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Abstract

We say that a rational function F satisfies the summability condition with exponent α
if for every critical point c which belongs to the Julia set J there exists a positive integer
nc so that

∑∞
n=1 |(Fn)′(Fnc(c)|−α < ∞ and F has no parabolic periodic cycles. Let µmax

be the maximal multiplicity of the critical points.
The objective is to study the Poincaré series for a large class of rational maps and estab-

lish ergodic and regularity properties of conformal measures. If F is summable with expo-
nent α < δP oin(J)

δP oin(J)+µmax
where δPoin(J) is the Poincaré exponent of the Julia set then there

exists a unique, ergodic, and non-atomic conformal measure ν with exponent δPoin(J) =
HDim(J). If F is polynomially summable with the exponent α,

∑∞
n=1 n|(Fn)′(Fnc(c)|−α <

∞ and F has no parabolic periodic cycles, then F has an absolutely continuous invariant
measure with respect to ν. This leads also to a new result about the existence of absolutely
continuous invariant measures for multimodal maps of the interval.

We prove that if F is summable with an exponent α < 2
2+µmax

then the Minkowski
dimension of J is strictly less than 2 if J �= C and F is unstable. If F is a polynomial
or Blaschke product then J is conformally removable. If F is summable with α < 1

1+µmax

then connected components of the boundary of every invariant Fatou component are locally
connected. To study continuity of Hausdorff dimension of Julia sets, we introduce a concept
of uniformly summable rational functions.

Finally, we derive a conformal analogue of Jakobson’s (Benedicks-Carleson’s) theorem
and prove the external continuity of the Hausdorff dimension of Julia sets for almost all
points c from the Mandelbrot set with respect to the harmonic measure. Unimodal poly-
nomials zd + c, c ∈ R, summable with an exponent α < 1/1 + d are shown to be unstable
within the real family zd + c.

Résumé

Nous disons qu’une application rationelle F satisfait la condition de la sommabilité avec un
exposant α si pour tout point critique c qui appartient à l’ensemble de Julia J , il y a un
entier positif nc tel que

∑∞
n=1 |(Fn)′(Fnc(c)|−α < ∞ et F n’a pas de points periodiques

paraboliques. Soit µmax une multiplicité maximale de points critiques de F .
L’objectif est d’étudier des séries de Poincaré pour une large classe d’applications rationelles
et détablir les propriétés ergodiques et la regularité des mesures conformes. Si F est
sommable avec un exposant α < δP oin(J)

δP oin(J)+µmax
, où δPoin(J) est l’exposant de Poincaré de

l’ensemble de Julia, alors il existe une unique mesure conforme ν avec l’exposant δPoin(J) =
HDim(J) qui est invariante, ergodique, et non-atomique. En plus, F a une mesure invariante
absolument continue par rapport à ν pourvu que

∑∞
n=1 n|(Fn)′(Fnc(c)|−α < ∞ (la somma-

bilité de type polynômial) et que F n’a pas de points périodiques paraboliques. Cela aboutit
à un nouveaxx résultat sur l’existence des mesures invariantes absoluments continues pour
des applications multimodales d’intervalle.
Nous démontrons que si F est sommable avec un exposant α < 2

2+µmax
, alors la dimension

de Minkowski de J , si J �= C, est strictement plus petite que 2 et F est instable. Si F
est un polynôme ou le produit de Blaschke, alors J est conformalement effaçable. Si F
est sommable avec α < 1

1+µmax
, alors tout composant connexe de la frontière de chaque

composant de Fatou invariant est localement connexe. Pour étudier la continuité de la
dimension de Hausdorff d’ensembles de Julia, nous introduisons le concept de la sommabilité
uniforme.



Enfin, nous dérivons un analogue conforme du théorème de Jakobson et Benedicks-Carleson.
Nous montrons la continuité externe de la dimension de Hausdorff d’ensembles de Julia
pour presque tout point d’ensemble de Mandelbrot par rapport a la mesure harmonique.
Les polynômes unimodales zd + c, c ∈ R, sommables avec un exposant α < 1/1 + d sont
instables à l’intérieur de la famille zd + c.
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1 Introduction

1.1 Overview

The Poincaré series is a basic tool in the theory of Kleinian groups. It is used to construct and
study conformal densities and dimensions of the limit set. The breakthrough dates back to the
works of Patterson and Sullivan where the so called conformal (Patterson-Sullivan) measures
were introduced. In particular, Patterson and Sullivan proved respectively that the critical
exponent (the Poincaré exponent) is equal to the Hausdorff dimension of the limit set for
Fuchsian and non-elementary geometrically finite Kleinian groups.

We focus on estimates of the Poincaré series in rational dynamics. From this perspective,
we address the problem of regularity of conformal measures. We propose to study rational
maps satisfying the summability condition, which requires, roughly speaking, only a polynomial
growth of the derivative along critical orbits. Rational maps with parabolic periodic points are
non-generic and for simplicity we exclude them from our considerations.

In the class of rational maps satisfying the summability condition, we prove the counterpart
of Sullivan’s result that conformal measures with minimal exponent are ergodic (hence unique)
and non-atomic. To pursue properties of the Poincaré series for rational maps we introduce
a notion of a restricted Poincaré series which is also well-defined for points from Julia set.
This notion leads to new estimates, particularly implying that the convergence property of the
Poincaré series is “self-improving.” This turns out to be an underlying reasons for regularity
properties of conformal measures on Julia sets. Also, the divergence of the Poincaré series
with the the Poincaré exponent (infimum of exponents with converging Poincaré series) is an
immediate consequence. A different definition of the Poincaré exponent and its relation with
various dynamical dimensions can be found in [33].

One of the central problems in the theory of iteration of rational functions is to estimate
the Hausdorff dimension of Julia sets which are not the whole sphere and investigate their
fractal properties. It is believed that rational functions with metrically small Julia sets should
posses certain weak expansion property. We prove that the Poincaré exponent coincides with
the Hausdorff dimension of the Julia set J and HDim(J) < 2 unless J = Ĉ (strong Ahlfors
dichotomy) for rational functions satisfying the summability condition with an exponent α <

2
µmax+2 . These results bear some relationship with a recent result of C. Bishop and P. Jones
[5] which says that for finitely generated Kleinian groups if the limit set has zero area then the
Poincaré exponent is equal to the Hausdorff dimension of the limit set.

Perhaps, the most famous problem in the iteration theory of rational functions is whether
a given system can be perturbed to a hyperbolic one or not. It is widely believed that this
should be possible (the Fatou conjecture), at least in the class of polynomials. It is well known,
[24], that if the Julia set of a polynomial is of Lebesgue measure zero then the polynomial can
be perturbed to a hyperbolic one. In general, despite much effort, a very limited progress was
achieved towards proving the Fatou conjecture, [15]. We use the recent result of [20] to prove
strong instability of polynomials satisfying the summability condition. This both strengthens
and generalizes the results of [34] in the class of polynomials and Blaschke products. Clearly,
rational maps with parabolic cycles can not form an obstruction to the Fatou conjecture.



4

The summability condition was proposed in one-dimensional real unimodal dynamics [29]
as a weak condition which would guarantee the existence of absolutely continuous measures
with respect to the one-dimensional Lebesgue measure. M. Rees proved implicitely in [35] that
the class of rational functions which satisfy the summability condition is of positive Lebesgue
measure in the space of all rational functions of a given degree (compare [2]).

From the point of view of measurable dynamics and ergodic theory, the existence of regu-
lar invariant measures is of crucial importance. A dynamical analogue of the one-dimensional
Lebesgue measure on Julia set is given by the “geometric measures” (conformal measures with
minimal exponents). We study regularity and ergodic properties of conformal measures and
determine whether the dynamics admits the existence of absolutely continuous invariant mea-
sures with respect to a given conformal measure. The problem is twofold and involves both
dynamical and measure theoretical estimates.

Another problem we look at is local connectivity of Julia sets and the existence of wander-
ing compacta. In order to pursue the continuity of the Hausdorff dimension of Julia sets we
introduce a uniform summability condition. Finally, we discuss applications of our theory to
the study of complex unicritical polynomials zd + c. In this setting, we formulate a complex
analogue of Jacobson and Benedicks-Carleson’s theorem’s.

Non-uniform hyperbolicity. The concept of non-uniform hyperbolicity is slightly vague
and depends on varying backgrounds and motivations. It is difficult to find a single formulation
of this property. Our approach emphasizes measure theoretical aspects of the system, which
should be hyperbolic on the average. Loosely speaking, given a non-hyperbolic system, one
tries to make it hyperbolic by taking only pieces of the phase space and a high iterate of the
map on each piece. If it is possible to find such pieces almost everywhere, we say that the
system induces hyperbolicity or is non-uniformly hyperbolic with respect to a given measure.
Of course, we are interested only in natural measures such as the Lebesgue measure when J = Ĉ

and geometric measures (see Definition 1.3 and the following discussion) when J �= C. This
approach originates from the work of Jakobson [19] on the abundance of absolutely continuous
invariant measures and was also followed in a similar way by Benedicks and Carleson [2, 3].
The concept of induced hyperbolicity plays also a central role in the proof of the real Fatou
conjecture, see [15].

For rational functions F satisfying the summability condition we prove induced hyperbol-
icity with respect to unique geometric measure on J (Theorem 3). The induced hyperbolicity
yields that the Julia set is of Lebesgue measure zero whenever J �= Ĉ (the dynamical Ahlfors
conjecture). In many cases (e.g. under polynomial summability condition) we prove a stronger
version of non-uniform hyperbolicity, namely the existence of a unique absolutely continuous
invariant measure σ with respect to the geometric measure. The measure σ is ergodic, mixing,
and has positive Lyapunov exponent.
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1.2 Main concepts and statements of results

Summability conditions and maximal multiplicity. Before stating our main theorems,
we make a few technical remarks. For simplicity we assume that no critical point belongs to
another critical orbit. Otherwise all theorems remain valid with the following amendment: a
“block” of critical points

F : c1 �→ . . . �→ c2 �→ . . . . . . �→ ck ,

of multiplicities µ1, µ2, . . . , µk enters the statements as if it is a single critical point of multi-
plicity

∏
µj.

If the Julia set is not the whole sphere, we use the usual Euclidean metric on the plane,
changing the coordinates by a Möbius transformation so that ∞ belongs to a periodic Fatou
component, and doing all the reasoning on a large compact containing the Julia set. Alterna-
tively (and also when J = Ĉ) one can use the spherical metric.

Define σn := minc∈Crit

{∣∣∣(Fn)′ (Fc)
∣∣∣}, where minimum is taken over all critical points in

the Julia set whose forward orbits do not contain other critical points. Many properties will
take into account µmax – the maximal multiplicity of critical points in the Julia set (calculated
as above, if there are any critical orbit relations).

Definition 1.1 Suppose that F is a rational function without parabolic periodic points. We
say that F satisfies the summability condition with exponent α if

∞∑
j=1

(σj)−α < ∞ .

If a stronger inequality
∞∑

j=1

j · (σj)−α < ∞ ,

holds, then we say that F satisfies the polynomial summability condition with exponent α.

We recall that F satisfies the Collet-Eckmann condition if there exist C > 0 and Λ > 1 such
that σn ≥ CΛn for every positive n. Contrary to the Collet-Eckmann case, the summability
condition allows strong recurrence of the critical points. Generally, it is not true that the
critical value of a summable rational map has infinitely many univalent passages to the large
scale (counterexample given by a quadratic Fibonacci polynomial), compare Theorem 3.

Poincaré series. We call a point z admissible if it does not belong to
⋃∞

i=0 Fn(Crit). Take
an admissible point z and assume that F has no elliptic Fatou components and J �= Ĉ. We
define the Poincaré series by

Σδ(z) :=
∞∑

n=1

∑
y∈F−nz

∣∣∣(Fn)′ (y)
∣∣∣−δ

.
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The series converges for every δ > δPoin(z) and the minimal such δPoin(z) is called the Poincaré
exponent (of F at the point z). By standard distortion considerations, if F is a component of
the Fatou set, then for all admissible z ∈ F Poincaré exponents coincide, so we set

δPoin(F) := δPoin(z) .

We define the Poincaré exponent by

δPoin(J) := max {δPoin(F) } ,

(As Theorem 1 shows, we can alternatively set δPoin(J) := inf{δPoin(x) : x ∈ Ĉ}). A well-
known area estimate shows that δPoin(J) ≤ 2. A natural question arises if the Poincaré expo-
nents δPoin(F) in different Fatou components coincide and if δPoin(J) < 2. By the analogy with
the theory of Kleinian groups, we say that F is of divergent (convergent) type if the Poincaré
series ΣδPoin

(z) diverges (converges) for every component F of the Fatou set and every ad-
missible z ∈ F . Clearly, hyperbolic rational maps satisfy the summability condition with any
positive exponent α. By Theorem 1, they are all of divergent type. In general, rational maps
of the divergent type can be viewed as weakly hyperbolic systems. It would be interesting to
study this property from an abstract point of view.

To address the above problems, we consider the Poincaré series as a function of z ∈ Ĉ \ J
and study its limiting behavior when z approaches the Julia set. We use the concept of a
restricted Poincaré series to study the dynamics of inverse branches of F independently from
the fact whether their domains intersect J or not.

Let H(z, ∆) be the set of all preimages of z such that the ball B(z, ∆) can be pulled back
univalently along the corresponding branch.

Definition 1.2 The restricted Poincaré series for a number ∆ > 0 and z ∈ Ĉ is defined by

Σ∆
δ (z) :=

∞∑
n=1

∑
y∈H(z,∆)

∣∣∣(Fn)′ (y)
∣∣∣−δ

.

The definitions of the Poincaré exponents assume that the complement of J is non-empty.
Should J coincide with the whole sphere, we set δPoin(J) := 2. We will prove that under the
summability condition the convergence of the Poincaré series is an open property. This means
that F is of divergent type. The proof will use the restricted Poincaré series and a generalized
“area estimate.” Intriguingly, our technique allows us to compare different δPoin(F) through
perturbations of the Poincaré series near the critical points c ∈ J of the maximal multiplicity.
These points appear to be in the stability locus of δPoin(z).

Theorem 1 Suppose that F satisfies the summability condition with an exponent

α <
δPoin(J)

µmax + δPoin(J)
.

We have that
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• the Poincaré series with the critical exponent δPoin(J) diverges for every point z ∈ Ĉ,

• if z is at a positive distance to the critical orbits and c is a critical point of the maximal
multiplicity then

δPoin(z) = δPoin(c) = δPoin(J) = inf
{
δPoin(x) : x ∈ Ĉ

}
.

If J = Ĉ then by our convention, δPoin(J) = 2. Hence, the equality

δPoin(J) = inf
{
δPoin(x) : x ∈ Ĉ

}
of Theorem 2 can be regarded as an alternative definition of the Poincaré exponent when J = Ĉ.

Conformal and geometric measures. Conformal or Sullivan-Patterson measures are dy-
namical analogues of Hausdorff measures and capture important (hyperbolic) features of the
underlying dynamics.

Definition 1.3 Let F be a rational map with the Julia set J . A Borel measure ν supported on
J is called conformal with an exponent p (or p-conformal) if for every Borel set A on which F
is injective one has

ν(F (B)) =
∫

B
|F ′(z)|p dν .

As observed in [40], the set of pairs (p, ν) with p-conformal measure ν is compact (in the weak-∗
topology). Hence, there exists a conformal measure with the minimal exponent

δconf := inf{p : ∃ a p-conformal measure on J .}
The minimal exponent δconf is also called a conformal dimension of J .

However, conformal measures might have extremely bad analytical properties, in particular
they can be atomic. In this context it is rather surprising that the most important conformal
measures, namely these with minimal exponents, have many good analytical properties in the
class of rational maps which satisfy the summability condition.

A hyperbolic Julia set has the Hausdorff dimension strictly less than 2 and a finite positive
Hausdorff measure in its dimension, [40]. In the hyperbolic case, conformal measure always
coincides with a normalized Hausdorff measure. For non-hyperbolic maps this need not be the
case a priori, since all Hausdorff measures on J might be zero or not even σ-finite. A construction
of conformal measures for Kleinian groups was proposed by Patterson. The same construction
was implemented by Sullivan for rational functions. In Patterson-Sullivan approach conformal
measures are constructed through the dynamics in the Fatou set. This external construction
favors conformal measures with “inflated” exponents and can be briefly summarized as follows:
Assume that J �= Ĉ and F has no neutral cycles. Let z ∈ Ĉ \ J . If ΣδPoin

(z) diverges then, for
any p > δPoin(z) we consider vp defined by

νp :=
1

Σp

∞∑
n=1

∑
y∈F−n(z)

1y

|(Fn)′(y)|p , (1)
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where 1y is a Dirac measure at y. A weak limit of such atomic measures when p → δPoin(z) de-
fines a δPoin(z)-conformal measure on the Julia set. If ΣδPoin

(z) converges then the construction
can be repeated in the same way after multiplying each term of Σp by a factor h(|(Fn)′(y)|−p,
where h is the Patterson function. The function h tends to 1 slower, than arbitrary exponential,
but still makes the series Σp divergent for p = δPoin(z). Clearly,

δconf ≤ δPoin .

An alternative “internal” construction was carried out by Denker and Urbanski, [8, 9]. It
uses increasing forward invariant subcompacts inside the Julia set, free of critical points, to
distribute probabilistic Borel measures νn with Jacobians bounded respectively by |F ′(z)|pn.
In the limit, these approximating measures become conformal with exponent equal to sup pn =
δconf , [8, 9]. Recall that the hyperbolic dimension HypDim(J) of the Julia set J is equal to the
supremum of the Hausdorff dimensions of all hyperbolic subsets of J . An important geometric
consequence of the Denker-Urbanski construction is

δconf = HypDim(J) .

If additionally δconf = HDim(J) then every δconf -conformal measure ν is called a geometric
measure. It is an important open question, whether δconf = HDim(J) always holds, and in
general very little is known about the existence and regularity properties of geometric measures
(cf. [36, 32]). It is not even known if a geometric measure has to be unique and non-atomic.
A possible pathology is due to the presence of critical points in J of convergent type. Indeed,
if Σp(c) converges for p ≤ 2 and c ∈ Crit then νp defined by (1) with y = c is a p-conformal
atomic measure.

We prove that if a rational function satisfies the summability condition with an exponent
α < 2

2+µmax
, then, for every p > δconf , there exists an atomic p-conformal measure with an

atom at a critical point. In contrast to that, the geometric measures are non-atomic in this
class. The majority of work in the area is based on Denker-Urbanski construction. We come
back to the origins and focus on the Sullivan-Patterson approach.

Every conformal measure of F has an exponent p ∈ [δconf ,∞). The set of all such p
forms a conformal spectrum of F . We distinguish an atomic part of the spectrum consisting
of all p ∈ [δconf ,∞) for which there exist only atomic conformal measures, a continuous part
corresponding to exponents for which there exist only non-atomic conformal measures, and a
mixed part (possibly empty) gathering all p for which there exist both atomic and non-atomic
p-conformal measures.

Definition 1.4 We say that the conformal spectrum of F is hyperbolic if its mixed part is
empty and continuous part is equal to {δconf}.
Theorem 2 Suppose that a rational function F satisfies the summability condition with an
exponent

α <
δPoin(J)

µmax + δPoin(J)
.

Then



9

• there is a unique, ergodic, non-atomic conformal measure µ,

• the exponent of µ is equal to δconf = δPoin(J),

• if F has critical points in the Julia set then for every δ > δconf there exists an atomic
δ-conformal measure supported on the backward orbits of the critical points,

• every conformal measure has no atoms outside of the set of the critical points of F .

In particular, every rational function which satisfies the summability condition with an exponent
α < δPoin(J)

µmax+δPoin(J) has a hyperbolic conformal spectrum. Since every hyperbolic rational map
has no critical points in the Julia set, its conformal spectrum is trivial and consists of only one
point {δconf}.

Observe that if we know that every geometric measure is ergodic, then in fact it must be
unique. Indeed, if there were two such measures ν1 and ν2, then ν3 := ν1+ν2

2 is obviously a
non-ergodic geometric measure, a contradiction.

The problem of ergodicity of conformal measures was raised before. In [32] it is proved that
a number of ergodic components of conformal measures ν for the so-called Collet-Eckmann
rational maps is finite and not exceeding the number of critical points. This is not enough
to conclude uniqueness of a geometric measure. The assertion of Theorem 2 is valid only for
conformal measures with minimal exponent. In general, if p > δconf and F has more than one
critical point of the maximal multiplicity, then there exist non-ergodic p-conformal measures.
Indeed, by Theorem 1, if µ(c) = µmax then δPoin(c) = δconf . Measures ν(c) defined by (1) are
p-conformal and their convex sum has exactly #{c; µ(c) = µmax} ergodic components.

Induced hyperbolicity. Consider the set J∗,ε of all points x ∈ J which ε-frequently go to
the large scale of radius r, namely:

∃nj → ∞ : Fnj is univalent on F−nj (B (Fnjx, r)) ,
∣∣∣(Fnj+1)′ (x)

∣∣∣ <
∣∣∣(Fnj )′ (x)

∣∣∣1+ε
,

where F−nj (B (Fnjx, r)) stands for its connected component, containing x.

Theorem 3 (Strong induced hyperbolicity) Suppose that a rational function F satisfies
the summability condition with an exponent

α <
δPoin(J)

δPoin(J) + µmax
.

Then there exists r > 0 so that for every ε > 0 almost every point with respect to a unique
δconf -conformal measure ν goes ε-frequently to the large scale of diameter r.
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Invariant measures. The summability condition was introduced in real dynamics in [29] to
study absolutely continuous invariant measures (shortly acim) with respect to the Lebesgue
measure. In the conformal setting when conservative dynamics is often concentrated on fractal
sets with zero area, a concept of an acim encounters some hurdles. In this situation, it is natural
to study absolutely continuous invariant measures with respect to conformal measures. This
approach was already adopted by Przytycki, who proved that a rational Collet-Eckmann map
has an acim with respect to a p-conformal measure ν, provided that ν is regular enough along
critical orbits. This regularity was verified only in particular cases (cf. Tsujii’s condition in
[31]) and can be expressed by an integral condition (in [32] a slightly weaker condition was
considered): there exists C > 0 so that for all i > 0

sup
c∈Crit

∫
|z − F i(c)|−p

(
1− 1

µmax

)
dν < C . (2)

The scope of validity of this condition is not known even in the Collet-Eckmann setting. We
will call this condition the integrability condition with an exponent η := p(1 − 1

µmax
).

