respectively qc, hybrid
etc.) conjugate quadratic-like maps are called topological (respectively
qc, hybrid etc.) classes.

THEOREM 3.22. Any quadratic-like map g is hybrid conjugate to a
quadratic polynomial f.. If J(f) is connected then the corresponding
polynomial f. is unique.

This polynomial f. is called the straightening of g.

COROLLARY 3.23. If g is a quadratic-like map, then:

(i) There are no wandering components of int K(g);
(ii) Repelling periodic points are dense in J(g);
(iii) If all periodic points of g are repelling then K(g) is nowhere
dense.

Remark. If J(g) is a Cantor set, then the straightening is not
unique. Indeed, by 77, all quadratic polynomials f., ¢ € C ~ M,
are qc equivalent. Since their filled Julia sets have zero measure, they
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are actually hybrid equivalent. Hence all of them are going to be the
“straightenings” of g. We will see however that sometimes there is a
preferred choice (see §77).

Existence of the straightening will be proven in the next section,
while uniqueness will be postponed until the end of §18.

17.4. Construction of the straightening. The idea is to “mate”
g near K(g) with fy: z — 2? near co.

First let us adjust g : U — U’ by Lemma 3.18 so that U and U’
are bounded by real analytic curves. Take some r > 1. Consider two
closed disks: the disk U’ endowed with the map g : U — U’ and the
disk C ~ D, endowed with the map f; : C ~ D, — C ~ D,2. Think of
them as two hemi-spheres S2 = U’ and S? = C \ D, (see Fugure ...)
and glue them together by an orientation preserving diffeomorphism
h:U'\U — Alr,r?] between the closed fundamental annnuli respecting
the boundary dynamical relation, i.e., such that

h(gz) = fo(hz) for z € U. (17.5)

EXERCISE 3.21. Construct such a diffeomorphism. To this end first
consider any diffeomorphism hy : OU' — T,2, then lift it to a diffeo-
morphism hy : OU — T, satisfying (17.5), and finally interpolate in
between hy and hs.

In this way we obtain a smooth oriented sphere
§? =321, 5 =0 U, (C~D,)

with the atlas of two local charts given by the identical maps ¢, :
S — U’ and ¢_ : S2 — C ~ D,. Moreover, the hemi-shperes S% and
S? are bounded by smooth Jordan curves. For instance,

v =052 = ¢ h 7 (Ty) = ¢ OU.
Define now a map F : S? — S? by letting
¢_T_1 ogogi(z) forze gb_T_lU
F(z) = . _
¢_'ofood (z) forze S?
(It is certainly quite a puritan way of writing since the maps ¢_ and
¢4 are un fact identical.) By (17.5), these two formulas match on
v = 05? = ¢.'0U. Hence F is a continuous endomorphism of S2.

Moreover, it is a double branched covering of the sphere onto itself
(with two simple branched points at “0”= ¢~'(0) and “c0”= ¢ '(c0)).

EXERCISE 3.22. Check the last statement.
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Since F' is holomorphic in the local charts ¢, it is a smooth quasi-
regular map on S?\ . By Lemma 2.5, F is quasi-regular on the whole
sphere.

EXERCISE 3.23. Show that the gluing diffeomorphism h can be cho-
sen in such a way that the map F' is smooth.

use t for h; include a proof of this exercise with bounds for
the extension

We will now construct an F-invariant conformal structure g on
S? (with a bounded dilatation with respect to the qc structure of the
smooth sphere S?).  Start in a neighborhood of oco: u|S% = (¢_)*o.
Since o is fo-invariant, ;|S? is F-invariant. Since ¢ admits a smooth
extension to v = 852, it has a bounded dilatation. Hence u|S? has a
bounded dilatation as well.

Next, pull-back this structure from the fundamental annulus A =
S% N S? toits preimages A, = F"A, u|A, = (F")*(u|A). (We do not
bother to define the structure on the union of smooth curves, U0A,,
since it is a set of measure zero.) Since F' is holomorphic in the lo-
cal chart ¢, (namely, equal to g), all these structures have the same
dilatation as u|A. Hence they form a single F-invariant measurable
conformal structure with bounded dilatation on S? \ ¢ ' K(g).

Finally, let 1 = (¢4)*c on ¢;'K(g). We obtain an F-invariant
measurable conformal structure p with bounded dilatation on the whole
sphere S2. By the Measurable Riemann Mapping Theorem, there exists
a qc map H : (S% u) — C normalised so that H(0) = 0, H(co) = oo
and Hp_'(2) ~ z as z — oo. Then the map f = Ho Fo H 'is a
quadratic polynomial (see §77) with the critical point at the origin and
asymptotic to 2% at co. Hence f = f,: z + 2% + ¢ for some c.

EXERCISE 3.24. Show that K(f) = H(¢7'K(g)).

The qc map H o ¢jrl conjugates g : U — U’ to a quadratic-like
restriction of f. Moreover, restricting it to K(g), we see that

(Ho ¢, ')o = Hou=o,

so that H is a hybrid conjugacy between ¢ and a restriction of f. Thus
f is a straightening of g.

17.4.1. Comments on the straightening construction. Note first that
the map B = ¢_ o H~! in the above construction is the Bottcher coor-
dinate for f on Q = H(S?). Indeed:

e B is conformal on €2 since both ¢_ and H transfer the conformal
structure p|S?% to o, and
e B conjugates fy: z = 2% to f.
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Since B(02) = T,, 02 = E, is the equipotential of radius r for f. Thus
we have conjugated f : U — U’ to f: D, — D,» where D, is the disk
bounded by the equipotential E, of radius r.

extend the tubing up to the critical point and improve corre-
spondingly the above statement

Second, note that the above construction of f was uniquely deter-
mined by the choice of the gluing diffeomorphism A : U’ \ U — Alr, r?]
satisfying (17.5). Such a diffeomorphism will be called tubing. Thus
tubing determines the straightening uniquely. In fact, in the case of
connected Julia set, the straightening is independent even of the choice
of tubing (see the next section).

Finally, let us dwell on an important issue of a bound on the di-
latation of the qc homeomorphism conjugating ¢ to f.

LEMMA 3.24. Letg: U — U’ be a quadratic-like map with mod (U’
U) >0 >0. Then g is hybrid conjugate to a straightening f. by a K-qc
map, where the dilatation K depends only on 6.

PROOF. Let us first adjust g according to Lemma 3.18 (keeping the
same notations for the domains U and U’).

Let us now follow the proof of the Straightening Theorem. Look at
the conformal structure g = (¢_)*c on the fundamental annulus A in
the local chart ¢, i.e., consider

v =(¢1)(ulA) = h"o.

Its dilatation is equal to the dilatation of h. The pull-backs of v by
the iterates of g (corresponding to the pull-backs of x by the iterates
F') do not change its dilatation. The final extension to the filled Julia
set K (g) has zero dilatation. Thus the dilatation of v|U" = ¢ (u|S?)
15 equal to the dilatation of the tubing diffeomorphism h.

The qc map H o ¢3! conjugating g : U — U’ to f. : D, — D2
transfers v|U’ to 0. Hence its dilatation is also equal to Dil(h). Thus
we only need to argue that h can be selected so that its dilatation
depends only on §.

Let us conformally uniformize the fundamental annulus R = U'~\U,
® : A(l,p) — R. Since the boundary curves of R are k(¢)-quasi-
circles, ® admits a x(0)-quasi-symmetric extension to the boundary
(?7). Let us select the map h : QU" — T,2 on the outer boundary of
R in such a way that h o ® is the homothety of T, onto 7}2. Following
the strategy of Exercise 3.21, lift i to the inner boundary OU via the
covering map ¢ : OU — OU'. Since by Lemma 3.18 this covering
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is k(0)-quasi-symmetric, h : OU — T, is k2(J)-quasi-symmetric and
hence ho ® : Ty — T, is k3(d)-quasi-symmetric.

By Lemma ??, ho® admits a qc extension to R with the dilatation
depending only on k3(0) and mod(R)/logr. Selecting r in such a way
that the latter ratio is bounded (for instance, take logr = mod R),
we obtain a map h o ® with dilatation depending only on ¢§. Since
Dil(h) = Dil(h o ®), we are done. O

18. Expanding circle maps

Before passing to the uniquenss part of the Straightening Theorem,
let us dwell on an important relation between quadratic-like and circle
maps.

18.1. Definition. Recall that T C C stands for the unit circle
(endowed with the induced real analytic structure and Riemannian
metric). Symmetry with respect to T is understood in the sense of the
anti-holomorphic reflection 7 : z — 1/Z.

Let us say that g : T — T is an ezpanding circle map of class £ if
it satisfies the following properties:

(i) g is an orientation preserving double covering of the circle over
itself;

(ii) g is real analytic;

(iii) ¢ is expanding, i.e, there exist constants C' > 0 and A > 1 such
that for any z € T,

IDg"(2)| = CA", n=0,1,.... (18.1)

The simplest example is provided by the quadratic circle map fo :
2+ 22, A little more generally, we have the Blyaschke circle maps:

EXERCISE 3.25. Let g : D — D be a holomorphic double covering
of the unit disk over itself which has a fixed point in D. By FEzxercise
7?7, g admits a continuous extension to the unit circle T'. Show that
this extension is an expanding circle map of class £.

Hint: By FExercise 77, g actually extends to the whole sphere. To
show that it is expanding on T, use the hyperbolic metric in C\ (orb(a)U
orb(1/a), where a € D is the critical point of g.

To state some results in adequately general form, we will also con-
sider a bigger class €' of C''-smooth expanding circle maps and a class
E1Fe of C'-smooth maps whose derivative satisfies the Holder condition
with exponent « € (0,1). (However, for applications to holomorphic
dynamics we will only need real analytic maps, so that the reader can
always assume it.)
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EXERCISE 3.26. (i) For any g € &', there exists a smooth Rie-
mannian metric p on T such that

IDg(2)|l, > A >1 for all z € T.
This metric is called Lyapunov. Hint: Consider p = ...

