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1. INTRODUCTION

This paper addresses the well-studied problem of the existence of complex a priori bounds
in the dynamics of quadratic polynomials. By definition, an infinitely renormalizable qua-
dratic map f has such bounds if there exists a lower bound g > 0 such that for every
n € N the renormalization R"f has a quadratic-like extension U — V whose fundamental
annulus V' \ U has modulus at least . The purpose of establishing such bounds is two-fold:
they were originally introduced by Sullivan [Sull, Sul2, MvS] as a compactness condition
for the one-dimensional renormalization theory; on the other hand the geometric control
they give leads to rigidity results, such as JLC, and MLC (see e.g. [Lyu4]). The prob-
lem of existence of complex a priori bounds for real infinitely renormalizable quadratics
was completely settled following Sullivan’s original result for quadratics of bounded type
[Sul2, MvS], in the works [Lyu3, LvS, LY, GS]:

Theorem 1.1. There exists i > 0 such that for every infinitely renormalizable real qua-
dratic polynomial f and every n € N the renormalization R"™ f has a quadratic-like extension
with modulus at least .

In §2 we discuss the history of the proof in some detail, and, in particular, introduce
the combinatorial condition of essentially bounded type, which was the subject of study in
[LY]. In this paper we give a new treatment to polynomials satisfying this condition. Our
approach is to consider them as small perturbations of parabolic maps, and use the rigidity
properties of such maps to pass from real a priori bounds to complex ones. A particularly
simple proof of complex bounds for parabolic maps is due to Petersen in the case of critical
circle maps (see [EY]). More work has to be done to get bounds for quadratics (partly
because the combinatorics is more complex) — however, the resulting argument is “soft”, as
opposed to a “hard” analytic proof given in [LY]. We note, that our proof accomplishes less
than that of [LY], yet enough to replace the result of that paper. Having such a geometric
proof is interesting in itself, and draws an instructive parallel with the critical circle maps
case; it is also our hope that this approach will prove useful in other situations where the
existence of complex a priori bounds is not yet known: such as non-real quadratics whose
renormalizations are small perturbations of parabolics.
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2. PRELIMINARIES

2.1. Generalities. The knowledge of the theory of parabolic bifurcation in one dimension
will be assumed throughout this paper. As a general reference, we recommend the paper
[Sh]; all the relevant facts may be found there. In addition, a detailed study of the properties
of Ecalle-Voronin maps was carried out in the dissertation [Ep|, which may also be of
interest to a reader of this work. We will also assume that the reader is familiar with the
subject of renormalization of unimodal and quadratic-like maps. We will generally follow
the notation of [LY, Lyu6, Hin]. In particular, we will denote £ the Epstein class, and &
an Epstein class with a geometric bound s; Rf the renormalization of a renormalizable
unimodal map f, and pRf its pre-renormalization, that is, the non-rescaled first return
map. A parabolic renormalization of a quadratic-like map in £ will be denoted Pyf,
0 € T, and pPyf will again stand for the pre-renormalization. As usual, C; will denote the
complex plane with two slits on the sides of the interval J:

C; = (C\R) U J.

A map f € £ is a double covering of a domain Qp C C; over C;, where I € J, branched
at 0. The combinatorial type of a renormalizable unimodal map f will be denoted 7(f);
X(f) will denote the straightening of a quadratic-like map f with a connected Julia set.

2.2. Essentially bounded combinatorics.

Definition of the essential period. A detailed discussion of the combinatorics of the
puzzle of a unimodal map goes beyond the scope of this paper. We will assume that the
reader is broadly familiar with the subject and will recall only briefly the main concepts
as we encounter them. For a more detailed introduction we particularly recommend to
the reader the recent paper of Lyubich [Lyu6]. In this chapter we will briefly recall the
definition of the essential period of a renormalizable unimodal map, and discuss an example
of an infinitely renormalizable unimodal map with essentially bounded combinatorics. We
will follow the above mentioned work of Lyubich, and a detailed paper of Hinkle [Hin].
Let f be a renormalizable unimodal map. The principal nest of f is the sequence of

intervals

[a(f), ()= D>I'"DI*D -
where «(f) is the dividing fixed point of f, and I™ > 0 is the central component of the
first return map of 1™,

G P UL — T 1,

A level m > 0 is non-central, if g,,(0) € ™=\ I"™. If m is non-central, then g, 1|fm+
is not merely a restriction of the central branch of g,,, but a different iterate of f. Set
m(0) = 0, and let

m(0) < m(1l) <m(2) <--- < m(k)

be the sequence of non-central levels. The map

Im(k)+1 |1 = pRS.
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For 0 < k < k the nested intervals
k)L ~ k) +2 o pm(k+L)

form a central cascade, whose length is m(k + 1) — m(k). Lyubich called a cascade saddle-
node if 0 & g1 (I™®+1), otherwise he called it Ulam-von Neumann. The reason for
this terminology is that if the length of a saddle-node cascade is large, then g, (k)41 mw+1
is combinatorially close to the saddle-node quadratic map = +— x? + 1/4; in the Ulam-von
Neumann case the map is close to the Ulam-von Neumann map x — 22 — 2.