Surprisingly, we do not need to assume this condition to obtain an absolutely continuous
invariant measure with respect to a non-atomic conformal measure, if F satisfies the polynomial
summability condition.

Theorem 4 Suppose that a rational function F satisfies the polynomial summability condition
with an exponent

α <
δPoin(J)

δPoin(J) + µmax
.

Then F has a unique absolutely continuous invariant measure σ with respect to a unique
δPoin(J)-conformal measure ν. Moreover, σ is ergodic, mixing, exact, has positive entropy
and Lyapunov exponent.

If the integrability condition is satisfied, then we have the following theorem.

Theorem 5 If F satisfies the summability condition with an exponent

α <
δPoin(J)

δPoin(J) + µmax
,

and a unique δPoin(J)-conformal measure ν is δPoin(J)(1− 1
µmax

)-integrable then F has a unique
and ergodic absolutely continuous invariant measure.

Observe that 2-dimensional Lebesgue measure becomes a geometric (conformal) measure, when
J = Ĉ. We conclude, that in this case F has an absolutely continuous invariant measure with
respect to 2-dimensional Lebesgue measure if it satisfies the summability condition with an
exponent α < 2

2+µmax
. We also study ergodic and regularity properties of the absolutely

continuous invariant measures.
Another important application of our techniques lies in the dynamics of analytic multimodal

maps of a compact interval J . Contrary to the unimodal case (maps with exactly one local
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extremum), there are no general results about the existence of absolutely continuous invariant
measures. The only available results are of perturbative nature (analogues of Jakobson’s result
in the quadratic family), and require some transversality assumptions in one-parameter families.
One of the most general results [41] states that for a generic C2 families of multimodal maps
there exist a positive set of parameters which correspond to Collet-Eckmann maps with acims.
In [29] it was proved that if S-unimodal map F (i.e. unimodal with negative Schwarzian
derivative), and the critical point of multiplicity d satisfies the summability condition with
the exponent 1/d then it has an absolutely continuous invariant measure with respect to the
Lebesgue measure. The Schwarzian derivative is defined for a C3 function F by S(F )(x) :=
F ′′′(x)/F ′(x) − 3

2 (F ′′(x)/F ′(x))2, provided F ′(x) �= 0. A prototype S-unimodal map is given
by z2d + c, with c ∈ R and d a positive integer.

An absolutely continuous invariant measure provides a useful information about statistical
behavior of orbits. We prove the following result for multimodal maps.

Theorem 6 Let F be an analytic function of the unit interval with all periodic points repelling
and negative Schwarzian derivative. If F satisfies the summability condition with an exponent

α <
1

1 + µmax
,

then F has an absolutely continuous invariant measure σ with respect to 1-dimensional Lebesgue
measure.

In fact, Theorem 6 can be easily generalized to all S-unimodal maps which satisfy the summa-
bility condition with an exponent 1

1+µmax
.

Fractal dimensions. We also show that for the Julia sets under considerations are “regular”
fractals, in the sense that all possible dimensions coincide.

The Hausdorff dimension of a measure ν is defined as the infimum of Hausdorff dimensions
of its Borel supports:

HDim(ν) := inf{HDim(A) : ν(A) = 1} .

Theorem 7 Suppose that a rational function F satisfies the summability condition with an
exponent

α <
p

µmax + p
,

where p is any (e.g., maximal) of the quantities in the formula below. Then

δPoin(J) = δWhit(J) = MDim(J) = HDim(J) = HypDim(J) = HDim(ν) ,

where ν is a unique δconf -conformal measure.

Corollary 1.1 Under the hypothesis of Theorem 2, the unique δconf -conformal measure ν is a
geometric measure.
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A natural question arises: does the claim of Theorem 7 remains valid under any summability
condition? This is an interesting question with possible application towards establishing non-
atomicity of conformal measures with minimal exponent.

Corollary 1.2 (Strong Ahlfors dichotomy) Suppose that a rational function F satisfies the
summability condition with an exponent

α <
2

µmax + 2
.

Then the Julia set is either the whole sphere, or its Minkowski dimension is strictly less than
2.

Unstable rational maps. It is known (by an application of λ-lemma, see [24]), that the
affirmative answer to the dynamical Ahlfors conjecture (Julia set is either the whole sphere or
of zero area) in the class of rational functions with J �= Ĉ implies the Fatou conjecture. If F
satisfies the summability condition with an exponent α ≤ 2

2+µmax
then, by Theorem 1, the Julia

set has zero area, and cannot carry a non-trivial Beltrami differential.

Definition 1.5 We say that a set J is conformally removable if every homeomorphism φ of Ĉ

which is holomorphic off J , is in fact a Möbius transformation.

For Julia sets, this is a very strong property, which generally does not hold even for hyperbolic
rational maps. A counterexample, which is topologically a Cantor set of circles is constructed
in §11.8 of the book [1]. Using a recent work [20], we can establish conformal removability (also
called holomorphic removability) of Julia sets for polynomials and Blaschke products satisfying
the summability condition.

Theorem 8 If a polynomial F satisfies the summability condition with an exponent

α <
2

µmax + 2
,

then the Julia set is conformally removable.

More generally, the theorem above holds not only for polynomials, but for rational functions
such that the Julia set is a boundary of one of the Fatou components.

The assumption above, that the Julia set coincides with the boundary of one of the Fa-
tou components is essential for conformal removability. A more flexible concept of dynamical
removability might hold for all rational Julia sets.

Definition 1.6 We say that a Julia set JF is dynamically removable if every homeomorphism
φ of Ĉ which conjugates (Ĉ, F ) with another rational dynamical system (Ĉ, H) and is quasicon-
formal off JF is globally quasiconformal.
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Theorem 9 If a rational function F satisfies the summability condition with an exponent

α <
1

µmax + 1
,

then the Julia set is dynamically removable.

Theorem 10 Let a rational function F satisfy the summability condition with an exponent

α <
2

µmax + 2
.

Suppose that there is a quasiconformal homeomorphism φ of Ĉ which conjugates rational dy-
namical systems (Ĉ, F ) and (Ĉ, H).

• If J �= Ĉ, then Beltrami coefficient φµ has to be supported on the Fatou set.

• If J = Ĉ, then either φ is a Möbius transformation, or F is double covered by an integral
torus endomorphism (i.e. it is a Lattés example). In the latter case the Beltrami coefficient
µφ lifts to a constant Beltrami coefficient on the covering torus.

Corollary 1.3 (No invariant line fields) If a rational function F satisfies the summability
condition with an exponent

α <
2

µmax + 2
,

then J carries no invariant line field, except when F is double covered by an integral torus
endomorphism.

Compare Corollary 3.18 in [27].

Geometry, local connectivity, and non-wandering compacta. If z� + c is a unimodal
polynomial with locally connected Julia set J then the dynamics on J has a particularly simple
representation: it is semi-conjugate to the multiplication by 	 modulo 1 on [0, 1). The quest
for local connectivity of polynomial Julia sets dates back to the mid-Eighties. Recently, local
connectivity was obtained for all real unimodal polynomials zl + c with connected Julia sets,
[23], and for Collet-Eckmann polynomials and Blaschke products with connected Julia sets,
[14].

The quasihyperbolic distance distqh (y, z) between points y, z ∈ F is defined as the infimum
of

distqh (y, z) := inf
γ

∫
γ

|dζ|
dist (ζ, ∂F)

,

the infimum taken over all rectifiable curves γ joining y and z in F .
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Definition 1.7 We will call (possibly non-simply-connected) domain F integrable, if there
exists z0 ∈ F and an integrable function H(r) : R+ �→ R+,∫ ∞

0
H(r) < ∞ ,

such that F satisfies the following quasihyperbolic boundary condition:

dist (z, ∂F) ≤ H(distqh (z, z0)) ,

for any z ∈ F . The distance dist (z, ∂F) is computed in the spherical metric.

Hölder domains correspond to “exponentially fast integrable” domains with H(r) = exp(C−εr).
We will show that the Fatou components of rational maps satisfying the summability condition
are integrable domains.

A concept of wandering subcompacta of connected Julia sets is directly related to the local
connectivity of components of J . We say that a compact set K is wandering if for every
m, n > 0, Fn(K) ∩ Fm(K) = ∅ whenever m �= n.

Theorem 11 Let F be a rational function which satisfies the summability condition with an
exponent

α ≤ 1
µmax + 1

.

Then every periodic Fatou component F is an integrable domain. If F has a fully invariant
Fatou component then every component of J is locally connected and F does not have wandering
compacta.

Uniform summability and continuity of dimensions. We also study continuity proper-
ties of the Hausdorff dimension of the Julia set as a function of F : F �→ HDim(JF ). To this aim
we consider a certain class of perturbations of a rational map F which satisfy the summability
condition in a stable way. Since perturbations usually let critical points escape from the Julia
set, we need to take into account critical points of F which do not belong to JF .

Given a rational function F and an ε-neighborhood Bε(J) of its Julia set J we define for
every c ∈ Crit ∩ Bε an escape time

E(ε) = inf{j ∈ N : F j(c) �∈ Bε(J)} .

If F j(c) ∈ Bε(J) for all j, we set E(ε) := ∞.

Definition 1.8 Let dist (F, G) := supz dist ˆ
C

(F (z), G(z)) be a distance between two rational
functions F and G. We say that a rational function F is uniformly summable with exponent
α and parameters M, ε if for every δ > 0 there exists a rational function G �= F such that
dist (F, G) ≤ δ and for every c ∈ CritG ∩ Bε(JG),

E(ε)∑
j=1

|(Gj)′(c)|−α < M . (3)
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The set of all G satisfying (3) for given F, M, ε is denoted by Sα(F, M, ε).

Definition 1.9 We say that rational functions Fi tend to F in Sα if

1. Fi tend uniformly to F ,

2. there exist M, ε > 0 so that for every i large enough Fi ∈ Sα(F, M, ε),

3. #CritF = #CritFi for i large enough (critical points are counted without their multiplic-
ities).

The notion of uniform summability involves only these critical points c of G which “asymptot-
ically” belong to the Julia set JF . The convergence in Sα demands additional 1− 1 correspon-
dence between the critical points of F and Fi for every i large enough.

Theorem 12 establishes continuity of the Hausdorff (Minkowski) dimension for the conver-
gence in Sα.

Theorem 12 (Continuity of Hausdorff Dimension) If F satisfies the uniform summabil-
ity condition with an exponent

α <
δPoin(J)

µmax + δPoin(J)
,

then
lim

Sα�G→F
HDim(JG) = HDim(JF ) .

Unicritical polynomials. Let Md be the connectedness locus of unicritical polynomials
fc = zd + c,

Md = {c : |fn
c (c)| < ∞} .

When d = 2, M2 is better known as the Mandelbrot set M. By Shishikura’s theorem [36] it is
known that the Hausdorff dimension as a function of c ∈ C \M does not extend continuously
to ∂M . Yet typically with respect to the harmonic measure of ∂M a continuous extension of
HDim(·) along hyperbolic geodesics is possible.

Definition 1.10 A closure Γ(c) of a hyperbolic geodesic in C \ Md which contains ∞ and a
point c ∈ ∂Md is called an external ray. If Γ(c)∩ ∂Md = {c} then we say that Γ(c) terminates
at c.

We use properties of the convergence in Sα, α < 1/1 + d, and the results of [16, 37] to
deduce the following theorem.

Theorem 13 For almost all c from ∂Md with respect to the harmonic measure, we have

lim
Γ(c)�c′→c

HDim(Jc′) = HDim(Jc) .
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Radial continuity of Hausdorff dimension for postcritically finite quadratic polynomials was
established in [28]. The set of postcritically finite polynomials is of zero harmonic measure,
[16, 37].

Another consequence of our estimates and [16, 37] is a conformal analogue of Jakobson and
Benedicks-Carleson’s theorem [19, 2, 3]. Let fc(z) = zd +c and suppose that fc has a geometric
measure. We call a probabilistic measure µ, supported on the Julia set of fc, a Sinai-Ruelle-
Bowen, or SRB for short, measure if it is a weak accumulation point of measures µn equally
distributed along the orbits x, fc(x), . . . , fn

c (x) for x in a positive geometric measure set.

Theorem 14 For almost all c ∈ ∂Md with respect to the harmonic measure,

1. there exists a unique geometric measure νc of zd+c which is a weak limit of the normalized
Hausdorff measures of Jc′, c′ ∈ Γ(c).

2. νc is ergodic and non-atomic,

3. HDim(νc) = HDim(J),

4. zd+c has an invariant SRB measure with a positive Lyapunov exponent which is equivalent
to the geometric measure νc.

Finally we deduce a rigidity result for unimodal polynomials. We recall that a unicritical
polynomial zd + c is unimodal if c ∈ R and d is an even number.

Theorem 15 Suppose that zd+c1 and zd+c2 are unimodal polynomials which are topologically
conjugate. If zd + c1 satisfies the summability condition with an exponent α < 1/1 + d then
c1 = c2.

Theorem 15 is new for d > 2, see [15].

Acknowledgments. Stanislav Smirnov would like to thank Zoltan Balogh, Chris Bishop,
and Pekka Koskela for many useful discussions.

Notation and Conventions. We will write A�B whenever A ≤ CB with some absolute (but
depending on the equation) constant C. If A ≤ CB and B ≤ CA then we write A � B. We will
denote a ball of radius R around z by BR(z). We adopt the convention that

∑
n(ωn)−∞ < ∞

means that the sequence ωn tends to zero as n → ∞.
For simplicity and readers convenience we will write all the distortion estimates for the

planar metric, when Köbe distortion theorem has a more familiar formulation (Lemma 2.1).
The estimates remain valid in the case of spherical metric, with an appropriate version of Köbe
distortion theorem (which differs only by a multiplicative constant, since we work with the
scales smaller than some very small R).

Another general convention is following: we call F−n(z), . . . , z a sequence of preimages of z
by F if for every 1 ≤ j ≤ n,

F (F−j)(z) = F−j+1(z) .



17

Part I

Poincaré series, induced hyperbolicity,
invariant measures

2 Expansion along orbits

Our goal is to estimate the derivative of Fn at z in terms of the summability condition and
the injectivity radius of the corresponding inverse branch F−n at Fn(z). This is attained by
decomposing backward orbits into pieces which either closely follow the critical orbits or stay
away from the critical points at a definite distance. We provide also a technical introduction
to the theory of the Poincaré series for rational maps.

Proposition 2.1 can be regarded as a conditional version of induced hyperbolicity. In ap-
plications, we will use a stronger statement (Main Lemma), which contains more technically
detailed assertions. The proof of the Main Lemma will supply a procedure of decomposing any
orbit into blocks of three different types, defined rigorously in Subsection 2.4. We will show
that the derivative along each block of a given type is expansive up to an error term which is
a function of a few dynamically defined parameters. The main difficulty in proving Proposi-
tion 2.1 is a possibility of accumulation of error terms. We will prove that due to cancellations,
the expansion prevails.

After initial preparations in Section 2, the proof of Proposition 2.1 will be concluded in
Section 3.

Proposition 2.1 Let a rational function F satisfy the summability condition with an exponent
α ≤ 1 . There exist ε > 0 and a positive sequence {ωn} summable with an exponent −β :=
−µmaxα

1−α , meaning
∑

n (ωn)−β < ∞ , so that for every point z from ε-neighborhood of the
Julia set and every univalent branch of F−n defined on the ball B∆(z) with ∆ < ε,∣∣∣(Fn)′ (F−nz)

∣∣∣ > ∆1−µ(c)/µmax ωn if a critical point c ∈ B∆(z) ,∣∣∣(Fn)′ (F−nz)
∣∣∣ > ∆1−1/µmax ωn otherwise .

Remark 2.1 The statement above is well-formulated even when when α = 1, if we recall the
convention that

∑
n(ωn)−∞ < ∞ means that the sequence ωn tends to zero as n → ∞.

Remark 2.2 In the proof we actually obtain a specific form of ωn in terms of {σn} and Mañé’s
lemma.

Corollary 2.1 Suppose that the assumptions of Proposition 2.1 are satisfied. The there is
ε > 0 such that for any point z at a distance ∆ < ε from the Julia set we have∣∣∣(Fn)′ (F−nz)

∣∣∣ ≥ ∆1−1/µmax ωn ,

where ωn is given by Proposition 2.1.
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Corollary 2.2 If F satisfies the summability condition with an exponent α ≤ 1 then F has
neither Siegel disks nor Herman rings.

Proof: If z belongs to an elliptic Fatou component F (Siegel disk or Herman ring) then
for every preimage F−nz ∈ F ,

∣∣∣(Fn)′ (F−nz)
∣∣∣ � 1. This contradicts Proposition 2.1 since

limn→∞ ωn = ∞.

�

2.1 Preliminaries

Shrinking neighborhoods. To control the distortion, we will use the method of shrinking
neighborhoods, introduced in [32] (see also [14]). Suppose that

∑∞
n=1 δn < 1/2 and δn > 0

for every positive integer n. Set ∆n :=
∏

k≤n (1 − δk). Let Br be a ball of radius r around a
point z and {F−nz} be a sequence of preimages of z. We define Un and U ′

n as the connected
components of F−n Br∆n and F−n Br∆n+1 , respectively, which contain F−nz. Clearly,

FUn+1 = U ′
n ⊂ Un .

If Uk, for 1 ≤ k ≤ n, do not contain critical points then distortion of Fn : U ′
n → Br∆n+1 is

bounded (Köbe distortion lemma below) by a power of 1
δn+1

, multiplied by an absolute constant.
Since

∑
n δn < 1

2 , one also has
∏

n (1 − δn) > 1
2 , and hence always Br/2 ⊂ Br∆n .

The Köbe distortion lemma. We will use a following version of the Köbe distortion lemma.

Lemma 2.1 Let f : B → C be a univalent map from the unit disk into the complex plane.
Then the image f(B) contains a ball of radius 1

4 |f ′(0)| around f(0). Moreover, for every z ∈ B
we have that

(1 − |z|)
(1 + |z|)3 ≤ |f ′(z)|

|f ′(0)| ≤
(1 + |z|)
(1 − |z|)3 ,

and
|f(z) − f(0)| ≤ |f ′(z)| |z|(1 + |z|)

1 − |z| .

Proof: The first statement is Corollary 1.4, and the next inequality is Theorem 1.3 in [30].
Let M be a Möbius automorphism of the unit disk which maps 0 onto z and −z onto 0. By

Theorem 1.3 in [30] applied to f ◦ M , we have that

|f ◦ M(−z) − f ◦ M(0)| ≤ |(f ◦ M)′(0)| |z|
(1 − |z|)2 .

Since M ′(0) = 1 − |z|2, the last claim of the lemma follows.

�
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2.2 Technical sequences

Suppose that F is a rational function which satisfies the summability condition with an exponent
α. To simplify calculations we will introduce three positive sequences {αn}, {γn > 1}, {δn} so
that the growth of the derivative of Fn will be expressed in terms of γn, the corresponding
distortion will be majorized by δn, and the constants will be controlled through αn.

Lemma 2.2 If a sequence {1/σn} is summable with an exponent α ≤ 1:
∑

(σn)−α < ∞, then
there exist three positive sequences {αn}, {γn}, {δn}, such that

limn→∞ αn = ∞ ,∑
n(γn)−β < 1/(16 deg F · µmax) , β := µmaxα

1−α ,∑
n δn < 1/2 ,

and
σn ≥ (αn)2 (γn)µmax / δn .

Proof: Suppose that α < 1. We set

δ′n := (σn)−α , γ′′
n := (σn)(1−α)/µmax ,

and observe that σn = (γ′′
n)µmax/δ′n,

∑
n δ′n < ∞,

∑
n (γ′′

n)−β < ∞. It is an easy exercise, that
there is a sequence {α′

n}, limn→∞ α′
n = ∞, such that {γ′

n} defined by

γ′
n := (σn)(1−α)/µmax / (α′

n)−2/µmax

is still summable with an exponent −β. Evidently, σn = (α′
n)2(γ′

n)µmax/δ′n. Now, choose
suitable constants Cγ , Cδ so that {γn} := {Cγγ′

n} and {δn} := {Cδδ
′
n} satisfy∑

n

δn < 1/2 ,
∑
n

γn
−β < m .

Set Cα :=
√

Cδ/Cµmax
γ and let αn := Cαα′

n. Then

lim
n→∞αn = ∞ , σn ≥ (αn)2 (γn)µmax/δn .

The case of α = 1 can be treated similarly.

�

2.3 Constants and scales

A scale around critical points is given in terms of fixed numbers R′ � R � 1. We will refer to
objects which stay away from the critical points and are comparable with R′ as the objects of
the large scale. The proper choice of R’s is one of the most important elements in the analysis
of expansion along pieces of orbits.

We impose the following conditions on R and R′ (note that sup |F ′| < ∞, since we use the
spherical metric):
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(i) Any two critical points are at least 100R apart and there exists a constant M > 1
which depends only on R and so that if dist (Fy, F (Crit)) < (1 + sup |F ′|)R < 1 or
dist (y, Crit) < 5R1/µmax then

1/M <
∣∣F ′(y)

∣∣ /dist (y, c)µ(c)−1 < M ,

1/M < dist (Fy, Fc)/dist (y, c)µ(c) < M .

(ii) The first return time of the critical points in the Julia set to
⋃

F−1BR(Fci) is greater
than a constant τ chosen so that αk > 16µmax M2 > 1 , for k ≥ τ .

(iii) R′ is so small that 16 R′ sup |F ′| / infn (αn)2 ≤ R M−1 .

(iv) R′ is so small that there are no critical points in the 2R′-neighborhood of the Julia set
inside the Fatou set.

Dictionary of constants. For the sake of clarity we list here other constants and indicate
their mutual dependence and places of introduction.