EXERCISE 3.27. Show that any expanding circle map g € £* has a
unique fized point 8 = B, € T.

Hint: Lifting g to the universal covering, you obtain an orienta-
tion preserving diffeomorphism G : R — R satisfying the properties:
a)G(x+1) = G(x)+2; b) all fixed points of G is repelling. Or, use the
Lefschetz formula instead.

18.2. Symbolic model. Let us consider a symbolic sequence k =

(ko, k1,...) € X of zeros and ones. Each such a sequence represents
some number

= k

=3 e
n=0

in its diadic expansion. As everybody learns in the school (in the
context of decimal expansions), all numbers except those of the form
m /2™ admit a unique diadic expansion. The numbers of the form m /2"

with odd m admit exactly two diadic expansions:
k kno 1k Ko, |

0 2 0 2 Z

?+'.'+2n—1+2_nzg+”.+2n—l

—.
m=n+1

Thus the corresponding symbolic sequences viewed as representations
of numbers should be identified. If we consider the numbers mod 1,
then we should also identify the sequence 0 of all zeros to the sequence
1 of all ones. Let us call these identifications on ¥ “arithmetic” and
the space ¥ modulo these identifications arithmetic quotient of ¥. Of
course, this quotient is in a natural one-to-one correspondence with the
unit interval with identified endpoints, i.e., with the circle.

EXERCISE 3.28. Show that the projection
mo: X — T, ks exp(2mif(k))

(continuously) semi-conjugates the Bernoulli shift o : ¥ — ¥ (see
§13.4) to the circle endomorphism fo : z + 2%, Thus fo : T — T is
topologically conjugate to the arithmetic quotient of the Bernoulli shift.

It turns out that the same is true for all expanding circle maps
ge &l

LEMMA 3.25. Any circle expanding map f € E' is topologically con-
jugate to the arithmetic quotient of the Bernoulli shift.
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PROOF. Let g € £ Consider its fixed point 3. It has a single
perimage (3! different from 3 = 3°. These two points, 3 and 3°, divide
the circle into two (open) intervals intervals, I} and I} (counting anti-
clockwise starting from [3). Moreover, g homeomorphically maps each
I} onto T \ 3. Hence each I} contains a preimage 2 of #'. This
point divides I} into two open intervals, I3, and I, (counting anti-
clockwise). We obtain four intervals, I;, k,j € {0,1} such that g
homeomorphically maps each I7; onto Ij.

Continuing inductively, we see that

T N g_nﬁ - U I]?o ki..kn_1

ks€{0,1}

where:
(i) the anti-clockwise order of the intervals I (starting from ()

corresponds to the lexicographic order on the symbolic strings k£ =
(ko kl e kn—l);
(ii) the map g homeomorphically maps I} onto I:&l), where the

strimg o(k) = (ki ...k,_1) is obtained from k by erasing the first
symbol.

(iii) any interval I} contains a point ﬁg“ € ¢~ 3 which divides
it into two intervals I7F" and I of the next level.

Thus ¢g" homeomorphically maps each interval I' onto the punc-
tured circle T~ {3}. Since g is expanding, the lengths of these intervals
shrink exponentially fast:

21
C

where C' > 0 and A > 1 are constants from (18.1). It follows that for
any infinite sequence k = (kok; ...) € X of zeros and ones, the closed
intervals I ,  form a nest shrinking to a single point z = (k).
Thus we obtain a map 7 : X — T.

Under this map, the cylinders of rank n are mapped to the intervals
of rank n. Since the latter shrink, 7 is continuous.

The above property (ii) implies that 7 is equivariant. Thus ¢ is a
quotient of the Bernoulli shift.

We only need to describe the fibers of 7. If z is not an iterated
preimage of (3, then it belongs to a single interval of any rank. Hence
card(m~!(z)) = 1. Obviously the fiber 7—1(3) consists of two extremal
sequences, (0) and 1. Otherwise z = Y, € g™ 3 for some
n > 0 (except that for n = 0, the point 8' does not have subsripts).
Then it is a boundary point for exactly two intervals of each order

m > n+ 1. For m = n + 1, the corresponding symbolic sequences

I < =",
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differ by the last symbol only: (ko ...k,—10) and (ko...k,—11). For all
further levels, we should add symbol 1 to the first sequence and symbol
0 to the second one. Thus:

W(kgkn_lolll) :Z:ﬂ'(kgkn_llooo ),
which are exactly the arithmetic identifications on X. O

Thus all expanding circle maps of class €' are topologically the
same:

PROPOSITION 3.26. Any two expanding circle maps of class E' are
topologically conjugate by a unique orientation preserving circle home-
omorphism. In particular, expanding circle maps do not admit non-
trivial orientation preserving automorphisms.

ProoOF. Lemma 3.25 gives the same standard model for any ex-
panding circle map of class £!. In this model, the anti-clockwise order
on T~ {f} corresponds to the lexicographic order on . Hence the cor-
responding conjugacy h between two circle maps, g and g, is orientation
preserving.

Such a conjugacy is unique. Indeed, it must carry the points of
g ™(B) to () preserving their anti-clockwise order starting from the
corresponding fixed points, § and 3. Hence h is uniquely determined on
the iterated preimages of 3. Since these preimages are dense in T (by

the previous lemma), A is uniquely determined on the whole circle. [

Remarks. 1. Expanding circle maps have one orientation reversing
automorphism. In the case of z — 22 it is just z — z (compare with
Exercise 3.4).

2. The above discussion can be generalized in a straightforward
way to expanding circle maps of degree d > 2. There is one difference
though: if d > 2 then the group of orientation preserving automor-
phisms of ¢ is not trivial any more but rather the cyclic group of order
d — 1 (consider z — 2¢).

18.3. Equivariant liftings. Let us describe a lifting construction
which will find numerous applications in what follows.

Consider two open conformal annuli Q C ' C C with a common
inner boundary. Assume that A = Q' \ € is a (closed) annulus whose
boundary components are smooth Jordan curves. Let g : Q2 — € be a
holomorphic double covering map. A point z € € is called escaping if
f"z € A for some n € N.

Consider also another map g : Q) —  with the same properties
(all corresponding objects for § will be marked with “tilde”).
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LEMMA 3.27. Under the circumstances just described, assume that
all points of Q and ' are escaping. Then any equivariant home-
omorphism H : A — A admits a unique homeomorphic extension
h:Q — Q conjugating g to §. If H is quasi-conformal then so is
h, and Dil(h) = Dil(H). Moreover, the Beltrami differential u, = h*o
15 obtained by pulling back the Beltrami differential pg = H*o by the
iterates of g: pup|A™ = (¢™) pm-

PROOF. Let A" = g7 ™A, and let I'” be the outer boundary of A"
(coinciding for n > 1 with the inner boundary of A"~!). Consider
an equivariant homeomorphism H : A — A. This map admits a lift
Hy : A — A" such that §o H; = H o g|A'. In fact, there are exacly
two such lifts determined by a value of H; at a single point.

The restriction of H; to the outer boundary I'! is a lift of H : T —
[ But since H is equivariant on A, its restriction to I'! is also a
lift of H : I'® — T° Hence the lift H; can be chosen in such a way
that H,|T'' = H|T''. With this choice, H and H; glue together to an
equivarinat homeomorphism h; : AU A' — AU A'. Now equivariance
means that goh;|A! = hyog|A!. In particular, h; is equivariant on the
boundary of A!, so that we can apply to it the above construction. It
provides us with an equivariant extension hy : AUA'UA% — AUA'UA?
of hl-

Proceeding in this way we will obtain a sequence of equivariant
liftings H, : A" — A" which glue together to equivariant homeomor-
phisms

hy : LnJ Ar LnJ AF
k=0 k=0

extending one another. Since all the points in €2 escape, the annuli A*
exhaust €, and similarly for €. Hence the direct limit of equivariant
extensions h, is a homeomeorhism h : Q' — €' conjugating ¢ to §.

It shows existence of a conjugacy h for any given H. Uniqueness is
obvious: h|A consecutively determines the lifts h| A" by requirements
of equivarience and continuous matching.

Finally, assume that H is quasi-conformal with dilatation K. Since
g and ¢ are conformal, all the consecutive lifts of H to the annuli A"
are c maps with the same dilatation K. By Proposition 2.5, their
gluings (maps h,) are K-qc maps as well. The direct limit A of K-qc
extensions h,, is obviously K-qc as well.

The last statement is obvious due to the natural behavior of the
Beltrami differentials under conformal liftings: py, = (¢°™)*puy since
§°" o H, = H o g°" where ¢°" and ¢°" are conformal. O
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Remark. We do not need to assume that the annuli Q2 and € are
embedded to C.

PROBLEM 3.28. Is the assumption that all points in 2 escape au-
tomatically satisfied if mod(€2) < oo ?

18.4. Complex extensions of circle maps. In this section we
will take a closer look at the holomorphic extensions of expanding cicle
maps of class €.

EXERCISE 3.29. (i) For any g € &, there exist two T-symmetric
topological annuli V- € V' (bounded by smooth Jordan curves) such
that g admits a holomorphic extension to V' and maps it onto V' as a
double covering.

Hint: FExtend the Lyapunov metric from Fxercise 3.26 to a neigh-
borhood of T.

(11) Show that vice versa, property (i) imlies that g € €. Hint: Use
the hyperbolic metric in V.

(111) Show that all points z € V \T escape, i.e., g"z € V' NV for
some n € N.

Hints should go to an Appendix.

Thus property (i) can be used as a definition of an expanding circle
map of class £. In fact, only exterior part of the above extension is
needed to reconstruct the circle map (it will be useful in what follows):

LEMMA 3.29. Let Q C ' C C be two open conformal annnuli
whose inner boundaries coincide with the unit circle T. Let g : 0 —
Q' be a holomorphic double covering. Then g admits an extension to
a holomorphic double covering G : V. — V', where V€ V' are T-
symmetric annuli such that Q =V ~ D and Q' = V'~ D. If the outer
boundary of ) is contained in ', then V'€ V' and the restriction G|T
s an expanding cicle map of class £.

