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LECTURE 1

Notion of lamination

In this lectures we will describe intimate connections between holo-
morphic dynamics and affine/hyperbolic laminations. They reveal many
hidden geometric structures associated with rational maps. These
structures, interesting per se, are also promising from the dynamical
point of view. The lectures are primarily based upon two papers, [LM]
(2nd lecture) and [KL] (3d and 4th lectures). For the general intro-
duction to the theory of laminations, the reader can consult [CC].

1. Basic definitions

1.1. Lamination. Roughly speaking, a lamination £ is a topo-
logical space which is decomposed into smooth immersed submanifolds
(“leaves”) nicely organized in a local product structure. Another view-
point is that £ is glued out of several “local charts” each of which is a
product of a domain in R? and some topological space.

A formal definition goes as follows. An d-dimensional product lam-
ination is a topological space of the form U? x T, where U? is a domain
in RY called a local leaf or a plaque, and T a topological space called a
transversal. (Note that d refers to the dimension of the leaves rather
than the dimension of the underlying space.)

A morphism between two product laminations is a continuous map
that maps local leaves to local leaves. It is also called a laminar map.
(This terminology can also be applied to partially defined maps.)

A d-dimensional lamination L (or, briefly, d-lamination) is a topo-
logical space X (the underlying space) endowed with the following
structure: For any point x € X there is a neighborhood ¢/ > = and a
homeomorphism ¢ : & — U¢ x T onto a d-dimensional product lami-
nation U¢ x T such that the transit maps ¢ (U NUsy) — ¢o(Uy N Us)
between two product laminations are laminar. These homeomorphisms
¢ are called local charts, the corresponding neighborhoods U are called
flow bozes, and the sets ¢~1(U™ x {t}) are called local leaves or plaques
of L.

If the underlying space X itself is a manifold then £ is called a
foliation.



6 1. NOTION OF LAMINATION

In what follows we will not make a notational difference between
the lamination and its underlying space.

Morphisms (= laminar maps) between two laminations are contin-
uous maps which are locally laminar.

1.2. Global leaves. Any lamination £ is decomposed into disjoint
union of global leaves in the following way: Two points x and y belong to
the same global leaf if there is a sequence of local leaves Lg, Ly, ..., Ly
such that Ly > =, Ly, 2 y, and Ly N L;y; # 0, i =0,1,...k — 1. The
global leaf passing through z will be denoted L(z).

Global leaves can be endowed with intrinsic topology by declaring
that plaques form its basis. This topology turns global leaves into
connected topological manifolds. It is important to notice that this
intrinsic topology is usually different from the one induced from L.
In fact, in most interesting cases global leaves intersect flow boxed in
infinitely many plaques, so that induced neighborhoods are unbounded
on the leaves.

Laminar morphisms map global leaves to global leaves and are con-
tinuous with respect to their intrinsic topology (and of course, with
respect to the induced topology as well).

1.3. Holonomy. Given a local chart ¢ : U - U x T, let m: U —
T stand for the natural projection, which makes ¢ a trivial bundle over
T. Itssections i : ' — U (and their images) are called local transversals
of L.

Given two local transversals T7 and T, in U, there is an obvious ho-
lonomy map v : T) — T, (sliding along local leaves from one transversal
to the other). Taking compositions of these holonomies along chains
of flow boxes, we can (partially) define holonomy maps between local
transversals sitting in different flow boxes (sliding from one transversal
to the other along paths in global leaves).

In particular, on any given transversal 17" we obtain a holonomy
pseudo-group of T" which encodes how the leaves return back to 7. This
pseudo-group generalizes the Poincaré return map to a transversal of
a flow. It relates topology of laminations to discrete dynamics.

1.4. Geometric structures. If the transit maps between differ-
ent local charts are leafwise smooth, then the leaves of the lamination
naturally become smooth manifolds. Similarly, one can consider other
leafwise geometric structures (G-structures”) on laminations. For in-
stance, if £ is a 2-lamination such that the transit maps are leafwise
conformal then the leaves of £ are endowed with a complex structure,
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thus becoming Riemann surfaces. Such laminations are called Rie-
mann surface laminations. If the transit maps are leafwise complex
affine z — az + b, then L is called a (complez) affine lamination. In
arbitrary dimension d, if the transit maps are leafwise affine and confor-
mal (i.e., z — AUz + b, where U is an orthogonal operator, A\ > 0, and
b € R?), then we will refer to £ as a confine (= similarity lamination.

If local charts of a d-lamination £ are endowed with leafwise hyper-
bolic structure (that is, with metric with constant negative curvature,
which we assume to be equal to —1) preserved by the transit maps,
then L is called a hyperbolic lamination.

Let us recall two Poincaré models of the (d + 1)-dimensional hy-
perbolic space HT!. In the first model, it is realized as the unit ball
D C R4 endowed with the metric |dz|/4(1 — |dx|?). In this model,
the sphere at infinity S¢ (or the absolute) is realized as the unit sphere
of R4*1. The second realization is the upper half-plane {z4.; > 0}
endowed with the metric |dz|/z4y1. In this model, the absolute is re-
alized as one-point compactification of R¢ = {z4,; = 0}. This special
point, oo, on the absolute can be viewed as an extra structure on H?H!
which makes it a pointed at infinity hyperbolic space. An equivalent
way of describing this structure is by endowing H*! with a vertical
vector field consisting of unit tangent vectors pointing at oo. If we
have an (elementary) discrete group I' of motions of H¢! preserving
this vector field, then in quotient we obtain a more general “pointed at
infinity” hyperbolic manifold, H¢! /T

Thus, local charts of a hyperbolic lamination can be realized as
maps U — U4t x T, where U C H*!, in such a way that the
transit maps preserve the above metrics. A hyperbolic lamination is
pointed at infinity if it is endowed with a (transversally continuous)
leafwise vertical vector field.