L = const(R′, q), K, R2t = const(L, R′), and C(p) = const(L, R′, p) in Lemma 2.4,

C3t = const(R2t) in Lemma 2.5,

L′′ = const(C3t, R2t), L′ = const(L′′) in Subsection 3.2.

2.4 Types of orbits

The general scheme of decomposing backward orbits into “expansive” blocks was introduced in
[14] for Collet-Eckmann dynamics. Despite many similarities, our setting is substantially less
hyperbolic than that given by the Collet-Eckmann condition. Though it is not possible to use
directly the estimates of [14] and new results are needed, the strategy to capture expansion is
similar: we classify pieces of orbits, depending on whether they are close to critical points or
not, and derive expansion estimates. We will obtain three different types of estimates, which
when combined will yield “expansion” of the derivative along any orbit.

First type. Our objective is to estimate expansion along pieces of the backward orbit which
“join” two critical points, i.e. there is a disk in a vicinity of the first critical point which can
be pulled back conformally along the orbit until its boundary hits the second critical point.

The formulation of Lemma 2.3 has to encompass the possibility of critical points with
different multiplicities and hence it does not guarantee immediate expansion.

Definition 2.1 A sequence F−n(z), · · · , F−1(z), z of preimages of z is of the first type with
respect to critical points c1 and c2 if

1) Shrinking neighborhoods Uk for Br(z), 1 ≤ k < n, avoid critical points and r ≤ 2R′.
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2) The critical point c2 ∈ ∂Un,

3) The critical point c1 ∈ F−1BR(Fz).

To simplify notation set µi := µ(ci), d2 := dist (F−nz, c2), and d1 := dist (z, c1). Let r′2
be the maximal radius so that Br′2(F

−nz) ⊂ F−n(Br/2(z)). For consistency, put r1 := r.

Lemma 2.3 For any sequence y = F−n(z), · · · , F−1(z), z of preimages of the first type and
any µ ≤ µmax we have

1)
∣∣∣(Fn)′ (y)

∣∣∣µ > αn (γn)µmax 2µmax (d2)µ2−1

(r′2)µ−1
(r1)µ−1

(r1+d1)µ1−1 ,

2) (d2)µ2 < (max(r1, d1))µ1(γn)−µmax,

3) dist (Fy, Fc2) ≤ R .

Proof: By the construction the map F−(n−1) : B∆n−1 r1(z) → Un−1 is conformal. The Köbe
distortion lemma 2.1 implies that

dist (Fy, Fc2) ≤ (1 − δn)(2 − δn)
δn

∆n−1 r1

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣−1

≤ 2R′

δn
sup |F ′|

∣∣∣(Fn)′ (Fc2)
∣∣∣−1

≤ 2R′

δn
sup |F ′| δn / (αn)2 ≤ R , (4)

and the third inequality follows by the choice of R′ (see (iii)).
We prove the first inequality. The condition 2) of Definition 2.1 implies that Fnc2 ∈ ∂Br∆n .

Hence
dist (Fnc2, c1) ≤ dist (Fnc2, z) + dist (z, c1) ≤ r1 + d1 .

Since dist
(
Fn+1c2, F c1

)
is small (less than (1 + sup |F ′|)R), by the choice of R we have

|F ′(Fnc2)| ≤ Mdist (Fnc2, c1)
µ1−1. Thus∣∣∣∣(Fn−1

)′
(Fc2)

∣∣∣∣ ≥
∣∣∣(Fn)′ (Fc2)

∣∣∣ 1
Mdist (Fnc2, c1)

µ1−1 ≥ σn

M(r1 + d1)µ1−1
. (5)

Considering the conformal map F−(n−1) : Br∆n−1(z) → Un−1 , by the Köbe distortion
lemma 2.1 we obtain that∣∣∣∣(F−(n−1)

)′
(Fnc2)

∣∣∣∣ ≥ δn

(2 − δn)3

∣∣∣∣(F−(n−1)
)′

(z)
∣∣∣∣ ,

and therefore ∣∣∣(Fn)′ (y)
∣∣∣ ≥ δn

8M

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣ dist (y, c2)

µ2−1 . (6)
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Together with the estimate (5) this yields

∣∣∣(Fn)′ (y)
∣∣∣ ≥ δn

8M2
σn

(d2)µ2−1

(r1 + d1)µ1−1
.

By the Köbe lemma, the image of the map F−n : Br1/2(z) → Un contains a ball of radius
1
8 r1

∣∣∣(Fn)′ (y)
∣∣∣−1

and the center y. Hence

∣∣∣(Fn)′ (y)
∣∣∣ ≥ r1

8r′2
. (7)

Combining the above estimate raised to the power (µ− 1) with the previous one we obtain

∣∣∣(Fn)′ (y)
∣∣∣µ ≥ δn

8µM2
σn

(d2)µ2−1

(r′2)µ−1

(r1)µ−1

(r1 + d1)µ1−1

=
δn

8µM2
(δn)−1 (αn)2 (γn)µmax

(d2)µ2−1

(r′2)µ−1

(r1)µ−1

(r1 + d1)µ1−1

> αn (γn)µmax 2µmax
(d2)µ2−1

(r′2)µ−1

(r1)µ−1

(r1 + d1)µ1−1
.

The last inequality holds since by the choice of R, n ≥ τ .
Note that using the inequality (5) we can modify the estimate (4) by writing

(d2)µ2 ≤ M dist (Fy, Fc)

≤ (1 − δn)(2 − δn)
δn

∆n−1 r1

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣−1

≤ M
2 r1

δn
· M(r1 + d1)µ1−1

σn

≤ 2µmax M2 (max(r1, d1))
µ1 (αn)−2 (γn)−µmax

= 2µmax M2 (αn)−2 (max(r1, d1))µ1 (γn)−µmax < (max(r1, d1))µ1 (γn)−µmax

which completes the proof of the second inequality.

�

Second type. A piece of a backward orbit is of the second type if there exists a neighborhood
of size R′ which can be pulled back univalently along the backward orbit. Type two preimages
yield expansion along pieces of orbits of a uniformly bounded length. In this setting, type 2
corresponds to pieces of backward orbits which stay at a definite distance from the critical
points.

Definition 2.2 Let dist (z, JF ) ≤ R′/2. A sequence F−n(z), · · · , F−1(z), z of preimages of z
is of the second type if the ball BR′(z) can be pulled back univalently along it.
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Lemma 2.4 Let II(z) be the set of all preimages of the second type of some point z. Denote
n(y) := n if Fny = z.

1. There exists a constant L > 0 so that the following holds:

inf
y∈II(z), n(y)≥L

∣∣∣(Fn)′ (y)
∣∣∣ > 6 . (8)

2. If the Poincaré series Σq(v) converges for some point v, then L can be chosen so that

∑
y∈II(z), n(y)≥L

∣∣∣(Fn)′ (y)
∣∣∣−q

<
1
36

.

3. Once L is chosen there exist positive constants K and C(q) such that

∑
y∈II(z),n(y) ≤ L

∣∣∣(Fn)′ (y)
∣∣∣−q

< C(q) , and∣∣∣(Fn)′ (y)
∣∣∣ > K for every y ∈ II(z), n(y) ≤ L .

4. Once L is chosen there is a positive R2t such that for any point z and its second type
preimage y = F−Lz of order L we have

B2R2t(y) ⊂ F−L (BR′(z)) .

Proof: The proof of the first part is standard and follows from the compactness argument.
Suppose that the claim does not hold. Then there is an infinite collection of sequences of the
second type

zi, F−1zi, . . . , F−ni(zi)

such that ni → ∞ and
∣∣∣(Fni)′ (F−ni(zi))

∣∣∣ ≤ 6. Consider the preimages F−ni

(
BR′/2(z′i)

)
�

F−ni(zi), where z′i is the closest to zi point in JF . Without loss of generality we can assume that
R′ � diam JF . By the Köbe distortion lemma 2.1, any of these preimages contains a round
ball around F−ni(z′i) of the radius larger than η := R′/(8 · 6). Let y be an accumulation point
of the sequence F−ni(z′i) ∈ JF . By the construction, there is an increasing subsequence {kj}
of the sequence {nj} such that the images of Bη/2(y) under F kj are contained in BR′(z) �⊃ JF

and we arrived at a contradiction, since y ∈ JF and the Julia set has eventually onto property
(see Theorem 1 in [6]).

To prove the second part, we recall again that if the Poincaré series for v converges then v
must be a non-exceptional point, i.e. with preimages dense in the Julia set. We can fix finitely
many of them, say v1, . . . , vn, so that they are R′/4-dense in J and their Poincaré series will
also converge. Then for any point z with dist (z, JF ) < R′/2 there is a point vj ∈ B3R′/4(z).
By the Köbe distortion lemma 2.1, we can write

∑
y∈II(z)

∣∣∣(Fn)′ (y)
∣∣∣−q

� Σq(vj) ≤ max
j

Σq(vj) � Σq(v) < ∞ ,
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and after a proper choice of L the second inequality of the lemma follows.
For the third part, we use the Köbe distortion lemma 2.1,

1 � diam (F−nBR′(z)) ≥ 1
4

R′
∣∣∣(F−n)′ (z)

∣∣∣ =
1
4

R′
∣∣∣(Fn)′

(
F−n(z)

)∣∣∣ .

Both statements easily follow.
The fourth part is easy by compactness argument.

�

Third type. The third type gives more leeway in choosing blocks than the types 1 and 2. In
[14] a more restrictive approach was used. Blocks of type 3 connect the large scale with critical
points.

Definition 2.3 A sequence F−n(z), · · · , F−1(z), z of preimages of z is of the third type with
respect to the critical point c2 if

1) Shrinking neighborhoods Uk for Br(z), 1 ≤ k < n, avoid critical points and r ≤ 2R′ ,

2) The critical point c2 ∈ ∂Un .

The next lemma estimates the expansion along the third type preimages. To simplify
notation set µ2 := µ(c2), d2 := dist (F−nz, c2). Let r′2 be the maximal radius so that
Br′2(F

−nz) ⊂ F−n(Br/2(z)). For consistency, put r1 := r.

Lemma 2.5 There exists C3t > 0 such that for any sequence of preimages of the third type
F−n(z), · · · , F−1(z), z and any µ ≤ µmax we have

1)
∣∣∣(Fn)′ (y)

∣∣∣µ > C3t αn (γn)µmax (d2)µ2−1

(r′2)µ−1 (r1)µ−1 ,

2) dist (Fy, Fc2) ≤ R ,

If the sequence of the third type is preceded by a sequence of the second type of length L then
we can substitute R2t for r1 in the estimate 1).

Proof: The proof of the second inequality follows from (4). Indeed, we did not use there the
existence of a critical point close to z, so the proof works for the third type of preimages. The
equation (4) implies the following estimate

(d2)µ2 ≤ M dist (Fy, Fc) ≤ M 2R′ sup
∣∣F ′∣∣ /(αn)2 ,

and therefore
dist (y, c) = o(1) , n → ∞ . (9)
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The inequalities (6) and (7) from the proof of Lemma 2.3 are valid also for the third type
preimages. So using the same notation, we can write∣∣∣(Fn)′ (y)

∣∣∣ ≥ δn

8M

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣ (d2)µ2−1

≥ δn

8M

σn

sup |F ′| (d2)µ2−1 ,

and ∣∣∣(Fn)′ (y)
∣∣∣ ≥ r1

8r′2
.

Combining these estimates we conclude that∣∣∣(Fn)′ (y)
∣∣∣µ ≥ δn

8µM

σn

sup |F ′|
(d2)µ2−1

(r′2)µ−1
(r1)µ−1

> C3t αn (γn)µmax
(d2)µ2−1

(r′2)µ−1
(r1)µ−1 ,

where
C3t := inf

n

{
αn

(
8µmaxMsup |F ′|)−1

}
> 0 .

It remains to observe that the last assertion of the lemma is true since if a sequence of the third
type is preceded by a sequence of the second type of length L then r1 > R2t by Lemma 2.4.

�

3 Specification of orbits

We will estimate expansion along the backward orbits by decomposing them into blocks of
different types described in Section 2.

Lemma 2.4, which governs the expansion in the large scale, was stated in the proximity of
the Julia set, and to apply it we will need the following Lemma, which holds in the absence of
parabolic points (see Lemma 5 in [14]).

Lemma 3.1 There exists ε > 0 such that the backward orbit of any z in the ε-neighborhood of
the Julia set stays in the R′/2-neighborhood of the Julia set.

This means that the assertions of Lemma 2.4 are valid for type 2 preimages F−n(z), n > 0,
provided z belongs to an ε-neighborhood of the Julia set.

Definition 3.1 We say that a backward orbit y = F−n(z), . . . , z is decomposed into a sequence
of blocks if there exists an increasing sequence of integers 0 = n0 < . . . < nk = n so that for
every i = 0, . . . , k − 1 the orbit F−ni+1(z), . . . , F−ni(z) is of type 1, 2, or 3. Give a pair of
integers 0 ≤ r < l ≤ n, we say that a subsequence F−nl(y), . . . , F−nr(y) yields expansion M if

|(Fnl−nr−1)′(y)| ≥ M .

The point F−nl(z) is called a terminal point of the subsequence.
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Recall that σn := minc∈Crit

{∣∣∣(Fn)′ (Fc)
∣∣∣} was represented as the product (αn)2 (γn)µmax / δn .

The sequence {δn} will majorate the distortion in the shrinking neighborhoods construction,
{αn} will swallow all remaining constants, and {γn} will provide the desired expansion.

Lemma 3.2 (Main Lemma) Let ε be supplied by Lemma 3.1. Assume that a rational func-
tion F satisfies the summability condition with an exponent α ≤ 1 and set β = µmaxα/(1− α).
Suppose that a point z belongs to ε-neighborhood of the Julia set J and a ball B∆(z) can be pulled
back univalently by a branch of F−N . We claim that there exist positive constants L′ > L, K
independent of z, ∆, and ε such that the sequence F−N (z), . . . , z can be decomposed into blocks
of types 1, 2, and 3, and

• every type 2 block, except possibly the leftmost one, has the length contained in [L, L′) and
yields expansion 6,

• the leftmost type 2 block has the length contained in [0, L] and yields expansion K > 0,

• all subsequences of the form 1 . . . 13, except possibly the rightmost one, yield expansion

γkj
. . . γk1γk0 ,

ki being the lengths of the corresponding blocks,

• the rightmost sequence of the form 1 . . . 13 yields expansion

γkj
. . . γk1γk0 ∆(1−µ(c)/µmax) if a critical point c ∈ B∆(z) ,

γkj
. . . γk1γk0 ∆(1−1/µmax) if otherwise .

3.1 Inductive decomposition of backward orbits

Let z be a point which satisfies the assumptions of Lemma 3.2. We fix N and a sequence of the
preimages F−N (z), . . . , F−1(z), z. We will split this sequence in the subsequences of the first,
second, and third types.

Namely we will define by induction sequences {nj} and {zj := F−nj (z)} such that n0 =
0, nm−1 > N − L, nm = N , and

I) For every j > 0 the sequence F−nj−1z, . . . , F−njz is of the first, second, or third type.

II) For j > 0 either the sequence F−nj−1z, . . . , F−njz is of the second type (case IIa)), or
some critical value F (cj) ∈ BR(Fzj) (case IIb)).

Some additional properties will be discussed in the process of the construction.
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Base of induction. If the shrinking neighborhoods for B2R′(z0) do not contain critical points,
we set n1 := L, z1 := F−Lz, and the condition IIa) is satisfied for z1. We start from j = 1 and
continue the inductive procedure as below.

By lemma 3.1, dist (zj , J) < R′/2, and hence sequences of the second type will yield desired
expansion.

Otherwise we take r := ∆. By the choice of ∆, the shrinking neighborhoods for B∆(z) omit
the critical points. We increase r continuously until certain shrinking neighborhood Uk hits
some critical point c, i.e. c ∈ ∂Uk. It must happen for some r = r0 with ∆ < r0 < 2R′. Set
n1 := k. Then z1 is the third type preimage of z0, and the condition IIb) for z1 is satisfied by
the Lemma 2.3.

Inductive procedure. Suppose we have already constructed zj .

Case IIa. We enlarge the ball Br(zj) continuously increasing the radius r from 0 until
one of the following conditions occurs:

1) for some k the shrinking neighborhood Uk for Br(zj) hits some critical point c′, c′ ∈ ∂Uk,

2) the radius r reaches the value of 2R′.

In the case 1) we put nj+1 := nj + k. The condition I) is satisfied: zj+1 is the third type
preimage of zj . The condition IIb) is satisfied by Lemma 2.5.

In the case 2) set nj+1 := nj + L. Then zj+1, dist (zj+1, JF ) < R′/2 is the second type
preimage of zj of the length L. Clearly, zj+1 satisfies conditions I) and IIa).

Case IIb. Suppose that we have IIb), but not IIa). Set r = 0. The shrinking neighbor-
hoods Ul for Br(zj), l ≤ N − nj , do not contain critical points. We increase r continuously
until certain domain Uk hits some critical point c′, c′ ∈ ∂Uk. This must occur for some r < 2R′,
since IIa) is not satisfied for zj .

Let nj+1 := nj + k. Then the condition I) is satisfied: zj+1 is the first type preimage of zj.
Lemma 2.3 implies the condition IIb).

Coding. As a result of the inductive procedure, we have decomposed the backward orbit of
the point z into pieces of type 1, 2 and 3. This gives a coding of backward orbits by sequences
of 1’s, 2’s and 3’s. Not all combinations of the entries are admissible here. By the construction,
type 3 is always preceded by type 2 except the coding sequence starts with 3. For example we
could have a sequence of the form

. . . . . . 11111323222211113221113 ,

F acts from the left to the right and our inductive procedure has started from the right end.
All pieces of the second type, except, maybe, for the very last one, have the length L.

This decomposition of backward orbits into pieces of different types is by no means the only
one satisfying the desired properties. On the contrary, in the next subsection we will have to
reshuffle the coding slightly to obtain the claim of Lemma 3.2.
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3.2 Estimates of expansion

Growth of the derivative along sequences 1 . . . 13. Consider a sequence 1 . . . 132 obtained
in the inductive construction. We will estimate expansion along a part of the orbit coded as
1 . . . 13 ⊂ 1 . . . 132. Suppose that in the sequence 1 . . . 13 the consecutive pieces of type 1 have
the lengths ki, i = 1 . . . j, and the piece of type 3 has the length k0. Let k = k0 + . . . kj. By
Lemma 2.3 and Lemma 2.5 with µ := µmax we have that

∣∣∣∣(F k
)′

(y)
∣∣∣∣µmax

>
j∏

i=1

αki
(γki

)µmax 2µmax
d

µi+1−1
i+1

(r′i+1)µmax−1

rµmax−1
i

(ri + di)µi−1

· C3t αk1 (γk1)
µmax

(d2)µ2−1

(r′2)µmax−1
(R2t)µmax−1

>


 C3t

j∏
i=0

αki
(γki

)µmax


 · (R2t)µmax−1 · d

µj+1−1
j+1

(r′j+1)µmax−1

·

 j∏

i=1

2µmax
dµi−1

i

(r′i)µmax−1

rµmax−1
i

(ri + di)µi−1


 . (10)

Since r′i < min(ri, di) and µi ≤ µmax, we obtain that

2µmax
dµi−1

i

(r′i)µmax−1

rµmax−1
i

(ri + di)µi−1
> 1 . (11)

Also r′j+1 < dj+1 and

d
µj+1−1
j+1

(r′j+1)µmax−1
> 1 .

Combining (10) and the estimates above, we obtain that

∣∣∣∣(F k
)′

(y)
∣∣∣∣µmax

> (R2t)µmax−1 · C3t

j∏
i=0

αkj
(γki

)µmax . (12)

If the rightmost sequence of the form 1 . . . 13 is not proceeded by 2, then similarly as above,
using Lemma 2.3, we obtain that

∣∣∣∣(F k
)′

(y)
∣∣∣∣µmax

> C3t

j∏
i=0

αkj
(γki

)µmax · ∆µmax−µ(c) (13)

if there is a critical point c inside B∆(z). Otherwise we use Lemma 2.4 instead to infer that

∣∣∣∣(F k
)′

(y)
∣∣∣∣µmax

> C3t

j∏
i=0

αkj
(γki

)µmax · ∆µmax−1 . (14)
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Derivation of the Main Lemma. Consider a sequence of the preimages F−m(z), . . . , z with
a coding sequence of the form

. . . . . . 11111323222211113221113 .

If a piece of the backward orbit of the form 11 . . . 13 is long enough then the expansion prevails
over accumulation of distortion and small scale constants in the estimate (12). Otherwise, it
will be of the uniformly bounded length and and we will treat it as type 2, converting the code
1 . . . 132 into 2.

We proceed with estimates along the above lines to complete the proof of Lemma 3.2. Since
limi→∞ αi = ∞, there exists τ such that αi ≥ 8 for i ≥ τ . Set

α′
n := inf



∏
j

αij : i0 + i1 + i2 + . . . ≥ n; i1, i2, . . . ≥ τ


 ,

and observe that limn→∞ α′
n = ∞. Now we choose large L′′ so that for n ≥ L′′ one has

α′
n C3t (R2t)µmax−1 ≥ 1 .

A new coding of the preimages F−m(z), . . . , z is designed as follows: take a piece of the
backward orbit corresponding to a subsequence 1 . . . 132 of the length k. The consecutive pieces
(counted from the right to the left) have the lengths ki, i = 0 . . . j. Consider two possible cases:

1) If k < L′′ then 1 . . . 132 is replaced by 2. The corresponding block of the preimages is
indeed of type 2 and the length n := L + k with n < L′ := (L + L′′).

2) If k ≥ L′′ then 1 . . . 132 remains unchanged and by the estimate (12) and the definition of
L′′, the derivative of F k(y) is greater than γkj

· · · γk1 . The last pair of estimates of Main
Lemma 3.2 follows immediately from (13) and (14) and the definition of L′′.

The proof of Main Lemma 3.2 is completed.