ProOOF. First show that g continuously extends to T (apply bound-
ary properties of confomal maps to inverse branches of g ??). Then
use the Schwarz Reflection Principle. O

Consider a holomorphic extension g : V' — V' of a map g € £ given
by Exercise 7?7. Thus V' € V' are two T-symmetric annuli neighbor-
hoods of the circle. Let A = (V' V)~ D be the “outer” fundamental
annulus for g.

Given another map g : V — V' as above, we will mark the corre-
sponding objects with “tilde”.
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PROPOSITION 3.30. Any two expanding circle maps g : V. — V'
and §: V. — V' are conjugate by a qc map h : (V',V,T) — (V',V,T)
commuting with the reflection T about the circle. In fact, any equivari-
ant gc map H : A — A between the fundamental annult admits a unique
extension to a qc conjugacy h as above. Moreover Dil(h) = Dil(H).

Proor. Consider an equivariant qc map H as above with dilata-
tion K. By Lemma 3.27 it can be uniquely lifted to an equivariant
K-qc homeomorphism A : V'~ D — V'~ D. By ??, h admits a con-
tinuous extension to the unit circle. Reflecting it to the interior of the
circle (and then exploiting Proposition 2.5) we obtain a desired K-qc
conjugacy h: V' — V. O

Let us endow the exterior C\.ID of the unit disk, with the hyperbolic
metric p = pcp- The hyperbolic length of a curve v will be denoted
by {,(7), while it Euclidean length will be denoted by |7|.

LEMMA 3.31. Let g : V. — V' be an expanding circle map of class
E. Let Q and Q' be two (open) annuli whose inner boundary is the circle
T. Let h : Q — ' be a homeomorphism commuting with g. Then h
admits a continuous extension to a map QUT — QU T identical on
the circle.

koot sk skokook sk kokook skokokook skokokosk skokok sk skokok sk skokok skokok sk koksk unedited

PROOF. Given a set X C A, let X denote its image by w. Let
us take a configuration consisting of a round annulus L° = Alr, r?]
contained in A, and an interval Iy = [r,r?]. Let L™ = P;"L°, and I}'
denote the components of Py "I°, k =0,1,...,2" — 1. The intervals I
subdivide the annulus L™ into 2" ”Carleson boxes” Q}.

Since the (multi-valued) square root map P, ! is infinitesimally con-
tracting in the hyperbolic metric, the hyperbolic diameters of the boxes
Q} are uniformly bounded by a constant C'.

Let us now show that w is a hyperbolic quasi-isometry near the
circle, that is, there exist € > 0 and A, B > 0 such that

A7p(2,¢) = B < p(2,() < Ap(2,¢) + B, (18.2)

provided z,{ € A(1,1 +¢), |z —(| <e.

Let v be the arc of the hyperbolic geodesic joining z and (. Clearly
it is contained in the annulus A(1,r), provided e is sufficiently small.
Let ¢ > 1 be the radius of the circle T, centered at 0 and tangent to
v. Let us replace v with a combinatorial geodesic I going radially up
from z to the intersection with T;, then going along this circle, and
then radially down to (. Let N be the number of the Carleson boxes
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intersected by I'. Then one can easily see that

p(za C) = lﬂ(’Y) = lﬂ(r) = Na
provided p(z,() > 10log(1/r) (here log(1/r) is the hyperbolic size of

the boxes Q).
On the other hand

p(z,0) <1,(T) < CON,

so that p(Z, () < Cip(z,(), and (18.2) follows.

But quasi-isometries of the hyperbolic plane admit continuous ex-
tensions to T (see, e.g., [Th]). Finally, it is an easy exercise to show
that the only homeomorphism of the circle commuting with F, is iden-
tical. O

*>I<*******>I<*****>I<***>I<*>I<*******>I<>I<*************************8

We will show next that “outer automorphisms” of circle maps move
points bounded hyperbolic distance:

LEMMA 3.32. Let g : V — V' be a map of class E. Let 2 and SV be
two open annuli in V 1D with inner boundary T, and let h : @ — Q' be
an automorphism of g. Then for any 6 > 0 there exists an R = R(J) >
0 such that p(z,hz) < R for all points z € Q) whose distance from the
outer boundary of ) is at least §.

Proor. By Proposition 3.30, g is qc conjugate to the quadratic
circle map fo : z — z2. Of course, this conjugacy can be extended to a
global qc homeomorphism of C' (e.g., by ?7). Since qc homeomorphisms
of C~\. D are hyperbolic quasi-isometries (?7), it is enough to prove the
assertion for fy. So, let us assume from now on that g = fo.

Of course, the assertion is true for any compact subset of €). Hence
we need to check it only near to the unit circle.

By 3.31, h admits a continuous extension to the unit circle. Of
course, it still commutes with g on the circle. By Proposition 3.26,
h|T = id. Hence for any € > 0 there exists an 7 > 1 such that A(1,7] €
Q and

|z —hz| <e for zeA(l,r].
Consider a fundamental annulus A of g compactly contained in A(1,r].
By compactness, there exists an R > 0 such that
p(z,hz) <R for ze€ A

Let A" = g-"A. Take some z € A'. Since |z — hz| < ¢, these
points are obtained by applying the same local branch of the square
root map ¢! to the points gz and g(hz) = h(gz). Since the local
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branches of ¢~! preserve the hyperbolic distance on C ~\. D, we have:
p(z, hz) = p(gz, h(g2)) < R.

Replacing A by A!, we obtain the same bound for any z € A2, etc.
The conclusion follows. O

18.5. External map (the connected case). To any quadratic-
like map f : U — U’ one can naturally associate an expanding circle
map ¢ of class £ which captures dynamics outside the Julia set. For
this reason g is called the external map of f.

The construction is very simple if the Julia set J(f) is connected.
In this case the basin of infinity Dy(0c0) = C\ K (f) is simply connected
and can be conformally mapped onto the complement of the unit disk:

R:CNK(f) = C~D.
Let Q@ = R(V N K(f)), Q' = R(V' N K(f)). These are two conformal

annuli with smooth boundary. Moreover, the have a common inner
boundary, the unit circle T, while the outer boundary of €2 is contained
in Q. Conjugating f by R we obtain a holomorphic double covering

g: Q= Q) g(z)=RofoR ' (2) for ze€.

By Lemma 3.29, g can be extended to an expanding circle map of class
E.

In fact, this map is not uniquely defined since the Riemann map R
is defined up to post-composition with rotation z — e>™?2 0 < 0 < 2.
A natural way to normalize ¢ is to put its fixed point 5 to 1 € T.

Note also that if f is replaced by an affinely conjugate map A=' o
foA, where A: z — Az, A € C*, then the Riemann map R is replaced
by R o A, and the external map ¢ remains the same. Thus, to any
quadratic-like map f (with connected Julia set) prescribed up to an
affine conjugacy corresponds an expanding circle map ¢ well-defined
up to rotation conjugacy.

We will consider the case of disconnected Julia set in §77.

18.6. Uniqueness of the straightening. Let us first show that
“external automorphisms” of quadratic-like maps admit a continuous
extension to the Julia set by identity (compare with Lemma 3.31).

LEMMA 3.33. Let f : U — U’ be a quadratic-like map with con-
nected Julia set.  Let W C U and W' C U be two (open) annuli
whose inner boundary is J(f). Let h : W — W' be a homeomorphism
commuting with f. Then h admits a continuous extension to a map
WU J(f) — W'U J(f) identical on the Julia set.
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PROOF. Consider the Riemann mapping R : C \ K(f) - C~\ D
and the external circle map g : V. — V', g|V N~ D = Ro fo R\
Transfer the annuli W and W’ to the g-plane. We obtain two annuli
Q= R(W) and Q' = R(W') in V \ D attached to the unit circle T. Of
course, the homeomorphism &k : Q — Q', k = Ro ho R™!, commutes
with g.

By Lemma 3.32, £ moves points near T bounded hyperbolic dis-
tance: pc.p(k(2),2) < R. Since the Riemann mapping R : C \ D —
C \ K(f) is a hyperbolic isometry, the same is true for h:

pek(f) (2, h(z) <R

for 2 € W near J(f) . By 7?7, the Euclidean distance |z — hz| goes to 0
as z = J(f), z € W. It follows that the extension of h by the identity
on the Julia set is continuous. O

COROLLARY 3.34. Let f and f be two quadratic-like maps, and let

a homeomorphism h conjugates f to f in some neighborhoods of the
filled Julia sets. Then h is uniquely determined on J(f).

PROBLEM 3.35. Assume that quadratic polynomials f and f are
conjugate on the Julia sets only. Is the conjugacy unique?

Let us now summarize the above results:

THEOREM 3.36. Let us consider two quadratic-like maps f : U —
U and f : U — U with connected Julia sets. Assume that they are
topologically conjugate near their Julia sets by a homeomorphism v :
V — V. Assume also that we are given an equivariant homeomorphism
H : A — A between the (closed) fundamental annuli of f and f.

Then there exists a unique homeomorphism h : U' — U’ conjugating
f to f, coinciding with ¢ on the Julia set J(f), and coinciding with H
on A.

If H is gc, then h|U ~ K(f) is also qc with the same dilatation. If
both H and v are qc, then h is qc, and

Dil(h) = max(Dil H, Dil(¢| K (f)).

In particular, if f and g are hybrid equivalent by means of 1, then
Dil(h) = Dil(H).

Proor. By the Lifting Construction of §18.3, H admits a unique
equivariant extension to a homeomorphism h : U~ K (f) = U~ K(f).
This extension continuously matches with ¢ on the filled Julia set.
Indeed, 1)~ o h commutes with f on some exterior neighborhood of
K(f). By Lemma 3.33, this map continuously extends to the filled
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Julia set as identity. Hence h continuous extends to the filled Julia set
as 1.