If all the leaves of a G-lamination £ are isomorphic to a G-manifold
M then L is called an M-lamination (e.g., one can refer to an affine
C-lamination, or a hyperbolic H**!-lamination).

2. Examples

2.1. Foliations. Differential equations on manifolds provide the
most classical examples of (one-dimensional smooth) foliations. Indeed,
by the classical Straightening Theorem, the phase portrait of a smooth
differential equation has a local product structure, with smooth transit
maps. Thus we have a foliation outside the set of singular points.
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Similarly, differential equations on complex manifolds with holo-
morphic coefficients provide us (outside singularities) with Riemann
surface foliations.

More generally, a family of k£ linearly independent differential forms
Wi, ..., w, on an (d+ k)-dimensional manifold M satisfying the Frobe-
nius integrability condition generates a (smooth) d-dimensional folia-
tion on M.

2.2. Hyperbolic dynamical systems. Hyperbolic dynamical sys-
tems with discrete time provide us with two laminations, stable (whose
leaves are stable manifolds W*(z)) and unstable. Partially hyperbolic
dynamical systems with discrete time have one more, neutral lamina-
tion. A particular case of the latter are time-one maps of hyperbolic
flows, where the neutral lamination coincides with the phase flow. In
fact, there are two more laminations associated with a hyperbolic flow,
namely neutral-stable and neutral-unstable. The leaves of these lami-
nations are filled with forward (resp., backward) asymptotic geodesics.

A nice geometric example of a hyperbolic flow is provided by the
geodesic flow on a compact manifold with negative curvature. Let us
take a closer look at this example in the case of constant curvature
when everything can be described explicitly, even in a non-compact
situation.

2.3. Geodesic flows. Let us consider the unit ball model of the
hyperbolic space He™!. Recall that in this model the hyperbolic geodesics
are represented by circles orthogonal to the absolute S¢. Note that any
oriented geodesic has the beginning and the endpoint on the absolute.

The horosphere O,(x) C HE™! centered at a point p € S is the d-
dimensional sphere tangent to S¢ at p and passing through z € Ht!.

The phase space of the geodesic flow ¢' on Ht! is the unit tangent
bundle UH**!, where ¢(v), v € U,H%"! | is the tangent vector obtained
by sliding v time ¢ along the geodesic originating at x in the direction
of v. Let p be the endpoint of this geodesic, and let O = O,(x). Then
the stable manifold of v coincides with the set of unit tangent vectors
along O orthogonal to O and pointing at the same point p at infinity
(this set will also be called a “horosphere”).

It is instructive to look at the neutral-stable foliation of the geodesic
flow. According to the previous discussion, a neutral-stable leaf consists
of geodesics with the same endpoint p on the absolute. Such a leaf
can be identified with the hyperbolic space H*!, while the space of
the leaves is identified with the absolute S¢. Thus, the neutral-stable
foliation of the geodesic flow on H*! is isomorphic to the product
foliation H?*! x S¢. In particular, it is leafwise hyperbolic.
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The unstable and neutral-unstable foliations are obtained by re-
versing the time.

If M1 is an arbitrary hyperbolic manifold of curvature —1, then
M4+ s isometric to HT! /T, where I is a Kleinian group (i.e., a dis-
crete group of hyperbolic motions) acting freely on H¢*!. Then the
whole structure described above is I'-invariant, so that it descends to
M. For instance, the stable leaves of the geodesic flow on M?*! are
the push-forwards of the horospheres, while the neutral-stable ones are
the push-forwards of the hyperbolic space. Again, the neutral-stable
and neutral-unstable foliations are hyperbolic.

2.4. Solenoids. Given a sequence of topological spaces X,,, n =
0,1,..., and surjective maps f, : X;, — X,,_1, the inverse (or projec-
tive) limit X = lim(f,, : X,, — X,,_1) is the space of sequences

(_

T = (fﬂn)?f:o DTy € Xy, fn(xn) = Tp-1,

endowed with the weak topology (of coordinatewise convergence). Let
Ty X = X, stand for the natural projection & + x,; 1y = 7. Note
that 7 is a Cantor set fibration over X.

If the spaces X, are d-folds and the maps f, are coverings, then X
has a natural structure of d-lamination. If additionally X is smooth or
endowed with some geometric structure (conformal, affine, hyperbolic)
locally preserved by the coverings f,,, then this structure naturally lifts
to the corresponding leafwise structure on X.

If all the X,, are the same, X,, = X, and all the maps f, are the
same, f, = f, then X is the space of backward orbits of f. Moreover,
the map f naturally lifts to a homeomorphism f : X — X, f(a?) =
(f,)2,. (Note that the inverse map f~' acts on a backward orbit Z
by forgetting its origin.) This map is called the natural extension of f.
The projection 7 : XX semi-conjugates f to f.

In particular, consider the doubling map fy : z — 22 on the unit
circle T. Its natural extension is a one-dimensional lamination whose
leaves are homeomorphic to R. This lamination is called the (one-
dimensional) solenoid S'. Since T has a natural (real) affine structure
locally preserved by fy, S is in fact an affine lamination, so that its
leaves are affine lines and fg is an affine isomorphism of S*. The fibers
of the fibration 7 : S' — T can be naturally identified with the dyadic
group in such a way that the holonomy of the fiber (corresponding to
one revolution around the circle) becomes the translation by 1.