Strong expansion along some sequences 11 . . . 1. Consider a subsequence 11 . . . 1 ob-
tained in the inductive construction. Suppose that x is a terminal point of this subsequence
and the consecutive pieces of type 1 have lengths ki, i = 0, . . . , j. Following the notation of
Lemma 3.2, we prove the lemma below, which will be later used in our investigation of conformal
and invariant densities.

Lemma 3.3 Let G be a set of indexes j such that dj < rj and µ′
max be the maximal mul-

tiplicity which occurs in the sequence {µj : j ∈ G}. Choose an index j from the set G′ :=
{j ∈ G : µj = µ′

max} and denote k =
∑j−1

i=0 ki. Then

∣∣∣∣(F k
)′

(x)
∣∣∣∣ >

j−1∏
i=0

γki
.
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Proof: If µ := µ′
max then Lemma 2.3 and Lemma 2.5 imply a counterpart of the estimate (10),

∣∣∣∣(F k
)′

(x)
∣∣∣∣µ

′
max

>
j−1∏
i=0

αki
(γki

)µ′
max 2µ′

max
d

µi+1−1
i+1

(r′i+1)µ′
max−1

r
µ′

max−1
i

(ri + di)µi−1

>


 j−1∏

i=0

αki
(γki

)µ′
max


 · dµ0−1

0

(r′0)µ′
max−1

(15)

·

 j−1∏

i=0

2µ′
max

dµi−1
i

(r′i)µ′
max−1

r
µ′

max−1
i

(ri + di)µi−1


 · r

µ′
max−1

j

(rj + dj)µj−1 .

We can not proceed exactly as in (10), since it was essential that µmax was the maximal
multiplicity. Instead, we use the properties of µ′

max and the set G as follows:

(i) If i ∈ G then r′i < min(ri, di) and µi ≤ µ′
max. We see that the estimate (11) holds with

µmax replaced by µ′
max,

2µ′
max

dµi−1
i

(r′i)µ′
max−1

r
µ′

max−1
i

(ri + di)µi−1
> 1 .

(ii) If i /∈ G then di ≥ ri > r′i and the same estimate is still valid,

2µ′
max

dµi−1
i

(r′i)µ′
max−1

r
µ′

max−1
i

(ri + di)µi−1
≥ 2µmax

dµi−1
i

(2di)µi−1

r
µ′

max−1
i

(r′i)µ′
max−1

> 1 .

(iii) By our choice, j ∈ G′. This means that dj < rj and µj = µ′
max. Hence,

2µ′
max

r
µ′

max−1
j

(rj + dj)µj−1 ≥ 2µmax
r
µ′

max−1
j

(2rj)µ′
max−1

> 1 .

(iv) By the definition, r′0 < d0 and
dµ0−1

0

(r′0)µ′
max−1

> 1 .

Inserting the estimates (i) − (iv) into (15) we obtain the claim of the Lemma.

�

Proof of Proposition 2.1. Fix a point z sufficiently close to the Julia set and a branch of
F−n at z. Apply Lemma 2.2 with m = 4. Then

∑
n

(γn)−β < 1/4 , β :=
µmaxα

1 − α
.
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Let γ′
n := inf

{∏
j γij : i0 + i1 + i2 + . . . = n

}
. By simple algebra,

∑
n

(γ′
n)−β <

∑
n

(γn)−β +

(∑
n

(γn)−β

)2

+

(∑
n

(γn)−β

)3

+ . . .

<
1
4

+
(

1
4

)2

+
(

1
4

)3

+ . . . =
1
3

.

Lemma 3.2 gives a decomposition of the orbit F−n(z), . . . , F−1(z), z into pieces of type 1,
2, and 3, with the following properties (we restate them using new notation):

(i) each piece of the form 1 . . . 13 of length k, except the rightmost one, yields expansion γ′
k ,

(ii) the rightmost piece of the form 1 . . . 13 of length k yields expansion γ′
k∆

1/µmax−1 ,

(iii) each piece of the form 2, except possibly the leftmost one, has the length l ∈ [L, L′) and
yields expansion 6 ≥ λl, where λ := 61/L′

> 1 ,

(iv) the leftmost piece of the form 2, has the length l ∈ [0, L) and yields expansion K .

If we set

ωn := inf


K λk0

∏
j≥1

γ′
kj

: k0 + k1 + k2 + . . . ∈ [n − L, n)


 ,

then properties (i)–(iv) above clearly imply∣∣∣(Fn)′ (F−nz)
∣∣∣ > ∆1−1/µmax ωn .

On the other hand,
∑
n

(ωn)−β < K−β
(
1 + λ−β + λ−2β + . . .

)

·

∑

n

(γ′
n)−β +

(∑
n

(γ′
n)−β

)2

+

(∑
n

(γ′
n)−β

)3

+ . . .




< K−β
(
1 − λ−β

)−1
(

1
3

+
(

1
3

)2

+
(

1
3

)3

+ . . .

)

< Kβ
(
1 − λ−β

)−1 1
2

< ∞ ,

which completes the proof of the first inequality of Proposition 2.1. The proof of the second,
when a critical point c ∈ B∆(z), is very much the same.
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3.3 Summability along backward orbits

Fix a point z and a positive number ∆. Let H(z, ∆) stand for a set of all preimages of z
such that a ball B∆(z) can be pulled back univalently along the corresponding branch. By
Lemma 3.2, every backward orbit of z which terminates at y ∈ H(z, ∆) can be decomposed
into blocks of type 1, 2, or 3.

Definition 3.2 In the decomposition of the Main Lemma, let x ∈ H(z, ∆) be a point which
starts a type 3 block. Denote by I(x|z) = I∆(x|z) a set of all y ∈ H(z, ∆) which are the
endpoints of type 1 blocks preceded by exactly one type 3 block. For example, preimages of x
which are endpoints of blocks 13, 113, . . . belong to I(x|z). Note that the definition depends on
the choice of ∆.

Let L′ > L be the constants supplied by the Main Lemma. In the decomposition of the
Main Lemma, let x ∈ H(z, ∆) be a point which starts a type 2 block. Denote by IIl(x|z) and
IIs(x|z) correspondingly the sets of all “long” (of order L′ > n(y) ≥ L) and “short” (of order
n(y) < L) type 2 preimages y of x obtained in the decomposition of Lemma 3.2. This definition
also depends on the choice of ∆, but all estimates involving follow from Lemma 2.4 and are
independent of ∆, so we simplify the notation by omitting ∆.

We will drop z from the notation of I(x|z), IIs(x|z), IIl(x|z) whenever no confusion can
arise.

Lemma 3.4 Let β = µmaxα/(1− α). If a rational function F satisfies the summability condi-
tion with an exponent α ≤ 1 then there exists ε > 0 so that for every point z from ε-neighborhood
of the Julia set J and every set I(x|z) = I∆(x|z),

∑
y∈I(x|z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−β

< 1
3 if x �= z ,

∑
y∈I(x|z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−β

< 1
3 ∆β(1/µmax−1) if x = z ,

∑
y∈I(x|z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−β

< 1
3 ∆β(µ(c)/µmax−1) if x = z and a critical point c ∈ B∆(z).

Proof: We will work with sequences αn, γn, and δn supplied by Lemma 2.2. Setting m :=
1/(16 deg F ) in Lemma 2.2, we obtain that

∑
n(γn)−β < 1/(16 deg F ).

Observe that any point y ∈ F−k(z) has at most 4 deg F preimages of a given length which
are of the first or the third type. In fact, since pull-backs to the critical values are univalent,
there is only one way to hit a specific critical value after particular number of steps, and thus
only µ(c) ways to hit a critical point c, but∑

c

µ(c) = #{c} +
∑

c

(µ(c) − 1) ≤ 2(deg F − 1) + 2(deg F − 1) < 4 deg F . (16)

Therefore, for every sequence k0, k1, . . . , km of positive integers there are at most (2 deg F )m+1

sequences 1 . . . 13 with the corresponding lengths of the pieces of type 1 and 3. By the Main
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Lemma 3.2, if x �= z then for every y ∈ I(x)∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣ ≥ γk0γk1 . . . γkm

and

∑
y∈I(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−β

<
∑

m,k0,k1,...,km

(4 deg F )m+1 (γk0γk1 . . . γkm)−β

< 4 deg F
∑

k γ−β
k + (4 deg F

∑
k γ−β

k )2 + (4 deg F
∑

k γ−β
k )3 + . . .

<
1
4

+
(

1
4

)2

+
(

1
4

)3

+ . . . =
1
3

. (17)

If x = z then it might happen that the rightmost sequence begins with 3 or 1. Similarly as
before, using the estimate of the Main Lemma, we obtain that

∑
y∈I(z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−β

< 1
3 ∆β(1/µmax−1) , or (18)

∑
y∈I(z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−β

< 1
3 ∆β(µ(c)/µmax−1) , if a critical point c ∈ B∆(z) .

This completes the proof of Lemma 3.4.

�

Lemma 3.5 Assume that the Poincaré series with exponent q is summable for some point
v ∈ Ĉ. Then there exists ε > 0 so that for every point z from ε-neighborhood of the Julia set J
and every set IIl(x|z) and IIs(x|z),

∑
y∈IIl(x|z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−q

< 1
36 ,

∑
y∈IIs(x|z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−p

< C(p) for any p .

Proof: This is a reformulation of Lemma 2.4 in the new notation.

�

4 Poincaré series

In this section we analyze Poincaré series, particularly proving a self-improving property of the
Poincaré exponent. Theorem 1 is a direct consequence of this property. We recall that H(z, ∆)
stands for the set of all preimages F−nz, n ∈ N, such that the ball B∆(z) can be pulled back
univalently along the corresponding branch of F−n.
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Proposition 4.1 (Self-improving property of the Poincaré exponent) Suppose that a
rational function F satisfies the summability condition with an exponent

α <
q

µmax + q
,

q > 0, and the Poincaré series with exponent q converges for some point v, Σq(v) < ∞. Then
there exist p < q, ε > 0, and C(ε, p) so that for every point z in the ε-neighborhood of the Julia
set ∑

y∈H(z,∆)

∣∣∣(Fn)′ (y)
∣∣∣−p

< C ∆p(
µ(c)

µmax
−1)

if a critical point c ∈ B∆(z) ,∑
y∈H(z,∆)

∣∣∣(Fn)′ (y)
∣∣∣−p

< C ∆p( 1
µmax

−1)
otherwise .

Corollary 4.1 Assume that F satisfies the summability condition with an exponent

α <
q

µmax + q
,

q > 0, and there exists a point z ∈ Ĉ so that the Poincare series Σq(z) converges. Then

• δPoin(w) < q if w is at a positive distance from the orbits of the critical points,

• δPoin(c) < q if c is a critical point of the maximal multiplicity.

Proof: If the distance of w to the critical orbits in J is positive then all preimages of w belong
to H(w, ∆) with ∆ sufficiently small. This yields Σp(w) < ∞.

If c is a critical point of the maximal multiplicity µ(c) = µmax then

∑
y∈H(c,∆)

∣∣∣(Fn)′ (y)
∣∣∣−p

< C ∆p(
µ(c)

µmax
−1) = C ,

and passing with ∆ to zero, we obtain that
∑
n

∑
y∈F−nc

∣∣∣(Fn)′ (y)
∣∣∣−p

< C .

�

Corollary 4.2 If a rational function F satisfies the summability condition with an exponent
α < 2/(µmax + 2) and its Julia set is not the whole sphere, then there exists p < 2 so that the
conclusion of Proposition 4.1 holds.

Proof: If the Julia set is not the whole sphere and the Fatou set does not contain elliptic
components then there exists a point v ∈ Ĉ \ J such that the Poincaré series Σ2(v) converges.
This a classical area argument, [40]. It is enough to notice that there exists a small ball Bδ(v)
free from the critical orbits and with preimages pairwise disjoint.

�
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Proof of Theorem 1. Suppose that the Poincaré series Σq(v) converges for a point v ∈ Ĉ.
If q ≤ δPoin(J) then, by Corollary 4.1, there exist ε > 0 so that δPoin(J) ≤ q − ε < δPoin(J),
a contradiction. This means that for q = δPoin(J), the Poincaré series Σq(z) diverges for every
point z ∈ Ĉ. Hence, δPoin(z) ≥ δPoin(J) for every z ∈ Ĉ.

By the definition of the Poincaré exponent δPoin(J), for any ε > 0 there exist q < δPoin(J)+ε
and a point v ∈ Ĉ so that the Poincaré series Σq(v) converges. By Corollary 4.1, for all points
which are at the positive distance to the critical orbits and for all critical points of maximal
multiplicity one has δPoin(z) < δPoin(J) + ε and Theorem 1 follows.

Proof of Proposition 4.1. We use the inductive decomposition of backward orbits described
in Section 3.1. Let z be a point from ε-neighborhood of the Julia set. By Lemma 3.5,

∑
y∈IIl(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−q

<
1
36

.

But there are at most (deg F )L′
points in IIl(x), since these preimages are all of the order at

most (L′ − 1). Therefore by power means inequality (see e.g. Section 2.9 in [17]) we have for
p < q sufficiently close to q (namely p > q − q log 2 (L′ log (deg F ))−1 ):

∑
y∈IIl(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−p

<


 ∑

y∈IIl(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−q



p
q

· (deg F )L′ q−p
q

<

(
1
36

) p
q · (deg F )L′ q−p

q

<
1
6

· (deg F )L′ q−p
q <

1
3

.

Also by Lemma 3.5 ∑
y∈IIs(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−p

< C = C(p) .

We expand
∑

y∈H(z,∆)

∣∣∣(Fn)′ (y)
∣∣∣−p

by grouping preimages of the same kind into clusters.
We begin with z obtaining preimages of three kinds: I(z) = I∆(z), IIl(z) and IIs(z). Points in
IIs(z) are terminal while preimages y of the points in I(z) and IIl(z) are divided further. We
proceed in this fashion down the tree of preimages of z. If there is no critical point in B∆ we
obtain that

∑
y∈H(z,∆)

∣∣∣(Fn)′ (y)
∣∣∣−p

=
∑

z′∈IIs(z)

∣∣∣∣(Fn(z′)
)′

(z′)
∣∣∣∣−p

+
∑

z′∈I,IIl(z)

∣∣∣∣(Fn(z′)
)′

(z′)
∣∣∣∣−p

·
( ∑

z′′∈IIs(z′)

∣∣∣∣(Fn(z′′)
)′

(z′′)
∣∣∣∣−p

+
∑

z′′∈I,IIl(z′)

∣∣∣∣(Fn(z′′)
)′

(z′′)
∣∣∣∣−p
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·
( ∑

z′′′∈IIs(z′′)

∣∣∣∣(Fn(z′′′)
)′

(z′′′)
∣∣∣∣−p

+ . . .

))

≤ C +
(

1
3

+
1
3
(∆)p(1/µmax−1)

)(
C +

2
3

(C + . . .)
)

= C +
1
3

(
1 + (∆)p(1/µmax−1)

)
C

(
1 +

2
3

+
(

2
3

)2

+ . . .

)

=
(
2 + (∆)p(1/µmax−1)

)
C < 3C (∆)p(1/µmax−1) .

Otherwise, we have a stronger estimate∑
y∈H(z,∆)

∣∣∣(Fn)′ (y)
∣∣∣−p

< 3C (∆)p(µ(c)/µmax−1) .

This proves Proposition 4.1.

�

Generalization. In the proof of Proposition 4.1 we did not directly use the assumption about
the existence of a point v with Σq(v) < ∞. What we need is that there exists ε > 0 so that for
every z from the ε-neighborhood of the Julia set,

∑
y∈IIl(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−q

<
1
36

.

Combining this remark with Corollary 4.1, we obtain an estimate which will be used in the
proof of continuity of the Hausdorff dimension of Julia sets (Lemma 12.1).

Corollary 4.3 Assume that F satisfies the summability condition with an exponent

α <
p

µmax + p
,

p > 0, and there exist ε > 0 and q > p so that for every point point z from ε-neighborhood of
the Julia set, ∑

y∈IIl(x)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−q

<
1
36

.

Then δPoin(J) < q and δPoin(c) < q if c is a critical point of the maximal multiplicity.

5 Induced hyperbolicity and conformal measures

5.1 Inductive procedure with a stopping rule

We will decompose a sequence of preimages F−N (z), . . . F−1(z), z into blocks of types 2 and
1 . . . 13 using the usual inductive procedure with the following new stopping rule: at the first
occurrence of a type 2 sequence we stop the induction. For the reader’s convenience we will
describe the construction.
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Construction. We take shrinking neighborhoods {Uk} for B2R′(z). If they do not contain
the critical points we form one block of type 2 of the length N . Otherwise, we set r = 0 and
increase it continuously until certain shrinking neighborhood Uk hits a critical point c, c ∈ ∂Uk.
It must happen for some 0 < r < 2R′. Clearly, this means that r0 := dist

(
fk(c), z

)
. We set

n1 := k and z1 := Fn1(z). Then z1 is a third type preimage of z and the ball Br0 can be pulled
back univalently by FN along the backward orbit.

Inductive procedure. Suppose we have already constructed zj = F−nj (z) which is of
type 1 or 3. We enlarge the ball Br(zj) continuously increasing the radius r from 0 until one
of the following conditions is met:

1) for some k ≤ N − nj the shrinking neighborhood Uk for Br(zj) hits a critical point
c ∈ Crit, c ∈ ∂Uk,

2) radius r reaches the value of 2R′.

In the case 1) we put nj+1 := nj + k. Clearly, zj+1 := F−nj+1(z) is a type 1 preimage of
zj . If 2) holds, we set zj+1 := F−N (z) which is a type 2 preimage of zj . This terminates the
construction in this case.

Coding. As a result of the inductive procedure, we can decompose the backward orbit of
a point z into pieces of type 1, 2 and 3. This gives a coding of backward orbits by sequences
of 1’s, 2’s and 3’s. By the construction, only the following three types of codings are allowable:
2, 1 . . . 3, 21 . . . 13. We recall that according to our convention, during the inductive procedure
we put symbols in the coding from the right to the left.

We attach to every sequence of preimages of z the sequence kl, . . . k0 of the lengths of the
blocks of preimages of a given type in its coding. Again our convention requires that k0 stands
always for the length of the rightmost block of preimages in the coding. Clearly, k0+· · ·+kl = N .

5.2 Most points go to large scale infinitely often

We recall that a Jacobian of a δ-conformal measure ν is equal to |F ′|δ (see Definition 1.3),

dν(F (z)) =
∣∣F ′(z)

∣∣δ dν(z) .

Consider a subset of points in J which infinitely often go to the large scale of size R′ with
a bounded distortion:

J∗ :=
{
z ∈ J : ∃ nj → ∞, with Fnj univalent on F−nj

(
B
(
Fnjx, R′))} .

Note that the value of R′ is already fixed and does not depend on a point.

Proposition 5.1 Suppose that a rational function F satisfies the summability condition with
an exponent

α <
p

µmax + p
.

Then for any p-conformal measure ν with no atoms at critical points ν(J \ J∗) = 0.
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Proof: For every x ∈ J and every k ∈ N, we use the inductive procedure of Section 5.1 to
decompose the sequence x, . . . , F k(x) of preimages of F k(x) into blocks as either 211 . . . 113 or
2. The procedure is stopped at the first occurrence of type 2 block, which might be of arbitrary
length. Particularly, it might be of length zero.

Denote by Cx the set of all codes obtained for x. Points in J∗ are precisely those for which
we get infinitely many different type 2 sequences. Hence, if x ∈ J \J∗, then x is a terminal point
of an infinite number of sequences 2111 . . . 113 with only a finite choice of type 2 blocks. Let
k(x) be the minimal number for which infinitely many sequences from Cx have the same type 2
block of length k(x). Denote Xk := {x : k(x) = k} and observe that the sets {Xk; k = 0, 1, . . .}
form a countable partition of J \ J∗.

If ν has no atoms at critical points and F k(X) is measurable then

ν(F kX) = 0 ⇐⇒ ν(X) = 0 ⇐⇒ ν(F−kX) = 0.

Since F k(Xk) ⊂ X0 and consequently J \ J∗ ⊂ ∪kF
−k(X0), it is sufficient to prove that

ν(X0) = 0. Without loss of generality we can exclude from X0 all preimages of the critical
points since they are of zero ν measure. Every point x ∈ X0 must be terminal for infinitely
many different subsequences 1 . . . 1. Otherwise the orbit of x ∈ X0 passes near the critical
points only finitely many times and its distance to Crit is positive. This also means that there
are arbitrary long type 3 blocks in the codes of x. The estimate (9) yields a contradiction.

By very much the same argument, using that the distance from x ∈ X0 to Crit is positive,
we obtain that there are only finitely many possibilities for the leftmost block of type 1 in
the sequences from Cx (its length has to be bounded). Hence we can choose infinitely many
sequences from Cx with the same leftmost block. Next we consider the second block from the
left and repeat the above procedure to procure infinitely many sequences from Cx with the
same two leftmost blocks. We continue in this fashion until we build by induction an infinite
sequence 1111 . . . terminating at x. Denote corresponding parameters by dj , rj , r′j , cj , µj , nj

with j = 0,−1,−2, . . . (we use negative integers to preserve convention of enumerating from
the right to the left).

Let G be the set of indexes j such that dj < rj . The second inequality of Lemma 2.3 implies
that if j /∈ G then (dj+1)µj+1 < (dj)µj (γnj )

µmax . This means that G is infinite since otherwise
limj→−∞ dj = ∞. Now set µ′

max to be the maximal multiplicity which occurs infinitely often
in the sequence {µj : j ∈ G}. Let X ′

0(k) stand for the set of all points x ∈ X0 such that there
are no points of larger than k = µ′

max(x) multiplicity in G. We see that

X0 ⊂
µmax⋃
k=2

∞⋃
i=0

F−i(X ′
0(k)) .

Therefore, it is sufficient to show that ν(X ′
0(k) = 0 for k = 2, . . . , µmax. We fix k = µ′

max and
drop it from the notation of X ′

0(k).
Fix a point x ∈ X ′

0 and take an index j in the infinite set G′ := {j ∈ G : µj = µ′
max}. Set
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k =
∑j

i=−1 ki. Then, by Lemma 3.3,

∣∣∣∣(F k
)′

(x)
∣∣∣∣p >

−1∏
i=j+1

(γki
)p ,

and hence

dν(x) =
∣∣∣∣(F k

)′
(x)
∣∣∣∣−p

dν(F kx) <
−1∏

i=j+1

(γki
)−pdν(F kx) .