If H is qc then h| UK (f) is qc with the same dilatation by Lemma
3.27. All the rest follows from the Bers Lemma 2.6. O

Of course, we can always construct an equivariant qc map H be-
tween the fundamental annuli. Hence if two quadratic-like maps are
topologically equivalent, then the conjugacy can be selected quasi-
conformal outside the filled Julia set. If they are hybrid equivalent,
then the dilatation of the conjugacy is completely controlled by the
dilatation of H, which is in turn controlled by the geometry of the
fundamental annuli (see 77). In the case of global polynomials we can
do even better:

COROLLARY 3.37. Consider two quadratic polynomials f : z +—
22 4+ ¢ and f © 2+ 22 4 ¢ with connected Julia sets. If they are
topologically conjugate near their filled Julia sets, then there is a global
conjugacy h : C — C which is conformal on the basin of co. If f and
f are hybrid conjugate near their filled Julia sets, then f = f

PROOF. By §?7, the Riemann-Botcher map By : D;(00) — C \ D
conjugates f to z — z2. Hence the composition

R: B};l o By : Dy(o0) = Df(oo) (18.3)

conformally conjugates f to f on their basins of co. By the previous
theorem, this conjugacy matches with the topological conjugacy on the
filled Julia set giving us a desired global conjugacy h.

Moreover, If f and f are hybrid equivalent, then Dil(h) = 0 a.e. By
Weil’s Lemma 2.4, h is conformal and hence affine. But if two quadratic
polynomials in the normal form 22+ ¢ are affinely equivalent, then they
are equal. O

The last statement of the above Corollary gives the uniqueness part
of the Straightening Theorem.
18.6.1. Picture.



CHAPTER 4

Combinatorics of external rays

1. Dynamical rays

1.1. Motivaing problems. Consider a quadratic polynomial f =
fe with connected Julia set. As we know (§77), its basin of infinity is
uniformized by the Bottcher map ¢ : Dy(oo) — C ~ D, which conju-
gates f to z — 22. If the Julia set was locally connected then by the
Carathéodory theorem the inverse map would ¢! extend continuously
to the unit circle T. This would give a representation of f|J(f) as a
quotient of the the doubling map 6 — 26 mod 1 of the circle R/Z ~ T.
This observation immeadiately leads to the followong problems:

1) Describe explicitly equivalence realtions on the circle correspond-
ing to all possible Julia sets;

2) Study the problem of local conectivity of the Julia sets.

It turns out that the first problem can be addressed in a com-
prehensive way. The second problem is very delicate. However, even
non-locally connected examples can be partially treated due to the fact
that many external rays always land at some points of the Julia set.
This is the main theme of the following discussion.

1.2. Landing of rational rays. We say that an external ray R’
lands at some point z of the Julia set if R?(t) — z as t — 0. Two rays
RI/2 and RY/>+1/2 will be called “preimages” of the ray R?. Obviously,
if some ray lands, then its image and both its preimages land as well.

An external ray R? is called rational if # € Q, and irrational other-
wise. Dynamically the rational rays are characterized by the property
of being either periodic or preperiodic:

EXERCISE 4.1. Let R = R’.
a) If 0 is irraional then the rays f*(R), n =0,1,..., are all distinct.

Assume 0 is rational: 0 = q/p, where q and p are mutually prime.
Then

(i) If p is odd then R is periodic: there exists an | such that f'(R) = R.
107
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(ii) If p is even then R is preperiodic: there are | and r > 0 such
that fT(R) is a periodic ray of period I, while the rays f*(R), k =
0,1,...,7—1, are not periodic.

How to calculate | and r?

THEOREM 4.1. Let f be a quadratic polynomial with connected Ju-
lia set. Then any rational ray R = R‘; lands at some repelling or
parabolic point of f.

Proor. Without loss of generality we can assume that the ray R
is periodic and hence invariant under some iterate ¢ = f'. Let d = 2.
Consider a sequence of points z, = R(1/d"), and let 7, be the sequence
of arcs on R bounded by the points z,, and z,4;. Then g(v,) = 751

Endow the basin D = Dy(oo) with the hyperbolic metric p. Since
g: D — D is a covering map, it locally preserves p. Hence the hyper-
bolic length of the arcs -, are all equal to some L.

But all the rays accumulate on the Julia set as ¢ — 0. By the
relation between the hyperbolic and Euclidean metrics (Lemma 1.11),
the Euclidean length of these arcs goes to 0 as n — oo. Hence the
limit set of the sequence {z,} is a connected set consisting of the fixed
points of g. Since g has only finitely many fixed points, this limit set
consists of a single fixed point 3. It follows that the ray R lands at
B € J(f) (compare with the proof of Theorem 3.9).

Since (3 € J(f), it can be either repelling, or parabolic, or Cremer.
But the latter case is excluded by the Necklace Lemma 3.10. O



CHAPTER 5

Parameter plane (the Mandelbrot set)

20. Definition and first properties

The Mandelbrot set presents at one glance the whole dynamical
diversity of the complex quadratic family f. : z — 22 + ¢. Figure
. shows this set and its blow-ups in several places. It is remarkable
that all this intricate structure is hidden behind the following one-line
definition.

Recall the Basic Dichotomy for the quadratic maps: the Julia set
J(fe) is either connected or Cantor (Theorem 3.3). By definition, the
Mandelbrot set M consists of those parameter values ¢ € C for which
the Julia set J(f.) is connected. It is equivalent to saying that the orbit
of the critical point

O crs e (E+ce)+ers ... (20.1)

is not escaping to co. Let us denote the nth polynomial in (20.1) by
én(c), so that ¢o(c) =0, ¢1(c) = ¢, and recursively

Gni1(c) = dn(c)* +c. (20.2)

Note that deg ¢, = 2" L.
Though the polynomials ¢,, are not iterates of a single polynomial,
they behave in many respects similarly to the iterated polynomials:

EXERCISE 5.1 (Simplest properties of M). Prove the following prop-
erties:
(i) If |pn(c)| > 2 for some n € N then ¢,(c) = 00 as n — oo. In
particular, M C D,.
(ii) ¢n(c) — oo locally uniformly on C~ M. Hence M is compact.
(iii) C~ M is connected (recall the proof of Theorem 3.3). Hence M
15 full and all components of int M are simply connected.
(iv) The set of normality of the sequence {¢,} coincides with C~OM
(compare with Proposition 3.5).

One can see a similarity between the Mandelbrot set (representing
the whole quadratic family) and a fillied Julia set of a particular qua-
dratic map. It is just the first indication of a deep relation between
dynamical and parameter objects.

109
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Note that Proposition 3.4 describes the real slice of the Mandelbrot
set:
MNR=[-2,1/4].
What immediately catches the eye in the Mandelbrot set is the main
cardioid C with a cusp at ¢ = 1/4. The cardioid bounds a domain of
parameter values ¢ such that f. has an attracting fixed point.

EXERCISE 5.2. Show that the main cardioid is given by the equation

1 oo 1 40
c= 5627ru9 _ Z64m6‘7 0< H < 271_7

2mi0 s the multiplier of the neutral fized point of f..

where A = e
Let us now take a look at how periodic points move with parameter:

LEMMA 5.1. Let f., has a cycle {ax}o_y of period p with multi-
plier N\g # 1. Then for nearby c, the maps f. have a cycle {og(c)}o_y
holomorphically depending on c. Its multiplier A(c) holomorphically

depends on ¢ as well.

PRrROOF. Consider an algebraic equation fP(z) = z. For ¢ = ¢ it

has roots z = ay, k =0,...,p — 1 (and maybe others). Since
p _
A1)~ 2) 1z
dz c=cp,z=qy,

the Implicit Function Theorem yields the first assertion. The second
assertion follows from the formula for the multiplier:

Ac) =2 1:[ ai(c).

O

Thus periodic points of f. as functions of the parameter are alge-
braic functions branched at parabolic points only.

A parameter value ¢ € C is called hyperbolic/parabolic/Siegel etc.
if the corresponding quadratic polynomial f. is such.

PROPOSITION 5.2 (Hyperbolic components). The set H of hyper-
bolic parameter values is contained in int M. If H is a component of
int M intersecting H then H C H.

PrROOF. Lemma 5.1 implies that the set of hyperbolic parameter
values is open. Since parameters in C\. M are not hyperbolic (according
to our terminology: see §?7), the boundary parameter values ¢ € OM
cannot be hyperbolic either. Thus H C int M.
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Take some some hyperbolic parameter value ¢y € Hy, and let fy =
feo- This map has an attracting cycle of some period p. By Theorem
3.6, this cycle contains a point ay such that

Ppn(co) = f3"(0) — g as n — oo.
It is easy to see (Exercise!) that for nearby ¢ € H we have:
bpn(c) = f5"(0) = ap(c) as n — oo,

where ag(c) is the holomorphically moving attracting periodic point of
fe (Lemma ?7). But the sequence of polynomials ¢,,(c), n =10,1,...,
is normal in H (Exercise 5.1, (iv)). Hence it must converge in the
whole domain H to some holomorphic function &(c) coinciding with
ap(c) near ¢y. By analytic continuation, @(c) is a a periodic point of f,
with period dividing p.

Moreover, the cycle of this point attracts the critical orbit persis-
tently in H. It is impossible if this cycle is repelling somewhere. Indeed,
a repelling cycles can only attract an orbit which eventually lands at
it. This property is not locally persistent since otherwise it would hold
for all ¢ € C (while it is violated, say, for ¢ = 1).

If &(c) were parabolic for some ¢ € H, then it could be made
repelling for a nearby parameter value. Thus &(c) is attracting for all
c € H, so that H C H. O

A component H of int M is called hyperbolic if it consists of hyper-
bolic parameter value. Otherwise H is called queer. The reason for the
last term is that it is generally believed that there are no queer compo-
nents. In fact, it is a central conjecture in contemporary holomorphic
dynamics:

CONJECTURE 5.3. The interior of the Mandelbrot set consists of
hyperbolic parameter values.