We can complexify this lamination by taking the natural extension
fo: Nog = Ny of fo : C* — C*. The leaves L(2) of this lamination
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are (complex) affine planes isomorphic to C, and the projections 7 :
L(z) — C* are the universal coverings of C* (thus, equivalent to the
exponential map exp : C — C*).

If we restrict f; to the complement of the unit disk, C* ~. ), then we
obtain a lamination S? whose leaves have a natural hyperbolic structure
(lifted from C* \ D). As such, they are isomorphic to the hyperbolic
plane H?. The map fo acts properly discontinuously on this lamina-
tion, so that we can take the quotient, SQ/fg. We obtain a compact
(hyperbolic) Riemann surface lamination called Sullivan’s solenoid.

Introducing polar coordinates on C* ~ D, we see that Sullivan’s
solenoid can be topologically realized as the mapping torus of the one-
dimensional solenoid. In other words, &% ~ S' x [0,1]/ ~, where

(2,0) ~ (f2,1), z € T.
3. Associated notions

3.1. Foliated bundles. Let £ be a lamination, M be a manifold,
and let 7 : £L — M be a fibration with fiber F'. If any point x € M has
a neighborhood U such that the preimage 7~'U is a flow box in £ and
the corresponding local chart ¢ : 71U — U x F fibers overid : U — U,
then L is called a foliated bundle. In this case, the projection 7 is a
leafwise covering. Any geometric structure on M can be lifted to the
corresponding leafwise structure on L.

Geodesic flows and solenoids give examples of foliated bundles.

3.2. Orbifold laminations. An orbifold is an object modeled on
manifolds modulo finite group actions (see [Th, Sc| for the precise
definition). Similarly, an orbifold lamination is an object modeled on
regular laminations modulo finite groups of laminar isomorphisms.

As in the regular case, orbifold laminations can be endowed with
different geometric structures (smooth, conformal, hyperbolic, etc.).
Such a structure is locally represented by a regular structure on an
orbifold flow box (which is a regular product lamination) preserved by
the corresponding finite group.

An instructive example of a Riemann surface lamination is the prod-
uct lamination D x (—1, 1) modulo the involution o : (2,t) — (—z, —t).
Similarly, C x (—1,1) modulo o is naturally an affine orbifold lamina-
tion. Note that these laminations have only one singular leaf, L(0,0).



LECTURE 2

Laminations associated with rational functions

In this lecture we will construct sevgral natural laminations associ-
ated with a rational function f: C — C.

1. Regular leaf space

1.1. Leaves. The construction begins with considering the natural
extension f : Ny — N of f. It is a homeomorphism of a compact space
N semi-conjugate to f by means of the natural projection 7 : Ny — C.
As the solenoidal examples from the first lecture suggest, the space Ny
tends to have a laminar structure. However, this structure is well
hidden, so it requires some effort to reveal it.

First, we should remove some bad points. (Even for fy : 2z — 22,
two points, 0 = (...,0,0) and o = (..., 00, 00), should be removed).

Given a backward orbit 2 = (2_,)5>, € N; and a neighborhood
U > z, let U_,, stand for the component of f~"U containing z_,,. This
sequence of neighborhoods, U = (U_1n)2y, is called the pullback of Uy
along z. In general, the maps f : U_,_1 — U_,, are branched coverings.

A point 2 is called regular if there is a neighborhood U > zy whose
pullback along Z is eventually univalent, that is, the maps f: U_, ; —
U_,, are univalent for n > N. Note that in this case the map

W_NIU—>U_N (21)

is one-to-one.

Let Ry C N} stand for the set of regular points. This set can be
decomposed into the leaves L(Z) endowed with a natural conformal
structure. By definition, L(Z2) is the path connected component of R
containing Z. The maps (2.1) serve as local charts on the leaves.

1.2. Type Problem. There are some special leaves obtained by
lifting Siegel disks or Herman rings to the natural extension. They will
also be called “Siegel disks” or “Herman rings”.

LEMMA 2.1. All the leaves except Herman rings are simply con-
nected.

11
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It is easy to see that the leaves are not compact. Hence by the
Uniformization Theorem, there are only two possibilities left: any leaf
L(z) is conformally equivalent to either the complex plane C (parabolic
or affine case) or to the unit disk D (hyperbolic case). A Siegel disk
provides an example of a hyperbolic leaf. By now, there is quite a few
other known examples: for instance, if a critical point is dense in the
Julia set J(f), then there is always a hyperbolic leaf in R, (Kahn,
unpublished).

However, it is much simpler to construct parabolic leaves, which
exist for any rational function. For instance, if 2 = (z_,)°,, where
20 = Z_pn (n € N) is a repelling periodic point of period p, then the leaf
L(z) is parabolic. Similarly, all leaves of a hyperbolic (in the dynamical
sense!) rational function are parabolic (in the conformal sense!)

Since the only conformal automorphisms of the complex plane C are
affine z — az + b, the plane is endowed with a unique affine structure
compatible with the conformal structure. If L(Z) is an affine leaf, the
map f : L(2) — L(f2) is affine with respect to this structure.

Let A} C Ry stand for the union of affine leaves in the regular leaf
space. (The upper script “n” indicates that this space is considered
in the topology of the natural extension which should be distinguished
from a finer topology introduced below.) An immediate question is
whether A% is an affine lamination?