Let z € P(f) N (I™® \ [™®)+1) and set d(x) = min{j — m(k), m(k + 1) — j}, where
Jm(ky+1(x) € P\I7**. This number shows how deep the image of z lands inside the cascade.
Let us now define d; as the maximum of di () over all points z € P(f) N (I™*) \ [mk)+1),
For a saddle-node cascade the levels | such that m(k) + dy, < | < m(k + 1) — djy are
neglectable. Now we define the essential period of f as follows. Set J = I™®)*! and
let p be its period, that is the smallest positive integer for which f?(J) 3 0. Consider
the orbit Jy = J, J; = fi(Jy), i« < p— 1. For each J; consider the deepest cascade
which contains this interval, and call J; neglectable if the cascade is saddle-node and J;
is contained in a neglectable level of the cascade. Now count the non-neglectable intervals
in the orbit {.J;}?_y. Their number is the essential period, p.(f). Recall that an infinitely
renormalizable map f has a bounded combinatorial type if there is a finite upper bound
on the periods of its renormalizations. Similarly, f is said to have an essentially bounded
combinatorial type if sup, p.(RF) < co.

An example of a map with essentially bounded combinatorics. The definiton
given above is rather delicate. It is useful therefore to provide the reader with a simple
yet archetypical example of an infinitely renormalizable map of unbounded but essentially
bounded combinatorial type (cf. [Hin]). This map is constructed in such a way that its
every renormalization is a small perturbation of a unimodal map with a period 3 parabolic
orbit. Closeness to a parabolic will ensure that the renormalization periods are high, but
the essential periods will all be bounded.

Before constructing the example, let us consider the dynamics of the quadratic map
f 2z 22— 1.75. This polynomial has a parabolic orbit of period 3 on the real line, let
us denote p the element of this orbit which is nearest to 0. Recall that I° = [a(f), —a(f)],
and I' is the central component of the domain of the first return map ¢ : I° — I°.
For this map we have g| = f?, p € I°, and f*"(0) — p. The map ¢ has two non-central
components; denoting I} the one whose boundary contains a(f), we have g = f?: I} — I°.
For a small ¢ > 0 let us set f(z) = 22 — 1.75 + €. The orbit of 0 under f, eventually
escapes 1. Let us define ¢, as the parameter value for which f2(0) € I', i < n —1,
f2M0) € I}, and f2"*2(0) = 0. These maps correspond to the centers of a sequence of

small copies M) of the Mandelbrot set converging to he cusp ¢ = —1.75 of the real period
3 copy MO, For each f., the essential period p.(f.,) = 5, obviously p(f.,) — co. Now
consider an infinitely renormalizable unimodal map h such that the combinatorial type
7(R*h) = 7(f.,,), with ng — oo. This is the desired example. We can, of course, select h
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FIGURE 1. Construction of an example: The map z — 22 — 1.75, and its
small perturbation, with the domain of ¢ indicated.

in the real quadratic family, picking an infinitely renormalizable parameter value ¢ € M

such that x(R*(f.)) € /\/l,(f’k). This amounts to blowing up a small copy M3 | finding its
period 3 cusp, and the corresponding sequence of small copies converging to this cusp,
blowing up one of them, ad infinitum.

2.3. Complex a priori bounds. By real a prior:i bounds, there exists o > 0 such that the
renormalizations of any infinitely renormalizable map in £ are eventually in &,. Complex
a priori bounds were introduced by Sullivan, who (in collaboration with de Melo) proved
the following theorem:

Theorem 2.1 ([Sul2, MvS]). For every p € N there exists N = N(p) € N, and p = p(p) >
0, such that for every f € £, such that f is at least N times renormalizable, and if

p(R'f) <p fori=0,...,N —1 then modR"(f) > p.
Subsequently, Lyubich has shown:
Theorem 2.2. There exists py € N, g > 0 such that iof f € &€, is renormalizable
Pe(f) > po, then mod(Rf) > .
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FIGURE 2. An airplane inside of an airplane: consecutive blow-ups of a Julia
set of a map with essentially bounded combinatorics, and the corresponding
blow-ups of the Mandelbrot set

FIGURE 3
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The gap between the two theorems was filled in [LY] where a universal complex a priori
bound was obtained for maps with essential periods bounded by py. In particular, [LY]
contained a simple proof of Theorem 2.1 with a universal constant p. Independently,
different proofs of universal a priori bounds were given by Graczyk & Swiatek [GS], and
Levin & van Strien [LvS]. In this paper we again look at the old problem of the gap between
Theorem 2.1 and Theorem 2.2, and give a different argument for bridging the gap. Our
argument is less general than that of [LY], since it requires that while the essential periods
of the renormalized maps are bounded, the periods of renormalizations are sufficiently high,
so the renormalizations are uniformly close to parabolics.