21. Connectivity of M

21.1. Uniformization of C~. M. In this section we will prove the
first deep result about the Mandelbrot set established by Douady and
Hubbard in early 1980’s. The strategy of the proof is quite remarkable:
it is based on the explicit uniformization of the complement C ~\. M by
C . D. Recall from §16.5.2 that for ¢ € C \ M, we have a well-defined
function

a = ®p(c) = de(c), (21.1)
where ¢, is the Bottcher function for f. extended to the complement of

the figure eight equipotential centered at 0. The point a is called the
Bottcher position of the critical value of f,.
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THEOREM 5.4. The Mandelbrot set M is connected. The function
&y conformally maps C . M onto C . D. Moreover, it is tangent to
the identity at co: Ppr(z) ~ z as z — 00.

The proof given below is not the shortest one but it gives a bright
illustration of the ideas of qc¢ deformations which can be applied to
variety of situations. A shorter path will be outlined in the Exercise
21.6.

21.2. Qc deformation. The idea is to deform the map by moving
around the Bottcher position of its critical value. To this end let us
consider a two parameter family of diffeomorphisms ¢, , : C D —
C \ D written in the polar coordinates as follows:

Y= wa#l(r:e) = (Tw79+q10gr)a w>0, geR

In terms of complex variabe a = re? € C . D and complex parameter
A = w+ig, RXA > 0, this family can be expressed in the following
concise form:

Ya(a) = |a]*a. (21.2)

This family commutes with fy : @ — a®: ¥(a?) = ¢(a)?, and acts
transitively on C \ D, i.e., for any a, and a in C \ D, there exists a A,
such that ¥, (as) = a. (Note also that v, are automorphisms of C \ D
viewed as a multiplicative semigroup.)

Take now a quadratic polynomial f, = f., with ¢, € C~ M. Let us
consider its Bottcher function ¢, : 2, — C\ D,, where 2, = €),, is the
complement of the figure eight equipotenial (see §16.5.2) and D, = Dy,
is the corresponding round disk, R, > 1. Take the standard conformal
structure o on C . D and pull it back by the composition 1, o ¢,. We
obtain a conformal structure pu = pu, in €. Since ¥, commute with
fo while the Bottcher function conjugates fi to fy, the structure pu is
invariant under f,.

Let us pull this structure back to the preimages of €2,:

P = (£ (),
where QF = f-"(),. Since p is invariant on €, the structures p
and p" coincide on €27, so that they are organized in a single conformal
structure on UQ? = C \ J(f,). Extend it to the Julia set J(f,) as the
standard conformal structure.
We will keep notation pu = py for the conformal structure on C we
have just constructed. By construction, it is invariant under f,. More-

over, it has a bounded dilatation since holomorphic pullbacks preserve
dilatation: ||gallee = ||(¥2)*(0) |0 < 1.

n+1
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By the Measurable Riemann Mapping Theorem, there is a qc map
hy : (C,0) — (C,0) such that (hy)«(zn) = 0. By Corollary ??, ha
can be normalized so that it conjugates f\ to a quadratic map f. =
fepny = 2 = 2%+ ¢(A). Of course, the Julia set f, is also Cantor, so that
ce CN M.

This family of quadratic polynomials is the desired qc deformation

of f..

21.3. Analyticity. We have to check three propertices of the map
Gy C M — C~ D: analyticity, surjectivity, and injectivity. Let us
take them one by one.

It is obvious from formula (21.2) that the Beltrami differential

Uy = (7/)/\)*(0) = 5%\/8%\

depends holomorphically on A. Hence the Beltrami differential (f,)*(vy)
on €, also depends holomorphically on A (see Exercise 2.9). Pulling
it back by the iterates of f, and extending it in the standard way to
J(f), we obtain by Lemma 2.16 a holomorphic family of Beltrami dif-
ferentials ) on C. By Corollary 3.11, ¢(A) is holomorphic on A as
well.

21.4. Surjectivity. Note that the map ¢, o ¢, o h;\l conformally
conjugates the polynomial f. = f.) near oo to fy : 2 = 22, By
Theorem 3.14, these properties determine uniquely the Bottcher map
¢. of fe, so that ¢, = 1) 0 ¢, 0 hy* with ¢ = ¢(A). Since hy conjugates
fx to f., we have: hy(c.) = ¢ and hence

(I)M(C) = ¢c(c) =tyo QS*(C*) = 1/))\(@*)7

where a, is the Bottcher position of the critical value of f,. Since the
family {¢,} acts transitively on C \ D, any point « € C . D can be
relasized as @y, (c) for some ¢ = ¢(\).

21.5. Injectivity. We have to check that if
bc(c) = a = ¢z(€) (21.3)

for two parameter valus ¢ and ¢ in C . M, then ¢ = ¢. We let f =
foo = 60, f = fz, & = ¢ Similarly, we will mark with “tilde”
the dynamical objects associated with f that naturally correspond to
dynamical objects associated with f.

Let R = /]a]. Then the maps ¢ and ¢! map C . Dy onto the
domains Q = Q, and Q = Q; respectively. Moreover, they extend con-
tinuously to the boundary circle mapping it onto the boundary figures
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eight I' = 9Q and I = 912, and this extension if one-to-one except that
¢ (£Va) =0=¢"'(£Va).

Hence the conformal map h = ¢ Lo¢ : Q — Q admits a homeomorphic
extension to the closure of its domain:

h: (cl(Q),0) — (cl(Q),0).

Consider a domain Q° = f(Q) (exterior of the equipotential passing
through c) and the complementary Jordan disk A = C ~\ Q°. We will
describe a hierarchical decomposition of A® into topological annuli A?,
n=1...,7=12,...,2" Let Q" = f"Q° (so that Q@ = Q).
The boundary 99" consists of 2" ! disjoint figures eight. The loops
of these figures eight bound 2" (closed) Jordan disks A. The map f
conformally maps A} onto some A% ', n > 1. Let A7 = APNcl(Q"H).
These are closed topological annuli each of which is bounded by a
Jordan curve and a figure eight. They tile A°~ J(f). The map f
conformally maps A} onto some A;-"l, n > 1.

Let us lift A = hy to conformal maps H; : A} — Al:
Hy| AL = (A1) o ho (f]AD). (21.4)

Since h is equivariant on the boundary of Q' . Q°, it matches with
the H; on OA!. Putting these maps together, we obtain an equivariant
homeomorphism hy : ¢1(2?) — cl(©?) conformal in the complement of

the figure eight I':
h(z), z€Q!,
ha(2) = .

Since smooth curves are removable (recall §11), h is conformal in Q% \
{0}. Since isolated points are removable, hy is conformal in Q2. Thus
h admits an equivariant conformal extension to 2.

In the same way, hy can be lifted to four annuli A?. This gives an
equivariant conformal extension of i to 2. Proceeding in this way, we
will consecutively obtain an equivariant conformal extension of A to all
the domains Q" and hence to their union UQ™ = C \ J(f).

Since the Julia set J(f) is removable (Theorem 2.27), this map
admits a conformal extension through J(f). Thus, f and f are confor-
mally equivalent, and hence ¢ = ¢.

Theorem 5.4 is now proven.
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21.6. A more elementary proof. We will now outline in a series
of exercises a more elementary proof of Theorem 5.4 (which was the
original proof given by Douady and Hubbard). It is based upon the
explicit formula for the B”ottcher coordinate near oo (compare §77):

Be(z) = lim (£2(2))/7" (21.5)

where the root in the right-hand side is selected in such a way that it
is tangent to the identity at oc.

Consider the set Q = {(c,z) € C* : z € Q.}, where we let Q. =
C~ K(f,) for ce M.

EXERCISE 5.3. Show that Q is open. Prove that the series (21.5)
converges locally uniformly on 2. Conclude that the Béttcher function
(¢, 2) = ¢c(z) is holomorphic on Q, and the function ®y(c) = ¢.(c) is
holomorphic on C~ M.

EXERCISE 5.4. Prove that the map ®,; : CNM — C\D s proper:
|Prr(c)] = 1 as ¢ — OM.
Hence RM has a well-defined degree.

EXERCISE 5.5. Prove that deg ®,; = 1. Hence ®,; is a conformal
wsomorphism between C ~ M and C \ D.

22. The Multiplier Theorem

22.1. Statement. Let us pick a favorite hyperbolic component H
of the Mandelbrot set M. For ¢ € H, the polynomial f. has a unique
attracting cycle a. = {ax(c) g;é of period p. By Lemma 5.1, the
multiplier A(¢) of this cycle holomorphically depends on ¢, so that we
obtain a holomorphic map A : H — D. It is remarkable that this map

gives an explicit uniformization of H by the unit disk:

THEOREM 5.5. The multiplier map N\ : H — D is a conformal
tsomorphism.

This theorem is in many respects analogous to Theorem 5.4 on con-
nectivity of the Mandelbrot set. The latter gives an explicit dynamical
uniformization of C \ M; the former gives the one for the hyperbolic
component. The ideas of the proofs are also similar.

We already know that A is holomorphic, so we need to verify that
it is surjective and injective. The first statement is easy:

EXERCISE 5.6. The multiplier map A : H — D 1is proper and hence
surjective. In particular, H contains a superattracting parameter value.
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22.2. Qc deformation. Let Z C H be the set of superattracting
parameter values in H. Take some point ¢o € H~\ Z, and let \y € D* be
the multiplier of the corresponding attracting cycle. We will produce
a qc deformation of f; = f., by deforming the associated fundamental
torus.

22.2.1. Fundamental torus. Take a little topological disk D = D(ay, €)
around the attracting periodic point ay of fy. It is invariant under
go = f¥ and the quotient of D under the action of fy is a conformal
torus 7. Its fundamental group has one marked generater correspond-
ing to a little Jordan curve around «y.