2. Affine lamination

2.1. Chebyshev example. If the map f is hyperbolic then it is
easy to see that A? is indeed an affine lamination. However, already
simple non-hyperbolic examples cause a problem. Consider the sim-
plest such an example, the Chebyshev polynomial f : z — 22 — 2. For
this map, the second iterate of the critical point 0 is the repelling fixed
point 3 = 2. Notice that f can be realized as the quotient of the map
fo : z — 2% modulo the involution o : z — 1/z. It is easy to see that
all the leaves of Ny \ co are parabolic.

Let 3 = (...,2,2) be the lift of § to the natural extension, and
let 2, = (--- —2,2...2), where the string of 2’s has length n. Then
%, — B. However, the leaf L(B) is unbranched over C at 3, once the
leaves L(Z,) are branched over C at Z,. This is not compatible with
the local product structure.

~

A way around this problem is to endow the leaf L(3) with the
orbifold affine structure modeled on C modulo 2z — —z, which will
turn A% into an orbifold affine lamination. In fact, this lamination can
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be realized as the global quotient of N (see §2.4 of the 1st lecture)
modulo the involution & (the lift of o to Np).

More generally, consider a postcritically finite rational map, e.g.,
f : 2+ 2% 41 for which the second iterate of the critical point lands at
the repelling cycle 8 = (=1 +1i, —i). Let 8 = (01, 32) be the lift of this
cycle to Ny. Then the leaves L(f3;) are unbranched at the j3; but they
can be approximated by both branched and unbranched leaves. To turn
this leaf space into a lamination, we need to double each leaf L(Bi), to
put the orbifold affine structure on one copy and the regular affine
structure on the other, and to endow this space with an appropriate
topology making the leafwise affine structure continuous with respect
to the transverse parameter.

Even in such a simple example this procedure is quite involved if to
do it by hands. However, there is a self-organizing construction which
makes it work automatically for an arbitrary rational map. This con-
struction is based on the “universal” space of meromorphic functions.

2.2. Construction of the affine lamination. Let us consider
some leaf L(Z) in A%, and let m(Z) = z. Since the leaf is parabolic, it
can be uniformized by the complex plane, v; : (C,0) — (L(2), 2). Then
the composition ¢; = 7 o 7; is a non-constant meromorphic function
(C,0) — (C, 2), well defined up to a pre-composition with a complex
scaling, z — Az, A € C*. It is easy to see that vise versa, any point
z € .A;% can be uniquely recovered from the corresponding meromor-
phic function. Thus we can identify the points with the meromorphic
function. The idea now is to transfer the topology from the space of
meromorphic functions to A’j}. Completion of this new space gives us
the desired orbifold lamination.

Let us now outline this construction more precisely. Consider the
universal space U of all non-constant meromorphic functions on C with
metrizable topology of uniform convergence on compact subsets. It is
foliated into four-dimensional orbits of the right action ¢ +— ¢ o A of
the group Aff of complex affine maps C — C. On the other hand, any
rational map f acts on U on the left: ¢ — fo¢p. Let

Kr=()fu
neN
be the “global attractor” of f on U, and let f : Iéf — Iﬁf be its
natural extension. The group Aff still naturally acts on this space
turning it into a 4-lamination. Factoring lef with respect to the action
of C* C Aff turns it into a universal affine lamination A; endowed

with affine f-action.
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There is a natural f—equivariant laminar embedding ¢ : .A’} — Ay
(Notice that in general this embedding is discontinuous!) The closure
of 1(A") in Ay is f-invariant and leaf saturated. This is the desired
affine orbifold lamination A associated with f.

It is worthy to look closer at where the orbifold points of A, come
from. The group C* is the direct product of the group T of rotations
and the group R of real rescalings. The orbifold points are developed
when we take the quotient by the T-action. To see it, consider a local
transversal 1" to an orbit T¢. The first return map to 7' generates a
finite group action on 7'. It may happen that the return time at ¢ is
essentially smaller than at nearby points on 7' (in this case the mero-
morphic function ¢ has an “accidental” rotational symmetry). Then ¢
corresponds to an orbifold point of the quotient.

Such a factorization procedure by a circle action is familiar to topol-
ogists under the name of “Seifert fiber bundle” (compare [Sc]).

Note finally that the lamination A is not necessarily locally com-
pact but it is such in many interesting cases, for instance, in the post-
critically non-recurrent case, or in the Feigenbaum case, or in the Fi-
bonacci case. A rational function is called tame if Ay is locally compact.

3. Hyperbolic 3-lamination

3.1. Hyperbolization functor. Any (orbifold) confine d-lamination
can be functorially extended to an (orbifold, pointed at infinity) hy-
perbolic (d + 1)-lamination. To see it, let us describe functorially an
extension of the confine plane R? to the (pointed at infinity) hyper-
bolic space H**'. Let us realize the latter us an upper half-space
{(2,t) : z € Rt > 0}. Consider a horosphere O(c) = {t = ¢} centered
at oo. Restriction of the hyperbolic metric to O(c) can be identified
(via the vertical projection) with a Euclidean metric . = |dz|/c on
R? compatible with the confine structure of R?. Vice versa, selection
of such a metric specifies a horosphere centered at co. Hence a point
x of the hyperbolic space H?*! can be defined as a pair (z,£) where
2z € R? and ¢ is a Euclidean metric on R? compatible with its confine
structure. So, the (pointed at infinity) hyperbolic space H™! can be
defined as the R-bundle over R? of such Euclidean metrics. Moreover,
any affine map between two planes uniquely extends to a hyperbolic
isomorphism between the spaces, and this extension is functorial.