Assuming that ν(X ′
0) is positive, we proceed similarly as in the proof of Proposition 4.1 (note

that parameters ki, j depend on x),

+∞ =
∫

X′
0

#G′(x)dν(x) =
∫

X′
0

∑
j∈G′(x)

1 dν(x)

<

∫
X′

0

∑
j∈G′(x)

−1∏
i=j+1

(γki
)−p dν(F kx)

≤
∫

J

∑
F kx=z,j∈G′(x)

−1∏
i=j+1

(γki
)−p dν(z)

≤
∫

J

∑
x∈I(z)

−1∏
i=j(x)+1

(γki(x))
−p dν(z)

≤
∫

J

∑
j,k−1,k−2,...,kj+1

(4 deg F )|j−1| (γk−1γk−2 . . . γkj+1

)−p
dν(z)

<

∫
J

(
4 deg F

∑
k γ−β

k + (4 deg F
∑

k γ−β
k )2 + (4 deg F

∑
k γ−β

k )3 + . . .
)

dν(z)

<

∫
J

(
1
4

+
(

1
4

)2

+ . . .

)
dν(z) =

∫
J

1
3
dν(z) < + ∞ .

This yields a contradiction and proves the proposition.

�

5.3 Conformal measures

The notion of conformal measures was introduced to rational dynamics by D. Sullivan following
an analogy with Kleinian groups, see Definition 1.3. Loosely speaking, a probabilistic measure
ν, supported on the Julia set, is conformal with exponent δ, if its Jacobian is equal to |F ′|δ, i.e.

dν(F (z)) =
∣∣F ′(z)

∣∣δ dν(z) .

D. Sullivan proved in [40] that for every Julia set there exists a conformal measure with an
exponent δ ∈ (0, 2]. For hyperbolic Julia sets, there exists only one conformal measure which
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coincides with a normalized HDim(J)-dimensional Hausdorff measure. In general, it is more
difficult to describe analytical properties of conformal measures. For example, it is an open
problem whether there exists a non-atomic conformal measure for a given rational function.

We recall that a conformal dimension δconf (J) of J is defined as

δconf (J) = inf {δ : ∃ δ − conformal measure} .

A simple compactness argument (see [40]) shows that infimum is attained in the defini-
tion above. The following lemma is a version of standard Patterson-Sullivan construction of
conformal measures (cf. [40]:

Lemma 5.1 Let z be either a critical point of the maximal multiplicity in the Julia set, or a
point at a positive distance from the orbits of the critical points. Then there exists a δPoin(z)-
conformal measure.

Proof: If z is a critical point, then for any q > δPoin(z) there is an atomic conformal measure
supported on the preimages of z. To see this, normalize

∑
n

∑
y∈F−nz

∣∣∣(Fn)′ (y)
∣∣∣−q

1y ,

where 1y is a Dirac measure at y, to be a probabilistic measure.
If z is a point at a positive distance from the critical orbits then standard arguments of [40]

apply.

�

Lemma 5.2 Suppose that there exist a p-conformal measure η and a q-conformal measure ν
which have no atoms at critical points. If F satisfies the summability condition with an exponent

α <
max {p, q}

µmax + max {p, q} = max
{

p

µmax + p
,

q

µmax + q

}
,

then p = q and η = ν.

Proof: If a ball B of radius r(B) is mapped with a bounded distortion to the large scale, i.e.
Fn(B) = A, then

ν(B) �
(

r(B)
diam (A)

)q

ν(A) � r(B)q .

Assume first that p and q are different, without loss of generality p < q. Then, by Proposi-
tion 5.1, ν-almost every point goes infinitely often to the large scale with bounded distortion.
This implies that for ν-almost every point z there is a sequence of balls Bj of radius Rj → 0
centered at z so that

η(Bj) � (Rj)p = (Rj)p−q (Rj)q � (Rj)p−q ν(Bj) .
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Let B be a collection of all balls of radius less than r which are mapped with a uniformly
bounded distortion to the large scale. By the Besicovitch covering theorem (see 2.7 in [26])
there exists a subcollection B′ of B so that ν-almost all points of J are contained in

⋃
B∈B′ and

every point in C is covered by at most P balls from B′. Then

η(J) ≥ P−1
∑

B∈B′
η(B) �

∑
B∈B′

r(B)p−q ν(B)

≥ rp−q
∑

B∈B′
ν(B) ≥ rp−q ν(J)

which (for sufficiently small r) contradicts the fact that η(J) = ν(J) = 1.
Hence p = q. If ν and η are different probabilistic measures then their difference ν − η has

a non-trivial positive and negative part. After normalization, (ν − η)− and (ν − η)+ become
q-conformal measures which are mutually singular. Therefore, without loss of generality, we
can assume that ν and η are mutually singular.

If E ⊂ J is an open set then, by the Besicovitch covering theorem, we can choose a cover
B′ of ν-almost all points of E such that every point in C is covered by at most P balls and no
points outside E are covered. Then

η(E) ≥ P−1
∑

B∈B′
η(B) �

∑
B∈B′

(r(B))q �
∑
B∈B

ν(B) ≥ ν(E)

and consequently η(E) � ν(E) for every Borel set E. This contradicts the mutual singularity
of η and ν, and completes the proof.

�

Corollary 5.1 If F satisfies the summability condition with an exponent

α <
δPoin(J)

µmax + δPoin(J)

then

1. there is a unique, ergodic, and non-atomic δPoin(J)-conformal measure. This is the only
conformal measure with no atoms at the critical points. In particular, there are no non-
atomic measures with exponents different from δPoin(J).

2. there are no conformal measures with exponents less than δPoin(J), i.e. δPoin(J) =
δconf (J).

3. for every q > δPoin(J) there exists an atomic q-conformal measure supported on the
backward orbits of the critical points. Every conformal measure has no atoms at other
points.

Proof:
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1. By Lemma 5.1, there is a δPoin(J)-conformal measure. It cannot have atoms since oth-
erwise the corresponding Poincaré series converges and by Corollary 4.1, δPoin(J) <
δPoin(J). Now, uniqueness and ergodicity follow from Lemma 5.2.

2. There are no atomic measures by Corollary 4.1 and no non-atomic measures by Lemma 5.2.

3. To obtain an atomic q-conformal measure, q > δPoin, distribute atoms at all preimages of
a critical point of the maximal multiplicity. If there is a conformal measure with an atom
at a point whose orbit omits the critical points then we can easily produce a conformal
measure which has no atoms at the critical points. By Lemma 5.2, the latter coincides
with a unique δPoin-conformal measure which is non-atomic, a contradiction.

�

Corollary 5.1 implies Theorem 2.

5.4 Frequency of passages to the large scale

In this section we give a proof of Theorem 3. Consider the set J∗,ε of all points x ∈ J which
ε-frequently go to the large scale of size R′, namely:

∃nj → ∞ : Fnj univalent on F−nj
(
B
(
Fnjx, R′)) ,

∣∣∣(Fnj+1)′ (x)
∣∣∣ <

∣∣∣(Fnj )′ (x)
∣∣∣1+ε

.

Note that the value of R′ is already fixed and does not depend on a point.

Proposition 5.2 Suppose that a rational function F satisfies the summability condition with
an exponent

α <
p

µmax + p

and for every q > p there exists a point v such that the Poincaré series Σq(v) converges. If a
p-conformal measure ν has no atoms at the critical points then ν(J \ J∗,ε) = 0.

Proof: We say that a point x goes to the large scale of size R′ univalently at time k if

F k is univalent on F−k
(
B
(
F kx, R′)) . (19)

Assume that a point x goes to the large scale at a time m and apply the inductive procedure of
Section 5.1 for the sequence x, . . . , Fm−1(x). As a result we obtain a sequence of blocks of the
form 21 . . . 13, 21 . . . 1, or 2 (blocks of type 2 might be of zero length). Suppose that y := Fn(x)
is the first point which belongs to a block of type 2 or equivalently is a terminal point of the
longest sequence of the form 1 . . . 13 in the decomposition into blocks of the orbit x, . . . Fm−1(x).
By the definition of m, a ball of radius R′ around Fm(x) can be pulled univalently back to x.
Hence, the same is true for a ball of radius ∆ := R′/(4M), M = supy∈J |F ′(y)|, around
z := Fm−1(x). Therefore, y ∈ I∆(z) = I∆(z|z) – recall that I∆(z) stands for the set of the first
type preimages y ∈ H(z, ∆) of z, obtained in the course of the inductive procedure for z.
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By Proposition 5.1, we already know that ν-almost all points in J go to the large scale
infinitely often so it is sufficient to show that ν(X) = 0 for X := J∗ \ J∗,ε.

Suppose that for every x ∈ X there are two increasing sequences {nj} and {mj := m(nj)}
such that ∣∣∣(Fmj )′ (x)

∣∣∣ ≥ ∣∣∣(Fnj )′ (x)
∣∣∣1+ε

.

Therefore,
∣∣∣(Fmj−nj )′ (Fnj (x))

∣∣∣ ≥
∣∣∣(Fnj )′ (x)

∣∣∣ε. Denote y = yj(x) := Fnjx and z = zj(x) :=
Fmjx. Then ∣∣∣(Fmj )′ (x)

∣∣∣−p
=

∣∣∣(Fnj )′ (x)
∣∣∣−p ∣∣∣(Fmj−nj

)′ (y)
∣∣∣−p

≤
∣∣∣(Fnj )′ (x)

∣∣∣−(p+δ) ∣∣∣(Fmj−nj
)′ (y)

∣∣∣−(p−δ/ε)
.

Choose δ so small that α < β/(µmax + β) for β := p − δ/ε. Then, by the Main Lemma 3.4,

∑
y∈I∆(z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−(p−δ/ε)

< const(∆) . (20)

By the assumptions, the Poincaré series for q := p+δ converges for a point v whose preimages
are dense in the Julia set. We can choose finitely many of them, say v1, . . . , vn, so that they
are R′/4-dense in J and their Poincaré series are also convergent. Now, for every point z with
dist (z, JF ) < R′/2, there is a point vj ∈ B3R′/4(z). By the Köbe distortion lemma 2.1, we
have that ∑

y∈II(z)

∣∣∣(Fn)′ (y)
∣∣∣−q

� Σq(vj) ≤ max
j

Σq(vj) � Σq(v) < ∞ ,

and

sup
y

∑
x∈II(y)

∣∣∣∣(Fn(x)
)′

(x)
∣∣∣∣−(p+δ)

< const < ∞ . (21)

Combining the estimates (20) and (21), we obtain that

∞ · ν(X) =
∫

X

∑
j

1 dν(x) =
∫

X

∑
j

∣∣∣(Fmj )′ (x)
∣∣∣−p

dν (Fmjx)

=
∫

J

∑
j,x: z=zj(x)

∣∣∣∣(Fmj(x)
)′

(x)
∣∣∣∣−p

dν (z)

≤
∫

J

∑
j,x: z=zj(x)

∣∣∣(Fnj )′ (x)
∣∣∣−(p+δ) ∣∣∣(Fmj−nj

)′ (yj(x))
∣∣∣−(p−δ/ε)

dν (z)

≤
∫

J

∑
x,j:z=zj(x)

∣∣∣(Fnj )′ (x)
∣∣∣−(p+δ) ∑

y:∃x, y=yj(x), z=zj(x)

∣∣∣(Fmj−nj
)′ (y)

∣∣∣−(p−δ/ε)
dν (z)

≤

sup

y

∑
x∈II(y)

∣∣∣∣(Fn(x)
)′

(x)
∣∣∣∣−(p+δ)


 ·

∫
J

∑
y∈I(z)

∣∣∣∣(Fn(y)
)′

(y)
∣∣∣∣−(p−δ/ε)

dν (z)
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≤ const
∫

J
const(∆) dν(z) < ∞ .

Therefore ν(J∗ \ J∗,ε) = 0 and the proposition follows.

�

Proof of Theorem 3. Theorem 3 is a consequence of Theorem 2 and Proposition 5.2.

6 Invariant measures

6.1 Polynomial summability condition

In this Subsection we begin the proof of Theorem 4, establishing existence of an absolutely
continuous invariant measure, provided the polynomial summability condition holds. We start
with the geometric measure ν, which exists by Theorem 2. It is sufficient to find Z ∈ L1(ν)
such that for all n

dν ◦ F−n

dν
(z) � Z(z) . (22)

In fact, any weak subsequential limit of

1
n

n∑
k=1

dν ◦ F−k ,

is an invariant measure, and (22) implies that its density is majorated by Z(z), and hence it is
absolutely continuous with respect to ν.

To find Z and establish (22), we proceed as follows. Given two points y, z with z = Fn(y)
we define points v = v(y, z), w = w(y, z) by the following construction, which is feasible for
ν-almost every z.

Since we are interested only in ν-generic points, we can assume, by Proposition 5.1, that
y goes to the large scale infinitely often. Let n′ be the first time n′ > n when y goes to
the large scale, and denote w := Fn′−1(y). By the choice of n′, the ball of radius R′ around
F (w) can be pulled univalently back to y. The same is of course true for the ball of radius
∆ := R′/(4M) around w, M = supy∈J |F ′(y)|. Now, we carry out the inductive procedure from
the Main Lemma 3.2 for the preimages of w of order < n′ till we get a block of type 2. By
the definition of n′, a code of the sequence y, F (y), . . . , z, . . . , w is of the form 21 . . . 13. Let
v = v(y, z) := F l(y) be the point which starts the block of type 2 (in other words, v ends the
blocks 1 . . . 13). Note that y ∈ II(v) and v ∈ I(w) = I∆(w|w). We recall that I∆(w|w) stands
for the set of first type preimages of w belonging to H(w, ∆) obtained in the course of the
inductive procedure for w.

Below, we assume that l = l(v) is chosen so that v = F l(y), and j = j(v) = n − l. If
F k(y) = z, we denote n(y, z) := k.

dν ◦ F−n

dν
(z) =

∑
y∈F−n(z)

∣∣(Fn)′(y)
∣∣−δ



45

=
∑

v:∃y∈F−n(z), v=v(y,z)

∑
y∈F−l(v)

∣∣∣(F l)′(y)
∣∣∣−δ ∣∣∣(Fn−l)′(v)

∣∣∣−δ

≤
∑

v:∃y∈F−n(z), v=v(y,z)


sup

x

∑
y∈II(x), F l(y)=x

∣∣∣(F l)′(y)
∣∣∣−δ


 ∣∣∣(Fn−l)′(v)

∣∣∣−δ

�
∑

v:∃y, v=v(y,z)

∣∣∣(Fn(v,z))′(v)
∣∣∣−δ

=: Z(z) .

the estimate above is possible since for a fixed n and z every point v ∈ F−jz is counted only
if it is v(y, z) for some y ∈ F−nz, and in this case l = n − j is fixed (and independent of y).
However, once the summation is done, n disappears from the estimate and does not figure in
the definition of Z. Note also that summation set satisfies

{
v : ∃n, y ∈ F−n(z), v = v(y, z)

} ⊂ {
v : ∃w, y ∈ I(w), y ∈ F−n(z) ∩ F−m(w), m ≥ n

}
.

Thus it suffices to prove that Z ∈ L1(ν), which we can do by writing∫
Z(z)dν(z) =

∫ ∑
v:∃y, v=v(y,z)

∣∣∣(Fn(v,z))′(v)
∣∣∣−δ

dν(z)

≤
∫ ∑

v,z:∃y,v=v(y,z),w=w(y,z)

∣∣∣(Fn(v,w))′(v)
∣∣∣−δ

dν(w)

≤
∫ ∑

v∈I(w)

n(v, w)
∣∣∣(Fn(v,w))′(v)

∣∣∣−δ
dν(w)

�
∫ ∑

n

n
∑

i,k1,...,ki: k1+...+ki=n

(γk1 . . . γki
)−δ

�
∫ ∑

n

n γn
−δ < ∞ .

Above we use that for given v and w there are at most n(v, w) possible choices of z, namely
v, F (v), . . . , Fn(v,w)−1(v) = F−1(w). This concludes the proof of the existence of an absolutely
continuous invariant measure.

6.2 Ergodic properties

In this section we complete the proof of Theorem 4, establishing that an absolutely continuous
invariant measure is unique, ergodic, mixing, exact, has positive entropy and Lyapunov expo-
nent. We do not require the polynomial summability condition of Theorem 4: it is sufficient
to assume the corresponding summability condition and existence of an absolutely continuous
invariant measure.

If an absolutely continuous invariant measure exists, its ergodicity and uniqueness follow
immediately from the ergodicity of the geometric measure, asserted by Theorem 2.
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Lyapunov exponents. A Lyapunov exponent of F at z is defined as

χ(z) := lim
n→∞

1
n

log |(Fn)′(z)| ,

provided that the limit exists. A Lyapunov exponent of an invariant measure σ is defined as
χσ =

∫
log |F ′| dσ. Birkhoff’s ergodic theorem implies that if σ is ergodic then for almost every

point z with respect to σ the Lyapunov exponent χ(z) exists and is equal to χσ. The next
lemma is based on standard reasoning (see e.g. [7]).

Lemma 6.1 Let ν be a geometric measure of a rational function F which satisfies the summa-
bility condition with an exponent

α <
δPoin(J)

δPoin(J) + µmax
.

Suppose that σ is an absolutely continuous invariant measure with respect to ν. Then σ has
positive entropy and Lyapunov exponent, and for almost every point z with respect to ν,

χ(z) =
∫

log |F ′| dσ > 0

Proof: The entropy is given by the formula hσ =
∫

log Jacσ dσ, where the Jacobian is defined
as the Radon-Nikodym derivative: Jacσ := dσ ◦ F/dσ. The latter is always ≥ 1, since σ is
invariant. In our case for sufficiently small set A not including critical points we can write

Jacσ|A � σ(F (A))
σ(A)

� ν(F (A))
ν(A)

> 0 ,

and hence
1 =

∑
y∈F−1F (y)

1
Jacσ(y)

>
1

Jacσ(y)
,

for σ-almost every y. We conclude that σ-almost everywhere Jacσ > 1 and hence entropy of σ
is positive. Since σ is invariant and ergodic, the remaining statements follow from [25].

�

Exactness. Recall that a measure preserving endomorphism F is called mixing if for every
two measurable sets A and B

lim
n→∞σ(A ∩ T−n(B)) = σ(A)σ(B) .

A measure preserving endomorphism F is exact if for every measurable A, 0 < ν(A) < 1, there
is no sequence of sets An so that A = F−n(An).
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Lemma 6.2 Suppose that F satisfies the summability condition with an exponent

α <
δPoin(J)

δPoin(J) + µmax
,

and has an absolutely continuous invariant measure σ. Then lim supn→∞ σ(Fn(A)) = 1 for
every measurable set A of positive σ-measure, and hence F is exact and mixing.

Proof: The proof that exactness implies mixing can be found in [42]. Also it is clear that
(since σ is absolutely continuous with respect to ν, which is ergodic) it is sufficient to prove the
same statement for ν: lim supn→∞ ν(Fn(A)) = 1

By Proposition 5.1, there exists R′ > 0 so that for almost every point z ∈ J with respect
to σ there is a sequence of integers nj and sequences of balls Brj (z) and topological disks
Dj(Fnj(z)) ⊃ BR′(Fnj (z)) so that Fnj : Brj (z) �→ Dj(Fnj (z)) is a univalent function with
bounded distortion. Let z be a density point of A with respect to ν. The bounded distortion
of Fnj implies that for every ε > 0 there exist j so that

ν(A ∩ Dj(Fnj (z)))
ν(Dj(Fnj (z)))

≥ (1 − ε)
ν(A ∩ Brj (z))

ν(Brj(z))
≥ 1 − 2ε .

By compactness, there exists N = N(R′) such that every disk BR′(y), y ∈ J , is mapped onto
J by FN . Hence,

lim
j→∞

ν(Fnj+N (A)) ≥ lim
j→∞

ν(A ∩ Dj(Fnj (z)))
ν(Dj(Fnj (z)))

ν(J) = 1 ,

and the lemma follows.

�

This concludes the proof of Theorem 4.
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Part II

Geometry, rigidity, perturbations

7 Fractal structure

In this Section we will prove that the geometry of the Julia sets satisfying appropriate summabil-
ity conditions is effectively fractal and self-similar. Namely, every sufficiently small ball shrinks
under the pull-backs and hence its geometry is infinitely many times reproduced at different
scales. Moreover, it is “usually” (i.e. around most points and for most scales) reproduced with
bounded distortion.

7.1 Average contraction of preimages

Proposition 7.1 Suppose that a rational function F satisfies the summability condition with
an exponent

α <
2

µmax + 2
,

and the Julia set is not the whole sphere. Then there is p < 2 such that for every sufficiently
small ball B with center on the Julia set∑

n

∑
F−n

(
diam

(
F−nB

))p #
(
Fn, F−nB

)
< ∞ ,

# (Fn, F−nB) denotes the degree of Fn restricted to the connected component F−nB of the
preimage of B under F−n.

We set m = 4deg F · µmax in Lemma 2.2 and continue to work with sequences {αn}, {γn},
{δn}. To control the diameters we will need a new decomposition procedure.

Local Analysis. First we prove the analogues of the Lemma 2.3 and Lemma 2.5.

Lemma 7.1 Suppose that

1) Shrinking neighborhoods Uk for B4r(z), 1 ≤ k < n, avoid critical points and (r)µ1 < R ,

2) a critical point c2 ∈ Un ,

3) a critical point c1 ∈ Br(z) .

To simplify notation set µi := µ(ci), r2 := (diam (Un)) and, for consistency, r1 := r.
Then

(r2)µ2 < (r1)µ1 (γn)−µmax ,

in particular, (r2)µ2 < R .
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Proof: First note, that Fnc2 ∈ B4r∆n , hence

dist (Fnc2, c1) ≤ dist (Fnc2, z) + dist (z, c1) ≤ 5 r1 < 5R1/µmax ,

and by the choice of R we have |F ′(Fnc2)| M� dist (Fnc2, c1)
µ1−1. Therefore,

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣−1

≤ Mdist (Fnc2, c1)
µ1−1

∣∣∣(Fn)′ (Fc2)
∣∣∣−1 ≤ M(5r1)µ1−1

σn
.