By the Linearization Theorem (3.13), the action of gy on D is con-
formally equivalent to the linear action of ¢ — Ao on D*. Hence the
partially marked torus Ty is conformally equivalent to Tio, so that Ay
is the modulus of Tj (see §1.4.2).

Let us select a family of deformations ¢ : T3, — T3 of T, to
nearby tori. For instance, 1)y can be chosen to be linear in the loga-
rithmic coordinates (z,y) = log(, 7 = log A:

r4+yrno—az+yr; zeR y>0.

This gives us a complex one-parameter family of Beltrami differentials
vy = ¥};(0) on Ty = T3, (in what follows we identify Tj with T3 ).

EXERCISE 5.7. Calculate vy explicitly (for the linear deformation).

22.2.2. Qc deformation of f,. We can lift v to the disk D and then
pull it back by iterates of fy. This gives us a family of fy-invariant Bel-
trami differentials p) on the attracting basin of a. These Beltrami
differentials have a bounded dilatation since the pull-backs under holo-
morphic maps preserve dilatation. Extend the py by 0 outside the
attracting basin (keeping the notation). We obtain a family of mea-
surable fp-invariant conformal structures p, on the Riemann sphere.
Solving the Beltrami equation (hy).(ps,) = o (with an appropriately
normalization) we obtain a qc deformation of fy (see Corollary 3.12):

feoy = hao foohyt: 20 2% + ¢(N). (22.1)

Moreover, note that this deformation is conformal on the basin of oco.

Let us show that the multiplier of the attracting fixed point of f.(y)
is equal to A. Consider the torus 7 associated with the attracting
cycle of f.). Then hy descends to a homeomorphism H)y : Ty — T)
such that (H,).(vx) = 0. Since (5)«(v) = o as well, the map

Yo Hy': T — T}
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is conformal. Hence the partially marked torus 7’ has the same mod-
ulus as T%, which is A\. But as we know, this modulus is equal to the
multiplier of the corresponding attracting cycle.

This deformation immediately leads to the following important con-
clusion:

LEMMA 5.6. All maps f., c € H\ Z, are qc equivalent (and the
conjugacy is conformal on the basin of oc). Moreover, card Z = 1.

Proor. Take some ¢y € H ~\ Z. By Proposition 2.12, the defor-
mation parameter ¢(A) in (22.1) depends continuously on A. Hence
¢ : A ¢(A) is the local right inverse to the multiplier function. But
holomorphic functions do not have continuous right inverses near their
critical points. Consequently, ¢y is not a critical point of the multiplier
function A and, moreover, ¢ is the local inverse to A. It follows that
any c near ¢y can be represented as ¢(\), and hence f, is qc equivalent
to feo-

Let us decompose the domain H ~ Z into the union of disjoint qc
classes (with conformal conjugacy on the basin of co). We have just
shown that each qc class in this decomposition is open. Since H \ Z
is connected, it consists of a single qc class.

Furthermore, we have shown that A does not have critical points
in H N Z. Hence A : H N~ Z — D" is an unbranched covering. By
the Riemann-Hurwitz formula (for the trivial case of unbranched cov-
erings), the Euler characteristic of H\ Z is equal to 0, i.e., 1 —card Z =
0. O

Thus, every hyperbolic component H contains a unique superat-
tracting parameter value cy. It is called the center of H.

22.3. Injectivity. The following lemma will complete the proof
of the Multiplier Theorem:

LeEMmMA 5.7. Consider two parameter values ¢ and ¢ in H ~ Z. If
A(c) = X(€) then the quadratic maps f. and fz are conformally equiva-
lent on C.

The idea is to turn the qc conjugacy from Lemma 5.6 into a con-
formal conjugacy. To this end we need to modify the conjugacy on the
basin of the attracting cycle. Let us start with the component Dy of
the basin containing 0.
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CHAPTER 6

Little Mandelbrot copies

1. Quadratic-like families

1.1. Definitions. Let A C C be a domain in the complex plane.
A quadratic-like family g over A is a family of quadratic-like maps
gx : Uy — U depending on A € A such that:

e The tube U= {()\,2): A€ A, z € U,} is a domain in C?;
e ¢,(2) is holomorphic in two variables on U.

As usual, we assume that the critical value of each f, is located at the
origin 0.

We will now formulate several additional assumptions which will
make a quadratic-like family nice. First of them is minor. We say that
g extends beyond U if there exists a domain A’ 3 A and a quadratic-like
family G : V), = V{ over A’ such that for A € A, g, is an adjustment
(see §17) of G.

We call a quadratic-like family g : Uy — U} over A proper if

e The domains A, U, and Uj are bounded by smooth Jordan
curves;
e g admits an extension beyond U;

e For A € 0A, g,(0) € OU;.

(The first two assumptions are imposed only for the sake of conve-
nience.) Obviously ¢»(0) # 0 for A € JA, so that we have a well
defined winding number of the curve A — ¢,(0), A € 9A, around 0.
We call it the winding number of g and denote w(g). A proper fam-
ily g is called unfolded if w(g) = 1. By the Argument Principle, any
proper unfolded quadratic-like family has a unique parameter value x
such that f, has a superattracting fixed point, i.e., f,(0) = 0. We will
select * as the base point in A.

Finally, we want the fundamental annulus Ay = Uj \ U, of g\ to
move holomorphically with A. So, assume that there is a holomorphic
motion hy : A, — A, respecting the boundary dynamical relation, i.e.,
such that

ha(g«2) = gr(ha(z)) for =z € oU,.
119
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For a technical reason, we impose the following boundary assumption
on this motion:

Boundary extension. Let A € OA. The homeomorphisms h,, :
U'\U, — UL\UM, p € A, uniformly converge as p — A to a continuous
map hy : UL\ U, — U} \ Uy, which is one-to-one everywhere, except
that h;'(0) consists of two points on OU,. (Note that OU, is a “figure
eight” curve for A € OA.)

Denote this holomorphic motion by h. We say that the quadratic-
like family g is equipped with the holomorphic motion h. Sometimes
we will use notation (g, h) for an equipped quadratic-like family.

For equipped families, there is a natural choice of tubing (see §17.4.1)
holomorphically depending on A. Namely, select any tubing ¢, : A, —
Alr,r?] for the base point, and then let

ty=t.ohy". (1.1)

These are tubings since the holomorphic motion h) respects the bound-
ary dynamical relations.

The Mandelbrot set M (g) of the quadratic-like family is defined as
{A€ A: J(gy) is connected}. If g is proper, then M(g) is compactly
contained in A.

Let us finish with a few terminological and notational remarks. Let
7 : C2 — C stand for the projection onto the first coordinate. We call
aset UC C* a tube over A = m(U) C Cif it is a fiber bundle over A
whose fibers Uy = UN 7'\ are Jordan disks (either open or closed).
For X C A, welet UX =Unn'X.

1.2. Restricted quadratic family. In this section we will show
that the quadratic family { f.}.cc can be naturally restricted to a proper
unfolded equipped quadratic-like family.

Fix some r > 1. Restrict the parameter domain C to the topological
disk D = D,» bounded by the parameter equipotential of radius r?.
According to formula (?7?), this parameter domain is specified by the
property that f.(0) € Q.(r?) = Q., where Q.(p) is the domain bounded
by the dynamical equipotential of level p. Hence for ¢ € D, f,
restricts to a quadratic-like map f. : Q. — Q::, where Q. = Qc(r).
These quadratic-like maps obviously form a quadratic-like family over
D, which we will call a restricted quadratic family.

The restricted quadratic family is proper. The first two properties of
the definition are obvious. The main property, f.(0) € . for ¢ € 9D,
follows from formula (??). The winding number of this family is equal
to 1. Indeed, when the parameter ¢ runs once along the boundary 0D,
the critical value ¢ = f.(0) runs once around 0 € D.
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The restricted quadratic family is equipped with the holomorphic
motion of the fundamental annulus given by the Bottcher maps. Select
0 is the base point in D and let

B Al r?) — QLN Q. (1.2)

(note that Alr,7?] = Q) \ ). Since the Bottcher function B, '(z) is
holomorphic it two variables (??), {B.'}.cp is a holomorphic motion.
This motion admits the boundary extension (see the previous section),
since for ¢ € 9D, B! homeomorphically maps C \ D, onto C \ Q.(r)
except that two points on T, collapse to 0 (see §77).

Thus the restricted quadratic family satisfy all the properties for-
mulated in the previous section.

1.3. Straightening of quadratic-like families. The Mandel-
brot set M (g) of any quadratic-like family g can be canonically mapped
into the genuine Mandelbrot set M. Namely, by the Straightening
Theorem, for any A € M(g) there is a unique quadratic polynomial
feony = 2 = 22+ ¢(X), ¢(X) € M, which is hybrid equivalent to gx. The
map x : A — ¢()\) is called the straightening of M(g).

We know that the straightening is not canonically defined outsed
the Mandelbrot set but rather depends on the choice of the tubing. But
for equipped families there is a natural choice given by (1.1). With this
choice, the straightening y admits an extension to the whole parameter
domain A, which well be still denoted by Y.

Recall that D, stands for the parameter disk bounded by the pa-
rameter equipotential of radius r (in the quadratic family). We can now
formulate a fundamental result of the theory of quadratic-like families:

THEOREM 6.1. Let g be a proper unfolded equipped quadratic-like
family over A. Endow it with a holomorphic tubing given by (1.1).
Then the corresponding straightening x is a homeomorphism from A
onto D,».

The proof of this theorem will be split into several pieces which are
important on their own right.

1.4. The critical value moves transversally to h. We say that
a holomorphic curve I' C C? is a global transversal to a holomorphic
motion h if it transversally intersects each leaf of h at a single point.

LEMMA 6.2. Under the assumptions of Theorem 6.1, the graph of
the function A — gx(0), A € A, is a global transversal to the holomor-
phic motion h on U~ U.
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We will also express it by saying that the critical value moves
transversally to h. The moral of this lemma is that in the complex
setting the transversality can come for purely topological reasons.