If now A is a confine (orbifold) d-lamination then applying the hy-
perbolization functor leafwise we obtain a hyperbolic (orbifold, pointed
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at infinity) (d + 1)-lamination, and this extension is functorial. Ap-
plying it to the 2-lamination Ay, we obtain an (orbifold) hyperbolic
3-lamination H; associated with a rational map f.

There is another path leading to the lamination Hy. If in the above
construction we quotient léf by the action of the unit circle T ¢ C*
rather than C*, we will obtain the universal orbifold hyperbolic lami-
nation Hy associated with f. On the other hand, we can apply the
hyperbolization functor to the leaf space A’j} to obtain a hyperbolic leaf
space H7. As in the affine case, there is a natural equivariant (gener-
ally, discontinuous) embedding H} — #H ;. The closure of its image is
the desired hyperbolic orbifold lamination.

Note that the unit tangent bundle UH? (viewed as the hyperbolic
lamination, see §2.3 of the 1st lecture) can also be obtained by applying
the hyperbolization functor to an affine lamination. Namely, every
hyperbolic leaf L(x) of UH? is associated to some point p € S?, and
can be recognized as the hyperbolization of S* \ {p} ~ C. In fact, this
affine lamination is just S? x S% \ diag ~ C x S%.

3.2. Quotient lamination. It turns out that the action of f on
the hyperbolic lamination #H is properly discontinuous, so that we can
take the quotient My = H;/ f. This is the hyperbolic (orbifold) 3-
lamination associated with f. In many respects it is similar to the unit
tangent bundle of a hyperbolic 3-orbifold (associated with a Kleinian
group). In particular, it supports a natural flow analogous to the geo-
desic flow. Indeed, since the vertical vector field Vy on H; is invariant

under £, it descends to the quotient lamination M (turning M into a
pointed at infinity lamination). This vector field and the corresponding
flow are still called vertical.

3.3. Examples. The 3-lamination M associated with fq : z — 22
has a relatively simple topological structure: Hy ~ 8% x (0, 1), where
§? is Sullivan’s solenoid (see §2.4 from the 1st lecture). In fact, it is
still true for the laminations M, corresponding to f. : z — 22+ when
¢ is inside the main cardioid of the Mandelbrot set. (M. for € # 0 is
not conformally equivalent to My, though.)

However, even for f ; : 2 — 22 — 1, the structure of the corre-
sponding 3-lamination M_; is not fully understood. In some way this
lamination remembers the doubling bifurcation that created f_;. Even
more interesting is the structure of the 3-lamination corresponding to
the Feigenbaum point: the whole cascade of doubling bifurcations is
reflected in that single lamination.
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4. Seifert fibration

If we quotient K 7 by the R-action instead of T-action, we will obtain
a 3-lamination S; fibered over Ay, with circle fibers. This fibration is
not locally trivial, though, but rather a “Seifert fiber bundle”. Unlike
Ay, the lamination Sy is regular (recall that the orbifold points in Ay
appear exactly because of factorization by the circle action). The map
f lifts to a laminar map f : 8§ — Sy fibered over Ay. The circle fibers
play the role of “neutral lamination” for this lift. Roughly speaking,
we obtain a “regular partially hyperbolic” dynamics on Sy fibered over
“orbifold hyperbolic” dynamics on Ay.



LECTURE 3

Poincaré series and basic cocycles on laminations

1. Transverse invariant measures

Given a laminations £, assume that we have associated to each
transversal 7" a Borel measure p|7T. Then p is referred to as a transverse
measure on L. A transverse measure is called holonomy invariant if for
any holonomy ~ : T'— S between two transversals, u|S = v.(u|T) (see
[CC, P]] and further references therein).

THEOREM 3.1 (see [Su, KL]). There is a unique holonomy invari-
ant transverse measure m on Ay concentrated on L(A}L).

To construct m, take the measure x of maximal entropy of f (=
balanced measure) (see [Br, L]), lift it to the natural extension N7,
disintegrate it over the fibers of the projection 7 : Ny — C, and then
transfer it to Ay by ¢.

This measure serves as a “counting measure” on the transversals.

2. Poincaré series and critical exponent

2.1. Kleinian groups. Let [' be a Kleinian group acting isomet-
rically on the hyperbolic space H¢t!. Take a base point x € H*! and
some other point y € H%!', and consider the orbit I'y of the latter.
Then the Poincaré series is defines as follows:

Zey(0) =) exp(—d dist(z, vy)), (3.1)

yel

were dist stands for the hyperbolic distance in H4*!.

The critical exponent ., = d..(I') separates convergent and diver-
gent values of the exponent: For § > d.., the Poincaré series converges,
while for § < d, it is divergent (independently of = and y). For ¢, it-
self, either event can occur. Depending on which one occurs, the group
is called of convergent or divergent type.

One can show that é., € (0,d].

2.2. Rational maps. Consider now a rational map f whose Julia
set J(f) does not coincide with the whole sphere C. Take some base

17
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point € C~ J(f) which is not post-critical. Then the Poincaré series
for f can be defined as follows:

D3> IBFET (3.2

n=0 zef-ng

Again, the critical exponent is the one separating convergent values of
d from divergent once. Unfortunately, it may depend on z (and it is
not defined when J(f) = C). To fix these problems, we will pass to
laminations.

2.3. Laminations.

2.3.1. Leafwise conformal metrics. There are three viewpoints on
the notion of conformal metric p on a confine lamination A.

First definition is suggested by the mere name of the object: it is
a continuous leafwise Riemannian metric compatible with the leafwise
confine structure. In local charts D x T it is written as p(z,t)|dz|?,
where p(z,t) is continuous in two variables (note that we do not require
p to be smooth in the leafwise direction).