We recall that Un ⊃ U ′
n−1 = F (Un). By the Koebe distortion theorem (see Lemma 2.1)

applied to the conformal map F−(n−1) : B4r1∆n−1(z) → Un−1 we obtain that

diam
(
U ′

n−1

) ≤ 2
(1 − δn)(2 − δn)

δn
∆n−1 4r1

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣−1

≤ 16 r1

δn

M(5r1)µ1−1

σn

≤ 16µmax M (αn)−2 (r1)µ1 (γn)−µmax

≤ (r1)µ1 (γn)−µmax (αn)−1 .

The last inequality is true by our choice of αn and R, see condition (ii) in Section 2.3. In
particular, diam

(
U ′

n−1

)
< (r1)µ1 < R and again by condition (i) of Section 2.3 we have that

(r2)µ2 ≤ M diam
(
U ′

n−1

)
≤ M (r1)µ1 (γn)−µmax (αn)−1

≤ (r1)µ1 (γn)−µmax < R,

which completes the proof.

�

Lemma 7.2 Suppose that

1) shrinking neighborhoods Uk for B4r(z), 1 ≤ k < n, avoid critical points and r < R′ ,

2) a critical point c2 ∈ Un .

Set µ2 := µ(c2) and r2 := (diam (Un)). For consistency, put r1 := r. Then

(r2)µ2 < (γn)−µmax ,

and (r2)µ2 < R .
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Proof: Applying the Koebe distortion Lemma 2.1 we obtain that

diam
(
U ′

n−1

) ≤ 2
(1 − δn)(2 − δn)

δn
∆n−1 4r1

∣∣∣∣(Fn−1
)′

(Fc2)
∣∣∣∣−1

≤ 16 r1

δn

sup |F ′|
σn

≤ 16 R′ sup |F ′| (αn)−2 (γn)−µmax

≤ R M−1 (γn)−µmax ≤ R .

The last inequality is true by the choice of R′. Particularly, U ′
n−1 is close to Fc2 and

(r2)µ2 ≤ M diam
(
U ′

n−1

)
≤ M M−1 R (γn)−µmax

= R (γn)−µmax .

�

Proof of Proposition 7.1. Let z be a point from the Julia set and fix an inverse branch
of F−n so that F−n(z) �→ . . . �→ F−1(z) �→ z. Next, take a ball B = Br1(z) of sufficiently
small radius r1 < R′ and consider the shrinking neighborhoods for the the 4 times larger ball
B4r1(z). Let k1 be the first time when Uk1 catches a critical point c2. Then, by Lemma 7.2,
r2 := diam

(
F−k1Br1

)
, we have that

(r2)µ2 < (γk1)
−µmax .

Consider now the shrinking neighborhoods for the ball B4r2(z2) with z2 := F−k1z. Let
k2 be the first time when Uk2 hits a critical point c3. Again, by the Lemma 7.1, r3 :=
diam

(
F−k2Br2

)
, we obtain that

(r3)µ3 < (r2)µ2 (γk2)
−µmax .

We continue in the same fashion, taking shrinking neighborhoods for B4r3(z3) with z3 :=
F−k2z2, and so on. Observe, that during the construction we always have

F−(k1+k2+...+kj)B ⊂ F−(k2+...+kj)Br2(z2) ⊂ . . . ⊂ Brj+1(zj+1) ,

and there is a bound for the degree:

#
(
F (k1+k2+...+kj), F−(k1+k2+...+kj)B

)
≤ (µmax)j .

We can repeat the above construction until we meet a ball B4rl
(F−kl−1z) whose shrinking

neighborhoods do not contain critical points. This means that the ball B2rl
(zl) can be pulled
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back univalently along the considered branch. We will call zl a terminal point. In more general
notation, y := zl with parameters r(y) = rl, l(y) = l, cy = cl.

Now, we look at the backward orbit of z for all possible inverse branches of F and denote
by Y(z) the set of all terminal points.

By the Koebe distortion theorem,

diam
(
F−nB

)
< diam

(
F−mBrl

(zl)
)

< 16
∣∣∣(F−m)′ (zl)

∣∣∣ rl

= 16 rl

∣∣∣(Fm)′ (x)
∣∣∣−1

,

where m = (n − k1 − . . . − kl−1) and x = F−mzl = F−nz. Note, that x ∈ H(zl, rl) in the
terminology of Proposition 4.1, and # (Fn, F−nB) ≤ (µmax)l−1.

Now, using the result of Proposition 4.1 we can expand (for p < 2 close to 2)∑
n

∑
F−n

(
diam

(
F−nB

))p #
(
Fn, F−nB

)

<
∑

y∈Y(z)

∑
x∈H(y,r(y))

16p (r(y))p
∣∣∣∣(Fn(x)

)′
(x)
∣∣∣∣−p

#
(
Fn, F−nB

)

<
∑

y∈Y(z)

16p (r(y))p C (r(y))p(µ(cy)/µmax−1) #
(
Fn, F−nB

)

< 16p C
∑

y∈Y(z)

(r(y))pµ(cy)/µmax (µmax)l(y)−1

< 16p C
∑

y∈Y(z)

(
γ−µmax

kl−1
. . . γ−µmax

k1

)p/µmax

(µmax)l−1

< 16p C
∑

l,k1,...,kl−1

(2 deg F )l
(
γk1 . . . γkl−1

)−p
(µmax)l−1

≤ 16p C
∑

l

(
2 deg F µmax

∑
k

γ−p
k

)l

< C 16p
∑

l

(
1
2

)l

= C 16p < ∞ ,

which proves Proposition 7.1.

�

Note, that substituting into the last formula Lemma 3.4 (instead of Proposition 4.1), we
can arrive at a better estimate (where the sum is taken only over some preimages):

Corollary 7.1 Taking β = µmaxα/(1 − α) and using the notation above, we get∑
y∈Y(z)

∑
x∈Ir(y)(y)

(
diam

(
F−n(x,z)B

))β
< ∞ .



52

7.2 Contraction of preimages

Proposition 7.2 Suppose that a rational function F satisfies the summability condition with
an exponent

α ≤ 1 .

Then there exist a positive sequence {ω̃n}, summable with an exponent −β := −µmaxα
1−α :

∑
n

(ω̃n)−β < ∞ ,

such that for every sufficiently small (of radius less than R′) ball B centered on the Julia set,
every n, and every branch of F−n we have

diam
(
F−nB

)
< (ω̃n)−1 .

Remark 7.1 The proof of the Proposition 7.2 given below will actually imply that

diam
(
F−nB

)
< const (ω̃n)−1 (diam (B))1/µmax .

Also, for any periodic point z : F k(z) = z, by the proposition above we can find such n
that for the branch of F−kn, fixing z, and a small ball B(z, ρ) one has

F−nkB(z, ρ) ⊂ B(z, ρ/2) .

By a standard use of the Schwartz lemma, the latter implies
∣∣∣∣(F k

)′
(z)
∣∣∣∣ > 1, and we arrive at

the following

Corollary 7.2 Under the assumptions as above, F has no Cremer points.

Proof: To prove Proposition 7.2, take a ball Br(z) of a small radius r1 < R′ and proceed
as in the proof of the Proposition 7.1 – we preserve the notation. Then, with the help of
Proposition 2.1, (the sequence {ωn} was constructed there) we obtain that

diam
(
F−nB

)
< diam

(
F−mBrl

(zl)
)

< 16
∣∣∣(F−m)′ (zl)

∣∣∣ rl

< 16 rl (rl)µ(cl)/µmax−1 (ωm)−1

< 16 (rl)µ(cl)/µmax (ωm)−1

< 16
(
(γk1)

−µmax . . . (γkl
)−µmax

)1/µmax (ωm)−1

< 16 (γk1)
−1 . . . (γkl

)−1 (ωm)−1 ,

where k1 + . . . + kl + m = n.
It means that setting

ω̃n := inf {γk1 . . . γkl
ωm / 16 : k1 + . . . kl + m = n} ,



53

we have that
diam

(
F−nB

)
< (ω̃n)−1 .

On the other hand (for −β := −µmaxα
1−α )

∑
n

(ω̃n)−β < 16β

(∑
m

(ωm)−β

)
·

∞∑
l=0

(∑
k

(γk)−β

)l

< 16β
∑
m

(ωm)−β ·
∞∑
l=0

(
1
2

)l

< 16β 2
∑
m

(ωm)−β < ∞ .

which completes the proof of Proposition 7.2.

�

7.3 Most points go to large scale infinitely often

We will prove that the Hausdorff dimension of points which do not “go to a large scale infinitely
often” is small provided F satisfies the summability condition. This should be compared with
Proposition 5.1 where it is shown that most points go to a large scale infinitely often with
respect to conformal measure.

The definition of the subset of points in J which infinitely often go to the large scale of size
R′/2 is as follows:

J∗ :=
{
z ∈ J : ∃ nj → ∞, with Fnj univalent on F−nj

(
B
(
Fnjx, R′/2

))}
.

Note that the value of R′ is already fixed and does not depend on a point.

Proposition 7.3 Suppose that a rational function F satisfies the summability condition with
an exponent α < 1, then

HDim(J \ J∗) ≤ µmaxα

1 − α
.

Proof: The proof is a modification of the proof of Proposition 5.1. Denote β := µmaxα
1−α .

Take a finite cover {Bj : j = 1 . . .K} of the Julia set by balls of radii R′/2 centered at
points wj ∈ J . For every x ∈ J and every k ∈ N, we decompose the sequence x, . . . , F k(x) into
blocks of new types 1∗, 3∗, and blocks of old types 1, 2, 3. An inductive procedure ascribing a
code to the sequence x, . . . F k(x) will be defined only for preimages of the center of the ball
Bj � F k(x). By the definition, the sequence x, . . . , F k(x) inherits the code of the corresponding
sequence of preimages F−k(wj), . . . wj .

We start by defining blocks of type 1∗ and 3∗ for the preimages of wj . To this aim we
invoke the inductive procedure from Proposition 7.1. Namely, we start by picking a ball Bj ⊂
BR′(F k(x)), denoting z1 := wj , r1 := R′/2, and considering the shrinking neighborhoods for
the 4 times larger ball B4r1(z). Let k1 be the first time when Uk1 hits a critical point c2. We set
r2 := diam

(
F−k1Br1

)
, z2 := F−k1(z1), and proceed by induction. The construction is repeated
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until we meet a ball B4rl
(F−kl−1z) whose shrinking neighborhoods do not contain critical points.

This means that the ball B2rl
(zl) can be pulled back univalently along the corresponding branch

of F−k+(k1+...+kl). Summarizing, our construction leads to a decomposition of the sequence
zl, F (zl), . . . , z1 into blocks 1∗ . . . 1∗3∗. We see that the symbol 3∗ stands for the initial sequence
of preimages of type 3 with r = 2R′ (see Definition 2.3). The terminal point of the type
3∗ sequence is z2. After, only type 1∗ sequences are allowed with terminal points z3, . . . zl,
respectively.

Having defined zl, we apply to F−k+k1+...+kl−1(zl), . . . , zl the inductive procedure with a
stopping rule (see Section 5.1). This yields a decomposition of the sequence into blocks of the
form 21 . . . 3 or 2. Finally, we can represent the orbit F−k(z1), . . . , z1, as a sequence of blocks
21 . . . 111∗1∗ . . . 1∗3∗. By our convention, the orbit x, . . . , F k(x) has the same decomposition.
Note that if we have no blocks of type 1∗, i.e. zl coincides with F−k(wj), then the ball of radius
R′ can be pulled back univalently along the corresponding branch of F−k, and we have no
blocks 1 either. This means that the sequence x, . . . , F k(x) is encoded as 2. Note also that the
corresponding endpoints of blocks from the orbits x, . . . , F k(x) and F−k(z1), . . . , z1 are R-close
to each other.

Following the proof of Proposition 7.1, we denote by Y(wj) the set of all possible terminal
points zl for all inverse branches of F defined on the ball Bj . Introducing more general notation,
we set y := zl, r(y) = rl, l(y) = l, and cy = cl.

Denote by Cx the set of all codes obtained for x. If for some point x we get infinitely many
different type 2 sequences then x must belong to J∗. Indeed, a type 2 sequence means that a
R′-ball around a point R′/2-close to some image of x can be pulled back univalently. Hence,
the same is true for R′/2-ball around the image of x.

Therefore, if x ∈ J \ J∗ then x is a terminal point of an infinite number of sequences
211 . . . 111∗1∗ . . . 1∗1∗3∗ with only a finite number of choices for type 2 blocks. Let k(x) be a
minimal number for which infinitely many sequences from Cx have the same type 2 block of
length k(x). Denote Xk := {x : k(x) = k} and observe that the sets {Xk; k = 0, 1, . . .} form a
countable partition of J \ J∗.

Obviously, for any Borel set X ⊂ J we have HDim(F kX) = HDim(X) = HDim(F−kX).
Since F k(Xk) ⊂ X0 and consequently J \ J∗ ⊂ ∪kF

−k(X0), it is sufficient to prove that
HDim(X0) ≤ µmaxα/1 − α.

Every point x ∈ X0 must be a terminal point for infinitely many different subsequences of
the form 1 . . . 11∗ . . . 1∗3∗, containing at least one block 1∗. Thus every point x ∈ X0 is covered
by infinitely many preimages

F−n(v,wj)(Bj) , j = 1 . . . K, y ∈ Yj, v ∈ Ir(y)(y) .

Corollary 7.1 implies that for every j = 1 . . . K and β = µmaxα/1 − α,∑
y∈Y(wj)

∑
v∈Ir(y)(y)

(
diam

(
F−n(v,wj)Bj

))β
< ∞ .

We conclude that HDim(X0) ≤ µmaxα
1−α which proves the proposition.

�
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8 Dimensions and conformal measures

8.1 Fractal dimensions

First we will remind the definitions of various dimensions, used in this paper. For proper-
ties of the Hausdorff and Minkowski measures, contents, and dimensions one can consult the
monographs [26] and [11].

Assume that we are given a compact subset K of the complex plane (or a complex sphere
with the spherical metric).

Definition 8.1 For positive δ the Hausdorff measure Hδ is defined by

Hδ(K) := lim
ρ→0

inf
Bρ

∑
B∈Bρ

r(B)δ ,

the infimum taken over all covers Bρ = {B} of the set K by balls B of radii r(B) ≤ ρ.

Usually the measure above is normalized by some factor, depending on δ, but this is not
necessary for our purposes.

It is easy to show that there exists some number δ′ ∈ [0, 2], such that Hδ(K) is infinite for
δ < δ′ and zero for δ > δ′. The latter is called the Hausdorff dimension:

Definition 8.2 The Hausdorff dimension of a set K is defined by

HDim(K) := inf {δ : Hδ(K) = 0} .

The Hausdorff dimension of a Borel measure ν is defined as the infimum of the dimensions of
its Borel supports:

HDim(ν) := inf {HDim(E) : E is Borel and ν(Ec) = 0} .

One way is to define upper and lower Minkowski content (sometimes called capacity) simi-
larly, requiring the covering balls to be of the same radius, taking the upper and lower limit as
the radius tends to zero (note that resulting contents will not be measures), and then defining
the upper and lower Minkowski dimensions. Equivalently, one can take a shortcut and define
the Minkowski dimensions as follows:

Definition 8.3 Let N(K, ρ) be the minimal number of the balls of radius ρ needed to cover K.
The upper and lower Minkowski dimensions are defined as

MDim(K) := lim supρ→0
log N(K,ρ)

log 1/ρ ,

MDim(K) := lim infρ→0
log N(K,ρ)

log 1/ρ .

If those dimensions coincide, their common value is called the Minkowski dimension MDim(K).



56

Remark 8.1 Since we restricted ourselves to a smaller collection of coverings, than in the
definition of the Hausdorff measure, one clearly has

HDim(K) ≤ MDim(K) ≤ MDim(K),

for arbitrary compact set K.

In the absence of the dynamics, the Whitney exponent can be regarded as a substitute of
the Poincaré exponent. One can decompose domain Ω := C \ K in the complex plane into a
collection {Qj} of non-overlapping dyadic squares so that dist (Qj, K) � diam (Qj) up to a
constant of 4 (consult [39] for this classical fact).

Definition 8.4 Whitney exponent is defined as an exponent of convergence

δWhit(K) := inf


δ :

∑
Qj : diam (Qj)≤1

diam (Qj)δ < ∞

 ,

where we drop the large squares for the series to converge.

Clearly, this definition admits the following integral reformulation (and hence does not
depend on the choice of Whitney decomposition):

δWhit(K) := inf
{

δ :
∫
Ω

dist (z, K)δ−2 dm(z) < ∞
}

,

where m denotes area, and we use the spherical metric. One can restrict integration to some
neighborhood of K (and should do so if working with the planar metric).

Remark 8.2 The definitions of Whitney and Poincaré exponents assume that the complement
of K = J is non-empty. Should K = J coincide with the whole sphere, we set δWhit(K) =
δPoin(K) := 2.

8.2 Multifractal analysis

The following is Lemma 2.1 in [4], where it was used in similar situation, involving Poincaré
exponent of a Kleinian group and Minkowski dimension of its limit set. We thank Chris Bishop
for bringing it to our attention.

Fact 8.1 For any compact set K, δWhit(K) ≤ MDim(K). If, in addition, K has zero area,
then δWhit(K) = MDim(K).

By taking a cover of J by a finite number of small balls and applying the Proposition 7.1 to
each of them, we easily obtain the following
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Lemma 8.1 Suppose that a rational function F satisfies the summability condition with an
exponent

α <
2

µmax + 2
.

If the Julia set is not the whole sphere, then its Hausdorff dimension is strictly less than 2.

It seems to be folklore that for rational maps without neutral orbits δPoin(J) = δWhit(J).
We were unable to find a reference to this fact in the literature and thus we supply the proof
below. The following is an analogue of Lemma 3.1 in [4]:

Lemma 8.2 For any rational function F without Siegel disks, Herman rings, or parabolic
points one has

δPoin(J) = δWhit(J) .

Remark 8.3 The proof below can be modified to work for parabolic points as well. However,
in the presence of Siegel disks or Herman rings the introduced version of Poincaré series does
not work well.

Under an additional assumption that the Julia set has zero area, the lemma together with
the Fact 8.1 imply, that the Poincaré exponent coincides with the upper Minkowski dimension.

Proof: Fix points {zj} used in the definition of δPoin(J) – one inside each cycle of periodic
Fatou components. From Lemma 7 of [14] (Lemma 11.2) follows that for any y ∈ F−nzj one
has

dist (y, J) �
∣∣∣(Fn)′ (y)

∣∣∣−1
, (23)

up to a constant depending on zj only.
Knowing that only (super) attractive Fatou components are possible, we can chose “fun-

damental” domains zj ∈ Uj , so that their preimages under all possible branches of F−n are
disjoint and cover almost all of some neighborhood U of J inside the Fatou set. Also zj and
then Uj can be chosen so that under iteration critical points never enter some neighborhoods
of Uj , and hence by distortion theorems, up to a constant const(zj, Uj)

dist (x, J) �
∣∣∣(Fn)′ (x)

∣∣∣−1 �
∣∣∣(Fn)′ (y)

∣∣∣−1
, (24)

for any x ∈ F−nUj and y being the corresponding preimage of zj : y ∈ F−nzj .
Hence, for any δ ≥ 0 we can write (here V ∈ F−nUj means that V is one of the components

of connectivity of the latter)

∫
U

dist (x, J)δ−2 dm(x) =
∑
j

∞∑
n=1

∑
V ∈F−nUj

∫
V

dist (x, J)δ−2 dm(x)

�
∑
j

∞∑
n=1

∑
V ∈F−nUj

∫
V

∣∣∣(Fn)′ (x)
∣∣∣2−δ ∣∣∣(Fn)′ (x)

∣∣∣−2
dm(Fn(x))
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�
∑
j

∞∑
n=1

∑
V ∈F−nUj

∫
V

∣∣∣(Fn)′ (F−nzj)
∣∣∣−δ

dm(Fn(x))

�
∑
j

∞∑
n=1

∑
y∈F−nzj

∣∣∣(Fn)′ (y)
∣∣∣−δ

∫
Uj

dm(z) � Σδ(J, {zj}) ,

which clearly implies the desired equality.

�

The definitions and our discussion so far imply two chains of inequalities:

HDim(J) ≤ MDim(J) ≤ MDim(J)

and
δPoin(J) = δWhit(J) ≤ MDim(K) .

Proposition 8.1 (Gauge function estimate for conformal measure) Suppose that a ra-
tional function F satisfies the summability condition with an exponent

α <
q

µmax + q
,

and ν is q-conformal measure with no atoms at critical points. Then for ν-almost every x ∈ J
and any ε > 0 there are constants Cx > 0 and Cx,ε > 0, such that for any ball B(x, r) , r < 1,
centered at x one has

Cx rq < ν(B(x, r)) < Cx,ε rq−ε .

Proof: It is a straight-forward use of the Proposition 5.2.

�

It is easy to see, that the proposition above implies that HDim(J) ≥ HDim(ν) = q.
Combining this with the Corollary 5.1, we obtain the following

Corollary 8.1 Assume that F satisfies the summability condition with an exponent

α <
δPoin(J)

µmax + δPoin(J)
,

then
HDim(J) ≥ δPoin(J) = HDim(ν) .
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Proof of Theorem 7. By now we have

δPoin(J) = δconf (J) = δWhit(J) = MDim(J) ≥ HDim(J) ≥ δPoin(J) ,

and hence all these dimensions coincide, provided that a rational function F satisfies the summa-
bility condition with an exponent

α <
δPoin(J)

µmax + δPoin(J)
.

By the work of M. Denker, F. Przytycki, and M. Urbanski, the hyperbolic and dynamical
dimensions will also be equal to the dimensions above.

9 Removability and rigidity

In this section, we prove Theorems 8, 9, and 10.