PrROOF. Take a point z € U, \ U, and consider its leaf
L,={(\() € C?: NeA, (= ha(2)}.

Since the motion h admits a continuous extension to the boundary
JA, the function ¢ : A — hy(2) is continuous up to the boundary and
P(A) € Uy N Uy, A € OA. Since the tube V = UJOA is homeomorphic
to the solid torus OA x D over OA, the curve A — 1p(N), A € A, is
homotopic to the zero curve A — 0 in V, i.e., these two curves can be
joined by a continuous family of curves ¢, : OA =V, 0 <t < 1.
Consider now the curve ¢ : A — f,(0), A € OA. Since f is proper,
#(N) € OV. Hence ¢p(A) — ¢(N) # 0 for A € OA. It follows that
the curves A — ¢(\) — ¥(A\) and A — ¢(\), A € OA, have the same
winding number around 0. But the latter number is equal to 1, since
f is unfolded. Hence the former number is also equal to 1. By the
classical Argument Principle, the graphs of the functions ¢ and ¢ have
a single transverse intersection, and that is what we need. O

1.5. Uniformization of the complement of M(g). In this sec-
tion we will construct a dynamical (non-conformal) uniformization of
A N M(g) which generalizes the uniformization of C \. M constructed
in §77. This construction will illustrate how to relate the parameter
and dynamical planes by means of holomorphic moions.

Let us consider a set P = {\A € A : ¢,(0) € U, \U,} (i-e., the
set. of parameters for which the critical point escapes under the first
iterate through the fundamental annulus Ay = U} \ U,). Note that
all points in A sufficiently close to OA obviously belong to P. We will
show that P is an annulus naturally homeomorphic to the dynamical
annulus A, = U! \ U,.

To this end consider the graph of the function ¢ : A — g,(0),

L={(\2)€C: NeA, z=g,(0)}.

By Lemma 6.2, this graph is a global transversal to the holomorphic
motion h. Hence there is a well defined holonomy v : A, — T along
the leaves of f |, and it maps A, homeomorphically onto a topological
annulus B C I'. Obviously, 7(B) = P. Altogether, we have a homeo-
morphism 7 o v from A, onto P. It follows, in particular that P is a
topological annulus, whose inner boundary is a Jordan curve in A and
the outer boundary is OA.
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Let us consider the domain A’ = A ~ P. The restriction of our
quadratic-like family to this parameter domain is not proper any more.
To restore this property, we have to restrict the dynamical domains
as well. Let V) = ¢g,'Uy. For any A € A’, g5(0) € Uy; hence Vj is a
topological disk and g, : V), — U, is a quadratic-like map. This gives
us a quadratic-like family over A’.

It is proper since by construction ¢,(0) € Uy for A € JA' (other
technical properties required in the definition are even more obvious).
It has winding number one since the function ¢ : A — ¢,(0) does
not have zeros in the annulus R. It follows that the boundary curves
¢ : 0N — C* and ¢ : IN" — C* are homotopic and hence they have the
same winding number around 0.

Let us now equip this family with a holomorphic motion A : A} —
Al of the fundamental annulus A = U, \ V). This motion is obtained
by lifting the motion hy by means of the double coverings g, : A\ — A,,

We need to check that this lift can be chosen holomorphic in A. To this
end take a point z € A, and consider its orbit ¢ : A — hy(2), A € A
Take some ¢ € A’ such that ¢,(¢) = z. We want to find a holomorphic
function ¢' : A — h\(¢) which makes the above diagram commutative,
i.e., it should satisfy the equation:

A (W'(N) =)

By the Implicit Function Theorem, this equation has a local holomor-
phic solution if ¢} (¢) # 0, i.e., if ¢ is not a critical point of g,. This
condition is certainly satisfied in our situation.

By the A-lemma, the original holomorphic motion h mathches with
h’ on the common boundary A, = 9°4), so that together they
provide a single holomorphic motion of the union Ay U A, over A"

Let P'={A e A : ¢\(0) € A\}. Applying the above result to the
restricted quadratic-like family, we obtain a homeomorphism 7 o 7' :
A — P’ where 7/ is the holonomy along h'. Since 7' matches with v on
the common boundary of the annuli, they give us a homeomorphism of
the union of the dynamical annuli onto the union of parameter annuli,
AUA" - PUP.

Proceeding in the same way, we will construct:
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e A nest of parameter annuli P" attached one to the next and
the corresponding parameter domains A" = A"~!\ P"! (where
A=A, P’ = P, A' = A'). Moreover, UP™ = A \ M (g).

e A sequence of proper unfolded quadratic-like families

Gnd = 0r V/\”Jrl — V)" over A",

where Vi = ¢, U} (thus V) = U}, V| = U, and V = V}).

e A sequence of holomorphic motions h,, , of the fundamental an-
nulus A} = Vi~ V/\"Jrl over A" which equip gy, x; moreover Ay, 41 x
is obtained by lifting h, » by means of the coverings g, : AY —
Aﬁ_l. These holomorphic motions match on the common bound-
aries of the fundamental annuli.

Let v, : A? — [ be the holonomy along h,, (recall that ' is the
graph of the function ¢ : A — f,(0). Since the holomorphic motions
match on the common boundaries, these holonomies also match, and
determine a continuous injection vy : U, \ K(f,) — I'. Composing it
with the projection 7, we obtain a homeomorphism

moy:Us N K(f.) - AN M(g)
between the dynamical and parameter annuli. Note that the inverse
map is equal to ¥~ o ¢.
Composing the above homeomorphism with the tubing (1.1), we

obtain a “uniformization” of A \ M (g) by a round annulus:

S:t,o(moy) t=tyop: AN M(g) — Al r?), S\ =tr(g:(0)).

We call S(A) “the tubing position of the critical value of g,”.

Remark. The above uniformization of A \ M is generally not con-
formal. However, in the case of a restricted quadratic family, it is the
restriction of the conformal uniformization of C ~\. M. Indeed, in this
case, the tubing ¢, turns into the Bottcher maps B, (see (1.2) ), the
critical value ¢,(0) turns into ¢, and formula (1.3) turns into formula
(?7?) for the Riemann map R: C~ M — C~\ D, R(¢c) = B.(c).

COROLLARY 6.3. The Mandelbrot set M(g) is connected and full.

1.6. Adjustments of quadratic-like families.

Include the “maximal” extension of the leaves up to the crit-
ical value
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1.7. Quasi-conformality of the uniformization. Given a holo-
morphic motion h over A, let
Dil(h) = sup Dil(h,)
AEA
(which can be infinite). We say that the holomorphic motion h is K-qc

if Dil(h) < K. In the following statement we will use the notations of
§1.5.

LEMMA 6.4. Under the assumptions of Theorem 6.1, assume that
the tubing t, : A, — A(r,7%) and the holomorphic motion h are K-qc.
Then the uniformization S : A~ M(g) — A(1,r?) is K-qc as well.

In fact, we can make the dilatation depend only on mod(A,) and
mod(A \ A’), after an appropriate adjustment of the family g.

LEMMA 6.5. Let us consider a quadratic-like family g over A sat-
1sfying the assumptions of Theorem 6.1. This family can be adjusted to
a family g over A in such a way that the dilatation of the straightening
X : ANM(g) — D~ M will depend only on mod(A,) and mod(A~ A').

1.8. Looking from the outside. We are now ready to prove that
the straightening is a homeomorphism outside the Mandelbrot sets.

LEMMA 6.6. Under the assumptions of Theorem 6.1, the straight-
ening X : AN M(g) — D,z ~ M is a homeomorphism.

PROOF. Let us consider the uniformizations S : A ~ M(g) —
A(1,r?) and R: D~ M — A(1,7?) constructed above. Then

x=R"1oS. (1.4)
Indeed, let A € A~ M(g) and ¢ = x(\) € D~ M. Putting together
(??) and (1.3), we obtain:
S(A) = tx(9r(0)) = Be(c) = R(c),

which is exactly (1.4). Since S and R are both homeomorphisms, y is
a homeomorphism as well. O

1.9. Miracle of continuity. We will now show that the straight-
ening is continuous on the boundary of M(g):

LEMMA 6.7. Under the assumptions of Theorem 6.1, the straight-

ening X is continuous at any point X € OM(g) and moreover x(\) €
oM.

PROOF. First we will show that x| dM (g) is a continuous extension
of x| AN M(g). Let A\, € A\ M(g) be a sequence of parameter values
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converging to some A € OM. Let ¢, = x(\,) and ¢ = x(\) € M. We
shoud show that ¢, — c. Let g\ : U = U’, f.: Q — .

By Lemma 6.6, the map x : A \ int M (g) — D ~ int M is proper,
and hence any limit point d of {¢,} C D ~ M belongs to OM. We
assert that g, : U — U’ is qc conjugate to fy : V. — V'. Indeed, the
gx, : U, — U], are hybrid equivalent to the f. : €, — € by means
of some qc maps ¢, : U, — Q. By the straightening construction
(see the proof of Lemma 3.24), the dilatation of 1, is equal to the
dilatation of the tubing ¢, 6 = t. o h;l, which is locally bounded by
the A-lemma. By 77, the sequence 1), is pre-compact in the topology
of uniform convergence on compact subsets of U’. Take a limit map
YU — Q. Since g\, — g uniformly on compact subsets of U and
fe, — [f4 (along a subsequence) uniformly on compact subsets of 2,
the map v conjugates g, to f4, as was asserted.

But g, is also hybrid equivalent to f.. Thus f. and f; are qc conju-
gate in some neighborhoods of their filled Julia sets. By 7?7, they are
qc conjugate on the whole complex plane. Since d € OM, the Rigid-
ity Theorem ?7?(...) implies the desired: ¢ = d (and, in particular,
ce oM).