Consider the hyperbolization H of A (see §3.1 of the 2nd lecture).
Recall that points of H are pairs (z,e), where z € A and ¢ is the
Euclidean metric on the leaf L(z). A choice of  is equivalent to a choice
of a conformal metric in the tangent space T,L(z). Thus, a leafwise
conformal metric is the same as a continuous section o : A — H.

The third viewpoint comes from the uniformizations vy : R¢ — L(z)
of the leaves. Assume that all the leaves are isomorphic to R?. Then ~
is defined up to an orthogonal operator composed with rescaling. The
choice of the scaling factor determines a Euclidean structure on L(z).
Thus, a selection of a Riemannian metric p amounts to a continuous
choice of normalizations of the uniformizations v (up to an orthogonal
operator). This viewpoint is fruitful in the dynamical setting.

2.3.2. Special metric. Let us go back to the dynamical affine lami-
nation A;. To any point z € Ay corresponds a meromorphic function
bg = moy, (see §2.2 of the 2nd lecture). Normalizing the uniformization
vz amounts to normalizing ¢,. Here is a natural choice: a meromorphic
function ¢ : C — C is normalized if

AL

where || - || is calculated with respect to the Euclidean norm on the
source C and the spherical norm on the target C (so that the integral
represents the spherical area of the image ¢(D) counted with multiplic-
ities).
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This metric is called special; it makes the dynamics expanding:

LEMMA 3.2. The map f~' : Ay — Ay is locally uniformly contract-

ing with respect to the special metric p in the sense that |[Df " (z)||, —
0 locally uniformly in z as n — oo.

2.3.3. Backward Poincaré exponent. The idea is that in the defini-
tion of the Poincaré series points should be replaced by transversals:

=) =3 [ 1D, dm,
n=0 "

where m is the transverse invariant measure from Theorem 3.1.

Then the critical exponent separates convergent cases from diver-
gent ones. It is the same for all precompact transversals, so that for
tame rational functions (see §2.2 of the 2nd lecture), d..(f) is well de-
fined. In what follows we will assume that f is tame.

THEOREM 3.3. For any tame rational function, d., € (0, 2].

2.3.4. Forward Poincaré exponent. It is obtained by the dual con-
struction using leaves in place of transversals. This leads to the follow-
ing definition of the forward Poincaré exponent:

Op()=>_ [ IIDf "} d,
n=0

frD

where D is a local leaf and & is the leafwise lift of the balanced measure
k. The forward critical exponent, 7., separates convergent values of
from the divergent ones. It is independent of D.

It is important to know whether d, = 7. (see §3.2 of the 4th
lecture).

3. Cocycles

3.1. Busemann cocycle on the hyperbolic space. Given the
hyperbolic space H**! and a point p € S¢ at infinity, 3,(x,y) stand
for the signed hyperbolic distance between the horospheres O,(x) and
Op(y), T,y € H* | where 3,(x,y) > 0if y is “closer” to p then z. This
function satisfies the cocycle rule

Bo(,y) + Byly, 2) = By, 2), (3:3)

and is called the Busemann cocycle.
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3.2. Cohomology of laminations. Let £ be a lamination, and
let Graph(L) = {(z,y) € L x L : y € L(z)}. A function g :
Graph(L) — R is called a cocycle if it is locally continuous (i.e., con-
tinuous on the graphs of the flow boxes treated as laminations) and
satisfies the cocyclic rule (3.3).

A cocycle is called trivial if there is a continuous function a : £ — R
such that f(z,y) = a(y) — a(z).

The space of cocycles modulo the trivial ones is called the first
cohomology group of the lamination, H(L).

3.3. Busemann cocycle on a pointed at infinity hyperbolic
lamination. Let H be a pointed at infinity H?*!-lamination. Then
the Busemann cocycle of H is defined as the leafwise Busemann cocycle
with respect to the marked at infinity point.

If M is a quotient of H modulo some group action preserving the
vertical flow, then the Busemann cocycle locally descends to flow boxes

of M.

3.4. Basic class of a confine lamination. Consider now a con-
fine R¢-lamination A with hyperbolization . Take some leafwise con-
formal metric p on A represented by a section o : A — H. Then the
basic cocycle corresponding to this metric is obtained by restricting the
Busemann cocycle to the graph of this section:

Bolz,y) = Blo(x),0(y))-
If we replace p with some other metric p/, then the basic cocycle is
replaced by the cohomologous one (with o = log(p'/p). Thus, we have
a well defined cohomology class b = [3,] € H'(A). It is called the basic
class of A. Tts geometric significance is explained by the following
statement:

PROPOSITION 3.4. A confine lamination A is Euclidean if and only
if b=0.

(To be Euclidean or flat means that the confine structure can be
refined to the Euclidean one). Thus, b gives the cohomological obstruc-
tion to flatness.

3.5. Dynamical formula. In the case of the dynamical lamina-
tion Ay, there is a nice dynamical formula for the basic cocycle. Let

z,{ € Apand z_,, = [z, ¢, = f~¢. Then

= 1Df()l,
Bp(z,{) = » log —F—"—-.
(8 = 2 g m
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Expressions of this kind appeared in dynamics as densities of SRB
measures on the unstable foliation (see [AS, Le]).