Let us define £ C &, to be the set of all limit points of infinitely renormalizable quadratic-
like maps. The theorem we prove is the following:

Theorem 2.3. For every k € N, k > 3, there exists u = pu(k) > 0 such that the following
holds. Denote L, the set of maps g € L with the property, that there exists a sequence
{fY o C L, with fy = g such that every f; has a parabolic periodic orbit of period
at most k, and that for every i there exists 0; such that the parabolic renormalization

Po,(fi) = fir1-
Then mod g > p for every g € Ly.

Note that the parabolic cycle of f; is necessarily unique (cf. the argument in [Ya], as well
as Lemma 3.2).

3. THE PROOF OF BOUNDS

Outline of the argument. Since L, it follows, in particular, that every map f € L is
an analytic double covering, branched at the origin, of a domain 2 = Q; C C;, over C;,
with If c Jf.

Let us fix k € N, as in Theorem 2.3. For a map f € L, denote p = p(f) the period
of its parabolic orbit. Let By C €2y be the parabolic basin of f, and B} the component
of the immediate basin which contains the origin. We let 2o € 0B} be the element of the
parabolic orbit of f contained in the central component of the basin. Since f : Q; — C,,
is a branched covering, f : B} — Bj} is a proper map in C;, compactified by adding the
banks of the slits and the point at infinity. Further, let U;‘, Uf“ be a pair of attracting and
repelling petals of the parabolic point x¢; ® 4  : Uf‘ — C, ®p - Uf — C the corresponding
Fatou coordinates; and C’;‘ ~ C/Z, C’f ~ C/Z the two Fatou cylinders. For each of the
cylinders let @, © denote their ends, correspondingly, the upper and the lower ones. The
natural projection

A =ParmodZ: U;‘ — C;‘
dynamically extends to a branched covering map of the whole basin By over C’f‘, the other
projection, mp s is only well-defined locally. Let &; : CfR — Cf‘ be the dynamical first entry

map, which we will further refer to as the Ecalle-Voronin map of f. For ease of reference,
let us summarize some of the relevant properties of £; as a proposition.
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Proposition 3.1 (Properties of Ecalle-Voronin maps). Under the above assumptions on
f we have the following:

(I) the interior of the domain of the map &y consists of the union of two open neighbor-
hoods U(®), U(©) of the ends of the cylinder (two “polar caps”); and a countable
set of topological disks W; C C®, each of which is a projection wg; of a connected
component B; of By, intersecting U%;

(II) the map & restricted to each of the interior components of its domain of definition
is an infinite degree branched covering with a single critical value v € C4 (the
projection wa ¢(f?(0))), and infinitely many simple critical points.

Note that the restrictions of £ to the two polar caps are the original Ecalle-Voronin
conjugacy invariants, hence our choice of name for &;.

Now let us fix f = fy € L4, and let f_1, f_o,... be its preimages under the parabolic
renormalization as in Theorem 2.3. Denote W > 0 the central component of the domain of
Er . Ifweset pPy_, (f1) = f (so f is a linear rescaling of f), then the map f is conjugate
via the projection m4 s, to the composition

hf = 5f_1 OTyp_, : W — Cfl_l

By Proposition 3.1 (II), the map h; is an infinite degree branched covering with a single
critical value. The restriction on the period p(f) implies that A belongs to one of finitely
many topological classes. Our goal is to show that it belongs to one of a finitely many
K-quasiconformal classes with a certain universal constant K > 1. The first step in this
direction is to employ the real a priori bounds to show that the shape of the basin B} |
(and hence the domain W = mg (B} |)) is geometrically bounded. Having done that,
we may apply a modified pull-back argument, along the lines of [EY], to quasiconformally
conjugate our map to a fixed Ecalle-Voronin map having a quadratic-like restriction —
and hence get a lower bound on the modulus. The main advantage of the parabolic case,
studied in this paper, lies in the rigid structure of the Ecalle-Voronin maps, which allows us
to construct the global quasiconformal conjugacies between the parabolic renormalizations,
and in this way to pass from the compactness given by real a priori bounds to complex a
priori bounds.

Bounding the shape of the parabolic basin of f_;.
Lemma 3.2. There exists m = m(k) > 0 such that the following holds. Let g € L, then

my = mod WRyg(U‘f \ By) > m.