The above argument implies that y continuously maps A\ int M(g)
into D ~int M. We still need to show that x is continuous at any point
A € OM even if it is approached from the interior of A (g). The
argument is similar to the above except one detail. So, let now {\,}
be any sequence in A converging to . Let ¢,, ¢ and d be as above.
Then the above argument shows that f. is qc equivalent to f;. But
now we already know that ¢ € OM (though this time we do not know
it for d). Hence by the Rigidity Theorem ?7?(...), ¢ = d. O

“Only by miracle can one ensure the continuity of straightening
in degree 2” said Adrien Douady [D1]. As we have seen, a reason
behind this miracle is quasi-conformal rigidity of the quadratic maps
fe with ¢ € OM (?7). Another reason is the A\-lemma (see §77). All
these reasons are valid only for one-parameter families. There are no
miracles in the polynomial families with more parameters, see [DH2,

5...].

1.10. Analyticity of x : int M(g) — int M. The assumptions of
Theorem 6.1 will be standing until the end of this section

1.10.1. Hyperbolic components. As in the case of the genuine Man-
delbrote set, a component H of int M(g) is called hyperbolic if it con-
tains a hyperbolic parameter value.

EXERCISE 6.1. Show that:
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(i) All parameter values in a hyperbolic component of M(g) are hy-
perbolic;
(ii) Neutral parameter values belong to OM (g) (compare Lemma ?77?);

LEMMA 6.8. If P is a hyperbolic component of int M (g) then there
exists a hyperbolic component () of int M such that x : P — Q is a
proper holomorphic map.

Proor. Obviously the straightening of a hyperbolic map is hyper-
bolic. Hence x(P) belongs to some hyperbolic component @) of int M.
Moreover, since the hybrid conjugacy is conformal on the interior of the
filled Julia set, it preserves the multiplies of attracting cycles. Hence

pp(A) = po(c) for ¢ = x(A),
where p1p and g are the multiplier functions on the domains P and
Q respectively. By the Implicit Function Theorem, both these func-
tions are holomorphic. Moreover, by Theorem ?7, ug is a conformal
isomorphism onto . Hence y = ,uél o up is holomorphic as well.
By Lemma 6.7, the map x : P — @ is continuous up to the bound-
ary and x(0OP) C 0Q). Hence it is proper. O

1.10.2. Queer components. As in the quadratic case, a non-hyperbolic
component of int M(g) is called queer. Let us first extend Lemma 77
to quadratic-like families:

LEMMA 6.9. Let P be a queer component of M(g). Take a base
point x € P. Then there is a holomorphic motion Hy : U, — U}
conjugating g. to gy.

PROOF. Since M(g) is equipped, there is a holomorphic motion
hy : A — Ay, Let A} = g,"A,. Since the critical point is non-
escaping under the iterates of gy, A} is an annulus and g% : A} — Ay
is a covering map. By 77, h can be consequtively lifted to holomorphic
motions A, : A? — AY. By the A-lemma (?7), they automatically
match on the common boundaries of the annuli, so that we have a
single holomorphic motion Hy : U, \ K(g.) — U} ~ K(g)) conjugating
g« t0 gx. Since the sets K (g,) are nowhere dense (see Corollary 3.23),
the A\-lemma extension of H, to the whole domain U, still conjugates
g« 1o ga. 0

LEMMA 6.10. Let Hy be the holomorphic motion constructed in the
previous lemma. Then the Beltrami differential

OH(2)
in(z) = 4 G 2 € K(g.),
0, ze€C~K(g.),
holomorphically depends on \ € P.
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We can now prove an analogue of Lemma 6.8 for queer components.

LEMMA 6.11. The straightening x is holomorphic on the queer com-
ponents of int M(g).

ProOOF. Consider a queer component P C int M(g) with a base
point x. For A € P, let hy : Uy — ) denote the hybrid conjugacy
between gy : Uy — Uj and its straightening f\ = fy) @ 21 — €2}, and
let h = h,. Then f, : Q, = Q is qc equivalent to f\ : Q) — Q) by
means of the map ) : hy o Hy o h™', where {H,} is the holomorphic
motion from the previous lemma. Let ¢y : C\ K(f,) = C~ K(f\) be
the conformal conjugacy between the quadratic polynomials f, and fy
on the complements of their Julia sets. By 77, the map

_ d)x\(z)a z € K(f*)a
¥a(2) = { ox(2), z2€ CNK(f,),

is a global qc conjugacy between f, and f, conformal outside the Julia
set.

Let vy = (hy)«pr, where py is the conformal structure on K (g.)
considered in the previous lemma. Since h) is confomal a.e. on the
Julia set, we have:

U@ K (f3)) = heo(Hy)"ohy (0K (fx)) = heo(Hx) (0K (gr)) = hapir = va-

Since the push forward-map
hl
he:p—v, v= <_—,u> oh™!

is a complex isomorphism between the spaces of Beltrami differentials.
the previous lemma implies that v, holomorphically depends on A\ €
P. By the holomorphic dependence of the solution of the Beltrami
equation on parameters (ref) and ??, f\(0) = x(A) holomorphically
depends on A as well. O

1.11. Discreteness of the fibers.
LEMMA 6.12. For any ¢ € M, the fiber x '(c) is finite.

PROOF. Since M (g) is compact, it is enough to show that the fibers
are discrete. Assume that there exists some ¢ € M with an infinite
fiber x~'(c). Since M(g) is compact, this fiber contains a sequence
of distinct parameter values )\, € x~'(c) converging to some point
A« € x !(c) We will skip the subscript in all notations affiliated with
the map gy,, i.e., g, =g, Uy, = U etc.

Since x is holomorphic on int M, A, cannot belong to int M unless
it belongs to a queer component U such that x|U = const. But in the
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latter case, we can replace A, by any boundary point of U. Thus we
can always assume that \, € OM.

Since the quadratic-like family g\ : Uy — Uj is equipped, there
exists an equivariant holomorphic motion hy, : A — A, of the closed
fundamental annulus Ay = U \ Uy, i.e., ha(gz) = gr(haz) for z € OA.
Extend it by the A-lemma ?? to a holomorphic motion Ay : C\ U —
C\U, (keeping the same notation for the extension). We will construct
a holomorphic family of hybrid deformations G of g, A € A, naturally
generated by this holomorphic motion.

To this end let us first pull back the standard conformal structure to
C\U, pux = h}(o). Then extend py to a g-invariant conformal structure
on C \ K(g) by pulling it back by iterates of ¢g. Finaly extend it to
K(g) as a strandard structure. This gives us a holomorphic family of
g-invariant conformal structures on C. We will keep the same notation
iy for these structures. Solving the Beltrami equations, we obtain a
holomorphic family of q¢c maps Hy : C — C such that py = (H))*(o)
and 0H(z) = 0 a.e. on K(g). Conjugating g by these maps, we obtain
a desired hybrid deformation G, = Hyogo H/\’l, A €A

On the other hand, for maps g\, = ¢,, we can construct the Bel-
trami differentials uy, = p, in a different way. Indeed, since the map
gn is hybrid equivalent to g, the equivariant map h), = h, uniquely
extends to a hybrid conjugacy (Theorem ?7). Let us keep the same
notation h,, for this conjugacy.

The above two constructions naturally agree: (h,)*c = p,. Indeed,
it is true on C \ U by definition. It is then true on U \ K(f), since
the Beltrami differentials are pulled-back under conformal liftings (see
Lemma 3.27). Finally, it is true on the filled Julia set K (g) since h,, is
conformal a.e. on it.

Thus the qc maps H, : C — C and h,, : C — C satisfy the same
Beltrami equation. They also coincide at two points, e.g., at the critical
point and at the (-fixed point of g (in fact, by Corollary 3.34 they
coincide on the whole Julia set of g). By uniqueness of the solution of
the Beltrami equation, H, = h,. Hence G, = g,. Returning to the
original notations, we have

G, (2) = 92, (2)- (1.5)

Take an € > 0 such that both functions G,(z) and g,(z) are well-
defined in the bidisk {(A\,2) € C*: A=\ <€, 2 €V =g 'U}. For
any z € V, consider two holomorphic functions of \:

D, : ()‘) = GA(Z) and ¢z()‘) = gA(Z)a |)‘ - )\*| <€
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By (1.5), they are equal at points A, converging to \.. Hence they are
identically equal.

Thus for |A| < €, two quadratic-like maps, Gy and gy, coincide on
V. But it is impossible since the Julia set of GG is always connected,
while the Julia set of g, is disconnected for some A arbitrary close to
Ay (recall that we assume that A\, € OM(g)). O

COROLLARY 6.13. x(int M (g)) C int M.
Remark. Of course, it is not obvious only for queer components.

PrOOF. Take a component P of int M. We have proven that y|P
is a non-constant holomorphic function. Hence the image x(P) is open.
Since it is obviously contained in M, it must be contained in int M. [

1.12. Bijectivity. What is left is to show that the map x : M(g) —
M is bijective. By §1.5, the winding number of the curve x : 0A — C
around any point ¢ € D,» is equial to 1. By the Topological Argument
Principle (§4.1),

Y inde(x) = we(x,0A) =1, c€ D (1.6)

aex~le

[t immediately follows that the map x : A — D,z is surjective (for
otherwise the sum in the left-hand side would vanish fo some ¢ € D,2).

Let us show that y is injective on the interior of M(g). Indeed, if
ag € int M, then by Corollary 6.13 ¢ = x(ag) € int M, and by Lemma
6.7 x '(c) C int M. But by §1.10, x|int M is holomorphic and hence
ind,(x) > 0 for any a € int M. It follows that the sum in the left-hand
side of (1.6) actually contains only one term, so that ¢ has only one
preimage, ag.

Finaly, assume that there is a point ¢ € M with more than one
preimage. By the Topological Argument Principle, x has a non-zero
index at one of those preimages, say, a;. Take another preimage a,.
Both a; and ay belong to OM.

Take a point a), ¢ OM(g) near ay, and let ¢’ = x(a)). By Exercise
1.22, x is locally surjective near ai, so that ¢’ has a preimage a} over
there. This contradicts injectivity of xy on A \ dM(g).

This completes the proof of Theorem 6.1.
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