3.6. Flatness criterion. Naturally, some affine laminations are
not flat (see [Gh1]). Perhaps, one can expect that a “generic” affine
lamination is not flat. At least, this is the case for the dynamical
laminations:

THEOREM 3.5. The lamination Ay is flat if and only if f is a post-
critically finite rational function with parabolic Thurston orbifold, that
is, [ is either z — 2™, or f is a Chebyshev polynomial, or f is a Lattes
example.
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LECTURE 4

Streams and measures on laminations

1. Conformal streams

1.1. Conformal “measures” on manifolds. What is usually
called “conformal measures” actually are not measures but other tensor
objects. To avoid confusion we call them “conformal streams”.

Let M be a conformal manifold, that is a manifold endowed with
a class of conformally equivalent Riemannian metrics. Assume that to
any metric p in this class we have associated a Radon measure 7, on
M in such a way that all measures are equivalent and

N
dny _ <ﬂ> (4.1)
dnp p
for some 9 > 0. Then 7 is called a §-conformal stream on M.

For instance, volume of the metric p is an example of an d-conformal
stream, where d = dim M. More generally, let J C M be a closed
subset in M of Hausdorff dimension 0 such that the Hausdorff measure
in dimension 9 is finite. In fact, this measure depends on the choice of
the conformal metric p generating a d-conformal stream.

If f: M — M'is a conformal isomorphism between two conformal
manifolds, then any stream 7 on M can be naturally transferred to M’
(so that we obtain the push-forward stream f,(n)). Note that if we
select conformal metrics p and p’ on M and M’ respectively, then the
transformation rule is the following:

Ny = ||Df||6f*(77p)a (4'2)

where f.(n,) is the usual push-forward of the measure 7,.

In particular, if we have a conformal map f : M — M then a J-
conformal stream 7 on M is f-invariant if a representative measure 7,
is transformed according to (4.2) (with p' = p). This is what is usually
called a “conformal measure” in dynamics.

1.2. Patterson construction.

THEOREM 4.1 ([Pa, S1|). Any Kleinian group T' acting on the sphere
S% has an invariant de.-conformal stream supported on the limit set
A(T), where ¢ is the critical exponent of T'.

23
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Let us outline a remarkable construction of this stream due to Pat-
terson [Pa]. Consider the extension of I' to the hyperbolic space H**.
To any point 2 € H**! corresponds the visual metric p, on S obtained
by projecting the unit tangent sphere in T,H¢! to the sphere S? at
infinity along the geodesics. All these metrics are conformally equiva-
lent to pg, the Euclidean metric on S? (in the standard realization of
S¢ as the unit sphere in R¢T1).

To construct the measure 7, corresponding to this metric, take
some 0 > g, some y € H*"!, and consider the following finite measure
supported on the orbit I'y:

1 .
Hays = =753 Z exp(—d dist(yy, z)) Dy,

where =, ,(d) is the Poincaré series (3.1) and D, is the Dirac mass
supported at z.

If I' is of divergent type then the measure 7, = 7, is defined as
the weak limit of 11,5 as 0 \ dcr, which depends conformally (i.e., as
required for an invariant conformal stream) on the metric p,.

In the convergence case, some regularization procedure should be
incorporated to turn the Poincaré series into a divergent one.

1.3. Sullivan’s conformal measure. It is a measure p of the
Julia set J(f) of a rational function f which satisfies the transformation
rule

d(f~'p)
— o, =IDf 1°.
1
The reader can recognize this rule as f-invariance of the associated
stream.

THEOREM 4.2 ([S2]). Any rational function has a conformal mea-
sure supported on the Julia set.

This measure can be constructed by a version of Patterson’s method
applied to the Poincaré series (3.2) from the 3d lecture.

1.4. Conformal streams on laminations. We have two ver-
sions of conformal streams on laminations, transverse and leafwise.
A transverse conformal stream associates to any (leafwise) conformal
metric p a transverse measure 7, in such a way that

ity _ <£’>“5
dptp p)



1. CONFORMAL STREAMS 25

A leafwise conformal stream associates to any (leafwise) conformal met-
ric p a leafwise measure 7, satisfying the transformation rule (4.1). No-
tice that the product of a leafwise and transverse streams is a global
measure on A independent of p.

Any confine lamination A is endowed with a natural leafwise con-
nection: leafwise tensors are parallel with respect to this connection if
they are leafwise constant in the local charts. A transverse stream 7,
on A is called parallel if for any metric p which is parallel on a flow box
B, the measure 7, is holonomy invariant on B.

THEOREM 4.3. If f is tame then there is an f—invam’ant parallel
transverse Oq.-conformal stream p on Ay.

Notice that taken a representative p, of the stream, the property
of being f-invariant is expressed by the transformations rule:

d(f_l,up)

— |IDf||?
e = IDfi;"
while the property of being parallel is expressed by the rule
(v~ 1)

= exp 0¢;3,(x, yx),
where v : 7" — T" is the holonomy between two transversals and (3, is
the basic cocycle.

For a leafwise stream, the condition of being parallel should be
replaced by the condition of being invariant under the “vertical holo-
nomy” (sliding from one leaf to another along the fibers of the projec-
tion 7):

THEOREM 4.4. There exists a leafwise vye.-conformal stream A in-
variant under the vertical holonomy.

1.5. Construction. The idea is to replace points in the Patterson
construction with transversals. Take a reference precompact transver-
sal S and some other precompact transversal 7. Consider a preimage
f7"T, put on it the measure ||[D || %m, and push it forward to T*

T = (f").(IDf"I7°m).

Then for 6 > J.;, the measure

1 o
1) n,d
T = = E '
=5(9) —

n,0
7

T
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is well defined. If f is of divergent type then define u|T as a weak limit
of measures °|T as § N\ .. In the convergent case, a regularization
procedure should be incorporated before passing to a limit.