9.1 Conformal removability and strong rigidity

The notion of conformal removability (also called holomorphic removability) appears naturally
in holomorphic dynamics: often one can show that two dynamical systems are conjugated by
a homeomorphism which is (quasi)conformal outside the Julia set, and conformal removability
of the latter ensures global (quasi)conformality of the conjugation.

Definition 9.1 We say that a compact set J is conformally removable if any homeomorphism
of the Riemann sphere Ĉ, which is conformal outside K, is globally conformal and hence is a
Möbius transformation.

The quasiconformal removability is defined similarly. An easy application of the measurable
Riemann mapping theorem shows that the two notions are equivalent. The problem of geomet-
ric characterization of removable sets is open, see [20] for discussion and relevant references.
Prototype examples of non-removable sets are given by the Cartesian product of an interval
with a Cantor set of positive area. On the other hand, quasicircles and sets of σ-finite length
are removable. Note that there are removable sets of Hausdorff dimension 2 and non-removable
of dimension 1.

In [20] a few geometric criteria for removability are given, some close to being optimal and
well-adapted for dynamical applications. We will use the following fact (which is Theorem 5 in
[20]):

Fact 9.1 Suppose that F is a polynomial, and {Bj} is a finite collection of domains, whose
closure covers JF , denote by {Pn

i } the collection of all components of connectivity of pullbacks
F−nBj, and by N(Pn

i ) the degree of Fn restricted to Pn
i . Then the geometric condition,∑

i,n

N(Pn
i ) diam (Pn

i )2 < ∞ , (25)

is sufficient for conformal removability of the Julia set.
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If a polynomial satisfies the summability condition with an exponent α < 2
µmax+2 then

Proposition 7.1 implies condition (25) for a cover by sufficiently small balls Bj . By the Fact 9.1,
the Julia set is conformally removable and Theorem 8 follows. Similar reasoning worka for every
Julia set, which is a boundary of one of the Fatou components.

9.2 Dynamical removability and rigidity

The assumption that the Julia set coincides with the boundary of one of the Fatou components
is essential for conformal removability. Indeed, there are hyperbolic rational functions with non-
removable Julia sets. An example of a non-removable Julia set, which is topologically a Cantor
set of circles, is constructed in §11.8 of the book [1]. It is a classical observation that these type
of sets are not conformally removable. An exotic homeomorphism is given by rotating annuli
between circles by a devil’s staircase of angles: the resulting homeomorphism is conformal on
each annulus, globally continuous since the devil’s staircase is, but clearly is not Möbius (i.e.
not globally conformal).

Even though such Julia sets are not conformally removable, they will be removable for all
“dynamical” conjugacies. To make this precise, consider a homeomorphism φ which conjugates
a rational dynamical system (Ĉ, F ) to another dynamical system (Ĉ, G) and assume that φ is
quasiconformal outside the Julia set J .

Recall a metric definition of quasiconformality (which states that images of circles look like
circles themselves): a homeomorphism φ is quasiconformal, if there is a constant H such that
for every point x ∈ Ĉ

lim sup
r→0

Lφ(x, r)
lφ(x, r)

≤ H < ∞ , (26)

where

Lφ(x, r) := sup {|φ(x) − φ(y)| : |x − y| ≤ r} ,

lφ(x, r) := inf {|φ(x) − φ(y)| : |x − y| ≥ r} .

If a rational function F is hyperbolic, then every sufficiently small ball with center at the
Julia set is mapped univalently by some iterate of F to a large scale with bounded distortion,
and the inequality (26) holds by a compactness argument implying a (global) quasiconformality
of φ.

For non-hyperbolic maps the property of “going to large scale with bounded distortion” fails
for many small balls. In these circumstances one has to resort to more subtle tools in the theory
of quasiconformal maps. A theorem of great use for complex dynamical systems was proved
recently by J. Heinonen and P. Koskela in [18]. They have shown, that for Euclidean spaces
the upper limit “lim sup” in the metric definition of the quasiconformality can be replaced by
“lim inf.” J. Heinonen and P. Koskela’s result was immediately applied by F. Przytycki and
S. Rohde [34] to deduce rigidity of Julia sets satisfying the topological Collet-Eckmann condition
(shortly TCE). The argument of [34] goes as follows: for every point x ∈ J there is a sequence
of radii rj → 0 such that the balls Brj (x) are mapped by some iterates of F to a large scale
with bounded distortion (though no longer univalently but with uniformly bounded criticality),
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and the inequality (26) for lim inf holds again by a compactness argument implying a (global)
quasiconformality of φ.

Rational maps which satisfy the summability condition have weaker properties than TCE
maps (in the unicritical case the latter class is strictly smaller), so we need an even stronger the-
orem than that of J. Heinonen and P. Koskela. It is a well-known fact, that the metric definition
(with “lim sup”) of quasiconformality allows for an exceptional set. Partially motivated by the
perspective applications to our paper, S. Kallunki and P. Koskela [21] established very recently
that one can also have an exceptional set in the “lim inf” definition of quasiconformality. The
following is Theorem 1 of [21]:

Fact 9.2 Let Ω ⊂ R
n be a domain and suppose that φ : Ω → φ(Ω) ⊂ R

n is a homeomorphism.
If there is a set E of σ-finite (n − 1)-measure so that

lim inf
r→0

Lφ(x, r)
lφ(x, r)

≤ H < ∞ ,

for each x ∈ Ω \ E, then φ is quasiconformal in Ω.

This theorem fits very well into our framework. By Proposition 5.1, if F satisfies the summa-
bility condition with an exponent α < 1

µmax+1 , then except for a set E of Hausdorff dimension
< 1 every point x ∈ J “go to a large scale” infinitely often. More precisely, for every x ∈ J
there exists (a point-dependent) sequence of radii rj → 0 such that the balls Brj (x) are mapped
by iterates F kj to the large scale of size � R′ univalently and with a bounded distortion. Thus
for every x ∈ J \ E (cf. [34]) one has

lim inf
r→0

Lφ(x, r)
lφ(x, r)

≤ lim inf
j→∞

Lφ(x, rj)
lφ(x, rj)

� lim inf
j→∞

Lφ(Fnj (x), R′)
lφ(Fnj (x), R′)

� sup
x∈J

Lφ(x, R′)
lφ(x, R′)

=: H < ∞ ,

the latter quantity being finite by a compactness argument. We infer that the homeomorphism
φ is globally quasiconformal, thus deducing Theorem 9.

Consider now a quasiconformal homeomorphism φ which conjugates a rational dynamical
system (Ĉ, F ) to another dynamical system (Ĉ, G) and assume that F satisfies the (weaker)
summability condition with an exponent α < 2

µmax+2 .

If J �= Ĉ then the area of the Julia set is zero, by the Corollary 1.2, and an invariant
Beltrami coefficient φµ has to be supported on the Fatou set. There are two interesting special
settings when φ is automatically a Möbius transformation. If φ is conformal outside the Julia
set, then the Beltrami coefficient is identically zero, and φ is Möbius. Also, if there is only
one simply-connected Fatou component, (e.g. this is the case for polynomials with all critical
points in the Julia set), it has to be super-attracting, and by a standard argument it does not
support non-zero F -invariant Beltrami coefficients, and φ is Möbius again.

If J = Ĉ then by Proposition 5.1 except for a set E of Hausdorff Dimension < 2, all points
“go to a large scale” infinitely often. Then a standard technique (see the proof of either Theorem
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3.9 or Theorem 3.17 in [27]) implies that the Beltrami coefficient µφ has to be holomorphic,
and by Lemma 3.16 from [27], we have that µφ ≡ 0 or F is a double cover of an integral torus
endomorphism, i.e. it is the Lattés example. This concludes the proof of Theorem 10.

10 Integrability condition and invariant measures.

A natural question arises whether a rational map F has invariant measures absolutely contin-
uous with respect to conformal measures. We will make two different types of assumptions.
Firstly, we make a general assumption about regularity of conformal measures. This will guar-
antee that a conformal measure is not too singular with respect to the corresponding Hausdorff
measure (integrability condition). Secondly, we demand that F has some expansion property,
usually given in the form of a suitable summability condition.

Let ν be a conformal measure with an exponent δ defined on the Julia set J . Assume also
that ν satisfies the uniform integrability condition with an exponent η. We recall that this
means that ∃C > 0 and η > 0 so that for all positive integers n and ∀c ∈ Crit,∫

dν

dist (x, Fn(c))η
< C < ∞ . (27)

10.1 Ruelle transfer operator.

We study the existence of an absolutely continuous invariant measure σ through analysis of the
Ruelle operator L which ascribes to every measure ν, the density of F∗(ν) with respect to ν.
The n-th iterate of L(ν) evaluated at z is equal to

LN (ν)(z) :=
dFn∗ (ν)

dν
=

∑
y∈F−N (z)

1
|(Fn)′(y)|δ .

For simplicity, we will drop ν from the notation of the Perron-Frobenius operator.

Proposition 10.1 Assume that a rational function F satisfies the summability condition with
an exponent

α <
δ

δ + µmax

and ν is a δ-conformal measure on J . Let ∆k := dist
(
fk(Crit), z

)
and

g(z) :=
∞∑

k=1

γ−δ
k ∆

−(1− 1
µmax

)δ

k .

Then for every z �∈ ⋃∞
0 Fn(Crit) there exists a positive constant K so that for every positive

integer N ,
LN (z) < K g(z) .

The sequence γ−1
k (defined in Lemma 2.2) is summable with an exponent β = µmaxα

1−α < δ.
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Proof: We will use the estimates of the Main Lemma. Before this, we need some preparation.
Let z ∈ X and a sequence

F−N (z), . . . F−1(z), z

form a chain of preimages, that is F (F−i(z)) = F−i+1(z) for i = 1, . . . N and F−N (z) ∈ X.
We will decompose the chain into blocks of preimages of the types 2 and 1 . . . 13. This can
be done using the procedure of the Main Lemma with the following stopping rule: at the first
occurrence of a type 2 sequence we stop the procedure of decomposing the chain. For the
reader’s convenience we will describe shortly the construction.

Construction. We take shrinking neighborhoods {Uk} for B2R′(z). If they do not contain
the critical points we form one block of type 2 of the length N . Otherwise, we set r = 0 and
increase it continuously until certain shrinking neighborhood Uk hits a critical point c, c ∈ ∂Uk.
It must happen for some 0 < r < 2R′. Clearly, this means that 2r0 > r0 := dist

(
fk(c), z

)
. We

set n1 := k and z1 := Fn1(z). Then z1 is a third type preimage of z and the ball Br0 can be
pulled back univalently by FN along the chain.

Inductive procedure. Suppose we have already constructed zj = F−nj (z) which is of
type 1 or 3. We enlarge the ball Br(zj) continuously increasing the radius r from 0 until one
of the following conditions is met:

1) for some k ≤ N − nj the shrinking neighborhood Uk for Br(zj) hits a critical point
c ∈ Crit, c ∈ ∂Uk,

2) radius r reaches the value of 2R′.

In the case 1) we put nj+1 := nj + k. Clearly, zj+1 := F−nj+1(z) is a type 1 preimage of
zj . If 2) holds, we set zj+1 := F−N (z) which is a type 2 preimage of zj . This terminates the
construction in this case.

Coding. As a result of the inductive procedure, we can decompose the backward orbit of
the point z into pieces of type 1, 2 and 3. This gives a coding of backward orbits by sequences
of 1’s, 2’s and 3’s. By the construction, only the following three types of codings are allowable:
2, 1 . . . 3, 21 . . . 13. We recall that according to our convention, during the inductive procedure
we put symbols in the coding from the right to the left.

We attach to every chain of preimages of z the sequence kl, . . . k0 of the lengths of the blocks
of preimages of a given type in its coding. Again our convention requires that k0 always stands
for the length of the rightmost block of preimages in a coding. Clearly, k0 + · · · + kl = N .

Estimates. We recall that the Main Lemma implies that every sequence of the form 11 . . . 3
with the length of the corresponding pieces kl, . . . k0 yields expansion

γkl
· . . . · γk0 ∆

1− 1
µmax

k0
,
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where ∆k0 = dist
(
fk0(Crit), z

)
.

For singleton sequences {2} of the length n we have the following estimate,

∑
y∈F−n(x)

1
|(Fn)′(y)|δ �

∑
F−n

ν(F−n(BR′(x)))
ν(BR′(x))

≤ 1
ν(BR′(x))

≤ KR′ , (28)

which is independent from n.
Consider now a set of all preimages y ∈ F−N (z). Let 11 . . . 13 denote the set of all points

x ∈ ⋃N
i=1 F−i(z) which are coded by maximal sequences of 1’s and 3’s. We define nx by the

condition Fnx(x) = z.
Hence,

LN (z) =
∑

all codings

1
|(FN )′(y)|δ

≤
N∑

nx=1

( ∑
11...13

1
|(Fnx)′(x)|δ

)
 ∑

y∈F−N+nx

1
|(Fn)′(y)|δ




≤ KR′
∑

11...13

(γkl
· . . . · γk0)

−δ ∆
−(1− 1

µmax
)δ

k0

Since for every sequence of kl, . . . k0 positive integers there is at most (2 deg F )l+1 sequences
11 . . . 13 with the corresponding lengths of the pieces of type 1 and 3 (see the estimate (16)),
we obtain that

LN (z) �
∑

l,kl,...,k0

(4 deg F )l+1(γkl
· . . . · γk0)

−δ ∆
−(1− 1

µmax
)δ

k0

<
∞∑
l=1


4 deg F

∑
kl

γ−δ
kl


 · . . . ·


4 deg F

∑
k1

γ−δ
k1


 ·


4 deg F

∑
k0

γk0)
−δ∆

−(1− 1
µmax

)δ

k0




<
∑
l=1

(
1
4

)l

4 deg F

∑
k0

γ−δ
k0

∆
−(1− 1

µmax
)δ

k0




< K
∑
k0

(γk0)
−δ∆

−(1− 1
µmax

)δ

k0
.

By Lemma 2.2, γk is summable with any exponent bigger than −µmaxα
1−α .

�

Proof of Theorem 5. Now it is a standard reasoning. By Proposition 10.1, Ln(z) ≤ g(z)
and g(z) ∈ L1(ν). Hence,

νN =
1
N

N−1∑
i=0

F i
∗(ν)
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form a weakly compact set of probabilistic measures absolutely continuous with respect to ν
with densities bounded by g. A weak limit of νN gives an absolutely continuous invariant
measure.

Uniqueness and ergodicity follow by an argument presented in Section 6.2.

10.2 Regularity of invariant densities

Corollary 10.1 Suppose that F and ν satisfy the hypotheses of Theorem 4. Let η1 > η0 :=
δ(1 − 1

µmax
) and assume η-integrability of ν for every η ∈ (0, η1). Then for every ζ < η1/η0

∫ (
dσ

dν

)ζ

dν < ∞ ,

and for every Borel set A,
σ(A) ≤ Kζν(A)1−1/ζ .

Proof: To prove ζ-integrability of the density of dσ/dν we use Proposition 10.1. Recall that
∆k ≥ dist

(
fk(Crit), z

)
. We use the Hölder inequality with the exponents 1/ζ +1/ζ ′ = 1 in the

estimates below.

∑
k

γ−δ
k ∆−(1−1/µmax)δ

k =
∑
k

γ
−δ/ζ′
k

γ
−δ/ζ
k

∆(1−1/µmax)δ
k

(29)

≤
(∑

k

γ−δ
k

)1/ζ′ (∑
k

γ−δ
k

∆δ(1−1/µmax)ζ
k

)1/ζ

≤ K

(∑
k

γ−δ
k

∆η
k

)1/ζ

with η ∈ [0, η1). Next, we integrate the density dσ/dν in the power ζ. Proposition 10.1 and the
inequality (29) imply that

∫ (
dσ

dν

)ζ

dν �
∫ (∑

k

γ−δ
k ∆−(1−1/µmax)δ

k

)ζ

dν

�
∑
k

γ−δ
k

∫
∆−η

k dν < ∞ .

To prove the last estimate of the Corollary, we apply once more the Hölder inequality with the
exponents ζ and ζ ′.

σ(A) =
∫

A

dσ

dν
dν ≤

(∫
A

dν

)1/ζ′
(∫

A

(
dσ

dν

)ζ

dν

)1/ζ′

≤ Kζν(A)1−1/ζ .
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�

Proposition 10.2 Under the assumptions of Proposition 10.1, there exists a positive constant
C so that for ν almost every point z,

dσ

dν
(z) ≥ C,

where dσ/dν stands for the density of the absolutely continuous invariant measure σ.

Proof: Let g =
∑∞

k=1 γ−δ
k ∆

−(1− 1
µmax

)δ

k and gn(z) :=
∑∞

k=n γ−δ
k ∆

−(1− 1
µmax

)δ

k . By Proposi-
tion 10.1, ∫

g(z) dν < ∞

and thus for almost all z ∈ Ĉ with respect to ν, limn→∞ gn(z) = 0. Consequently, there exist a
point w �∈ ⋃∞

n=1 F−n(Crit) and a positive integer N so that dσ/dν(w) ≥ 1 and gn(w) < 1/2 for
every n ≥ N . Observe that the choice of N and w does not depend on R′.

Choose R′ so small that BR′(w)∩F k(Crit) = ∅ for all k ≤ N and decompose the backward
orbit of w into pieces of type 1,2 or 3 as described in the proof of Proposition 10.1. By the
construction, only the following three types of codings are allowable: 2, 1 . . . 3, 21 . . . 3.

Let Rn
R′(z) =

∑
{2} |(Fn)′(y)|−δ be the sum over all type 2 preimages of z of length n (regular

part). The sum over all other preimages is denoted by Sn
R′(z) (singular part, compare [32]). By

the choice of R′, Sn
R′(w) < 1/2 for every n positive. Hence, for n large enough

3
4
≤ 1

n

n−1∑
i=0

Li(w) =
1
n

n−1∑
i=0

Ri
R′(w) +

1
n

n−1∑
i=0

Si
R′(w) ≤ 1

n

n−1∑
i=0

Ri
R′(w) +

1
2

.

We choose new R′
new := R′/2. This will change the decomposition of backward orbits of points,

generally allowing more type 2 sequences of preimages. If z ∈ BR′/2(w) then every type 2
preimage of w with the parameter R′ corresponds to exactly one type 2 preimage of z with
R′

new. By the bounded distortion, Rn
R′/2(z) � Rn

R′(w) and thus for n large enough,

1
n

n−1∑
i=0

Li(z) ≥ 1
n

n−1∑
i=0

Ri
R′(w) � 1/4 .

By eventually onto property, there exists a positive integer m so that for every z ∈ J there
is a preimage u = F−m(z) ∈ BR′(w). Let M = supz∈J |F ′(z)|. Then for almost every z ∈ Ĉ

with respect to ν,

dσ/dν(z) = lim
n→∞

1
n

n−1∑
i=0

Li(z) ≥ M−m lim
n→∞

1
n

n−1∑
i=j

Li−j(u) � M−m/2 .

�
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10.3 Analytic maps of interval

We are interested in analytic maps f with negative Schwarzian which map a compact interval
I into itself. We will denote by F a complex extension of f to some neighborhood of I. Let
I ⊂ UF be a part of the domain of the extension of F which does not contain any critical points
different then the real ones. We will study iterates of real inverse branches of F on UF defined
by the condition: if x ∈ I then F−1

rl (x) ∈ I. Observe that for every open set U and every real
inverse branch defined on U we have that F−1

rl (U ∩ R) := R ∩ F−1(U) . If U is an arbitrary
open set then we define a real preimage F−1

rl (U) as F−1(U) ∩ R. From now till the end of
this section we will work only with real inverse branches and real preimages of open sets. To
simplify notation we will write F−1 = F−1

rl unless we want to emphasize that a given branch is
real.

We will show that iterates of points by real inverse branches stay in a bounded distance
from the interval I. To this aim we will need a weak version of Proposition 3 of [13].

Fact 10.1 Let h : I → R be an analytic diffeomorphism from a compact interval I with non-
empty interior into the real line. Let H be an extension of h to a complex neighborhood of I. If
S(h) > 0 on I then there exists δ > 0 such that for every two distinct points a, b ∈ I the image
of the disk Da,b based on (a, b) by H is contained in Dh(a),h(b) provided |a − c| < δ.

Lemma 10.1 There exists a constant L > 0 so that for every n, every x ∈ I, and every real
inverse branch of Fn, every component of the preimage of the ball BL(x) by Fn is contained in
UF .

Proof: Observe that f has only finitely many critical points in I and for every critical point
c ∈ Crit there exists a neighborhood Uc � c such that F is in the form Hc(z)�(c) with Hc a
biholomorphic function near c. Recall that P� = z� has a disk property, that is if 0 �∈ (a, b) then
the connected component of P−1

� DP�(a),P�(b) containing (a, b) is contained in Da,b for every real
	 > 1.

We now deal with the problem that the restriction hc of Hc to the real line may not have
negative Schwarzian derivative at c. We follow the proof of Proposition 4 in [13]. Take
s > S(hc)(ζ)/3h′

c(ζ)2 and define M and φ by

M(x) =
x

1 − sx
,

φ(x) =
x√

1 + sx2
,

so M is a real Möbius transformation with M(0) = 0 and M ′(0) = 1, while φ is real-analytic
near 0, φ(0) = 0 and φ′(0) = 1. It is easily seen that M ◦P2 ◦φ ≡ P2 near 0. We can decompose
F as follows:

F (z) = P�/2 ◦ M ◦ P2 ◦ φ ◦ hc(z), (30)

valid for all z near c. The point is that the real part of φ◦Hc has negative Schwarzian derivative
at c. To see this, note that S(φ)(0) = −3s. Hence

S(φ ◦ hc)(c) = S(φ)(0)h′
c(c)

2 + S(hc)(c) = −3sh′
c(c)

2 + S(hc)(c) < 0
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by the choice of s. We see that the following local result holds. There exists δ > 0 such that
for any distinct a, b ∈ (c − δ, c + δ) with c �∈ (a, b) and |a − b| < δ, the connected component of
F−1Df(a),f(b) containing (a, b) is contained in Da,b.