Proof. By compactness of &, it suffices to show that m, is always a positive number. We
will argue by way of contradiction. If my = 0, then the boundary of the basin component
B, contains a point 2y € UgR. Recall that g7 is the iterate fixing B;. Given the invariance
of 9B, and the dynamical interval [0, 8;] C R of g, the points z, = ¢*"(20) converge
to a point ¢ € R which is also fixed under the iterate ¢?. Since ¢ is a limit of a sequence
of infinitely renormalizable quadratics without any attracting fixed points, ¢ is necessarily
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FIGURE 4. A sketch of the Julia set of f_; and the domain of the map hy.
A quadratic-like restriction of hy and its Julia set are also indicated.

parabolic. Since g € &, the iterate ¢g? has a univalent inverse branch v : H — H of ¢?,
fixing xy. By symmetry, there are points in H whose orbits under i) converge to (. On the
other hand, the point z attracts some of the orbits in By. This contradicts the uniqueness
part of the Denjoy-Wolff Theorem as applied to . ([l

Lemma 3.3. There exists a constant C = C(k) > 0 such that for every g € L,
diam(B;) < C.

Proof. Again, compactness of & means that it is enough to show diam(Bj) < oo. We
argue by contradiction using the fact that ¢ is a parabolic renormalization g = Pyg_; of a
map g1 € L. Let hy : W — C/Z, and g be as above. This map itself is has a parabolic
orbit in R/Z (which is the projection of the parabolic orbit of g). Denoting B > 0 the

central component of the parabolic basin of hy we have

TAg_1 (Bg) = B.
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Let us first observe that
diam(B;) = oo
implies that OB, and hence OW as well, separates the cylinder. In view of the Maximum
Modulus Principle the latter is equivalent to the existence of an equatorial continuum
X CcoBnNow.
We argue by way of contradiction. Assuming that there is no such equatorial continuum

we observe that there exists a vertical strip
S[fok,fN} = {Z € (C| —N-k< RG(Z) < —N},

such that there is a lift B of the basin B entirely contained in (Tag-,) " (Sj=n—k,—n7)- On
the other hand, since the two polar caps do not intersect W, the height of B is bounded,
and hence

BcC (WA,g_l)il(S[—N—k,—N] N{[Im(z)| < M}),

for some M > 0. Therefore, the conformal map B — B, can be extended to an open
neighborhood, and hence the latter set has a finite diameter.

Let us now rule out the existence of a separating continuum X as above. The invariance
of 0B under h?(g) implies that the image h?(g)(X) intersects with the repelling petal of
B. This, of course, means that m, = 0, in contradiction with the previous lemma.

O

Quasiconformal conjugacies.

Lemma 3.4. There exists K = K(k) > 1 such that the following holds. Let g € L, and
let p=p(g) € N as before denote the period of B3. Then there exists a K-quasiconformal
map of the plane which maps the basin

B — K(2* +1/4),
conjugating the dynamics of P and z* + 1/4 on the respective basins.

Proof. The previous two Lemmas allow us to construct a pinched quadratic-like restriction
of g* on a neighborhood B with universal quasiconformal bounds. We refer the reader to
[EY] where the relevant definition is given and a similar construction is carried out. The
pull-back argument of [EY] applied to the two pinched quadratic-like maps applies here
mutatis mutandis. OJ

Proof of Theorem 2.3. Let f, f_1 be as above. Let Y, denote the set of real quadratic
polynomials with a parabolic cycle of period at most ; of course, #Y, < co. Let g_; € Y
be the map having the same combinatorial type as f 1, and let ¢ = Pyg_; be the parabolic
renormalization of g ; having the same combinatorial type as f. Then hy, hy are K-
quasiconformally conjugate with K; depending on k alone. Indeed, this follows from the
previous lemma, and the standard pull-back argument applied to hy, hy. Denoting

my = min{mod g| g_; € Y},
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we have my > my/K;. O

Conclusion. Let us show that the existence of universal complex a priori bounds stated
in Theorem 1.1 follows from our Theorem 2.3 together with Sullivan’s Theorem 2.1 and
Lyubich’s Theorem 2.2. Indeed, let f be an infinitely renormalizable real quadratic map.
If p.(R™f) > po then
mod(R" f) > o

by the result of Lyubich. By real a priori bounds there exists k = k(p.) € N, p; € N
such that if p.(R™f) < po and p(R"f) > p; then R"f is sufficiently close to a parabolic
in £, to have modulus of at least 0.5x(x). Finally, by the Sullivan’s theorem, there exists
N = N(p1), i = p(p1) such that if p(R"™ f) < p; for 0 < i < N, then

mod(R" NP £) > p,

For the at most N intermediate levels the bounds follow by the considerations of compact-
ness of &,.
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