The construction of the leafwise stream ) is dual to the above one.

2. Harmonic measures

2.1. Riemannian laminations. Given a Riemannian manifold
M, let A be the Laplace-Beltrami operator on M. A function ¢ on
M is called A-harmonic if Ap = A¢p. A measure w on M is called \-
harmonic if A*w = Aw. It is equivalent to saying that w = ¢vol, where
vol is the Riemannian volume and ¢ is a A-harmonic function.

If now £ is a (leafwise) Riemannian lamination then let A be the
leafwise Laplace-Beltrami operator, that is, A acts on leafwise smooth
transversally continuous functions. Notions of A-harmonic functions
and A-harmonic measures are defined in terms of this operator in the
same way as in the case of manifold. A measure w on £ is A\-harmonic
if and only if its conditional measures on almost all leaves of L are
A-harmonic.

THEOREM 4.5 (Garnett [Gal). On any compact Riemannian lam-
ination there is a harmonic (that is, A\ = 0) measure.

However, on non-compact laminations the question of existence of
a A-harmonic measure is non-trivial.

2.2. Harmonic measures and conformal streams. Harmonic
measures are intimately related to transverse conformal streams. Let
us consider a confine lamination A and its hyperbolization H. Then
any parallel transverse d-conformal stream 7 on A can be lifted to a
transverse measure 77 on H satisfying the transformation rule

—1 =
WD — exp 36, 7a) (4.3
n
where 7 is a holonomy map and 3 is the Busemann cocycle.

Paring this transverse measure with the leafwise hyperbolic volume,
we obtain a A-harmonic measure w on H, where A = §(0 — d) (so w is
harmonic iff § = d).

If the conformal stream 7 is invariant under some affine action on
A then the corresponding harmonic measure w is invariant under the
hyperbolic lift of this action. Hence w descends to a conformal measure
on the quotient lamination.

Under the vertical flow, w is contracted with exponential rate d — ¢
(so that w is invariant iff § = d).
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2.3. Harmonic measures for geodesic flows. Let us now apply
the above constructions to the geodesic flow on a hyperbolic d-fold
M. If we start with the volume stream on S¢ then we come up with
the classical Liouville measure on UM. Since § = d, this measure is
harmonic and invariant under the geodesic flow.

If we start with the Patterson conformal measure, we come up with
another A\-harmonic measure on UM, where A\ = 6., (0 — d) is the
bottom eigenvalue of the Laplacian on M.

2.4. Harmonic measures on H;. Similarly, the transverse con-
formal measure from Theorem 4.3 can be promoted to a A-harmonic
measure on the hyperbolic lamination M s, where A = §¢;(d¢r —2). This
gives us a promising link between fractal geometry of Julia sets (re-
flected in d.;) and spectral theory of hyperbolic laminations (reflected
in A). This kind of connection proved to be very useful in the theory
of Kleinian groups (see [S3, BJ] and references therein).

3. Invariant measures

There exist other natural measures associated to conformal streams.
They are always invariant under the dynamics in question but rarely
absolutely continuous on the leaves.

3.1. Margulis measure for geodesic flows. A I'-invariant Pat-
terson conformal stream on S¢ can be naturally transferred to the fam-
ily of measures on the stable/unstable horospheres. The stream prop-
erty implies that these measures are uniformly contracted/expanded
under the geodesic flow with rate . Hence the product of these mea-
sures with the hyperbolic measure on the flow lines is invariant under
the flow. It is also invariant under I', so that it descends to an invariant
measure for the geodesic flow on M = H¢*!/T". This invariant mea-
sure is called Margulis. In the case of compact manifold M, this is the
unique measure of maximal entropy of the geodesic flow (see [Ma, K]).

This construction works in higher dimensions and for variable cur-
vature as well.

3.2. Gibbs invariant measure for rational maps. If the back-
ward and forward critical exponents (see §2.3.3) are equal, then the
product of the transverse and leafwise conformal streams, A x 7, is a
measure U invariant under f . By construction, the conditional mea-
sures of 7 on the leaves of Ay are absolutely continuous with respect
to the leafwise conformal stream. Pushing 7 down to the sphere C, we
obtain an f-invariant measure p absolutely continuous with respect to
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a conformal measure on the Julia set J(f). It is called Gibbs conformal
measure.

This construction can be applied to postcritically non-recurrent ra-
tional maps (i.e., such that all critical points on the Julia set are non-
recurrent and there are no parabolic points):

LEMMA 4.6. If f is a posteritically non-recurrent rational map then
5cr = Ter-

Thus, for postcritically non-recurrent rational maps, we come up
with a new construction of the Gibbs conformal measure v, first con-
structed in [DU, U] by means of thermodynamical formalism. In fact,
in this case the lift f : Af — A; has a compact Julia set and due to
Lemma 3.2 of the 3d lecture it can be viewed as an “orbifold hyper-
bolic” map. This opens an opportunity to derive statistical properties
of the Gibbs conformal measure v from the (orbifold) hyperbolic theory
(a project under way, joint with M. Urbanski). In this approach, the
Seifert fibration from §4 can help to deal with the orbifold points.

3.3. An invariant measure for the vertical flow. The Gibbs
conformal measure when exists can be lifted to an invariant measure
for the vertical flow. It is also invariant under f, so that it descends to
a V'invariant measure on M s- In the case when M/ is compact, we
obtain the measure of maximal entropy for the vertical flow V*. For
hyperbolic maps, this measure was constructed in [BR, BFU].
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