To finish the proof of the lemma, use the local result near the critical points and Fact 10.1
applied to the real inverse branches of F elsewhere.

�

Proof of Theorem 6. The normalized Lebesgue measure ν on I can be regarded as 1-
dimensional conformal measures supported on I. Clearly, ν satisfies the uniform integrability
condition for any η < 1. We will show that we can use the estimates of Proposition 10.1 for
real inverse branches of F . One should proceed here with caution, since I is not backward
invariant. 3

First, we use Lemma 10.1 to infer that all preimages of disks DL(x) by real inverse branches
of F are well-defined and of uniformly bounded diameters. This means that the estimates of
Lemma 3.2 (Main Lemma) for disks B∆(x), x ∈ R, and real inverse branches F−N are still
valid.

We define a real part Lrl of the Perron-Frobenius operator L by,

Lrl(ν)(z) :=
∑

y∈F−1(z)∩R

1
|F ′(y)|δ

Recall that in the proof of Proposition 10.1, the equality Jacν(x) = |F ′(x)| was used only for
the estimates involving type 2 preimages. Explicitly, it is the estimate (28). But for every real
inverse branch F−k of type 2 from the inductive procedure in the proof of Proposition 10.1 and
every y ∈ F−k(x), we have a uniform estimate (independent from x and y)

|(F k)′(y)| ∼ ν(BR′(x)
ν(F−k(BR′(x))

.

After these preparations we are ready to invoke Proposition 10.1 with L replaced by Lrl. Hence,
there exists a positive constant K such that for every z ∈ R and every positive integer N ,

LN
rl (z) < K

∞∑
k=1

γk∆
−(1− 1

µmax
)

k ,

where the sequence γk (defined in Lemma 2.2) is summable with some exponent δ < 1. To
complete the proof, observe that Lrl is the Perron-Frobenius operator for f . This gives that
the densities of νn = fn∗ (ν) are bounded by a function g ∈ L1. Any weak limit of νn gives
an absolutely continuous invariant measure for f . The additional claims of Theorem 6 follow
immediately from Corollary 10.1.

3In general, if X is only a forward invariant compact set then it is not difficult to construct an example of
X ⊂ J and a δ-conformal measure supported on X such that |F ′(x)|δ � Jacν(x) ∼ ν(F (Br(x)))/ν(Br(x) .



69

11 Geometry of Fatou components

11.1 Integrable domains

Lemma 11.1 For every periodic Fatou component F the following two conditions are equiva-
lent:

1. For any (some - by the Köbe distortion lemma 2.1 the statements are equivalent) point
z ∈ F away from the critical orbits there exist a sequence ωn so that

∣∣∣(Fn)′ (y)
∣∣∣ > ωn

for points y ∈ F ∩ F−nz, and
∑∞

n=1 ω−1
n < ∞.

2. F is an integrable domain.

Without loss of generality we may assume that F fixes a Fatou component F . Throughout the
rest of this section we will always mean by F−n a branch mapping F to itself.

Take a subdomain Ω ⊂ F with nice boundary containing all critical points from F such
that FΩ ⊂ Ω. Any point z ∈ F eventually gets to Ω under some iterate of F , so we can define
n(z) := min {n : Fn(z) ∈ Ω}. Also fix a reference point z0 ∈ Ω.

Lemma 11.1 follows immediately from Lemma 7 from [14] which we state as Lemma 11.2.

Lemma 11.2 Suppose that z /∈ Ω and n = n(z). Then

dist (z, ∂F) �
∣∣∣(Fn)′ (z)

∣∣∣−1
,

distqh (z, z0) � n ,

up to some constant depending on F and our choice of Ω only.

The proof of Proposition 11 is preceded by a few analytical observations, compare [12] and
[38]. We will use that quasihyperbolic metric is a geodesic metric, see exposition [22] for this
and other properties of quasihyperbolic metric.

Lemma 11.3 Every integrable domain is geodesically bounded.

Proof: Let γ be a (minimal) quasihyperbolic geodesic joining z0 and z, i.e. distqh (z0, z) =
lengthqh (γ). We parameterize γ by its arclength starting from z0. We define function g on the
interval [0, length (γ)] by g(t) := lengthqh (γ[0, t]) = distqh (z0, γ(t)), the latter quantities are
identical since the geodesic is minimal. Then

d

dt
g(t) = dist (γ(t), ∂F)−1 .

From the definition of integrable domains, we obtain the following differential inequality

d

dt
g(t) · H(g(t)) ≥ 1 . (31)

Integrating leads to

s =
∫ s

0
dt ≤

∫ s

0
H(g(t))dg(t) ≤

∫ ∞

0
H(r)dr < ∞ .
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�

Denote by γ(z, y) a minimal quasihyperbolic geodesic joining z, y ∈ Ω, that is distqh (z, y) =
lengthqh (γ(z, y)).

Lemma 11.4 Let z0 be a base point in Ω (see Definition 1.7). There exists a continuous
increasing function A : R+ → R+ with limr→0 A(r) = ∞ so that for every point z1 ∈ Ω

distqh (z0, z) ≤ A(length (γ(z1, z))) .

Proof: We follow the notation from the proof of Lemma 11.3. Let lengthqh (γ(z0, z1)) = L.
Then distqh (z1, z) = L − g(t). By the inequality (31),

d

dt
length (γ(z1, z)) = −1 ≥ − d

dt
g(t)H(g(t) =

d

dt

∫ ∞

distqh(z,z0)
H(r)dr .

Integrating from t to L, we obtain that

−length (γ(z1, z)) ≥ −
∫ ∞

distqh(z,z0)
H(r)dr +

∫ ∞

L
H(r)dr

and
length (γ(z1, z)) ≤

∫ ∞

distqh(z,z0)
H(r)dr .

Set A(r) to be the inverse of
∫∞
r H(r)dr. Then A(r) is a non-decreasing continuous function

and limr→0 A(r) = ∞. The lemma follows.

�

Corollary 11.1 For every integrable domain Ω there exists a continuous function A defined in
Lemma 11.4 so that for every subarc γ1 of a minimal quasihyperbolic geodesic γ starting at the
base point z0 the following inequality holds

length (γ1)
A(length (γ1))

� max
z∈γ1

dist (z, ∂Ω) .

11.2 Local connectivity and continua of convergence

A connected set K is locally connected if for every z ∈ K and each neighborhood U of z there
exists a neighborhood V of z such that K ∩ V lies in a single component of K ∩ U .

Definition 11.1 A continuum K∞ ⊂ M is called a continuum of convergence of a set M if
there exists a sequence of continua Ki ⊂ M so that

1. Ki are pairwise disjoint for i = 1, . . . ,∞.

2. limi→∞ Ki = K∞
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A concept of continuum of convergence has a principal application in study of local connected-
ness of continua. We will say that a continuum of convergence is non-trivial if it contains more
than one point. We have the following fact (see Theorems 12.1 and 12.3 in [43]) which follows
almost immediately from the definition of local connectivity.

Fact 11.1 If a continuum M is not locally connected then there exists a non-trivial continuum
of convergence of M .

From Fact 11.1, it is clear that the local continuity of M can not fail just in one point. It fails
for all points from a non-trivial continuum of convergence.

Lemma 11.5 The boundary of an integrable domain Ω (which is not necessary connected) does
not have a non-trivial continuum of convergence.

Proof: Suppose that there exists a non-trivial continuum of convergence K∞ ⊂ ∂Ω. Let
Ki → K∞ be mutually disjoint continua of ∂Ω. We choose a point w in K∞ and ε > 0 so
that the circle {|z − w| = ε} intersects K∞ in at least two points and Ω \ Bε(w) is non-empty.
Without loss of generality, every Ki intersects {|z − w| = ε} in at least two points and hence
Bw(ε) \Ki has at least two components. For every n choose a component Ωn of Ω ∩Bε(r) and
zn ∈ Ωn with the following properties: (i) dist (zn, w) = 1/n, (ii) there exists j such that w and
zn are in different components of Bw(ε) \ Kj . Observe that there are infinitely many different
Ωn. Indeed, let Γj be a component of Bε \ Kj which contains w. By (ii), there exists j so that
Ωn is contained in a component of Bε \ Kj different than Γj. By (i), there exists N > n so
that zN and thus ΩN are contained in Γj . Consequently, every Ωm with m > N and Ωn are
different.

By connectivity, Ωn∩{|z−w| = ε} �= ∅. We join every zn with a base point z0 ∈ Ω\Bε(w) by
a minimal quasihyperbolic geodesic γ(zn, z0). Let γn � zn be a component of γ(zn, z0)∩Bw(ε/2).
The Euclidean length of γn is at least ε/4 for large n. Then, by Corollary 11.1,

max
y∈γn

dist (y, ∂Ωn) ≥ max
y∈γn

dist (y, ∂Ω) � length (γi)
A(length (γi))

� ε

4A(ε/4)
=: δ.

Consequently, every Ωn contains a ball of radius δ and hence there are infinitely many disjoint
balls of the same radius in Bε(w), a contradiction.

�

The non-existence of a non-trivial continuum of convergence implies immediately that every
component of the boundary is locally connected. We see immediately that every subcontinuum
of a continuum without non-trivial continuum of convergence is locally connected. In fact it
gives even more precise topological description of every component of ∂F (see [43] pp 82-84).

Definition 11.2 We say that a continuum K is a rational curve if each point z ∈ K has a
family of arbitrary small neighborhoods Un so that ∂Un ∩ K is countable.
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Theorem 3.3 and Remark 2.1 of Chapter V of [43] assert that every continuum which has no non-
trivial continuum of convergence is a rational curve. Another direct consequence of Lemma 11.5
is that for every ε > 0 there exists only finitely many components ∂F with diameters larger than
ε. This in turn will imply the absence of wandering compacta for polynomials which satisfy the
summability condition.

11.3 Wandering compacta

Definition 11.3 A compact K is called wandering if for every two non-negative integers m �= n

Fm(K) ∩ Fn(K) = ∅ .

Lemma 11.6 Suppose that F satisfies the summability condition with exponent α < 1
1+µmax

and F is a periodic Fatou component. Then F has no wandering compacta contained in ∂F
other than points. In particular, if F is a polynomial then every non-point component of con-
nectivity of J is preperiodic.

Proof: We can always assume that K is connected. Let R′ be supplied by Proposition 7.2. We
look at the orbit Ki := F i(K). Since ∂F does not have a non-trivial continuum of convergence
almost all continua Ki have the diameter smaller than R′/2. A ball Bi of the radius R′ centered
at any point of Ki contains Ki. By Proposition 7.2, we obtain that

diam K ≤ diam F−i(Bi) < (ω̃n)−1 → 0

and K must be a point.

�

12 Uniform summability condition

Continuity of scales and parameters. Let F be uniformly summable. By the definition
of the class Sα, the same sequences {αn}, {γn}, and {δn} of Lemma 2.2 can be chosen for all G
in Sα sufficiently close to F . We will also argue that, after additional restriction, all constants
from Section 2.3 can be chosen in a uniform way, that is independently from G ∈ Sα.

Uniform version of Lemma 2.4. We will show, by a compactness argument, that constants
in Lemma 2.4 are uniform. We do not have to assume that F satisfies the summability condition.
It is enough to assume that all periodic orbits of F are either repelling or attracting. If F satisfies
the summability condition then by Corollary 2.2, F does not have elliptic domains

1. Let WR′ be an R′-neighborhood (in the spherical metric) of the attracting points of F .
We claim that Lemma 2.4 remains valid after replacing the hypothesis that z is at the
distance at most R′/2 from JF by the hypothesis that z ∈ Ĉ \ W2R′ . Clearly, we may
assume that Ĉ �= JF . Every sequence of the inverse branches of the second type defined
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in Ĉ \ W2R′ form a normal family. Only constant functions are possible as limits for the
inverse branches of the second type. This means that there exists Lu(z) so that the first
two claims of Lemma 2.4 are satisfied for n(y) ≥ Lu(z). By compactness, there exists Lu

which works for every z. The remaining two claims follow as in the proof of Lemma 2.4.

2. Consider now sequences of preimages of type two for F (defined in balls of radius R′) and
choose Lu for F so that the first two claims of Lemma 2.4 are satisfied with the estimates
7 and 1/37 instead of 6 and 1/36, respectively. Next, observe that for every L′

u ≥ Lu

there exists a neighborhood of F in the space of rational functions so that for every G
from that neighborhood and every sequence of type two preimages of z ∈ Ĉ \W2R′ by G,
we have that

inf
y∈II(z), L′

u≥n(y)≥Lu

∣∣∣(Gn)′ (y)
∣∣∣ > 6

and if the Poincaré series Σq(v) for F converges for some point v, then

∑
y∈II(z), L′

u≥n(y)≥Lu

∣∣∣(Gn)′ (y)
∣∣∣−q

<
1
36

.

A priori, we can not argue that the above estimates are true without additional restriction
given by L′

u. The constant R2t can be also chosen uniformly provided z ∈ Ĉ \W2R′ . The
constants K and C of Lemma 2.4 come from the Köbe type estimate and hence are
uniform. The constant R′ is valid for all G sufficiently close to F .

Lemma 12.1 (Uniform version of the Main Lemma) Let F be uniformly summable with
an exponent α < 2

2+µmax
and parameters M, η. There exists δ > 0 so that for every G ∈

Sα(F, M, η), dist (G, F ) ≤ δ, there exists a neighborhood V (G) of JG such that if z ∈ V (G)
and a ball B∆(z) can be pulled back univalently by a branch of G−N , then there exist positive
constants L′ > L independent from δ, z, ∆, and G so that the assertions of the Main Lemma
hold for G.

Proof: We choose V (G) so that every backward orbit of z ∈ V (G) stays in R′/2-neighborhood
of JG and R′/2 < η. Choosing R′ small, we can guarantee that for δ small enough all V (G)
are contained outside of 2R′-neighborhood of the attracting periodic orbits of F . The constant
R′ is uniform. We claim that the induction of the Main Lemma can be carried out for G, R′,
and z ∈ V (G). This is exactly the place where we use the assumption that F is uniformly
summable. Before we explain why the induction works with uniform R′, let us observe that
non-uniform R′

G chosen for G according to the conditions (i − iv) of Section 2.3 could be very
small. Indeed, by the condition (iv), every c ∈ CritG which is at the distance smaller than 2R′

G

to JG is in fact in JG. Since a small perturbation of F generally moves some critical points
outside the Julia set, RG tends to 0 when G → F . By the definition of convergence in Sα,
there is a one-to-one correspondence between critical points of F and G ∈ Sα. The uniform
summability condition generates expansion in the form stated in the Main Lemma for all pieces
of orbits of type 1 . . . 13, where type 1 and 3 are defined using all critical points which satisfy
the uniform summability condition.
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What remains is the proof that we can find L and L′ > L independently from G so that the
first two claims of the Main Lemma hold. We put L := Lu and hence L is independent from G,
by the uniform version of Lemma 2.4. Next, for a given G, L′ = L + L′′, where L′′ is defined in
terms of {αn}, C3t, and R2t which are uniform constants. We conclude the proof by invoking
the uniform version of Lemma 2.4 for Lu and L′

u = Lu + L′′.

�

Corollary 12.1 If a sequence Fk of rational functions tends to F in Sα and α < δPoin(JF )
µmax+δPoin(JF )

then
lim sup

k→∞
δPoin(Jk) ≤ δPoin(JF ) .

Proof: By Theorem 1, the Poincaré series for F , ΣδPoin(JF )+ε(c) < ∞, for every ε > 0 and for
every critical point c of the maximal multiplicity. By the uniform versions of the Main Lemma
and Lemma 2.4, we can pick up L ≤ L′ in a uniform way. This means that for every ε > 0
there exists κ so that for every k > κ there exist L < L′ so that

∑
y∈II(z), L′≥n(y)≥L

∣∣∣(Fn
k )′ (y)

∣∣∣−δPoin(JF )−ε
<

1
36

,

where II(z) stands for a set of type 2 preimages of z for Fk. Here, the constants L′ > L depend
on ε. Since all Fk are summable with an exponent α, Corollary 4.3 implies (set p := δPoin(J)
and q := δPoin(J) + ε) that δPoin(Jk) ≤ δPoin(J) + ε.

�

Proof of Theorem 12. If rational functions Fn tend to F in Sα, α < δPoin(J)
µmax+δPoin(J) then

by Corollary 12.1 and Theorem 1,

lim sup
n→∞

HDim(Jn) = lim sup
n→∞

δPoin(Jn) ≤ δPoin(JF ) = HDim(JF ) .

Since HDim(JF ) = HypDim(JF ) (see [8, 9]), there exists a hyperbolic subset K of JF so that
HDim(K) ≥ HDim(JF ) − ε. By the general theory of hyperbolic sets, the set K persists
under small perturbations of F and hence every Jn contains a hyperbolic set Kn of Hausdorff
dimension HDim(K) − ε for n large enough. Consequently,

lim inf
n→∞HDim(Jn) ≥ HDim(JF ) ,

which proves the theorem.
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13 Unicritical polynomials

It is known that the connectedness locus Md for unicritical polynomials zd +c is a full compact.
Let φ be the Riemann map from the unit disk to C \Md. By Fatou’s theorem for almost all ξ
with respect to the Lebesgue measure on the unit circle, there exists a radial limit limr→1 φ(rξ).
Therefore,

χ = φ∗(m) .

By Fatou’s theorem, for almost every c ∈ ∂Md with respect to χ the external radius Γ(c) (see
Definition 1.10) terminates at c.

Denote the Julia set of the polynomial zd + c by Jc. By Shishikura’s theorem, [36], there
exists a residual set Z ⊂ ∂M2 with the property that ∀c ∈ Z,

HypDim(Jc) = 2 .

Let c ∈ ∂M2 corresponds to a Collet-Eckmann polynomial. By [16] and [37], Collet-Eckmann
parameters are typical with respect to the harmonic measure χ and the corresponding Julia sets
are of Hausdorff dimension < 2, [14]. Choose now a sequence cn ∈ Z, cn → c. Since HypDim(·)
is lower semicontinuous, there exist open disks Dn centered at cn so that ∀c ∈ Dn,

HDim(Jcn) > 2 − 1
n

.

By Yoccoz’s theorem, M2 is locally connected at c and thus there exists a curve γ terminating
at c so that

lim sup
γ�c′→c

HDim(Jc′) = 2 > HDim(Jc)

and HDim as a function of c′ ∈ C \M2 does not extend continuously to ∂M2.
Another type of discontinuity of HDim(·) is caused by the parabolic implosion. Let c ∈ ∂M2,

c ∈ Γ(c), has a parabolic cycle. The parabolic implosion means that HDim(Jc) is strictly
contained in the Hausdorff limit of Jc′ , c

′ ∈ Γ(c). It was recently shown in [10] that if d = 2
and c > 1/4 then

HDim(J1/4) < lim inf
c→1/4

HDim(Jc) ≤ lim sup
c→1/4

HDim(Jc) < 2 .

13.1 Renormalizations

We will start with the observation that summable unicritical polynomials are not infinitely
renormalizable.

Lemma 13.1 Suppose that fc satisfies the summability condition with an exponent α ≤ 1
1+d .

Then fc is only finitely many times renormalizable.
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Proof: Indeed, suppose that f := fc is infinitely renormalizable. Then there is a sequence nj

and two topological disks Uj ⊂ Vj so that fnj : Uj → Vj is proper of degree 	 and

Jj := ∩∞
i=0f

−nji(Uj) � 0

is a non-trivial continuum (f−nj is a branch which sends Vj onto Uj). We may assume that
∀j ≥ 0, Uj+1 ⊂ Uj . Let R′ be a constant chosen in Section 2.3. If for every j positive and every
0 ≤ k ≤ nj , diam fk(Jj) ≥ R′ then ∩∞

j Jj is a non-trivial wandering continuum and the Julia
set of fc would not be locally connected. Hence, there exist j and k so that diam fk(Jj) ≤ R′.
Let BR′ ⊃ fk(Jj). We apply Proposition 7.2 for the inverse branches f−k−njs, s is a positive
integer, f−njs(BR′) ⊃ Jj, and the ball BR′ . Then

diam Jj = diam f−k−njs(BR′) ≤ ω−1
k+njs → 0,

a contradiction.

�

13.2 Radial limits

Let fc = zd + c. We use the following fact stated as Theorem 1.2 in [16].

Fact 13.1 Let Γ(c0) be an external radius landing at c0. For every d ≥ 2 and for almost every
c0 ∈ ∂Md with respect to the harmonic measure there exist constants K > 0 and Λ > 1 so that
for each c ∈ Γ(c0) and every n > 0

(fn
c )′(c) ≥ KΛn .

This means that for almost all c0 with respect to the harmonic measure, fc, c ∈ Γ(c0), converges
to fc0 in Sα for every α > 0. To complete the proof of Theorem 13, we invoke Theorem 12,

lim sup
Γ(c0)�c→c0

HDim(Jc) = HDim(Jc0) .

Proof of Theorem 14. Consider a generic c0 ∈ ∂Md as in the proof of Theorem 13. Let νc

be a unique conformal measure for fc, c ∈ Γ(c0). It is known that νc is a normalized Hausdorff
measure, [40]. Hence, the conformal exponent of νc is equal to HDim(Jc). By Theorem 13,
HDim(Jc) → HDim(Jc0) as Γ(c0) � c → c0. This means that any weak accumulation point of
νc is a conformal measure with an exponent HDim(Jc0). But there is only one such a measure
on Jc0 and we obtain convergence of νc to the geometric measure of fc0 .

13.3 Rigidity in unimodal families

The proof of Theorem 15 follows immediately from local connectivity of Julia sets for unimodal
polynomials, [23] and Theorem 8. Indeed, if zd + c1 and zd + c2 are topologically conjugate as
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unimodal maps of interval then the conjugacy can be extended in a standard way (using the
Yoccoz construction and local connectivity of the corresponding Julia sets) to a homeomorphic
conjugacy defined in the whole complex plane. By the construction, the conjugacy is conformal
on C \ Jc1 . Since Jc1 is removable, by Theorem 8, the conjugacy is in fact conformal in the
whole complex plane and c1 = c2.
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